

(12)

Oversættelse af europæisk patent

Patent- og
Varemærkestyrelsen

(51) Int.Cl.: **C 12 N 15/82 (2006.01)** **A 01 H 5/00 (2006.01)**

(45) Oversættelsen bekendtgjort den: **2015-05-04**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2015-03-04**

(86) Europæisk ansøgning nr.: **09700649.8**

(86) Europæisk indleveringsdag: **2009-01-08**

(87) Den europæiske ansøgnings publiceringsdag: **2010-10-20**

(86) International ansøgning nr.: **GB2009000060**

(87) Internationalt publikationsnr.: **WO2009087391**

(30) Prioritet: **2008-01-08 GB 0800272**

(84) Designerede stater: **AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR**

(73) Patenthaver: **Plant Bioscience Limited, Norwich Research Park , Colney Lane, Norwich Norfolk NR4 7UH, Storbritannien**

(72) Opfinder: **LOMONOSOFF, George, Peter, Department of Biological Chemistry, John Innes Centre, Colney Lane, Norwich, Norfolk NR4 7UH, Storbritannien**
SAINSBURY, Frank, INAF, Pavillon des Services, suite 1710, Université Laval, 2440 Rue Hochelaga, Québec, Québec G1V 0A6, Canada

(74) Fuldmægtig i Danmark: **Zacco Denmark A/S, Arne Jacobsens Allé 15, 2300 København S, Danmark**

(54) Benævnelse: **Proteinekspressionssystemer**

(56) Fremdragne publikationer:
WO-A1-01/96569
WO-A1-2007/135480
CANIZARES M CARMEN ET AL: "A BIPARTITE SYSTEM FOR THE CONSTITUTIVE AND INDUCIBLE EXPRESSION OF HIGH LEVELS OF FOREIGN PROTEINS IN PLANTS" PLANT BIOTECHNOLOGY JOURNAL, vol. 4, no. 2, 1 March 2006 (2006-03-01), pages 183-193, XP001206668 BLACKWELL, OXFORD, GB ISSN: 1467-7644 cited in the application
SAINSBURY FRANK ET AL: "Expression of multiple proteins using full-length and deleted versions of cowpea mosaic virus RNA-2." PLANT BIOTECHNOLOGY JOURNAL JAN 2008, vol. 6, no. 1, January 2008 (2008-01), pages 82-92, XP002523659 ISSN: 1467-7652 cited in the application
WELLINK J ET AL: "Mutational analysis of AUG codons of cowpea mosaic virus M RNA" BIOCHIMIE, vol. 75, no. 8, 1 January 1993 (1993-01-01), pages 741-747, XP023480877 PARIS, FR ISSN: 0300-9084 cited in the application
HOLNESS C L ET AL: "Identification of the initiation codons for translation of cowpea mosaic virus middle component RNA using site-directed mutagenesis of an infectious cDNA clone" VIROLOGY, vol. 172, no. 1, September 1989 (1989-09-01), pages 311-320, XP023047082 ACADEMIC PRESS, ORLANDO, US ISSN: 0042-6822

Fortsættes ...

cited in the application

SAINSBURY FRANK ET AL: "Extremely High-Level and Rapid Transient Protein Production in Plants without the Use of Viral Replication" PLANT PHYSIOLOGY, vol. 148, no. 3, November 2008 (2008-11), pages 1212-1218, XP002523655 ROCKVILLE ISSN: 0032-0889

MATSUDA DAIKI ET AL: "Expression of the two nested overlapping reading frames of turnip yellow mosaic virus RNA is enhanced by a 5' cap and by 5' and 3' viral sequences" JOURNAL OF VIROLOGY, vol. 78, no. 17, September 2004 (2004-09), pages 9325-9335, XP002523656 ISSN: 0022-538X

ROHLL JONATHAN B ET AL: "3'-Terminal nucleotide sequences important for the accumulation of cowpea mosaic virus M-RNA" VIROLOGY, vol. 193, no. 2, 1993, pages 672-679, XP002523658 ISSN: 0042-6822 cited in the application

DINESH-KUMAR S P ET AL: "Control of start codon choice on a plant viral RNA encoding overlapping genes" PLANT CELL, vol. 5, no. 6, 1993, pages 679-692, XP002523657 ISSN: 1040-4651

WEILAND J J ET AL: "Infectious TYMV RNA from cloned cDNA: effects in-vitro and in vivo of point substitutions in the initiation codons of two extensively overlapping ORFs" NUCLEIC ACIDS RESEARCH, vol. 17, no. 12, 1989, pages 4675-4688, XP002523665 ISSN: 0305-1048

LIU L ET AL: "Cowpea mosaic virus-based systems for the production of antigens and antibodies in plants" VACCINE, vol. 23, no. 15, 7 March 2005 (2005-03-07), pages 1788-1792, XP004768055 BUTTERWORTH SCIENTIFIC, GUILDFORD, GB ISSN: 0264-410X cited in the application

KOZAK M: "Pushing the limits of the scanning mechanism for initiation of translation" GENE, vol. 299, no. 1-2, 16 October 2002 (2002-10-16), pages 1-34, XP004395302 ELSEVIER, AMSTERDAM, NL ISSN: 0378-1119

DESCRIPTION

FIELD OF THE INVENTION

[0001] The present invention relates generally to methods and materials, and particularly viral derived sequences, for boosting gene expression in plants and other eukaryotic cells, for example of heterologous genes encoding proteins of interest.

BACKGROUND OF THE INVENTION

Comoviruses (CPMV)

[0002] Comoviruses are RNA viruses with a bipartite genome. The segments of the comoviral RNA genome are referred to as RNA-1 and RNA-2. RNA-1 encodes the VPg, replicase and protease proteins (Lomonosoff & Shanks, 1983). The replicase is required by the virus for replication of the viral genome. The RNA-2 of the comovirus *cowpea mosaic virus* (CPMV) encodes a 58K and a 48K protein, as well as two viral coat proteins L and S.

[0003] Initiation of translation of the RNA-2 of all comoviruses occurs at two different initiation sites located in the same triplet reading frame, resulting in the synthesis of two carboxy coterminous proteins. This double initiation phenomenon occurs as a result of 'leaky scanning' by the ribosomes during translation.

[0004] The 5' terminal start codons (AUGs) in RNA-2 of CPMV occur at positions 115, 161, 512 and 524. The start codons at positions 161 and 512 are in the same triplet reading frame. Initiation at the start codon at position 161 results in the synthesis of a 105K polyprotein while initiation at the start codon at position 512 directs the synthesis of a 95K polyprotein. As the synthesis of both polyproteins is terminated at the same stop codon at position 3299, the 105K and the 95K proteins are carboxy coterminous. The AUG codon at position 524 can serve as an initiator if the AUG at 512 is deleted. However, in the presence of the AUG 512 it does not serve this function and simply codes for the amino acid methionine (Holness *et al.*, 1989; Wellink *et al.*, 1993). The start codon at position 115 is not essential for virus replication (Wellink *et al.*, 1993).

[0005] The 105K and 95K proteins encoded by CPMV RNA-2 genome segment are primary translation products which are subsequently cleaved by the RNA1-encoded proteolytic activity to yield either the 58K or the 48K protein, depending on whether it is the 105K or 95K polyprotein that is being processed, and the two viral coat proteins, L and S. Initiation of translation at the start codon at position 512 in CPMV is more efficient than initiation at position 161, resulting in the production of more 95K polyprotein than 105K polyprotein.

[0006] The start codon at position 115 in CPMV RNA-2 lies upstream of the initiation sites at positions 161 and 512 and is in a different reading frame. As this start codon is in-phase with a stop codon at position 175, initiation at this site could result in the production of a 20 amino acid peptide. However, production of such a peptide has not been detected to date.

Necessity of maintaining the frame between AUGs

[0007] Mutagenesis experiments have shown that maintenance of the frame between the initiation sites at positions 161 and 512 in CPMV RNA-2 is essential for efficient replication of RNA-2 by the RNA-1-encoded replicase (Holness *et al.*, 1989; van Bokhoven *et al.*, 1993; Rohll *et al.*, 1993; Wellink *et al.*, 1993). This requirement restricts the length of sequences which can be inserted upstream of the 512 start codon in expression vectors based on CPMV RNA-2 (see below), making the cloning of foreign genes into such vectors more difficult than would be ideal. For example it precludes the use of polylinkers as their use will often alter the open reading frame (ORF) between these initiation sites.

CPMV vectors

[0008] CPMV has served as the basis for the development of vector systems suitable for the production of heterologous polypeptides in plants (Liu *et al.*, 2005; Sainsbury *et al.*, 2007). These systems are based on the modification of RNA-2 but differ

in whether full-length or deleted versions are used. In both cases, however, replication of the modified RNA-2 is achieved by co-inoculation with RNA-1. Expression systems based on a full-length version of RNA-2 involve the fusion of the foreign protein to the C-terminus of the RNA-2-derived polyproteins. Release of the N-terminal polypeptide is mediated by the action of the 2A catalytic peptide sequence from foot-and-mouth-disease virus (Gopinath *et al.*, 2000). The resulting RNA-2 molecules are capable of spreading both within and between plants. This strategy has been used to express a number of recombinant proteins, such as the Hepatitis B core antigen (HBcAg) and Small Immune Proteins (SIPs), in cowpea plants (Mechtcheriakova *et al.*, 2006; Monger *et al.*, 2006; Alamillo *et al.*, 2006). Though successful, the use of a full-length viral vector has disadvantages in terms of size constraints of inserted sequences and concerns about biocontainment.

[0009] To address these, a system based on a deleted version of CPMV RNA-2 has recently been developed (Cañizares *et al.*, 2006). In this system the region of RNA-2 encoding the movement protein and both coat proteins has been removed. However, the deleted molecules still possess the *cis*-acting sequences necessary for replication by the RNA-1-encoded replicase and thus high levels of gene amplification are maintained without the concomitant possibility of the modified virus contaminating the environment. With the inclusion of a suppressor of gene silencing, such as HcPro from PVY, (Brigneti *et al.*, 1998) in the inoculum in addition to RNA-1, the deleted CPMV vector can be used as a transient expression system (WO/2007/135480) Bipartite System, Method And Composition For The Constitutive And Inducible Expression Of High Levels Of Foreign Proteins In Plants; also Sainsbury *et al.*, 2009). However, in contrast to the situation with a vector based on full-length RNA-2, replication is restricted to inoculated leaves. These CPMV vectors have been used to express multi-chain complexes consisting of a single type of polypeptide.

[0010] Multiple copies of vectors based on either full-length or deleted versions of CPMV RNA-2 have also been shown to be suitable for the production of heteromeric proteins in plants (Sainsbury *et al.*, 2008). Co-infiltration of two full-length RNA-2 constructs containing different marker genes into *Nicotiana benthamiana* in the presence of RNA-1 has been used to show that two foreign proteins can be efficiently expressed within the same cell in inoculated tissue. Furthermore, the proteins can be co-localised to the same sub-cellular compartments, which is an essential prerequisite for heteromer formation.

[0011] The suitability of different CPMV RNA-2 vectors for the expression of heteromeric proteins in plants has also been investigated. Insertion of the heavy and light chains of an IgG into full-length and deleted versions of RNA-2 showed that both approaches led to the accumulation of full-size IgG molecules in the inoculated tissue but that the levels were significantly higher when deleted RNA-2 vectors were used. The ability of full-length RNA-2 constructs to spread systemically therefore seems to be irrelevant to the production of heteromeric proteins and the use of deleted versions of RNA-2 is clearly advantageous, especially as they also offer the benefit of biocontainment.

[0012] Thus, known CPMV based vector systems represent useful tools for the expression of a heterologous gene encoding a protein of interest in plants. However, there is still a need in the art for optimised vector systems which improve, for example, the yield of the heterologous proteins expressed and the ease of use of the vector.

SUMMARY OF INVENTION

[0013] The present inventors have surprisingly found that mutation of the start codon at position 161 in a CPMV RNA-2 vector strongly increases the levels of expression of a protein encoded by a gene inserted after the start codon at position 512. The levels of protein expression were increased about 20-30 fold compared with expression of the same protein from a CPMV RNA-2 vector differing only in that the start codon at position 161 was intact (Sainsbury and Lomonosoff, 2008). The present invention allows the production of high levels of foreign proteins without the need for viral replication.

[0014] The inventors have also found that mutation of the start codon at position 161 negates the need for maintaining the frame between the position of the mutated start codon at position 161 and the start codon at position 512, thus allowing insertion of sequences of any length after the mutated start codon at position 161. This is particularly advantageous as it allows polylinkers of any length to be inserted into RNA-2 vectors after the mutated start codon, which can then be used to facilitate cloning of a gene of interest into the vector.

[0015] In addition, the inventors have found that despite the increase in protein expression, plants transformed with a CPMV RNA-2 vector comprising a mutated start codon at position 161 looked healthier, i.e. showed less necrosis, than plants transformed with known CPMV RNA-2 vectors. Plant health is an important factor in the expression of proteins from plants as healthy plants survive for longer periods of time. In addition, plant health is also important in the purification of proteins from plants as tannins released as a result of necrosis can interfere with protein purification (Sainsbury and Lomonosoff, 2008).

[0016] Thus the present invention relates to improved protein production systems and methods, based on modified bipartite virus sequences.

[0017] Thus in various aspects of the invention as defined in the claims there is utilised an expression enhancer sequence, which sequence is derived from (or shares homology with) the RNA-2 genome segment of a bipartite RNA virus, such as a comovirus, in which a target initiation site has been mutated

[0018] The present invention further provides processes as defined in the claims for increasing the expression or translational enhancing activity of a sequence derived from an RNA-2 genome segment of a bipartite virus, which processes comprise mutating a target initiation site therein.

[0019] Some particular definitions and embodiments of the invention will now be described in more detail.

[0020] "Enhancer" sequences (or enhancer elements), as referred to herein, are sequences derived from (or sharing homology with) the RNA-2 genome segment of a bipartite RNA virus, such as a comovirus, in which a target initiation site has been mutated. Such sequences can enhance downstream expression of a heterologous ORF to which they are attached. Without limitation, it is believed that such sequences when present in transcribed RNA, can enhance translation of a heterologous ORF to which they are attached.

[0021] A "target initiation site" as referred to herein, is the initiation site (start codon) in a wild-type RNA-2 genome segment of a bipartite virus (e.g. a comovirus) from which the enhancer sequence in question is derived, which serves as the initiation site for the production (translation) of the longer of two carboxy coterminal proteins encoded by the wild-type RNA-2 genome segment.

[0022] As described above, production of the longer of the two carboxy coterminal proteins encoded by CPMV RNA-2, the 105K protein, is initiated at the initiation site at position 161 in the wild-type CPMV RNA-2 genome segment. Thus, the target initiation site in enhancer sequences derived from the CPMV RNA-2 genome segment is the initiation site at position 161 in the wild-type CPMV RNA-2.

[0023] Mutations around the start codon at position 161 may have the same (or similar) effect as mutating the start codon at position 161 itself, for example, disrupting the context around this start codon may mean that the start codon is by-passed more frequently.

[0024] A target initiation site may be 'mutated' indirectly by mutating one or more nucleotides upstream and/or downstream of the target initiation site, but retaining the wild-type target initiation site, wherein the effect of mutating these nucleotides is the same, or similar, to the effect observed when the target initiation site itself is mutated.

[0025] As target initiation sites serve as the initiation site for the production of the longer of two carboxy coterminal proteins encoded by a wild-type RNA-2 genome segment, it follows that target initiation sites are in-frame (in phase) with a second initiation site on the same wild-type RNA-2 genome segment, which serves as the initiation site for the production of the shorter of two carboxy coterminal proteins encoded by the wild-type RNA-2. Two initiation sites are in-frame if they are in the same triplet reading frame.

[0026] The target initiation site in enhancer sequences derived from the wild-type CPMV RNA-2 genome segment, i.e. the initiation site at position 161, is in frame with the initiation site at position 512, which serves as the initiation site for the production of the shorter of the two carboxy coterminal proteins encoded by CPMV RNA-2 (the 95K protein) in the wild-type CPMV RNA-2 genome segment.

[0027] Thus, a target initiation site is located upstream (5') of a second initiation site in the wild-type RNA-2 genome segment from which the enhancer sequence is derived, which serves the initiation site for the production of the shorter of two carboxy coterminal polyproteins encoded by the wild-type RNA-2 genome segment. In addition, a target initiation site may also be located downstream (3') of a third initiation site in the wild-type RNA-2 genome from which the enhancer sequence is derived. In CPMV the target initiation site, i.e. the initiation site at position 161, is located upstream of a second initiation site at position 512 which serves as the initiation site for the production of the 95K protein and downstream of a third initiation site at position 115.

[0028] A target initiation site in an enhancer sequence derived from the RNA-2 genome segment of a bipartite virus is therefore the first of two initiation sites for the production of two carboxy coterminal proteins encoded by the wild-type RNA-2. 'First' in this context refers to the initiation site located closer to the 5' end of the wild-type RNA-2 genome segment.

[0029] More than one initiation site in the sequence may be mutated, if desired. For example the 'third' initiation site at (or corresponding to) position 115 may also be deleted or altered. It has been shown that removal of AUG 115 in addition to the removal of AUG 161, further enhances expression (Sainsbury and Lomonossoff, 2008).

[0030] The enhancer sequences of the present invention are based on modified sequences from the RNA-2 genome segments of bipartite RNA viruses of the *Comoviridae* family. All genera of the family *Comoviridae* appear to encode two carboxy-coterminal proteins. The genera of the *Comoviridae* family include Comovirus, Nepovirus, Fabavirus, Cheravirus and Sadwavirus. Comoviruses include *Cowpea mosaic virus* (CPMV), Cowpea severe mosaic virus (CPSMV), Squash mosaic virus (SqMV), Red clover mottle virus (RCMV), Bean pod mottle virus (BPMV). Preferably, the bipartite virus (or comovirus) is CPMV.

[0031] The sequences of the RNA-2 genome segments of these comoviruses and several specific strains are available from the NCBI database under the accession numbers listed in brackets: *cowpea mosaic virus* RNA-2 (NC_003550), *cowpea severe mosaic virus* RNA-2 (NC_003544), *squash mosaic virus* RNA-2 (NC_003800), *squash mosaic virus* strain Kimble RNA-2 (AF059533), *squash mosaic virus* strain Arizona RNA-2 (AF059532), *red clover mottle virus* RNA-2 (NC_003738), *bean pod mottle virus* RNA-2 (NC_003495), *bean pod mottle virus* strain K-Hopkins1 RNA-2 (AF394609), *bean pod mottle virus* strain K-Hancock1 RNA-2 (AF394607), *Andean potato mottle virus* (APMoV; L16239) and *Radish mosaic virus* (RaMV; AB295644). There are also partial RNA-2 sequences available from *bean rugose mosaic virus* (BRMV; AF263548) and a tentative member of the genus Comovirus, *turnip ringspot virus* (EF191015). Numerous sequences from the other genera in the family *Comoviridae* are also available.

[0032] To date, all comoviruses which have been investigated have been shown to have two alternative start codons for the expression of two carboxy coterminal polyproteins from their RNA-2 genome segments. In particular, the RNA-2 genome segments of CPMV, CPSMV, BPMV, SqMV and RCMV are known to comprise two alternative start codons for the expression of two carboxy coterminal polyproteins.

[0033] Target initiation sites in other comoviruses, which are equivalent to the initiation site at position 161 in the wild-type RNA-2 segment of CPMV (i.e. correspond to it) can therefore be identified by methods known in the art. For example, target initiation sites can be identified by a sequence alignment between the wild-type RNA-2 genome segment sequence of CPMV and the RNA-2 genome segment sequence of another comovirus. Such sequence alignments can then be used to identify a target initiation site in the comoviral RNA-2 genome segment sequence by identifying an initiation site which, at least in the alignment, is near, or at the same position as, the target initiation site at position 161 in the wild-type CPMV RNA-2.

[0034] Target initiation sites in other comoviruses may also be identified by determining the start codon which serves as the initiation site for the synthesis of the longer of two carboxy coterminal proteins encoded by the wild-type comoviral RNA-2 genome segment. This approach can also be used in combination with an alignment as described above, i.e. this approach can be used to confirm that a comoviral initiation site identified by means of an alignment with CPMV RNA-2 is a target initiation site.

[0035] Of course, the above methods can also be used for identifying initiation sites in other comoviral RNA-2 genome segments, which are equivalent to the initiation site at position 512 in the wild-type CPMV RNA-2 genome segment. However, instead of identifying the start codon which serves as the initiation site for the synthesis of the longer of two carboxy coterminal proteins encoded by the wild-type comoviral RNA-2 genome segment, the start codon which serves as the initiation site for the synthesis of the shorter of two carboxy coterminal proteins encoded by the wild-type comoviral RNA-2 genome segment, is identified.

[0036] Once two comoviral RNA-2 initiation sites which are likely to be equivalent to the initiation sites at positions 161 and 512 in CPMV RNA-2 have been identified, the identification of the target initiation site can be confirmed by checking that the two initiation sites are in the same frame, i.e. in the same triplet reading frame, as they can only serve as initiation sites for the production of two carboxy coterminal proteins if this is the case.

[0037] In one embodiment of the invention, the enhancer sequence comprises nucleotides 1 to 512 of the CPMV RNA-2 genome segment (see Table 1), wherein the target initiation site at position 161 has been mutated. In another embodiment of the invention, the enhancer sequence comprises an equivalent sequence from another comovirus, wherein the target initiation site equivalent to the start codon at position 161 of CPMV has been mutated. The target initiation site may be mutated by substitution, deletion or insertion. Preferably, the target initiation site is mutated by a point mutation.

[0038] In alternative embodiments of the invention, the enhancer sequence comprises nucleotides 10 to 512, 20 to 512, 30 to 512, 40 to 512, 50 to 512, 100 to 512, 150 to 512, 1 to 514, 10 to 514, 20 to 514, 30 to 514, 40 to 514, 50 to 514, 100 to 514, 150 to 514, 1 to 511, 10 to 511, 20 to 511, 30 to 511, 40 to 511, 50 to 511, 100 to 511, 150 to 511, 1 to 509, 10 to 509, 20 to

509, 30 to 509, 40 to 509, 50 to 509, 100 to 509, 150 to 509, 1 to 507, 10 to 507, 20 to 507, 30 to 507, 40 to 507, 50 to 507, 100 to 507, or 150 to 507 of a comoviral RNA-2 genome segment sequence with a mutated target initiation site. In other embodiments of the invention, the enhancer sequence comprises nucleotides 10 to 512, 20 to 512, 30 to 512, 40 to 512, 50 to 512, 100 to 512, 150 to 512, 1 to 514, 10 to 514, 20 to 514, 30 to 514, 40 to 514, 50 to 514, 100 to 514, 150 to 514, 1 to 511, 10 to 511, 20 to 511, 30 to 511, 40 to 511, 50 to 511, 100 to 511, 150 to 511, to 509, 10 to 509, 20 to 509, 30 to 509, 40 to 509, 50 to 509, 100 to 509, 150 to 509, 1 to 507, 10 to 507, 20 to 507, 30 to 507, 40 to 507, 50 to 507, 100 to 507, or 150 to 507 of the CPMV RNA-2 genome segment sequence shown in Table 1, wherein the target initiation site at position 161 in the wild-type CPMV RNA-2 genome segment has been mutated.

