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FIG. 6
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% Taking your photo
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1

METHODS OF GENERATING PERSONALIZED 3D HEAD MODELS OR
3D BODY MODELS '

BACKGROUND OF THE INVENTION
1. Field of the Invention

The field of the invention relates to methods of generating personalized 3D head models

ot 3D body models of a user, and to related systems and'computet program products.
2. Technical Background

Online body shape and garment outfitting visualisation technology, often known
through virtual fitting rooms (VFR), emerged in the last decade and has now been.
adopted by many online retailers. The VFR system, represented by e.g Metail [1], allows
e-shoppers to create a 3D avatar represenﬂng their own shape, and interactively to dress
the avatar to provide a photo-realistic visualisation of how clothes will look and fit on a
representative body model. The more closely the avatar resembles the user, the more
compelling the user may find the technology and the more they may trust the

technology. -

It is typically impractical to set up a photography studio so that users may be
photographed to high quality, so that a high quality 3D head model or a high quality 3D
body model may be produced using high quality input photos. It is practical to teceive -
photos taken by users of themselves using a smartphone, but so far there has been no
way of using such photos to produce a high quality 3D head model ot a high quality 3D
body model.

This patent specification describes not only various ideas and functions, but also their

creative expression. A portion of the disclosure of this patent document therefore

contains material to which a claim for copyright is made and notice is heteby given:

© Metail Limited (e.g. pursuant to 17 U.S.C. 401). A claim to copyright protection is
made to all protectable expression associated with the examples of the invention

illustrated and described in this patent specification.
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The copyright owner has no objection to the facsimile teproduction by anyone of the

patent document or the patent disclosure, as it appears in the Patent and Trademark

Office patent file or records, but reserves all other copyright rights whatsoever. No

express or implied license under any copyright whatsoever is therefore granted.
3. Discussion of Related Art

W0O2012110828A1 discloses methods for generating and sharing a virtual body model
of a person, created with a small number of measuréments and 2 single photograph,
combined with one or more images of garments. The virtual body model represents a
realistic representation of the users body and is used for visualizing photo-realistic fit
visualizations of garments, ‘hair.styles, make-up, and / or other accessoties. The virtial
garments are created from layers based on photographs of real garment from multiple
angles. Furthermore the virtual body model is used in multiple embodiments of manual
and automatic garment, make-up, and, hairstyle recommendations, such as, from
channels, friends, and fashion entities. The virtual body model is ‘shareable for, as
example, visualization and comments on looks. Furthermore it is also used for enabling
users to buy garmeﬁts that fit other users, suitable for gifts or similar. The
implementation can also be used in peer-to-peer online sales where ga1_':ments can be

bought with the knowledge that the seller has a similar body shape and size as the user.
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SUMMARY OF THE INVENTION

According to a first aspect of the invention, there is provided' a method of generating an
image file of a personalized 3D head model of a uset, the method comprising the steps
of:

(i) acquiring at least one 2D image of the user’s face;

(i) performing automated face 2D landmark recognition based on the at least one 2D
image of the uset’s face;

(i) providing a 3D face geometry reconstruction using a shape ptiot;

(iv) providing texture map generation and interpolation with respect to the 3D facé
geometty reconstruction to generate'a personalized 3D head model of the user, and

(v) generating an image file of the personalized 3D head model of the user.

The image file may be a well-known format such as a jpeg, png, html or tiff. The image
file may be transmitted to a user, via a communications network. The image file may be
rendered on a user device, such as a mobile device such as a smartphone or 2 tablet
computet, or on another device such as a laptop or a desktop computer. A processor
may be configured to perform steps (i) to (v) of the method, or steps (i) to (v) of the
method.

An advantage is that a high quality persohalized 3D head model of the user is provided.
Therefore the personalized 3D head model of the user, which may be part of a 3D body
model of the user, may be used in online commerce, such as in online garment

modelling.

The method may be one wherein the at least one 2D image of the user’s face is acquired

via a network communication.

The method may be one whetrein the at least one 2D image of the user’s face is acquired

via the network communication, from a smartphone including a camera.

The method may be one wherein the at least one 2D image of the user’s face is a front

image of the user’s face.
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The method may be one wherein the at least one 2D image of the user’s face is a

smartphone camera image of the user’s face.

The method may be one wherein the automated face 2D landmark recognition includes

using a 2D face landmark detector.

The method may be one wherein the 2D face landmark detector is implemented based

on a regression forest algorithm.

The method may be one wherein the automated face 2D landmark recognition includes

using a 3D Constraint Local Model (CLM) based facial landmark detector.

The method may be one wherein providing a 3D face geometry reconstruction using a
shape prior includes generating an approximate 3D face geometry using 3D head shape
ptiots, followed by refining the 3D face geometry based on the distribution of the
recognized 2D face landmarks.

The method may be one wherein generating an approximate 3D face geometry using 3D

‘head shape priors includes finding an approximate head geometry as an initialisation

using a generative shape prior that models shape variation of an object category in a low

dimensional subspace, using a dimension reduction method.
The method may be one wherein in which a full head geometry of the user ‘is
reconstructed from this low dimensional shape prior using a small number of parameters

(e.g. 3 to 10 parameters).

The method mayv be one in which a principal component analysis (PCA) is used to

capture dominant modes of human head shape variation.

The method rhay be one in which using a shape ptior selection process is used to find
the most suitable shape prior from a library, using selection criteria such as the user’s

ethnicity, gender, age, and other attributes.
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The method may be one in which 2 machine-learning-based attribute classifier, which
can be implemented by eg a deep convolutional neural netwotk (CNN), is used to

analyze the at least one 2D image of the user’s face, and predict attributes (e.g. ethnicity, -

‘gender, and age) from the appearance information (z.e. skin colour, hair colour and styles,

etc.) in the at least one 2D image of the user’s face.

The method may be one in which a selection is performed of an appropriate 3D shape
ptior from a library based on matching a user’s attributes with those defined for each

shape prior.

The method may be one in which head geometry is improved for better realism by
deforming an initial head model by rectifying the face landmark positions of the 3D
model in the ditections within an image plane of the at least one 2D image of the user’s
face, so that a projection of facial landmarks on the 3D face model is a similarity
transform of the cotresponding 2D facial landmarks in the at least one 2D image of the

user’s face.

“The method may be one in which a 3D thin-plate spline (TPS) deformation model is

used to rectify a 3D geometry of a regressed head model to achieve better geometric
similarity, so as to generate a smooth interpolation of 3D geometry deformation
throughout the whole head mesh from control point pairs.

The method may be one in which the image file is a 3D image file.

The method may be one in which the image file is a 2D image file.

The method may be one in which the image file is an animation file.

The method m;y be one in which the image file is a personalised sticker set.

The method may be one in which UV texture cootdinates are determined for the texture

vertices of each mesh triangle of a 3D mesh geometry of the user’s face.
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The method may be one in which the UV coordinate of a landmark vertex is computed
based on the result of the corresponding 2D face landmark position detected by the 2D

face landmark detector on the at least one 2D image of the user’s face.

The method may be one in which to complete the texture map of the 3D face/head
model, 2 2D thin plate spline (TPS) model is used for interpolation and to populate the

UV texture coordinates over other mesh vertices.

The method may be one in which to construct a TPS model for textute coordinate
interpolation, the frontal-view landmark projection of all the face landmarks and its

texture coordinates, assigned previously as source-sink control point pairs, are used.

The method may be one in which the at least one 2D image of the uset’s face comprises

at least a front image, a left side image and a tight side image, of the user’s face.

The method may be one in which following generating an approximate 3D face model
from a frontal view image and uéing it as an initialisation model, a step is performed of
petforming an iterative optimisation algbrithm for revising the initial 3D fac‘e.geornetry,
which is implemented to minimise the landmark re-projection etrors against independent

2D face landmark detection results obtained on all face images.

The method may be one including the step of the 3D face model being morphed with 2

new set of landmark positions, using a 3D thin-plate spline model.

The method may be one in which the steps of the previous two sentences are repeated

until convergence of the 3D face model is achieved.

The method may be one in which a colour tone difference between images is repaired by
adding a colour offset at each pixel, and in which the colour offset values at the

boundary are propagated to all image pixels using Laplacian diffusion.

The method may be one in which highlight removal is performed by a) }ﬁghiight

detection and b) recovering true colour.
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The method may be one in which for Highlight deteétio'n, a highlight probability map
based on the colour distribution of corresponding facets across all input images is
created, and the colour of the highlighted region is then recovered using the gradient of

one of the input images.

The method may be one in which camera projection matrices are detived to establish a

link between a 3D face model and the inpﬁt images.

The method may be one in which in the case of face images a model based feature
detector, e a 3D Constraint Local Model (CLM) based facial landmark detector, is used,

and an associated camera model is used to detive a relative camera position.

The method may be one in which a projective camera model is used to account for
potential perspective distortions, and so the initial camera parameters from a CLM

tracker are refined using bundle adjustment.

The method may be one in which the bundle adjustment refines 3D vertices and camera

poses using a projective camera model.

The method may be one in which a facial mask is approximated as a sum of two masks,
which are an ellipse fitting .of the 2D facial landmarks from a CLM tracker, and the
projection of initial front vertices.

‘The method may be one in which to address a seam from a refinement, the colour of the

front view is updated.

The method may be one in which local highlight detection and removal is performed.

The method may be one in which for highlicht detection and femowval, a highlight
probability map is detived from a colour difference of a single facet, in which to retrieve
a colour of the facet the vertices of the facet are back projected onto the input images -

and a 2D affine transform between views is derived.’
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The method may be one in which, to create the probability map, a logistic function
working as a switch is used, which gives a high probability when the difference between
the median of the mean intensities and the maximum of the mean intensites is bigger

than a certain thresholdhead size is estimated from body shape parameters.
The method may be one in which recovering colour for a highlighted area is performed.

The method may be one in which hairstyle customisation on the user’s 3D head model is

supported.
The method may be one in which head size is estimated from body shape parameters.

The method may be one in which an automatic image analysis is performed to help users

quickly acquire input data of gocd quality so that they have a better chance of creating a

. photo-tealistic personalised avatar.

The method may be one in which pfior to starting the video or image capture, the user is
presented with a live view of the camera feed, and a feedback mechanism analyses the
live view and, if necessary, provides the user with recommendations on how to improve

the conditions in order to achieve a high quality end result.

According to a second aspect of the invention, there is provided a system configured to

petform a method of any aspect of the first aspect of the invention.

According to a third aspect of the invention, there is provided a computer program
product executable on a processor to generate an image file of a personalized 3D head
model of a user, the computer program product executable on the processor to:

(i) receive at least one 2D image of the user’s face;

(i) perform an automated face 2D landmark recognition based on the at least one 2D
image of the user’s face; | ‘

(iii) provide a 3D face geometry reconstruction using a shape prior;

(iv) provide texture map generation and interpolation with respect to the 3D face
geometry reconstruction to generate a personalized 3D head model of the user, and

(v) generate an image file of the personalized 3D head model of the user.



10

15

20

25

30 -

The computer program product may be executable on the processor to petform a

method of any aspect of the first aspect of the invention.

According to a fourth aspect of the invention, there is provided a method of generating

an image file of a personalized 3D head model of a user, the methiod comprising the

.steps of:

(1) acquiring at least one 3D scan of the user’s face;

(ii) using a template mesh fitting process to fit the at least one 3D scan of the uset’s face;
(iii) generating a personalized 3D head model of the user based on the template mesh
fitting process, and

(iv) generating an image file of the personalized 3D head model of the user.

The method may be one in which the 3D scan of the uset’s face is (i) from an image-
based 3d reconstruction process using the techniques of structure from motion (SfM) or
simultaneous localisation and mapping (SLAM), (ii) from a depth scan captured by a

depth camera, or (iii) from a full 3D scan, captuted using a 3D scanner.

The method may be one in which the template mesh fitting process is petformed in 2
first stage by introducing a 3D morphable head model (3DMHM) as a shape prior, in
which a geometty of the user’s 3D scan is fitted by the morphable héad model by a
bundle adjustment optimisation process that finds the optimal shape morph parameters
of the 3DMHM, and 3D head pose parameters, and in a second stage, using the result of
the first stage as the starting point, apply a non-rigid iterative closest point (N-ICP)
algorithm, which deforms the resulting mesh to achieve a better surface matching with

the at least one 3D scan of the user’s face.

The method may be one in which the image file is a 3D image file.
The method may be one in which the image file is 2 2D image file.
TheT n‘aethdd may be one in which the image file is aﬁ animation file.

The method may be one in which the image file is a personalised sticker set.
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The method may be one in which the head size is estimated from body shape

parameters.
The method may be one in which a texture map is generated for a registeted head mesh.

According to a fifth aspect of the invention, there is provided a system configured to a

perform a method of any aspect of the fourth aspect of the invention.

According to a sixth aspect of the invention, there is provided a computer program
product executable on a processot to generate an image file of a personalized 3D head
model of a user, the computer program product executable on the processor to:

(i) receive at least one 3D scan of the user’s face;

(ii) use a template mesh fitting process to fit the at least one 3D scan of the user’s face;
(i) generate a personalized 3D head model of the user based on the template mesh
fitting process, and |

(iv) generate an image file of the personalized 3D head model of the user.

The computer program product may be executable on the processor to petform a

method of any aspect of the fourth aspect of the invention.

According to a seventh aspect of the invention, there is provided a method of
personalised body shape modelling, which helps a user to further constrain their body
shape, improve an accuracy of 3D body modelling, and personalise their body avatar,

comprising the steps of:

" (i) receiving a high-definition 3D body profile usable for outfitting and visualisation,

from a full-body scan of the user;

(ii) applying a template mesh fitting process to regularize and normalize mesh topology

and resolution deerived from the full-body scan of the user;

(iii) generating a personalized 3D body model of the user based on the template mesh

fitting process, and

| (iv) generating an image file of the personalized 3D body model of the user.
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The method may be one in which in ster) (i), a coarse-fitting of body shape and pose

under the constraint of a 3D human shépe prior is performed.

The method may be one in which in step (ii), optimisation is formulated as a bundle-
adjustment-like problem, in which fitting error is minimized over the PCA morph

parameters and bone poses.
The method may be one in which in step (ii), given the coarse-fitting result as the
starting point, a fine-fitting of the geometry and also. refining the bone poses with an

ICP algorithm is applied.

The method may be one in which multiple input depth scans of different camera views

are used for the mesh fitting.

The method may be one inclﬁding attaching a personalized 3D head model of the user

of any aspect of the first aspéct of the invention, to the 3D body model.

The method may be one in which skin tone is adjusted so as to match the skin tone of

the 3D head model with the skin tone of the 3D body model.

According to an eighth aspect of the invention, there is provided a system configured to

perform a method of any aspect of the seventh aspect of the invention.

According to an ninth aspect of the invention, thete is provided a method including the
steps of:

(i) providing an interactive UI to help users refine their 3D body avatar and edit their
own body tone easily, in which the Ul is built based on a dimension reduction algorithm
(eg PCA), which models the distribution of 3D modelling error of the body shape

regressor and allows the users to fill in their missing body shape variation efficiently.

The method may be one in which, in a first stége, a user can generate an initial 3D body

avatar from the input of their body measurements through regression.
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The method may be one in which in a second stage, a plurality of sliders are then
displayed to the user for the user to refine the body shape interactively from the initial

3D body avatar generated in the first stage.
The method may be one in which the shape modes of a residual model ate used to
define the fine-gained body shape variation, in which each slider corresponds to a

particular principal component of the model.

According to a tenth aspect of the invention, there is provided an end-to-end method or

~ system for virtual fitting, which combines a personalized 3D head model of a user of any

aspect of the first aspect of the invention, in attachment with a personalized 3D body
model of the user of any aspect of the seventh aspect of the invention, wherein the
personalized 3D body model of the user is modifiable using a method of any aspect of

the ninth aspect of the i mvenuon

According to an eleventh aspect of the invention, there is provided a commercial social
network website configured to transmit an image file of the personalized 3D head model

of the user, of any aspect of the first aspect of the invention.

According to an twelfth aspect of the invention, there is provided a web-zpp, chatbot, or

other form of plug-in for messengers or social network applications, configured to

‘transmit an image file of the personalized 3D head model of the user, of any aspect of

the first aspect of the invention.

According to an thirteenth aspect of the invention, there is provided a method for
processing a photo containing multiple faces of a collection of people, to generate a
group animation automatically, comprising the steps of: ’

(@) from at least one input image of multiple faces, detect all frontal faces in the at least
one input image, and the associated 2D face landmarks for each face;

(ii) reconstruct the 3D face for each individual in the at least one input image based on
the 2D face landmark detection results, and .

