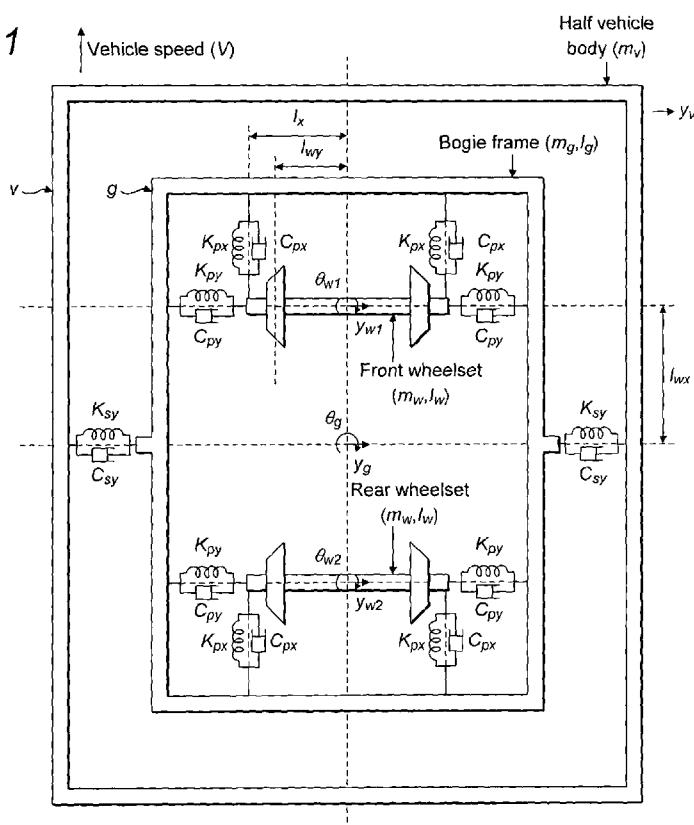


(51) International Patent Classification:
B61F 5/22 (2006.01) B61F 5/30 (2006.01)


(72) Inventors; and

(75) Inventors/Applicants (for US only): **SMITH, Malcolm C.** [GB/GB]; Cambridge Enterprise Limited, 10 Trumpington Street, Cambridge, Cambridgeshire CB2 1QA (GB). **JI-ANG, Zheng** [CN/CN]; 70 Jin Jiang Hua Yuan, No. 196 Dingmao Qiao Road, Zhen Jiang, Jiang Su, Jiangsu 212009 (CN). **GOODALL, Roger Morgan** [GB/GB]; Springfield, Orford Road, Binbrook, Lincolnshire LN8 6DU (GB).(21) International Application Number:
PCT/GB2012/051814(74) Agent: **GILL JENNINGS & EVERY LLP**; The Broadgate Tower, 20 Primrose Street, London, Greater London EC2A 2ES (GB).(22) International Filing Date:
27 July 2012 (27.07.2012)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

(25) Filing Language:
English(26) Publication Language:
English(30) Priority Data:
1112902.0 27 July 2011 (27.07.2011) GB(71) Applicants (for all designated States except US): **CAMBRIDGE ENTERPRISE LIMITED** [GB/GB]; The Old Schools, Trinity Lane, Cambridge, Cambridgeshire CB2 1TN (GB). **LOUGHBOROUGH UNIVERSITY** [GB/GB]; Loughborough, Leicestershire LE11 3TU (GB).*[Continued on next page]*

(54) Title: TRAIN SUSPENSION SYSTEM

FIG. 1

(57) Abstract: A suspension system for a train vehicle comprises at least one inerter in order to minimise track wear. Track wear may be measured by direct measures such as wear work, or indirect measures such as yaw stiffness. Minimising' track wear means that such measures are reduced below values which are achievable with conventional technology while maintaining acceptable values of other performance metrics, such as ride comfort or least damping ratio. The suspension system may comprise at least one damper connected in series with the at least one inerter. The suspension system may be the primary or the secondary suspension system of a train vehicle.

NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*

(84) Designated States (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

TRAIN SUSPENSION SYSTEM

The present invention generally relates to a suspension system for a train vehicle and particularly to a suspension system for a train vehicle designed to
5 reduce track wear.

It is well known that the forward speed of trains is restricted by the 'hunting' motion, which corresponds to the lateral vibration of trains running at high speed. Therefore, trains have an upper speed limit, called the 'critical
10 speed'. Several attempts have been made in the past to increase the critical speed of trains. For example, Wang, Fu-Cheng and Liao, Min-Kai (2010) 'The lateral stability of train suspension systems employing inerters', Vehicle System Dynamics, 38:5, 619 have attempted to improve the critical speed by using 'inerters' in the railway suspension systems.

15

An 'inerter', as disclosed for example in US7316303B, represents a mechanical two-terminal element configured to control the mechanical forces at the terminals such that they are proportional to the relative acceleration between the terminals. The inerter, together with a spring and a damper, provides a
20 complete analogy between mechanical and electrical elements, which allows arbitrary passive mechanical impedances to be synthesised. Inerters have been increasingly used in mechanical systems such as car suspension systems to improve system performance.

25

A disadvantage of conventional train suspension system is that there is a tight trade-off between track wear and other important performance measures. Track wear is dangerous as it has been the cause of major train accidents and requires costly critical maintenance of the railway systems. In the United Kingdom, for example, 923 million GB pounds was spent on track renewals
30 during 2007-2008. This procedure is not only costly but causes significant disruption to the train schedules and passenger's travel.

The present invention seeks to overcome the drawbacks of the prior art and reduce track wear.

According to the present invention there is provided a suspension system

5 for a train vehicle comprising at least one inerter, such that, in use, track wear is minimised. According to the present invention, there is also provided a method of reducing track wear, the method comprising the step of providing a suspension system for a train vehicle comprising at least one inerter, such that track wear is minimised. Track wear may be measured by direct measures such

10 as wear work, or indirect measures such as yaw stiffness, for example.

