REPLACEMENT ZIPPER PULL

Applicants: Jeffrey J. Castaline, San Mateo, CA (US); Hiroyuki Hiroyuki, San Mateo, CA (US)

Inventors: Jeffrey J. Castaline, San Mateo, CA (US); Hiroyuki Hiroyuki, San Mateo, CA (US)

Appl. No.: 13/771,721
Filed: Feb. 20, 2013

Related U.S. Application Data
Provisional application No. 61/601,508, filed on Feb. 21, 2012.

Publication Classification
Int. Cl. A44B 19/26 (2006.01)
B21D 53/54 (2006.01)

U.S. Cl. CPC A44B 19/262 (2013.01); B21D 53/54 (2013.01)
USPC ... 24/429; 29/409

ABSTRACT

A simple, easy to manufacture, replacement zipper pull for zippers and slide fasteners suitable for mounting and safely displaying cabochons and jewels is described where a solid blank body with a display surface for mounting a cabochon or jewel, has an open hexahedral slot, drilled, routed, molded and/or cast, penetrating into the blank body beneath the display surface, and where transverse passageway is created within the blank body having a width greater than that of the slot for establishing a base-end of the slot and creating an anchor hole in each side of the slot for receiving outward extending distal tips of legs of a U-shaped, spring wire bail sized for insertion into the hexahedral slot, where the distal tips of the legs of the U-shaped spring bail span outward to a width greater than the width of the hexahedral slot, and snap into the created anchor holes at the base-end of the slot, for securing the blank body to the loop tang atop a zipper or slider fastener through which the U-shaped spring bail is threaded.
FIG. 2e

FIG. 2f

FIG. 2g
FIG. 4c

FIG. 4d
REPLACEMENT ZIPPER PULL

RELATED APPLICATIONS

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The present invention relates generally to replacement zipper pulls for zipper and slide fasteners, and more particularly, to replacement zipper pulls for zippers and the like suitable for mounting and safely displaying cabochons and jewels, and methods for fabricating same.

[0004] 2. Description of the Prior Art

[0005] Patents designated in U.S. Class 24 subclasses 429 & 431 per the U.S. Patent Office MANUAL OF PATENT CLASSIFICATION describe many different embodiments of zipper pulls for zipper and slide fasteners. The International Patent Classification protocols designated classes A44B 19/24 & 19/26 for zipper pulls zipper and fastener sliders.

[0006] U.S. Patent Application 20020694944, McCarroll published Jun. 23, 2002 describes a three element zipper pull structure that includes a U-shaped wire bail having ‘hook’ ends extending perpendicularly outward or inward from the legs of the U-shaped wire bail sandwiched between two handle halves that have cavities milled or molded into the joining faces that provide receptacle passageways for accommodating the extending legs, and capturing the outward or inward extending ‘hook’ ends of the U-shaped wire bail.

[0007] U.S. Pat. No. 7,574,783, Muratsubaki et al, issued Aug. 18, 2009, describes a zipper pull structure for a zipper and fastener slider that is inserted into a flexible cover where the cover has a cavity with a configured mating or receiving surface with lugs and recesses, and the tab structure has an insert section with a complimentary configured surface with lugs, holes and/or recesses, that fits snugly in and seats in the configured cavity of the cover when fully inserted into cavity of the cover. The zipper pull structure includes a integral loop opposite the insertion end for coupling to loop tang of the slider.

[0008] U.S. Pat. No. 4,368,562, Minami, issued Jan. 18, 1983, describes an ornamental zipper pull for a zipper and fastener slider that includes a zipper pull with a lateral projection at its tip, and a resilient body with a longitudinal, slotted cavity having a channel with a wider locking port opening at its distal end for receiving the lateral projection of the zipper pull. The overhanging cavity walls on either side of the slot channel function as cantilevered resilient flaps that displaces outward as the tip of the zipper pull is inserted into the slot cavity and snap inward when the lateral projection at the tip registers with the wider locking port for locking the resilient body onto the zipper pull.

