

(51) Int.Cl.: **C 07 K 14/435 (2006.01)** **C 07 K 16/44 (2006.01)** **A 61 K 38/00 (2006.01)** **C 12 N 9/96 (2006.01)** **C 07 K 14/47 (2006.01)**

(45) Oversættelsen bekendtgjort den: **2017-06-26**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2017-03-15**

(86) Europæisk ansøgning nr.: **11794661.6**

(86) Europæisk indleveringsdag: **2011-11-15**

(87) Den europæiske ansøgnings publiceringsdag: **2013-09-25**

(86) International ansøgning nr.: **EP2011070119**

(87) Internationalt publikationsnr.: **WO2012065978**

(30) Prioritet: **2010-11-15 US 413706 P** **2010-11-15 EP 10191228**

(84) Designerede stater: **AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR**

(73) Patenthaver: **Pieris Pharmaceuticals GmbH, Lise-Meitner-Strasse 30, 85354 Freising-Weihenstephan, Tyskland**

(72) Opfinder: **JENSEN, Kristian, Altstadt 357, 84028 Landshut, Tyskland**
HOHLBAUM, Andreas, Schuckelbergstrasse 5, 85307 Paunzhausen, Tyskland
MATSCHINER, Gabriele, Gabelsbergerstrasse 70, 80333 München, Tyskland

(74) Fuldmægtig i Danmark: **KIPA AB, PO Box 1065, SE-251 10 Helsingborg, Sverige**

(54) Benævnelse: **MUTEINER AF HUMAN LIPOCALIN 2 MED AFFINITET TIL GLYCAN-3 (GPC3)**

(56) Fremdragne publikationer:

WO-A1-2009/156456

WO-A2-2005/019256

WO-A2-2006/056464

WO-A2-2007/137170

GEBAUER M ET AL: "Engineered protein scaffolds as next-generation antibody therapeutics", CURRENT OPINION IN CHEMICAL BIOLOGY, CURRENT BIOLOGY LTD, LONDON, GB, vol. 13, no. 3, 1 June 2009 (2009-06-01), pages 245-255, XP026285197, ISSN: 1367-5931, DOI: 10.1016/J.CBPA.2009.04.627 [retrieved on 2009-06-06]

HOHLBAUM A M ET AL: "Anticalins(R): The lipocalin family as a novel protein scaffold for the development of next-generation immunotherapies", EXPERT REVIEW OF CLINICAL IMMUNOLOGY, FUTURE DRUGS LTD., LONDON, GB, vol. 3, no. 4, 1 January 2007 (2007-01-01) , pages 491-501, XP001538450, ISSN: 1744-666X, DOI: 10.1586/1744666X.3.4.491

SKERRA ARNE: "Anticalins as alternative binding proteins for therapeutic use", CURRENT OPINION IN MOLECULAR THERAPEUTICS, CURRENT DRUGS, LONDON, GB, vol. 9, no. 4, 1 August 2007 (2007-08-01), pages 336-344, XP009101213, ISSN: 1464-8431

BINDER U ET AL: "High-throughput Sorting of an Anticalin Library via EspP-mediated Functional Display on the Escherichia coli Cell Surface", JOURNAL OF MOLECULAR BIOLOGY, ACADEMIC PRESS, UNITED

KINGDOM, vol. 400, no. 4, 23 July 2010 (2010-07-23) , pages 783-802, XP027244152, ISSN: 0022-2836, DOI: 10.1016/J.JMB.2010.05.049 [retrieved on 2010-05-26]

DESCRIPTION

FIELD OF THE INVENTION

[0001] The present invention relates to novel, specific-binding therapeutic and/or diagnostic proteins directed against Glycan-3 (GPC3), which proteins are muteins of lipocalin 2 (Lcn2 or NGAL). The invention also relates to nucleic acid molecules encoding such proteins and to methods for generation and use of such proteins and nucleic acid molecules. Accordingly, the invention also is directed to pharmaceutical and/or diagnostic compositions comprising such lipocalin proteins, including uses of these proteins.

BACKGROUND

[0002] Glycan-3 (GPC3) is an oncofetal antigen that belongs to the glycan family of glycosyl-phosphatidylinositol-anchored heparin sulfate proteoglycans. Glycans are characterized by a covalent linkage to complex polysaccharide chains called heparinsulphate glycosaminoglycans. Glycans are involved in cell signaling at the cellular-extracellular matrix interface. (Sasisekharan et al., *Nature Reviews Cancer*, Volume 2 (2002).) To date, six distinct members of the human glycan family have been identified. Cell membrane-bound Glycan-3 is composed of two subunits, linked by one or more disulfide bonds.

[0003] Glycan-3 is expressed in fetal liver and placenta during development and is downregulated or silenced in normal adult tissues. Mutations and depletions in the Glycan-3 gene are responsible for the Simpson-Golabi-Behmel or Simpson dysmorphia syndrome in humans. Glycan-3 is expressed in various cancers and, in particular, hepatocellular carcinoma ("HCC"), melanoma, Wilm's tumor, and hepatoblastoma. (Jakubovic and Jothy; *Ex. Mol. Path.* 82:184-189 (2007); Nakatsura and Nishimura, *Biodrugs* 19(2):71-77 (2005).)

[0004] HCC is the third leading cause of cancer-related deaths worldwide. Each year, HCC accounts for about 1 million deaths. (Nakatsura and Nishimura, *Biodrugs* 19(2):71-77 (2005)). Hepatitis B virus, hepatitis C virus, and chronic heavy alcohol use leading to cirrhosis of the liver remain the most common causes of HCC. Its incidence has increased dramatically in the United States because of the spread of hepatitis C virus infection and is expected to increase for the next two decades. HCC is treated primarily by liver transplantation or tumor resection. Patient prognosis is dependent on both the underlying liver function and the stage at which the tumor is diagnosed. (Parikh and Hyman, *Am J Med.* 120(3): 194-202 (2007).) Effective HCC treatment strategies are needed. It would thus be desirable to have available means and methods for targeting GPC3, preferably GPC3 expressed on tumor cells.

[0005] Methods of isolating and analyzing GPC3 as well as agents for the treatment of diseases and conditions associated with GPC3 have been described in WO 2009/012394, WO

2007/137170 or WO 2007/047291. WO 2009/156456 discloses muteins of hNGAL with affinity for a given target. However, no Glycan-3-binding protein having the features attendant to the proteins provided by present invention has been previously described.

