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DETECTING VIRTUALIZATION

Background

[01] A processor may be used in a processor based system such as a computer,
including a desktop, server, workstation, or notebook computer; in a hand held device
such as a personal digital assistant or PDA, “smart” mobile phone, or portable game
system; or in a game console or station, set-top box, or other home entertainment
device, among others. In each case, a processor operates based on a basic execution
cycle, and one processor parameter is the frequency at which the processor cycles
occur. This frequency is measured in cycles per second, or hertz (Hz), or multiples
thereof such as megahertz (MHz) and gigahertz (GHz).

[02] In some cases, a processor may be operable at multiple frequencies, e.g. when in a
power saving mode, the processor may switch to a mode of operation at a lower
frequency than that used when it is in a high performance mode. The set of different
frequencies at which a processor may operate in different modes is usually a set of
discrete values specified by the manufacturer of the processor.

[03] Insome cases, a processor manufacturer may provide a way for a program
executing on the processor to determine the specified frequency or frequencies at
which the processor is intended to operate. For example, a prog;am may execute an
instruction that causes the processor to return a model number based on which the
program may determine, by accessing a stored table, a corresponding frequency or
frequencies at which the processor may operate.

[04] Processor based systems may also provide a real time clock. Programs executing
on such a system may have access to the real time clock, and be able to use it to
programmatically determine a real time period during program execution, such as by
causing the program to suspend for a specific time as measured by the real time clock.

[05] Virtualization is a technique that enables a processor based host machine with
support for virtualization in hardware and software, or in some cases, in software only,

to present an abstraction of the host, such that the underlying hardware of the host
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machine appears as one or more independently operating virtual machines. Each
virtual machine may therefore function as a self-contained platform. Often,
virtualization technology is used to allow multiple guest operating systems and/or
other guest software to coexist and execute apparently simultaneously and apparently
independently on multiple virtual machines while actually physically executing on the
same hardware platform. A virtual machine may mimic the hardware of the host
machine or alternatively present a different hardware abstraction altogether.

[06] Virtualization systems provide guest software (;perating in a virtual machine with a
set of resources (e.g., processors, memory, IO devices) and may map some or all of the
components of a physical host machine into the virtual machine, or create fully virtual
components. The virtualization system may thus be said to provide a “virtual bare

machine” interface to guest software.

Brief Description of the Drawings

Figure 1 is a high level block diagram of a virtualized environment in one
embodiment.

F}igure 2 is a high level flow diagram of the operation of a virtualized environment
in one embodiment.

Figure 3 is a high level flow diagram of processing in an embodiment.

Figure 4 is a high level flow diagram of processing in an embodiment.

Det?iled Description

[07] Insome embodiments, virtualization systems may include a virtual machine
monitor (VMM) which controls the host machine. The VMM provides guest software
operating in a virtual machine (VM) with a set of resources such as processors,
memory, and IO devices. The VMM may map some or all of the components of a
physical host machine into the virtual machine, and may create fully virtual

components, emulated in software in the VMM, which are included in the virtual
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machine (e.g., virtual IO devices). The VMM uses facilities in a hardware
virtualization architecture to provide services to a virtual machine and to provide

protection from and between multiple virtual machines executing on the host machine.

[08] Figure 1 illustrates one embodiment of a virtual-machine environment 100. In this

embodiment, a processor-based platform 116 may execute a VMM 112. The VMM,
though typically implemented in software, may emulate and export a virtual bare
machine interface to higher level software. Such higher level software may comprise a
standard OS, a real time OS, or may be a stripped-down environment with limited
operating system functionality and may not include OS facilities typically available in
a standard OS in some embodiments. Alternatively, for example, the VMM 112 may
be run within, or using the services of, another VMM. VMMSs may be implemented,
for example, in hardware, software, firmware or by a combination of various

techniques in some embodiments.