'Minimising' track wear means that such measures are reduced below values which are achievable with conventional technology while maintaining acceptable values of other performance metrics, such as, for example, ride

15 comfort or least damping ratio. For example, according to the present invention, inerters may be used to minimise yaw stiffness.

Preferably, the performance metrics have predetermined ranges. Some examples of 'acceptable values' of the maximum lateral body acceleration,

20 Macc, which represents ride comfort and of the least damping ratio will be given below. However, it will be appreciated that 'acceptable values' as well as relevant performance metrics may vary according to the use and type of railway vehicle.

25 Minimising yaw stiffness reduces excess wheel-rail forces, thereby improving railway vehicle curving performance, i.e. reducing or preventing rolling contact fatigue (RCF). This has the effect of reducing loads upon the track components in general, reducing the level of routine track maintenance and, eliminating the need for major track renewals.

30

The suspension system may further comprise at least one damper connected to the at least one inerter. In preferred embodiments, the suspension system comprises an inerter in series with a damper. The suspension system

according to the present invention may be a lateral, primary or secondary, suspension system. A 'lateral' suspension system transmits forces perpendicular to the longitudinal direction (the direction of travel along the track). A 'primary' suspension system comprises connections between wheelset axles and a bogie,

5 while a 'secondary' suspension system comprises connections between the vehicle body and the bogie.

Specific examples of the invention will now be described in greater detail with reference to the following figures in which:

10 Figure 1 represents a plan view of a conventional train system;

Figure 2 is a table listing parameters and default settings of a 7-degrees of freedom model of the train system shown in Figure 1;

Figure 3 represents a plan view of a system in accordance with the present invention, in which the primary and secondary lateral suspensions Y1,

15 Y2 and Y3 are mechanical networks comprising inerters as shown in Figures 4(b), 4(c) and Figures 5(b), 5(c);

Figure 4 shows the conventional suspension layout (a) and the proposed layouts (b) and (c) incorporating an inerter b_{sy} for the secondary suspension Y1.

Figure 5 shows the conventional suspension layout (a) and the proposed layouts (b) and (c) incorporating an inerter b_{py} for the primary suspensions Y2

20 and Y3;

Figure 6 is a table listing results for minimizing the yaw stiffness;

Figure 7 is a graph showing the (a) lateral body acceleration and (b) the least damping ratio against velocity for the schemes of the rows 1 and 2 of the table shown in Figure 6; and

Figure 8 is a graph showing the (a) lateral body acceleration and (b) the least damping ratio against velocity for the schemes of rows 3 and 4 of the table shown in Figure 6.

30 Figure 1 represents a conventional train system 1 comprising a vehicle body v, one bogie frame g, and two solid axle wheelsets w, wherein each wheelset comprises two wheels either side of the axle. The body v is equivalent to the body of half a vehicle or carriage in a high speed train vehicle. The bogie g is

used to carry and guide the body along a track or line. Bogies have traditionally been used in train designs as a 'cushion' between vehicle body and wheels to reduce the vibration experienced by passengers or cargo as the train moves along the track.

5 The wheelsets w and bogie g are connected by a primary suspension system K_p/C_p . Only longitudinal (x direction) and lateral (y direction) connections are represented in Figure 1. Any suitable suspension system may be used, such as a steel coil or steel plate framed bogie g with laminated spring axlebox suspension. The (lateral and longitudinal) connections of the primary suspension
10 system K_p/C_p are represented by equivalent 'spring-damper' circuits, each circuit comprising a spring of stiffness K_p in parallel with a damper of damping constant C_p .

15 A secondary suspension system K_s/C_s is included between the body v and the bogie g, e.g. making use of an air suspension. The secondary suspension system K_s/C_s may also be represented by equivalent 'spring-damper' circuits, wherein each circuit comprises a spring K_s in parallel with a damper C_s .

20 Accordingly, the train system 1 shown in Figure 1 represents an example of a 'two stage suspension system', which includes a primary suspension system and a secondary suspension system. It will be appreciated, however, that the train system may be a 'single stage suspension system', which includes a single suspension system between the body and the wheelsets.

25 The longitudinal connections in the system of Figure 1 contribute to the yaw modes and only these contributions are accounted for in the model described below. Vertical, longitudinal and roll modes are not included in this model.

30 The conventional train system 1 of Figure 1 may be described by a seven degrees-of freedom (7-DOF) model including lateral and yaw modes for each wheelset ($y_{w1};\theta_{w1};y_{w2};\theta_{w2}$) and for the bogie frame ($y_g;\theta_g$), and a lateral mode for

the vehicle body (y_v). System 1 may be modeled by Eqs. (1) - (7) listed below, with parameters defined in Table 1 shown in Figure 2:

$$m_w \ddot{y}_{w1} = 2K_{py} (y_g - y_{w1}) + 2C_{py} (\dot{y}_g - \dot{y}_{w1}) - \frac{2f_{22}}{V} \dot{y}_{w1} + 2f_{22} \theta_{w1} + 2K_{py} l_{wx} \theta_g + 2C_{py} l_{wx} \dot{\theta}_g + m_w \left(\frac{V^2}{R_1} - g \theta_{c1} \right), \quad (1)$$

$$I_w \ddot{\theta}_{w1} = -\frac{2f_{11} l_{wy}^2}{V} \dot{\theta}_{w1} - \frac{2f_{11} \lambda l_{wy}}{r_0} y_{w1} + 2K_{px} l_x^2 (\theta_g - \theta_{w1}) + 2C_{px} l_x^2 (\dot{\theta}_g - \dot{\theta}_{w1}) + \frac{2f_{11} l_{wy}^2}{R_1} - \frac{2f_{11} \lambda l_{wy}}{r_0} y_{11} + \frac{2K_x l_{wx} l_x^2}{R_1}, \quad (2)$$