SUMMARY OF THE INVENTION

[0006] The invention relates to a lipocalin mutein comprising 9 to 20 mutated amino acid residues at the sequence positions selected from the group consisting of sequence positions 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79, 81, 96, 100, 103, 106, 125, 127, 132, and 134 of the linear polypeptide sequence of NGAL (SEQ ID NO: 27), wherein the lipocalin mutein is capable of binding glycan-3 (GPC3) with an affinity by a KD of about 10 nM or lower determined by surface plasmon resonance, wherein the lipocalin mutein has at least 80% sequence identity to the linear polypeptide sequence of NGAL (SEQ ID NO: 27), and wherein said mutated amino acid residues are substitutions selected from the group consisting of: Leu 36 → Ile, Val, Arg, Met or Ser; Ala 40 → Trp, Val, His, Gly or Tyr; Ile 41 → Met, Ala, Arg, Gin or Ser; Gin 49 → Pro, Leu, Val, Arg or Trp; Tyr 52 → Arg, Thr, His, Ser or Asn; Ser 68 → Arg, Gly, Asn, Ala or Lys; Leu 70 → Arg, Ser, Gin, Thr or Phe; Arg 72 → Asp, Trp, Ala or Ser; Lys 73 → Glu, Arg, Met, Leu or His; Asp 77 → Gly, His, Met, Gin, Ser or Tyr; Trp 79 → Gly, Lys, Ser or Ile; Arg 81 → Ala, Gly, Thr, Tyr or Trp; Asn 96 → Val, Asp, Gin, Lys, Gly or Phe; Tyr 100 → Arg, Gly, Glu, Ile or Asn; Leu 103 → Ile, Gin, Asn, Met, Asp or Trp; Tyr 106 → Asp, Asn, Met, Phe or Leu; Lys 125 → Phe, Glu, Arg, Tyr, Gly or Trp; Ser 127 → Lys, Arg, Tyr, His, Ile or Asp; Tyr 132 → Trp, Ile, Phe, Gin or Val; and Lys 134 → Gly, Ala, Phe, Asp, Asn, Ile or Ser.

[0007] One example of the current disclosure relates to a lipocalin mutein that is capable of binding Glycan-3 (GPC3) with an affinity measured by a KD of about 10 nM or lower. More preferably, the lipocalins can have an affinity measured by a KD of about 1 nM or 0.3 nM or lower. In another example, the lipocalin mutein is capable of competing for binding to GPC3 in a competition assay preferably with an IC₅₀ value of about 1 nM, 0.6 nM or 0.2 nM or lower.

[0008] In another example, the disclosure relates to a lipocalin mutein, wherein said mutein comprises at one or more positions corresponding to position 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79, 81, 96, 100, 103, 106, 125, 127, 132, and/or 134 of the linear polypeptide sequence of hLcn2 (SEQ ID NO:27) a substitution, preferably a substitution as described herein.

[0009] In particular examples, the mutein of the disclosure comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20, sometimes even more, substitutions at a sequence position corresponding to sequence position 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79, 81, 96, 100, 103, 106, 125, 127, 132, and/or 134 of the linear polypeptide sequence of NGAL (SEQ ID NO: 27).

[0010] Similarly, the disclosure relates to a polypeptide comprising NGAL shown in SEQ ID NO:27, wherein said NGAL comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19 or 20, mutated amino acid residues at the sequence positions 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79, 81, 96, 100, 103, 106, 125, 127, 132, and/or 134. Said polypeptide is preferably an anticalin.

[0011] In particular embodiments, a lipocalin mutein according to the current invention comprises an amino acid sequence selected from the group consisting of SEQ ID NOS: 1-8. In another example, the mutein has at least 70 % identity to the sequence of a wild-type human lipocalin, including human Lipocalin 2 (hNGAL). Preferably, said mutein comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20, sometimes even more, mutated amino acid residues at the sequence positions 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79, 81, 96, 100, 103, 106, 125, 127, 132, and/or 134 of the linear polypeptide sequence of NGAL (SEQ ID NO: 27).

[0012] In another embodiment, the mutein of the current invention is conjugated to a compound selected from the group consisting of an organic molecule, an enzyme label, a radioactive label, a colored label, a fluorescent label, a chromogenic label, a luminescent label, a hapten, digoxigenin, biotin, a cytostatic agent, a toxins, a metal complexe, a metal, and colloidal gold. The mutein can be fused at its N-terminus and/or its C-terminus to a fusion partner which is a protein, a protein domain, or a peptide.

[0013] In another embodiment, the mutein is conjugated to a compound that extends the serum half-life of the mutein. More preferably, the mutein is conjugated to a compound selected from the group consisting of a polyalkylene glycol molecule, a hydroethylstarch, an Fc part of an immunoglobulin, a CH3 domain of an immoglobulin, a CH4 domain of an immunoglobulin, an albumin binding peptide, and an albumin binding protein.

[0014] In another embodiment, the mutein of the current invention is an antagonist of a GPC3.

[0015] In another embodiment, the current invention relates to a nucleic acid molecule comprising a nucleotide sequence encoding a mutein of the current invention.

[0016] In yet another embodiment, the invention encompasses a host cell containing said nucleic acid molecule.

[0017] In another example, the lipocalin mutein of the current disclosure is selected from the group consisting of muteins of retinol-binding protein (RBP), bilin-binding protein (BBP), apolipoprotein D (APO D), neutrophil gelatinase associated lipocalin (NGAL), tear lipocalin (TLPC), α 2-microglobulin-related protein (A2m), 24p3/uterocalin (24p3), von Ebners gland protein 1 (VEGP 1), von Ebners gland protein 2 (VEGP 2), and Major allergen Can f1 precursor (ALL-1). In related examples, the lipocalin mutein is selected from the group consisting of human neutrophil gelatinase associated lipocalin (hNGAL), human tear lipocalin (hTLPC), human apolipoprotein D (APO D) and the bilin-binding protein of *Pieris brassicae*.

[0018] The disclosure also includes a method of treating a tumor, preferably liver tumor or

melanoma, the method comprising administering a pharmaceutical composition containing a mutein as described herein to a subject in need thereof.

DESCRIPTION OF FIGURES

[0019]

Figure 1 illustrates the PCR assembly strategy for the simultaneous random mutagenesis of the 20 amino acid positions 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79 81, 96, 100, 103, 106, 125, 127, 132, and 134 (underlined and numbered) in the amino acid sequence of the mature Lcn 2. These 20 positions were divided into four sequence subsets. For randomization of the amino acids in each subset an oligodeoxynucleotide was synthesized (SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19) wherein NNK mixtures of the nucleotides were employed at the mutated codons. N means a mixture of all four bases A, C, G, and T while K means a mixture of only the two bases G and T; hence such a triplet encodes all 20 natural amino acids as well as the amber stop codon TAG, which is translated as glutamine in the *E. coli* supE-strains XL1-blue (Bullock et al., BioTechniques 5 (1987), 376-378) or TG1 (Sambrook et al., Molecular Cloning. A Laboratory Manual (1989), Cold Spring Harbor Press) that were used for phagemid production and gene expression. Four additional oligodeoxynucleotides (SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23) with fixed nucleotide sequences corresponding to the non-coding strand (written below the DNA double strand sequence in 3'-5' direction) and filling the gaps between the aforementioned oligodeoxynucleotides were also used in the assembly reaction. Two shorter flanking oligodeoxynucleotides (SEQ ID NO: 24 and SEQ ID NO: 25), which were added in excess and carried biotin groups, served as primers for the PCR amplification of the assembled, entirely synthetic gene fragment. The two flanking primers each encompassed a *Bst*XI restriction site (CCANNNNNNNTGG), giving rise to mutually non-compatible overhangs upon enzyme digestion. This special arrangement of restriction sites enabled a particularly efficient ligation and cloning of the synthetic gene. Substitution of the amino acid Gln28 to His with respect to the original Lcn2 sequence was necessary to introduce the first *Bst*XI site, while the second one naturally occurs in the cDNA of Lcn2. Furthermore, the unpaired residue Cys87 was replaced by Ser during the gene assembly. After one pot PCR the resulting gene fragment was inserted into a vector providing the missing parts of the Lcn2 structural gene. This illustration also depicts two short primers (SEQ ID NO: 32 and SEQ ID NO: 33) upstream and downstream, respectively, of the cassette flanked by the two *Bst*XI restriction sites, which served for double stranded DNA sequencing.