(iii) render an animation that contains some or all of the resulting 3D faces using

distinctive time-sequences of head pose parameters defined for each face.
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Accotding to an fourteenth aspect of the invention, there is provided a method of
reconstructing a user’s body shape more accurately using a question and survey based UlI,
the method comprising the steps of:

(@) identifying existing body metrics and measurements relating to the user;

(i) providing to the user in a user interface questions about their body shape awareness
and lifestyle;

(iii) receiving from the user interface answers to the questions about the user’s body
shape awareness and lifestyle;

(iv) converting the received answers into a set of numerical or semantic body shape

attributes.

The method may be one including the further steps of:
(v) mapping from the set of numerical or semantic body shape attributes, in combination
with the existing body metrics and measurements relating to the user, to the subspace of

body shape vatiation using regression tools, and

. (vi) reconstructing the user’s body shape more accurately.

The method may be one including the further steps of:

(v) petforming multiple regressors/mappings' from body measurements to the
parameters of the motphable body model, with each regressor trained on the data
grouped by numerical or semantic body shape attributes, and

(vi) reconstructing the uset’s body shape more accurately.

The method may be one in which an optimisation approach is used to find out the best
set of questions to ask in the UI that would yield the most accurate body shapes, which
is done based on the criteria of any of the following: 1) minimizing the number of
questions or 2) minimizing the 3D reconstruction error of the body shape, or 3) a

combination of 1) and 2).

According to an fifteenth aspect of the invention, there is provided a method of
reconstructing a user’s body shape by requesting additional measurements using a
measurement selection process, comprising the steps of:

(i) receiving an indication of a body size from a uset;

(ii) identifying a body shape dataset which conespoﬁds to the indicated body size;



10

15

14

(iif) evaluéting 3D reconstruction errors of all different body shape.regressors based on
different sets of measurement input over the identified body shape dataset;

(iv) evaluating the respective decreases of 3D reconstruction errors by introducing each
respective new measurement as an extra measurement on top of an existing set of
measurements input for body shape regression; _

(v) identify the measurement that gives the largest error decrease;

(vi) requesting the user for an input of the identified measurement that gives the largest
erfor decrease;

(vi) receiving the input of the identified measurement that gives the largest error
decrease, and

(viii) teconstructing the user’s body shape using the inputted measurement.

The method may be one in which a UI is integrated with an application programming
interface (APT) of a digital tape/string/ultrasonic measurement device with Bluetooth
data transfer mechanism, which allows the user to easily transfer the measurement data

on to the virtual fitting room Ul while taking their self-measurements.
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BRIEF DESCRIPTION OF THE FIGURES

Aspects of the invention will now be described, by way of example(s), with reference to

the following Figures, in which:

Figure 1 shows an example abstract diagram which relates to the personalised 3D
avatar virtual fitting system desctibed in Section 1. ‘

Figure 2 shows an example architecture of a personalised virtual fitting system
using a single frontal view face image of the user as the input for 3D face reconstruction,
as described in Section 2.1.

Figure 3 shows an example architecture of a personalised virtual ﬁtﬁng system
using three face images (front, side left, side right) of the user as the input for a 3D face
reconstruction, as described in Section 2.2. ' ‘

Figure 4 shows an example architecture of a personalised virtual fitting system
using an input of a mobile-based 3D face scanning module based on the SLAM
technique for 3D face acquisition, as described in Section 2.3.

Figure 5 sho,w's an end-to-end diagram of an example single-view-based 3D face
reconstruction module that uses a morphable head model as the shape prior to recover
the missing depth information of the user’s face, as desctibed in Section 2.1.

Figure 6 shows examples of landmark layouts adopted by the face landmark
detectors described in Section 2.1.1.

Figure 7 shows an end-to-end diagram of an example variant of a single-view-
based 3D face- .model reconstruction module, in which we use a machine learning
attribute classifier to analyze the user’s photo and predict his/her attributes (e.g. ethnics
and gender) from the image, and then select the appropriéte 3D shape prior from the
library to recovér the missing depth information of the user’s face more accurately, as
described in Séction 2.1.2.

Figure8  shows an example of predicting the user’s attributes (e.g. age, hair colour,
skin colout) from the single frontal view face image using machine learning classifiers, as
desctribed in Section 2.1.2. In this example, two different deep learning classifiers
AlexNet [19] and VGGNet [29] are tested independently on the task of face attribute
prediction.

Figure 9 shoWs an example of reconstructing the 3D model of a Korean user with

different shape priots as described in Section 2.1.2. () and (c) ate the results by using an
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European shape prior of the 3D face, whereas (b) and (d) are the results by using Asian
shape prior, which give more realistic nose geometry in the profile view.
Figure 10 shows example end results of 3D face reconstruction from a single

frontal view image using the approach described in Section 2.1.

‘Figure 11 illustrates an example of 3D face reconstruction from multiple images

(Section 2.2.1) (a): asking users to take two additional face images in corner ﬁews, simply
by slightly rotating their head to each side; (b): contrasting result from single view and 3

views. It can be noticed that the nose geometry in the profile view is more accurate in

the multi-view reconstruction result when compared with the ground-truth photo.

Figure 12 shows an example of input images from a single rotation mentoned in
Section 2.2.2: a) the front image; b) images from left and right camera rotation, whete
the images in black frames are used to create a final texture map and the other input
images are used to idefltify highlight; c) a simple colour averaging can result in ghost-

effect particularly around eyes, which can deteriorate the quality of 'rendering

significantly.

Figure 13 shows an example of estimated camera poses from facial landmarks (see
Section 2.2.3): (a) and (b): the facial features detected by a CLM tracket; (c): refined
camera positions and 3D landmarks using bundle adjustment. The coordinate systems
are marked with circles and triangles to represent the camera positions and landmarks
before and after the refinement respectively.

Figure 14 shows an example of the initial vertex classification for creating the
appearance model (see -Section 2.2.3): (a): the initial classification result based on a
simple heuristics; (b): rendering result of (a); and (c): the reclassification result of (2) in
which there is no seam on major facial landmarks. |

Figure 15 shows an example of colour tone balancing desctibed in Section 2.2.3:
(a): the mesh classification result using the method described in Section 2.2.3; (b): the
.back-projection of boundary vertices on to the front image; (c): the estimated colour
offset at the boundary points on each colour channel; (d): the Laplacian diffusion of (c)
to all pixels. ' | |

Figure 16 shows an example of Laplacian diffusion as desctibed in Section 2.2.3
before (a) and after (b) the colour tone balancing.

Figure 17 shows an example of highlight on a close range face image (see Section
2.2.4). The back-projection of a single triangle (a) onto every input image (b) can show

how much the colour can vary due to the change of lighting direction in (c). The
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provided method estimates the probability of highlight for each ttiangular face based on
the intensity distribution.

Figure 18 shows an example of the detected highlight based on the method in
Section 2.2.4. (a): the input image; (b): the highlight map ovetlaid on (a) whete the
emphasized pixels- represent a "nigh. probability of being a highlighted pixel; (c): the
highlight mask from (b).

Figure 19 shows an example of the }ﬁghﬁght removal using the method described
in Section 2.2.4 before (a) and after (b) using the provided highlight removal approach.
Figure 20 shows an example illustration of head size estimation using the shape
prior, as described in Section 2.3.2. In this example, to model the shape of a uset’s head,
§ve are using head geometry of the body model predicted from different body
measurements as the shape prior to model the shape of the user’s head from the scan
data.

Figure 21 - shows an example illustration of a proéess of transferring the texture

map from the raw scan data to the registered head model, as described in Section 2.3.3.

~ Figure 22 shows an example illustration of the texture sampling problem described

in Section 2.3.3. A naive texture sampling yields seam artifacts (middle) given a piecewise
texture map. A better texture transfer is done by texture augmentation (tight). |
Figure 23 shows an example of augmented texture e map used for seamless texture
map generation for the reg13tered head model.

Figure 24 shows examples of input face images with different lighting issues and
other quality problems as mentloned in Section 3.1.

Figure 25 shows example user interfaces of the client-side input quality detection
tool implemented on the mobile device, as desctibed in Section 3.1. |

Figure 26 shows an example of a detailed user flow for single-view-based 3D face
model creation mobile application using the épproach described in Section 2.1. In thev
user flow, an input quality analysis module described in Section 3 is integrated.

Figure 27 shows an example pipeline of the two-stage markerless body mesh fitting
algorithm provided in Section 4.1. ‘

Figure 28 shows an example using three Kinect scans (every 120 degtees) for
markerless body mesh fitting, as desctibed in Section 4.1.

Figure 29 shows an example pipeline of the two-sfage body model creation process
with a measurement-regression followed by a silhouette reﬁhement, as described in

Section 4.2.2.
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Figure 30 shows a simplified example of a most informative measurement selection
ptrocess based on a decision ttee, as described in Section 4.3.

Figure 31 shows an example pipeline of a two-stage body model creation process
with a measurement-regression followed by a quick body-awareness survey, as deécribed
in Section 4.4. '

Figure 32 shows examples of the end-to-end visulisation of personalised 3D avatats
in outfits. The personalised 3D avatars are generated using the approaches described in
Section 5, which correctly merges the face model and the body model of the uset in both

geometry and texture. It also includes a customisation of hairstyles.

 Figure 33 shows an illustration example of attaching different head models onto

the same body shape model, as desctibed in Section 5.1.

Figure 34 shows an illustration example of the skin tone matching process based
on a linear colour transform, as described in Section 5.2.1.

Figure 35 shows an illustration example of the alpha colour blending process for a
smoother colour transition from the face area to the rest of the body model, as described
in Section 5.2.2. | |

Figure 36 ‘shows an illustration example of de-lighting and‘re-lighting process based
on sphetical harmonic (SH) analysis, as desctibed in Section 5.2.3.

Figure 37 shows an illustration example of transitioning between mesh skinning
and physics simulation for modelling the deformation of a 3D hair model, as described
in Section 5.3.1. | |

Figure 38 shows an illustration example of the aggregating alpha matting scheme
for fast rendering of a photo-realistic 3D hair model, as described in Section 5.3.1.
Figure 39 shows an illustration example of the texture association approach for 2D
haitstyle modelling, as described in Section 5.3.2. '

Figure 40 shows an example sample system diagram of the.application to generate
3D face GIF animations or a personalised sticker set from a user’s photo automatically,
as described in Section 6.

Figure 41 shows an example simplified user flow of the 3D face GIF generator
application, as described in Section 6. »

Figure 42 shows an example sample user flow for a personalised GIF-generation
chat-bot based on 3D face reconstruction techniques, as described in Section 6.1.

Figure 43 shows an example user flow for a personalised GIF-generation

messenger application in Figure 42, which further impléments a direct sharing



19

mechanism. In this example, the implementation is based on Facebook Messenger.
\Figure 44 shows an example user flow for a personalised GIF-generation
messenger applications in Figure 42, which further irhplements external sharing. In this
example, the implementation is based on Facebook Messenger.

Figure 45 shows a diagram of an example 3D face GIF animation application with
a speech recognition module integrated, as described in Section 6.2.

‘Figure 46 - shows examples of face-roulette renders from group photos using the

approach desctibed in Section 6.3.
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DETAILED DESCRIPTION

1. Overview

User testing has shown that personalisation is a key factor for incteasing adoption and
habitual use of online body modelling in e-commerce technology.

Supporting representing users’ own faces, body shape accuracy, and customisation of
hairstyles, to a high level of quality, ate important goals in the technology.

In this document, we provide new systems and associated approaches to create
personalised 3D avatars for online users, which can be used for outfitting visualisation,
fitting advising, and also 3D printing. We demonstrate how the use of computgr vision
techniques significantly improve the quality of 3D head and body models and the ease
with which they can be created, in particular allowing the users to add their face to the
virtual avatar. The key features of the technology include:

1. suppotting automatic and accurate reconstruction of a personalised 3D head model
from different types of input, e.g using a single or multiple selfies from a mobile phohe,
or using depth scan capture;

2. supporting hairstyle customisation on the user’s 3D head model;

3. réconstructing a precise and personalised 3D body shape model for the user from
different sources of input;

4. creating photo-realistic visualisation of the users’ 3D avatar combined with their
personalised face model;

5. a fast client-side feedback mechanism to guide users’ acquisition of good input data
for creating a high quality 3D avatar.

‘These innovations will give consumers a better expcﬁcncc and more confidence when
shopping online, and significantly increase the proportion of shoppets on a site using
virtual fitting room technology. As shown for example in Figure 1, the provided virtual
fitting system for personalised body avatar creation may comprise thé following major
components: ' | .

1. Input quality control module: performs an automatic image analysis on the client
side to help users quickly acquire input data of good quality so that they have a better
chance of creating a photo-realistic personalised avatar (see e.g. Section 3);

2. Personalised 3D head modelling module: used to create a personalised 3D face

and head model of the user from various soutces of input (see e.g. Section 2);
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3. Personalised 3D body modelling module: used to create a high Quahty 3D model
that explicitly captures the user’s 3D body shape from various sources of input (see e.g.
Section 4); A

4. Avatar integration module: it merges both the geometry and appearance of the 3D
head model, the 3D body model and customised hairstyle model into one single unified
3D avatar of the user (see e.g. Section 5).

5. Visualisation engine: performs the garment fitting simulation on the user’s 3D

personalised avatar with the specified sets of garments, models outfitting, and generates

end visualisations of dressed virtual avatars.

6. Databases: stores user information (g body measurements, photos, face images, 3D
body scans, e#.), garment data (including image data and metadata), and hairstyle data
(eg 2D images of photd—gra?hic hairstyles, or 3D digital hairstyle models).

Modules 14 are important modules for achieving personalisation. Several variants of
end-to-end personalised virtual fitting system can be detived from the example design in
Figure 1. For example, to address different forms of input for creating a uset’s 3D face
model, we can use 1) a single view image input (see Figure 2 for example), 2) multiple
2D input images in different views (see Figure 3 for examplé), and 3). multiple images or
a video sequence as input (see Figure 4 for example).

In the rest of this document, Sections 2 to 5 will address the implementation details and,
technical steps of the four personalisation modules under different variations of system
designs. Finally in Section 6, we present several alternative personalisation applications
which are derived from the systems and approaches desctibed in Sections 2 to 5. They
may be integrated with commercial social network websites, messengers, and - other
mobile applications, so that users can create, visualize, and share their persoﬁaliscd 3D

models conveniently.

2. Personalised Head Modelling

Allowing a user to model their own face in 3D is a key feature for personalisation. In this
section, we describe several distinctive automated approaches and detived systems that
allow a user to create a 3D face/head model of themselves from different sources of
input data: '

* from a single 2D image, ¢.g. t‘he users are asked to take a single frontal view selfie on

their mobile phone or upload a portrait of themselves (see e.g. Section 2.1 and Figure
2). '
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* from multiple 2D images, ¢g the users are asked to take several selfies in distinct
camera views (see e.g. Section 2.2 and Figure 3).

* from a 3D scan, which can be acquired using a depth camera, a 3D scan, or using
computer-vision-based 3D reconstruction approach from an image sequence (see e.g.
Section 2.3 and Figure 4). |

The following subsections will describe the technical details of each branch of the 3D
head/face rﬁodelling approaches.

2.1 3D Face Reconstruction From a Single 2D Frontal View Image

This subsection desctibes 4 fully automatic pipeline that allows users to create a 3D face

~ of head model of themselves from only one single frontal face photo quickly and easily.

A typical end-to-end process for the single-view-based 3D face reconstruction is
illustrated for example in Figure 5. In summary, it includes the following three key
steps:

* Automated face landmark detection (Section 2.1.1);

* Single-view 3D face geometry reconstruction using a shape prior (Section 2.1.2);

* Texture map generation and interpolation (Secton 2.1.3);

Details are described as follows.