[0039] In further embodiments of the invention, the enhancer sequence comprises nucleotides 1 to 500, 1 to 490, 1 to 480, 1 to 470, 1 to 460, 1 to 450, 1 to 400, 1 to 350, 1 to 300, 1 to 250, or 1 to 200 of a comoviral RNA-2 genome segment sequence with a mutated target initiation site.

[0040] In alternative embodiments of the invention, the enhancer sequence comprises nucleotides 1 to 500, 1 to 490, 1 to 480, 1 to 470, 1 to 460, 1 to 450, 1 to 400, 1 to 350, 1 to 300, 1 to 250, or 1 to 200, of the CPMV RNA-2 genome segment sequence shown in Table 1, wherein the target initiation site at position 161 in the wild-type CPMV RNA-2 genome segment has been mutated.

[0041] Enhancer sequences comprising at least 200, at least 300, at least 350, at least 400, at least 450, at least 460, at least 470, at least 480, at least 490 or at least 500 nucleotides of a comoviral RNA-2 genome segment sequence with a mutated target initiation site are also embodiments of the invention.

[0042] In addition, enhancer sequences comprising at least 200, at least 300, at least 350, at least 400, at least 450, at least 460, at least 470, at least 480, at least 490 or at least 500 nucleotides of the CPMV RNA-2 genome segment sequence shown in Table 1, wherein the target initiation site at position 161 in the wild-type CPMV RNA-2 genome segment has been mutated, are also embodiments of the invention.

[0043] Alternative embodiments of the invention are enhancer sequences having at least 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80%, 75% or 70%, identity to the CPMV RNA-2 genome segment sequence shown in Table 1, wherein the target initiation site at position 161 in the wild-type CPMV RNA-2 genome segment has been mutated.

[0044] The terms "percent similarity", "percent identity" and "percent homology" when referring to a particular Sequence are used as set forth in the University of Wisconsin GCG software program. Enhancer sequences may thus specifically hybridise with the complementary sequence of the CPMV RNA-2 genome segment sequence shown in Table 1, with the proviso that the target initiation site corresponding to position 161 in the wild-type CPMV RNA-2 genome segment has been mutated.

[0045] The phrase "specifically hybridize" refers to the association between two single-stranded nucleic acid molecules of sufficiently complementary sequence to permit such hybridization under pre-determined conditions generally used in the art (sometimes termed "substantially complementary"). In particular, the term refers to hybridization of an oligonucleotide with a substantially complementary sequence contained within a single-stranded DNA or RNA molecule of the invention, to the substantial exclusion of hybridization of the oligonucleotide with single-stranded nucleic acids of non-complementary sequence. "Complementary" refers to the natural association of nucleic acid sequences by base-pairing (A-G-T pairs with the complementary sequence T-C-A). Complementarity between two single-stranded molecules may be partial, if only some of the nucleic acids pair are complementary; or complete, if all bases pair are complementary. The degree of complementarity affects the efficiency and strength of hybridization and amplification reactions.

[0046] A target initiation site in an enhancer sequence of the invention may be mutated by deletion, insertion or substitution, such that it no longer functions as a translation initiation site. For example, a point mutation may be made at the position of the target initiation site in the enhancer sequence. Alternatively, the target initiation site in the enhancer sequence may be deleted either partially or in its entirety. For example, a deletion spanning the target initiation site in the enhancer sequence may be made. Deletions spanning the initiation site may be up to 5, up to 10, up to 15, up to 20, up to 25, up to 30, up to 35, up to 40, up to 45, or up to 50 nucleotides in length, when compared with the sequence of the wild-type RNA-2 genome segment from which the enhancer sequence is derived.

[0047] Without wishing to be bound by theory, mutation of the start codon at position 161 in CPMV is thought to lead to the inactivation of a translational suppressor, which results in enhanced initiation of translation from start codons located downstream of the inactivated translational suppressor.

[0048] Thus, the present disclosure provides an enhancer sequence derived from an RNA-2 genome segment of a bipartite virus, wherein the enhancer sequence comprises an inactivated translational suppressor sequence.

[0049] The present invention further provides a process as set out in the claims for increasing the expression or translational enhancing activity of a sequence derived from an RNA-2 genome segment of a bipartite virus, which process comprises inactivating a translational suppressor sequence therein.

[0050] As already mentioned above, mutation of the initiation site at position 161 in the CPMV RNA-2 genome segment is thought to lead to the inactivation of a translation suppressor normally present in the CPMV RNA-2.

[0051] A translational suppressor sequence, as referred to herein, is a sequence in the wild-type RNA-2 genome segment of the bipartite virus (e.g. a comovirus) from which the enhancer sequence in question is derived, which comprises, or consists of, the initiation site for the production (translation) of the longer of two carboxy coterminal proteins encoded by the wild-type RNA-2 genome segment.

[0052] Translational suppressor sequences in enhancer sequences derived from the CPMV RNA-2 genome segment, are sequences comprising, or consisting of, the target initiation site described above. Thus, translational suppressor sequences comprise, or consist of, a target initiation site as defined above, and may be inactivated by mutagenesis as described above.

[0053] The enhancer sequences defined above may be used in various aspects and embodiments of the invention as follows.

[0054] Aspects of the present invention as set out in the claims can utilise an isolated nucleic acid consisting, or consisting essentially of, an expression enhancer sequence as described above.

[0055] "Nucleic acid" or a "nucleic acid molecule" as used herein refers to any DNA or RNA molecule, either single or double stranded and, if single stranded, the molecule of its complementary sequence in either linear or circular form. In discussing nucleic acid molecules, a sequence or structure of a particular nucleic acid molecule may be described herein according to the normal convention of providing the sequence in the 5' to 3' direction. With reference to nucleic acids of the invention, the term "isolated nucleic acid" is sometimes used. This term, when applied to DNA, refers to a DNA molecule that is separated from sequences with which it is immediately contiguous in the naturally occurring genome of the organism in which it originated.

[0056] For example, an "isolated nucleic acid" may comprise a DNA molecule inserted into a vector, such as a plasmid or virus vector, or integrated into the genomic DNA of a prokaryotic or eukaryotic cell or host organism.

[0057] When applied to RNA, the term "isolated nucleic acid" refers primarily to an RNA molecule encoded by an isolated DNA molecule as defined above. Alternatively, the term may refer to an RNA molecule that has been sufficiently separated from other nucleic acids with which it would be associated in its natural state (i.e., in cells or tissues). An "isolated nucleic acid" (either DNA or RNA) may further represent a molecule produced directly by biological or synthetic means and separated from other components present during its production.

[0058] The nucleic acid may thus consist or consist essentially of a portion, or fragment, of the RNA-2 genome segment of the bipartite RNA virus from which the enhancer is derived. For example, in one embodiment the nucleic acid does not comprise at least a portion of the coding region of the RNA-2 genome segment from which it is derived. The coding region may be the region of the RNA-2 genome segment encoding the shorter of two carboxy coterminal proteins. The nucleic acid may consist or consist essentially of the portion of an RNA-2 genome segment of a bipartite virus extending from the 5' end of the wild-type RNA-2 genome segment to the initiation site from which production (translation) of the shorter of two carboxy coterminal proteins encoded by the wild-type RNA-2 genome segment is initiated.

[0059] The phrase "consisting essentially of" when referring to a particular nucleotide or amino acid means a sequence having the properties of a given SEQ ID NO. For example, when used in reference to an amino acid sequence, the phrase includes the sequence per se and molecular modifications that would not affect the basic and novel characteristics of the sequence. For example, when used in reference to a nucleic acid, the phrase includes the sequence per se and minor changes and/or extensions that would not affect the enhancer function of the sequence, or provide further (additional) functionality.

[0060] The invention further relates to gene expression systems as defined in the claims comprising an enhancer sequence of the invention.

[0061] Thus, in another aspect the present invention provides a gene expression as defined in the claims system comprising an enhancer sequence as described above.

[0062] The gene expression system may also comprise a gene encoding a protein of interest inserted downstream of the enhancer sequence. Inserted sequences encoding a protein of interest may be of any size.

[0063] In a further aspect the present invention therefore provides a gene expression system as defined in the claims comprising:

1. (a) an enhancer sequence as described above; and (b) a heterologous gene encoding a protein of interest, wherein the gene is located downstream of the enhancer sequence.

[0064] The gene and protein of interest are heterologous i.e. not encoded by the wild-type bipartite RNA virus from which the enhancer sequence is derived.

[0065] Gene expression systems may be used to express a protein of interest in a host organism. In this case, the protein of interest may also be heterologous to the host organism in question i.e. introduced into the cells in question (e.g. of a plant or an ancestor thereof) using genetic engineering, i.e. by human intervention. A heterologous gene in an organism may replace an endogenous equivalent gene, i.e. one which normally performs the same or a similar function, or the inserted sequence may be additional to the endogenous gene or other sequence.

[0066] Persons skilled in the art will understand that expression of a gene of interest will require the presence of an initiation site (AUG) located upstream of the gene to be expressed. Such initiation sites may be provided either as part of an enhancer sequence or as part of a gene encoding a protein of interest.

[0067] The host organism may be a plant. However, as translational mechanisms are well conserved over eukaryotes, the gene expression systems may also be used to express a protein of interest in eukaryotic host organisms other than plants, for example in insect cells as modified baculovirus vectors, or in yeast or mammalian cells.

[0068] Gene expression systems may be operably linked to promoter and terminator sequences.

[0069] Thus, gene expression systems may further comprise a termination sequence and the gene encoding a protein of interest may be located between the enhancer sequence and the termination sequence, i.e. downstream (3') of the enhancer sequence and upstream (5') of the termination sequence.

[0070] Also provided herein is an expression cassette comprising:

1. (i) a promoter, operably linked to
2. (ii) an enhancer sequence as described above
3. (iii) a gene of interest it is desired to express
4. (iv) a terminator sequence.

[0071] Preferably the promoter used to drive the gene of interest will be a strong promoter. Examples of strong promoters for use in plants include:

1. (1) p35S: Odell *et al.*, 1985
2. (2) Cassava Vein Mosaic Virus promoter, pCAS, Verdaguer *et al.*, 1996
3. (3) Promoter of the small subunit of ribulose biphosphate carboxylase, pRbcS: Outchkourov *et al.*, 2003.

[0072] Other strong promoters include pUbi (for monocots and dicots) and pActin.

[0073] In a preferred embodiment, the promoter is an inducible promoter.

[0074] The term "inducible" as applied to a promoter is well understood by those skilled in the art. In essence, expression under

the control of an inducible promoter is "switched on" or increased in response to an applied stimulus. The nature of the stimulus varies between promoters. Some inducible promoters cause little or undetectable levels of expression (or no expression) in the absence of the appropriate stimulus. Other inducible promoters cause detectable constitutive expression in the absence of the stimulus. Whatever the level of expression is in the absence of the stimulus, expression from any inducible promoter is increased in the presence of the correct stimulus.

[0075] The termination (terminator) sequence may be a termination sequence derived from the RNA-2 genome segment of a bipartite RNA virus, e.g. a comovirus. In one embodiment the termination sequence may be derived from the same bipartite RNA virus from which the enhancer sequence is derived. The termination sequence may comprise a stop codon. Termination sequence may also be followed by polyadenylation signals.

[0076] Gene expression systems of the invention may also comprise an untranslated region (UTR). The UTR may be located upstream of a terminator sequence present in the gene expression cassette, gene expression construct or gene expression system. Where the gene expression systems comprises a gene encoding a protein of interest, the UTR may be located downstream of said gene.

[0077] Thus, the UTR may be located between a gene encoding a protein of interest and a terminator sequence. The UTR may be derived from a bipartite RNA virus, e.g. from the RNA-2 genome segment of a bipartite RNA virus. The UTR may be the 3' UTR of the same RNA-2 genome segment from which the enhancer sequence present in the gene expression cassette, gene expression construct or gene expression system is derived. Preferably, the UTR is the 3' UTR of a comoviral RNA-2 genome segment, e.g. the 3' UTR of the CPMV RNA-2 genome segment

[0078] As described above, it was previously shown to be essential for efficient replication of CPMV RNA-2 by the CPMV RNA-1-encoded replicase that the frame between the initiation sites at positions 161 and 512 in the RNA-2 was maintained, i.e. that the two initiation sites remained in the same triple reading frame (Holness *et al.*, 1989; van Bokhoven *et al.*, 1993; Rohll *et al.*, 1993). This requirement limited the length of sequences which could be inserted upstream of the initiation site at position 512 in expression vectors based on CPMV. In particular, it precluded the use of polylinkers as their use often altered the open reading frame (ORF) between the two initiation sites.

[0079] The present inventors have shown that maintenance of the reading frame between the initiation sites at positions 161 and 512 in CPMV RNA-2 is also required for efficient initiation of translation at the initiation site at position 512, i.e. it is required for efficient expression of the shorter of the two carboxy coterminal proteins encoded by CPMV (the 95K protein).

[0080] However, the present inventors have also demonstrated that mutation of the initiation site at position 161 in CPMV RNA-2 allows insertion of sequences upstream of the initiation site at position 512, which alter the frame between the mutated start codon and the initiation site at position 512, without any negative effect on the level of expression of the 95K protein. Consequently, mutation of the initiation site at position 161 means that there is no longer any restriction on the length of sequences that can be inserted upstream of the initiation site at position 512.

[0081] Where maintenance of the reading frame between initiation sites coding for two carboxy-coterminal proteins is also required in other bipartite viruses, this requirement may also be overcome by mutating the AUG which serves as the initiation site for production of the longer of the two carboxy-coterminal proteins encoded by the viral RNA-2 genome segment. Thus, in another aspect the present invention provides a gene expression construct according to the claims comprising:

1. (a) an enhancer sequence as described above; and
2. (b) a heterologous sequence for facilitating insertion of a gene encoding a protein of interest into the gene expression system, wherein the heterologous sequence is located downstream of the mutated target initiation site in the enhancer sequence.

[0082] The heterologous sequence may be located upstream of the start codon from which production of the shorter of two carboxy coterminal proteins is initiated in the wild-type RNA-2 genome segment from which the enhancer sequence of the gene expression system is derived. Alternatively, the heterologous sequence may be provided around the site of the start codon, or replace the start codon, from which production of the shorter of two carboxy coterminal proteins is initiated in the wild-type RNA-2 genome segment from which the enhancer sequence of the gene expression system is derived. In a gene expression system with an enhancer sequence derived from the RNA-2 of CPMV, the heterologous sequence may be provided upstream of, around the site of, or replace, the start codon which is at position 512 in the wild-type RNA-2 CPMV genome segment.

[0083] The heterologous sequence may be a polylinker or multiple cloning site, i.e. a sequence which facilitates cloning of a gene encoding a protein of interest into the expression system.

[0084] For example, as described hereinafter, the present inventors have provided constructs including a polylinker between the 5' leader and 3' UTRs of a CPMV-based expression cassette. As described below, any polylinker may optionally encode one or more sets of multiple Histidine residues to allow the fusion of N- or C terminal His-tags to facilitate protein purification.

[0085] Preferably the expression constructs above are present in a vector, and preferably it comprises border sequences which permit the transfer and integration of the expression cassette into the organism genome.

[0086] Preferably the construct is a plant binary vector. Preferably the binary transformation vector is based on pPZP (Hajdukiewicz, et al. 1994). Other example constructs include pBin19 (see Frisch, D. A., L. W. Harris-Haller, et al. (1995). "Complete Sequence of the binary vector Bin 19." Plant Molecular Biology 27: 405-409).

[0087] As described herein, the invention may be practiced by moving an expression cassette with the requisite components into an existing pBin expression cassette, or in other embodiments a direct-cloning pBin expression vector may be utilised.

[0088] For example, as described hereinafter, the present inventors have modular binary vectors designed for (but not restricted to) use with the enhancer sequences described herein. These are based on improvements to the pBINPLUS vector whereby it has been shown that it is possible to drastically reduce the size of the vector without compromising performance in terms of replication and TDNA transfer. Furthermore, elements of the enhancer system (as exemplified by the so-called "CPMV-HT" system) have been incorporated into the resulting vector in a modular fashion such that multiple proteins can be expressed from a single T-DNA. These improvements have led to the creation of a versatile, high-level expression vector that allows efficient direct cloning of foreign genes.

[0089] These examples represent preferred binary plant vectors. Preferably they include the ColEl origin of replication, although plasmids containing other replication origins that also yield high copy numbers (such as pRi-based plasmids, Lee and Gelvin, 2008) may also be preferred, especially for transient expression systems.

[0090] If desired, selectable genetic markers may be included in the construct, such as those that confer selectable phenotypes such as resistance to antibiotics or herbicides (e.g. kanamycin, hygromycin, phosphinotricin, chlorsulfuron, methotrexate, gentamycin, spectinomycin, imidazolinones and glyphosate).

[0091] Most preferred vectors are the pEAQ vectors described below which permit direct cloning version by use of a polylinker between the 5' leader and 3' UTRs of an expression cassette including a translational enhancer of the invention, positioned on a T-DNA which also contains a suppressor of gene silencing and an NPTII cassettes. The polylinker also encodes one or two sets of 6 x Histidine residues to allow the fusion of N- or C terminal His-tags to facilitate protein purification.

[0092] An advantage of pEAQ-derived vectors is that each component of a multi-chain protein such as an IgG can automatically be delivered to each infected cell.

[0093] The present invention also provides methods of expressing proteins according to the claims e.g. heterologous proteins, in host organisms such as plants, yeast, insect or mammalian cells, using a gene expression system of the invention.

[0094] The present invention further provides a method according to the claims of enhancing the translation of a heterologous protein of interest from a gene or ORF encoding the same which is operably linked to an RNA2-derived sequence as described above, the method comprising mutating a target initiation site in the RNA2-derived sequence.

[0095] The enhancer sequences described herein may also be used with bipartite expression systems as described in WO/2007/135480. The invention therefore also relates to gene expression systems based on truncated RNA-2 gene segments, optionally further comprising a second gene construct encoding a suppressor of gene silencing operably linked to promoter and terminator sequences.

[0096] Thus also disclosed herein is a gene expression system comprising:

1. (a) a first gene construct comprising a truncated RNA-2 of a bipartite virus genome carrying at least one foreign gene encoding a heterologous protein of interest operably linked to promoter and terminator sequences, wherein the gene

construct comprises a mutated target initiation site upstream of the foreign gene; and optionally

2. (b) a second gene construct comprising RNA-1 of said bipartite virus genome operably linked to promoter and terminator sequences; and optionally
3. (c) a third gene construct, optionally incorporated within said first gene construct, said second gene construct or both, comprising a suppressor of gene silencing operably linked to promoter and terminator sequences.

[0097] The presence of a suppressor of gene silencing in a gene expression system (including any of those described above) of the invention is preferred but not essential. Thus, a gene expression system, as defined above, preferably comprises a third gene construct, optionally incorporated within said first gene construct, said second gene construct or both, comprising a suppressor of gene silencing operably linked to promoter and terminator sequences.

[0098] Thus also disclosed herein is a method of expressing a protein in a plant comprising the steps of:

1. (a) introducing a gene expression construct of the invention into a plant cell; and optionally
2. (b) introducing a second gene construct comprising RNA-1 of said bipartite virus genome operably linked to promoter and terminator sequences into the plant cell; and optionally
3. (c) introducing a third gene construct, optionally incorporated within said first gene construct, said second gene construct or both, comprising a suppressor of gene silencing operably linked to promoter and terminator sequences into the plant cell.

[0099] Preferably, a method of expressing a protein in a plant, as defined above, comprises the step of introducing a third gene construct, optionally incorporated within said first gene construct, said second gene construct or both, comprising a suppressor of gene silencing operably linked to promoter and terminator sequences into the plant cell.

[0100] The present invention also provides methods comprising introduction of such a construct into a plant cell.

[0101] The present inventors have shown very high expression levels by incorporating both a gene of interest and a suppressor of silencing onto the same T-DNA as the translational enhancer. Preferred embodiments may therefore utilise all these components are present on the same T-DNA.

[0102] Additionally it should be understood that the RNA-1 is not required for high level expression in the systems described herein, and indeed the "CPMV-HT" system described herein is not by the action of RNA-1.

[0103] Thus in further aspect the present invention relates to a gene expression system according to the claims comprising:

1. (a) a first gene construct comprising a truncated RNA-2 of a bipartite virus genome carrying at least one foreign gene encoding a heterologous protein of interest operably linked to promoter and terminator sequences, wherein the gene construct comprises a mutated target initiation site upstream of the foreign gene; and optionally
2. (b) a second gene construct optionally incorporated within said first gene construct, a suppressor of gene silencing operably linked to promoter and terminator sequences.

[0104] Thus, in another aspect the present invention provides a method of expressing a protein in a plant comprising the steps of:

1. (a) introducing a gene expression construct of the invention into a plant cell; and optionally
2. (b) introducing a second gene construct optionally incorporated within said first gene construct, comprising a suppressor of gene silencing operably linked to promoter and terminator sequences into the plant cell.

[0105] Suppressors of gene silencing useful in these aspects are known in the art and described in WO/2007/135480. They include HcPro from Potato virus Y, He-Pro from TEV, P19 from TBSV, rgsCam, 82 protein from FHV, the small coat protein of CPMV, and coat protein from TCV. Most preferably, the RNA-2 of the system is truncated such that no infectious virus is produced.

[0106] A preferred suppressor when producing stable transgenic plants is the P19 suppressor incorporating a R43W mutation.

[0107] There is further disclosed a host cell containing a heterologous construct according to the present Invention.

[0108] Gene expression vectors of the invention may be transiently or stably incorporated into plant cells.

[0109] For small scale production, mechanical agroinfiltration of leaves with constructs of the invention. Scale-up is achieved through, for example, the use of vacuum infiltration.

[0110] In other embodiments, an expression vector of the invention may be stably incorporated into the genome of the transgenic plant or plant cell.

[0111] Also described herein is the step of regenerating a plant from a transformed plant cell.