Figure 2 illustrates the nucleotide sequence of a library of synthetic Lcn2 genes (only the central cassette flanked by the two *Bst*XI restriction sites, as in Figure 1, is shown). This gene fragment was prepared by Sloning BioTechnology GmbH. Compared with the DNA library described in Fig. 1 there are two differences. First, whenever possible, codons optimized for *E. coli* expression were used throughout for the non-mutated amino acid positions. Second, a mixture of 19 different triplets (GAC, TTC, CTG, CAC, AAT, AGC, ACC, GCA, ATG, CCT, GTT,

TGG, GAG, CAA, ATC, GGA, CGT, GCA, TAC), each encoding a different amino acid except Cysteine, was employed at the 20 randomized positions, which are identical to the ones depicted in Fig. 1. Numbering of amino acids corresponds here to an internal scheme employed by Sloning BioTechnology GmbH, whereby Gly No. 1 is the first amino acid codon directly following the upstream *Bst*X1 restriction site.

Figure 3 depicts an alignment of certain amino acid sequences of Glycan-3-specific, NGAL-based lipocalin muteins in comparison with the polypeptide sequence of wildtype NGAL lipocalin. The NGAL-derived, Glycan-3 binding muteins comprise residues 1 to 178, meaning they have the length of the mature wildtype proteins. Residues 179 to 188 are the sequence of a streptavidin binding tag, Strep-tag™, used in the isolation of generated muteins.

Figure 4 shows the graphical representation of a direct ELISA of selected Lcn2 muteins for human Glycan-3. Lcn2 wildtype protein revealed negligible signals in this assay for Glycan-3, which served as a negative control.

Figure 5 depicts the results of a competitive binding assay of selected Lcn2 muteins.

Figure 6 depicts the affinities of selected muteins for human Glycan-3 as determined by surface-plasmon-resonance (SPR).

Figure 7 depicts the results of a cell-based binding assays of selected Lcn2 muteins for human, cynomolgus, and mouse GPC3 transfected SK-Hep1 cells.

Figure 8 depicts the amino acid sequence of SEQ ID NO:27.

DETAILED DESCRIPTION OF THE INVENTION

[0020] In one aspect, the present invention relates to novel, specific-binding proteins directed against or specific for Glycan-3 (GPC3) as defined in the claims. Proteins of the invention may be used for therapeutic and/or diagnostic purposes. A protein of the invention includes particularly a lipocalin mutein, also designated herein as "mutein of a lipocalin" or "anticalin". A protein of the invention is a hNGAL mutein as described herein. As used herein, a protein of the invention "specifically binds" a target (here, GPC3) if it is able to discriminate between that target and one or more reference targets, since binding specificity is not an absolute, but a relative property. "Specific binding" can be determined, for example, in accordance with Western blots, ELISA-, RIA-, ECL-, IRMA-tests, FACS, IHC and peptide scans.

[0021] The disclosure relates to a lipocalin mutein, wherein said mutein comprises at one or more positions corresponding to position 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79, 81, 96, 100, 103, 106, 125, 127, 132, and/or 134 of the linear polypeptide sequence of hLcn2 (SEQ ID NO:27) a substitution, preferably a substitution as described herein.

[0022] The disclosure relates to a polypeptide comprising a lipocalin, preferably hNGAL shown in SEQ ID NO:27, wherein the hNGAL comprises at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid positions corresponding to positions 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79, 81, 96, 100, 103, 106, 125, 127, 132, and/or 134 of the linear polypeptide sequence of hLcn2 (SEQ ID NO:27) a substitution, preferably a substitution as described herein. The polypeptide of said alternative aspect is preferably an anticalin.

[0023] Similarly, the disclosure relates to a lipocalin mutein derived from NGAL having a cylindrical β -pleated sheet supersecondary structural region comprising eight β -strands connected pair-wise by four loops at one end to define thereby a binding pocket, wherein at least one amino acid of each of at least three of said four loops has been mutated and wherein said lipocalin is effective to bind GPC3 as given non-natural target with detectable affinity. Advantageously, the lipocalin mutein comprises at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 amino acid position(s) corresponding to the amino acid at position 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79, 81, 96, 100, 103, 106, 125, 127, 132, and/or 134 of the linear polypeptide sequence of NGAL (SEQ ID NO: 27) a substitution, preferably a substitution as described herein.

[0024] The term "position" when used in accordance with the invention means the position of either an amino acid within an amino acid sequence depicted herein or the position of a nucleotide within a nucleic acid sequence depicted herein. The term "corresponding" as used herein also includes that a position is not only determined by the number of the preceding nucleotides/amino acids. Accordingly, the position of a given amino acid in accordance with the invention which may be substituted may vary due to deletion or addition of amino acids elsewhere in a (mutant or wild-type) lipocalin. Similarly, the position of a given nucleotide in accordance with the present invention which may be substituted may vary due to deletions or additional nucleotides elsewhere in a mutein or wild type lipocalin 5'-untranslated region (UTR) including the promoter and/or any other regulatory sequences or gene (including exons and introns).

[0025] Thus, under a "corresponding position" in accordance with the invention it is preferably to be understood that nucleotides/amino acids may differ in the indicated number but may still have similar neighboring nucleotides/amino acids. Said nucleotides/amino acids which may be exchanged, deleted or added are also comprised by the term "corresponding position".

[0026] Specifically, in order to determine whether a nucleotide residue or amino acid residue of the amino acid sequence of a lipocalin different from a NGAL lipocalin mutein of the invention corresponds to a certain position in the nucleotide sequence or the amino acid sequence of a NGAL lipocalin mutein as described, in particular any of SEQ ID NOs: 1-8 or that having one or more amino acid substitutions at position 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79, 81, 96, 100, 103, 106, 125, 127, 132, and/or 134 of the linear polypeptide sequence of NGAL (SEQ ID NO: 27), a skilled artisan can use means and methods well-known in the art, e.g., alignments, either manually or by using computer programs such as BLAST2.0, which stands for Basic Local Alignment Search Tool or ClustalW or any other suitable program which

is suitable to generate sequence alignments. Accordingly, a lipocalin mutein of any of SEQ ID Nos: 1-8 or that having one or more amino acid substitutions at position 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79, 81, 96, 100, 103, 106, 125, 127, 132, and/or 134 of the linear polypeptide sequence of NGAL (SEQ ID NO: 27) can serve as "subject sequence", while the amino acid sequence of a lipocalin different from NGAL serves as "query sequence".