$$m_w \ddot{y}_{w2} = 2K_{py} (y_g - y_{w2}) + 2C_{py} (\dot{y}_g - \dot{y}_{w2}) - \frac{2f_{22}}{V} \dot{y}_{w2} + 2f_{22} \theta_{w2} - 2K_{py} l_{wx} \theta_g - 2C_{py} l_{wx} \dot{\theta}_g + m_w \left(\frac{V^2}{R_2} - g \theta_{c2} \right), \quad (3)$$

$$I_w \ddot{\theta}_{w2} = -\frac{2f_{11} l_{wy}^2}{V} \dot{\theta}_{w2} - \frac{2f_{11} \lambda l_{wy}}{r_0} y_{w2} + 2K_{px} l_x^2 (\theta_g - \theta_{w2}) + 2C_{px} l_x^2 (\dot{\theta}_g - \dot{\theta}_{w2}) + \frac{2f_{11} l_{wy}^2}{R_2} - \frac{2f_{11} \lambda l_{wy}}{r_0} y_{22} - \frac{2K_x l_{wx} l_x^2}{R_2}, \quad (4)$$

$$m_g \ddot{y}_g = 2K_{py} (y_{w1} - y_g) + 2K_{py} (y_{w2} - y_g) + 2C_{py} (\dot{y}_{w1} - \dot{y}_g) + 2C_{py} (\dot{y}_{w2} - \dot{y}_g) + 2K_{sy} (y_v - y_g) + 2C_{sy} (\dot{y}_v - \dot{y}_g) + m_g V^2 \left(\frac{1}{2R_1} + \frac{1}{2R_2} \right) - m_g g \left(\frac{\theta_{c1}}{2} + \frac{\theta_{c2}}{2} \right), \quad (5)$$

$$I_g \ddot{\theta}_g = 2K_{py} l_{wx} (y_{w1} - y_g) + 2K_{py} l_{wx} (y_g - y_{w2}) + 2C_{py} l_{wx} (\dot{y}_{w1} - \dot{y}_g) + 2C_{py} l_{wx} (\dot{y}_g - \dot{y}_{w2}) + 2K_{px} l_x^2 (\theta_{w1} - \theta_g) + 2K_{px} l_x^2 (\theta_{w2} - \theta_g) + 2C_{px} l_x^2 (\dot{\theta}_{w1} - \dot{\theta}_g) + 2C_{px} l_x^2 (\dot{\theta}_{w2} - \dot{\theta}_g) - 4K_{py} l_{wx}^2 \theta_g - 4C_{py} l_{wx}^2 \dot{\theta}_g - \frac{2K_x l_{wx} l_x^2}{R_1} + \frac{2K_x l_{wx} l_x^2}{R_2}, \quad (6)$$

$$m_v \ddot{y}_v = 2K_{sy} (y_g - y_v) + 2C_{sy} (\dot{y}_g - \dot{y}_v) + m_v V^2 \left(\frac{1}{2R_1} + \frac{1}{2R_2} \right) - m_v g \left(\frac{\theta_{c1}}{2} + \frac{\theta_{c2}}{2} \right), \quad (7)$$

A state-space form can be derived from equations (1) - (7) as given by:

$$\dot{x} = Ax + Bw,$$

,where

$$x = [\dot{y}_{w1}, y_{w1}, \dot{\theta}_{w1}, \theta_{w1}, \dot{y}_{w2}, y_{w2}, \dot{\theta}_{w2}, \theta_{w2}, \dot{y}_g, y_g, \dot{\theta}_g, \theta_g, \dot{y}_v, y_v]^T,$$

$$w = [1/R_1, \theta_{c1}, y_{t1}, 1/R_2, \theta_{c2}, y_{t2}]^T.$$

The vector w is used to define the inputs from the railway track (curvature, cant and track lateral stochastic displacement). When entering a 5 curve, the track cannot change from straight to the nominal value of the radius ($R_1; R_2$) and cant angle ($\theta_{c1}; \theta_{c2}$) immediately. A conservative assumption is made in that $R_1; R_2$ and $\theta_{c1}; \theta_{c2}$ are ramped with 3 seconds transition time. In fact, for high speed trains a longer transition time is appropriate depending on the vehicle 10 and track type. The straight track lateral stochastic inputs ($y_{t1}; y_{t2}$) are of a broad frequency spectrum with a relatively high level of irregularities.

In the example provided below, $y_{t1}(t)$ is defined to be the output of a second order filter $H(s) = (21.69 s^2 + 105.6s + 14.42)/(s^3 + 30.64s^2+24.07s)$ whose input is a process with a single sided power spectrum given by:

15

$$S_s(f_s) = A_v / (f_s)^2$$

in which A_v is the track roughness factor, f_s is a spatial frequency in 20 cycles/metre. The body lateral acceleration is quantified in terms of the root mean square (r.m.s.) acceleration J_1 , and evaluated using the covariance method, time domain simulation method and frequency calculation method. The results by the three methods are all consistent. For the frequency calculation, J_1 is expressed by:

$$J_1^2 = \int_0^{\infty} (G_{S_1}(j2\pi f)H(j2\pi f)(1+e^{-j2\pi fT_d}))^2 S_z df,$$

$$\approx \Delta f S_z \sum_{f=0.01}^{20\text{Hz}} (G_{S_1}(j2\pi f)H(j2\pi f)(1+e^{-j2\pi fT_d}))^2,$$

25

where

$$\zeta_x = \frac{(2\pi)^2 A_x V^2}{T_d^2}, \text{ (ms}^{-1}\text{)}^2 \text{ (Hz)}^{-1},$$

T_d is the time delay of the track input between the front and rear wheelsets, which equals $2l_{wx}/V$ seconds, where l_{wx} is the semi-longitudinal spacing of the wheels and V is the system's speed in the longitudinal direction x .

5

A nominal speed V is assumed to be equal to 55 m/s. Using the default suspension layout and parameter settings, with velocity V varying between 1m/s and 55m/s, it can be calculated that the least damping ratio (L_{dmp}) equals 6.45% (which is achieved at the nominal speed). Using the covariance method, it
10 can also be calculated that, with y_{11} and y_{12} as input, the maximum lateral body acceleration (M_{acc}) equals 0.2204 m/s^2 when the velocity equals 55 m/s.