[0112] Specific procedures and vectors previously used with wide success upon plants are described by Guerineau and Mullineaux (1993) (Plant transformation and expression vectors. In: Plant Molecular Biology Labfax (Croy RRD ed) Oxford, BIOS Scientific Publishers, pp 121-148). Suitable vectors may include plant viral-derived vectors (see e.g. EP-A-194809). If desired, selectable genetic markers may be included in the construct, such as those that confer selectable phenotypes such as resistance to antibiotics or herbicides (e.g. kanamycin, hygromycin, phosphinotricin, chlorsulfuron, methotrexate, gentamycin, spectinomycin, imidazolinones and glyphosate).

[0113] Nucleic acid can be introduced into plant cells using any suitable technology, such as a disarmed Ti-plasmid vector carried by Agrobacterium exploiting its natural gene transfer ability (EP-A-270355, EP-A-0116718, NAR 12(22) 8711 - 87215 1984; the floral dip method of Clough and Bent, 1998), particle or microprojectile bombardment (US 5100792, EP-A-444882, EP-A-434616) microinjection (WO 92/09696, WO 94/00583, EP 331083, EP 175966, Green et al. (1987) Plant Tissue and Cell Culture, Academic Press), electroporation (EP 290395, WO 8706614 Gelvin Debeysen) other forms of direct DNA uptake (DE 4005152, WO 9012096, US 4684611), liposome mediated DNA uptake (e.g. Freeman et al. Plant Cell Physiol. 29: 1353 (1984)), or the vortexing method (e.g. Kindle, PNAS U. S.A. 87: 1228 (1990d) Physical methods for the transformation of plant cells are reviewed in Oard, 1991, Biotech. Adv. 9: 1-11. Ti-plasmids, particularly binary vectors, are discussed in more detail below.

[0114] Agrobacterium transformation is widely used by those skilled in the art to transform dicotyledonous species. However there has also been considerable success in the routine production of stable, fertile transgenic plants in almost all economically relevant monocot plants (see e.g. Hiei et al. (1994) The Plant Journal 6, 271-282)). Microprojectile bombardment, electroporation and direct DNA uptake are preferred where Agrobacterium alone is inefficient or ineffective. Alternatively, a combination of different techniques may be employed to enhance the efficiency of the transformation process, eg bombardment with Agrobacterium coated microparticles (EP-A-486234) or microprojectile bombardment to induce wounding followed by co-cultivation with Agrobacterium (EP-A-486233).

[0115] The particular choice of a transformation technology will be determined by its efficiency to transform certain plant species as well as the experience and preference of the person practising the invention with a particular methodology of choice.

[0116] It will be apparent to the skilled person that the particular choice of a transformation system to introduce nucleic acid into plant cells is not essential to or a limitation of the invention, nor is the choice of technique for plant regeneration. In experiments performed by the inventors, the enhanced expression effect is seen in a variety of integration patterns of the T-DNA.

[0117] Thus disclosed herein is a method of transforming a plant cell involving introduction of a construct of the invention into a plant tissue (e.g. a plant cell) and causing or allowing recombination between the vector and the plant cell genome to introduce a nucleic acid according to the present invention into the genome. This may be done so as to effect transient expression.

[0118] Alternatively, following transformation of plant tissue, a plant may be regenerated, e.g. from single cells, callus tissue or leaf discs, as is standard in the art. Almost any plant can be entirely regenerated from cells, tissues and organs of the plant. Available techniques are reviewed in Vasil et al., Cell Culture and Somatic Cell Genetics of Plants, Vol I, II and III, Laboratory Procedures and Their Applications, Academic Press, 1984, and Weissbach and Weissbach, Methods for Plant Molecular Biology, Academic Press, 1989.

[0119] The generation of fertile transgenic plants has been achieved in the cereals such as rice, maize, wheat, oat, and barley plus many other plant species (reviewed in Shimamoto, K. (1994) Current Opinion in Biotechnology 5, 158-162.; Vasil, et al.

(1992) Bio/Technology 10, 667-674; Vain et al., 1995, Biotechnology Advances 13 (4): 653-671; Vasil, 1996, Nature Biotechnology 14 page 702).

[0120] Regenerated plants or parts thereof may be used to provide clones, seed, selfed or hybrid progeny and descendants (e.g. F1 and F2 descendants), cuttings (e.g. edible parts), propagules, etc.

[0121] The Invention further provides a transgenic organism (for example obtained or obtainable by a method described herein) in which an expression vector or cassette has been introduced, and wherein the heterologous gene in the cassette is expressed at an enhanced level,

[0122] Also described herein is a method for generating the protein of interest, which method comprises the steps of performing a method (or using an organism) as described above, and optionally harvesting, at least, a tissue in which the protein of interest has been expressed and isolating the protein of interest from the tissue.

[0123] Specifically, the present invention therefore provides a transgenic plant or plant cell transiently transfected with an expression vector of the invention.

[0124] In a further aspect, the present invention also provides a transgenic plant or plant cell stably transformed with an expression vector of the invention.

[0125] The disclosure also provides a plant propagule from such plants, that is any part which may be used in reproduction or propagation, sexual or asexual, including cuttings, seed and so on. It also provides any part of these plants which includes the plant cells or heterologous DNA described above.

[0126] Thus in various aspects (and without limitation) there is described herein:

- Nucleic acids consisting or consisting essentially of an enhancer sequence of the invention (which enhancer sequence may (for example) consist of nucleotides 1 to 512 of the CPMV RNA-2 genome segment, or be derived from that, or from another RNA-2 genome segment of a bipartite RNA virus, in each case in which the target initiation site corresponding to CPMV RNA-2 position 161 is mutated).
- Gene expression systems comprising such enhancer sequences, for example upstream of an ORF encoding a protein of interest, or a polylinker, and optionally terminator.
- Bipartite expression systems as described in WO/2007/135480 modified according to the present invention to use enhancer sequences described herein.
- Expression cassettes comprising: (i) a promoter, operably linked to (ii) an enhancer sequence as described above (iii) a polylinker or gene of interest it is desired to express (iv) the cognate 3' UTR (i.e. from the 3' UTR of the CPMV RNA-2 genome segment), (v) a terminator sequence.
- Methods of expressing proteins, e.g. heterologous proteins, in host organisms such as plants using gene expression systems or vectors of the invention.
- Host cells and organisms (e.g. plants or yeasts) expressing proteins from the gene expression systems or vectors of the invention and methods of producing the same.

[0127] "Gene" unless context demands otherwise refers to any nucleic acid encoding genetic information for translation into a peptide, polypeptide or protein. Thus unless context demands otherwise it used interchangeably with "ORF".

[0128] The genes which it may be desired to express may be transgenes or endogenes.

[0129] Genes of interest include those encoding agronomic traits, insect resistance, disease resistance, herbicide resistance, sterility, grain characteristics, and the like. The genes may be involved in metabolism of oil, starch, carbohydrates, nutrients, etc. Thus genes or traits of interest include, but are not limited to, environmental- or stress- related traits, disease-related traits, and traits affecting agronomic performance. Target sequences also include genes responsible for the synthesis of proteins, peptides, fatty acids, lipids, waxes, oils, starches, sugars, carbohydrates, flavors, odors, toxins, carotenoids, hormones, polymers, flavonoids, storage proteins, phenolic acids, alkaloids, lignins, tannins, celluloses, glycoproteins, glycolipids, etc.

[0130] Most preferably the targeted genes in monocots and/or dicots may include those encoding enzymes responsible for oil production in plants such as rape, sunflower, soya bean and maize; enzymes involved in starch synthesis in plants such as

potato, maize, cereals; enzymes which synthesise, or proteins which are themselves, natural medicaments such as pharmaceuticals or veterinary products.

[0131] Heterologous nucleic acids may encode, *inter alia*, genes of bacterial, fungal, plant or animal origin. The polypeptides may be utilised *in planta* (to modify the characteristics of the plant e.g. with respect to pest susceptibility, vigour, tissue differentiation, fertility, nutritional value etc.) or the plant may be an intermediate for producing the polypeptides which can be purified therefrom for use elsewhere. Such proteins include, but are not limited to retinoblastoma protein, p53, angiostatin, and leptin. Likewise, the methods of the invention can be used to produce mammalian regulatory proteins. Other sequences of interest include proteins, hormones, growth factors, cytokines, serum albumin, haemoglobin, collagen, etc.

[0132] Thus the target gene or nucleotide sequence preferably encodes a protein of interest which is: an insect resistance protein; a disease resistance protein; a herbicide resistance protein; a mammalian protein.

[0133] "Vector" is defined to include, *inter alia*, any plasmid, cosmid, phage, viral or *Agrobacterium* binary vector in double or single stranded linear or circular form which may or may not be self transmissible or mobilizable, and which can transform a prokaryotic or eukaryotic host either by integration into the cellular genome or exist extrachromosomally (e.g. autonomous replicating plasmid with an origin of replication). The constructs used will be wholly or partially synthetic. In particular they are recombinant in that nucleic acid sequences which are not found together in nature (do not run contiguously) have been ligated or otherwise combined artificially. Unless specified otherwise a vector according to the present invention need not include a promoter or other regulatory sequence, particularly if the vector is to be used to introduce the nucleic acid into cells for recombination into the genome.

[0134] "Binary Vector": as is well known to those skilled in the art, a binary vector system includes (a) border sequences which permit the transfer of a desired nucleotide sequence into a plant cell genome; (b) desired nucleotide sequence itself, which will generally comprise an expression cassette of (i) a plant active promoter, operably linked to (ii) the target sequence and/or enhancer as appropriate. The desired nucleotide sequence is situated between the border sequences and is capable of being inserted into a plant genome under appropriate conditions. The binary vector system will generally require other sequence (derived from *A. tumefaciens*) to effect the integration. Generally this may be achieved by use of so called "agro-infiltration" which uses *Agrobacterium*-mediated transient transformation. Briefly, this technique is based on the property of *Agrobacterium tumefaciens* to transfer a portion of its DNA ("T-DNA") into a host cell where it may become integrated into nuclear DNA. The T-DNA is defined by left and right border sequences which are around 21-23 nucleotides in length. The infiltration may be achieved e.g. by syringe (in leaves) or vacuum (whole plants). In the present invention the border sequences will generally be included around the desired nucleotide sequence (the T-DNA) with the one or more vectors being introduced into the plant material by agro-infiltration.

[0135] "Expression cassette" refers to a situation in which a nucleic acid is under the control of, and operably linked to, an appropriate promoter or other regulatory elements for transcription in a host cell such as a microbial or plant cell.

[0136] A "promoter" is a sequence of nucleotides from which transcription may be initiated of DNA operably linked downstream (i.e. in the 3' direction on the sense strand of double-stranded DNA).

[0137] "Operably linked" means joined as part of the same nucleic acid molecule, suitably positioned and oriented for transcription to be initiated from the promoter.

[0138] "Plant" species of interest include, but are not limited to, corn (*Zea mays*), *Brassica* sp. (e.g., *B. napus*, *B. rapa*, *B. juncea*), particularly those *Brassica* species useful as sources of seed oil, alfalfa (*Medicago sativa*), rice (*Oryza sativa*), rye (*Secale cereale*), sorghum (*Sorghum bicolor*, *Sorghum vulgare*), millet (e.g., pearl millet (*Pennisetum glaucum*)), proso millet (*Panicum miliaceum*), foxtail millet (*Setaria italica*), finger millet, (*Eleusine coracana*)), sunflower (*Helianthus annuus*), safflower (*Carthamus tinctorius*), wheat (*Triticum aestivum*), soybean (*Glycine max*), tobacco (*Nicotiana tabacum*), *Nicotiana benthamiana*, potato (*Solanum tuberosum*), peanuts (*Arachis hypogaea*), cotton (*Gossypium barbadense*, *Gossypium hirsutum*), sweet potato (*Ipomoea batatas*), cassava (*Manihot esculenta*), coffee (*Coffea* spp.), coconut (*Cocos nucifera*), pineapple (*Ananas comosus*), citrus trees (*Citrus* spp.), cocoa (*Theobroma cacao*), tea (*Camellia sinensis*), banana (*Musa* spp.), avocado (*Persea americana*), fig (*Ficus casica*), guava (*Psidium guajava*), mango (*Mangifera indica*), olive (*Olea europaea*), papaya (*Carica papaya*), cashew (*Anacardium occidentale*), macadamia (*Macadamia integrifolia*), almond (*Prunus amygdalus*), sugar beets (*Beta vulgaris*), sugarcane (*Saccharum* spp.), oats, barley, vegetables, ornamentals, and conifers. The skilled person will appreciate that the tropism of the viral vectors disclosed herein varies. However, determining susceptibility to such viruses is well within the purview of the skilled person. Moreover, it may be possible to alter such specificity by recombinantly expressing receptors which facilitate viral entry into a plant cell.

[0139] The invention will now be further described with reference to the following non-limiting Figures and Examples. Other embodiments of the invention will occur to those skilled in the art in the light of these.

BRIEF DESCRIPTION OF THE DRAWINGS

[0140]

Figure 1 shows a schematic diagram of CPMV expression vectors 00, 10, 01 and 11. In 00 expression vectors the initiation sites at positions 115 and 161 are intact. In 10 expression vectors the initiation site at positions 115 has been mutated but the initiation site at position 161 is intact. In 01 expression vectors the initiation site at positions 161 has been mutated but the initiation site at position 115 is intact. In 11 expression vectors the initiation sites at positions 115 and 161 are both mutated. CPMV expression vectors 00, 10, 01 and 11 also comprise an initiation site at either position 512 (FSC2-152), 513 (FSC2-513) or 514 (FSC2-514). Bars are used to indicate the initiation sites from which protein expression is expressed to occur.

Figure 2 shows the level of soluble green fluorescent protein (GFP) expressed in plants transfected with the CPMV expression vectors schematically illustrated in Figure 1. In expression vectors FSC2-512, FSC2-513 and FSC2-514, the gene encoding GFP was inserted after the initiation codon at position 512, 513 and 514, respectively. The lanes of the SDS-PAGE gels are marked 00, 10, 01 and 11, depending on which of the initiation sites in the CPMV vector, at positions 115 and 161, are intact or mutated. The lane marked '500ng' shows the position of a band corresponding to 500ng of GFP protein and thus indicates the expected position of GFP protein expressed from the CPMV expression vectors. The left hand lane of each SDS-PAGE gel shows the position of protein size markers.

Figure 3 shows the level of GFP expression in *Nicotiana benthamiana* leaves transfected with the same CPMV expression vectors used in the experiment illustrated in Figure 2. The pale regions at the tips of the leaves correspond to regions of GFP expression. Mutations made in order to inactivate the initiation sites at positions 115 and/or 161 in expression vectors 10, 01 and 11 are also indicated.

Figure 4 shows a comparison of Del-RNA-2 (expression vector 00 [FSC2-512] in Figure 1) and HT (expression vector 01 [FSC2-512] in Figure 1) for transient expression of green fluorescent protein (GFP), *Discosoma* red fluorescent protein (DsRed), and the hepatitis B core antigen (HBcAg). delRNA-2 or HT clones for each protein were infiltrated with the silencing suppressor P19. (A) Tissue 7 days after infiltration with delRNA-2 constructs becomes necrotic when DsRed or HBcAg is expressed whereas this is not the case for *HT driven* expression. In fact, tissue expressing DsRed by *HT* looks visibly red under day light conditions. (B) Coomassie-stained SDS-PAGE analysis of protein expression. The prominent bands corresponding to recombinant proteins as indicated were confirmed by western blotting. 1- marker, 2- uninfiltrated tissue, 3- delRNA-2 construct, 4- HT construct, 5- commercial standard where available. Crude extracts from approximately 5 mg of infiltrated tissue were loaded per lane as was 2 µg of GFP standard and 2 µg of HBcAg standard. No standard for DsRed was available at the time.

Figure 5 shows an initial comparison of Del-RNA-2 (expression vector 00 [FSC2-512] in Figure 1) and HT (expression vector 01 [FSC2-512] in Figure 1) for transient expression of the human anti-Human Immunodeficiency Virus antibody 2G12. The IgG Heavy chain was either in natural form (HL) or ER-retained (HEL) and infiltrated with the light chain and P19. (A) Expression of 2G12-HEL by del-RNA-2 leads to necrosis of infiltrated tissue whereas this does not occur for *HT* expression. (B) SDS-PAGE analysis of crude extracts of tissue infiltrated with the antibody heavy chains (delRNA-2 or *HT*) plus P19. For each sample crude extract from 5 mg of infiltrated tissue was loaded as was 1 µg of standard human IgG. A band corresponding to 2G12 is easily visible after coomassie staining. (C) Accumulation of antibody 2G12 after 5 days was measured by capture to protein A and surface plasmon resonance spectroscopy and represents the concentration following extraction in 2 volumes of buffer (PBS, 5 mM EDTA). Therefore, we can derive fresh weight concentrations approaching 150 mg/kg (for *HT* HEL) without any optimisation of plant incubation or extraction. Three samples were measured for each treatment.

Figure 6 shows an electron micrograph of assembled HBcAg particles, which were expressed using the HT (expression vector 01 [FSC2-512] in Figure 1) expression system described herein. The assembled HBcAg particles appear as hollow spheres, about 30 nm in diameter. The sap containing the HBcAg particles was not concentrated before the electron micrograph was taken, although unwanted salts were removed. Therefore, the electron micrograph represents the concentration of HBcAg particles in the sap.

Figure 7 shows the vector pM81-FSC1.

Figure 8 shows the vector pM81-FSC2.

Figure 9 shows a schematic representation of the construction of pEAQ. (A) Starting pBINPLUS-based plasmid with extraneous sequence shown in grey. (B) PCR products containing essential elements of the binary vector. (C) Intermediate plasmid following 3-part ligation of end-tailored PCR products. (D) Final plasmid following amplification and subsequent ligation of two fragments from the intermediate.

Figure 10 shows a schematic representation of the T-DNAs of the main pEAQ derivatives. The T-DNAs contain either or both of the P19 and NPTII cassettes as indicated leaving possible cloning into restriction sites as indicated.

Figure 11 shows expression levels of GFP generated by pEAQ vectors compared to its parent plasmid pBB-FSC2-512-HT. Tissue was analysed 6 days after infiltration with P19 and the vector indicated except for pEAQexpress, which was infiltrated alone at the standard OD, or at a two-fold dilution. (A) Leaves visualised under UV light, (B) coomassie-stained 12% SOS-PAGE, and (C) spectrofluorometric analysis.

Figure 12 shows the ability of P19(R43W) to enhance GFP expression compared to wild type P19. Tissue was analysed 6 days after infiltration with pEAQselectK at two-fold dilution (selK -P19), pEAQselectK and P19 (selK); pEAQspecialK (spK), pEAQspecialK at two-fold dilution (spK 1:2), pEAQspecialKm (spKm), pEAQspecialKm at two-fold dilution (spKm 1:2), pEAQexpress (ex), and pEAQexpress at two-fold dilution (ex 1:2). (A) Leaves visualised under UV light and (B) spectrofluorometric analysis.

Figure 13 shows expression of the full size IgG, 2G12, with a single pEAQ plasmid. (A) Schematic representation of the two pEAQexpress-derived plasmids constructed to express 2G12. (B) infiltration scheme indicating dilutions and their respective ODs for each plasmid combination, and the concentration of protein extracts made after infiltrations at each OD (\pm SD). (C) Coomassie-stained 12-4% SDS-PAGE analysis and (D) immunological detection of 2G12 heavy (γ) and (E) immunological detection of 2G12 Fab region (Fab) chain 8 days after infiltration. M, marker with sizes indicated; C, control extract; Std, CHO-produced 2G12. For coomassie-staining, protein from the equivalent of 3 mg of infiltrated tissue is loaded in each lane with 1 μ g of CHO2G12 and for western blotting the equivalent of 0.75 mg of tissue in each lane with 250 ng of CHO2G12. Estimated assembly/degradation products are indicated.

Figure 14 shows the cloning and expression of GFP from pEAQ-HT in native and histagged variants. (A) Schematic representation of the pEAQ-HT T-DNA with polylinker detail. (B) Spectrofluorometric analysis of GFP expression. spK = pEAQspecialK-GFP-HT, GFP, HisGFP, and GFPHis = pEAQ-HT clones. (C) 12% SDS-PAGE and western analysis of GFP expression. C = control extract.

Figure 15 shows a nucleic construct of the present invention which is suitable for use in insect cells as part of a baculovirus vector.

EXAMPLES

Example 1

1.1 METHODS

Creation of expression vector FSC2 and its derivatives

[0141] A useful cloning vector for the expression of foreign proteins from a pBinP-1-GFP-based plasmid (Cañizares *et al.*, 2006) was created by excising the complete sequence of RNA-2 flanked by the Cauliflower mosaic virus (CaMV) 35S promoter and nopaline synthase (nos) terminator from pBinP-S2NT (Liu and Lomonosoff, 2002) and inserting it into mutagenesis plasmid pM81W (Liu and Lomonosoff, 2006) as an Ascl/Pacl fragment. The resulting plasmid, pM81W-S2NT, was subjected to a single round of mutagenesis which simultaneously introduced four changes (see method in Liu and Lomonosoff, 2006) to give pM81B-S2NT-1. The mutagenesis removed two *Bsp*HI sites from the vector backbone and introduced a *Bsp*HI site (T/CATGA) around AUG 512 and a *Stu*I site (AGG/CCT) after UAA 3299, the termination codon for the RNA-2-encoded polyprotein. Subsequently, the *Bam*HI/Ascl fragment was excised from pBinP-NS-1 (Liu *et al.*, 2005) and ligated into similarly digested pM81B-S2NT-1, yielding pM81-FSC-1. This vector allows the whole of the RNA-2 ORF downstream of AUG 512 to be excised by digestion with

*Bsp*HI and *Stu* and replaced with any sequence with *Bsp*HI and *Stu* (blunt)-compatible ends. The use of the *Bsp*HI site is important as it preserves the AUG at 512 and this initiator is used to drive translation of the inserted gene. To express the foreign gene in plants, the pM81-FSC-1 -derived plasmid is digested with *Ascl* and *Pacl* and the fragment containing the expression cassette including the foreign sequences transferred to similarly digested pBINPLUS and the resulting plasmids are finally transformed into *A. tumefaciens*.

[0142] To improve the ease of cloning, expand the choice of applicable restriction enzymes, and to investigate the effect of reading frame on foreign gene expression, the whole RNA-2 ORF was replaced with a short polylinker. A combination of oligonucleotide insertion and site-directed mutagenesis resulted in pM81-FSC-2, which allows cloning with *Nru*1 (TCG/CGA) and either *Xho*1 (C/TCGAG) or *Stu*1. The terminal adenine of the *Nru*1 site lies at position 512 thereby preserving the AUG found here. The modifications altered nucleotides immediately 5' to the AUG at 512, however, a good context was maintained. Cloning GFP into pM81-FSC-2 such that its translation was initiated from an AUG at 512, 513, 514, or 515 gave the pM81-FSC-1 derived constructs pM81-FSC2-512, pM81-FSC2-513, pM81-FSC2-514, and pM81-FSC2-515. These pM81-based plasmids are the cloning vectors containing the expression cassettes which were then transferred into the binary vector to produce the expression vectors FSC2-512, FSC2-513 and FSC2-514 used in the Experiments shown in Figures 2 and 3. Differences between the sequence of the wt RNA-2 genome segment of CPMV and the pM81-FSC1 and pM81-FSC2 vectors are shown in Table 3. Nucleotides altered in the vectors compared with the wt CPMV sequence are shown as capital letters.