2.1.1 2D Face Localisation and Automatic Landmark Detection

To reconstruct a user’s 3D face, we first analyze the input image and extract the shape
features of the uset’s face. To achieve that, we detect. the 2D facial landmarks
automatically in our pipeline by integrating a 2D face landmark detector, which, in an
example, can be provided by an open source image processing and computer vision
libraty, eg. DLib or OpenCV. In an example, the detector we adopted is implemented
based on a regtression forest algorithm [18]. It is able to detect N, = 68 face landmarks
from the image  (see Figure 6 for examplé), which charactetise the positions and
silhouettes of eyes, eyebrows, nose, mouth, lips, the jaw line, ez This detector is proved
to-be reasonably robust against input images with different lighting conditions, head
pose changes, and facial expression. The module can, however, be replaced by other

more sophisticated 2D or 3D face landmark detectors or trackers, eg the 3D Constraint

* Local Model (CLM) based facial landmark detector [11].
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2.1.2 3D Face Geometry Reconstruction

The next step is to reconstruct the user’s 3D face model from the face shape features (Z.e.
the 2D facial landmarks) extracted in Section 2.1.1. The geometry reconstruction process
involves two stages. We first generate an approximate 3D face geometry using 3D head
shape ptiors, then we refine the 3D geometry based on the distribution of the 2D face
landmarks detected in Section 2.1.1. The details are as follows. _

Generate an Approximate Geometry Using Shape Priors: In the first stage, we find
an approximate head geometry as an initialisation using a generative shape prior that
models shape variation of an object category (ie. the face) in the low dimensional
subspace with a dimension reduction method. The full head geometry of the user can be
reconstructed from this low dimensional shape prior with a small number of paramefers.
A representable app?oach for head modelling is to learn a 3D morphable head model
(3DMHM) [8], in which principal component analysis (PCA) is used to capture

dominant modes of human head shape variation. In 3DMHM the parameters are the
{

PCA weights w= {wp};l. Each principle component vector u, will represent a mode

of head/face shape variation as follows:
, :
X=X__. + prup =X, +wU. Q)
&
In the implementation the approximate head geometry can be genérated by the

following schemes:

1. simply using the mean X . of the 3DMHM as the shape prior, which cottesponds

to a mean head shape of the population;

2. using a shape prior selection process to find the most suitable shape prior from a
library using ‘selection critetia such as the user’s ethnicity, gender, age, and other
attributes. The system diagram example of this solution is illustrated in Figure 7. In the
pipeline, we introduce an additional ﬁlachine-learning—based attribute classifier, which
can be implemented by eg a deep convolutional neural netwotk (CNN) [19, 21, 29], to
analyze the user’s photo, and predict attributes (eg. ethnicity, gender, and age) from the
appearance information (i.e. skin colour, hair colour and styles, e«.) in the image. We
select the appropriate 3D shape prior from the library based on matching a uset’s
attributes with those defined for each shape prior. This method can recover the missing

depth information of the user’s face moreAaccurately. It is useful for building a product
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that will work across different ethnic regions. See Figure 8 for an example of image-
based face attribute classification implemented by CNN classifiers.
1. predicting the PCA weights of the 3DMHM from 2D landmark positions. This is

done by training a regressor R that gives a mapping from the M normalised 2D
landmark positions I:={ii ¥, to the undetlying model parameters {wp}i=1 of the 3D

morphable head model, where each 2D landmark position I, = (I, ) is first

ooy
normalised by the dimension H,,W, and the centre ¢; =(c;,,¢; ) of the face detection
bounding box.

Liy=c, 1, -c,

L=0,l,)=¢
i (l,x I,y) ( W H

I i

b

) @

P
p=1’

From the morph weights {w,},.;, we can reconstruct the full 3D head geometry X,

of the user as follows.

X=X_ +wU=X__ +R(IL)U. G)

2. Predicting the full 3D head model from the face measurements by defining intuitive
face biometrics based on the 2D facial landmarks (ie. eye distance, eye-to-mouth
distance, nose height, nose length, jaw width, e#.), as a variant of face regression. Then a
linear regression can be applied to map these biomettic measurements to PCA morph

parameters.

Landmark-Driven Geometry Refinement: In the second stage, we improx}e the head
geometry for better realism by deforming the initial head model. We rectify the face
landmark positions of the 3D model in the directions within the image plane (i.e. X and
Y directions), so that the projection of the facial landmarks on the 3D face model will be

a similarity transform of the cotresponding 2D facial landmarks {1.}¥ in the image. -

This process will make the generated 3D head model appear much more similar to the

user’s face in the input photo, particulatly in near-frontal views. This refinement stage

will not change the depth (i.e. the Z direction) of the head or face model.
In the algorithm, we first find a similarity transform T" (2 3x2 matrix) based on the
layout of the 2D image landmarks {1.}), to the frontal projection I:i =(L,.L,) of the

cotresponding 3D landmarks L, =(L,,,L ,,L ) (i=1.2,---,M) of the 3D head
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model X, obtained from the shape regression above. Thi.s‘can be obtained by solving
the following least squares problem in (4).

N
T" =argmin Y Il L, = [1,,1]T 11" | @
T :

i=1

We then use a 3D thin-plate spline (TPS) deformation model [9] to rectify the 3D

geometry of the regressed head model X ,, to achieve better geometric similarity. To

implemént that, we define the M source and sink control point pairs {(s;,t,)}", of the
3D TPS model as:
s,=L,=(,,L,,L,) 5) -

ti = (Ji,x"]i,wl‘i,z) = ([lnl]T’ Li,z)9 i= 1’2" : 'sM (6)

where J; =[1;,1]T=(J,,,J; ) are the revised XY cootdinate of the 3D face landmagk.

This TPS model will generate a smooth interpolation of 3D geometry deformation
throughout the whole head mesh X, from the above M control point paits. See
Section 7 for the detailed formulations for the TPS rrio&el.

Finally, the 3D face model of the user is generated by clipping the mesh of the user’s
head model with a 3D plane (defined by 2 vertices on the forehead and 1 vertex on the

jaw) using the mesh-clipping algorithm described in [28]. This will yield a 3D mesh of

the user’s face with smooth boundaties. The 3D face model above is further refined into
a watertight 3D face mask mesh using an off-the-shelf mesh solidification algotithm.

The result can be used for 3D printing of personalised 3D face masks.
2.1.3 Appearance Model Creation

Based on the techniques described in Section 2.1.2, we can reconstruct the 3D mesh
geometry X ={V, T} of the user’s face, where V and T stand for the set of vertices

and triangles of the mesh respectively. Then, we need to generate the appearance model
(¢.e. the texture map) of the 3D model so that we can render the user’s 3D face model

photo-realistically. =~ By determining uv texture coordinates
{(1{,,1,\’,,1 % (@,559,,), (U5 ,v,,s )} for the texture vertices of each mesh triangle tET. .

For the single-view-based solution this textute-mapping process is relatively

L
=1’

straightforward. Firstly, we assign the UV texture coordinates of those vertices {v, }
i
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“which are the L vertices pre-determined as the 3D face landmarks (with vertex indices

{l,.},il) on the face template. The UV coordinate (,,v;) of a landmark vertex v, (

i=1,2,--+,L) is computed based on the result of the corresponding 2D face landmark

position f; =(f,,, f, ) detected by the 2D face landmark detector on the input image J

(see Section 2.1.1), as the following equation shows.

Jix y_ oy |
W H, . | K

tli = (uli ’Vzi) =(

where W, and H, refer to the width and the height of the input irnage, respectively.

Secondly, to complete the texture map of the 3D face/head model X, we adopt a 2D
thin plate spline (IPS) model [9] for interpolation and populate the UV texture .
coordinate over other mesh vertices. For each vertex VvEV, we first estimate its front-

view projection P, from its 3D vertex positon P={p ,p,,p,} based on a petfect

frontal view perépeétive camera model as (8) shows.

~ px ' pJ’
- T ’ 8
P (pz+dcamem pz+d ) ( )

camena

whete'd_ is an empirical average distance of the camera to the uset’s face estimated

from experiments. We here set d_,  =40cm.
To construct a2 TPS model for texture coordinate interpolation, we use the frontal-view

landmark projection {p, }~, of all the face landmarks {I.}-, and its texture coordinates

{tli }- | assigned previously as the source-sink control point pairs. This will finally give us

=1
a global mapping from the frontal-view 2D projection p of any vertex VEV to its
texture coordinate t. See Section 7 for the general formulations of the TPS model. In
the implementation we ignore some of the facial landmarks, eg those indicating the
inner silhouettes of the lips, to' balance the density of the control points resulting ifi the
generation of a smoother texture interpolation.

The texture mapping solution provided above is robust under a range of different face

expression and lighting conditions, as shown for example in Figure 10.

2.2 3D Face Reconstruction From Multiple Images
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The single-view-based approach described in Section 2.1 is able to generate a 3D face
model with reaéonably good quality in terms of geometry and appearance realism when
tendered from a near-front view. However the geometric realism degrades on the side
views, the major issue being inaccurate nose shapes. This attifact is mainly caused by the
loss of explicit depth information in the single front view image. -

In view of the problem above, we also provide an approach based .on 3D teconstruction
from multiple input images by giving users the option to upload additional face photos
of themselves in distinct camera views. The additional images will give new constraints
to the 3D reconstruction problem thereby improving the geometty accuracy of the side
and profile views. The typical set-up is to use three selfie photos of the user in different
camera views as the input: ze. the centre frontal view photo, a side-left view photo, and a
side-right view photo (see Figure 11.(a)). The approaches of geometty rectification from
mﬁltiple images will be described in detail in Section 2.2.1.”

Generating a good appearance model (Z.e. the texture map) is another challenging task. A
high quality texture map plays an important role in realistic rendering. For example the
petceived render quality of a less accurate 3D model can be easily improved by attaching
a high quaih'ty texture map. Similarly, an inadequate texture map can deteriorate the result
signiﬁcantly even though underlying geometry is good enough.

In the multi-view-based system a good texture map generally gathers information from
multiple images of different viewing angles to cover the whole surface of a 3D model
combined into a single image atlas cotresponding to a parameter space of a model [33].
Therefore, any small misalignment between two adjacent texture patches could create a
noticeable stitching seam. Furthermote, even if they are aligned correctly, the different
lighting condition of each input image might create visual artifacts at the boundary, eg.
colour tone difference. An ideal solution for this would be taking albedo irhages which
do not contain any specular reflection. However, this is not feasible for our working
scenario using a mobile device.

Since our final goal is realistic rendering of a face model, an area with which humans are
very familiar, a flawless texture map is highly requited. In our user interface, the user is

allowed to take multiple input images from a single. rotation of a hand held camera

.around the face. This can give us a sufficient number of images to cover the wide

viewing range of a face model (see Figure 12 (a) and (b)). To produce a plausible result
in this case, we found that the following three problems should be addressed:

* Stitching seams from the different lighting direction of each image;
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* Ghost-effects created by a small facial movement (e.g eye blinking);
* Highﬁghts on face which can give a wrong impression of depth when rendering.

The details of how we addressed the three challenges ate given in Section 2.2.2.
2.2.1 Geometry Rectification

To reconstruct a better 3D face model in the multiple-view setting, we provide a two-
stage geometry tectification algorithm. Firstly, we use the approach described in Section
2.1 to generate an approximate 3D face model F, from the single frontal view image ..
and use it as the initialisation. Then, we implemented an iterative optimisation algotithm
for revising the initial 3D face geometry K. The goal is to minimise the landmark re-
projection errors against independent 2D face landmark detection results obtained on all
face images (eg for the 3-view setting “Centre" I, “Left" I, and “Right" I) with the
following process. | -
We denote the above image collection as | = {I,.,I,,I,}. Fitstly, for each view vEIl, we
estimate the approximate extrinsic camera matrix P, (3x4) based on the corresponding
3D landmark positions L; (7=1,2,---,N,) of the current face geometry
(approximated) and their 2D image landmark positions I;, (i=1,2,---,N,) detected in
the view v, as (9) shows. ‘ '

N :
P, =arg mpi“z I, , — dehom2d (K P[L] 1" I, )

=1

where K stands for a camera intrinsic mattix which is known assuming we know the

camera model on the device, and dehom2d([x, y,z]" )= [f,Z]T stands for an operation
z z

of converting a 2D homogenous coordinate into the regular 2D coordinate. In an
implementation example, the above optimisation problem is solved using the
“PnPSolvet" function of OpenCV libraty.

Secondly, in each view vEI, we estimate the landmark projection discrepancy vectors
{81, 1% by (10).

=1

81,, =1,, - dehom2d(K P;{LT,1T), (10)
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We then back-project the 2D landmatk projection discrepancy vector 01,
i=12,---,N;) to tfle 3D space using the estimated extrinsic camera mattix i’v, and
we estimate the 3D deviation AL, , of each 3D landmark L, on the facé model F in
the directions of the image plane by (11).

AL, , = dehom3d(P;'[K;'[I] + 81, ,11,1]), (11)

xyz

where ' dehom3d([x,y,z,w]" )= [ =)' is an operation converting a 3D

homogenous coordinate into the regular 3D coordinate. We then average the 3D

deviation vectors AL, in all views to revise the 3D landmatk position L, for each .

landmatk, as follows:

EAL | 12)

vel

I

Thirdly, we morph the 3D face model F with the new set of landmark positions

L, =L, + AL,, using a 3D thin-plate spline model as described in Section 7. The source
and sink control point pairs are the 3D landmark positions before and after the revision:
L, L), (i=12,-,N,).

We repeat the above three steps for several iterations until convergence. The end-to-end
process of the multi-view geometry rectification algorithm is summarised below in’the
summary of Algorithm 1. We find that this method can considerably improve the

geometry accuracy of the face model in the profile views (see Figure 11 for example).

Algorithm 1: A summary of the face geometry rectification élgorithm from multiple face
images in different camera views, as described in Section 2.2.1. :

Input: A collection of faces images in distinct views: /.

Output: Rectified 3D face geometry.

1. Perform a single view reconstruction from the frontal-view image (Ic) to get an
approximate 3D face geometry F, using the approach described in Section 2.1.2).

2, Perform face landmatk detection described in Section 2.1.1 independently on

each view v €. This will give us three sets of 2D landmarks {I,,}}! in each view
vel

3. Perform a 3D geometry revision F with an initialisation of FO, and then iterate

over the following steps 4-8:
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4. For each view v €1, estimate the approximate exttinsic camera matrix P, based

on the corresponding 3D landmark positions I; of F and the detected 2D image
landmark positions 1, , (i =1,2,---, N )according to (9).

5. For each view v €/, estimate the 3D deviation AL, of each 3d landmark L,
(i=12,---,N,) of F by backprojecting image landmark positions I;, (i=1,2,---,N;)
according to (10) and (11).

6. Fot each landmark L, average the 3D deviation vectors AL, in all views I

- according to (12), and update the 3D landmark positions.

7. Morph F using a 3D TPS model in Section A to generate a revised 3D face
model F'. based on the new set of 3D landmark positions.

8. Reassign F = F".
2.2.2 Multi-View Texture Synthesis and Enhancement
This subsection describes the algorithmic technology for overcoming the

aforementioned challenges (Z.e texture seam, ghost artifact, local highlight) in the process

of appearance model cteation in a multi-view-based system.

-Instead of fusing all input images, we use only three images to create 2 final texture map,

such as far left, far right, and front view (e.g. the images in black frames in Figure 12)
The other input images are used to identify highlights on these three images. To fuse the
images of three camera views seamlessly, the provided method initially classifies each
facet of a 3D face model for 3 classes (i.e. front, left, and right) and assigns one of the
three images for each class. Since the textufe_ map for eyes is particularly important (see
an example of a bad result from a standard image stitching method in Figure 12(c)), we
use a state-of-the-art facial landmark detector [4] to detect major facial features on the
front image and make the corresvpondjng meshes have the same class ID. This minimises
the number of cases of a stitching seam crossing major facial landmarks (i.e. eyes, mouth,
etc.)

We repair the colour tone difference between ifnages by adding a colour offset at each
pixel. Since we know the preferred colour offset at the stitching boundary, we propagate
the offset values at the boundary to all image pixels using Laplacian diffusion. Since
most facial areas are generally textureless (eg, cheeks), such smooth propagation is

sufficient to repair the skin tone difference.
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. However, we found that the problem of highlight removal more challenging. Even

though highlight detection has been studied for a long time in the computational
photography community, it remains a difficult pfoblem because 2 successful detection
relies on many factors, eg. the shape of an object, the lighting condition at the time, and
the camera position.

To make the problem more tractable we break down the problem into two parts: a)
highlight detection and b) récovering true colour. For highlight detection, we create a

highlight probability map based on the colour distribution of corresponding facets

actoss all input images. This can allow us to identify quickly the affected regions. The

colour of the highlighted region is then recovered using the gradient of one of the input
images.

Mote details about seamless stitching and highlight removal are given in Section 2.2.3

and 2.2.4, respectively.

2.2.3 Seamless Texture Stitchihg

Camera Pose Estimation To establish the link between a 3D face model and the input
images, we need to estimate the camera projection matrices. In fact this is a camera
tracking problem which can be solved by a range of computer vision techniques, ¢g.
sparse bundle adjustment [22] or SLAM technique [12]. However, these approaches
generally produce a reliable result when there are well distributed point cotrespondences
between images. Unfortunately, we cannot expéct this from face images. Standard image
matching algorithms fail to detect image features around cheeks for setting up image
correspondence because of the lack of patterns.