SUMMARY OF THE INVENTION

[0009] An easily fabricated replacement zipper pull for zippers and slide fasteners suitable for mounting and safely displaying cabochons and jewels are described each having a solid blank body presenting a mounting surface and an open hexahedral slot, drilled, routed, molded and/or cast, penetrating into a side of blank body beneath the display surface having a selected width, height, and depth with a transverse passageway with a length greater than the width of the slot at its base-end, and a height at least equal to the height of the hexahedral slot for providing anchor holes on either side of the slot at its base end for receiving outward, perpendicularly extending distal tips at the end of legs of a U-shaped spring bail sized for insertion into the slot having cord-width at most equal to the width of the hexahedral slot where the perpendicularly extending distal tips of the legs of the U-shaped bail span outward to a width greater than width of the hexahedral slot. The U-shaped spring bail of invented replacement zipper pull is looped through the conventional loop tang projecting upward from a zipper or fastener slider and then is inserted into the hexahedral slot opening penetrating into the blank body to a point where the outward projecting distal tips of the U-shaped bail legs register with, and snap into the anchor holes on the opposite sides of the hexahedral slot at the bottom of the slot.

[0010] The blank body with a cabochon or jewel mounted on the display surface serves as a grip for sliding the zipper or fastener slider to open or close a garment or other enclosure, e.g., a purse, satchel, briefcase and the like.

[0011] The primary and novel advantages of the invented replacement zipper pull relate to simplicity of manufacture. In particular, the manufacturing steps required are:

[0012] a) forming a U-shaped spring bail from a stiff wire material having small diameter (d₂), and a Young’s Modulus of Elasticity (E) ranging between 23 and 30,

and having legs extending in a common plane of a specified length (L₂), with an outside cord-width (W₂) and with distal tips extending perpendicularly outward spanning to a greater width (W₂) in the common plane;

[0013] b) forming a solid blank of a chosen material in a desired configuration establishing a center of mass, and presenting a display face and having an open hexahedral slot symmetrically penetrating into the body with a width (W₃) oriented parallel to the display face, with a height (H₃) and with a base at a depth (D₃) near the center of mass of the blank body; and

[0014] c) creating an interior passageway equal to the height (H₄) of the hexahedral slot within the blank body having a length (L₄) greater than the width (W₄) of the slot transversely across the base of the slot for providing anchor holes to receive the outward extending distal tips of the legs of the U-shaped spring bail, where:

 \(W₅ ≤ W₄ \leq W₂ \leq L₆) \), \((d₂≤H₃) \) and \((D₃≤L₄) \).

[0015] If appropriate, the U-shaped spring bails may also be stress relieved in an oven to remove accumulated bending stresses after they are formed for increasing functionality and durability of its elastic or ‘spring’ properties, particularly under circumstances where it is anticipated the zipper pull may be frequently detached and reattached to multiple different blank bodies and/or zipper and/or fastener sliders.

[0016] In fact, an advantageous feature of the invented replacement zipper pull relates to the removability of the zipper pull after it is attached to a zipper or fastener slider. In particular, selecting a ratio of the length of the extending U-shaped spring bail legs (L₃) to the depth (D₃) of the receiving hexahedral slot in the blank body determines the distance between the curved ‘U’ cord-section of the a spring bail above the surface of the blank body, hence the torque required to,
and the ability to functionally squeeze the legs of the bail together in order to disengage the outward perpendicularly extending tips of the bail from the holes on opposite sides of the hexahedral slot. In particular, the shorter the bail leg length above the surface of the blank body, the greater the torque required for, removing the U-shaped spring bail anchored within the hexahedral slot of the blank.

Other advantages of the invented replacement zipper pull relate to the ability to closely fit the dimensions of the hexahedral slot in blank to those of the U-shaped spring bail and visa-versa, thus minimizing, if not eliminating the possibility of inadvertent disengagement of the spring bail from the blank. Also the close fit of the hexahedral slot and the U-shaped spring bail orients and limits the degrees of allowed rotation of the display surface of the blank with a mounted cabochon or jewel secured by the bail hanging from the loop tang of a zipper or fastener slider.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a shows a plane view of a U-shaped spring bail for a replacement zipper pull.

FIG. 1b shows a bottom end-view of a hexahedral blank body of the replacement zipper pull.

FIG. 1c shows a front face view of the hexahedral blank body of FIG. 1b.

FIG. 1d shows a side view of the blank body of FIG. 1b.

FIG. 1e shows a side view of the fabricated replacement zipper pull with the U-shaped spring bail received in the hexahedral slot of the blank body.

FIGS. 2a and 2b respectively show an exploded perspective view and an assembled perspective view of a replacement zipper pull with round blank body having a central tray recess for mounting a cabochon.