[0143] *Agrobacteria*-mediated transient transformation following mobilisation into pBINPLUS (as outlined above for pM81-FSC-1) showed that lower protein levels are obtained when frame continuity between AUG 161 and the downstream AUG is not maintained. There was a significant decrease in the amount of GFP translated from the +1 and +2 positions relative to AUGs 161 and 512, whereas translation from the +3 position (that is, from 515 and back in frame) was as efficient as translation from an AUG at 512. To show that this was not due to weakened contexts of the AUGs at 513 and (to a lesser extent) 514, FSC2-515+ was created to initiate from +3 position but with the same poor context as FSC2-513. Expression from FSC2-515+ was as high as that achieved from FSC2-512 or 515, indicating that inferior context does not explain the reduction in expression from FSC2-513 and 514.

[0144] Given that the known mechanisms by which translation can escape the first-AUG rule are not known to require frame continuity, it is intriguing that efficient translation from a deleted RNA-2-based vector depends on frame continuity between AUG 161 and the downstream AUG. In order to understand, and hopefully overcome this phenomenon, a series of mutants were created with modifications to the 5' sequence of RNA-2. Complement pairs of oligonucleotides (see Table 2) were used in the site-directed mutagenesis of pM81-FSC2-512, 513, and 514. The mutations removed either AUG 115 (the start codon for the uORF), AUG 161 (without changing the amino acid sequence of the uORF), or both of these upstream initiation sites. Double mutations were made by mutagenizing the A115G mutants with the U162C oligos (Table 2).

[0145] Transient expression from these mutant transcripts was carried out as described for previous pM81-FSC-2 constructs. Analysis of expression of GFP from these mutants using coomassie-stained SDS-PAGE (Figure 2) or UV light to visualise whole leaves (Figure 3) shows a strong increase in expression in the absence of the AUG at 161. Furthermore, the removal of AUG 161 alone or both AUGs 115 and 161 alleviates the dependence on frame continuity between AUG 161 and the downstream AUG. In contrast, removal of just AUG 115 appears to enhance this dependency as well as generally inhibit translation. In conclusion, the uORF appears to function to down-regulate translation from AUG 161, which is both generally inhibitory and confers dependence on frame continuity.

Electron microscopy of sap containing HBcAg particles

[0146] The sap used for the electron micrograph of the assembled HBcAg particles shown in Figure 6 was prepared as follows. Leaf tissue was extracted in 2 volumes of Tris/NaCl buffer and exchanged for TE without concentration on a 100 kDa MWCO column. The final concentration of HBcAg was approximately 0.2 mg/ml as judged by comparison to standard on a coomassie stained SDS-PAGE gel.

1.2 RESULTS

(1) Effect of altering relative phases of the initiation sites at position 161 (AUG161)and 512 (AUG512).

[0147] To achieve this extra nucleotides were inserted immediately upstream of AUG512 (FSC2-512) to move the AUG to position 513, 514 and 515 (FSC2-513, FSC2-514 and FSC2-515) (Figure 1). Putting AUG512 out-of-phase with AUG161 (FSC2-513 and FSC2-514) gave less GFP expression as judged by fluorescence (Figure 3) and Coomassie-stained gels (Figure 2). Restoring the phase (FSC2-515) brought expression back to levels seen with the natural situation (FSC2-512). The conclusion is that when AUG161 is present, initiation at a downstream AUG is most efficient when it is in-phase with the AUG at position 161.

(2) Removal of the initiation site at position 115 (AUG115) coupled with altering relative phases of the initiation sites at position 161 (AUG161) and 512 (AUG512).

[0148] Removal of AUG115 has little or no effect when GFP expression is driven from AUG512 i.e. when this second AUG is in phase with AUG161 (see lanes labelled 10 in Figures 2 and 3). However, deletion of AUG115 when the second AUG is out-of-phase with AUG161 (513, 514) results in virtually no GFP expression (see lanes labelled 10 in Figures 2 and 3). Conclusion: AUG115 is somehow involved in the ability of ribosomes to by-pass AUG161 and reach AUG512. However, this requires the downstream AUG to be in the correct phase.

(3) Effect of removal of the initiation site at position 161 (AUG161)

[0149] The effect of this mutation is incredibly dramatic with GFP expression levels reaching 20-30 times the amount found when AUG161 is present (see lanes labelled 01 in Figures 2 and 3). Furthermore, it no longer appears to matter which phase AUG512 is in, though in the absence of AUG161, the idea of phase does not mean much. In addition the presence or absence of AUG115 makes no difference (see lanes labelled 11 in Figures 2 and 3).

[0150] When using the deIRNA-2 (expression vector 00 [FSC2-512] in Figure 1) constructs for DsRed and HBcAg expression, within 5 days infiltrated patches have lost turgor pressure and become chlorotic (pale). By 7 days the tissue appears grey and is completely dead. When using HT (expression vector 01 [FSC2-512] in Figure 1), the tissue remains turgid after 7 days and the only sign of stress is slight chlorosis of HBcAg expressing tissue. When the heavy chain of the 2G12 IgG is expressed by deIRNA-2 and retained in the ER, chlorosis is evident after 7 days, whereas for HT this is not observed. The level of necrosis seen in plants when using HT to express a heterologous protein is thus much lower, despite the higher level of heterologous protein expression achieved, than when using deIRNA-2 to express the heterologous protein.

DISCUSSION

[0151] Very high levels of foreign gene expression can be expressed from the deIRNA-2 constructs by deleting AUG161. At present, using GFP, we estimate the levels as 25-30% of total soluble protein (TSP) or approximately 1 gram expressed protein per Kg leaves. This is a tremendous level and the approach we use is extremely simple. The fact that we no longer need to preserve a reading frame means that user-friendly vectors with polylinkers can be produced.

Example 2

2.1 BACKGROUND

[0152] As described in Example 1, to investigate the features necessary for the 5' untranslated region (UTR) of CPMC RNA-2 necessary for efficient expression, the present inventors addressed the role of two AUG codons found within the 5' leader sequence upstream of the main initiation start site. The inventors demonstrated that deletion of an in-frame start codon (161) upstream of the main translation initiation site (512) led to a massive increase in foreign protein accumulation.

[0153] Using this system the inventors have shown that by 6 d postinfiltration, a number of unrelated proteins, including a full-size IgG and a self-assembling virus-like particle, were expressed to >10% and 20% of total extractable protein, respectively. Thus, this system provides an ideal vehicle for high-level expression that does not rely on viral replication of transcripts.

[0154] This new system (as exemplified by expression vector 01 [FSC-512] in Figure 1) has been called "CPMV-HT" for hyper-translatable Cow Pea Mosaic Virus protein expression system.

[0155] The HT-CPMV system shows dramatic increases in protein levels and thus is an excellent method for the rapid, high-level expression of foreign proteins in plants.

[0156] A growing array of binary vectors has been developed for plant transformation over the past 25 years (Hellens et al., 2000b; Veluthambi et al., 2003; Lee and Gelvin, 2008). The main aim of these developments has thus far focused on improving stable integration by, for example, expanding the host range for Agrobacteria (Hiei et al., 1994), the creation of a series of vectors that allow a choice of selectable markers, expression cassettes and fusion proteins (exemplified by the pCAMBIA range of open source binary vectors; http://www.cambia.org/daisy/bioforge_legacy/3725.html), or by developing systems for minimising extraneous DNA integration and marker-free transformation (for example pCLEAN; Thole et al., 2007).

[0157] Binary vectors have also been engineered to replicate at low copy numbers to reduce the frequency of multiple integration events of the same transgene, as this can lead to gene silencing (Johansen and Carrington, 2001).

[0158] However, for transient expression, ensuring efficient integration into the host nucleus and the presence of marker for in planta selection are not strictly required. Furthermore, upon agro-infiltration each cell is flooded with T-DNA molecules, which are thought to be transcriptionally competent in the nucleus even without genome integration (Janssen and Gardner, 1989; Narasimhulu et al., 1996). This suggests that transient expression could benefit from higher copy number binary plasmids.

[0159] Another area of improvement of binary vectors has been the reduction in size of the vector backbone. Two prominent examples that continue to demonstrate the benefits of smaller plasmids are pPZP (Hajdukiewicz et al., 1994) and pGREEN (Hellens et al., 2000a). In addition to improving the efficiency of cloning procedures and bacterial transformation, these vectors have provided templates for expression systems that rely on multiple cassettes present on a single T-DNA (Tzfira et al., 2005; Thole et al., 2007). The present example discloses non-obvious refinements of this vector which facilitates its practical use by permitting the cloning to be done in a single step, rather than requiring subcloning of expression cassettes between the cloning vector (e.g. pM81-FSC2) and expression systems (e.g. PBINPLUS). More specifically, the results herein show it was possible to drastically reduce the size of pBINPLUS without compromising performance in terms of replication and TDNA transfer. Furthermore, elements of the CPMV-HT system have been incorporated into the resulting vector in a modular fashion such that multiple proteins can be expressed from a single T-DNA. These improvements have led to the creation of a versatile, high-level expression vector that allows efficient direct cloning of foreign genes.

2.2 MATERIALS AND METHODS

[0160] pBD-FSC2-512-U162C (HT), contains the FSC2-512-U162C cassette (see Example 1) inserted into the *PacI*/*Ascl* sites of pBINPLUS (van Engelen et al., 1995). The essential segments of this plasmid (see below) were amplified with the high fidelity polymerase, PHUSION (New England Biolabs) using oligonucleotides encoding unique restriction enzyme sites for re-ligation (Table 4.1). The T-DNA region was amplified with a sense primer homologous to sequence upstream of a unique *AhdI* site (pBD-LB-F) and an antisense primer that included an *Apal* site (pBD-RB-*Apal*-R). A region including the *ColEl* origin of replication, the *NPTIII* gene, and the *TrfA* locus was amplified with a sense primer that included an *Apal* site (pBD-*ColEl*-*Apal*-F), and an antisense primer that included a *Spel* site (pBD-*TrfA*-*Spel*-R). The *RK2* origin of replication (*OriV*) was amplified with a sense primer that included a *Spel* site (pBD-*OriVSpel*-F) and an antisense primer that included an *AhdI* site (pBD-*OriVAhdI*-R). Following purification, the products were digested according to the unique restriction sites encoded at their termini and mixed for a three-point ligation. This resulted in the plasmid pEAQbeta, for which the ligation junctions were verified by sequencing. A deletion of approximately 1.2 kb from the T-DNA which had removed a portion of the *nos* terminator of the CPMV-GFP-HT cassette was detected. Therefore, a portion of the terminator including the right border from pBD-FSC2-GFP-HT was re-amplified with primers pMini>pMicroBIN-F2 and pBD-RB-*Apal*-R, as was the pEAQbeta backbone, including the right border, using primers pBD-*ColEl*-*Apal*-F and pMini>pMicroBIN-R (Table 4.1). The purified products were digested with *Apal* and *Fsel* and ligated to give pEAQ (Figure 9).

[0161] The P19 gene flanked by 35S promoter and 35S terminator was amplified from pBIN61-P19 (Voinnet et al., 2003) using either 35SP19-*PacI*-F and 35SP19-*Ascl*-R, or 35SP19-*Fsel*-F and 35S-P19-*Fsel*-R as primers (Table 4.1). The *NPTII* gene flanked by the *nos* promoter and terminator was amplified from pBD-FSC2-GFPHT using primers pBD-*NPTII*-*Fsel*-F and pBD-*NPTII*-*Fsel*-R (Table 4.1). Following A-tailing, the amplified cassettes were ligated into pGEM-T easy (Promega). The P19 cassette excised from pGEM-T easy with *Fsel* was ligated into *Fsel*-digested pEAQ-GFP-HT to give pEAQexpress-GFP-HT. The *NPTII* cassette excised

with FseI was ligated into FseI-digested pEAQ-GFP-HT in both directions to give pEAQselectK-GFP-HT and pEAQselectK(rev)-GFP-HT. The NPTII cassette was also excised with PstI/Asp726 and ligated into the Asp726/MspI sites of pEAQselectK-GFP-HT to give pEAQspecialK-GFP-HT. The P19 in pGEM-T was subjected to site-directed mutagenesis by the QUICKCHANGE method (Stratagene) to effect the conversion of Arginine43 to a tryptophan residue using primers P19-R43W-F and P19-R43W-R. The mutant P19 cassette was released with PstI/Asp726 digest and inserted into the Asp726/MspI sites of pEAQselectK-GFP-HT to give pEAQspecialKm-GFP-HT.

[0162] Oligonucleotides encoding the sense and antisense strands of a short polylinker (Table 4.1) were annealed leaving the downstream half of an NruI site at the 5' end and an overhang matching that of XbaI at the 3' end. The annealed oligos were ligated with NruI/XbaI digested pM81-FSC2-A115G-U162C (see above) to give pM81-FSC2-POW. The NruI site was removed from the P19 cassette in pGEM-T by site-directed mutagenesis (QUICKCHANGE; Stratagene) with the primers P19- Δ NruI-F and P19- Δ NruI-R, and was re-inserted into the Asp726/MspI sites of pEAQselectK-GFP-HT to give pEAQspecialK Δ NruI-GFP-HT which showed no reduction in expression compared to pEAQspecialK-GFP-HT (data not shown). The PstI/Asp726 fragment from pM81-FSC2-POW was then released and inserted into similarly digested pEAQspecialK Δ NruI-GFP-HT thereby replacing the GFP HT expression cassette and yielding pEAQ-HT. GFP was amplified from pBD-FSC2-GFP-HT with a set of four primers (Table 4.1) in three combinations for insertion into pEAQ-HT: GFP-Agel-F and GFP-XbaI-R; GFP-Agel-F and GFP-XbaI-R; and GFP-XbaI-F and GFP-XbaI-R. Purified PCR products were digested with the enzymes specified in their primers and inserted into appropriately digested pEAQ-HT to give pEAQ-HT-GFP, pEAQ-HT-GFPHis, and pEAQ-HT-HisGFP.

Table 4.1. Oligonucleotides used for amplification and mutagenesis. Restriction enzyme sites, or parts thereof, are shown in lower case, and mutations underlined in bold.

Oligo	Sequence	Function
pBD-LB-F	GCCACTCAGCTTCCTCAGC GGCTTT	Sense primer for amplification of the region 6338-12085 of pBD-FSC2-GFP-HT
pBD-RB-Apal-R	TATTAgggcccCCGGCGCCAG ATCTGGGGAACCCCTGTGG	Antisense primer for amplification of the region 6338-12085 of pBD-FSC2-GFP-HT with Apal site
pBD-ColEI-Apal-F	GACTTA aggcccGTCCATTTC CGCGCAGACGATGACGTCA CT	Sense primer for amplification of the region 1704-5155 of pBD-FSC2-GFP-HT with Apal site
pBD-TrfA-Spel-R	GCATTA <u>aactgt</u> CGCTGGCTG CTGAACCCCCAGCCGGAAC TGACC	Antisense primer for amplification of the region 1704-5155 of pBD-FSC2-GFP-HT with Spel site
pBD-oriV-Spel-F	GTAG <u>Cactagt</u> GTACATCACC GACGAGCAAGGC	Sense primer for amplification of the region 14373-670 of pBD-FSC2-GFP-HT with Spel site
pBD-oriV-AhdI-R	CAGTA <u>gacaggctgtc</u> TCGGCG CCGAGGGGCGCAGCCC	Antisense primer for amplification of the region 14373-670 of pBD-FSC2-GFP-HT with AhdI site
pMini>pMicr oBIN-F2	ggccggcacgcgt <u>TATCTGCAG</u> Agcgatcg <u>GAATTGTGAGCG</u> GATAACA <u>ATTCACACAGGA</u> AACAG <u>CTATGACC</u>	Sense primer for amplification of the region 2969-85 of pEAQbeta with FseI-MspI/Asp726 sites
pMini>pMicr oBIN-R	<u>gcgatcg</u> TCTGCAGAT <u>Aacgcg</u> tggccggcc <u>CTCACTGGTGAAA</u>	Antisense primer for amplification of the region

Oligo	Sequence	Function
	AGAAAAAACACCCCAGTAC ATTAAAAACGTCC	2969-85 of pEAQbeta with AsiSI-MluI-FesI sites
35SP19-Pacl-F	ttaataaGAATTGAGCTCG TACCCCCCTACTCC	Sense primer for amplification of the 35S-P19 cassette with Pacl site
35SP19-Ascl-R	ggcgccgcATCTTTATCTTTA GAGTTAAGAACTCTTCG	Antisense primer for amplification of the 35S-P19 cassette with Ascl site
35SP19-Fsel-F	ggccggccGAATTGAGCTCG GTACCCCC	Sense primer for amplification of the 35S-P19 cassette with Fsel site
35SP19-Fsel-R	ggccggccATCTTTATCTTTA GAGTTAAG	Antisense primer for amplification of the 35S-P19 cassette with Fsel site
pBD-NPTII-Fsel-F	ggccggccTACAGTATGAGCG GAGAATTAAAGGGAGTCACG	Sense primer for amplification of the NPTII cassette from pBD-FSC2-GFP-HT with Fsel site
pBD-NPTII-Fsel-R	ggccggccTACAGTCCCGATC TAGTAACATAGATGACACC GCAC	Antisense primer for amplification of the NPTII cassette from pBD-FSC2-GFP-HT with Fsel site
P19-R43W-F	CGAGTTGGACTGAGTGGTG GCTACATAACGATGAG	Sense primer for mutagenesis of arginine 43 of P19 to a tryptophan residue
P19-R43W-R	CTCATCGTTATGTAGCCACC ACTCAGTCCAACCTCG	Antisense primer for mutagenesis of arginine 43 of P19 to a tryptophan residue
P19-ΔNrul-F	CCGTTCTGGAGGGTCTCG AACTCTTCAGCATC	Sense primer for the silent mutagenesis of the Nrul restriction site within P19
P19-ANrul-R	GATGCTGAAGAGTCGAGA CCCTCCAGAACCGG	Antisense primer for the silent mutagenesis of the Nrul restriction site within P19
POW-F	cgacggATGCATACCATCA CCATCATccccggCATCACCA TCACCATCACTAGc	Sense oligo for polylinker, POW
POW-R	tcgagCTAGTGATGGTGATGG TGATGccccggATGATGGTGA TGGTGATGCATaccggltcg	Sense oligo for polylinker, POW

Oligo	Sequence	Function
GFP-Agel-F	atcggacccgtatgactagcaaaggag aagaac	Sense oligo for amplification of GFP with Agel site
GFP-XmaI-F	atccgaccggggactagcaaaggaga agaactttcac	Sense oligo for amplification of GFP with XmaI site and no start codon
GFP-XmaI-R	atccgaccgggttgtatagttcatccat gcc	Antisense oligo for amplification of GFP with XmaI site and no termination codon
GFP-XhoI-R	cgtatccctcgagttttgtatagttcatcca tgcc	Antisense oligo for amplification of GFP with XhoI site

2.3 RESULTS

2.3.1 pBINPLUS contains at least 7.4kb of extraneous sequence

[0163] Expression from CPMV-HT enables the production of extremely high levels of recombinant proteins. Nevertheless it was desired to further improve the system and its use for transient transformation.

[0164] The first area of improvement relates to the fact that small plasmids are more efficient than larger ones in ligation reactions and bacterial transformation procedures. Comparisons with the structures of smaller binary vectors indicated that pBINPLUS likely contains significant amounts of extraneous sequence. Four elements of pBINPLUS were determined to be essential for proper function as a binary vector: the T-DNA, the RK2 (OriV) broad host range replication origin, the NPTIII gene conferring resistance to kanamycin (Trieu-Cuot and Courvalin, 1983), and TrfA from RK2 that promotes replication (Figure 9). Bioinformatic analysis of the remaining backbone sections show them to be artefacts of the construction of pBIN19, which relied on the presence of appropriate restriction sites within parent plasmids (Bevan, 1984). These observations are confirmed by a report on the complete sequencing of pBIN19 (Frisch et al., 1995). pBINPLUS includes the non-essential ColEl replication origin for higher copy number in *E. coli*. Approximately 2.6kb of superfluous DNA can be found within the T-DNA. This includes the NPTII selectable marker for plant transformation that is not required for transient expression. Overall, the total amount of extraneous sequence within pBINPLUS appears to be in excess of 7.2kb.

2.3.2 pEAQ series construction

[0165] In order to monitor the effects on expression resulting from modifications to vector, we chose to start with the pBINPLUS-derived plasmid, pBD-FSC2-512-U162C(HT). Three regions, consisting of the T-DNA, the RK2 (OriV) replication origin, and a segment containing the ColEl origin, NPTIII, and TrfA, were amplified by PCR from pBD-FSC2-GFP-HT. Ligation of these three fragments resulted in the plasmid pEAQbeta (Figure 9), which is 4584 bp smaller than its parent plasmid. A further round of PCR amplification of pEAQbeta removed 2639 bp of non-essential sequence from the T-DNA region and inserted three unique restriction sites, AspI, MluI, and FseI. AspI/MluI digestion is compatible with the insertion of PstI/Ascl fragments, and is therefore, extremely useful for cloning multiple cassettes from all previous CPMV cloning vectors. FseI provides a unique 8-base recognition site useful for interchanging different selection markers or silencing suppressor cassettes. The resulting pEAQGFP-HT plasmid is less than half the size of pBINPLUS and without the CPMVHT expression cassette would be only 5137 bp, making it one of the smallest known binary vectors (Figure 9). The entire pEAQ plasmid was sequenced and it was discovered that the RK2 origin of replication was in the reverse orientation to that previously reported (Frisch et al., 1995) and is therefore indicated in the correct orientation in pEAQ-GFP-HT.

[0166] pEAQ-GFP-HT was used as a starting point for the inclusion of various additional features into the T-DNA (Figure 10).

The NPTII cassette from pBINPLUS was re-inserted into the FseI site of pEAQ in both the forward and reverse orientations relative to the GFP-HT cassette to give pEAQselectK-GFP-HT and pEAQselectK(rev)-GFP-HT.

[0167] The 35S-P19 cassette was inserted into the FseI site to give pEAQexpress-GFP-HT. Finally, the 35S-P19 cassette was inserted into the Mlu/AsiSI sites of pEAQselectK-GFP-HT to give pEAQspecialK-GFP-HT. Thus, a series of small binary vectors for easy and quick transient expression were constructed.