[0027] Given the above, a skilled artisan is thus readily in a position to determine which amino acid position mutated in Lcn2 as described herein corresponds to an amino acid of a scaffold other than Lcn2, preferably such as one of those described herein. Specifically, a skilled artisan can align the amino acid sequence of a mutein as described herein, in particular a NGAL mutein (or anticalin) of the invention with the amino acid sequence of a different lipocalin to determine which amino acid(s) of said mutein correspond(s) to the respective amino acid(s) of the amino acid sequence of said different lipocalin. More specifically, a skilled artisan can thus determine which amino acid of the amino acid sequence of said different lipocalin corresponds to the amino acid at position(s) 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79, 81, 96, 100, 103, 106, 125, 127, 132, and/or 134 of the linear polypeptide sequence of hLcn2 (SEQ ID NO:27).

[0028] Proteins of the disclosure, which are directed against or specific for GPC3, include any number of specific-binding protein muteins that are based on a defined protein scaffold. As used herein, a "mutein," a "mutated" entity (whether protein or nucleic acid) or "mutant" refers to the exchange, deletion, or insertion of one or more nucleotides or amino acids, respectively, compared to the naturally occurring (wild-type) nucleic acid or protein "reference" scaffold. Preferably, the number of nucleotides or amino acids, respectively, that is exchanged, deleted or inserted is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more such as 25, 30, 35, 40, 45 or 50. However, a mutein of the invention is still capable of binding GPC3.

[0029] A protein of the disclosure can be a mutein of a lipocalin, preferably a lipocalin selected from the group consisting of retinol-binding protein (RBP), bilin-binding protein (BBP), apolipoprotein D (APO D), neutrophil gelatinase associated lipocalin (NGAL), tear lipocalin (TLPC), α_2 -microglobulin-related protein (A2m), 24p3/uterocalin (24p3), von Ebners gland protein 1 (VEGP 1), von Ebners gland protein 2 (VEGP 2), and Major allergen Can f1 precursor (ALL-1), with NGAL being a preferred lipocalin. As used herein, a "lipocalin" is defined as monomeric protein of approximately 18-20 kDa in weight, having a cylindrical β -pleated sheet supersecondary structural region comprising a plurality of (preferably eight) β -strands connected pair-wise by a plurality of (preferably four) loops at one end to define thereby a binding pocket. It is the diversity of the loops in the otherwise rigid lipocalin scaffold that gives rise to a variety of different binding modes among the lipocalin family members, each capable of accommodating targets of different size, shape, and chemical character (reviewed, e.g., in Flower, D.R. (1996), *supra*; Flower, D.R. et al. (2000), *supra*, or Skerra, A. (2000) *Biochim. Biophys. Acta* 1482, 337-350). Indeed, the lipocalin family of proteins have naturally evolved to bind a wide spectrum of ligands, sharing unusually low levels of overall sequence conservation (often with sequence identities of less than 20%) yet retaining a highly conserved overall folding pattern. The correspondence between positions in various lipocalins is well known to one of skill in the art. See, for example, U.S. Patent No. 7,250,297.

[0030] A protein of the invention is a mutein of Lipocalin 2 (Lcn 2; also known as human neutrophil gelatinase-associated lipocalin, hNGAL, or as siderocalin). The term "human neutrophil gelatinase-associated lipocalin" or "hNGAL" or "lipocalin 2" or "Lcn2" as used herein refers to the mature hNGAL with the SWISS-PROT/UniProt Data Bank Accession Number P80188 (Isoform 1). The amino acid sequence shown in SWISS-PROT/UniProt Data Bank Accession Number P80188 is preferred as a "reference sequence".

[0031] Most preferred, the amino acid sequence shown in SEQ ID NO:27 (also shown in Figure 8) is preferred as a "reference sequence". SEQ ID NO:27 shows the mature hNGAL. The terms "reference sequence" and "wild type sequence" (of NGAL) are used interchangeably herein. The mature form of this protein has amino acids 21 to 198 of the complete sequence, since a signal peptide of amino acids 1-20 (MPLGLLWLGL ALLGALHAQA) is cleaved off. The protein further has a disulfide bond formed between the amino acid residues at positions 76 and 175 of the mature protein.

[0032] Generally, when referred to herein a "mutein of a lipocalin" or "lipocalin mutein", in particular a "mutein of Lipocalin 2" or "Lipocalin 2 mutein" of the invention can also be designated as "anticalin". Accordingly, these terms can be equally used herein. Preferably, an anticalin is different from its naturally occurring counterpart lipocalin in that it differs in at least one amino acid from its naturally occurring counterpart lipocalin. The difference might be an amino acid substitution, deletion and/or addition, with a substitution being preferred. Preferably, an anticalin of the invention differs in at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 or even more amino acid position(s), preferably at the amino acid positions as described herein.

[0033] In this context, the inventors identified a specific group of Lipocalin 2 muteins with mutations at specific positions which show detectable affinity as well as specificity for GPC3. Suitable amino acid positions for mutation include sequence positions 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79, 81, 96, 100, 103, 106, 125, 127, 132, and/or 134, of the linear polypeptide sequence of human Lipocalin 2 (SEQ ID NO:27). The present invention also relates to nucleic acids encoding these proteins as defined in the claims.

[0034] Other protein scaffolds that can be engineered in accordance with the present disclosure to provide protein muteins that bind GPC3 with detectable affinity include: an EGF-like domain, a Kringle-domain, a fibronectin type I domain, a fibronectin type II domain, a fibronectin type III domain, a PAN domain, a G1a domain, a SRCR domain, a Kunitz/Bovine pancreatic trypsin Inhibitor domain, tendamistat, a Kazal-type serine protease inhibitor domain, a Trefoil (P-type) domain, a von Willebrand factor type C domain, an Anaphylatoxin-like domain, a CUB domain, a thyroglobulin type I repeat, LDL-receptor class A domain, a Sushi domain, a Link domain, a Thrombospondin type I domain, an immunoglobulin domain or a an immunoglobulin-like domain (for example, domain antibodies or camel heavy chain antibodies), a C-type lectin domain, a MAM domain, a von Willebrand factor type A domain, a Somatomedin B domain, a WAP-type four disulfide core domain, a F5/8 type C domain, a

Hemopexin domain, an SH2 domain, an SH3 domain, a Laminin-type EGF-like domain, a C2 domain, "Kappabodies" (III. et al. "Design and construction of a hybrid immunoglobulin domain with properties of both heavy and light chain variable regions" Protein Eng 10:949-57 (1997)), "Minibodies" (Martin et al. "The affinity-selection of a minibody polypeptide inhibitor of human interleukin-6" EMBO J 13:5303-9 (1994)), "Diabodies" (Holliger et al. "Diabodies': small bivalent and bispecific antibody fragments" PNAS USA 90:6444-6448 (1993)), "Janusins" (Traunecker et al. "Bispecific single chain molecules (Janusins) target cytotoxic lymphocytes on HIV infected cells" EMBO J 10:3655-3659 (1991) and Traunecker et al. "Janusin: new molecular design for bispecific reagents" Int J Cancer Suppl 7:51-52 (1992), a nanobody, an adnectin, a tetranectin, a microbody, an affilin, an affibody an ankyrin, a crystallin, a knottin, ubiquitin, a zinc-finger protein, an autofluorescent protein, an ankyrin or ankyrin repeat protein or a leucine-rich repeat protein, an avimer (Silverman, Lu Q, Bakker A, To W, Duguay A, Alba BM, Smith R, Rivas A, Li P, Le H, Whitehorn E, Moore KW, Swimmer C, Perlroth V, Vogt M, Kolkman J, Stemmer WP 2005, Nat Biotech, Dec;23(12):1556-61, E-Publication in Nat Biotech. 2005 Nov 20 edition); as well as multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains as also described in Silverman J, Lu Q, Bakker A, To W, Duguay A, Alba BM, Smith R, Rivas A, Li P, Le H, Whitehorn E, Moore KW, Swimmer C, Perlroth V, Vogt M, Kolkman J, Stemmer WP, Nat Biotech, Dec;23(12):1556-61, E-Publication in Nat. Biotechnology. 2005 Nov 20 edition).