FIG. 2c is a side view plane of the round blank body shown in FIGS. 2a & 2b.

FIG. 2d is vertical cross-section side view d-d of the assembled replacement zipper pull shown in FIG. 2b.

FIGS. 2e-2g respectively show a plane of the U-shaped spring bail, a side view of the blank body, and a top view of the blank body of the assembled replacement zipper pull shown in FIGS. 2a & 2b.

FIG. 3a shows an exploded perspective view of the elements of an embodiment of a replacement zipper pull configured for facilitating coating of the blank body prior to assembly.

FIG. 3b shows an assembled perspective view of the finished embodiment of the replacement zipper pull shown in FIG. 3a.

FIG. 3c shows a side view of the finished blank body of FIGS. 3a & 3b.

FIG. 3d shows a side view of the finished blank body of FIG. 3c with the U-shaped spring bail shown in FIG. 3a received in the transverse passageway created at the base of the hexahedral slot.

FIGS. 3e, 3f, and 3g respectively present a plane view of the U-shaped spring bail, a side view of the finished blank body showing the hexahedral slot, and a front face view of the finished blank body of the replacement zipper pull shown in FIGS. 3a & 3b.

FIG. 4a shows an exploded perspective view of the elements of another embodiment of a replacement zipper pull configured for facilitating electroplating of the blank body prior to assembly.

FIG. 4b shows an assembled perspective view of the finished (electroplated) embodiment of the replacement zipper pull shown in FIG. 4a.

FIG. 4c shows a side view of the elements of the embodiment of a replacement zipper pull shown in FIG. 4a.

FIG. 4d shows a side view of the elements of the assembled replacement zipper pull shown in FIG. 4b.

ITEMIZATION OF PARTS OF THE REPLACEMENT ZIPPER PULLS

All Figures:

11—U-shaped spring bail;

12—legs of the U-shaped spring bail;

13—distal tips of the legs of the U-shaped bail;

14—blank body;

15—display face;

16—hexahedral slot;

17—transverse passageway locate at the base of the hexahedral slot within the blank body;

18—anchor holes;

19—base end of the hexahedral slot 16.

FIGS. 2a-2g & 4a-4d:

20—centrally tray for mounting a cabochon;

21—shoulder surrounding the mounting face 15 of the blank body 14;

22—filler plugs closing the entrance/exit holes of a drilled transverse passageway 17 through the blank body 14;

23—entrance/exit holes of a drilled transverse passageway 17.

FIGS. 3a-3g:

24—hexahedral transverse passageway slot;

25—hexahedral passageway plug.

FIGS. 4a-4d:

26—rectangular cavity;

28—cavity cap;

29—bottom side of the hexahedral slot 16;

30—transverse bottom land;

31—flat front face bottom land 30;

32—distal opening of slot 16 into rectangular cavity 27;

33—bottom surface cavity cap;

34—top surface cavity cap;

35—back seating land of cavity cap;

36—front lid section 34 of cavity cap; and

37—exposed edge of the blank body 14 in the rectangular cavity 27.

DETAILED DESCRIPTION OF PREFERRED AND EXEMPLARY EMBODIMENTS

FIGS. 1a-1c and FIGS. 2a-2g respectively show features of basic two-component embodiments of the easily fabricated, replacement zipper pull for zippers and slide fasteners suitable for mounting and safely displaying correspondingly shaped cabochons or jewels where the blank bodies are cast or molded as finished pieces meaning that are ready for mounting cabochons or jewels on the receptive display faces.

FIGS. 3a-3g and FIGS. 4a-4d respective show features of three piece embodiments of the replacement zipper pulls for zippers and slide fasteners where the pieces of the blank bodies are cast, molded, and/or machined as unfinished pieces meaning that the surface of the blank bodies will be
subsequently coated with a finishing material before assembly before correspondingly shaped cabochons or jewels are secured to or mounted on the respective display faces of the assembled blank bodies.

[0068] FIGS. 1a-1e depict a zipper pull with a curved U-shaped spring bail 11, and a solid finished hexahedral blank body 14 with a flat mounting face 15 to which a cabochon or jewel can be secured.

[0069] FIGS. 2a-2g depict a zipper pull with a rectangular U-shaped spring bail 11, and a finished solid blank disk body 14 with a central, recessed tray 20 having a flat display face 15 with surrounding shoulder 21 in which a cabochon or jewel can be secured.