[09] The platform hardware 116 may be a personal computer (PC), mainframe,

handheld device such as a personal digital assistant (PDA) or “smart” mobile phone,
portable computer, set top box, or another processor-based system. The platform
hardware 116 includes at least a processor 118 and memory 120. Processor 118 may
be any type of processor capable of executing programs, such as a microprocessor,
digital signal processor, microcontroller, or the like. The processor may include
microcode, programmable logic or hard coded logic for execution in embodiments.
Although Figure 1 shows only one such processor 118, there may be one or more
processors in the system in an embodiment. Additionally, processor 118 may include
multiple cores, support for multiple threads, or the like. Memory 120 can comprise a
hard disk, a floppy disk, random access memory (RAM), read only memory (ROM),
flash memory, any combination of the above devices, or any other type of machine
medium readable by processor 118 in various embodiments. Memory 120 may store
instructions and/or data for performing program execution and other method

embodiments.
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[10] The VMM 112 presents to guest software an abstraction of one or more virtual

machines, which may provide the same or different abstractions to the various guests.
Figure 1 shows two virtual machines, 102 and 114. Guest software such as guest
software 103 and 113 running on each virtual machine may include a guest OS such as
a guest OS 104 or 106 and various guest software applications 108 and 110. Guest
software 103 and 113 may access physical resources (e.g., processor registers, memory
and /0 devices) within the virtual machines on which the guest software 103 and 113
is running and to perform other functions. For example, the guest software 103 and
113 expects to have access to all registers, caches, structures, 1/0 devices, memory and
the like, according to the architecture of the processor and platform presented in the

virtual machine 102 and 114.

[11] In one embodiment, the processor 118 controls the operation of the virtual

machines 102 and 114 in accordance with data stored in a virtual machine control
structure (VMCS) 124. The VMCS 124 is a structure that may contain state of guest
software 103 and 113, state of the VMM 112, execution control information indicating
how the VMM 112 wishes to control operation of guest software 103 and 113,
information controlling transitions between the VMM 112 and a virtual machine, etc.
The processor 118 reads information from the VMCS 124 to determine the execution
environment of the virtual machine and to constrain its behavior. In one embodiment,
the VMCS 124 is stored in memory 120. In some embodiments, multiple VMCS

structures are used to support multiple virtual machines.

[12] Resources that can be accessed by guest software (e.g., 103, including guest OS

104 and application 108) may either be classified as “privileged” or “non-privileged.”
For privileged resources, the VMM 112 facilitates functionality desired by guest
software while retaining ultimate control over these privileged resources. Further,
each guest software 103 and 113 expects to handle various platform events such as
exceptions (e.g., page faults, general protection faults, etc.), interrupts (e.g., hardware

interrupts, software interrupts), and platform events (e.g., initialization (INIT) and
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system management interrupts (SMIs)). Some of these platform events are
“privileged” because they must be handled by the VMM 112 to ensure proper
operation of virtual machines 102 and 114 and for protection from and among guest
software. Both guest operating system and guest applications may attempt to access
privileged resources and both may cause or experience privileged events. Privileged
platform events and access attempts to privileged resources are collectively referred to

as “privileged events’ or ‘virtualization events” herein.

[13] Operation of a virtual machine environment in an embodiment such as that

previously described and depicted in Figure 1 is depicted by processing shown in
Figure 2. Figure 2 depicts the operation of a VM environment in an embodiment to
process a privileged event occurring in guest software; and the operation of the
embodiment to process a non-privileged event by guest software. Figure 2 does not
depict all components or all operations that may occur in an environment such as that
depicted in Figure 1. This is solely for clarity of presentation. While a small set of
components and a few specific operations are represented in Figure 2, a VM
environment in an embodiment may comprise many other components, and many

other operations may take place in such an embodiment.

[14]  Figure 2 depicts one exemplary set of operations of guest software 103 executing

on a virtual machine abstraction 102, and platform hardware 116 previously described
in Figure 1. The operations are depicted within blocks indicating where in the system
(e.g. in the VMM 112, in the guest software 103, etc.) they occur. In addition to other
components of the VM environment previously described, VM abstraction 102 may
store a virtual machine state and other state information for the guest software 103 at
212 and may also provide other resources such as a virtual network connection or set
of general registers, to name two of many examples, to guests. Of course, the physical
resources that implement VM state, guest state, and other VM resources are actually
provided by the platform hardware 116 on which the VM executes. The platform
hardware includes memory 120, VMCS 124 and processor 118.
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[15] At 240, guest software 103 accesses a non-privileged resource 242. Non-

privileged resources do not need to be controlled by the VMM 112 and can be
accessed directly by guest software which continues without invoking the VMM 112,
allowing the guest to continue operation at 245 after accessing the non-privileged
resource 242. A non-privileged platform event would likewise be handled without the

intervention of the VMM 112 (this is not shown in Figure 2).