[0035] A protein of the invention may include the wild type (natural) amino acid sequence of the "parental" protein scaffold (such as a lipocalin) outside the mutated amino acid sequence positions; alternatively, a lipocalin mutein may also contain amino acid mutations outside the sequence positions subjected to mutagenesis that do not interfere with the binding activity and the folding of the mutein. Such mutations can be accomplished on a DNA level using established standard methods (Sambrook, J. et al. (2001) Molecular Cloning: A Laboratory Manual, 3rd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). Possible alterations of the amino acid sequence are insertions or deletions as well as amino acid substitutions.

[0036] Such substitutions may be conservative, i.e. an amino acid residue is replaced with a chemically similar amino acid residue. Examples of conservative substitutions are the replacements among the members of the following groups: 1) alanine, serine, and threonine; 2) aspartic acid and glutamic acid; 3) asparagine and glutamine; 4) arginine and lysine; 5) isoleucine, leucine, methionine, and valine; and 6) phenylalanine, tyrosine, and tryptophan. On the other hand, it is also possible to introduce non-conservative alterations in the amino acid sequence. In addition, instead of replacing single amino acid residues, it is also possible to either insert or delete one or more continuous amino acids of the primary structure of a parental protein scaffold, where these deletions or insertion result in a stable folded/functional mutein, which can be readily tested by the skilled worker.

[0037] The skilled worker will appreciate methods useful to prepare protein muteins contemplated by the present invention but whose protein or nucleic acid sequences are not explicitly disclosed herein. As an overview, such modifications of the amino acid sequence

include, e.g., directed mutagenesis of single amino acid positions in order to simplify subcloning of a mutated lipocalin gene or its parts by incorporating cleavage sites for certain restriction enzymes. In addition, these mutations can also be incorporated to further improve the affinity of a lipocalin mutein for a given target. Furthermore, mutations can be introduced to modulate certain characteristics of the mutein such as to improve folding stability, serum stability, protein resistance or water solubility or to reduce aggregation tendency, if necessary. For example, naturally occurring cysteine residues may be mutated to other amino acids to prevent disulphide bridge formation.

[0038] Accordingly, the invention also includes functional variants of proteins disclosed herein, which have a threshold sequence identity or sequence homology to a reference protein. By "identity" or "sequence identity" is meant a property of sequences that measures their similarity or relationship. The term "sequence identity" or "identity" as used in the present invention means the percentage of pair-wise identical residues - following (homologous) alignment of a sequence of a polypeptide of the invention with a sequence in question - with respect to the number of residues in the longer of these two sequences. Percent identity is determined by dividing the number of identical residues by the total number of residues and multiplying the product by 100. The term "homology" is used herein in its usual meaning and includes identical amino acids as well as amino acids which are regarded to be conservative substitutions (for example, exchange of a glutamate residue by an aspartate residue) at equivalent positions in the linear amino acid sequence of two proteins.

[0039] The percentage of sequence homology or sequence identity can, for example, be determined herein using the program BLASTP, version blastp 2.2.5 (November 16, 2002; cf. Altschul, S. F. et al. (1997) *Nucl. Acids Res.* 25, 3389-3402). In this embodiment the percentage of homology is based on the alignment of the entire polypeptide sequences (matrix: BLOSUM 62; gap costs: 11.1; cutoff value set to 10^{-3}) including the propeptide sequences, preferably using the wild type protein scaffold as reference in a pairwise comparison. It is calculated as the percentage of numbers of "positives" (homologous amino acids) indicated as result in the BLASTP program output divided by the total number of amino acids selected by the program for the alignment.

[0040] It is also possible to deliberately mutate other amino acid sequence positions to cysteine in order to introduce new reactive groups, for example, for the conjugation to other compounds, such as polyethylene glycol (PEG), hydroxyethyl starch (HES), biotin, peptides or proteins, or for the formation of non-naturally occurring disulphide linkages. With respect to a mutein of human Lipocalin 2, exemplary possibilities of such a mutation to introduce a cysteine residue into the amino acid sequence of a lipocalin including human Lipocalin 2 mutein to include the introduction of a cysteine (Cys) residue at at least at one of the sequence positions that correspond to sequence positions 14, 21, 60, 84, 88, 116, 141, 145, 143, 146 or 158 of the wild type sequence of hNGAL. In some embodiments where a human Lipocalin 2 mutein of the invention has a sequence in which, in comparison to the sequence of the SWISS-PROT/UniProt Data Bank Accession Number P80188, a cysteine has been replaced by another amino acid residue, the corresponding cysteine may be reintroduced into the

sequence. As an illustrative example, a cysteine residue at amino acid position 87 may be introduced in such a case by reverting to a cysteine as originally present in the sequence of SWISS-PROT accession No P80188. The generated thiol moiety at the side of any of the amino acid positions 14, 21, 60, 84, 88, 116, 141, 145, 143, 146 and/or 158 may be used to PEGylate or HESylate the mutein, for example, in order to increase the serum half-life of a respective human Lipocalin 2 mutein.

[0041] In some embodiments, a protein according to the invention binds GPC3 with a K_D of 10 nM or less, 1 nM or less, 0.5 nM or less, 0.3 nM or less, or 0.2 nM or less. A protein of the invention may specifically bind one or more continuous, discontinuous or conformation epitope(s) of the mature, folded bioactive form of GPC3.

[0042] A protein of the invention preferably binds to GPC3 with an affinity by a K_D of about 10 nM. Binding affinities have been found by the present inventors to often be of a K_D of about 1 nM and, in some cases, about 0.3 or 0.2 nM and below.

[0043] The binding affinity of a protein of the invention (e.g. a mutein of a lipocalin) to a selected target (in the present case, GPC3), can be measured (and thereby K_D values of a mutein-ligand complex be determined) by a multitude of methods known to those skilled in the art. Such methods include, but are not limited to, fluorescence titration, competition ELISA, calorimetric methods, such as isothermal titration calorimetry (ITC), and surface plasmon resonance (BiAcore). Such methods are well established in the art and examples thereof are also detailed below.

[0044] The amino acid sequence of a protein of the invention may have a high sequence identity to mature human Lipocalin 2 or other lipocalins. In this context, a protein of the invention may have at least 80 %, at least 82 %, at least 85 %, at least 87 %, at least 90% identity, including at least 95% identity to a protein selected from the group consisting of the sequence of SEQ ID NOS: 1-8 and SEQ ID NO:27.