[0070] The blanks 11 of FIGS. 1a & 2a are each formed from a stiff, small diameter (d₁), wire material with a Young’s Modulus of Elasticity (E) ranging between 23 and 30, with a specified outside base width (W₀) width and legs 12 extending in a common plane of a specified length (L₀) having distal tips perpendicularly extending outward in the plane of the legs 12 to a width (Wₚ).

[0071] The blank bodies 14 shown FIGS. 1b-1e and in FIGS. 2a-2g each have an hexahedral slot 16 symmetrically penetrating into the blank body 14 beneath and parallel to respective the flat display face 15 to a point proximate the center of mass of the respective blank body. The hexahedral slot 16 can be drilled, or routed (machined) into a finished blank body 14, or formed when the blank is molded and/or cast. In any instance, the hexahedral slot 16 has a specified width (Wₕ), height (Hₕ), and depth (Dₕ).

[0072] A passageway 17 is located within each of the respective blank bodies 14 that transversely intersects the hexahedral slot 16 at its base 19 each having a length (Lₚ) longer than the width (Wₕ), of the slot 16 and a height (Hₚ) at least equal to the height (Hₕ) of the slot 16 for providing anchor holes 18 on either side of at the base-end 19 of the slot 16 for receiving the outward, perpendicularly extending distal tips 13 of the legs 12 of a U-shaped spring bail 11.

[0073] In particular, the parameters of the of the U-shaped bail 11 and the hexahedral slot 16 and transverse passageway have a sized relationship where:

\[(Wₚ \leq Wₕ; Wₚ < Lₚ; d₁ \leq Hₕ) \text{ and } (Dₕ < Lₕ)\],

so that when the U-shaped spring bail 11 is inserted into the hexahedral slot 16, the perpendicularly extending distal tips 13 of the legs 12 of the U-shaped bail 11 register with, and snap into provided anchor holes 18 on opposite sides of the hexahedral slot 16 at a base-end 19 of the slot 16.

[0074] The transverse passageways 17 for the hexahedral blank body 14 shown in FIGS. 1a-1e, and the blank disk body 14 shown in FIGS. 2a-2d, 2f & 2g can be created by driling a hole having a diameter (Dₗ) equal to the height (Hₙ) of the slot straight into or through the blank body 14 perpendicularly intersecting the hexahedral slot 16 widthwise establishing its base-end 19. As shown in FIG. 2a, filler plugs 22 may be utilized to fill/close the entrance/exit holes 23 of a drilled transverse passageway 17 drilled into or through the respective blank bodies 14. In the case where the transverse passageway 17 is only drilled into a blank body 14, it need only penetrate to a depth beyond the hexahedral slot 16 sufficient to easily accommodate the extending distal tip 13 of the leg 12 of the U-shaped bail 11.

[0075] Turning now to FIGS. 3a-3g, FIG. 3a shows an exploded view of a three component embodiment of a replacement zipper pull, namely a U-shaped bail 11 and blank body 14 and an hexahedral passageway plug 26. In this instance as above, the extending legs 12 of the U-shaped spring bail are formed from stiff, small diameter (d₁), wire material with a Young’s Modulus of Elasticity (E) ranging between 23 and 30, and diverge outward slightly in the common plane spreading to a width (Wₚ) with distal tips extending perpendicularly further out in the plane of the legs 12. As shown, the blank body 14 has a hexahedral slot 16 with a width (Wₕ) a height (Hₕ) sized for receiving the legs 12 of the bail 11 that penetrates symmetrically into the blank body 14 to a depth (Dₕ) parallel the display face 15 to a point proximate an anticipated center of mass of the assembled blank (See FIG. 3b). A hexahedral passageway slot 24 having a width (Wₚ) greater than the width (W₀) of the slot 16 and a height (Hₕ) equal to that of the slot 16, oppositely penetrates symmetrically into the blank body 14 a depth (Dₕ) along a common center line with that of the hexahedral slot 16 to join the end of slot 16. When finished (coated), the hexahedral passageway plug 26 is sized for insertion hexahedral passageway slot 24, and has a length (Lₚ₂₆) less than the depth (Dₕ) of the passageway slot 24 that establishes the base-end 19 of the slot 16 with anchor holes 18 on either side at for capturing and securing the outward, perpendicularly extending distal tips 13 of the legs 12 of a U-shaped spring bail 11 inserted into within the hexahedral slot 16.