2.3.3 Reduction in size does not compromise transient expression from pEAQ

[0168] Agro-infiltration of the pEAQ series of vectors shows that the large reduction in size does not significantly compromise expression levels in transient assays. Coinfiltration of pEAQ-GFP-HT, and pEAQselectK(rev)-GFP-HT with P19 provided by pBIN61-P19, resulted in levels of expression not significantly different to the co-infiltration of pBD-FSC2-512-HT and P19. This can be seen under UV illumination (Figure 11A), SDS-PAGE (Figure 11B), and spectrofluorescence measurements of GFP in protein extracts (Figure 11C). Interestingly, the orientation of the NPTII cassette within the T-DNA appears to affect expression level. pEAQselectK shows a marked improvement compared to the otherwise identical pEAQselectK(rev), which results in a reduction in GFP accumulation.

[0169] Theoretically, the incorporation of a suppressor of silencing cassette into pEAQ should not affect its ability to improve transient expression level from a foreign gene to be expressed from the same T-DNA. Indeed, the infiltration of pEAQexpress-GFP-HT alone also resulted in expression levels similar to, or better than, pBD-FSC2-GFP-HT (Figure 7.3). Furthermore, to test the efficiency of pEAQexpress, the Agrobacterium culture was diluted two-fold, such that the final optical density (OD) was that of each individual culture of the coinfiltrations.

[0170] As expected, this resulted in similarly high expression levels and demonstrates that incorporating both the gene of interest and the suppressor of silencing onto the same T-DNA allows the use of half the amount of Agrobacteria (Figure 11). Therefore, CPMV-HT may be used to express high levels of foreign protein when all components are present on the same T-DNA.

2.3.4 Mutant P19 can suppress silencing of a transgene in a transient assay

[0171] In order to take advantage of the increase in expression afforded by the forward orientation of the NPTII cassette within the T-DNA, the P19 cassette was inserted between the AsiSI and Mlu sites in pEAQselectK-GFP-HT to give pEAQspecialK-GFP-HT (Figure 10). The presence of P19 on the same T-DNA as the sequence of GFP results in similar levels of expression to pEAQselectK-GFPHT co-infiltrated with P19 (Figure 12). This is more than the expression generated by pEAQexpress-GFP-HT, and appears to be due to the presence of the NPTII cassette (Figure 12). On the other hand, the lower expression from pEAQexpress could be due to the different position and orientation of the P19 cassette within the T-DNA. Nevertheless, as with pEAQexpress, pEAQspecialK vectors give high-level expression with Agrobacteria suspensions at half the final OD of that used when two cultures must be co-infiltrated.

[0172] Combining the foreign gene expression cassette with a P19 cassette and a selectable marker makes it possible to test the performance of CPMV-HT in transgenic plants. However, the constitutive expression of suppressors of silencing like P19 can result in severe phenotypes due to their interference with endogenous gene silencing associated with developmental processes (Silhavy and Burgýán, 2004). A recently characterised mutation of P19 (R43W) has been proposed to have a reduced activity towards endogenous gene silencing and therefore may be a better candidate for the suppression of transgene silencing in stable transformants (Scholthof, 2007). To investigate the feasibility of stable transformation with the CPMV-HT system, both wt and the mutant P19 were inserted into the T-DNA of pEAQselectK-GFP-HT to assay the variants transiently. As shown by, UV illumination of infiltrated leaves, SDS-PAGE of protein extracts, and spectrofluorometric measurements of GFP levels, the mutant P19 in pEAQspecialKm is approximately half as effective in improving foreign gene expression as the wt P19 in pEAQspecialK (Figure 12). This represents the first study on the effect of the R43W mutation in P19 on the ability to suppress silencing of a transgene.

Example 3

High level IgG expression from a single plasmid

[0173] In order to take advantage of the modular nature of the pEAQ series, CPMV-HT expression cassettes containing the ER-retained heavy chain (HE) and light chain (L) of the human anti-HIV IgG, 2G12 were inserted into the *PacI/Ascl* and *AsI/SI/MluI* sites of pEAQexpress. To determine whether the site of insertion influences expression levels, the L and HE chains were inserted into both positions yielding pEAQex-2G12HEL and pEAQex-2G12LHE (Figure 13A). Infiltration of *N. benthamiana* with single Agrobacterium cultures containing the above plasmids resulted in the formation of fully assembled 2G12 antibodies identical in size to 2G12 produced by mixing three Agrobacterium cultures which each expressed the individual components, L, HE and P19 (Figure 13C). The protein loaded in each lane represents 1/30 of the extract obtained from 90 mg of infiltrated tissue or 1/333 of the protein potentially obtainable from 1 g of tissue. The maximum amount of assembled IgG produced from the 3-strain mixture corresponds to 1 µg of CHO-produced 2G12 on the coomassie-stained nonreduced SDS-PAGE gel. This suggests an expression level of 2G12 in excess of 325 mg/kg of fresh weight tissue, which is in agreement with the SPR-measured concentrations. The use of pEAQex-2G12HEL appears to surpass this already high-level of antibody accumulation.

[0174] An advantage of pEAQ-derived vectors is that each component of a multi-chain protein such as an IgG can automatically be delivered to each infected cell. Therefore, high expression levels should be maintained at higher dilutions of Agrobacteria suspensions than if multiple cultures have to be used. To test if this is the case in practice, cultures that were initially resuspended to OD 1.2, and mixed where necessary, were subjected to two serial three-fold dilutions (Figure 13B). This resulted in final ODs of each individual culture in the three-culture mix being 0.4, 0.13, and 0.04. Single cultures harbouring the pEAQexpress constructs were infiltrated at ODs of 1.2, 0.4, and 0.13. When three separate cultures were used, the level of assembled 2G12 decreases markedly on serial dilution. In contrast, 2G12 expression from pEAQex-2G12HEL and pEAQex-2G12LHE, was maintained at a consistently high level, with any reduction on dilution being very modest (Figure 13C - E). The lack of sensitivity to dilution confirms the improved efficiency afforded by placing all three expression cassettes on the same T-DNA. Interestingly, the amount of total protein extracted from the infiltrated tissue was almost halved when the OD of the infiltrate was reduced from 1.2 to 0.4. This suggests that a significant fraction of the protein in extracts from tissue in which the higher OD suspension has been infiltrated can consist of Agrobacteria-derived protein or plant proteins produced in response to the higher concentrations of Agrobacteria.

[0175] Inspection of Figure 13C suggests that the relative position of a cassette within the T-DNA can affect the expression levels. The overall expression from pEAQex-2G12LHE was slightly lower than from pEAQex-2G12HEL. This was confirmed by western blotting of the non-reduced samples, which also indicated some differences in the abundance of degradation products and unincorporated immunoglobulin chains (Figure 13C - E). Tissue infiltrated with pEAQex-2G12LHE appears to lack a heavy chain-specific degradation product of approximately 70 to 80 kDa (Figure 13D). Also, there appears to be much less of the HL2 assembly intermediate, as well as more free light chain (Figure 13E). Since, the heavy chain is known to be limiting in 2G12 assembly in plants (Markus Sack, pers. comm., RWTH, Aachen, Germany), which is confirmed by the lack of discernable free heavy chain in all samples, these results indicate that pEAQex-2G12LHE produces less heavy chain than pEAQex-2G12HEL. This could be due to reduced expression from the CPMV-HT cassette closer to the left border of the T-DNA.

[0176] In other experiments (data not shown) the CPMV-HT system has also been successfully used in the transient format in *N. benthamiana* to express:

- Bluetongue Virus (serotype 10) VP2, VP3, VP5, VP7 and NS1.
- Rotavirus NSP5.
- Calmodulin from *Medicago truncatula* (which was subsequently purified).
- The difficult-to-express ectodomain of human Fc gamma receptor 1 (CD64)-which has been purified and shown to be functional in antibody binding studies.
- The CPMV Small (S) and Large (L) coat proteins were co-expressed and shown to assemble into virus-like particles (data not shown)

Example 4

Direct cloning into a CPMV-HT expression vector

[0177] Although combining elements of the system on to a single plasmid, the vectors described hereinbefore still required a two-step cloning procedure to introduce a sequence to be expressed into the binary plasmid. The present example provides a binary

plasmid into which a gene of interest could be directly inserted. The plasmid incorporates a polylinker that not only permits direct insertion into the pEAQ-based plasmid, but also permits the fusion of a C- or N-terminal histidine tag if desired (pEAQ-HT; Figure 14A). The polylinker was first inserted as annealed oligonucleotides into pM81-FSC2-512(A115G)(U162C) giving pM81-FSC-POW. This construct can still be used for the standard two-step cloning procedure for the generation pEAQ-based constructs for the expression of multiple polypeptides. Furthermore, use of the double mutated 5' leader may enable even higher expression levels to be obtained than is possible with the single mutation. The CPMV-HT cassette was then transferred into pEAQspecialK via the *PacI*/*Ascl* sites to give pEAQ-HT. Insertion of GFP into all three positions within the polylinker of pEAQ-HT resulted in an un-tagged GFP, and 5' (HisGFP) and 3' (GFPHis) His-tag fusions.

[0178] As expected, untagged GFP was expressed to a level even higher than that obtained with pEAQspecialK-GPP-HT and in excess of 1.6 g/kg FW tissue (Figure 14B). This is likely due to the fact that the CPMV 5' leader of pEAQ-HT contains the extra mutation which removes AUG 115 which, when removed in addition to AUG 161, further enhances expression.

[0179] The presence of the His-tag as detected by western blotting confirmed the correct fusion at both the N- and C-terminus of the amino acid residues encoded by the polylinker. All three GFP variants were detectable with anti-GFP antibodies whereas only HisGFP and GFPHis were detectable with anti-His antibodies (Figure 14C), and the presence of the His-tag reduced the mobility of the GFP band in SDS-PAGE by the expected amount. The tag also reduced the amount of GFP detected by the analysis of fluorescence (Figure 14B). This effect was more pronounced for N-terminal His tag. The intensity of the coomassie-stained bands suggests that this represents a reduction in tagged GFP accumulation (Figure 14C), rather than interference with the fluorogenic properties of GFP. Nevertheless, the levels of the His-tagged proteins were still very high yielding in excess of 0.6 and 1.0 g of GFP per kg FW tissue.

Discussion of Examples 2-4

[0180] To improve the ease of use and performance of the CPMV-HT expression system, a modular set of vectors has been created for easy and quick plant expression.

[0181] Removing more than half of the plasmid backbone from the binary vector, pBINPLUS, and some of the T-DNA region not essential for transient expression resulted in one of the smallest binary Ti plasmids known with no compromise on expression levels.

[0182] A similar proportion of the backbone had previously been removed from pBIN19 without a loss of performance (Xiang et al., 1999). However, pBINPLUS possesses two significant improvements over pBIN19 (van Engelen et al., 1995); an increased copy number in *E. coli* owing to the addition of the *ColE1* origin of replication and a reoriented T-DNA ensuring the gene of interest is further from the left border that can suffer extensive deletions in planta (Rossi et al., 1996). While the smaller size of pEAQ plasmids had no noticeable effect on their copy number, they give greatly improved yields during cloning procedures using commercial plasmids extraction kits as these are most efficient for plasmids below 10 kb (data not shown).

[0183] The modular nature of the pEAQ binary vector adds functionality to CPMV-HT expression by allowing any silencing suppressor and/or marker gene, if required, to be co-expressed with one or two CPMV-HT cassettes. For example, insertion of a second HT cassette containing a heterologous sequence into the *AsiSI*/*MluI* sites of pEAQexpress-GFP-HT would allow tracking of expression with GFP fluorescence.

[0184] Furthermore, the flexibility of the vectors simplifies the system for transient expression by only requiring the infiltration of a single Agrobacterium construct, and improves efficiency by reducing the amount of infiltrate required in proportion to the number of expression cassettes present within the T-DNA. With P19 occupying the *Fsel* site, the presence of two cloning sites for accepting HT cassettes from cloning vectors (such as pM81-FSC2-U162C) also allows even more efficient expression of multi-subunit proteins such as full-size antibodies.

[0185] The effect of P19 on enhancing expression levels of transgenes is well characterised (Voinnet et al., 2003). However, this study presents the first demonstration of its effectiveness when co-delivered to each cell on the same TDNA. A previous study has reported the co-delivery of P19 from a separate TDNA within the same Agrobacterium as the transgene-containing T-DNA (Hellens et al., 2005). However, there was no effect of P19 until 6 days after infiltration, suggesting inefficient transfer of T-DNA. The present study also demonstrates the first use of the R43W mutant P19 to enhance the expression of a transgene. The finding that the mutant was about half as effective in enhancing the expression of GFP as wt P19 agrees with its known reduction in activity, which compromises both the infectivity of TBSV (Chu et al., 2000), and the ability of the protein to bind the smaller

class (21 - 22 nts) of short interfering RNAs (Omarov et al., 2006). However, it is possible that this feature potentially makes the R43W mutant more suitable for applications involving stable transformation. The micro RNAs associated with development are also in the smaller size class (Vaucheret, 2006; Zhang et al., 2006) and, therefore, developmental processes may not be as severely affected by the presence of the mutant P19 as they would by the wt version (Scholthof, 2007). Furthermore, the mutant may provide a way of controlling the transient expression of potentially cytotoxic foreign proteins.

[0186] The expression of 2G12 from a single plasmid represents the highest reported yield of an antibody from plant tissue infiltrated with a single Agrobacterium culture. Apart from using 3 Agrobacterium cultures for CPMV-HT expression, the only way of achieving similar levels with another system involved the infiltration of 6 separate cultures and a virus vector approach (Giritch et al., 2006). Furthermore, the use of a single plasmid affords a reduction in the amount of bacteria needed to ensure co-delivery of multiple expression cassettes, which would provide a significant cost saving at industrial production levels. The infiltration process is also physically easier to carry out with more dilute cultures due to less clogging of the intercellular spaces of leaf tissue. In addition, the dilution to a total OD of 0.4 reduced the amount of infiltration-derived protein contaminants. Analysis of nine separate infiltrations at each OD showed a reduction in the protein concentrations of the extracts from 2.7 ± 0.2 to 1.5 ± 0.1 mg/ml when the OD of the cultures was reduced from 1.2 to 0.4. Since the use of pEAQexpress generates as much 2G12 at OD 0.4 as the three-culture system does at an infiltrate OD of 1.2, the recombinant target protein must be purified from only half the amount of contaminating protein using pEAQexpress. This provides a very useful and unexpected advantage for downstream processing. Expression of 2G12 from pEAQexpress also indicates an effect of position of an expression cassette within the T-DNA of pEAQ vectors on the level of expression obtained. The increase in free light chain accumulation from pEAQex-2G12LHE suggests that less heavy chain is expressed with this construct, which appears to result in less assembled antibody. This could be due to the arrangement of expression cassettes on the T-DNA. Alternatively, a proportion of the T-DNAs are susceptible to nucleolytic degradation at the left border (Rossi et al., 1996). The reinsertion of the NPTII cassette within the T-DNA appeared to have a marked effect on expression depending on its orientation. During cloning manipulations it became apparent that pEAQselectK-GFP-HT reached a plasmid copy number in *E. coli* of approximately 1.5 times that of pEAQselectK(rev)- GFP-HT (determined from yield measurements of three separate plasmid preparations performed with the QIAprep kit, QIAGEN). This loosely correlates to the difference in expression levels observed between the two vectors. It is not known what contributes to the increased copy number, or indeed whether the difference also exists when the plasmids are transferred to Agrobacteria. However, these observations suggest that plasmid copy number may be an important for efficient Agrobacterium mediated transient expression. In this respect, the use of the RK2 origin (oriV in Figure 9) by pBIN19 and its derivatives makes it a good choice for transient expression as RK2 plasmids are known to accumulate to 7 to 10 copies in Agrobacterium (Veluthambi et al., 1987). This is similar to the pVS1 origin utilised by pPZP and about 2-5 times higher than is generated by the pSa origin (Lee and Gelvin, 2008), which is present in the widely used pGREEN binary vector (Helens et al., 2000). Plasmids containing replication origins that yield higher copy numbers such as pRi-based plasmids (Lee and Gelvin, 2008) maybe even better suited to transient expression.

[0187] To make high-level expression with pEAQ vectors easily accessible for labs with no previous experience with CPMV-based expression or indeed, plant-based expression in general, a direct cloning version of pEAQ was created. This was achieved by inserting a polylinker between the 5' leader and 3' UTRs of a CPMVHT expression cassette, which was the positioned on a T-DNA which also contained P19 and NPTII cassettes. The NPTII cassette was included because its presence appeared to appreciably enhance expression (see above). The polylinker also encodes two sets of 6 x Histidine residues to allow the fusion of N- or C terminal His-tags to facilitate protein purification. The resulting constructs also benefit from the second mutation in the 5' leader which enhances expression relative to HT.

[0188] These enhanced expression cassettes may also be sub-cloned from the cloning vector pM81-FSC-POW into any pEAQ plasmid. The use of pEAQHT led to increased GFP expression compared with pEAQspecialK, which contains just the single mutation (U162C). Furthermore, the polylinker design also allowed the expression of His-tagged variants using a one step cloning procedure. The modular binary vectors presented here are specifically designed for, but not restricted to, use with CPMV-HT expression. Extremely high-level expression has been coupled with improved cloning efficiency and ease of use. The system provides the most effective and straightforward method for transient expression of value-added proteins in plants without the complications of viral amplification. It allows milligram quantities of recombinant protein within two weeks of sequence identification in any molecular biology lab with access to plant growth facilities. Therefore, it is anticipated that it will provide an extremely valuable tool in both academic and industrial settings.

Example 5

Staple integration with pEAQ plasmids and transgenic plants

[0189] Although the pEAQ vector series was designed with transient expression in mind, the reinsertion of the NPTII cassette into the T-DNA provides a selectable marker for genome integration. This potentially allows these smaller and more useful binary vectors to be used for stable plant and plant cell culture transformation. When used to transform *N. benthamiana* leaf discs, pEAQ vectors containing the NPTII cassette within the T-DNA were able to induce callus formation under selection with the same efficiency as pBINPLUS-based constructs. Furthermore, GFP expression was detectable in these tissues under UV light (data not shown). This demonstrates that multi-cassette T-DNA molecules from pEAQ vectors can stably integrate into the plant genome and drive the expression of foreign genes.

[0190] Fluorescent plants have also been regenerated. The leaves of the primary transformants (T_0) were fluorescent under UV light indicating high levels of GFP expression. The seed from the self-fertilised T_0 plants were viable, and the resulting T_1 seedlings harbouring the transgene are also fluorescent (results not shown).

Example 6

Use of the CPMV-based HT system with baculovirus vectors

[0191] Figure 15 shows a construct suitable for utilising the CPMV-based HT system with baculovirus vectors in insect cells. Under control of the p10 promoter, the HyperTrans CPMV RNA-2 UTRs also enhance the expression of GFP in insect cells using the Baculovirus expression system. An approximately 5-fold enhancement of fluorescence levels in baculovirus-infected sf21 cells, as measured by flow cytometry, was obtained in comparison to a construct without the CPMV-HT cassette.

REFERENCES

[0192]

Alamillo, J.M., Monger, W., Sola, I., García, B., Perrin, Y., Bestagno, M., Burrone, O.R., Plana-Duran, J., Enjuanes, L., Lomonosoff, P.G. and García, J.A. (2006) Use of virus vectors for the expression in plants of active full-length and single chain anticonoronavirus antibodies. *Biotechnol. J.* 1, 1103-1111.

Brigneti, G., Voinnet, O., Li, W.X., Ji, L.H., Ding, S. and Baulcombe, D.C. (1998) Viral pathogenicity determinants are suppressors of transgene silencing in *Nicotiana benthamiana*. *EMBO Journal* 17: 6739-6746.

Cañizares, M.C., Liu, L., Perrin, Y., Tsakiris, E. and Lomonosoff, G.P. (2006). A bipartite system for the constitutive and inducible expression of high levels of foreign proteins in plants. *Plant Biotechnol. J.* 4, 183-193.

Gopinath, K., Wellink, J., Porta, C., Taylor, K.M., Lomonosoff, G.P. and van Kammen, A. (2000) Engineering cowpea mosaic virus RNA-2 into a vector to express heterologous proteins in plants. *Virology* 267: 159-173.

Holness, C.L., Lomonosoff, G.P., Evans, D. and Maule, A.J. (1989). Identification of the initiation codons for translation of cowpea mosaic virus middle component RNA using site directed mutagenesis of an infectious cDNA clone. *Virology* 172, 311-320.

Liu, L. and Lomonosoff, G.P. (2002) Agroinfection as a rapid method for propagating Cowpea mosaic virus-based constructs. *J. Virol. Methods* 105, 343-348.

Liu, L. and Lomonosoff, G.P. (2006) A site-directed mutagenesis method utilising large double-stranded DNA templates for the simultaneous introduction of multiple changes and sequential multiple rounds of mutation: Application to the study of whole viral genomes. *J. Virol. Methods* 137, 63-71.

Liu, L., Cañizares, M.C., Monger, W., Perrin, Y., Tsakiris, E., Porta, C., Shariat, N., Nicholson, L. and Lomonosoff, G.P. (2005). Cowpea mosaic virus-based systems for the production of antigens and antibodies in plants. *Vaccine* 23, 1788-1792.

Lomonosoff, G.P. & Shanks, M. (1983). The nucleotide sequence of cowpea mosaic virus B RNA. *EMBO Journal* 2, 2253-2258.

Mechtcheriakova, I.A., Eldarov, M.A., Nicholson, L., Shanks, M., Skryabin, K.G. and Lomonosoff, G.P. (2006) The use of viral vectors to produce hepatitis B virus core particles in plants. *J. Virol. Methods* 131, 10-15.

Monger, W., Alamillo, J.M., Sola, I., Perrin, Y., Bestagno, M., Burrone, O.R., Sabella, P., Plana-Duran, J., Enjuanes, L., Garcia, J.A. and Lomonossoff, G.P. (2006) An antibody derivative expressed from viral vectors passively immunizes pigs against transmissible gastroenteritis virus infection when supplied orally in crude plant extracts. *Plant Biotechnol. J.* 4, 623-631.

Rohll, J.B., Holness, C.L., Lomonossoff, G.P. and Maule, A.J. (1993). 3' terminal nucleotide sequences important for the accumulation of cowpea mosaic virus M-RNA. *Virology* 193, 672-679.

Sainsbury, F., Lavoie, P-O., D'Aoust, M-A., Vezina, L-P. and Lomonossoff, G.P. (2008). Expression of Multiple Proteins Using Full-Length and Deleted Versions of Cowpea Mosaic Virus RNA-2. *Plant Biotechnology Journal*, 6: 82-92.