[0045] The invention also includes structural homologues of the proteins selected from the group consisting of the sequence of SEQ ID NOS: 1-8, which have an amino acid sequence homology or sequence identity of more than 70%, more than 75%, more than 80%, more than 85%, more than 90%, more than 92 % and most preferably more than 95% in relation thereto.

[0046] The terms "Glypican-3," "glypican proteoglycan 3," "GPC3," "OTTHUMP00000062492", "GTR2-2" "SGB," "DGSX", "SDYS", "SGBS", "OCI-5", and , "SGBSI" are used interchangeably, and include variants, isoforms and species homologs of human Glypican-3. The complete amino acid sequence of an exemplary human Glypican-3 has Genbank/NCBI accession number NM_004484.

[0047] In line with the above, a protein of the invention preferably acts as an antagonist of GPC3. In some embodiments, a protein of the invention (e.g., a human Lipocalin 2 mutein)

may act as an antagonist of GPC3 by inhibiting the ability of the GPC3 molecule to bind to or otherwise interact with its cognate ligand.

[0048] In yet another aspect, the present invention includes various lipocalin muteins, including muteins of human Lipocalin 2 that specifically bind GPC3. In this sense, GPC3 can be regarded a non-natural ligand of wild type human Lipocalin 2, where "non-natural ligand" refers to a compound that does not bind to wildtype lipocalins, including human Lipocalin 2 under physiological conditions. By engineering wildtype lipocalins such as human Lipocalin 2 with mutations at certain positions, the present inventors have demonstrated that high affinity and high specificity for a non-natural ligand is possible. In one aspect at least at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and/or 20 nucleotide triplet(s) encoding for any of the sequence positions 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79, 81, 96, 100, 103, 106, 125, 127, 132, and/or 134 of the linear polypeptide sequence of hLcn2 (SEQ ID NO:27), or other parallel sites on lipocalins, a random mutagenesis can be carried out by allowing substitution at these positions by a subset of nucleotide triplets.

[0049] Further, the lipocalins can be used to generate muteins that have a mutated amino acid residue at any one or more, including at least at any two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen or twenty, of the sequence positions of the sequence positions corresponding to the sequence positions 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79, 81, 96, 100, 103, 106, 125, 127, 132, and 134 of the linear polypeptide sequence of a mature human Lipocalin 2.

[0050] A substitution at sequence position 36 may for example be a substitution Leu 36 → Ile, Val, Arg, Met or Ser. A substitution at sequence position 40 may for example be a substitution Ala 40 → Trp, Val, His, Gly or Tyr. A substitution at sequence position 41 may for example be a substitution Ile 41 → Met, Ala, Arg, Gin, or Ser. A substitution at sequence position 49 may for example be a substitution Gin 49 → Pro, Leu, Val, Arg or Trp. A substitution at sequence position 52 may for example be a substitution Tyr 52 → Arg, Thr, His, Ser or Asn. A substitution at sequence position 68 may for example be a substitution Ser 68 → Arg, Gly, Asn, Ala, or Lys. A substitution at sequence position 70 may for example be a substitution Leu 70 → Arg, Ser, Gin, Thr or Phe. A substitution at sequence position 72 may for example be a substitution Arg 72 → Asp, Trp, Ala, or Ser. A substitution at sequence position 73 may for example be a substitution Lys 73 → Glu, Arg, Met, Leu or His. A substitution at sequence position 77 may for example be a substitution Asp 77 → Gly, His, Met, Gin, Ser or Tyr. A substitution at sequence position 79 may for example be a substitution Trp 79 → Gly, Lys, Ser or Ile. A substitution at sequence position 81 may for example be a substitution Arg 81 → Ala, Gly, Thr, Tyr or Trp. A substitution at sequence position 96 may for example be a substitution Asn 96 → Val, Asp, Gin, Lys, Gly or Phe. A substitution at sequence position 100 may for example be a substitution Tyr 100 → Arg, Gly, Glu, Ile or Asn. A substitution at sequence position 103 may for example be a substitution Leu 103 → Ile, Gin, Asn, Met, Asp, or Trp. A substitution at sequence position 106 may for example be a substitution Tyr 106 → Asp, Asn, Met, Phe, Asn or Leu. A substitution at sequence position 125 may for example be a substitution Lys 125 → Phe, Glu, Arg, Tyr, Gly or Trp. A substitution at sequence position 127 may for example be a substitution Ser 127 → Lys,

Arg, Tyr, His, Ile or Asp. A substitution at sequence position 132 may for example be a substitution Tyr 132 → Trp, Ile, Phe, Gin or Val. A substitution at sequence position 134 may for example be a substitution Lys 134 → Gly, Ala, Phe, Asp, Asn, Ile or Ser. Noteworthy, any of the amino acids that substitutes the corresponding amino acid in the reference sequence can be exchanged by a corresponding conservative amino acid. In particular, conservative substitutions are the replacements among the members of the following groups: 1) alanine, serine, and threonine; 2) aspartic acid and glutamic acid; 3) asparagine and glutamine; 4) arginine and lysine; 5) isoleucine, leucine, methionine, and valine; and 6) phenylalanine, tyrosine, and tryptophan.

[0051] In one embodiment, a mutein of the invention, which binds to GPC3 includes the following amino acid replacements:

1. (a) Leu 36 → Ile; Ala 40 → Trp; Gin 49 → Pro; Tyr 52 → Arg; Ser 68 → Arg; Leu 70 → ; Arg 72 → Asp; Lys 73 → Glu; Asp 77 → Gly; Trp 79 → Gly; Arg 81 → Ala; Asn 96 → Val; Tyr 100 → Arg; Leu 103 → Ile; Tyr 106 → Asp; Lys 125 → Phe; Ser 127 → Lys; Lys 134 → Gly;
2. (b) Leu 36 → Val; Ile 41 → Met; Gin 49 → Leu; Tyr 52 → Arg; Ser 68 → Gly; Leu 70 → Ser; Arg 72 → Trp; Lys 73 → Arg; Asp 77 → His; Trp 79 → Lys; Arg 81 → Gly; Asn 96 → Asp; Tyr 100 → Gly; Leu 103 → Gln; Tyr 106 → Asn; Lys 125 → Glu; Ser 127 → Arg; Tyr 132 → Trp; Lys 134 → Ala;
3. (c) Leu 36 → Arg; Ala 40 → Val; Ile 41 → Ala; Gin 49 → Pro; Tyr 52 → Arg; Ser 68 → Asn; Leu 70 → Arg; Arg 72 → Ala; Lys 73 → Met; Asp 77 → Met; Trp 79 → Ser; Arg 81 → Gly; Asn 96 → Gln; Tyr 100 → Glu; Leu 103 → Asn; Tyr 106 → Asn; Lys 125 → Glu; Ser 127 → Tyr; Tyr 132 → Ile; Lys 134 → Phe;
4. (d) Leu 36 → Met; Ile 41 → Arg; Gin 49 → Val; Tyr 52 → Thr; Ser 68 → Ala; Leu 70 → Gln; Lys 73 → Leu; Asp 77 → Gln; Trp 79 → Gly; Arg 81 → Thr; Asn 96 → Asp; Tyr 100 → Ile; Tyr 106 → Met; Lys 125 → Arg; Ser 127 → Arg; Tyr 132 → Phe; Lys 134 → Asp;
5. (e) Leu 36 → Ser; Ala 40 → His; Ile 41 → Arg; Gin 49 → Arg; Tyr 52 → His; Ser 68 → Asn; Leu 70 → Thr; Lys 73 → Glu; Asp 77 → His; Trp 79 → Ser; Arg 81 → Gly; Asn 96 → Lys; Tyr 100 → Asn; Leu 103 → Met; Tyr 106 → Phe; Ser 127 → His; Tyr 132 → Gln; Lys 134 → Asn;
6. (f) Leu 36 → Ile; Ala 40 → Gly; Ile 41 → Gln; Gin 49 → Trp; Tyr 52 → Ser; Leu 70 → Arg; Lys 73 → Leu; Asp 77 → Ser; Arg 81 → Tyr; Asn 96 → Gly; Tyr 100 → Asn; Leu 103 → Asp; Tyr 106 → Asn; Lys 125 → Tyr; Ser 127 → Ile; Tyr 132 → Trp; Lys 134 → Ile;
7. (g) Leu 36 → Met; Ile 41 → Ser; Gin 49 → Arg; Tyr 52 → Asn; Ser 68 → Lys; Leu 70 → Arg; Arg 72 → Trp; Lys 73 → His; Asp 77 → Tyr; Trp 79 → Ser; Arg 81 → Thr; Asn 96 → Asp; Leu 103 → Trp; Lys 125 → Gly; Ser 127 → Arg; Tyr 132 → Trp; Lys 134 → Ser;
8. (h) Leu 36 → Ile; Ala 40 → Tyr; Gin 49 → Pro; Tyr 52 → Arg; Ser 68 → Arg; Leu 70 → Phe; Arg 72 → Ser; Lys 73 → Arg; Trp 79 → Ile; Arg 81 → Trp; Asn 96 → Phe; Tyr 100 → Asn; Tyr 106 → Leu; Lys 125 → Trp; Ser 127 → Asp; Tyr 132 → Val; Lys 134 → Gly.