[16] At 205, the guest software 103 attempts to access a privileged resource, and/or

experiences a privileged platform event. When such a privileged event occurs as at
205, control may be transferred 207 to the VMM 112. The transfer of control 207
from guest software to the VMM 112 is referred to herein as a virtual machine exit.
After facilitating the resource access or otherwise handling the privileged event
appropriately, the VMM 112 may return control to guest software as at 232 which then
resumes operation, 235. The transfer of control 232 from the VMM 112 to guest
software is referred to as a virtual machine entry. In one embodiment, the VMM 112
initiates a virtual machine entry by executing an instruction specially designed to

trigger the transition, 230, referred to herein as a virtual machine entry instruction.

[17] In one embodiment, when a virtual machine exit occurs, components of the

processor state used by guest software are saved, 210, components of the processor
state required by the VMM 112 are loaded, and the execution resumes in the VMM
112 at 220. In one embodiment, the components of the processor state used by guest
software are stored in a guest-state area of VMCS 124 and the components of the
processor state required by the VMM 112 are stored in a monitor-state area of VMCS
124. In one embodiment, when a transition from the VMM 112 to guest software
occurs, components of the processor state that were saved at the virtual machine exit
(and may have been modified by the VMM 112 while processing the virtual machine

exit) are restored 225 and control is returned to the virtual machine 102 or 114 at 230.

[18] In other embodiments, the structure of the VM and the organization of the support

for guest software may differ. Software that executes on the host machine to support
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virtualization may or may not be termed a VMM in some instances, a virtual machine
support system may nc;t have hardware components or support. In yet other
embodiments, the entire VMM and a guest may run within an executing operating
system, unlike the structures depicted in fig. 1. Many other implementations of virtual

machines are possible as is known in the art.

[19] When a VMM supported by hardware implements a VM as above in an

embodiment as described with reference to figures 1 and 2, a program executing
within the VM may be presented with a virtualized guest machine environment that is

indistinguishable in many respects from a physical machine environment. With

hardware support, the VMM may trap and correctly handle special instructions such as

accesses to privileged resources such as model specific registers of the virtual
processor, returning values as would be returned by a physical processor; furthermore,
privileged accesses to hardware e.g. memory accesses with side effects on I/O devices,
may be properly simulated in the embodiment by the described operation of the VMM
and the VMCS in conjunction with virtualization support in the hardware in the
embodiment. Specifically, in one instance, a particular platform may provide VM that
presents virtual hardware that is in many respects similar to or identical to the
underlying physical hardware, e.g. by providing a virtual processor that is the same
processor type and model as the underlying physical processor, the same I/O devices
as those connected to the buses of the physical machine, etc. Platform or processor-
specific references to the processor or other hardware made by a guest may then be
passed to the physical platform and the VM via the intermediary VMM and VMCS for
a proper response, thus providing an environment to the guest that is a close replica of
the underlying physical hardware. This makes it very hard for the guest to be able to

detect the existence of the intervening virtualization.

[20]  Alternatively, the VMM and the virtualization support system may provide an

environment based on a processor or platform that is different from the underlying

physical system. Even in this case, a careful implementation of the virtualization
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subsystem and VMM may prevent a program executing on the virtual machine from

detecting the virtualized nature of the environment by any straightforward method.

[21] In some situations, it may be important for a program to be aware of the virtualized

nature of the environment in which it is executing. For example, it may be necessary
for a program vendor who wishes to have proper operation of a performance critical
program to ensure that the program is only installed on physical hardware with certain
minimum capabilities, such as minimum memory size or processor frequency. Ina
virtualized environment, a VM may report memory size or processor frequency, or
other parameters of the virtualized hardware, which may not accurately reflect the
actual capabilities of the underlying hardware. Moreover, the execution of a program
within a VM generally incurs an overhead merely due to the operation of the VM
itself, and this overhead may be undesirable for some performance critical processing
in programs. Other programs such as those manipulating or displaying secured data
may wish to authenticate hardware devices or run only on an approved hardware
platform. If the platform on which such a program executed were to actually be a VM
executing on an unapproved platform and maliciously designed to simulate an
approved physical hardware platform, the security of such a program might be
compromised if it were impossible for the program to detect that the platform on

which the program was executing was virtualized.