[0076] In particular, the parameters of the of the U-shaped bail 11 and the hexahedral slot 16 and transverse passageway slot 24, when finished (coated) should have a sized relationship where:

\[(Wₚ \leq Wₕ; Wₚ < Lₕ; d₁ \leq Hₕ; Hₕ ≤ Dₕ < Lₕ)\]

so that when the U-shaped spring bail 11 is inserted into the hexahedral slot 16, the perpendicularly extending distal tips 13 of the legs 12 of the U-shaped bail 11 register with, and snap into provided anchor holes 18 on opposite sides of the hexahedral slot 16 at a base-end 19 of the slot 16 established by the inserted hexahedral passageway plug 26.

[0077] With reference to FIGS. 4a-4d, FIG. 4a shows an exploded view of another three-component embodiment of a replacement zipper pull, namely a U-shaped bail 11 and a solid disk, blank body 14 presenting a central, recessed tray 20 having a flat display face 15 with a surrounding shoulder 21, and an cavity cap 28. As above, the extending legs 12 of the U-shaped spring bail is formed from stiff, small diameter (d₁), wire material with a Young’s Modulus of Elasticity (E) ranging between 23 and 30, and diverge outward slightly in the common plane spreading to a width (Wₚ) with distal tips extending perpendicularly further out in the plane of the legs 12. As shown, the blank body 14 has a hexahedral slot 16 with a width (Wₕ) a height (Hₕ) sized when finished (coated) for receiving the legs 12 of the bail 11 that penetrates symmetrically into the blank body 14 to a depth (Dₕ) beneath parallel the display face 15 to a point proximate center of mass of the assembled blank (See FIG. 4b).

[0078] In the embodiment of FIGS. 4a-4d, a rectangular cavity 27 penetrates perpendicularly into the flat display face 15 of the blank body 14 symmetrically intersecting the hexahedral slot 16 to depth co-planar with the bottom side 29 of the slot 16. The rectangular cavity 27 has a transverse width (Wₚ) greater than the width (W₀) of the hexahedral slot 16. A transverse bottom land 30 with a flat front, face 31, integral with the blank body 14, extends across the bottom of the rectangular cavity 27, has a height (Hₕ) at least equal to the height (Hₘ) of the hexahedral slot 16, and is located at least a
distance \((D_{72})\) from the distal opening 32 of the hexahedral slot 16 into the cavity 27 for establishing a base-end 19 of the slot hexahedral slot 16.

In particular, the parameters of the of the U-shaped bail 11 and the hexahedral slot 16 and rectangular cavity 27 when finished (coated) should have a sized relationship where:

\[
(W_{b1} \leq W_{b2} \leq W_{b3}) , \quad (d_{72} \leq H_{27} \leq D_{72} \leq H_{27}) , \quad \text{and} \quad (D_{72} \leq L_{27}).
\]

so that when the U-shaped spring bail 11 is inserted into the hexahedral slot 16, the perpendicularly extending distal tips 13 of the legs 12 of the U-shaped bail 11 register with, and snap into provided anchor holes 18 on opposite sides of the hexahedral slot 16 at the base-end 19 provided by the transverse bottom land 29.

As shown in FIGS. 4a-4d, the cavity cap 28 has a bottom surface 33 configured to seat in the rectangular passageway cavity 27 and a top surface 34 co-planar with display face 15 of the blank body 14. In particular, the bottom surface 33 of the cavity cap 28 has a back seating land 35 sized for seating behind the transverse bottom land 29 on the bottom of the cavity 27, and a front lid section 36 configured to rest on, and extend over the transverse bottom shoulder land 29 to abut against the exposed edge 37 of the blank body 14 above the hexahedral slot 16.

A previously mentioned, the pieces of the blank bodies of the three component embodiments of the replacement zipper pulls (FIGS. 3a-3g and 4a-4d) are cast mold and/or machined, and coated with a finish surface material using conventional techniques such as electroplating. The reason for opting for the three piece embodiments rather than a two piece embodiments is that coating processes tend to plug-up small diameter passageways, in particular the transverse passageways 17 drilled into or through the blank bodies 14 for creating the anchor holes 18 on either side at the base-end 19 of the hexahedral slot 16 as shown in FIGS. 1a—1e and FIGS. 2a-2g. Accordingly, when specifying the respective dimensions of the hexahedral transverse passageway slot 24 (FIGS. 2a-2g) and the rectangular cavity 27 (FIGS. 4a-4d) penetrating into the blank body 14 of a particular embodiment, thought should be given to the possibility of accumulations and/or buildup of the coating of the coating/plating materials on the cooperating surfaces within the blank bodies 14 and exterior surfaces of the hexahedral passageway plug 26 (FIGS. 2a-2g) and the cavity cap 28 (FIGS. 4a-4d) that establish the anchor holes 18 at the base-end 19 of the hexahedral slot 16 for receiving the extending tips 13 of the U-shaped bail when the bail is when inserted into the hexahedral slot 16.