Sainsbury, F., Cañizares, M.C. and Lomonossoff, G.P. (2007) Cowpea mosaic virus-based expression vectors. In: *Virus Expression Vectors* (Hefferon, K. ed), pp. 339-555. Kerala, India: Transworld Research Network.

Sainsbury, F. and Lomonossoff, G.P. (2008). Extremely high-level and rapid transient protein production in plants without the use of viral replication. *Plant Physiology* 148, 1212-1218.

Sainsbury, F., Liu, L. and Lomonossoff G.P. (2009) Cowpea mosaic virus-based expression of antigens and antibodies in plants. In: *Methods in Molecular Biology Vol. 483 : Recombinant Pharmaceutical Proteins from Plants* (Faye, L. and Gomord, V. eds), pp25-39, NY: Humana Press.

van Bokhoven, H., Le Gall, O., Kasteel, D., Verver, J., Wellink, J. and van Kammen, A. (1993). Cis- and Trans-acting Elements in Cowpea Mosaic Virus RNA Replication. *Virology* 195, 377-386.

Wellink J, Verver J, van Kammen A. (1993). Mutational analysis of AUG codons of cowpea mosaic virus M RNA. *Biochimie*. 75(8):741-7.

Additional references:

[0193]

Lee LY, Gelvin SB (2008) T-DNA binary vectors and systems. *Plant Physiology* 146: 325-332

Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. *Plant Molecular Biology* 25: 989-994

Hellens R, Mullineaux P, Klee H (2000b) A guide to Agrobacterium binary Ti vectors. *Trends in Plant Science* 5: 446-451

Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (*Oryzopsis sativa* L) mediated by Agrobacterium and sequence-analysis of the boundaries of the T-DNA. *Plant Journal* 6: 271-282

Veluthambi K, Jayaswal RK, Gelvin SB (1987) Virulence genes-a, gene-G, and gene-D mediate the double-stranded border cleavage of T-DNA from the Agrobacterium Ti plasmid. *Proceedings of the National Academy of Sciences of the United States of America* 84: 1881-1885

Thole V, Worland B, Snape JW, Vain P (2007) The pCLEAN dual binary vector system for Agrobacterium-Mediated plant transformation. *Plant Physiology* 145: 1211-1219

Johansen LK, Carrington JC (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. *Plant Physiology* 126: 930-938

Janssen BJ, Gardner RC (1989) Localized transient expression of Gus in leaf-disks following cocultivation with Agrobacterium. *Plant Molecular Biology* 14: 61-72

Narasimhulu SB, Deng X, Sarria R, Gelvin SB (1996) Early transcription of Agrobacterium T-DNA genes in tobacco and maize. *Plant Cell* 8: 873-886

Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000a) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. *Plant Molecular Biology* 42: 819-832

Tzfira T, Tian GW, Lacroix B, Vyas S, Li JX, Leitner-Dagan Y, Krichevsky A, Taylor T, Vainstein A, Citovsky V (2005) pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. *Plant*

Molecular Biology 57: 503-516

Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant Journal 33: 949-956

Frisch DA, Harrishaller LW, Yokubaitis NT, Thomas TL, Hardin SH, Hall TC (1995) Complete sequence of the binary vector BIN-19. Plant Molecular Biology 27: 405-409

Trieu-cuot P, Courvalin P (1983) Nucleotide-sequence of the Streptococcus-faecalis plasmid gene encoding the 3'5"-Aminoglycoside phosphotransferase type-III. Gene 23: 331-341

Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Research 12: 8711-8721

Silhavy D, Burgyan J (2004) Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends in Plant Science 9: 76-83

Scholthof HB (2007) Heterologous expression of viral RNA interference suppressors: RISC management. Plant Physiology 145: 1110-1117

van Engelen FA, Molthoff JW, Conner AJ, Nap JP, Pereira A, Stiekema WJ (1995) pBINPLUS - an improved plant transformation vector based on pBIN19. Transgenic Research 4: 288-290

Rossi L, Hohn B, Tinland B (1996) Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proceedings of the National Academy of Sciences of the United States of America 93: 126-130

Xiang CB, Han P, Lutziger I, Wang K, Oliver DJ (1999) A mini binary vector series for plant transformation. Plant Molecular Biology 40: 711-717

Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunaireshnarn S, Gleave AP, Laing WA (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1: 13

Chu M, Desvoyes B, Turina M, Noad R, Scholthof HB (2000) Genetic dissection of tomato bushy stunt virus p19-protein-mediated host-dependent symptom induction and systemic invasion. Virology 266: 79-87

Omarov R, Sparks K, Smith L, Zindovic J, Scholthof HB (2006) Biological relevance of a stable biochemical interaction between the tombusvirus-encoded P19 and short interfering RNAs. Journal of Virology 80: 3000-3008

Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes & Development 20: 759-771

Zhang BH, Pan XP, Cobb GP, Anderson TA (2006) Plant microRNA: A small regulatory molecule with big impact. Developmental Biology 289: 3-16

Giritch A, Marillonnet S, Engler C, van Eldik G, Boterman J, Klimyuk V, Gleba Y (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfecting with noncompeting viral vectors. Proceedings of the National Academy of Sciences of the United States of America 103: 14701-14706

Table 1

The complete CPMV RNA-2 genome segment (nucleotides 1 to 3481)	
1	tataaaaatc ttaataggtt ttgataaaag cgaacgtggg gaaaccgaa ccaaaccctt
61	ttctaaattc tctctcatct ctcttaaagc aaacttctct ctgtcttc ttgcatgagc
121	gatcttcaac gttgtcagat cgtgcgtcgg caccagtaca atgtttctt tcactgaagc
181	gaaatcaaag atctctttgtt ggacacgttag tgccggccca taaataaagc tgtacttgtc
241	ctattcttgtt cgggtggc ttggaaaag aaagctgtct ggaggctgtctt gttcagcccc
301	atacattact ttttacgtt ctgtctactt tcggcgggtt caatatctct acttctgttt
361	gacgaggat tttttttttt cttttttttt tttttttttt tttttttttt tttttttttt
421	atctgttattttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
481	taagcttctgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt

The complete CPMV RNA-2 genome segment (nucleotides 1 to 3481)	
541	ttcaggaaatt ttggaggaaa aagcttca gttcaaacgt gccaaagaag ggaataaaacc
601	cttgaaggat gagattccca agcctgagga tatgtatgt ttcacactt ctaaatggaa
661	tgtgctcaga aaaatgagcc aaaagactgt ggtatccca aagcagctg ctggatggg
721	attcatcaat aagcatatgc ttacgggca catctggca caaccaacaa cagtcttga
781	tattcccgic acaaaggata aaacactgc gatggccagt gattttatc gtaaggagaa
841	tctcaagact tctgccattc acatggagc aattgagatt attatccaga gctttgctc
901	ccctgaaagt gatttgatgg gaggctttt gctgtggat tcttacaca ctgatacagc
961	taatgttatt ctagcattt ttgtgctcc aatgcgggaa ggaagaccag tcagagtgg
1021	gaccctccaa aatacactgg caccgtatc atgtatcg aacaatagat tcaagctcat
1081	ttgctcatgt ccaaactgtg atattgtcca gggtagccaa gtagcagaag tgagtgtaaa
1141	tgtgcagga tttgtctattt ccatacggaaa atctcacacc cttcccaat ttatacaga
1201	ggaatttggaa aaggagggtg ctgttgtt agaatactt ggcagacaga cctattgtc
1261	tccatgttccatgttccaa cagaagaaaaa acttcggtcc ctaatgtt acatccatgt
1321	tgaacaacca agtgccttca agttatccaa ttccgtcaat ggcactttc tcaaggaga
1381	aatgttggaa tactctattt ctggcaaaaga agcagaaaaac catgcgttc atgtactgt
1441	ggtctctcga gaaggggctt ctgcggcacc caagcaat gatcttattt tgggacgggt
1501	gctggatcca cggaaatggga atgtggctt tccacaaatg gagcaaaact ttgttgcct
1561	ttcttggat gatataagct cagttcggtt ttcttgcgtt gacacaaaat tgcacaaaac
1621	tcgagttttt ttgttccaaagg ctatggctgg tggatgtgtt ttatggatg agtatctca
1681	tgtgtggc aatggacaag attttagagc tactgtcgctt ttttgcgcac cccatgtat
1741	aacaggcaaa ataaagggttca cagtttccac caacatttctt gacaactcggtt
1801	gtgttggcc ataaatgtt gttgtggggg taatgtatgtt actgtatgtt atatcttgc
1861	cttcacaaacac tccatgtacgtt ggaacccagg gtcacaaaatg aacttctgtt tcacattaa
1921	tccaaaccctt tggggattt ctgggtctgc tgagatgata agtgcacatc gagtttaggt
1981	gacagtattt tttgtttcggtt gatggaccctt atctccatcc acagatgtt gtcacaaatgt
2041	agactggcataatgttcaatgtt gtttttttttccatgttccatgttccatgttccatgtt
2101	gaatgggttcaatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgtt
2161	tgagggttcaatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgtt
2221	ggccaaatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgtt
2281	tgaatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgtt
2341	ttgttccatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgtt
2401	tgctgagggtt gggaaaaatgttccatgttccatgttccatgttccatgttccatgttccatgtt
2461	gtcaacacaa gtttttttttccatgttccatgttccatgttccatgttccatgttccatgtt
2521	aattttccatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgtt
2581	tgtggcattt aaggatttt ttttttttttccatgttccatgttccatgttccatgttccatgtt
2641	gctggagctt atagcacaatgttccatgttccatgttccatgttccatgttccatgttccatgtt
2701	tatgtatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgtt
2761	aatcaacggc aaaaataactc ctgttgggttcaatgttccatgttccatgttccatgttccatgtt
2821	tccaaatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgtt
2881	taatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgtt
2941	ggttttttttccatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgtt
3001	ttctggccatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgtt
3061	cgaaagccca tggccaaatgttccatgttccatgttccatgttccatgttccatgttccatgtt
3121	acaaatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgttccatgtt

The complete CPMV RNA-2 genome segment (nucleotides 1 to 3481)	
3181	tatccctgatg cccccatttc cactgtcaac ggaaactcca ccgttattaa agtttaggtt
3241	tcgggatatt gaacgctcca agcgttgtt tatggttgga cacactgcta ctgctgccta
3301	actctggttt cattaaattt tccttagttt gaattactg ttattttgt tgcatattctta
3361	tgttggtga gcggtttctt gtgctcagag tttttttttt ttatgttaattttaatttttt
3421	gtgagctcctt gtttagcagg tcgtccctc agcaaggaca caaaaaggat ttaatttttt
3481	t

The start codons at positions 115, 161, 512 and 524 of the CPMV RNA-2 genome segment are shown in bold and underlined.

Table 2

Oligonucleotides used in the mutagenesis of the 5' region of pM81-FSC-2 clones		
Oligonucleotide	Sequence	Mutation
A115G-F	CTTGCTTTCTTGC<u>G</u>TGAGCGATCTT CAACG	Removes AUG (→GUG) at 115 eliminating translation from uORF
A115G-R	CGTTGAAGATCGCTC<u>A</u>CGCAAGAAAG ACAAG	
U162C-F	GGCACCA<u>G</u>TACA<u>A</u>CGTTTCTTCAC TGAAGCG	Removes AUG (→ACG) at 161 eliminating translation from AUG 161
U162C-R	CGCTTC<u>A</u>GTGAA<u>A</u>AAA<u>A</u>CGTTGTAC TGGTGCC	while maintaining amino acid sequence of uORF

The mutant nucleotide of the oligonucleotides used in the mutagenesis of the 5' region of pM81-FSC-2 clones are shown in bold

Table 3

CPMV wt sequence from Table 1	tatattctgc ccaaatttga <u>aatggaaagc</u> attatgagcc gtggattcc
Mutated sequence in pM81-FSC-1	tatattctgc ccaaattt<u>g</u>T <u>C</u>at<u>g</u>aaaagc att<u>at</u>gagcc gtggattcc 509 BspH1
Mutated sequence in pM81-FSC-2	tatattctgc ccaaatt<u>CG</u>C GACGATCGTA CTCTCGAGGC CT 507 Nru1 Xba1

Nucleotide differences between the sequence of the pM81-FSC-1 and pM81-FSC-2 vectors and the CPMV wt sequence from Table 1 and are shown as capital letters.

Nucleotide Sequence of pM81-FSC-1

LOCUS pM81-FSC1 7732 bp DNA circular
10-OCT-2007

FEATURES	Location/Qualifiers
5'UTR	342..501 /vntifkey="52" /label=CPMV\RNA2\5'UTR
promoter	27..341 /vntifkey="29" /label=CaMV\35S\promoter
terminator	4669..4921 /vntifkey="43" /label=Nos\Terminator
mat_peptide	3712..4422 /vntifkey="84" /label=GFP
3'UTR	4432..4615 /vntifkey="50" /label=CPMV\RNA2\3'UTR
CDS	complement(5944..6804) /vntifkey="4" /label=AmpR
misc_feature	complement(7391..7546) /vntifkey="21" /label=lacZ_a
promoter	complement(6846..6874) /vntifkey="30" /label=AmpR\promoter
rep_origin	complement(7067..7373) /vntifkey="33" /label=f1_origin
rep_origin	complement(5170..5789) /vntifkey="33" /label=pBR322_origin
mat_peptide	502..1878 /vntifkey="84" /label=CPMV\Movement\Protein
mat_peptide	1879..2999

1921 tcagttcgtg gttctttgtc tgacacaaaa ttgcacacaaa ctcgagttt gttgtccaaag
 1981 gctatggctg stgggtatgt gttattggat gaggatctct atgatgtggt caatggacaa
 2041 gatTTtagag ctactgtcgc tttttgcgc acccatgtta taacaggcaa aataaagggt
 2101 acagctacca ccaacattc tgacaactcg ggTTgttggt tgatgtggc cataaatagt
 2161 ggtgtgaggg gtaagtatag tactgtatgt tatactatct gctctcaaga ctccatgacg
 2221 tggAACCCAG ggtgacaaaaa gaacttctcg ttacacatttta atccaaaccc ttgtgggat
 2281 tcttggctcg ctgagatgt aagtcgaagc agagtttaga tgacagttat ttgtgtttcg
 2341 ggatggacct tatctctac cacagatgtg attgccaagc tagactggc aattgtcaat
 2401 gagaatgtg agcccacca ttaccacttg gctgattgtc agaattgggtt acccccttaat
 2461 cgttggatgg gaaaattgac ttttccccag ggtgtgacaa gtgagggtcg aaggatgcct
 2521 ctttctatag gaggeggcgc tgggtgcact caagcttct tggccaatata gcccattca
 2581 tggatataaa tggagata ttttagggat gaaatttcact ttgaagttac taaaatgagc
 2641 tctccatata ttaaagccac tggatattt ctcatagett ttggtaatct tagtgtgcc
 2701 tttggttttt atgagatgtt ttccataga attgttcaat ttgtgtgagg tgaggaaaaa
 2761 tggactttgg tttttccca acaagagttt gtcactgtt ggtcaacaca agtaaacc
 2821 agaaccacac ttgaagcaga tgggtgtccc tacatataatg caattattca tgatgtaca
 2881 acaggatcaa tctccggaga ttttatttg gggtaagct tgggtggatt aaggatttt
 2941 gtggatagg ttctaatcg gttattgtg gttcccggtt gtttggaggt atagcacaag
 3001 gacctgttg tgctgaagcc tcagatgtt atagcccatg tatgatagttt agcactcc
 3061 ctgctccatt ttccagacgc acagcgtaa acttttgcatt taatcaacgg caaaataact
 3121 cctgttggtg atgacaatttgc gatacgcac atttataatc ctccattat gaatgtctg
 3181 cgtactgtg ctggaaatc tggaaactatt catgttcaac ttaatgttag ggtgtgtgt
 3241 gtcaaaagag cagattggg tggcaagtc ttgtttacc tgcgcgcgtc catgaacc
 3301 gaaagttatg atgcgcggac atttgcgtatc tcacaacccgt gttctgcatt gttgaacttc
 3361 tctttgata tcataggcc gaaatgcgg tttgaatttgc gggaaagccc atggccaaat
 3421 cagaccaccc ggtatcttgc atgtgtgtc accaatccca gacaaataca gcaatttgc
 3481 gtcaacatgc gcttcgtatcc taatttcagg gttgcggca atatctgtat gccccat
 3541 ccactgtcaa cggaaactcc accgttatta aagtttaggt ttcggatata tgaacgc
 3601 aagcgtatgtt ttaggttgg acacactgtc actgtgtcag cgcctgcacaa acagcttta
 3661 aactttgacc tacttaatgtt agcagggtgac gttgagtccca accctggggc cagtaaag
 3721 gaagaacttt tcactggagt tggcccaattt cttgttgaat tagatgtgtg tggtaatgg
 3781 cacaatattt ctgtcaatgg agagggtgaa ggtgtatgcatacggaaa acttacc
 3841 aaattttttt gcaactatgg aaaactaccc gttccatggc caacacttgc cactactt
 3901 tcttatggtg ttcaatgtt ccagatcata tggaaacggca tgacttttc
 3961 aagagtgcac tgcccaagg ttatgtacag gaaagaacta tatttttcaaa ggatgcgg
 4021 aactacaaga cacgtgtatc agtcaatgtt gaaagggtgata cccttgcattt tagatgc
 4081 ttaaaaggta ttgatTTAA agaagatggaa aacatttttgc gacacaaattt ggaataca
 4141 tataactcac acaatgtata catcatggca gacaaacaaa agaatggat caaagttac
 4201 ttcaaaatata gacacaacat tgaagatggaa agcgttcaac tagcagacca ttatcaac
 4261 aatactccaa ttggcgtatgg cctgttccctt ttaccagacca accattaccc gtccacacaa

77

Nucleotide sequence of pM81-FSC-2

LOCUS pM81-FSC2 4173 bp DNA circular
10-OCT-2007

FEATURES	Location/Qualifiers
rep_origin	complement(1271..1890) /vntifkey="33" /label=pBR322_origin
rep_origin	complement(3168..3474) /vntifkey="33" /label=f1_origin
promoter	complement(2947..2975) /vntifkey="30" /label=AmpR\promoter
misc_feature	complement(3492..3647) /vntifkey="21" /label=lacZ_a
CDS	complement(2045..2905) /vntifkey="4" /label=AmpR
3'UTR	533..716 /vntifkey="50" /label=CPMV\RNA2\3'UTR
terminator	770..1022 /vntifkey="43" /label=Nos\Terminator
promoter	3859..4173 /vntifkey="29" /label=CaMV\35S\promoter
5'UTR	1..160 /vntifkey="52" /label=CPMV\RNA2\5'UTR
misc_feature	507..532 /vntifkey="21" /label=FSC-2\MCS
BASE COUNT	1090 a 969 c 982 g 1132 t
ORIGIN	

1 tattaaaatc ttaataggtt ttgataaaaag cgaacgtggg gaaacccgaa ccaaacccttc

61 ttctaaactc tctctcatct ctcttaaagc aaacttctct cttgtcttc ttgcatgac
 121 gatcttcaac gttgtcagat cgtgcttcgg caccagtaca atgttttctt tcactgaagc
 181 gaaatcaaag atctcttgc ggacacgtag tgcggcgcca ttaaataaacf tgacttgc
 241 ctattcttgc cgggtgtggc ttggggaaag aaagcttgc ggaggctgc gttcagcccc
 301 atacattact tggtacgatt ctgctgactt tcggcggtg caatatctct acttctgc
 361 gacgaggat tggtgcctgt acttcttct tcttttctt gctgattggc tctataagaa
 421 atcttagtatt ttctttgaaa cagagtttc ccgtgggtt cgaacttgg aaaaattgt
 481 taagctctg tatattctgc ccaaaatcgc gacgatcgta ctctcgaggc cttaaactct
 541 gtttcattt aattttctt agtttgcatt tactgttatt cgggtgtgcatt ttctatgtt
 601 ggtgagcggt tttctgtgc cagagtgtgt ttatattatg taatttaatt tctttgtgag
 661 ctccgttta gcaggctgc ctttcagca ggacacaaaa agatatttaat ttatattaaaa
 721 aaaaaaaaaa aaaagacccg gaattcgata tcaagcttgc acgcctgcag atcggttcaaa
 781 catttggca taaagtttct taagattgaa tccctgttgc ggtcttgcga tgattatcat
 841 ataatttctg ttgaatttgc ttaagcatgt aataatcac atgtaatgc tgacgttatt
 901 tatgagatgg gtttttatga tttagagttccc gcaattatac attaataacg cgatagaaaa
 61 caaaatatacg cgcgcactt aggataaaatt atcgccgcgc gtgtcatctt tgttactaga
 1021 tctcttagt ctcagatgg ggcgcgcgc tgcattaaatg aatcgccca cgcgcgggg
 1081 gaggcggtt gcgatgtgg cgcgttccgc ctccctcgact cactgactcg ctgcgcgc
 1141 tcggttgcgc gcccgcgc gatcgatctc actcaaaaggc ggtataacgg ttatccacag
 1201 aatcaggggca taacgcgagg aagaacatgt gggccaaagg ccagccaaagg gcccaggaaacc
 1261 gtttttttttgc cgcgttgcgc gcttttttcc ataggctcg ccccccgttgc gggccatcaca
 1321 aaaaatcgacg ctcaagtcgc aggtggcgaa accggacagg actataaaga taccaggcgt
 1381 ttccccctgg aagtccttcgc tgcgttccgc cttgcgcgc tccggatacc
 1441 tgccgcctt tctcccttcgc ggaagcggtt cgcgttctca tagtcacgc tgtaggtatc
 1501 tcagttcggt gttagtgcgtt cgcgttgcgc tggctgtgt gcacgaaacc cccgttgc
 1561 ccgaccgcgc cgcgttgcgc ggtaaactatc gtcttgcgtt caacccggta agacacgact
 1621 tatcgccact ggcgcgcgc actggtaaca ggatttagcag agcgaggtat gttaggttgc
 1681 ctacagagtt ctgttgcgtt tggccacttgc acggcttacac tagaagaaca gtatggta
 1741 tctgcgttgcgtt gtttttttttgc gtttttttttgc gtttttttttgc gtttttttttgc
 1801 aacaaacccac cgcgttgcgtt gtttttttttgc gtttttttttgc gtttttttttgc
 1861 aaaaaggatc tcaagaagat ctttttttttgc gtttttttttgc gtttttttttgc
 1921 aaaaacttcacg ttaaggggatt ttgggttatgaa gtttttttttgc gtttttttttgc
 1981 ttttttttttgc gtttttttttgc gtttttttttgc gtttttttttgc gtttttttttgc
 2041 acgttttacca atgtttatc agtgaggcac ctatctcgc gatctgttta ttccgttcat
 2101 ccatagttgc ctgactcccc gtcgttgcgtt gtttttttttgc gtttttttttgc
 2161 gccccactgc tgcgttgcgtt gtttttttttgc gtttttttttgc gtttttttttgc
 2221 taaaccagcc agccggaaagg gcccgcgc gaaatgggttcc tgcgttgcgtt gtttttttttgc
 2281 tccagttatc ttttttttttgc gtttttttttgc gtttttttttgc gtttttttttgc
 2341 gcaacgttgc tggccatgc acggccatgc tgggtgcacg ctgtcggtt ggtatggc
 2401 cattcagtc cgggttccaa cgtatcaaggc gatcttgc gtttttttttgc gtttttttttgc