Recent investigations (see for example Ingenia online, 'Why railscrack', Andy Doherty, Steve Clark, Robert Care and Mark Dembosky, Issue 23 June
15 2005) have shown that the main cause for track wear is the phenomenon called rolling contact fatigue (RCF) which occurs in bodies in rolling contact. Such bodies can damage one another in various ways depending upon the severity of the contact pressure and the shear in the area where the bodies come into contact. In the case of railway systems, RCF is primarily due to excess wheel-rail forces. These are primarily caused by the axle shifting relative to the rail.
20

Excess wheel-rail forces in train systems such as the system 1 shown in Figure 1 are directly related to high values of the primary longitudinal spring stiffness K_{px} , which provides high yaw stiffness. High yaw stiffness K_{px} gives
25 good high speed stability but results in very high creep forces that are responsible for RCF.

Apart from yaw stiffness, there are direct measures of track wear such as the wear work which is a measure of energy dissipated at the wheel-rail
30 interface. To reduce track wear, a system according to the present invention

uses inerters in the lateral suspensions. This has the effect of reducing track wear by reducing, for example, yaw stiffness K_{px} , as will be described below.

In accordance with the present invention, the system 2 of Figure 3
 5 comprises the same elements of the conventional system 1 of Figure 1 described above, and additionally comprises inerter devices b in the lateral connections of the primary and/or secondary suspension systems (in the y direction) as shown in Figures 4(b), (c) and Figures 5(b), (c). In its most general form, an 'inerter' represents a mechanical two-terminal element comprising
 10 means connected between the terminals to control the mechanical forces at the terminals such that they are proportional to the relative acceleration between the terminals. Inerters are defined by the following equation:

$$F = b \frac{d(v_2 - v_1)}{ds}$$

15

, where F is the applied force and b is either a fixed term or a variable function representing the 'inertance' of the system; v_1 and v_2 are the corresponding velocities of the two terminals.

20

In the 7-DOF model defined above according to equations (1) - (7), the yaw stiffness K_{px} is minimized. The restrictions are for Ldmp to be above 5% across all velocity values (1-55 m/s) and Macc to be at least as good as the nominal value (0.2204 m/s²). The primary and secondary lateral spring stiffness (K_{py} , K_{sy}) is fixed, and the optimization is made firstly for the secondary lateral
 25 suspension only and then for both the primary and secondary suspensions. Results for a conventional system 1 (without inerters) as shown in Figure 1 are compared with results obtained for a system 2 in accordance with the present invention. These results show that a 6% improvement in the value of K_{px} can be obtained by using the inerter devices. All parameter values have been
 30 constrained to be within physically reasonable ranges, e.g. the values of spring stiffness cannot be arbitrarily large.

Figure 7 shows the lateral body acceleration (Macc) and least damping ratio (Ldmp) as a function of velocity for the optimization only including the secondary lateral suspensions. The continuous curves represent the conventional system system 1, as shown in Figure 1 (without inerters). The 5 dashed curves represent system 2 in accordance with the present invention as shown in Figure 4(c).

Figure 8 shows the lateral body acceleration (Macc) and the least damping ratio (Ldmp) as a function of velocity for the optimization involving both 10 the primary and secondary lateral suspensions. The continuous curves represent the conventional system 1, as shown in Figure 1 (without inerters). The dashed curves represent system 2 in accordance with the present invention as shown in Figure 4(c) and Figure 5(c). From Figures 5 and Figure 6, it can be seen that the constraints on Ldmp and Macc are all satisfied (Ldmp is above 5% 15 and Macc is at least as good as the nominal value 0.2204 m/s^2).

Preferably, a system 2 in accordance with the invention comprises at least one series damper-inerter system in the lateral primary or secondary suspension system. However, it will be appreciated that it is possible to have 20 many combinations of inerters with dampers or other mechanical parts of the lateral suspension systems. Embodiments in accordance with the invention may comprise inerter-damper combinations at one or more connection points between the wheelsets w and bogie g, as well as between the bogie and body v shown in Figure 3.

CLAIMS

1. A suspension system for a train vehicle comprising at least one inerter,
5 such that, in use, track wear is minimised.
2. A suspension system for a train vehicle according to claim 1, wherein the
yaw stiffness of the train vehicle is minimised.
- 10 3. A suspension system for a train vehicle according to claim 1 or claim 2,
further comprising at least one damper connected to the at least one inerter.
4. A suspension system according to claim 3, wherein the at least one
damper is connected in series with the at least one inerter.
- 15 5. A suspension system according to any preceding claim, wherein the
suspension system is a lateral secondary suspension system.
6. A suspension system according to claims 1 to 4, wherein the suspension
20 system is a lateral primary suspension system.
7. A suspension system according to any preceding claim, wherein
performance metrics for the train vehicle have predetermined ranges, wherein
the performance metrics include at least one of maximum lateral body
25 acceleration and least damping ratio.
8. A suspension system according to claim 7, wherein the lateral body
acceleration is less than 2 m/s^2 , preferably less than 1 m/s^2 , more preferably less
than 0.2204 m/s^2 .
- 30 9. A suspension system according to claim 7 or claim 8, wherein the least
damping ratio is greater than 5%, preferably greater than 1%, more preferably
greater than 0.1%.

10. A suspension system according to claims 2 to 9, wherein the minimised yaw stiffness is less than 3.77×10^7 N/m, more preferably less than 4.38×10^6 N/m, even more preferably less than 4.12×10^6 N/m.

5

11. A train vehicle comprising a suspension system according to any preceding claim.

12. A method of reducing track wear, the method comprising the step of
10 providing a suspension system for a train vehicle comprising at least one inerter,
such that track wear is minimised.