In all cases, a cabochon or jewel is mounted/secure onto the display face 15 without the U-shaped bail 11. In particular, the U-shaped bail is preferably threaded or looped through the conventional loop tang projecting upward from a zipper or fastener slider, and then inserted into the hexahedral slot 16 penetrating into the blank body 14 for displaying the mounted/secure cabochon or jewel.

There may be alternative ways of implementing and/or creating blank bodies for zipper pulls onto which cabochons and/or jewels can be mounted/secure. In particular, it should be recognized that skilled engineers and designers can specify different methods for making and configurations of the described two and three piece embodiments of replacement zipper pulls that performs substantially the same function, in substantially the same way, to achieve substantially the same result as those methods, techniques and components described and claimed in this application. Also, the respective elements described for effecting the desired functionality of the replacement zipper pulls may be configured differently, per constraints imposed by different mechanical systems, yet cooperate in substantially the same manner, in substantially the same way, to achieve substantially the same result as those components described and specified by the Applicant above. Accordingly, while the steps for making the physical components of the resulting replacement zipper pull may not be exactly described herein, they may fall within the spirit and the scope of invention as described and set forth in the appended claims.

1 claim:

1. A method for manufacturing a zipper pull attachable to a zipper and fastener sliders, comprising the steps of:

a) forming a U-shaped spring bail from a stiff wire material with small diameter \((D_{72})\), and a Young’s Modulus of elasticity \((E)\) ranging between 23 and 30, having legs extending in a common plane of a specified length \((L_{32})\), with an outside cord width \((W_{32})\) and with distal tips extending perpendicularly outward spanning to a greater width \((W_{27})\) in the common plane;

b) forming a solid blank of a chosen material in a desired configuration presenting a display face and establishing a center of mass, with a hexahedral slot penetrating into the body with a width \((W_{32})\) oriented parallel to the display face, a height, \((H_{27})\), and a base-end at a depth \((D_{72})\) proximate to the center of mass, where:

\[
(W_{b1} \leq W_{b2} \leq W_{b3}) , \quad (d_{72} \leq H_{27} \leq D_{72} \leq H_{27}) , \quad \text{and} \quad (D_{72} \leq L_{27}).
\]

c) creating a transverse passageway within the solid blank establishing the base-end of the hexahedral slot that has a length greater than the width of the slot and a height at least equal to the height of the hexahedral slot for providing anchor holes on either side of the slot at its base-end for receiving and securing the outward extending tips distal tips of the legs of the U-shaped spring bail when it is inserted into the slot.

2. The method for manufacturing a zipper pull of claim 1, further including the step of:

d) heating the formed U-shaped bail for relieving any bending stresses after it is formed.

3. A replacement zipper pull suitable for mounting and safely displaying cabochons and jewels for zippers and slide fasteners having a loop tang, comprising, in combination:

a) a solid blank body with a display surface and having an open hexahedral slot with a height, a width and a depth, drilled, routed, molded and/or cast, penetrating into the blank body parallel to, and beneath the display surface, and having an interior passageway with length greater than the width of the slot and a height at least equal to the height of the slot, perpendicularly intersecting the slot widthwise for establishing a base-end of the slot and providing anchor holes in opposite sides of the slot at its base-end;

b) a U-shaped spring bail with a thickness slightly less than the height of the hexahedral slot having legs of length greater than the depth of the slot extending in a common plane with distal tips extending perpendicularly outward in the common plane to width greater than the width of the slot; wherein, the U-shaped spring bail can be threaded through the loop tang of the zipper or fastener slider, and then be
inserted, legs first, into the hexahedral slot of the blank body to a point where the outward projecting distal tips of the legs of the U-shaped bail register with, and snap into the anchor holes at the base end penetrating into the opposite sides of the slot.

* * * * *

* * * * *