2461 aagcggttag ctcccttcgtt ctcggatcg ttgtcagaag taagttggcc gcagtgttat
 2521 cactcatgtt tatggcagca ctgcataatt ctcttactgt catgccatcc gtaagatgt
 2581 ttctgtgac tggtagtac tcaaccaagt cattctgaga atagtgtatg cggcgaccga
 2641 gttgtcttg cccggcgtca atacgggata ataccgcgcc acatagcaga actttaaaag
 2701 tgctcatcat tggaaaacgt tcttcggggc gaaaacttca aaggatctt ccgctgttga
 2761 gatccagttc gatgttaaccctt ctcgtgcac ccaactgttcc ttctactttca
 2821 ccagcggttc tgggtgagca aaaacaggaa ggcaaaaatgc cgcaaaaaag ggaataaggg
 2881 cgacacggaa atgttgaata ctcatactct tccttttca atattattgt agcattttatc
 2941 agggttatttgc tctttagtgc ggatacatat ttgaatgtat tttagaaaaat aaacaaatag
 3001 gggttcccgca cacatttccc cgaaaagtgc caccttaattt gtaagcgat atattttgc
 3061 aaaatttcgcg ttaaatttttt gttaaatcgat ctcattttttt aaccaatagg ccggaaatccg
 3121 caaaatccct tataaatcaa aagaatagac cgagatagggtt ttcagtttgc
 3181 gaacaagagt ccactattaa agaacgttgc ctccaaacgtc aaaggcgaa aaccgcgttca
 3241 tcaggcgat ggcactac gtaaccatc acccttaatca agttttttgg ggtcgagggt
 3301 ccgtaaagca ctaaatcgga accctaaagg gagccccccgat ttttagatgc gacggggaaa
 3361 gccggcgaac gtggcgagaa aggaaggaa gaaagcgaaa ggagcgccgc cttagggcgct
 3421 ggcaagtgttgc ggggtcacgc tgcgcttac caccacacc gccgcgttca atgcgcgc
 3481 acaggcgccg tcccatcgat cattcaggcttgc ggcactgttgc gatcggtgc
 3541 ggccttcgc ctattacgc accctggaa agggggatgttgc gatcgaaaggc gattaagtgc
 3601 ggtaacgcga gggttttccc agtcacgcac ttgtaaaacg acggccagtg agtactttgg
 3661 cgtaatcatgc gtcatacgatgttgc gaaattgttca tccgttcaca attccacaca
 3721 acatacgacg cggaaacata aagtgttaaag cctgggggtgc otaatgatgc agttaactca
 3781 cattaaatgc gttgcgtca ctggccgttcc tccatcggttccaaacctggcc gcttaattaa
 3841 gaattcgacg tccaccccgaa acaccccttc ggatccattt gcccagctat ctgtcaacttt
 3901 attgagaaga tagtggaaaaa ggaaggtggc tccatcataaaccatcatttgcgataaaagg
 3961 aaggccatcg ttgaagatgc ctctggccac agtggteccaa aagatggacc cccacccac
 4021 aggaggcatcg tggaaaaaaga agacgttcca accacgttccaaatggatgttgc
 4081 gatatacttca ctgacgttgc ggtatgttgc caatccccactt atcccttcgca agacccttcc
 4141 tcttatataag gaagtttgc tcatggatagg
 //

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- [WO2007135480A \[0009\] \[0095\] \[0105\] \[0126\]](#)
- [EP194809A \[0112\]](#)
- [EP270355A \[0113\]](#)
- [EP0116718A \[0113\]](#)
- [US5100792A \[0113\]](#)
- [EP444882A \[0113\]](#)
- [EP434616A \[0113\]](#)
- [WO9209696A \[0113\]](#)
- [WO9400583A \[0113\]](#)
- [EP0331083A \[0113\]](#)
- [EP175966A \[0113\]](#)
- [EP290395A \[0113\]](#)
- [WO8706614A \[0113\]](#)
- [DE4005152 \[0113\]](#)
- [WO9012096A \[0113\]](#)
- [US4684611A \[0113\]](#)
- [EP436234A \[0114\]](#)

- EP486233A [0114]

Non-patent literature cited in the description

- FRISCH, D. A.L. W. HARRIS-HALLER et al. Complete Sequence of the binary vector Bin 19Plant Molecular Biology, 1995, vol. 27, 405-409 [0086]
- Plant transformation and expression vectorsGUERINEAUMULLINEAUXPlant Molecular Biology LabfaxBIOS Scientific Publishers19930000121-148 [0112]
- NAR, 1984, vol. 12, 228711-87215 [0113]
- GREEN et al. Plant Tissue and Cell Culture Academic Press19870000 [0113]
- FREEMAN et al. Plant Cell Physiol., 1984, vol. 29, 1353- [0113]
- KINDLEPNAS U. S.A., 1990, vol. 87, 1228- [0113]
- OARDBiotech. Adv., 1991, vol. 9, 1-11 [0113]
- HIEI et al. The Plant Journal, 1994, vol. 6, 271-282 [0114]
- Cell Culture and Somatic Cell Genetics of PlantsVASIL et al. Laboratory Procedures and Their Applications Academic Press19840000vol. I, II, III, [0118]
- WEISSBACHWEISSBACHMethods for Plant Molecular Biology Academic Press19890000 [0118]
- SHIMAMOTO, K. Current Opinion in Biotechnology, 1994, vol. 5, 158-162 [0119]
- VASIL et al. Bio/Technology, 1992, vol. 10, 667-674 [0119]
- VAIN et al. Biotechnology Advances, 1995, vol. 13, 4653-671 [0119]
- VASILNature Biotechnology, 1996, vol. 14, 702- [0119]
- ALAMILLO, J.M.MONGER, W.SOLA, I.GARCÍA, B.PERRIN, Y.BESTAGNO, M.BURRONE, O.R.PLANA-DURAN, J.ENJUANES, L.LOMONOSOFF, P.G. Use of virus vectors for the expression in plants of active full-length and single chain anticoronavirus antibodiesBiotechnol. J., 2006, vol. 1, 1103-1111 [0192]
- BRIGNETI, G.VOINNET, O.LI, W.X.JI, L.H.DING, S.WBAULCOMBE, D.C. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamianaEMBO Journal, 1998, vol. 17, 6739-6746 [0192]
- CAÑIZARES, M.C.LIU, L.PERRIN, Y.TSAKIRIS, E.LOMONOSOFF, G.P. A bipartite system for the constitutive and inducible expression of high levels of foreign proteins in plantsPlant Biotechnol. J., 2006, vol. 4, 183-193 [0192]
- GOPINATH, K.WELLINK, J.PORTA, C.TAYLOR, K.M.LOMONOSOFF, G.P. VAN KAMMEN, A. Engineering cowpea mosaic virus RNA-2 into a vector to express heterologous proteins in plantsVirology, 2000, vol. 267, 159-173 [0192]
- HOLNESS, C.L.LOMONOSOFF, G.P. EVANS, D.MAULE, A.J. Identification of the initiation codons for translation of cowpea mosaic virus middle component RNA using site directed mutagenesis of an infectious cDNA cloneVirology, 1989, vol. 172, 311-320 [0192]
- LIU, L.LOMONOSOFF, G.P. Agroinfection as a rapid method for propagating Cowpea mosaic virus-based constructsJ. Virol. Methods, 2002, vol. 105, 343-348 [0192]
- LIU, L.LOMONOSOFF, G.P. A site-directed mutagenesis method utilising large double-stranded DNA templates for the simultaneous introduction of multiple changes and sequential multiple rounds of mutation: Application to the study of whole viral genomesJ. Virol. Methods, 2006, vol. 137, 63-71 [0192]
- LIU, L.CANIZARES, M.C.MONGER, W.PERRIN, Y.TSAKIRIS, E.PORTA, C.SHARIAT, N. NICHOLSON, L.LOMONOSOFF, G.P. Cowpea mosaic virus-based systems for the production of antigens and antibodies in plantsVaccine, 2005, vol. 23, 1788-1792 [0192]
- LOMONOSOFF, G. P. SHANKS, M. The nucleotide sequence of cowpea mosaic virus B RNAEMBO Journal, 1983, vol. 2, 2253-2258 [0192]
- MECHTCHERIAKOVA, I.A.ELDAROV, M.A.NICHOLSON, L.SHANKS, M.SKRYABIN, K.G.LOMONOSOFF, G.P. The use of viral vectors to produce hepatitis B virus core particles in plantsJ. Virol. Methods, 2006, vol. 131, 10-15 [0192]
- MONGER, W.ALAMILLO, J.M.SOLA, I.PERRIN, Y.BESTAGNO, M.BURRONE, O.R.SABELLA, P.PLANA-DURAN, J.ENJUANES, L.GARCIA, J.A. An antibody derivative expressed from viral vectors passively immunizes pigs against transmissible gastroenteritis virus infection when supplied orally in crude plant extractsPlant Biotechnol. J., 2006, vol. 4, 623-631 [0192]
- ROHLL, J.B.HOLNESS, C.L.LOMONOSOFF, G.P. MAULE, A.J. 3' terminal nucleotide sequences important for the accumulation of cowpea mosaic virus M-RNAVirology, 1993, vol. 193, 672-679 [0192]
- SAINSBURY, F. LAVOIE, P-O.D'AOUST, M-A.VEZINA, L-P.LOMONOSOFF, G.P. Expression of Multiple Proteins Using Full-Length and Deleted Versions of Cowpea Mosaic Virus RNA-2Plant Biotechnology Journal, 2008, vol. 6, 82-92 [0192]
- Cowpea mosaic virus-based expression vectorsSAINSBURY, F.CAÑIZARES, M.C.LOMONOSOFF, G.P. Virus Expression

VectorsTransworld Research Network20070000339-555 [0192]

- **SAINSBURY, F. LOMONOSOFF, G.P.** Extremely high-level and rapid transient protein production in plants without the use of viral replication *Plant Physiology*, 2008, vol. 148, 1212-1218 [0192]
- Cowpea mosaic virus-based expression of antigens and antibodies in plants **SAINSBURY, F. LIU, L. LOMONOSOFF G.P.** *Methods in Molecular Biology* Vol. 483 : Recombinant Pharmaceutical Proteins from Plants *Humana Press* 20090000 vol. 483, 25-39 [0192]
- **VAN BOKHOVEN, H. LE GALL, OKASTEEL, D. VERVER, J. WELLINK, J. VAN KAMMEN, A.** Cis- and Trans-acting Elements in Cowpea Mosaic Virus RNA Replication *Virology*, 1993, vol. 195, 377-386 [0192]
- **WELLINK J VERVER JVAN KAMMEN A.** Mutational analysis of AUG codons of cowpea mosaic virus M RNA *Biochimie*, 1993, vol. 75, 8741-7 [0192]
- **LEE LYGELVIN** SBT-DNA binary vectors and systems *Plant Physiology*, 2008, vol. 146, 325-332 [0193]
- **HAJDUKIEWICZ PSVAB ZMALIGA P** The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation *Plant Molecular Biology*, 1994, vol. 25, 989-994 [0193]
- **HELLENS RMULLINEAUX PKLEE HA** guide to Agrobacterium binary Ti vectors *Trends in Plant Science*, 2000, vol. 5, 446-451 [0193]
- **HIEI YOHTA S KOMARI TKUMASHIRO T** Efficient transformation of rice (*Oryza sativa* L) mediated by Agrobacterium and sequence-analysis of the boundaries of the T-DNA *Plant Journal*, 1994, vol. 6, 271-282 [0193]
- **VELUTHAMBI K JAYASWAL RK GELVIN SB** Virulence genes-a, gene-G, and gene-D mediate the double-stranded border cleavage of T-DNA from the Agrobacterium Ti plasmid *Proceedings of the National Academy of Sciences of the United States of America*, 1987, vol. 84, 1881-1885 [0193]
- **THOLE VWORLAND BSNAPE JWVAIN P** The pCLEAN dual binary vector system for Agrobacterium-Mediated plant transformation *Plant Physiology*, 2007, vol. 145, 1211-1219 [0193]
- **JOHANSEN L K CARRINGTON JC** Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system *Plant Physiology*, 2001, vol. 126, 930-938 [0193]
- **JANSSEN B J GARDNER RC** Localized transient expression of Gus in leaf-disks following cocultivation with Agrobacterium *Plant Molecular Biology*, 1989, vol. 14, 61-72 [0193]
- **NARASIMHULU SBDENG XSARRIA RGELVIN SB** Early transcription of Agrobacterium T-DNA genes in tobacco and maize *Plant Cell*, 1996, vol. 8, 873-886 [0193]
- **HELLENS RPEDWARDS EALEYLAND NRBEAN SMULLINEAUX PM** pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation *Plant Molecular Biology*, 2000, vol. 42, 819-832 [0193]
- **TZFIRA TTIAN GWLACROIX BVYAS SLI JXLEITNER-DAGAN YKRICHEVSKY ATAYLOR TVAINSTEIN ACITOFSKY** VpSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants *Plant Molecular Biology*, 2005, vol. 57, 503-516 [0193]
- **VOINNET ORIVAS SM ESTRE PBAULCOMBE D** An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus *Plant Journal*, 2003, vol. 33, 949-956 [0193]
- **FRISCH DAHARRISHALLER LWYOKUBAITIS NTTHOMAS TLHARDIN SHALL TC** Complete sequence of the binary vector BIN-19 *Plant Molecular Biology*, 1995, vol. 27, 405-409 [0193]
- **TRIEU-CUOT PCOURVALIN P** Nucleotide-sequence of the *Streptococcus faecalis* plasmid gene encoding the 3'5"-Aminoglycoside phosphotransferase type-III Gene, 1983, vol. 23, 331-341 [0193]
- **BEVAN M** Binary Agrobacterium vectors for plant transformation *Nucleic Acids Research*, 1984, vol. 12, 8711-8721 [0193]
- **SILHAVY DBURGYAN JE** Effects and side-effects of viral RNA silencing suppressors on short RNAs *Trends in Plant Science*, 2004, vol. 9, 76-83 [0193]
- **SCHOLTHOF HB** Heterologous expression of viral RNA interference suppressors: RISC management *Plant Physiology*, 2007, vol. 145, 1110-1117 [0193]
- **VAN ENGELEN FAMOLTHOFF JW CONNER AJ NAP J P PEREIRA ASTIEKEMA WJ** pBINPLUS - an improved plant transformation vector based on pBIN19 *Transgenic Research*, 1998, vol. 4, 288-290 [0193]
- **ROSSI LHOHN BTINLAND B** Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium *tumefaciens* *Proceedings of the National Academy of Sciences of the United States of America*, 1996, vol. 93, 126-130 [0193]
- **XIANG CBHAN PLUTZIGER IWANG KOLIVER DJA** mini binary vector series for plant transformation *Plant Molecular Biology*, 1999, vol. 40, 711-717 [0193]
- **HELLENS RPALLAN ACFRIEL ENBOLITHO KGRAFTON K TEMPLETON MD KARUNA RETNARN SG LEAVE APLAING WA** Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants *Plant Methods*, 2005, vol. 1, 13- [0193]
- **CHU M DESVOYES BTURINA M NOAD RSCHOLTHOF HB** Genetic dissection of tomato bushy stunt virus p19-protein-mediated host-dependent symptom induction and systemic invasion *Virology*, 2000, vol. 266, 79-87 [0193]
- **OMAROV R SPARKS KSMITH LZINDOVIC JSCHOLTHOF HB** Biological relevance of a stable biochemical interaction between the tombusvirus-encoded P19 and short interfering RNAs *Journal of Virology*, 2006, vol. 80, 3000-3008 [0193]

- **VAUCHERET H** Post-transcriptional small RNA pathways in plants: mechanisms and regulations *Genes & Development*, 2006, vol. 20, 759-771 [\[0193\]](#)
- **ZHANG BHPAN XPCOBB GPANDERSON TA** Plant microRNA: A small regulatory molecule with big impact. *Developmental Biology*, 2006, vol. 289, 3-16 [\[0193\]](#)
- **GIRITCH AMARILLONNET SENGLER CVAN ELDIK GBOTTERMAN JK** LIMYUK VGLEBA Y Rapid high-yield expression of full-size IgG antibodies in plants coinfecte with noncompeting viral vectors *Proceedings of the National Academy of Sciences of the United States of America*, 2006, vol. 103, 14701-14706 [\[0193\]](#)

Patentkrav**1. Genekspressionssystem, omfattende:**

(a) en ekspressionsenhancersekvens, der er afledt af RNA-2-genomsegmentet af en todelt *Comoviridae*-RNA-virus, hvori et translationsinitiationssted i RNA-2-genomsegmentet er blevet muteret,
5 hvor vildtype-RNA2-genomsegmentet af *Comoviridae*-virussen koder for to carboxy-coterminale proteiner via to forskellige translationsinitiationssteder, der er lokaliseret i den samme triplet-læseramme,
10 hvor det muterede initiationssted er det første af disse to initiationssteder og svarer til initiationsstedet i position 161 i vildtype-RNA-2-segmentet af CPMV; hvor ekspressionsenhancersekvensen enten:
(i) omfatter mindst en sekvens med 200 nukleotider af det comovirale RNA-2-genomsegment, som omfatter det muterede initiationssted, eller
15 (ii) er mindst 70% identisk med nukleotid 1 til 507 af CPMV-RNA-2-genomsegmentsekvensen, der er vist i tabel 1, og hvor initiationsstedet i position 161 i vildtype-CPMV-RNA-2-genomsegmentet er blevet muteret, og
(b) et heterologt gen, der koder for et protein af interesse,
hvor genet, der koder for proteinet af interesse, er lokaliseret nedstrøms for
20 enhancersekvensen og er operabelt forbundet med promoter- og terminatorsekvenser.

2. Genekspressionssystem, omfattende et genekspressionskonstrukt, der omfatter:

(a) en ekspressionsenhancersekvens, der er afledt af RNA-2-genomsegmentet af en todelt *Comoviridae*-RNA-virus, hvori et initiationssted i RNA-2-genomsegmentet er blevet muteret,
25 hvor vildtype-RNA2-genomsegmentet af *Comoviridae*-virussen koder for to carboxy-coterminale proteiner via to forskellige translationsinitiationssteder, der er lokaliseret i den samme triplet-læseramme,
30 hvor det muterede initiationssted er det første af disse to initiationssteder og svarer til initiationsstedet i position 161 i vildtype-RNA-2-segmentet af CPMV (cowpea mosaic virus);
hvor ekspressionsenhancersekvensen enten:
35 (i) omfatter mindst en sekvens med 200 nukleotider af det comovirale RNA-2-genomsegment, som omfatter det muterede initiationssted, eller

(ii) er mindst 70% identisk med nukleotid 1 til 507 af CPMV-RNA-2-genomsegmentsekvensen, der er vist i tabel 1, og hvor initiationsstedet i position 161 i vildtype-CPMV-RNA-2-genomsegmentet er blevet muteret, og

5 (b) en heterolog sekvens til at lette indføring af et gen, der koder for et protein af interesse, i genekspressionssystemet, hvor den heterologe sekvens er lokaliseret nedstrøms for det muterede initiationssted i enhancersekvensen; og eventuelt

(c) en 3'-UTR.

10 **3.** Genekspressionssystem ifølge krav 1 eller 2, omfattende eller endvidere omfattende en 3'-UTR, der eventuelt er afledt af den samme todelte RNA-virus.

15 **4.** Genekspressionssystem ifølge et af kravene 1 til 3, hvor den todelte RNA-virus er en comovirus, hvor comovirussen eventuelt er CPMV.

20 **5.** Genekspressionssystem ifølge krav 4, hvor enhancersekvensen omfatter mindst nukleotid 10 til 512, 20 til 512, 30 til 512, 40 til 512, 50 til 512, 100 til 512, 150 til 512, 1 til 514, 10 til 514, 20 til 514, 30 til 514, 40 til 514, 50 til 514, 100 til 514, 150 til 514, 1 til 511, 10 til 511, 20 til 511, 30 til 511, 40 til 511, 50 til 511, 100 til 511, 150 til 511, 1 til 509, 10 til 509, 20 til 509, 30 til 509, 40 til 509, 50 til 509, 100 til 509, 150 til 509, 1 til 507, 10 til 507, 20 til 507, 30 til 507, 40 til 507, 50 til 507, 100 til 507 eller 150 til 507 af en comoviral RNA-2-genomsegmentsekvens med det muterede initiationssted.

25 **6.** Genekspressionssystem ifølge krav 5, hvor enhancersekvensen omfatter nukleotid 10 til 512, 20 til 512, 30 til 512, 40 til 512, 50 til 512, 100 til 512, 150 til 512, 1 til 514, 10 til 514, 20 til 514, 30 til 514, 40 til 514, 50 til 514, 100 til 514, 150 til 514, 1 til 511, 10 til 511, 20 til 511, 30 til 511, 40 til 511, 50 til 511, 100 til 511, 150 til 511, 1 til 509, 10 til 509, 20 til 509, 30 til 509, 40 til 509, 50 til 509, 100 til 509, 150 til 509, 1 til 507, 10 til 507, 20 til 507, 30 til 507, 40 til 507, 50 til 507, 100 til 507 eller 150 til 507 af CPMV-RNA-2-genomsegmentsekvensen, der er vist i tabel 1, hvor initiationsstedet i position 161 i vildtype-CPMV-RNA-2-genomsegmentet er blevet muteret.

30

35

7. Genekspressionssystem ifølge krav 4, hvor enhancersekvensen er mindst 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80% eller 75% identisk med CPMV-RNA-2-genomsegmentsekvensen, der er vist i tabel 1, hvor initiationsstedet i position 161 i vildtype-CPMV-RNA-2-genomsegmentet er blevet muteret.