[22] A process for a program to detect that it is running on a virtualized embodiment is

depicted in fig. 3. In fig. 3, one or more iterations of a comparison process between
the measured operating frequency of a processor and its specified set of valid operating
frequencies occur in one embodiment. At the start of the process, 305, a set of the valid
specified frequencies at which the processor may operate is obtained, 310. In an
iterative manner, with 7 representing a loop variable in the flowchart, starting at 1 at
315, and limited by some number z by the exit at 320, n comparisons of measured and

specified frequencies are made. As is known, any manner of iteration may be used



10

15

20

25

WO 2006/130876 PCT/US2006/021652

that is equivalent to the basic loop shown. In some instances, the loop may be omitted,

i.e. whennis 1.

[23] Determination of the processor frequency is known in the art, as is determination

of the specified frequencies at which a processor may operate. In each iteration, the
actual frequency of the processor is measured, 325, then the measured value is
compared to the set of specified valid frequencies, 330. The result of the comparison
is evaluated, 335. If any of the comparisons falls outside a normal tolerance range for
frequencies as specified, the machine is a virtual machine, and the process is complete
at 340. Otherwise, the loop repeats, 345, with an incremented value for the loop
counter. If all  tests have completed without an out-of-range measurement, that is, the
loop exits at 320, this implies a result that indicates that the process is executing on a

physical machine, and not on a virtual machine, at 350.

[24] In one embodiment, virtualization is implemented using internal architectural

support and a VMM on an Intel® Architecture processor such the IA-32 Intel®
Architecture platform (IA-32), which is described in the I4-32 Intel® Architecture
Software Developer's Manual (IA-32 documentation). In one embodiment, both the
virtualized processor and the underlying physical processor are IA-32 processors, and
support specific instructions such as determination of the number of cycles executed
by the processor; the value of a real time clock; and a way to determine the identity of
the processor. For example, in the IA-32 architecture, the RDTSC (Read Time-Stamp
Counter) instruction may be used to count basic processor cycles. The IA-32 RDMSR
(Read from Model-Specific Register, or MSR) and a CPUID instruction may be used
to determine various parameters about the processor’s model, type and identity. These
include CPU type, which in turn allows determination of frequency of operation
specified at a specific bus speed from a table as specified in the IA-32 documentation.
Furthermore, other fields in an IA-32 MSR such as the Processor Frequency
Configuration field and Scalable Bus Speed fields may then be used in conjunction

with the table to find the expected processor frequency.
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[25]  These instructions, or an equivalent set in a different architecture, may be used to

detect a virtualized environment. In one such IA-32 embodiment the high level
program of fig. 3 may be implemented as a program using specific instructions of the
IA-32 architecture as shown in fig. 4. A program process to detect virtualization, 480,
begins by the program first requesting a value from the processor on which it is
executing for the total basic clock cycles executed, Tc!, at 410 using an instruction
such as RDTSC. A real time clock (RTC) of the system is then accessed 420 and the
process waits or loops for a known period of the real time clock, here, n ticks, 425.
The program then reads the new current value for processor clock cycles executed,
Tc2, 430. The difference between the two values divided by the time, or
(Te2-Tcl)/n
yields a measured frequency, Fm, 460. Next the processor’s identifying information is
accessed, using a CPUID or a similar instruction at 495. This information may be
provided as a set of register values in model specific registers (MSRs) in the processor,
readable by the process 480. At least one or more of the acquired values may then be
used to index into a predefined table published as part of the processor’s
specifications, 450, to yield a set of possible predetermined frequencies and tolerances
for those frequencies. The program selects the specified frequency Fs, closest to the
measured frequency Fm, at 450, and the associated specified range or tolerance in
terms of drift or variation allowed for the processor, the value delta may be read from
the table or be known from other data specified for the processor. The absolute value
of the difference between Fis and Fm is then computed and compared to delta, 480. If
it exceeds delta, the program is executing in a virtual machine or on a virtualized

platform, 470; otherwise the platform is a non-virtualized, physical platform, 490.