1 / 7

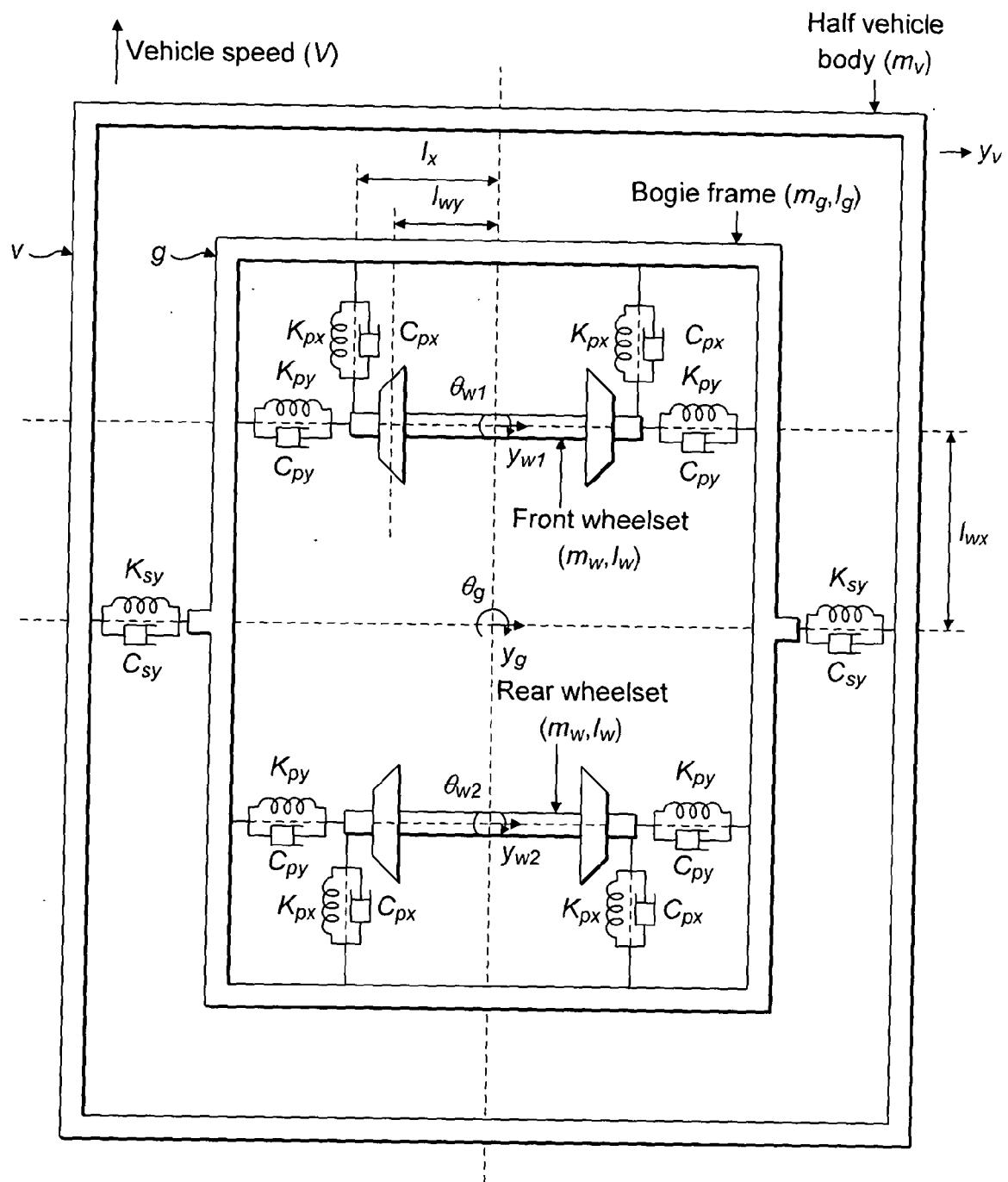


FIG. 1

2 / 7

Table 1

Symbol	Parameter	Unit	Nominal value
V	Vehicle speed	ms^{-1}	1 to 55
m_w	Wheelset mass	kg	1376
I_w	Wheelset yaw inertia	kgm^2	766
m_g	Bogie frame mass	kg	3477
I_g	Bogie frame yaw inertia	kgm^2	3200
m_v	Half vehicle body mass	kg	17230
r_0	Wheel radius	m	0.445
λ	Wheel conicity	-	0.3
f_{11}, f_{22}	Longitudinal and lateral creepage coefficients	N	$10\text{e}7$
l_{wx}	Semi-longitudinal spacing of wheelsets	m	1.225
l_{wy}	Half gauge of wheelset	m	0.75
l_x	Semi-lateral spacing of steering linkages and primary longitudinal suspension	m	1.2
K_{px}	Steering linkage stiffness plus primary longitudinal damping per axle box	Nm^{-1}	3.766×10^7
C_{px}	Steering linkage damping plus primary longitudinal damping per axle box	Nsm^{-1}	1.017×10^4
K_{py}	Primary lateral stiffness per axle box	Nm^{-1}	4.71×10^6
C_{py}	Primary lateral damping per axle box	Nsm^{-1}	1.2×10^4
K_{sy}	Secondary lateral stiffness per axle box	Nm^{-1}	2.45×10^5
C_{sy}	Secondary lateral damping per axle box	Nsm^{-1}	2×10^4
R_1, R_2	Radius of curved track at the front and rear wheelsets	m	1000
θ_{c1}, θ_{c2}	Cant angle of the curved track at the front and rear wheelsets	rad	$6 \times \pi / 180$
y_{t1}, y_{t2}	Straight track lateral stochastic displacement at the front and rear wheelsets	m	-
g	Gravity	ms^{-2}	9.8