[0052] The numbering is in relation to the linear polypeptide sequence of NGAL (SEQ ID NO: 27). Accordingly, given the teaching of the invention as described above, a skilled artisan can readily determine which amino acids in a lipoprotein correspond to those described above in (a) to (h) in the preferred reference sequence of NGAL (SEQ ID NO: 27) so as to mutate said amino acids in said lipoprotein.

[0053] It is also noted that the complex formation between the respective mutein and its ligand is influenced by many different factors such as the concentrations of the respective binding partners, the presence of competitors, pH and the ionic strength of the buffer system used, and the experimental method used for determination of the dissociation constant K_D (for example fluorescence titration, competition ELISA or surface plasmon resonance, just to name a few) or even the mathematical algorithm which is used for evaluation of the experimental data.

[0054] Therefore, it is also clear to the skilled person that the K_D values (dissociation constant of the complex formed between the respective mutein and its target/ligand) may vary within a certain experimental range, depending on the method and experimental setup that is used for determining the affinity of a particular lipocalin mutein for a given ligand. This means that there may be a slight deviation in the measured K_D values or a tolerance range depending, for example, on whether the K_D value was determined by surface plasmon resonance (Biacore), by competition ELISA, or by "direct ELISA."

[0055] In one embodiment, the muteins disclosed herein can be linked, either N- or C-terminal to a fusion partner which is preferably a protein, or a protein domain or a peptide. Examples of a fusion partner is an affinity tag such as pentahistidine tag, a hexahistidine tag or a streptavidin tag (e.g. Streptag[®]). Thus, the present application encompasses also all explicitly and generic described muteins equipped with such tags.

[0056] The term "fragment" as used in the present disclosure in connection with the feature lipocalin mutein fragment relates to proteins or peptides derived from full-length mature Lcn 2 that are N-terminally and/or C-terminally shortened, i.e. lacking at least one of the N-terminal and/or C-terminal amino acids. Such fragments include preferably at least 10, more preferably 20, most preferably 30 or more consecutive amino acids of the primary sequence of mature Lcn 2 and are usually detectable in an immunoassay of mature Lcn 2. The word "detect" or "detecting" as used herein is understood both on a quantitative and a qualitative level, as well as a combination thereof. It thus includes quantitative, semi-quantitative and qualitative measurements of a molecule of interest. Accordingly, the presence or absence of a molecule such as GPC3, e.g. in a sample, as well as its concentration or level may be determined.

[0057] Also included in the scope of the present invention are the above muteins, which have been altered with respect to their immunogenicity, to reduce any detected immunogenicity by employing methods known to the skilled worker in the field.

[0058] Cytotoxic T-cells recognize peptide antigens on the cell surface of an antigen-presenting cell in association with a class I major histocompatibility complex (MHC) molecule. The ability of the peptides to bind to MHC molecules is allele specific and correlates with their immunogenicity. To reduce the immunogenicity of a given protein, the ability to predict which peptides in a protein have the potential to bind to a given MHC molecule is of great value. Approaches that employ a computational threading approach to identify potential T-cell epitopes have been previously described to predict the binding of a given peptide sequence to MHC class I molecules (Altuvia et al. (1995) *J. Mol. Biol.* 249: 244-250). Such an approach may also be utilized to identify potential T-cell epitopes in the muteins of the invention and to make, depending on its intended use, a selection of a specific mutein on the basis of its predicted immunogenicity. It may be furthermore possible to subject peptide regions that have been predicted to contain T-cell epitopes to additional mutagenesis to reduce or eliminate these T-cell epitopes and thus minimize immunogenicity. The removal of amphipathic epitopes from genetically engineered antibodies has been described (Mateo et al. (2000) *Hybridoma* 19(6):463-471) and may be adapted to the muteins of the present invention. The muteins thus obtained may possess a minimized immunogenicity, which is desirable for their use in therapeutic and diagnostic applications, such as those described below.

[0059] For some applications, it is also useful to employ the muteins of the invention in a conjugated form. The conjugation can be carried out using any conventional coupling method known in the art.

[0060] The term "organic molecule" or "small organic molecule" as used herein for the non-natural target denotes an organic molecule comprising at least two carbon atoms, but preferably not more than 7 or 12 rotatable carbon bonds, having a molecular weight in the range between 100 and 2000 Dalton, preferably between 100 and 1000 Dalton, and optionally including one or two metal atoms.