5

8. Genekspressionssystem ifølge et af kravene 3 til 7, omfattende:

(a) en promoter;

(b) nukleotid 1 til 507 af cowpea-mosaic-virus-RNA-2-genomsegmentsekvensen, der er vist i tabel 1, AUG i position 161 er blevet muteret som vist i tabel 2, lokaliseret nedstrøms for promoteren;

(c) et gen, der koder for et protein af interesse, lokaliseret nedstrøms for sekvensen, der er defineret i (b);

(d) nukleotid 3302 til 3481 af cowpea mosaic virus-RNA-2-genomsegmentsekvensen, der er vist i tabel 1, lokaliseret nedstrøms for genet, der koder for proteinet af interesse; og

(e) en nopalinsyntaseterminator, der er lokaliseret nedstrøms for sekvensen, der er defineret i (d), eller omfattende:

(a) en promoter;

(b) en ekspressionsenhancersekvens, der er mindst 70% identisk med nukleotid 1 til 507 af cowpea mosaic virus-RNA-2-genomsegmentsekvensen, som er vist i tabel 1, hvor AUG i position 161 er blevet muteret, lokaliseret nedstrøms for promoteren;

(c) et gen, der koder for et protein af interesse, lokaliseret nedstrøms for sekvensen, der er defineret i (b);

(d) nukleotid 3302 til 3481 af cowpea mosaic virus-RNA-2-genomsegmentsekvensen, der er vist i tabel 1, lokaliseret nedstrøms for genet, der koder for proteinet af interesse; og

(e) en nopalinsyntaseterminator, der er lokaliseret nedstrøms for sekvensen, der er defineret i (d).

9. Genekspressionssystem ifølge et af kravene 4 til 8, hvor den todelte RNA-virus er CPMV, og AUG i position 115 også er muteret.

35

10. Genekspressionssystem ifølge et af kravene 3 til 7, omfattende:

(a) et første genkonstrukt, der omfatter en sekvens, der er afledt af en afkortet RNA-2 af et todelt *Comoviridae*-virusgenom, der bærer mindst et fremmed gen, der koder for et heterologt protein af interesse, som er operabelt forbundet med promoter- og terminatorsekvenser, hvor genkonstruktet omfatter det muterede initiationssted opstrøms for det fremmede gen,
5 hvor RNA2-genomsegmentet af *Comoviridae*-virussen koder for to carboxy-coterminale proteiner via to forskellige translationsinitiationssteder, der er lokaliseret i den samme triplet-læseramme,
hvor det muterede initiationssted er det første af disse to initiationssteder og
10 svarer til initiationsstedet i position 161 vildtype-RNA-2-segmentet af CPMV; og eventuelt
(b) et andet genkonstrukt, der eventuelt er inkorporeret i det første genkonstrukt, omfattende en heterolog gene-silencing-suppressor, der er operabelt forbundet med promoter- og terminatorsekvenser.
15

11. Genekspressionssystem ifølge et af de foregående krav, der er en binær DNA-vektor.

12. Fremgangsmåde til forøgelse af ekspressionen eller den translationsforbedrende aktivitet af en sekvens, der er afledt af et RNA-2-genomsegment af en todelt *Comoviridae*-virus, omfattende et translationsinitiationssted deri,
20 hvor RNA2-genomsegmentet af *Comoviridae*-virussen koder for to carboxy-coterminale proteiner via to forskellige translationsinitiationssteder, lokaliseret i den samme triplet-læseramme,
hvor det muterede initiationssted er det første af disse to initiationssteder og
25 svarer til initiationsstedet i position 161 i vildtype-RNA-2-segmentet af CPMV, hvor mutationen udføres enten ved:
(i) en punktmutation på initiationsstedet, eller
(ii) en deletion på op til 50 nukleotider i længden, herunder initiationsstedet,
30 hvor mutationen forbedrer ekspressionen af en heterolog ORF, som sekvensen er bundet til.

13. Fremgangsmåde til ekspression af et heterologt protein af interesse i en værtsorganisme under anvendelse af et genekspressionssystem ifølge et af kravene 1 til 10, hvor værtsorganismen er en eukaryotisk vært, der eventuelt er en plante eller et insekt.
35

14. Fremgangsmåde til forbedring af translationen af et heterologt protein af interesse fra et gen eller en ORF (open reading frame), der koder for den samme, der er operabelt forbundet med et RNA2-genomsegment af en sekvens, der er afledt af en todelt *Comoviridae*-virus,

5 hvor RNA2-genomsegmentet af *Comoviridae*-virussen koder for to carboxy-coterminale proteiner via to forskellige translationsinitiationssteder, lokaliseret i den samme triplet-læseramme,

10 omfattende mutation af det første af disse to initiationssteder i den RNA2-afledte sekvens, hvor det muterede initiationssted svarer til initiationssteder i position 161 i vildtype-RNA-2-segmentet af CPMV,

15 hvor mutationen udføres ved enten:

- (i) en punktmutation på initiationsstedet, eller
- (ii) en deletion på op til 50 nukleotider i længden, herunder initiationsstedet.

15 15. Fremgangsmåde ifølge krav 13 til ekspression af et heterologt protein i en plante, om trinnene med:

(a) at indføre et genekspressionskonstrukt, omfattende et første genkonstrukt, omfattende en sekvens, der er afledt af en afkortet RNA-2 af et todelt *Comoviridae*-virusgenom, der bærer mindst et fremmed gen, der koder for et heterologt protein af interesse, som er operabelt forbundet med promoter- og terminatorsekvenser,

20 hvor genkonstruktet omfatter et muteret initiationssted opstrøms for det fremmede gen, i en plantecelle,

25 hvor RNA2-genomsegmentet af *Comoviridae*-virussen koder for to carboxy-coterminale proteiner via to forskellige translationsinitiationssteder, der er lokaliseret i den samme triplet-læseramme,

30 hvor det muterede intiationssted er det første af disse to initiationssteder og svarer til initiationssteder i position 161 i vildtype-RNA-2-segmentet af CPMV; og eventuelt

(b) at indføre et andet genkonstrukt, der eventuelt er inkorporeret i det første genkonstrukt, omfattende en gene-silencing-suppressor, der er operabelt forbundet med promoter- og terminatorsekvenser, i plantecellen.

16. Værtsorganisme, der er transient transficeret med og omfatter et genekspressionssystem ifølge et af kravene 1 til 11, hvor værtsorganismen eventuelt er en plante eller plantecelle.

5 **17.** Transgen værtsorganisme, der er stabilt transformeret med og omfatter et genekspressionssystem ifølge et af kravene 1 til 11.

DRAWINGS

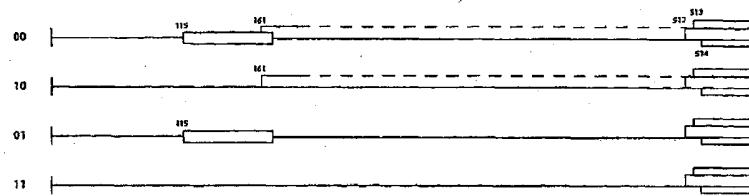


FIGURE 1

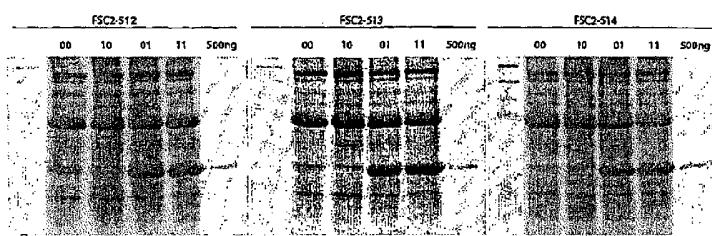


FIGURE 2

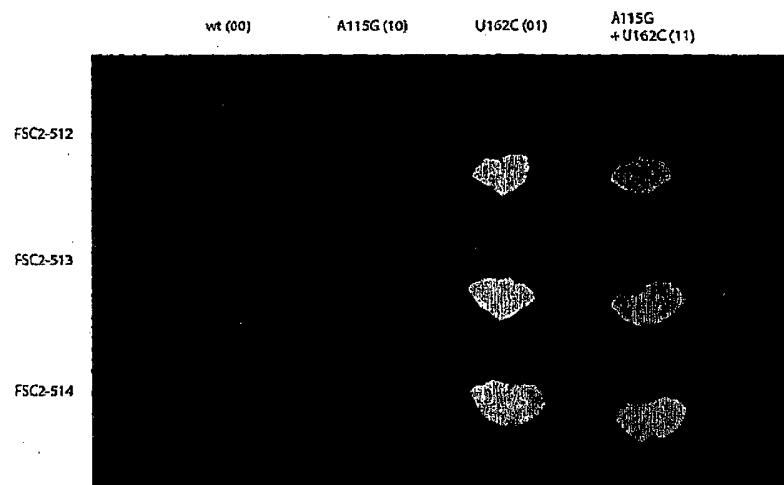
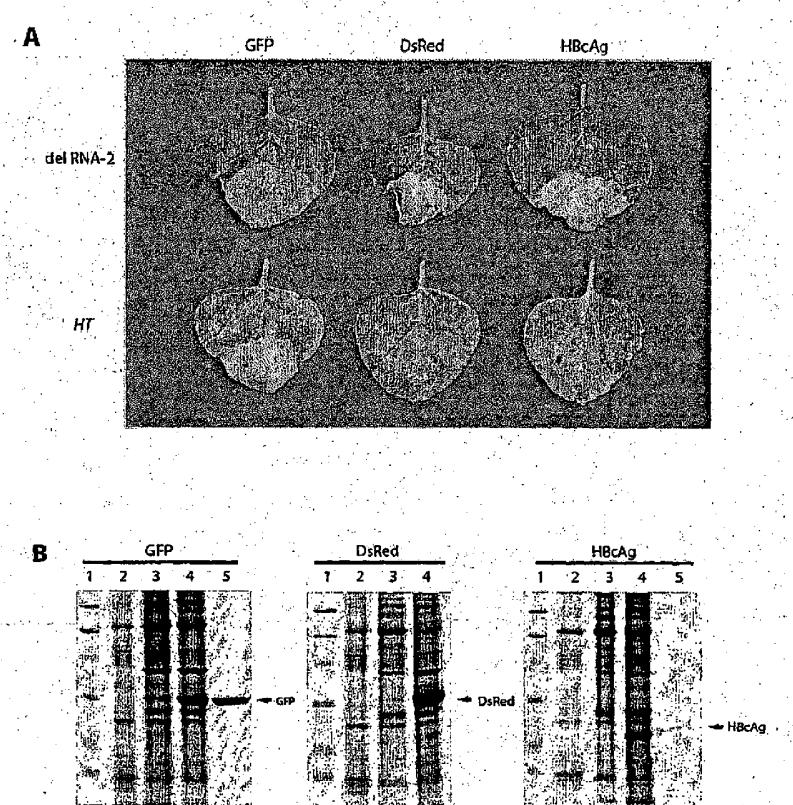
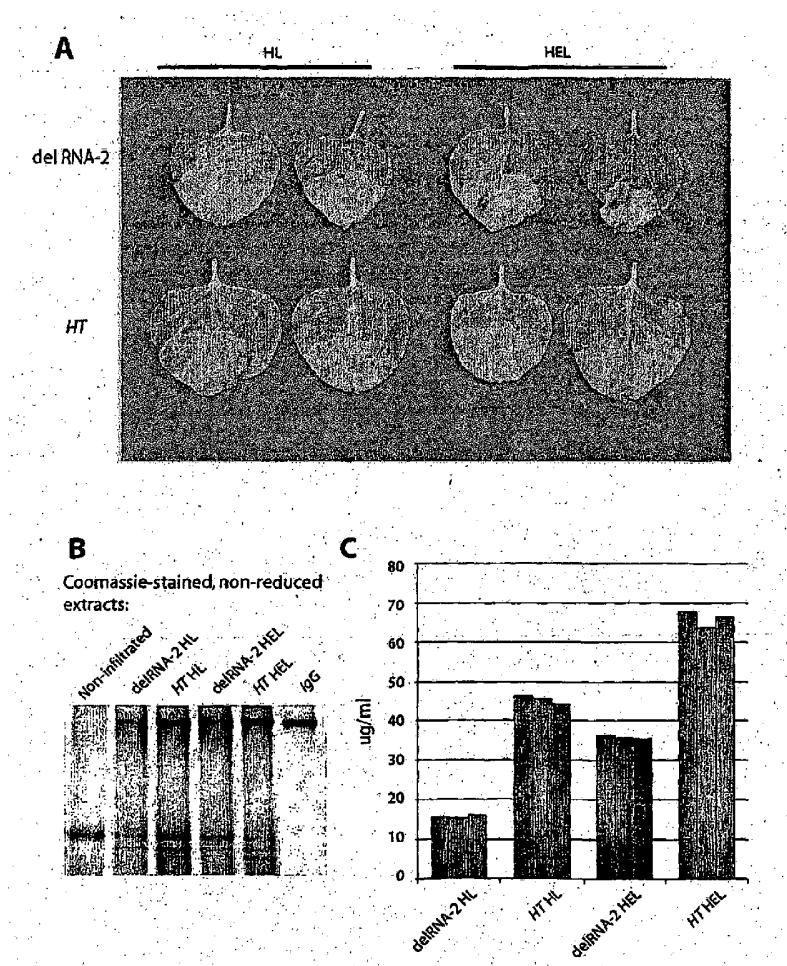




FIGURE 3

FIGURE 4

FIGURE 5

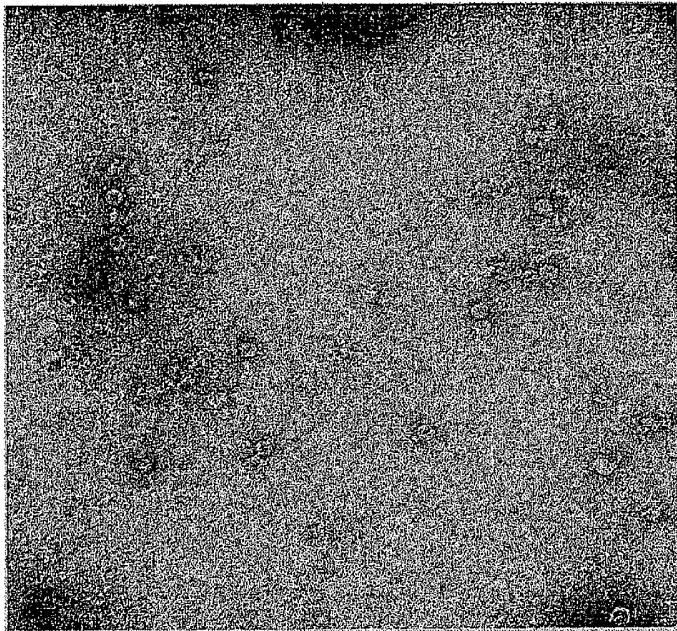


FIGURE 6

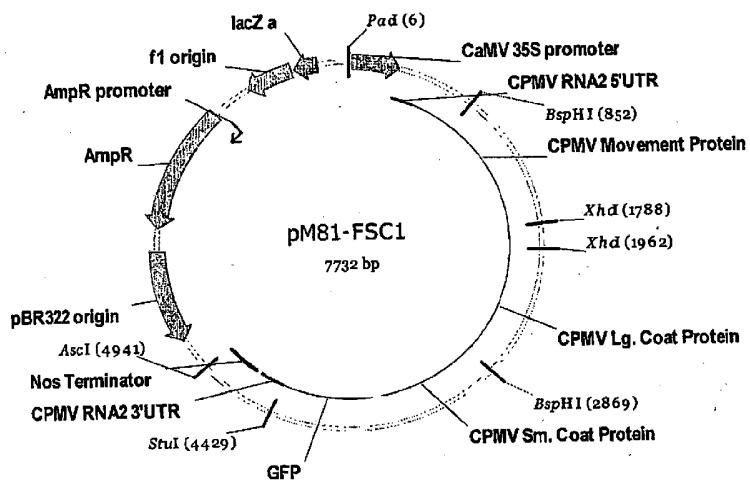


FIGURE 7

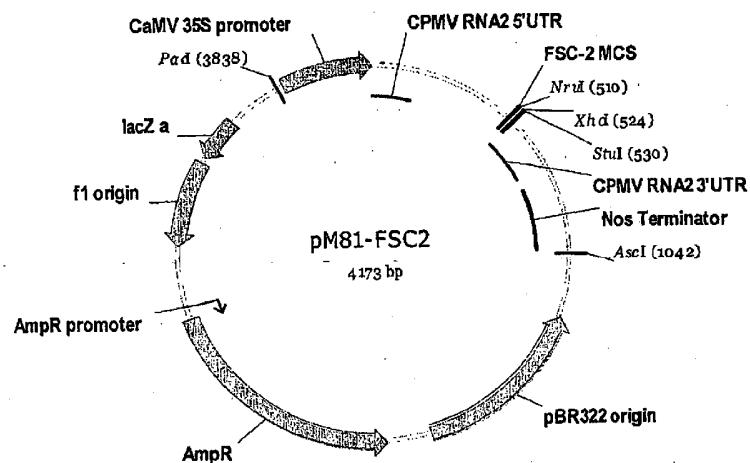


FIGURE 8

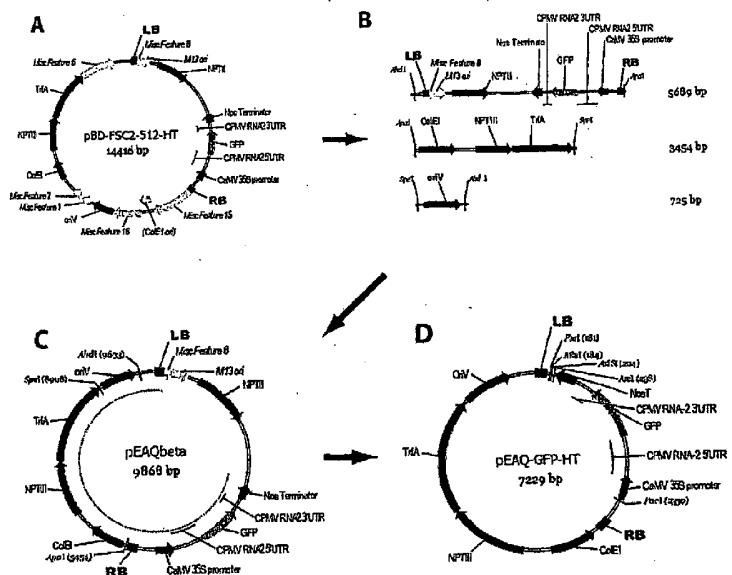


FIGURE 9

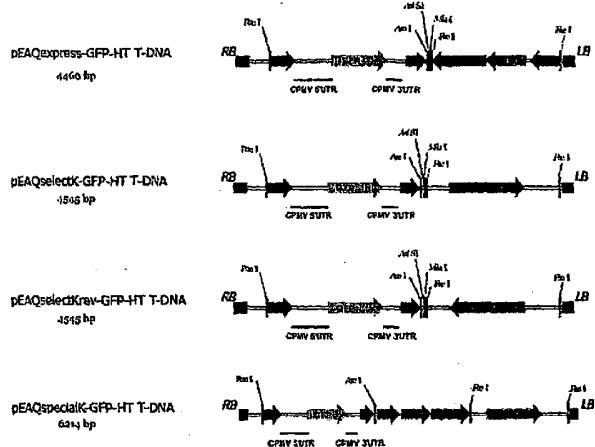


FIGURE 10

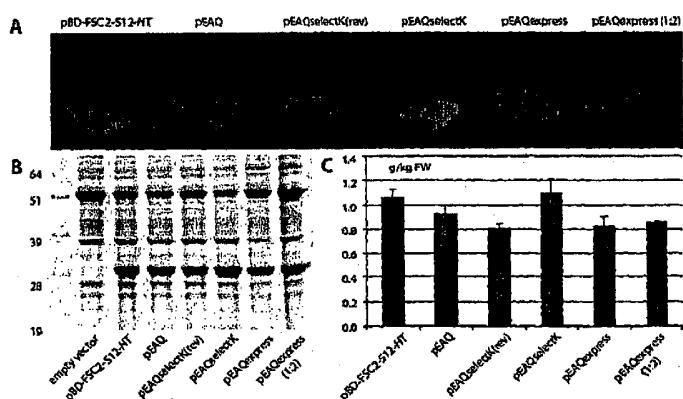


FIGURE 11

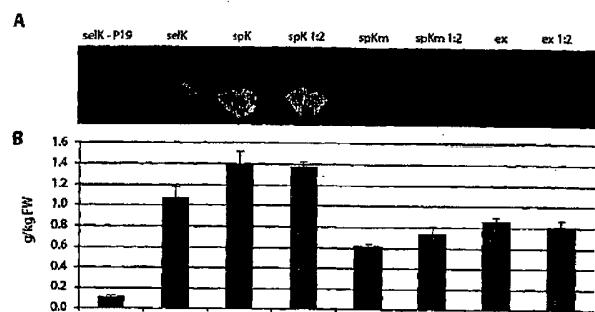


FIGURE 12

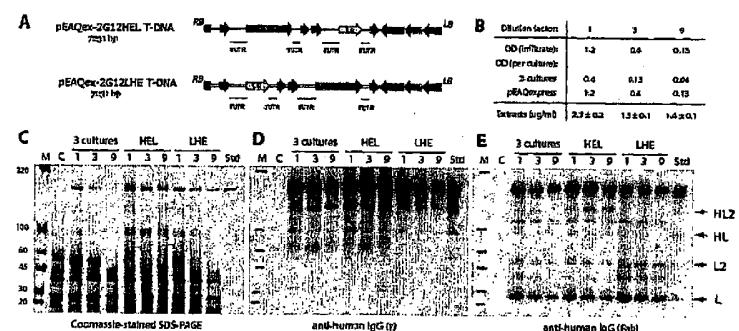


FIGURE 13

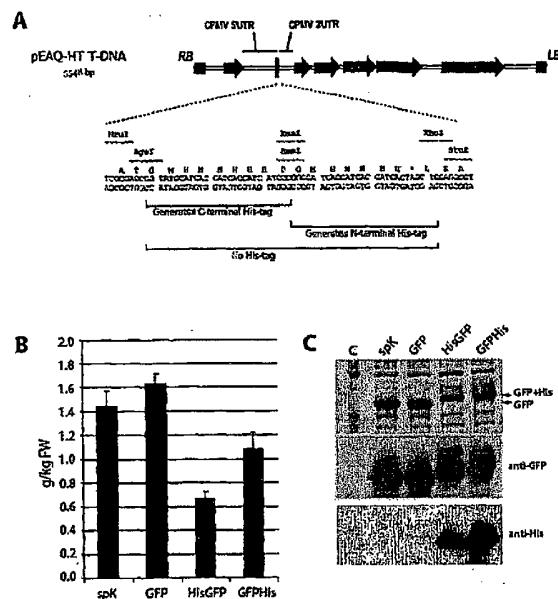


FIGURE 14



FIGURE 15