[26]  The correctness of this processing relies on the likelihood that regardless of the

actual method of virtualization used, the virtualized real time clock must be identical
to the physical real time clock. Thus, even though a program accessing the real time

clock as at 420 and 425 may be executing in a virtualized environment, the virtualized
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environment must provide direct access to the real time clock of the underlying system
if the virtualized environment is to properly perform certain types of time-critical
functions. In general, it may be assumed that a production quality virtualization
system will not virtualize the real time clock as seen by a guest, but will instead
provide direct access to the real time clock of the underlying system. This provides a
window of access to the real physical machine for the guest that may be used as shown
to detect virtualization. If a program executing as a guest in a virtual machine has
access to a physical real time clock, it may compare the apparent frequency of the
virtual processor presented by the virtual machine to the frequencies at which a
physical processor identical to the virtual processor is specified to operate, as
described above. Because of the overhead involved in virtualization, and because
components of the virtual environment are emulated in software, the measured
frequency of the virtual processor is very likely to vary over time, and generally to lie
outside the normal expected range of variance of the operating frequency of a
corresponding physical processor, and thus the virtualized nature of the platform may
be detected by detecting excursions outside the normal variance of frequency. In
general, if the virtualized processor is identical in model and specification to the
underlying physical processor, the virtualized frequency will be lower than the actual
frequency of the physical processor at a specific bus speed. Even if the virtualized
processor is presented to a guest as a processor with a lower operating frequency than
the underlying physical processor, e.g. by providing processor model information of a
slower processor, the almost unavoidable variation in virtualized frequency caused by
the basic nature of virtualization would still be detected with high probability by the
processing described above. For higher accuracy, the process may be repeated several

times to find a measured frequency that is outside a normal range.

[27] The above embodiment is based on high level architectural features of the type

available in an IA-32 processor, i.e. the availability of a clock cycle counter and a real

time clock. However, the general flow of processing depicted in fig. 1 does not rely on

11
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a specific architecture. Most modern processor based systems provide a way to
measure actual operating frequency of the processor; and a way to determine the
specified frequencies of operation for the processor, though the specific details may
differ from those shown in fig. 1 and from the IA-32 instructions referenced above.
One of ordinary skill in the art would therefore appreciate that many alternative
methods of determining if a measured frequency of a processor is close to a specified

frequency of the processor may be employed in other embodiments.

[28] Some embodiments may be provided as a software program product or software

which may include a machine or machine-readable medium having stored thereon
instructions which when accessed by the machine perform a process of the
embodiment. In other embodiments, processes might be performed by specific
hardware components that contain hardwired logic for performing the processes, or by

any combination of programmed components and custom hardware components.

[29] In the preceding description, for purposes of explanation, numerous specific details

are set forth in order to provide a thorough understanding of the described
embodiments, however, one skilled in the art will appreciate that many other

embodiments may be practiced without these specific details.

[30] Some portions of the detailed description above is presented in terms of algorithms

and symbolic representations of operations on data bits within a processor-based
system. These algorithmic descriptions and representations are the means used by
those skilled in the art to most effectively convey the substance of their work to others
in the art. The operations are those requiring physical manipulations of physical
quantities. These quantities may take the form of electrical, magnetic, optical or other
physical signals capable of being stored, transferred, combined, compared, and
otherwise manipulated. It has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values, elements, symbols, characters,

terms, numbers, or the like.

12
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[31] It should be borne in mind, however, that ail of these and similar terms are to be

associated with the appropriate physical quantities and are merely convenient labels
applied to these quantities. Unless specifically stated otherwise as apparent from the
description, terms such as "executing” or “processing” or "computing" or "calculating"
or "determining" or the like, may refer to the action and processes of a processor-based
system, or similar electronic computing device, that manipulates and transforms data
represented as physical quantities within the processor-based system's storage into
other data similarly represented or other such information storage, transmission or

display devices.

[32] Inthe description of the embodiments, reference may be made to accompanying

drawings. In the drawings, like numerals describe substantially similar components
throughout the several views. Other embodiments may be utilized and structural,
logical, and electrical changes may be made. Moreover, it is to be understood that the
various embodiments, although different, are not necessarily mutually exclusive. For
example, a particular feature, structure, or characteristic described in one embodiment

may be included within other embodiments.