FIG. 2

3 / 7

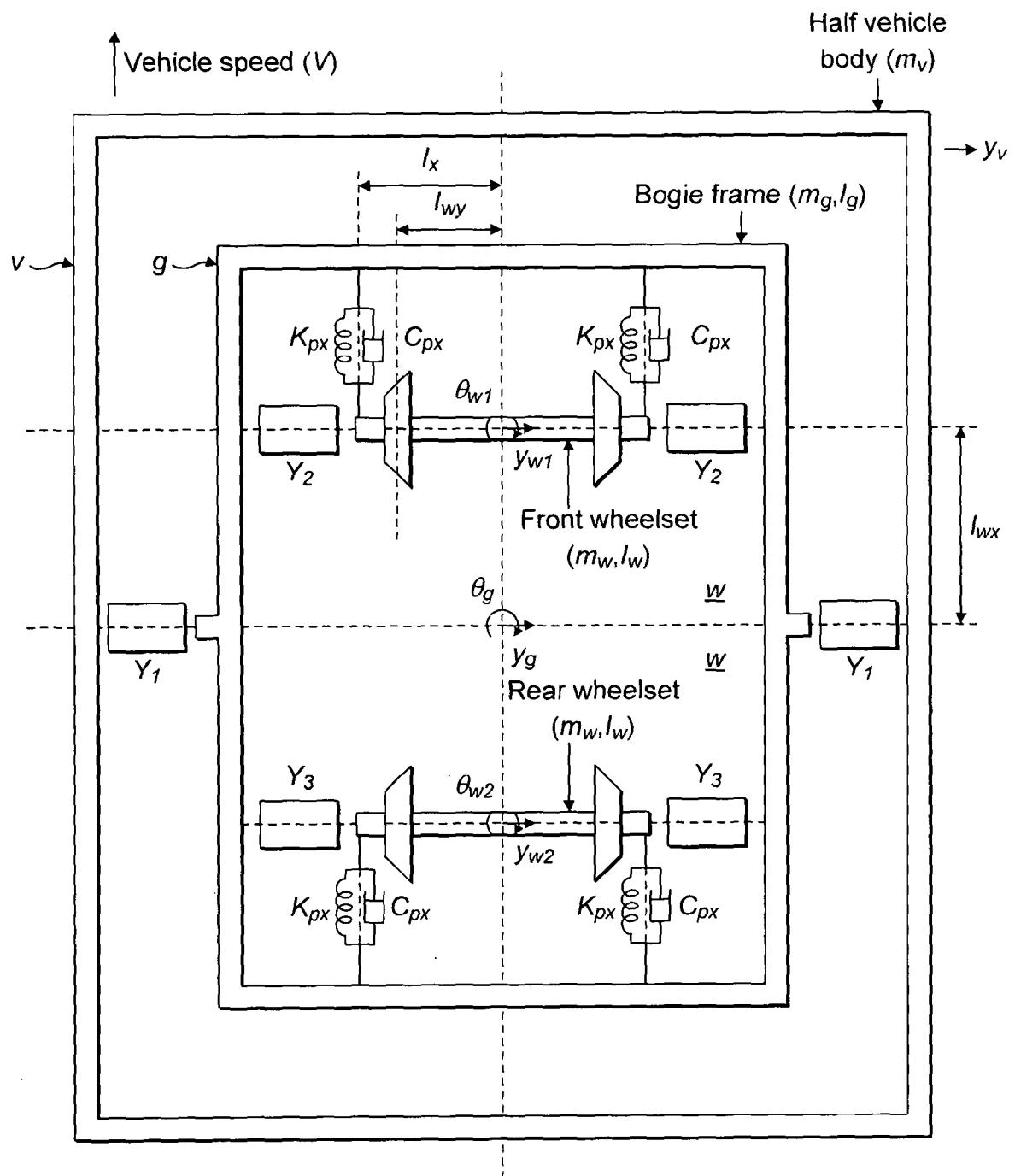


FIG. 3

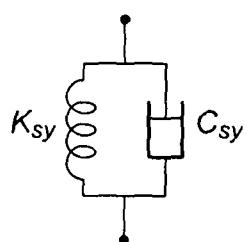


FIG. 4(a)

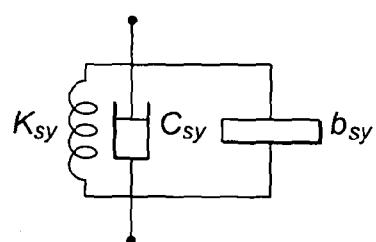


FIG. 4(b)

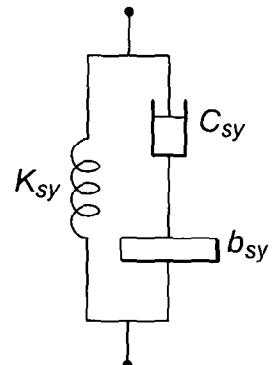


FIG. 4(c)

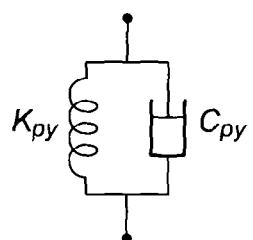


FIG. 5(a)

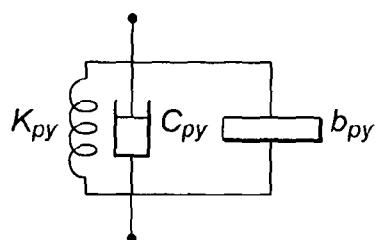


FIG. 5(b)

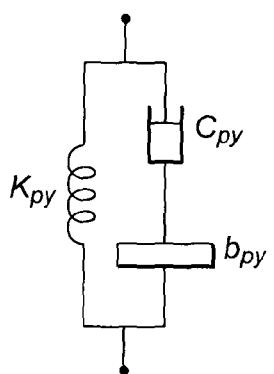


FIG. 5(c)