In the case of face images, we use a rriodel based feature detector, ze. a 3D Constraint '
Local Model (CLM) based facial landmark detector [11]. A CLM based facial landmark
detectors fobustly detects facial landmarks using pre-trained 3D facial landmarks [32],
and estimates a relative camera positions based on an associated camera model [4].
Howevet, many CLM trackers adopt an orthographic projection model for
computational simplicity. This approximation is generally sufficient for long range -
images but if an object is close to a camera as it is in our case, a projective camera model
should be used to account for potential perspective distortions. To address this we refine

the initial camera parameters from a CLM tracker using bundle adjustment.
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Figure 13 (c) shows an example of refined camera poses from bundle adjustment. In
this eXample, a CLM tracker initially estimates i) relative camera poses, ii) 2D positions
of the predefined facial landmarks on each image, and iii) 3D vertices cotresponding to
the 2D facial landmarks. Bundle adjustment then refines both the 3D vertices and the
camera poses using a projective camera model. Since the location of the 2D chin points
are not accurate at times (see Figure 13(a)), they are normally excluded in the

refinement process. However, if required, it is also possible to add more facial features

.using a general image feature detector (é.g. SIFT or SURF [27]), as more point

correspondences generally help to improve the stability of the bundle adjustment.

Mesh Vertex Classification The estimated camera poses help us to classify the face
model as well. For example, we can determine a vertex class based on either the angle
difference between vertex ndrmal and camera viewing direction, or the vertex distance to
camera centre. This simple classification is fast and parallelizable but it is not aware of
facial features. To address this, the provided method updates the initial class ID of a side
vertex to the front, if its projection to the front image falls into a facial mask. The facial
mask is approximated as a sum of two masks, 7e. the ellipse fitting of the 2D facial
landmarks from a CLM tracker, and the projection of the initial front vertices. This
combination can make a resulting mask cover the forehead and chin ateas reliably.

For computational simplicity we also assume that the internal camera parametets ate
always fixed and thete is no severe radial distottion. Therefore a projection matrix of an
input image can be approximated as a simple linear transform from three parameters: an
internal camera matrix K, 2 rotation matrix R, and a transition vector 7 .

The provided reclassification is straightforward but we need to know the vettex visibility
before the projection. To address this, we assume that a face is convex and has a single
global maximum on the nose, so that it is safe to think that the left side of a féce is
always visible from the front and the all camera views on the left, eg. the top row of
Figure 12 (b). Similarly, the other side of face is visible from the front and the all
camera views on the right, ¢.g. the bottom row of Figure 12 (b). With this approximated
vertex visibility array, the -extra runtime occlusion computation by checking.the depth
buffer can be avoided.

Figure 14(a) shows an example of an initial classification. As mentioned eatliet, this
initial classification normally creates some artifacts around facial features (see Figure
14(b) for example). However, the refined classification helps avoid this as the colour of

major facial landmarks are defined in the same image (see Figure 14(c) for example).
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Colour Balancing between Adjacent Views The provided mesh classification will not
introduce any. stitching seam crossing major facial landmatks (e.g. eyes). But that does not
mean 'ghat there is no seam. In fact, what it does is simply to move the seam outside the -
facial mask on the front view. |
To address the seam from the refinement, the provided method basically updates the

colour of the front view. For example, suppose that colour value at the pixel position X
on the front image I, is represented as I.(X) =[r g b]". The new colour at ¥, I..(¥),
will be defined as .

IL(®)=I.(%) + D (%), (13)
where D, (X) is three-channel colour offset at the pixel X, ie [r,g, bd]’. We can
define the preferred colour offset at the boundaty, 7.,

D) =1,(%)-1:G5): a9
where X, is the projection of a boundary vertex v,=[xyz] , ie
%, = proj(v,, K, R,?) , and proj(.) is a function that projects a 3D vertex to the front
image using an internal camera parameter matrix K, and camera pose R and 7.
¥, can be found easily bly checking the class ID of its neighbour vertices, e.g v is a left -
boundary vertex when at least one of its neighbours have left’ class ID, ze. VEC,. and
IN@,)NC, >0, where'N and C, represent a set of vertices that are neighbouring to
v, , ate having left class ID L, respectively.

The colour offset at a boundary (see Figure 15 (c) for example) is propagated to all

image pixels assuming that the offset colour D(X) is a discrete approximation of a C?

function. Thus, we can estimate the unknown offset ‘values based on the Laplacian

condition (see Figure 15 (d) for example), z.c.
4DE)- S DE)=0, 15)

HEN, )
where N,(X,) is 4-connected neighbours of a pixel X, . Some examples of the

processing results of this process can be found in Figure 15(d) and Figure 16(b).

2.2.4 Local Highlight Detection and Removal
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Highlight Detection The highlights on the images is another impottant visual cue that
can help us to perceive better the shape of an object. In other words, if we simply
combine multiple images from inconsistent illumination conditions, the resulting texture
map could detetiorate the realism in rendering.

Highlights are generally caused by a strong specular reflection. Therefore, we need to
know underlying geometry and an illumination model to recover true colour propetly.
Estimating this information from an image is an ill-posed problem and it normally takes
a long ;‘)roces'sing time. To make the problem more feasible, we develop an image-based
algorithm that does not need the colour reflection model. This is motivated by the many
recent highlight detection algorithms, which can achieve reasonably good results purely
based on colour information, e the colour chromaticity [30].

Figure 17 (originally in colour) shows an example of how much the colour can vary at a

_ highlighted region. Based on this observation, we come up with a new highlight

detection algorithm that can estimate a highlight probability map from the colour
difference of a single facet. To retrieve the colour of a facet we back-project the vertices

of a facet onto the input images and estimate-a 2D affine transform between views. For
example, suppose that f, is the k-th facet of a 3D face model. Since we use a triangular

facet, the projection of a single facet is good enough to define a single 2D affine

transform between images, 7.

4% =5, a9
where ATf represents an affine transform which can map a pixél ¥, 'on the i-th image
to a pixel ¥/ on the j-th image and the sﬁbscription k represents that the pixel ¥, is
the'projection of a 3D vertex in f,.

We then define a rectangular region fitting the projected points on the front view, collect

the pixel intensities of this region, and estimate the average intensity. Let the mean

intensity of a facet f, on the i-th image be m;. Since we have multiple input images,
we can estimate all mean intensities as well as the median of the mean intensities {m; j
of the k-th facet f, as follows:

m, =median(m,,---,my}), 17

where 7 is an index for an input image.
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To create a probability map, we use a logistic function working as a switch, which gives a
high probability when the difference between the median of the mean intensities and the
maximum of the mean intensities is bigger than a certain threshold, z.e.,

1
i+exp[—( m, —max(M,) +a))

pr.(f)= (18)

max(M,)-min(M,)
5  where M, = {mg,---,'m,':}a‘nd a is the threshold for the intensity difference. In our ,

implementation @ = 70.
We also find that the highlight regions are generally defined when the median of the
mean intensities is high, ze., a brightef facet is more likely to be a highlighted facet than a
datker one. To include this behaviour, we define another logistic function p,(f,) as
10 follows:
1
I+exp(~ B(m, - 7))’

where B=0.25 and y =160 in our system. The final probability function of a facet f,

U= (19

is simply defined by multiplication of the two probabilities, ze.
() = P.(F)ps (fi)- @9

15  Highlight detection results on some face images using the method described above are
exemplified in Figure 18. o
Recovering Highlight Free Colour Recovering colour for the highlighted area is a
slightly different problem to the colour balancing problem explained in Section 5, Ze.
stnooth propagation of the colour offset cannot recover the sharp facial features. To
20 address this, we exploit the gradient map of one of the input images as a guide for colour
diffusion. This is similar to Poisson image stitching [25]. In other words, the provided

method minimises the difference between the gradient of a new front image VI'(¥) and
the gradient of the median image, G, (x)=VI_(X). Therefore,
V-VI'(X) =divG, (%), 1)
25  so that (15) can be modified into: |

oo @ e G (%) 9G, (%) - :
4I'E) - I'Gy="m ) T hd 22)
5tz d &
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To estimate [, in (22), we combine the median colours of all facets. We may simply

implement this by transferring the colour from a different input image to the front image
using an affine transform and smoothing the resulting image using a Gaussian filter. ,
As shown for example in Figure 19, we can detect the highlight on the nose and the
forehead successfully, and replace the affected colour values with new values. One thing
to mention about the provided method is that the new colours are estimated based on
the assumption that the gradient of one of the input images is close enough to that of
the albedo image. Therefore, if all input images are consistently highlighted, it éannot fix
the highlight properly, e.g. some forehead regions of Figure 19(b) ate still brighter than
expected.

The same pipeline-may be applied to both side images but our expetiment shows that

fepairing highlights on the front image is sufficient in general.
2.3 ‘From a Raw 3D Face Scan

The third stream of approaches for 3D personalised face reconstrﬁction is to create a
user’s 3D head model from an arbitrary depth scan or a 3D scan of their face. A raw 3D
scan of a user’s face can be obtained from three sources:

* Source 1: from an image-based 3d reconstruction process using the techniques of
structure from motion (SfM) [14] or simultaneous localisation and mapping (SLAM)
[12]. ( ’

* Source 2: from a depth scan captured by a commercial depth camera (e.g Microsoft
Kinect, Intel RealSense F200/R200);

* Source 3: from a full 3D scan, captured using a 3D scanner, ¢g. Artec Eva.

Below we describe the detailed processes for creating the 3D geometry and appéarance

model from the face scan input.

2.3.1 Geometry Processing: Fitting the Raw Face Scan

Although the 3D geometry of the user’s face is captured in the input scan data, usually a
template mesh fitting process is still required for three reasons:

1. we will have to complete the geometry of the head, as the input scan generally only
contains the frontal face geometry (e.g. for Soutce 1 and 2 scan data);

2. we will need to normalise the mesh topology and resolution;

3. we have to resolve the scale ambiguity for some scan data (eg from Source 1).
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In the implementation, this can be done using a two-stage mesh fitting process, for
example as shown in Figure 20. In the first stage, e "coarse fit" stage, we introduce a
3D motphable head model (3DMHM) as the shape prior (see e.g. Equation (1)). The
geometry of the user’s head/face scan Y may be fitted by the morphable head model
X by a bundle adjustment optimisation process that finds the optimal shape morph

parameters W of the 3DMHM, the 3D head pose parametets p, and an estimation of
the global scale s when the scale ambiguity is present. The following equation

formulates the problem above for each iteration:

{w',0"5"} = argmin] ¥, = SR @)@y Ko+ WO)|

+a,[p-p| +B,(s-5) (=0,1,-,D), : 23)
where R,(p) denotes a 3x3 matrix parameterized by the pose parameters.p, which
models a gloBal 3D rotation; (X) denotes the operator for Kronecker product, which
yields a2 3N x3N matrices that impose the 3D rotation R,(p) on all N templatelmesh

vertices; Y; is the collection of nearest vertices on the input scan data Y which

. correspond to each of the vertices on the morphable head model at iteration i, and this

correspondence is squect to change in each iteration; p, is a pose prior based on the
pose estimation; s;) is a size prior which is an average heaci scale estimation of the input
data; and «, and B, are the hyper-parameters controlling the weights of the terms. To
solve the optimisation problem above, we iterate between 1) finding the neatest vertex
set Y; based on the cutrent motrphable model, and 2) solving the minimisation problem
using Levenberg-Marquardt algorithm [13] with each iteration. The registered 3D head

model of the user X" after the coarse fit stage can be simply reconstructed by |

X' =X, +wU. ' @4
In the second stage of the fitting process, ie. “fine fit" stage, we use the result of the

coarse fit X as the starting peint, and further apply a non-rigid iterative closest point

(N-ICP) algorithm [3], which deforms the resulting mesh to achieve a better surface

matching X with the input face scan data Y, as shown in Figure 20.

2.3.2 Head Size Estimation from Body Shape Parameters
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The approaches desctibed in Section 2.1.2, 2.2.1 and 2.3.1 model a uset’s face geometfy,
but it doesn’t model the information about the rest of the head which is not captured in
the input image, Ze. the shape of the skull, the volume of the head, e#. To fill in the
missing information about the size of the head, we look into the shape prior of a full
body morphable model trained on the CAESAR dataset [10] in which the 3D body
shape can be estimated from a set of body measurements (¢g height, weight, bust, waist,
and hips). The head part of the regressed body model from tape measurements éaptures
the correlation of head size with respect to body shape over the population and provides
a good shape prior (noted as X)) for estimating the shape of the full head model X of
the uset.

To incotporate the shape prior in the shape predictor or registration process described in
Secton 2.1.2, 2.2.1 and 2.3.1, we need to reformulate the associated optimisatibn

problems for shape regression and mesh fitting. For each original optimisation ptoblem
with an objective function € and a parameter set p, the objective function Q of the

new optimisation problem with the additional quadratic constraints of head size shape

prior can be formulated as follows:

p’ =argmin Q(p)
P
=argmin®(p) +1[M(X(p)-X,) r 25)

where 77. is a hyper-parameter controlling the influence strength of the shape prior; M is
a mask weighting function defined on every vertex v on the head template, which maps
the mesh vertices inside the face area to be 0, those outside to be 1, and those close to
the boundary region to be a value between 0 and 1 for a smooth transition; o denotes an
element-wise multiplication on each vertex. The tevised problems in (25) can be solved
using the same optimisation methods eg ICP [7] or Levenberg-Marquardt [13]
algorithms. It is also applicable to the linear regression problem in Section 2.1.2, where
the revised tregressor becomes a ridge regressor. Figure 20 gives an example of
incorporaﬁhg the head shape prior in the mesh fitting process described in Section 2.3.1

to model the shape of a user’s head from the scan data.

2.3.3 Texture Map Generation for Registered Head Mesh
We also need to transfer the texture from the raw face scan to the registered head model,

as illustrated for example in Figure 21. One technical challenge for generating the
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texture map of the registered head mesh is that the original texture map(s) of the raw 3D
face scan is(are) usually made up of several discontinuous texture patches (see Figure 22
(left) for example). In such a case, a naive texture sampling scheme, ze. re-sampling of

UV texture coordinate according to their bati-centric coordinates in the triangles of the

ootiginal mesh and re-using the original texture map generally gives poor results. Since the

mesh topology has been changed during the process of 3D registration, the UV texture
coordinates of the three vertices of a resampled mesh triangle may belong to different
textute patches in the original texture map (we call these “boundary" triangles) and
hence they are non-adjacent in UV space. This results in severe texture seam artifacts
over those boundary triangles when rendering the re-sampled mesh using a standard
rendering engine (e.g DirectX, OpenGL) which is based on an interpolation mechanism.

See Figure 22 for an example of the seam artifacts after a naive textute sampling.

In the light of this problem, we may re-generate a different texture map image for the ‘

registered face/head model by augmenting the original texture map image of the input

face scan. In addition to the original texture, we first re-render those boundary triangles -

from a camera view in the sutface normal direction as additional texture patches in the
augmented texture map image, and then re-assign the UV texture coordinates of the
triangle to those new texture patches accordingly. This method will resolve the seam

artifacts after the mesh re-sampling. See Figure 23 for examples.
3. Client-side Input Image Quality Control

3.1 Problem Description

To cteate the face model with the approaches described in the previous sub-sections, a
user has; to take a selfie (Section 2.1) or a short video of their head turning from one side
to the other (Section 2.2 and 2.3), typically using the front facing camera of a mobile
device. This image or video is then used as the input to the later modules in the system
to teconstruct or digitise a 3D face model and a corresponding texture map.

The accuracy of the output 3D face model is dependent on the quality of the input
image or video. The system must ensure that the end result is lifelike and pleasing
otherwise there is a tisk of the user abandoning the service. It is also important that the
user can achieve the desired results without a latrge amount of trial and error, which again

risks causing frustration and ultimately results in a bad user expetience.

N
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As the input face images or videos providéd by users are mostly taken in an uncontrolled
environment, they often contain severe photography issues; from user testing, some
typical photography issues can be classified into two types, including:

* Illumination issues, z.¢. Lighting imbalance or shadows; strong spot highlights (e.g. on
forehead or on one side of the face); strong back-lighting (e.g. with a window behind);
overall too bright ot too dark; coloured lighting; ez.

* Contextual problems: Z¢ user wearing glasses, wide mouth opening, the uset’s hair
covering key landmarks (eg. eyes and eyebrows), etz.

See Figure 24 for some real examples. These bad input images or videos. often result in
bad head/face models and‘ personalised avatar after the 3D reconstruction and
consequently damage the users’ satisfaction with the product.

In the light of the problem, we provide a'new module in our end-to-end systefn as a
product feature; this new module is responsible for automatic detection of pathological
input patterns on the client side before the 3D face reconstruction module. See Figure
25 for an example UI on iOS. This creates a real-time feedback mechanism to assist the
user in the acquisition of good quality image or video. |

Prior to starting the video/image capture, the user is presented with a live view of the
camera feed. The feedback mechanism analyses the live view and, if necessary, provides
the user with recommendations on how to improve the conditions in otder to achieve a
high quality end result. This mechanism provides a fast feedback loop for the users to
quickly correct photography issues themselves and generate a good input before the 3D
face/body reconstruction starts. It can help enhance the satisfaction and engagement
level of the product by greatly increasing the chance of users to successfully create good-

looking head/face models. More implementation-details are given in Section 3.2.