[33]  Further, a design of an embodiment that is implemented in a processor may go

through various stages, from creation to simulation to fabrication. Data representing a
design may represent the design in a number of manners. First, as is useful in
simulations, the hardware may be represented using a hardware description language
or another functional description language. Additionally, a circuit level model with
logic and/or transistor gates may be produced at some stages of the design process.
Furthermore, most designs, at some stage, reach a level of data representing the
physical placement of various devices in the hardware model. In the case where
conventional semiconductor fabrication techniques are used, data representing a
hardware model may be the data specifying the presence or absence of various features
on different mask layers for masks used to produce the integrated circuit. In any

representation of the design, the data may be stored in any form of a machine-readable

13
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medium. An optical or electrical wave modulated or otherwise generated to transmit
such information, a memory, or a magnetic or optical storage such as a disc may be the
machine readable medium. Any of these mediums may “carry” or “indicate” the
design or software information. When an electrical carrier wave indicating or carrying
the code or design is transmitted, to the extent that copying, buffering, or re-
transmission of the electrical signal is performed, a new copy is made. Thus, a
communication provider or a network provider may make copies of an article (a carrier

wave) that constitute or represent an embodiment.

[34] Embodiments may be provided as a program product that may include a machine-

readable medium having stored thereon data which when accessed by a machine may
cause the machine to perform a process according to the claimed subject matter. The
machine-readable medium may include, but is not limited to, floppy diskettes, optical
disks, DVD-ROM disks, DVD-RAM disks, DVD-RW disks, DVD+RW disks, CD-R
disks, CD-RW disks, CD-ROM disks, and magneto-optical disks, ROMs, RAMs,
EPROMs, EEPROMS, magnet or optical cards, flash memory, or other type of media /
machine-readable medium suitable for storing electronic instructions. Moreover,
embodiments may also be downloaded as a program product, wherein the program
may be transferred from a remote data source to a requesting device by way of data
signals embodied in a catrier wave or other propagation medium via a communication

link (e.g., a modem or network connection).

[35] Many of the methods are described in their most basic form but steps can be added

to or deleted from any of the methods and information can be added or subtracted from
any of the described messages without departing from the basic scope of the claimed
subject matter. It will be apparent to those skilled in the art that many further
modifications and adaptations can be made. The particular embodiments are not
provided to limit the claimed subject matter but to illustrate it. The scope of the
claimed subject matter is not to be determined by the specific examples provided

above but only by the claims below

14
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Claims

What is claimed is;

5 1. Inaprogram executing on a processor based system, a method comprising:
obtaining one or more samples of the frequency at which a processor of the system
is executing,
comparing each sample to at least one of a predetermined set of frequencies; and
determining whether the program is executing on a virtual machine based at least

10 in part on of the result of the comparing.

2. The method of claim 1 wherein comparing each sample to the at least one of the
predetermined set of frequencies further comprises determining if the sample is within

a specified range of the at least one of the predetermined set of frequencies.

3. The method of claim 2 determining whether the program is executing in a virtual
15 machine further comprises
determining that the program is not executing in a virtual machine if for
each sample, the at least one of the predetermined set of frequencies is
within a specified range of the sample; and

determining that the program is executing in a virtual machine, otherwise.

20 4. The method of claim 3 wherein the predetermined set of frequencies is selected based
at least in part on an identifier reported by the processor in response to the execution of

an identifying instruction.

15
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. The method of claim 3 further comprising obtaining a sample of the frequency at

which the processor is executing by counting all clock cycles of the processor during
an interval to obtain a tick count; measuring the duration of the interval on a real time
clock of the processor; and computing the frequency by dividing the tick count by the

duration.

. The method of claim 5 wherein counting all clock cycles during an interval further

comprises executing an instruction to obtain a first cycle count of the processor at the
beginning of the interval; executing an instruction to obtain a second cycle count of the
processor at the end of the interval; and obtaining the difference between the first cycle
count and the second cycle count; and wherein measuring the duration of the interval
on the real time clock further comprises executing an instruction to cause the program

to wait for a time certain as determined by the real time clock of the processor.