Table 2

Layout	Minimised value of K_{px} (Nm^{-1})	Impro. (%)	Parameter values (Mm^{-1} , Nsm^{-1} , kg)
Conventional (opt. over C_{sy} , same as default)	3.77×10^7	-	$C_{sy} = 2 \times 10^4$
Series b_{sy} , C_{sy} (layout S3 in Fig. 2)	3.53×10^7	6.33	$C_{sy} = 2.2 \times 10^4$, $b_{sy} = 1.53 \times 10^4$
Conventional (opt. pri. and sec. lateral)	4.38×10^6	88.4	$C_{py} = 1 \times 10^6$, $C_{sy} = 2.12 \times 10^4$, $C_{px} = 1 \times 10^3$
Series b_{py} , C_{py} and b_{sy} , C_{sy} (layout S3 in Figs. 2 and 3)	4.12×10^6	89	$C_{py} = 7.17 \times 10^5$, $b_{py} = 2.38 \times 10^4$, $C_{sy} = 2.16 \times 10^4$, $b_{sy} = 3.06 \times 10^4$, $C_{px} = 1.5 \times 10^3$

FIG. 6

6 / 7

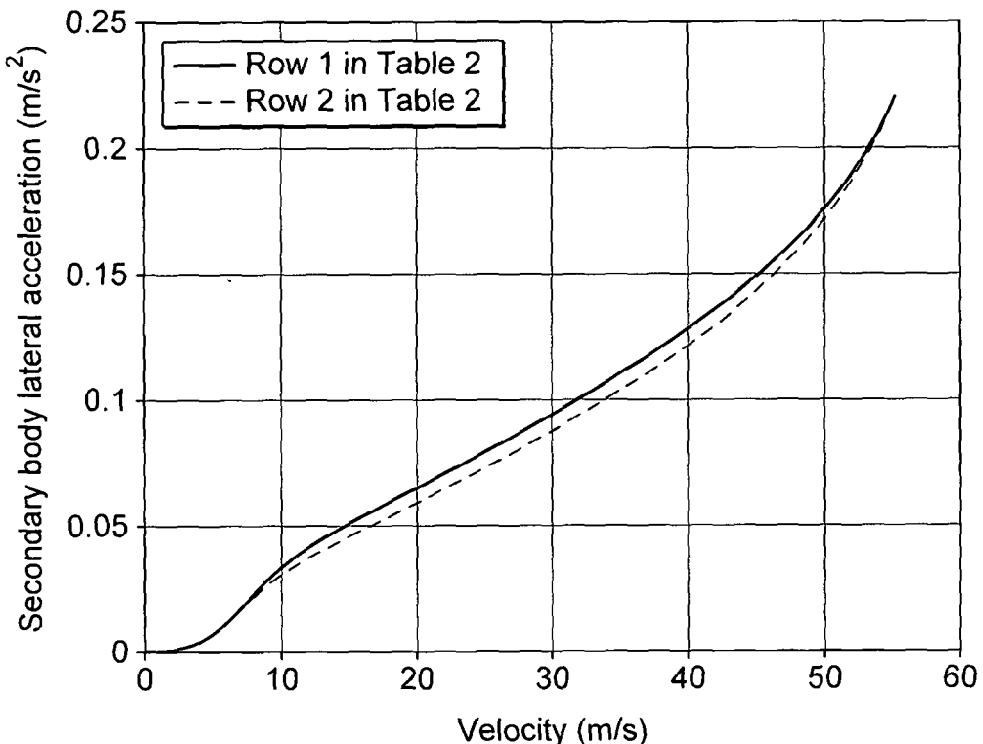


FIG. 7(a)

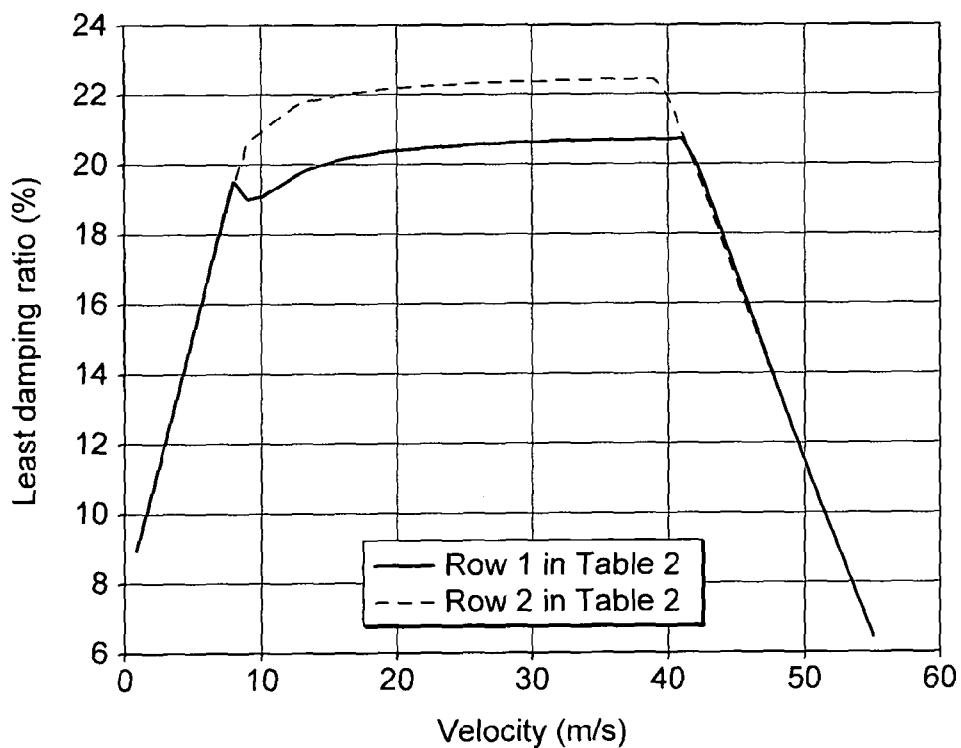


FIG. 7(b)