3.2 Detailed Implementation

After analysing the sensitivities of the model extraction algorithms, ;xre can identify two
broad groups of input quality issues: illumination related problems and contextual
problems, as mentioned in Section 3.1.

Incortect illumination can cause problems both for structure and texture extraction. For
example, the location of strong highlights on the face is dependent on the direction of

the incident light and tends not to move together with the rest of the face landmarks as

the user rotates their head in the video. This effect is problematic for structure extraction

algorithms as the highlights can be misinterpreted as static landmarks or obstruct real
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facial features. Similarly, strong directional lighting, or light sources with high colour
content can result in uneven and unnatural skin tones after texture extraction.
Contextual problems cause difficulty mostly during structure extraction and arise owing
to the assumptions made and limitations of the algotithms employed. For example, if the
user’s fringe is covering a po'rtion of their forehead, or if the user is wearing glasses,
these structures will be incorporated into the extracted 3D mesh, which as a result shows
little resemblance to the shape of a human face. ‘

Quality"analysis of the input image is then an image classification problem. We must
decide whether any of the problematic conditions is present in the input image. Given

enough reference data, we train a machine learning classifier, e.g a deep convolutional

neural network [21, 19, 29], to identify these quality'issues. Availability of. reference -

images already classified by in other ways (typically by humans) is a key necessity when
applying machine learning. While it is trivial for a human to judge whether someone is
weating glasses or not, it is more difficult to objectively assess illumination problems
when manually classifying reference input. Also, the quality analysis must run sufficiently
fast on a mobile device to provide real-time feedback during the live video preview. This
performance reéuirernent limits our use of some computationally expensive machine
learning techniques.

The trade-off we have made is to use machine learning techniques to ideﬁdfy contextual
issues, and use heuristics-based statistical image features for illumination-related

problems. Contextual issues tend to vary relatively slowly (eg. it is unlikely that the user

- will keep taking their glasses on and off at high frequehcy) hence they can be analysed

during alternate frames. Observed illumination can change faster, for example as the user
moves through a room, or as the automatic exposure and white balance control of the
camera adapts to the lighting conditions. This necessitates analysing illumination at a
higher rate, in order to keep the system responsive. We can utilise a lot of prior
information based on knowing that the input image contains a frontal face. We can use
e.g. average facial proportions and shape, average chromaticity of skin colour and typical
skin texture in specific areas, as indicators of the illumination condition.

In summary, we have implemented the quality. analysis as 2 multistage algorithm, which
analyses the live video preview one frame at a time, while utilising the inter frame

correlation for increasing efficiency. The output is a set of scores in a predefined range

~ which are indicative of the presence of a quality issue. The summary of the algotithm is

given in Algorithm 2. Also, Figure 26 gives a detailed example user flow of a mobile
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application for single-view-based 3D face model cteation (Section 2.1) with an input

quality analysis module integrated.

Algorithm 2 - An algorithm summary of the input image quality analysis module.

1. Use Viola-Jones face detection [31] for finding the coarsé location of the face in the
frame. The search is restricted to a tegion around the location of the face in the previous
frame. |

2. We use a fast machine learning based algorithm to accurately locate a few important
facial landmatrks. Using known typical spatial relations amongst the facial landmarks, we
compute a more precise estimate for the location and otientation of the face within the
frame.

3. Based on the facial landmarks and precise position estimate, we can extract normalised
sub regions from the frame. | '

4. The normalised sub regions are scored for illumination problems using heuristics
designed for the specific conditions as they would manifest in a normalised image.

5. Individual contextual problems are scored on alternate frames using convolutional

~ neural networks

6. A set of standardised quality scores is presented to the recommendation logic. The
problem of computing an improvement recommendation can be considered another
classification problem. The inputs in this case are the scores from the image quality
analysis algorithm, and the possible output classes represent the most ptessing problem
with the image. This final classification can ‘then be used to provide the user with

feedback on how to altet the input to achieve good results.

4 Personalised Body Shape Modelling

In this section, we describe several distinctive approaches and user interface (UI) designs
fot body shape modelling, which can be used to help users create personalised 3D body
avatars that can capture-their own body shape characteristics precisely.

A ‘typical statistical body lshape modelling mechanism used for online virtual fitting is
based on a regtession-based approach [10]. In the algorithm, a regressor (including but
not limited to a linear regressor, a Gaussian processes regressor [10], or a neural network
[21]) is taught from a set of pairwise training data to provide a mapping from the uset’s
commonly used body metric (includihg but not limited to height, weight, and cup sizes)

and most well-known tape measurements (including but not limited to bust, weight, and
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hips) to the parameters of a low-dimensional statistical morphable body model, which

can be used to reconstruct the full 3D body shape. For example, the patameters will be

“weights of principle components, if PCA-based morphable body model is implemented

[2]. The current regression-based approach gives an. average modelling error of 2-3 cm
over major body measurements when 6 input measurements (Z.e. height, weight, cup size,
underbust, waist, and hips) are provided [10]. Since the regression-based approach uses a
small number of measurements as input, and it doesn’t fully capture the complete body
shape details of the user owing to information loss and the lack of constraints involved
in the shape reconstruction process. As a consequence, £wo major pathological problems
of the existing body shapes are nioted based on the feedback of user testing:

* The body avatar has poor accuracy over those body areas where no measurement is
defined. For example, with a 6-measurement body regressor (height, weight, cup size,
underbust, waist, and hips), mény users find that the leg length, the thigh width, or the
arm length of their avatar appear wrong,.

* Users also find that subtle body shape variations (eg lumps and bulges around the
stomach area, muscle tones) of their body shapes are not captured in the avatar. This is
caused by the fact that the resulting body avatar generated by the regressor which
models a smoothed statistical average of all the body shapes which have the specified

input measurements.

- In the subsections below, we describe several distinctive approaches and related user

intetface (UI) designs that can help the user further constrain their body shape, improve
the accuracy of 3D body modelling, and petsonalise their body avatar in view of the
problems above. These approaches can also be combined together to achieve better

body modelling accuracy.

4.1 Using a Third-party Full-Body Scan

The first approach is to create high-definition 3D body profiles usable for outfitting and
visualisation directly from full-body scans of the users if they have got access to a laser
scénner.

Although the full body scan input data captures most of the 3D geometry of the uset,

the scans can be noisy with holes and outliers. A template mesh fitting process is thus

- necessary for regularizing and normalizing the mesh topology and resolution.

Unlike the body scan data in CAESAR dataset [26], for most of the third-party laser scan

data no anthropometric landmarks (markers) are available. This poses a challenge for
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achieving the good shape registration based on iterative closest point (ICP) [7] and
detived algotithms. This is because the ICP algorithm optimises over the transform
parameters of every; vertex, and the algorithm is hard to converge into a global minimum
without good initialisation and guidance of correspondence. Markers (4.4.2. landmarks)
can give constraints on global shape correspondences, without them it is highly likely

that the ICP algorithm will converge on a local optimum.

* To address the problem above, we provide to use a two-stage algorithm which is similar

to the one described in 2.3.1 for the purpose of marketless human mesh fitting, as
illustrated for example in Figure 27. To substitute for the missing shape constraints
provided by the marker correspondences, we us¢ a morphable skeleton body model M,
, which is pre-trained on the CAESAR dataset [10], as a shape pridr of human body
shape to give additional global constraints for the optimisation problem.

In the first stage of the mesh fitting process, we petform a coarse-fitting of body shape
and pose undetr the constraint of the 3D human shape prior. The optimisation is
formulated as a bundle-adjustment-like problem, in which we nﬁninﬁse fitting error E

over the PCA morph parameters W and bone poses p in each iteration, as the
following equation (26) shows:

{wta pi} =argmin E(W, p)
w,p
= argmin[Mo (Y, - M, (w,p))[
w’P

+a[p-po[ +B, W[, =011, @6)
where Y, is ‘the collection of nearest vertices on the inpué scan data Y which are
corresponding to each of the vertices on the morphable body model at iteration i, and
this cotrespondence is subjected to change in each iteration; M is a binary mask defined
on each vertex of the template model with 1 in the region of interest and 0 otherwise,
which is used to exclude the noisy (i.e. producers of positional noise) body regions (e.g.

the head, hands, and feet) in the mesh fitting process; p, is a pose prior based on a

rough body pose estimate of the input laser scan data; and «, and B, are hyper-

parameters regularizing the parameters to avoid unrealistic body shape and pose

combinations. To solve the optimisation problem above, we iteratively find the nearest
vertex set Y; based on the current morphable model, and optimise the model

parameters {W,p} using the Levenberg-Marquardt algotithm [13] with the new point-
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correspondence. In the implementaﬁon we optimise on 30 morph parameters and 18
joint parameters. After the mesh fitting stage, we can obtain a mesh fitting result with
about 3mm RMS etrror to the input scan data. _

In the second stage, given the coarse-fitting result as the starting point, we then apply a
fine-fitting of the geometry and also refine the bone poses with an ICP algorithm [2].
Given that the geometry of coarse-fitting result is normally sufficiently close to that of
the input scan and as it gives such good initialisation, the ICP algor_ithrﬁ will have a good
chance to convérge into the global optimum we expect. This final fitting result is able to
achieve about 0.5mm RMS error compared with the input scan data.

The two-stage approach above can be generalised to take into account multiple input
depth scans of K different camera views for the mesh fitting. For example, the

optimisation problem in (26) becomes one of minimizing fitting error over the PCA
morph parameters W and pose. parameters {p;};il in the K distinct views for each

iteration, as follows.

W {PSia} =arg min E(W,p)

W;(Pk Ye=1

X
WPy Y=t k=1

K
+a,

=arg min E”M °(Y - M, (w,p))|

pk—pk,ollz+ﬁb||wll2’ i=0,1,--,1, 27

_ where Y, ; is the collection of nearest vertices on the input scan data Y, in the k-th

view (k=1,2,-++;K), which are corresponding to each of the vertices on the morphable
body model at iteration i, and their correspondences are subjected to change in each

iteration; Py, is a pose ptior based on a rough body pose estimate of the input laser scan

data in k-th view and the known setting of the camera. An example of using K =3
depth scans from Microsoft Kinect camera to reconstruct the uset’s body shape, as

shown in Figure 28.

4.2 Using an Interactive Interface for Body Shape Refinement

The second approach we provide is to use an interactive Ul to help users refine their 3D

body avatar and edit their own body tone easily. "The UI is built based on a dimension
reduction algorithm (e.g. PCA), which models the disttibution of 3D modelling error of
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the body shape regressor and allows the users to fill in their missing body shape vatiation

efficiently.

4.2.1 Modelling Body Shape Residuals
We assume a training data set T, which contains a number (say M ) of 3D body shape

instances {X,,X,,":-,X,} (eg in the form of 3D laser scans) and their associated

measurements {m,,m,,---,My,} defined at specified fit points (e.g. bust, underbust,
waist, hips, thigh girth), is available. An example of such a dataset is Civilian Ametican
and European Surface Anthropometry Resource Project (CAESAR) [26]. Let X be the
3D geometry of the template mésh fitting result of a 3D body scan in the training dataset
T. M_athematically; X is in the form of a 3N -d vector, which. concatenates the 3D

positions of all its N mesh vertices {v,,v,,--,vy} as follows:

X=[le,vly,vlz,vh,vzy,vu,---,vM,vNy,sz]. (28)

Let m be the vector of body measurements at defined fit-points corresponding to body
shape. Let X' be the reconstructed 3D body shape from measurement vector m using
the regressor R, which is trained on either the dataset T or on a different training set
T |
' X' = R(m). _ (29)
We assume that there is a vertex cottespondence between X and X'. The shape
residual r of a body shape instance is modelled by

r=X-X'=X-R(m), (30)
which defines the difference between the regressed body shap;e and the ground truth
(z.e. the template mesh fitting result of the original body scan).
By using (30), we compute all those shape residuals {r;,¥,, -, ¥y} on all the body shape
instances {X, X, -, X} in the training set T, in which we compute the regressed
body shapes {X,X),---, X} from theirt cotresponding measurements
{m,,m,,---,my} given in the dataset using the body regressor R. We then apply a
dir;lension reduction algorithm, (including but not limited to principal component
analysis (PCA)), to the above shape residuals to learn a low-dimensional subspace model
M, which captures the body shape modelling etror of the body regressor R over shape

residuals {r,,I,,*+, T} across the population of the dataset 7. In the case when PCA is
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used as the dimension reduction approach, the shape modes will be cottesponding to

the first K principal components (pc,,pec,,- -, ey )-
4.2.2 Ul Designs for Refining Body Shapes

For the user interface, we addpt .a two stage process as illustrated in Figure 29. in the
first stage, the user can generate an initial 3D body avatar X' from the input of their
body measurements m through regression, as shown in (28). In the second stage (see
Figure 29), a few sliders (say K sliders) are then displayed to the user for the user to
refine the body shape interactively from the initial 3D body avatar X' generated in the
first stage. Each slider will control a unique mode of body shape variation. We use the

shape modes of the residual model M defined in Section 4.2.1) to define the fine-gained

“body shapé variation. The k-th slider (£=1,2,---, K) corresponds to the k-th prin,cipal

component of the model M. When the data disttibution of the body shape tesiduals are
approximately of a mult-variate Gaussian distribution, a PCA model can be used to

model residuals. The range of the k -th slider (k=1,2,.-.,K) is defined by

[ty 1], (31)

where A, refers to the eigenvalue corresponding to the k-th principal component. pc,

(k=12,---,K) of the model M, and the square root of which correspondé to the
standard deviation of the data distribution in the direction of such principal component;
t defines the range of the slider in the unit of standard deviations, and we choose ¢ =3
in the implementation. When a PCA model is used to model residuals, the refined body

shape X" is generated by the formula:
.
X"=X'+ Zw‘tpck, (32)

where the weight w, (k=1,2,---,K) is obtained from the reading of the corresponding

*slider for refining body shape variation, and pe, (k=1,2,--+,K) represents the shape

motph defined by each principal - component. More generally, if an atbitrary K -
parameter subspace model M is used to model residuals, the refined body shape X" is

then generated by the formula:
X'=X'+MWw)=X"+Mw,, wy,---, Wy ), (33)
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where the weight w, (k=1,2,.--,K) is again obtained from the reading of the

cotresponding slider for refining body shape variation,

In the UT design, some tools can be implemented to help the usets revise their body

" models more accurately, eg a side-by-side display or an overlaying display of the uset’s

photo and the rendered avatar X" so that the uset can match the silhouette of the body -
avatar with theirs. Additionally, the vector of body shape variation weights
W= (W, W,," -, Wy ) (ie. the value of the sliders) can be automatically initialised through

an optimisation process, in which we minimise the difference between the silhouette

. S, of the user’s body shape, which is extracted from a frontal view photo of the user

user

and is normalised by the body height, and the silhouette S(X"') of the frontal projection

" of X", which is normalised by the body height, as follows:

w’ = argmin d(S,,,, S(X"))

= arg mind(S .-, SX’ +M(W))), ' (34)

where d(:,’) refets to a distance metric that compates the differences of two silhouettes,

which includes but is not limited to Chamfer matching [5] and Hausdorff Distance [17].

4.2.3 Summaries and Possible Extensions

"The modes of subtle body shape variation generated in Section 42.2 ate defined in the

residual shape space. Hence, they ate orthogonal to the shape space of the regressor,
which is defined by the input measurements. This implies that when the user makes
adjustment to their body shape through the UI, the change would have minimal
ramifications to the measurements over those keys fit-points defined by the input. This
property will ensure that a garment size/fit-advice based on the fit-point measutements
(eg bust, waist, and hips) are unéffected by the provided body shape editing,

The dimension reduction and subspace approach has the propetty of energy
compaction. This implies that a user could potentially use a2 minimum number of sliders
(¢.e. the parameters of the subspace model) to model the residual body shape variation
missing in the regressor output.

The ra}lge of each body shape variation slider is bounded by the disttibution of data
which are used to train the statistical model, £g we can define the range to be # == 3
standard deviations for each principal component, if PCA is applied. Aé a consequence,

the combination of different modes of body shape vatiation generated from the UI will
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fall within the modelling range of the statistical model. This helps prevent the user from
generating an untrealistic body shape through the UL

The provided interactive method can also be applicable to model body shape variation
of a new ethnic group and improve the result of a body shape regressor trained on an
existing dataset. This is done by filling in the shape variation between the cutrent
regfessor and the target body shapes, when an addiﬁonai training dataset (e T .

mentioned in Section 4.2.1) is present for the purpose of model calibration.