A machine readable medium having stored thereon data that when accessed by a
machine causes the machine to perform a method, the method comprising:
obtaining one or more samples of the frequency at which a processor of the system
is executing,
comparing each sample to at least one of a predetermined set of frequencies; and
determining whether the program is executing on a virtual machine based at least

in part on of the result of the comparing.

The machine readable medium of claim 7 wherein comparing each sample to the at
least one of the predetermined set of frequencies further comprises determining if the
sample is within a specified range of the at least one of the predetermined set of

frequencies.

16
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9. The machine readable medium of claim 8 wherein determining whether the program is
executing in a virtual machine further comprises-
determining that the program is not executing in a virtual machine if for
each sample, the at least one of the predetermined set of frequencies is
5 within a specified range of the sample; and

determining that the program is executing in a virtual machine, otherwise.

10. The machine readable medium of claim 9 wherein the predetermined set of
frequencies is selected based at least in part on an identifier reported by the processor

in response to the execution of an identifying instruction.

10 11. The machine readable medium of claim 9 wherein the method further comprises
obtaining a sample of the frequency at which the processor is executing by counting all
clock cycles of the processor during an interval to obtain a tick count;

measuring the duration of the interval on a real time clock of the processor; and
computing the frequency by dividing the tick count by the duration.

15 In a program executing on a processor based system, a method comprising:

detecting a frequency at which a processor of the system is executing;
comparing the frequency to at least one of a predetermined set of frequencies; and
determining whether the program is executing on a virtual machine based at least

in part on the result of the comparing.

20 12. The machine readable medium of claim 11 wherein counting all clock cycles during an
interval further comprises executing an instruction to obtain a first cycle count of the
processor at the beginning of the interval; executing an instruction to obtain a second

cycle count of the processor at the end of the interval; and obtaining the difference

17
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between the first cycle count and the second cycle count; and wherein measuring the
duration of the interval on the real time clock further comprises executing an
instruction to cause the program to wait for a time certain as determined by the real

time clock of the processor.

13. A system comprising:

a Processor;

a storage having stored therein a program executable on the system, the program to
obtain one or more samples of the frequency at which a processor of the system is
executing,

compare each sample to at least one of a predetermined set of frequencies; and
determine whether the program is executing on a virtual machine based at least in

part on of the result of the comparing.

14. The system of claim 13 wherein the program to compare each sample to the at least
one of the predetermined set of frequencies further comprises instructions to determine
if the sample is within a specified range of the at least one of the predetermined set of

frequencies.

15. The system of claim 14 wherein the program to determine whether the program is
executing in a virtual machine further comprises instructions
to determine that the program is not executing in a virtual machine if for
each sample, the at least one of the predetermined set of frequencies is
within a specified range of the sample; and

to determine that the program is executing in a virtual machine, otherwise.

18
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16. The system of claim 15 wherein the predetermined set of frequencies is selected based
at least in part on an identifier reported by the processor in response to the execution of

an identifying instruction.

17. The system of claim 15 wherein the program further comprises instructions
to obtain a sample'of the frequency at which the processor is executing by counting all
clock cycles of the processor during an interval to obtain a tick count;

to measure the duration of the interval on a real time clock of the processor; and

to compute the frequency by dividing the tick count by the duration.

18. The system of claim 17 wherein counting all clock cycles during an interval further
comprises executing an instruction to obtain a first cycle éount of the processor at the
beginning of the interval; executing an instruction to obtain a second cycle count of the
processor at the end of the interval; and obtaining the difference between the first cycle
count and the second cycle count; and wherein the instructions to measure the duration
of the interval on the real time clock further comprise instructions to cause the
program to wait for a time certain as determined by the real time clock of the

processor.

19. In a program executing on a machine, method comprising:

recording a first cycle count of a processor of the machine;

waiting for a predetermined number of ticks of a real time clock of the processor
immediately following the recording of the first cycle count;

recording a second cycle count immediately following the waiting;

19
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obtaining a measured frequency of the processor by dividing the difference between the
second cycle count and the first cycle count by the time equivalent of the predetermined
number of ticks;

obtaining an identifier of the processor;

looking up a table entry based on the identifier to determine a specified frequency of the
processor;

comparing the specified frequency of the processor with the measured frequency of the
processor; and

determining that the machine is a virtual machine if the difference between the specified

frequency and the measured frequency exceeds a specified threshold value.

20
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