7 / 7

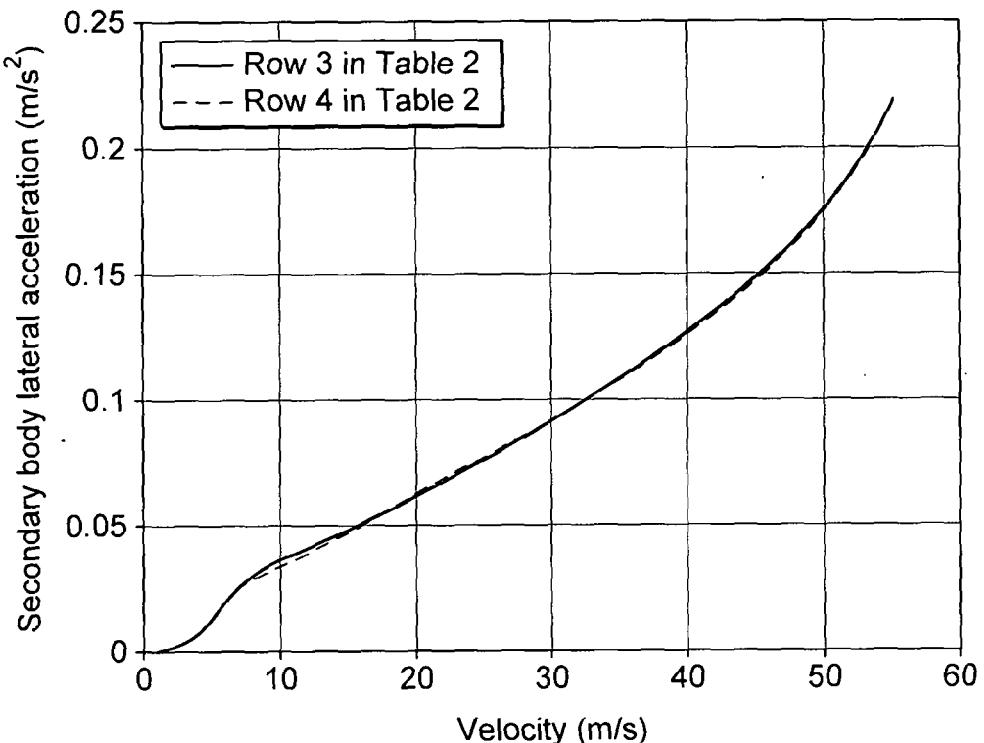


FIG. 8(a)

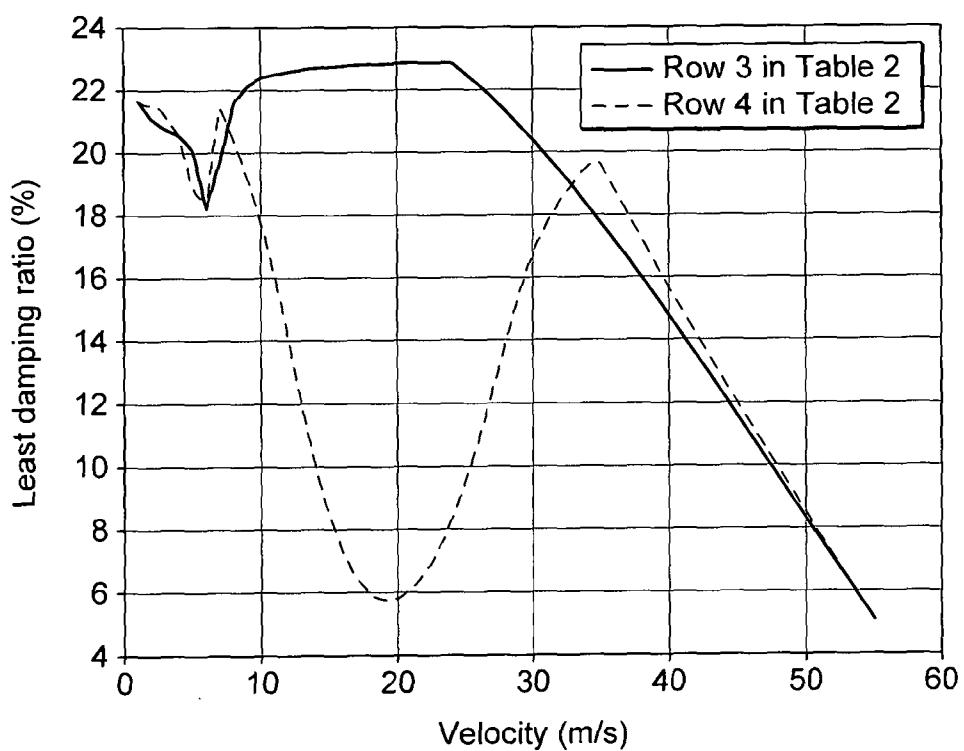


FIG. 8(b)

INTERNATIONAL SEARCH REPORT

International application No
PCT/GB2012/051814

A. CLASSIFICATION OF SUBJECT MATTER
INV. B61F/22 B61F/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B61F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>FU-CHENG WANG,MIN-KAI LIAO: "The lateral stability of train suspension systems employing inerters", VEHICLE SYSTEM DYNAMICS: INTERNATIONAL JOURNAL OF VEHICLE MECHANICS AND MOBILITY, vol. 48, no. 5, 31 May 2010 (2010-05-31), pages 619-643, XP002686469, cited in the application page 622, paragraph 2.3 - page 623; figures 1,3 page 627, paragraph 3.1.1.</p> <p>-----</p> <p style="text-align: center;">-/-</p>	1-12

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
16 November 2012	28/11/2012
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer

INTERNATIONAL SEARCH REPORT

International application No
PCT/GB2012/051814

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>"High speed presentation wins award", School of Electronic, Electrical and Systems Engineering</p> <p>, 10 March 2011 (2011-03-10), XP002686470, Loughborough University Retrieved from the Internet: URL:http://www.lboro.ac.uk/departments/e1/news/Year2011/Matamoros-Sanchez.html [retrieved on 2012-11-05] the whole document</p> <p>-----</p>	1-4,7-12
X	<p>US 2010/148463 A1 (WANG FU-CHENG [TW] ET AL) 17 June 2010 (2010-06-17) paragraph [0006]</p> <p>-----</p>	1,11,12

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/GB2012/051814

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2010148463	A1 17-06-2010	TW 201022058 A US 2010148463 A1	16-06-2010 17-06-2010