4.3 Requesting Additional Measurements Using a Measurement Selection
Process

The third approach for body shape personalisation is a Ul in which users will be
instructed to provide their body measurements incrementally to further constrain the
body shapes. In the Ul, users will be shown a small subset of candidate measurements,
called the most informative measurements. They could choose to provide one or more
of these provided measurements based on their knowledge or self-measurements.
To select the candidate measﬁrements, a decision tree (see Figure 30) can be used to
decide what is(are) the next measurement(s) that would provide the most constraints to
the body shape based on the current set of measurements which the user has supplied.
The process of selecting additional measurements is incremental and it is based on a
critetion of maximizing information or minimizing probable residual body shape
variation given the existing set of measurements. This can be in the sense of either 1)
minimizing the total body shape residual etror in (30) for the next measurement, ot 2)
maximizing the reduction in the prediction error to the given next measurement.
As an example illustrated in Figure 30, given the user provided measurements of height,
weight, and waist, the three most-informative measurements that will help the user to
constrain their body shape most are: inside leg length, thigh circumference, and arm
length. If the user supplies their thigh circumference, the next three informative
measurements will be the inside leg length, shoulder width, and arm length. The aim is to
allow the user to reconstruct a most accurate body model with a minimum set of
measurements. An example of the implementation is as follows:
1. Evaluate the 3D reconstruction errors of all different body shape regressors based on

different sets of measurement input over a specified body shape dataset;
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2. Evaluate the decrease of 3D reconstruction errors by introducing each new
measurement as the extra measurement on top of the existing set of measurement input

for body shape regression;

3. Pick the measuremenf(s) that will give the maximum etror dectease. The Ul allows a

user to supply most informative measurement one after another to refine the body shape
incrementally. ' _

The UI can be integrated with the API of digital tape/ suiﬁg/ ultrasonic measurement
devicés with Bluetooth data transfer mechanism. This would allow users to easily
transfer the measurement data on to the virtual fitting toom UI while taking their self-
measurements. The UI may give users the feedback of a body shape, and ask them
which area they believe has the largest error in order to guide the next measurement

selection process.

4.4 Using Additional Questions and Surveys

The fourth approach for body shape personalisation is to use a question and sutvey
based Ul A simplified example pipeline of a two-stage survey-based UI is givén in
Figure 31. Besides the standard body measurement inputs (eg height, weight,
undetbust, waist, _hips, cup size, ex.), this Ul will involve presenting users with a shott
survey that will ask users additional questions about their body shape‘attributes, shape-
awareness, and their lifestyle. This would include but is not limited to:

* "Do you classify yourself as being athletic?";

* "How many hours of exercise you do every week?" ;

* "How would you classify your type of body shape? (houtglass, column, peat, ot
apple)", et

The answers to these questions, in the form of a set of numerical or semantic body
attribute labels, will deliver additional information to constrain body shape information
from users. We can learn: 1) a mapping from a set of numerical body definition labels or
semantic attributes (encoded as binary or discrete variables) in combination with other
numerical body measurements to the subspace of body shape variation (i.e. the morph
parameters of the morphable model) using regression tools (e.g linear regression), which
is similar to the process described in Section 4.2.1, or 2) multiple regressors/mappings
from body measurements to the parameters of the morphable body model, with each
regtessor trained on the data grouped by semantic .body definition labels or attributes.

Then, along with the existing body metrics and measurements we have from the user, we
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could reconstruct the user’s body shape more accurately. An optimisation approach is
used to find out the best set of body attribute questions to ask in the UT that would yield
the most accurate body shapes. ‘This is done based on the critetion of both minimizing

the number of questions and minimizing the 3D reconstruction error of the body shape.

4.5 Using Mobile Photography or Scans

The fifth approach is to use mobile photography or scans to capture local shape
variation of the user. Besides the standard body measurement inputs, users will be
instructed to use the camera on the mobile device (a phone or a tablet) to take a short
video sequence or a few photos‘of themselves (in different camera viewpoints) either of
their full body or around a particular body region, eg. the waist area. An algorithm based
on image feature detection (eg using a SIFT [23] or Harris corner [15] detector), and
structure from motion (SfM) [14] or simultaneous localisation and mapping (SLAM) [12]
can be usea to reconstruct the 3D surface of the user body shape over the specified

body region. This reconstructed geometry can then be used to

‘1. Estimate or refine the tape measurements over the specified body region (eg waist

circumference); or extract new additional measurements automatically from the scan.

2. Define and complement the detailed shape variation and/ ot body tone over the

 specified regions on the virtual zvatar. We can use visual edge detection techniques [15,

24] coupled with accelerometer data to measure the hotizontal extent of body.

4.6 Exploiting the Correlation between User’s Face Shape and User’s Body
Shape

The sixth approach is to mine out additional body shape information about the users
from their face image input by exploiting the correlation between the face geometry and
appearance, é.nd their body shapes. |

Users’ face geometry and appearance usually deliver some informaﬁon of their body

shape. For example, the shapes of jaw, cheeks, and neck are good indicators of the body

© fat percentage of the user. A mapping can be learned from the features of a user’s face

‘geometry and appearance (including the 2D face landmark posidons, the face skin

colout, ¢«.) to the subspace of body shape variation residues using regression tools (¢.g
linear regression). Combined with the existing body metrics and measurements we have

from the user, we could reconstruct the user’s 3D body shape more accurately.
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5 Unified Body Modélh'ng by Integrating Head, Body, and Hairstyle Models
Once we have obtained the individual components of the uset’s 3D face/head model
and their 3D bodjr shape model via the processes desctibed in Section 2 and 4
tespectively, we may combine the elements to create a unified visualisation of the uset’s
personalised 3D avatar. This requires us to overcome the following challenges:

* Head geometry attéchment: i.e. we need a solution to merge the 3D geometry of the
body model and the head model in a natural manner. See Section 5.1 for details.

* Skin tone matchihg: i.e. we need to perform a skin-tone matching between the user’s
face/head model and the rest of their body, to generate a consistent appearance model
for the whole body. See Section 5.2 for details. _

* Hairstyle modelling. To complete £hC visualisation of the user’s body avatar, we will
also need to include a hairstyle model. This involves solving the 'problem of how to

render a photo-realistic hairstyle on a user’s head model and how to model hairstyle for

_ different body shapes. See Section 5.3 for details.

The avatar integration module mentioned in Section 1 incotporates algotithmic features
to address the three challenges above, and it manages to achieve the unified personalised
3D avatar as shown in Figure 32. The rest of the section will desctibe these approaches

in detail.

5.1 Head Attachment and Geometry Merging

Let H be the 3D head model created by approaches in Section 2 and it is modelled by a
N x3 mattix which contains the 3D position of all its N vertices. H,, refers to the
head part of the user’s body shape model B (which is created by approaches in Section
4). In the head attachment process, we assumé that the vertex correspondences are given
between H and Hj;. This can be achieved by sharing the same mesh topology between
the head template and the body template which are used in all the 3D shape registration
and regression processes, as described in Section 2 and 4 respectively.

As the first step of the head attachment process, we need to estimate a linear transform

T that will re-position and re-scale the head model H so that the transformed result

H,, =TH will align with the head of the body shape model B . We start with estimating

an affine transform T _ from all the corresponding vertices {Vuy }¥ and {vHB Y of

H and Hj, using a least-squares ditect linear transformation (DLT) [16] as follows. -
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T, e = (HTH) " HH,, (35)
where H =[H, 1]is the homogeneous counterpart (a N x4 matrix) of the head

vertex position mattix H.
Then, in order to maintain the rigidity of the head model after the transform, we further

apply a QR factotisation to the transform matrix estimated from the DLT,
T, = QR, | (36)
where Q is an orthogonal mattix and R is an upper triangular matrix. We then remove

the skew components of T . by replacing the upper triangular matrix R of the

“affine

transform with a diagonal matrix Ap =diag(sg,Sy,85,1), where the scaling factor
Sp = W . The final transform T is in the form of: |

T=QA;. C (37
And finally, the transformed head model H, can be computed as:

H, =TH, | | (38)
where ﬁ'r and H are the homogeneous counterparts of Hy and H respécdvely.

After the above head geometry alignrﬁent process, we apply a weighted geometry

blending around the set of boundaty vertices V, of the head model H in otder to

owndary

generate a smooth merge with the body shape model around the neck area.
V; =(1-w)vy; + WiVig,io v 39
where the Weighting factor w, = maX(l,n/N ,) if vertex i is an n -ring neighbour '(

n=0,1,2,---,N,) to any vertex vEV, We choose N, =3 in our implementation.

oundary *

The weights w; can also be computed based on the mesh edge distance to V, or

oundary
using other diffusion models.

The approach described above allows us to attach and merge a user’s 3D head model
onto an atbitrary 3D body shape model generation in Section 2. Examples are given in
Figure 33. It can also be applied for applications that involves eg. 1) swapping the heads
of two users who are friends, or 2) transplanting a user’s head model onto the body

model of 2 celebrity and vice versa, ete.
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5.2 Automatic Skin-tone Matching and Skin Texture Blending

Being able to match the skin tone of the virtual avatar to that of the user’s face is an
important product feature for photorealism of the personalised virtual avatar. To
generate a personalised skin texture, we first estimate a global colour transform from the
body skin colour space to the head skin colour space (see Section 5.2.1) and then use this
colour transform to propagate the face skin-tone to the texture of the rest of the body.
To achieve a better colour transition between the face and the body, we apply alpha
colour blending when rendering the personalised avatar (see Section 5:2.2), and also
implement a re-lighting algorithm (see Section 5.2.3) to imptrove the lighting balance of

the input face texture. Below we describe each of the features above in detail.

5.2.1 Skin-tone Matchlﬁg with an Estimation of Linear Colour Transform
Given the vertex correspondence between a user’s head model H and the head patt of
the target body model H,, we can obtain the correspondence of UV texture

coordinates between H and Hj; naturally. This allows us to map and unwrap the head

texture onto the canonical albedo skin texture map of the body model Hy (shown for

example in Figure 34). To generate a personalised albedo skin texture map for the uset,
we will then need to propagate the skin colour of the user from the face region to the

remaining body parts on the skin texture ;nap. :
Fitstly, we try to find a global cclour transform T that will map from the skin colour

space of the original template body model to the target skin colour space in the uset’s

face image. See Figure 34 for an example of a skin tone matching process.

We define a region of interest A,,, on the skin texture maps of both the head and the
body models, which specifies the corréspond'mg face area. The colour transform T (a
4x3 matrix) is then estimated by a least-squares linear regression based on the

corresponding RGB colour samples ¢, , and ¢, , on all the corresponding pixels

PE 4, as the following equation shows:

T.=( EB,pTEB,p)_I . EB’pTcH,p, ' (40)

ROI ROI

whete €, =[cy,,1] is the homogenous reptresentation of the RGB colour sample.
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Given T, we can then transform the colour of the whole albedo skin texture image of

body model, including the head part (including the scalp and all other areas which are

not captured in the image face texture), the torso part, and the limbs.

5.2.2 Alpha Coldut Blending around the Boundary

T, in (40) gives a least-squares estimation of the global colour transform, there is
however no guarantee of colour consistency along the face boundary (See for ‘example
Figure 35) owing to the local lighting and colour variation.

To address the problem, we apply a soft alpha blending for a smooth colour transition,
in which we assign the alpha value ¢; to each vertex i of the face model F
automatically based on its distance to the mesh boﬁndary, as the following equation
shows:

a, =255xn/K, 41)

if vertex i is an n-ting neighbour (7= 0,1,2,--,K) to the boundary vertices Vsoundary

We choose K =3 in our implementatioﬁ. In an example, the pixel shader of a standard

" tender engine (eg DirectX or OpenGL) may be used to interpolate an alpha value for all

the pixels projected from the affected mesh triangles. We then re-rendet the original face
mesh F with the above alpha matting scheme just desctibed. This will normally give a
much smoother colour transition in the final visualisation of the personalised vittual

avatar.

5.2.3 Lighting Correction and Re-lighting _

While the input-quality detection module will reject most of those input images with
poor lighting conditions, in practice when épplying colour blending in camera views, we
observe that there can still be some minor issues of lighting imbalance remaining, ‘To
correct such minor lighting irﬁbalance, we implemented a de-lighting and re-lighting
module to revise thé input fé.ce texture image based on the spherical harmonic (SH)
analysis [6]. |

It has been shown that a wide variety of the lighting conditions can be accurately

modelled using the first nine spherical harmonic basis 4, (n) (i=1,2,::-,9), which are

functions of the surface normal n directdon [6]. For an RGB input image, this will
require us to estimate 9x3 =27 spherical harmonic coefficients to capture the lighting

distribution of the environment:
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By intrinsic decomposition, an image I captured under a certain lighting condition can
be factorised into the albedo component I, . , which chatactetises the intrinsic colour

of the objects, and the shading component S which describes the illumination and

-reflectance distribution caused by the external lighting environment. For an RGB image,

we then have

I h(u,v)= IS, (u,v)S(n(u,v))
Ly (u,v)icch,ihi(n(u,v)), chE(R,G,B), )

where (u,v) is the image pixel coordinate, m is the surface normal, and c,; (

i=1,2,---,9, ch€{R,G, B}) ate the sphetical harmonic cocfﬁcients‘of; each colour

channel.

Given the assumption that the skin of the user’s face has 2 uniform colour in the albedo

- image, we can estimate the 27 spherical harmonic (SH) coefficients c,, ; over colour

samples in the face skin area (eg excluding the eyes, mouth, nostrils, e#.) by a least-

squates approach. This will also allow us to perform re-lighting on the input face image

if a new set of sphetical harmonic coefficients c which are estimated from a face -

ch,i?
image of perfect lighting condition, is supplied. The image I, after re-lighting can be
computed by the following eéuation:

IR () = I, (w,v) %

9
ZC" (m(,v)))
=1 :;lbeda (u,v) '=9

zcd,,,-h,-(n(u,v)) '-

(43)

An illustration example of the aforementioned de-lighting and re-lighting process

described above is given in Figure 36.

5.3 Customised Hairstyle Modelling

Apart from the personalised face model, we also allow the user to select different hair
models to customise the hairstyle on their 3D avatar in the personalised vittual fitting
system. In the system, the hairstyle models are created off-line and stored in a database.

Users can then select from a range of available hairstyle models to try on at runtime.
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To model the hairstyle of the virtual avatar, we provided two distinct solutions which are

-~ suitable to different scenarios:

* 3D Computer‘Generated digital hairstyles, in which we invite 3D artists to design
these digital assets or use off-the-shelf assets available for gaming. As advantages, this

solution will naturally support 360 degtree visualisation, 3D head rotation, and 3D

- draping simulation. Also, it is usually easiet for designers to create models of different

hair colours by reusing the geometric model while recolouring the texture map. See
Section 5.3.1 for details.

* 2D Photographic hairstyles: in which we map the 2D textureé to the 3D geometry in
several specified discrete camera views. Although the available viewpoints are liﬁxited,
the advantages of this 2D solution atre on its 'scalability. These 2D hairstyle models are
notmally easier and cheaper to create while achieving a good photorealism. Also,
modelling a 2D hairstyle is normally faster as computing the 2D texture deformétion is

less computationally expensive than the 3D one. See Section 5.3.2 for details.

5.3.1 Using 3D Digital Hairstyle Models _
3D digital hairstyles are widely used in computer games and other applications. They are
normally in the form of | 3D assets that are manually created by 3D artists using
commercial software (¢g Maya and 3DSMax). The two challenges for supporting a2 3D
digital hairstyle model are:

1. How to model the deformation of the hairstyle on the head and the body of diffetent
users,

2. How to render the translucent model like hairstyle propetly to give a good
visualisation.

Below we describe the approaches we have incorporated in our system fo address these
two challenges.

Model the geometry defofmation: "To model how a hairstyle will deform on the head
and the body of each user, we provide a h);brid approach of mesh skinning and physics
simulation. |

Fot the computational efﬁciencjr, the mesh skinning approach is appropriate for
modelling the deformation of short haitstyles where hair mesh vertices are close to the

vertices of the target head model H. For each hairsf:yle model S;, we can pre-compute
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the skin weights w;; of each of its mesh vertices 8,5 (i=1,2,---,N,) based on their

distance to'the nearby J head mesh vertices {h j,o}j=1 on the template head model H,.

wi, =1/ (y+[s;0=h,, ||2), . (44)

where y is a regularisation constant, normally set to 1. At the runtime, the deformed

position of each hair-vertex §; yinn, (i =1,2,-++,N) on the new head model H can be

- quickly computed as a linear weighted average in (45).

S

J
zwis,j(si,o ~h;,+h;)
= J=

i,skinning - J
.
Zwi,j
j=

For a long hairstyle that drapes below the bottom of the head, a physics simulation

(45)

needs to be applied for modelling more realistic draping and accurate collision points of
the hair model against the user’s body shape model. Performing a highly-detailed physics
simulation of the 3D hair model can be computatlonally expensive. To model how a
long hairstyle model will deform on the head and the body of each user, we adopt a
multi-resolution simulation approach.

We fitst create a coarse finite-element model of the hairstyle based on é low-resolutional
mesh geometry S} simplified from the original hairstyle model S, . This can be achieved
using mesh sirnpﬁﬁcat’ion algorithms (¢ quadratic decimation). The physics simulation
of S} can be done in a reasohably short amount of time using a commercial physics
simulation engine (e,g. nVidia PhysX library). Then given the simulation result S' of the

low resolutional hair model Sy, the full resolution hair geometry S after the physics

simulation can be tecovered from S' using the per-computed skinning weights w/ , that
associates each vertex s; (i=1,2,---,N,) of the low-resolun'on hair model S, with the

J neatby vertices (with indices {m( ])} _,) on the high-resolution hair model S, as the
following equation shows:

J
1ol i
2“’1; 1(8i =S50 +854)0)

i,simulation = J s
1
zw,-,j
j=

We choose J =4 in the implementation.

A

(46)
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We finally introduce a linear blending between the mesh skinning result and the physics

simulation result thtough a weighted-average mechanism, as shown in (47),
§; = tiSi,sla'nning + (l - ti )si,simulation’ | (47)
where the weighting factor ¢, (i=1,2,---,N ) is a monotonic function of the height y,

of the i-th hair mesh vertex as follows:

= 1 ' | (48)

1+expf Yi= Y
g

where the height threshold y, is set to be the nose height of the body model, and the

transition bandwidth 0 is set to be 8cm. Effectively, we apply mesh skinning on the top
of the hair and simulate the lower part for the long hairstyles (see Figure 37 for an
llustration example).

Modelling translucency To achieve a more photo-realistic visualisation of a hairstyle

“we need to correctly capture the hair translucency when rendering. The challenge of

rendering a piece-wise translucent mesh such as a hairstyle model is that alpha blending
is not a commutative process. The colour ¢ one can observe from an arbitrary N

overlaying translucent layers can be modelled as:

N-1

c=a1c,,+a2(1—al)cz+~-+aNH(1—a,.)cN, (49)
where ¢; and ¢; (i=1,2,---,N) are the RGB colour and translucency of layer i
respectively.

To obtain the correct translucency in a given camera viewpoint, we have to pre-sort all

the N triangles so that alpha blending is done in the correct depth order. This sorting

process is computationally expensive but it has to be executed at the rendering time, as

the depth-order for alpha blending will change by pixel position and camera view.

TS solve the prdblern, we provide a three-pass rendering solution based on an

approximate alpha matting scheme to avoid the triangle sorting process mentioned

above. See Figure 38 for an illustration example.

In the first pass, we render an aggregated alpha-map over the whole mesh with a “max"

blending operation over the alpha values {a,}Y, of all the associated depth layers (with

the z-buffer turned off). For each pixel, we compute the over:;ll translucency o by
a=max(a],d2,~--,aN). (50)

Since the “max" operator is commutable, no sorting will be required.
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In the second pass, we render an aggregated opaque hairstyle texture render with the z-

‘buffer turned on, in which in an example a standard graphics engine (eg OpenGL or

DirectX) is used to petform depth ordeting and occlusion computation for rendering
opaque texture efficiently.

Then in the ﬁ_nal pass, we perform an alpha matting on the aggregated opaque texture
obtained in the second pass with the aggregated alpha-map obtained in the fitst pass.
This will yield the final render of hairstyle texture with translucency on the boundary, as
shown for example in Figure 38.

We find that this solution works well for ren,derir;g the translucent models of near-

homogeneous colours, such as hairstyles.

5.3.2 Using 2D Photographic Hairstyle Models

In the second solution, we use a texture association approach to model 2D photographic

hairstyles in N, discrete camera views. Given a specific camera viewpoint i (
i=1,2,--,N,,,), we associate the 2D hair texture model with the projection of the

underlying 3D head geometry in the given view and then deform the 2D hair texture
based' on the association when the 3D head shape changes. To model the correct
composition order with the body avatar and clothes, a 2D hairstyle model is normally

segmented into multiple layers manually. We then associate the 2D hairstyle layers with
the 2D projection h;, of the 3D template head model H, in each view i (
i=1,2,---,N,..). See Figure 39 for an illustration of an example process.

It is worthwhile to mention that the definition of relevant head template mesh H can

differ for different hair layers. For example, for those layers modelling the hair areas that

are meant to follow the scalp and the shoulders, we assign the relevant template mesh to

_include the head, the neck base, and the upper patt of the shoulders; whilst for the léyers

modelling the draping of long hairs, we assign the relevant template to be the head part

only.

- To generate a global texture morph field, we first compute the skinning weights on a

w, xh, rectangular grid G of sample texture positions
G= {8y = (47,) = (5, Y, Viarms,_seyen, » Where d, is the step size per grid in the

UV texture co_ordinate. For any texture grid position g=(u,v) falling inside the
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silhouette of Ry, it is mapped to the cottesponding mesh triangle 7. We associate g

with the n=3 corresponding vertices {V,,,V,g,V3,} of the triangle T.

3»
p= zwjvj’o, ey
=

The skinning weights {w}}_ are then computed based on baricentric coordinates of
5  the given grid point g in the triangle as follows.

=@V x@-vy) e
LU ((Vx,o - Vz’o)x (Vm - vs,o))

Ny (8~ Vs0) X (8~ Vyy,))

B Ny (Vg = Vi) X (Vo = Vg )) ’

4(53)

2

w,=l=-w -w,, | ' G4

where n, refers to the normal of the triangle T'.
10 On the other hand, for any texture grid position g falling outside the silhouette of h;,,
a direct texture mapping cannot be performed. In this scenaﬁo, we adopt an

extrapolation based on a texture-to-mesh skinning, The 2D texture grid point g is

affiliated to N, nearest vertices {Vj,o}ii"l (in 2D cootrdinates) of the projected head

. l . . . N .
template h;, in a weighted-average manner. The skinning weights {w;} ./ are inversely

15  proportional to their distances to the respective vertices as follows.

! i=1,2,-,N (55)

b
where y is the regularisation constant, normally set to 1. In the implementation, we
choose N, =4.

When modelling the hair texture on the user’s head model H, the hair texture will

20  morph according to the displacement of the associated vertices in a projected head

model h; in each camera view i accordingly. For each texture position g, on the

original hair texture image defined on the sampling grid G, its new texture position g;,y

after the texture morph can be computed as the following equation shows.

n

x-. =g,,,‘+2w,-(v,' = Vi0); (56)
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where Vv, , and V; ate the associated vertex position on the projected template head

model h; and the projected user’s head model h; respectively. Then for an atbitrary

texture point p = (u,v) on the otiginal hair texture image, its new texture position p

4

i=1

can be obtained from the displacements of the 4 neatby corner grid points {dg,}

based on a bilinear interpolation as follows:

P =Py, +(1-5,)(1-b,)3, +b,(1-b,)g,

+(1-b,)b,0g, +b,b,)og,, €]
where |
=g _ , 58
% gla"—J.l-dLJ gt—';—J,ld—v—J ©8)
g g g g
=g _ , 59
% nglJn,Lle gtlen,Lle 9
g 4 g g
=g - , 60
% glle,lleu Bl 0
-4 g 4 g .
&4=g*u v -g . v, (61)
N ERRAF R R RTRA R
dg dg dg . dg
u u .
b= -1, ©2
g 4
b =(—-|—), . 63
, = ) | ng) | ©3)

and [J stands for a floor function that round down a real number down to its nearest

integet.

6 Personalisation Applications based on 3D Face Modelling

In this section, we describe other examples of personalisation applications which derived
from the personalised 3D face/head teconstruction techniques as described in Section 2.
By integrating them with commercial social network websites and/or messenger
applications on the mobile platforms, it allows usets to create, visualize, and share their
petsonalised 3D models conveniently. . |

As a key feature, these applications can automatically create graphical representations
based on a user’s 3D face model (¢.g. GIF animations of a left-to-right rotating face), in

which the 3D face model is automatically reconstructed from a selfie of the user or an
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offline single 2D portrait photo uploaded by the user using the single-view 3D face
reconstruction approach described in Section 2.1. The representations of a user’s 3D
face could be an animated GIF of

* the face shape only,

* the face merged with a full head and a hairstyle,

* a full body model, created using the approaches described in Section 5, which is
rendered on top of a specified background image. These approaches can be generalised
to take into account different effects, including bu; not limited to: |
* change of camera positions, as an animation of head motion and movements;

* face transfers: ie. transfer the face appearance from one to the other, or merges the
face appearance of two or more users by ¢g. averaging, blending, and morphing.

* expression modification ze. gradually change a uset’s expression from one to another.

* skin appearance modification and lighting changes, ze. in the form of virtual tanning
and virtual make-up applications.

A pipeline of an example provided system is illustrated in Figure 40 with a simplified
diagram and user flows shown in Figure 41 by way of example. The system may include
the following key components: -

* 3D face reconstruction module, reconstructs the user’s 3D face model from the
single 2D frontal selfie/uploaded face photo, using the approach described in Section
2.1. An example of pipeline detail of the module ivs given in Figure 5.

* Background database, stores a number of static or dynamic background images of
various themes for users to select as the background for their personalised animations.

* Head pose sequence .database, stores the predefined metadata of different head
pose sequences for usets to compose their persoﬁalised animations.

x Dialog logic management module, keeps the state of the UI and converts the usets’
text dialog and UI inputs into logic instructions. It will then select the specified
background image from the background library, and select the head pose motion.
sequence for rendering the 3D face model. |

* Rendering and animation module, r.enders the animation (e.g. animated GIF) from
the 3D face model(s) given the speciﬁed background irnége and head pose seciuénces.

As a specific example of implementation, the system can be implemented by 1) using
Amazon Web Service (AWS) Lambda functions for image uploading and downloading,
3D face reconstruction, dialog logic management, rendc;.ring, and animations, and 2)

using Amazon S3 buckets to store the data of the background image set, pre-defined
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head pose sequences, user uploaded photos, and intermediate results of 3D face models,

as shown for example in Figure 40.

6.1 Chatbots and Messenger Plug-ins

‘The systems above can be integrated with a commercial social network website (e.g.
Facebook), or messengers (¢.g Facebook Messenger, Wechat, Kakao chat, Slack), either
on the PC or on mobile devices. It can be in the form of a web-app, chatbot, ot other
forms of plug-ins for messengers or social network applications. A sample user flow of
the messenger chat-bot systém for 3D face reconstruction is illustrated in Figure 42 by
way of examiple.

The messenger application systems provided above can be extended to further support
1) saving the resulting GIF animations, 2) sharing the the GIF results with friends in the
same messenger channel (see Figure 43 for examples), or 3) sharing the GIF results
onto an external website or other social network platforms J(see Figure 44 for an
example). The information included in the shating mechanisms above will involve a

propagation mechanism that will bring traffic back into the channel to achieve virality.

6.2 Voice Chat Systems ‘

The functionality of voice chat support can be further implemented on top of the
system in Figure 45 by integrating aA speech recognition library (eg CMU Sphinx [20])
on the input side of the system to translate the voice signals into text diélogs (see Figure
45 for the modified system diagram). Considering the fact that the output of the speech
recognition module can be sometimes erroneous, a string pattern matching scheme, eg.
one based on minimal editing distance, can be used to match the output of the speech
recognition module with the pre-defined dialog patterns that cortespond to a particular

state in the conversation logic controlling module to activate the chat-bot conversation

progress.

6.3 Animation of Multiple 3D Faces

The system and the approaches in Section 2.1 can be generalised to process a photo
containing multiple faces of a callection of people (two or more), and generate a group
animation automatically. Given a single input image I of multiple faces, an example

process is as follows:
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1. Detect all N frontal faces {f;}~, in the image, and the associated L 2D face

landmarks {li,j}f=1 for each face f; (i=1,2,---,N ). For example, this can be achieved
automatically by an open-source face detector (e.g dlib [18] ).

2. Reconstruct the 3D face F, for each individual i (i=1,2,---)N ace) 10 the photo 7
based on the 2D face landmark detection results {li‘j}ﬁ;], using the approach described

in Section 2.1.

3. Render an animation (¢g an animated GIFj that contains some or all of the resulting
3D faces {F, }Z{““ using distinctive time-sequences of head pose parameters P,(f)
defined for each face F, (i=1,2,---,N Juce)- A\ typical set of pése parameters includes 3D
rotation R,(¢) (3x3 matrix), the centroid of rotation ¢;(f), the 3D translation vector
t.(f), and the globa.l scaling féctor 5,(t). The vertex-wise transformation is formulated
as follows: ‘

Vi O =5 OR O~ O)+t,(1), D)
where v, ; and v:,j () refer to- the j-th vertex of the i-th 3D face model in the image,

before and after the transformation, respectively.”

As an example effect, we can generate a “roulette of faces" from a group photo of N

faces, in which we apply the head pose parameters P,(¢) = {R,(#),¢;(£),t;(?),s,(#)} to

generate the effect:

R,(n)= Rotationy(Zm ki at)
Jace
os(2m+a)t) 0 sin(2m+.wt)
Jace face ‘
= 0 1 0 , , (65)
- K .
_Sin(Zm + wt) =y cos(zm + a)t)v
Jace x",iﬁ Jace
(1) = (0.0,~(d+ wsin( - ), | (66)
Jace
t.()=0,0,d, +a’+wsin(%— 7y, ©7)
Jface .

5;(0=1, (=01.2,---,N,, -1), ' (68)
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=400

where the sample hyper-parameters settings ate d =30mm, w=180mm, d,

camera
mm, respectively. An example visualisation of the effect is illustrated in Figure 46. As
examples of applicationis, we could integrate the above system in a social netwotk ot a

messenger application so that it allows automatic generation of a spinning face-roulette

animation for all the members in a group chat or in the same channel.

6.4 Creating a Personalised Sticker Set '

The face/head animation generation systems above can be further extended to
automatically create a collection of personalised stickers for the user (see Figure 40 for A
example), from one single image or multiple frontal view static images of the user with
different expressions.

The personalised sticker set comprises several GIF animations created with the
approaches above using a combination of: _ A

* Background iniages in different themes, which can be either a static or a dynamic
background (eg an animated GIF) characterising g the expressions, the gestures, and
the motions of catton characters; and |

* Different head pose parameters sequences, which represent the head motions of
the original character(s) in the background, so that we replace the head of the original
character(s) with the user’s face by rendeting the user’s 3D face model onto the
background image. |

Some examples are given in Figure 41.

A. Smooth Shape and Texture Mapping Based on the Thin-Plate Spline Model

We use the thin-plate spline (TPS) model [9] to generate a smooth global deformation
field of shape or texture based on a number of pre-computed pair-wise control points.
Given an arbitrary k -dimensional input position p (normally k=2 or 3 in our
applications), its k -dimensional output position ( after the ma}:;ping is obtained by the

following interpolating function (69):

L
q"=[p" 1B+ Yepllip-p, I, 69)

i1
where the kernel function is typically chosen to be ¢(r) = riogr; Bis a (k+1)xk

coefficient matrix; ¢; (i =1,2,---,L) are 1x k weighting vectors, which also satisfy that:
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L

. . .
ECi =0, and- HY¢p, =0. 3 (70)

¥

TPS coefficients B and ¢; are chosen to minimise the matching errors as well as the
bending energy based on all L control point pairs (p, ,q, ) (i=1,2,---, L) obtained in

the matching stage:
. i )
Epps = [Py —a] +BTr(CT20). @
i=1 '

whete ® =[@(Pp; —P;P))iics1c)er is the Lx L kernel mattix; C=[c;]-, is an Lxk
weighting matrix; and B is the regularisation factor controlling the amount of
smoothness, normally set to be 1 is our implementation. Ep,g in (71) can be minimised

analytically through the following lineat system:

& m,[c]_m,) o
m o|Bf |0
P ! - | qQ
p! q .
whete II, =" 2 is a Lx(k+1) matrix, I, =|"?| is a Lxk matrix, and
p; 1] - q;

&)=Q+ﬂlism Lx L mattix.
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Note

It is to be understood that the above-referenced arrangements are only illustrative of the
application for the principles of the present invention. Numetous modifications and
alternative arrangements can be devised without departing from the spirit and scope of
the present invention. While the present invention has been shown in the drawings and
fully desctibed above with particularity and detail in connection with what is presently
deemed to be the most practical and preferred example(s) of the invention, it will be
appatent to those of ordinary skill in the art that numetous modifications can be made

without departing from the principles and concepts of the invention as set forth herein.
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CLAIMS

1. Method of generating an image file of a petsonalized 3D head model of a user,
the method comptising the steps of:

(i) acquiring at least one 2D image of the user’s face;

(i) performing automated face 2D landmark recognition based on the at least one 2D
imége of the user’s face; '

(iif) providing a 3D face geometty reconstruction usiilg a shape prior; .

(iv) providing texture map generation and interpolation with respect to the 3D face
geometry reconstruction to generate a pefsonalized 3D head model of the user, and

(v) generating an image file of the personalized 3D head model of the user.

2. Method of Claim 1, wherein the at least one 2D image of the uset’s face is

acquired via a network communication.

3. Method of Claim 2, wherein the at least one 2D image of the user’s face is -

acquired via the network communication, from a smartphone including a camera.

4, Method of any previous Claim, wherein the at least one 2D image of the user’s

face is a front image of the user’s face.

5. Method of any previous Claim, wherein the at least one 2D image of the uset’s

face is a smartphone camera image of the user’s face.

6. Method of any previous Claim, wherein the automated face 2D landmark

recognition includes using a 2D face landmark detector.

7. Method of Claim 6, wherein the 2D face landmark detector is implemented

based on a regression forest algorithm.

8. Method of Claims 6 or 7, wherein the automated face 2D landmark recognition
includes using a 3D Constraint Local Model (CLM) based facial landmark detector.



10

- 15

20

25

30

.12

9. Method of any previous Claim, wherein providing a 3D face geometry reconstruction
using a shape prior includes generating an approximate 3D face geometry using 3D head
shape priors, followed by refining the 3D face geometry based on the distribution of the
recognized 2D face landmarks.

10. Method of Claim 9, wherein generating an approximate 3D face geometry using 3D
head shape .priors includes finding an approximate head geometry as an initialisation
using a generative shape prior that models shape variation of an object category in a low

dimensional subspace, using a dimension reduction method.

11. Method of Claim 10, wherein in which a full head geometry of the user is
reconstructed from this low dimensional shape prior using a small number of parameters

(e.g. 3 to 10 parameters).

12. Method of any of Claims 9 to 11, in which a principal component analysis (PCA) is"

used to capture dominant modes of human head shape variation.

13. Method of any of Claims 9 to 12, in which using a shape prior selection process is -
used to find the most suitable shape prior from a library, using selection criteria such as

the uset’s ethnicity, gender, age, and other attributes.

14. Method of any previous Claim, in which a machine-learning-based attribute classifier,
which can be implemented by e.g. a deep convolutional neural netwotk (CNN), is used to
analyze the at least one 2D image of the uset’s face, and predict attributes (e.g. ethnicity,
gender, and age) from the appearance information (z.e. skin colour, hair colour and styles,

etc)) in the at least one 2D image of the uset’s face.

15. Method of any previous Claim, in which a selection is performed of an appropriate
3D shape priotr from a libraty based on matching a uset’s attributes with those defined

for each shape prior.

16. Method of any previous Claim, in which head geometry is improved for better
realism by deforming an initial head model by rectifying the face landmark positions of

the 3D model in the directions within an image plane of the at least one 2D image of the
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user’s face, so that a projection of facial landmarks on the 3D face model is a similatity
transform of the corresponding 2D facial landmarks in the at least one 2D image of the

uset’s face.

17. Method of any previous Claim, in which a 3D thin-plate spline (ITPS) deformation
model is used to rectify a 3D geometty of a regressed head model to achieve better
geometric similarity, so as to generate a smooth interpolation of 3D geometry
deformation throughout the whole head mesh from control point pairs.

18. Method of any previous Claim, ih which the image file is 2 3D image file.

19. Method of any of Claims 1 to 17, in which the image file is a 2ID image file.

20. Method of any of Claims 1 to 17, in which the image file is an animation file.

21. Method of any of Claims 1 to 17, in which the image file is a persbna]ised sticker set.

22. Method of any previous Claim, in which UV texture coordinates are determined for

the texture vertices of each mesh triangle of a 3D mesh geometry of the user’s face.

23. Method of Claim 22, in which the UV cootdinate of 2 landmark vertex is computed
based on the result of the corresponding 2D face landmark position detected by the 2D

face landmark detector on the at least one 2D image of the user’s face.

24, Method of Claims 22 or 23, in which to complete the textute map of the 3D

face/head model, a 2D thin plate spline (TPS) model is used for interpolation and to

populate the UV texture coordinates over other mesh vertices.
25. Method of Claim 24, in which to construct a TPS model for texture coordinate
interpolation, the frontal-view landmark projection of all the face landmarks and its

texture coordinates, assigned previously as source-sink control point pairs, are used. -

26. Method of any previous Claim, in which the at least one 2D image of the user’s face

.comptises at least a front image, a left side image and a right side image, of the user’s
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face.

27. Method of Claim 26, in which following generating an approximate 3D face model
from a frontal view image and using it as an initialisation model, a step is performed of
performing an iterative optimisation algorithm for revising the initial 3D face geometry,
which is implerpented to minimnise the landmatk re-projection etrors against independent

2D face landmatk detection results obtained on all face images.

28. Method of Claim 27, including the step of the 3D face model being morphed with a

new set of landmark positions, using a 3D thin-plate spline model.

29. Method of Claim 28, in which the steps of Claims 27 and 28 are repeated until

convergence of the 3D face model is achieved.

30. Method of any of Claims 26 to 29, in which a colour tone difference between images
is repaired by adding a colour offset at each pixel, and in which the colour offset values

at the boundary are propagated to all im_age pixels using Laplacian diffusion.

31. Method of any of Claims 26 to 30, in which highﬁght removal is performed by a)

highlight detection and b) recovering true colour.

* 32. Method of Claim 31, in which for highlight detection, a highlight probability map

based on the colour distribution of corresponding facets across all input images is
created, and the colour-of the highlighted region is then recovered using the gradient of

one of the input images.

33. Method of Claims 31 or 32, in which camera projection matrices are derived to

establish a link between a 3D face model and the input images.

34. Method of any of Claims 31 to 33, in which in the case of face images a model based
feature detector, ze. a 3D Constraint Local Model (CLM) based facial landmark detector,

is used, and an associated camera model is used to derive a relative camera position.
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35. Method of any of Claims 31 to 34, in which a projective camera model is used to
account for potential perspective distortions, and so the initial cameta parameters from a

CLM tracker are refined using bundle adjustment.

36. Method of Claim 35, in which the bundle adjustment refines 3D vertices and camera

poses using a projective camera model.

37. Method of any of Claims 26 to 36, in which a facial mask is approximated as a sum
of two masks, which are an ellipse fitting of the 2D facial landmarks from a CLM

tracker, and the projection of initial front vertices.

38. Method of any of Claims 26 to 37, in which to address a séam from a refinement, the

colour of the front view is updated.

39. Method of any of Claims 26 to 38, in which local high]ight‘detection and removal is

performed.

40. Method of Claim 39, in which for highlight detection and removal, a }ﬁghlight
probability map is derived from a colour difference of a single facet, in which to retrieve
a colour of the facet the vertices of the facet are back projected onto the input images

and a 2D affine transform between views is derived.

41. Method of Claim 40, in which, to ctreate the probébility map, a logistic function
working as a switch is used, which gives a high probability when the difference between
the median of the mean intensities and the maximum of the mean intensities is bigger

than a certain thresholdhead size is estimated from body shape parameters.

42. Method of any of Claims 26 to 41, in which recoveting colour for a highlighted area

is performed.

43, Method of any previous Claim, in which hairstyle customisation on the user’s 3D

head model is supported.
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44. Method of any previous Claim, in which head size is estimated from body shape

parameters.

45, Method of any previous Claim, in which an automatic image analysis is performed to

help users quickly acquire input data of good quaﬁty so that they have a better chance of

creating a photo-realistic personalised avatar.

46. Method of Claim 45, in which prior to starting the video or image capture, the user is
presented with a live view of the camera feed, and a feedback mechanism analyses the
live view and, if necessary, provides the user with recommendations on how to improve

the conditions in order to achieve a high quality end result.
47. System configured to petform a method of any of Claims 1 to 46.

48. Computer program product executable on 2 processot to generate an image file of a
petsonalized 3D head model of a user, the computer program product executable on the
processor to: .

(i) receive at least one 2D image of the user’s face;

(i) petform an automated face 2D landmark recognition based on the at least one 2D
image of the user’s face;

(iii) provide a 3D face geometry reconstruction using a shape prior;

(iv) provide textute map generation and interpolation with respect to the 3D face
geometty reconstruction to generate a personalized 3D head model of the user, and

(v) generate an image file of the personalized 3D head model of the user.

49. Computer program product of Claim 48, executable on the processor to perfonh a

method of any of Claims 1 to 46.

50. Method of generating an image file of a personalized 3D head model of a uset, the
method comptising the steps of:

() acquiring at least one 3D scan of the user’s face;

(ii) using a template mesh fitting process to fit the at least one 3D scan of the user’s face;
(iii) generating a personalized 3D head model 'of the user based on the template mesh

fitting process, and
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(iv) generating an image file of the personalized 3D head model of the user. -

51. Method of Claim 50, in which the 3D scan of the user’s face is (i) from an image-
based 3d reconstruction process using the techniques of structure from motion (SfM) or
simultaneous localisation and mapping (SLAM), (i) from a depth scan captured by a

depth camera, or (iii) from a full 3D scan, captured using a 3D scanner.

52. Method of Claims 50 or 51, in which the template mesh fitting process is performed
in a first stage by introducing a 3D morphable head model 3DMHM) as a shape priot,

in which a geometry of the user’s 3D scan is fitted by the morphable head model by a |
Bundle adjustment optimisation process tha‘tv finds the optimal shape morph parameters
of the 3DMHM, and 3D head pose parameters, and in a second stage, using the result of
the first stage as the starting point, apply a non-rigid iterative closest point (N-ICP)
algorithm, which deforms the resulting mesh to achieve a better suface matching with

the at least one 3D scan of the user’s face.

53. Method of any of Claims 50 to 52, in which the image ﬁlé is a 3D image file.
54. Method of any of Claims 50 to 52, in which the image file is a 2D im.age‘ file. -
55. Method of any of Claims 50 to 52, in which the image file is an animatién file.

56. Method of any of Claims 50 to 52, in which the image file is a personalised sticker

set.

57. Method of any of Claims 50 to 56, in which the head size is estimated from body

shape parameters.

58. Method of any of Claims 50 to 57, in which a texture map is generated for a

registered head mesh.
59. System configured to a perform a method of any of Claims 50 to 58.

60. Computer program product executable on 2 processor to generate an image file of a
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personalized 3D head model of a user, the computer program product executable on the
processor to: |

() receive at least one 3D scan of the user’s face;

(ii) use a template mesh fitting process to fit the at least one 3D scan of the user’s face;
(iii) generate a personalized 3D head model of the user based on the template mesh
fitting process, and

(iv) generate an image file of the personalized 3D head model of the user.

61. Computer program product of Claim 60, executable on the processor to perform a

method of any of Claims 50 to 58.

62. Method of personalised body shape modelling, which helps a user to further
constrain their body shape, improve an accuracy of 3D body mode]ling,- and personalise
their body avatar, comprising the steps of:

(i) receiving a high-definition 3D body profile usable for outfitting and visualisation,
from a full—body-scan of the user;

(ii) applying a template mesh fitting process to regularize and normalize mesh top,ologyl
and resolution deerived from the full-body scan of the user;

(iii) genetating a personalized 3D body model of the.user based on the template mesh
fitting process, and

(iv) generating an image file of the personalized 3D body model of the user.

) 63. Method of Claim 62, in which in step (ii), a coarse-fitting of body shape and pose

under the constraint of a 3D human shape prior is perforrfled.

64. Method of Claims 62 or 63, in which in step (i), optimisation is formulated as a
bundle-adjustment-like problem, in which. fitting etror is minimized over the PCA

morph parameters and bone poses.

65. Method of Claim 64, in which in step (ii), given the coarse-fitting result as the
starting point, a fine-fitting of the geometry and also refining the bone poses with an

ICP algorithm is applied.
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66. Method of any of Claims 62 to 65, in which multill)le input depth scans of different

camera views are used for the mesh fitting.

67. Method of any of Claims 62 to 66, including attaching a personalized 3D head model
of the user of any of Claims 1 to 46, to the 3D body model.

68. Method of Claim 67, in which skin tone is adjusted so as to match the skin tone of
the 3D head model with the skin tone of the 3D body model.

69. System configured to perform a method of any of Claims 62 to 67.

70. A method including the steps of:

(i) providing an interactive UI to help users refine their 3D body avatar and edit their
own body tone easily, in which the Ul is built based on a dimension reduction algotithm
(e.g PCA), which models the distribution of 3D modelling error of the body shape

regtessor and allows the users to fill in their missing body shape variation efficiently.

71. Method of Claim 70, in which, in a first stage, a user can generate an initial 3D body

avatar from the input of theit body measurements through regression.

72. Method of Claim 71, in which in a second stage, a plurality of sliders are then
displayed to the user for the user to refine the body shape intetactively from the initial

3D body avatar generated in the first stage.

~ 73. Method of Claim 72, in which the shape modes of a residual model are used to

define the fine-gained bddy shape variation, in which each slider corresponds to a

particular principal component of the model.

74. An end-to-end method or system for virtual ﬁtﬁng, which combines a personalized
3D head model of a user of any of Claims 1 to 46, in attachment with a personalized 3D
body model of the user of any of Claims 62 to 68, whetein the personaliéed 3D body
model of the user is modifiable using a method of any of Claims 70 to 73.‘
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75. A commercial social network website configured to transmit an image file of the

personalized 3D head model of the user of any of Claims 1 to 46.

76. A web-app, chatbot, or othet form of plug-in for messengers or social network
applications, configured to transmit an image file of the personalized 3D head model of

the user of any of Claims 1 to 46.

77. Method for processing a photo con'taining multiple faces of a collection of people, to
generate a group animation automatically, comprising the steps of:.

@ from at least one input image of multiple faces, detect all frontal faces in the at least
one input image, and the associated 2D face landmarks for each face;

(i) reconstruct the 3D face for each individual in the at least one input image based on
the 2D face landmark detection results, and A

(iii) render an animation that contains some or all of the resulting 3D faces using

distinctive time-sequences of head pose parameters defined for each face.

78. Method of teconstructing a user’s body shape more accurately using a question and
sutvey based U, the method comprising the steps of:

(i) identifying existing body metrics and measurements relating to the user;

(ii) providing to the user in a user interface questions about their body shape awareness
and lifestyle;

(ii) receiving from the user interface answers to the questions about the user’s body
shape awareness and lifestyle;

(iv) converting the received answers into a set of numetical or semantic body shape

attributes.

79. Method of Claim 78, including the further steps of:

(v) mapping from the set of numerical or semantic body shape attributes, in combination
with the existing body metrics and measurements relating to the usér, to the subspace of
body shape variation using regression tools, and |

(vi) reconstructing the user’s body shape more accurately.

80. Method of Claim 78, including the further steps of:
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(v) petforming multiple regressors/mappings from body measutements to the
parameters of the morphable body model, with each regressor trained on the data
grouped by numerical or semantic body shape attributes, and

(vi) reconstructing the user’s body shape more accurately.

81. Method of any of Claims 78 to 80, in which an optimisation approach is used to find
out the best set of Iquesdons to ask in the Ul that would yield the most accurate body
shapes, which is done based on the criteria of any of the following: 1) minimizing the
number of quesﬁons or 2) minimizing the 3D reconstruction error of the body

shape, or 3) a combination of 1) and 2).

82. Method of reconstructing a uset’s body shape by requesting additional measurements
using a measurement selection process, comprising the steps of:

(i) receiving an indication of a body size from a user;

(ii) identifying a body shape dataset which corresponds to the indicated body size;

(i) evaluating 3D reconstruction errors of all different body shape regressors based on
different sets of measurement input over the identified body shape dataset;

(iv) evaluating the respecti\}c decreases of 3D reconstruction errors by introducing each
respective new measurement as an extra measurement on top of an existing set of
measuretnents input for body shape regression;

) idehtify the measurement that gives the largest error decrease;

(vi) requesting the user for an input of the identified measurement that gives the largest
error dectrease;

(vii) receiving the input of the identified measurement that gives the largest etror
decrease, and

(viii) reconstructing the uset’s body shape using the inputted measurement.

83. Method of Claim 82, in which a UI is integrated with an application programming
interface (API) of a digital tape/string/ultrasonic measurement device with Bluetooth
data transfer mechanism, which allows the user to easily transfer the measurement data

on to the virtual fitting room UI while taking their self-measurements.
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