[0061] In general, it is possible to label a lipocalin mutein described herein with any appropriate chemical substance or enzyme, which directly or indirectly generates a detectable compound or signal in a chemical, physical, optical, or enzymatic reaction. An example for a physical reaction and at the same time optical reaction/marker is the emission of fluorescence upon irradiation. Alkaline phosphatase, horseradish peroxidase or β -galactosidase are examples of enzyme labels (and at the same time optical labels) which catalyze the formation of chromogenic reaction products. In general, all labels commonly used for antibodies (except those exclusively used with the sugar moiety in the Fc part of immunoglobulins) can also be used for conjugation to the muteins of the present invention. The muteins of the invention may also be conjugated with any suitable therapeutically active agent, e.g., for the targeted delivery of such agents to a given cell, tissue or organ or for the selective targeting of cells, e.g., of tumor cells without affecting the surrounding normal cells. Examples of such therapeutically active agents include radionuclides, toxins, small organic molecules, and therapeutic peptides (such as peptides acting as agonists/antagonists of a cell surface receptor or peptides competing for a protein binding site on a given cellular target). Examples of suitable toxins include, but are not limited to pertussis-toxin, diphtheria toxin, ricin, saporin, pseudomonas

exotoxin, calicheamicin or a derivative thereof, a taxoid, a maytansinoid, a tubulysin or a dolastatin analogue. The dolastatin analogue may be auristatin E, monomethylauristatin E, auristatin PYE and auristatin PHE. Examples of cytostatic agent include, but are not limited to Cisplatin, Carboplatin, Oxaliplatin, 5-Fluorouracil, Taxotere (Docetaxel), Paclitaxel, Anthracycline (Doxorubicin), Methotrexate, Vinblastin, Vincristine, Vindesine, Vinorelbine, Dacarbazine, Cyclophosphamide, Etoposide, Adriamycin, Camptotecine, Combretastatin A-4 related compounds, sulfonamides, oxadiazolines, benzo[b]thiophenesynthetic spiroketal pyrans, monotetrahydrofuran compounds, curacin and curacin derivatives, methoxyestradiol derivatives and Leucovorin. The lipocalin muteins of the invention may also be conjugated with therapeutically active nucleic acids such as antisense nucleic acid molecules, small interfering RNAs, micro RNAs or ribozymes. Such conjugates can be produced by methods well known in the art.

[0062] In one embodiment, the muteins of the invention may also be coupled to a targeting moiety that targets a specific body region in order to deliver the inventive muteins to a desired region or area within the body. One example wherein such modification may be desirable is the crossing of the blood-brain-barrier. In order to cross the blood-brain barrier, the muteins of the invention may be coupled to moieties that facilitate the active transport across this barrier (see Gaillard PJ, et al. (2005) International Congress Series. 1277,185-198 or Gaillard PJ, et al. (2005) Expert Opin Drug Deliv. 2(2), 299-309). Such compounds are for example available under the trade name 2B-Trans™ (to-BBB technologies BV, Leiden, NL). Other exemplary targeting molecules to which the muteins of the present invention may be coupled include antibodies, antibody fragments or lipocalin muteins with affinity for a desired target molecule. The target molecule of the targeting moieties may, for example, be a cell-surface antigen. Cell-surface antigens may be specific for a cell or tissue type, such as, for example, cancer cells. Illustrative examples of such cell surface proteins are HER-2 or proteoglycans such as NEU-2.

[0063] As indicated above, a mutein of the invention may in some embodiments be conjugated to a compound that extends the serum half-life of the mutein (in this regard see also PCT publication WO 2006/56464 where such conjugation strategies are described with references to muteins of human neutrophil gelatinase-associated lipocalin with binding affinity for CTLA-4). The compound that extends the serum half-life may be a polyalkylene glycol molecule, such as polyethylene (PEG) or an activated derivative thereof; hydroxyethyl starch, fatty acid molecules, such as palmitic acid (Vajo & Duckworth (2000) Pharmacol. Rev. 52, 1-9), an Fc part of an immunoglobulin, a C_H3 domain of an immunoglobulin, a C_H4 domain of an immunoglobulin, albumin or a fragment thereof, an albumin binding peptide, an albumin binding protein, transferrin, or the tag Pro-Ala-Ser, to name only a few. The albumin binding protein may be a bacterial albumin binding protein, an antibody, an antibody fragment including domain antibodies (see US patent 6,696,245, for example), or a lipocalin mutein with binding activity for albumin. Accordingly, suitable conjugation compounds for extending the half-life of a lipocalin mutein of the invention include albumin (Osborn et al. (2002) J. Pharmacol. Exp. Ther. 303, 540-548), or an albumin binding protein, for example, a bacterial albumin binding domain, such as the one of streptococcal protein G (König, T. and Skerra, A. (1998) J. Immunol. Methods 218, 73-83). Other examples of albumin binding peptides that can be used as

conjugation partner are, for instance, those having a Cys-Xaa₁-Xaa₂-Xaa₃-Xaa₄-Cys consensus sequence, wherein Xaa₁ is Asp, Asn, Ser, Thr, or Trp; Xaa₂ is Asn, Gin, His, Ile, Leu, or Lys; Xaa₃ is Ala, Asp, Phe, Trp, or Tyr; and Xaa₄ is Asp, Gly, Leu, Phe, Ser, or Thr as described in US patent application 2003/0069395 or Dennis et al. (Dennis et al. (2002) *J. Biol. Chem.* 277, 35035-35043).

[0064] In other embodiments, albumin itself or a biological active fragment of albumin can be used as compound of a lipocalin mutein of the invention that extends the serum half-life of the mutein. The term "albumin" includes all mammal albumins such as human serum albumin or bovine serum albumin or rat albumin. The albumin or fragment thereof can be recombinantly produced as described in US patent 5,728,553 or European patent applications EP 0 330 451 and EP 0 361 991. Recombinant human albumin (Recombumin®) for use as a protein stabilizer is for example available from Novozymes Delta Ltd. (Nottingham, UK).

[0065] If the albumin-binding protein is an antibody fragment it may be a domain antibody. Domain Antibodies (dAbs) are engineered to allow precise control over biophysical properties and *in vivo* half-life to create the optimal safety and efficacy product profile. Domain Antibodies are for example commercially available from Domantis Ltd. (Cambridge, UK and MA, USA).

[0066] Using transferrin as a moiety to extend the serum half-life of the muteins of the invention, the mutesins can be genetically fused to the N or C terminus, or both, of non-glycosylated transferrin. Non-glycosylated transferrin has a half-life of 14-17 days, and a transferrin fusion protein will similarly have an extended half-life. The transferrin carrier also provides high bioavailability, biodistribution and circulating stability. This technology is commercially available from BioRexis (BioRexis Pharmaceutical Corporation, PA, USA). Recombinant human transferrin (DeltaFerrin™) for use as a protein stabilizer is also commercially available from Novozymes Delta Ltd. (Nottingham, UK).

[0067] If an Fc part of an immunoglobulin is used for the purpose to prolong the serum half-life of the mutesins of the invention, the *SynFusion™* technology, commercially available from Syntonix Pharmaceuticals, Inc (MA, USA), may be used. The use of this Fc-fusion technology allows the creation of longer-acting biopharmaceuticals and may for example comprise two copies of the mutein linked to the Fc region of an antibody to improve pharmacokinetics, solubility, and production efficiency.

[0068] Yet another alternative to prolong the half-life of a mutein of the invention is to fuse the N- or C-terminus of a mutein of the invention to long, unstructured, flexible glycine-rich sequences (for example poly-glycine with about 20 to 80 consecutive glycine residues). This approach disclosed in WO2007/038619, for example, has also been term "rPEG" (recombinant PEG).

[0069] If polyalkylene glycol is used as compound that extends the half-life of the mutein, the polyalkylene glycol can be substituted or unsubstituted. It can also be an activated polyalkylene derivative. Examples of suitable compounds are polyethylene glycol (PEG) molecules as

described in WO 99/64016, in US Patent 6,177,074 or in US Patent 6,403,564 in relation to interferon, or as described for other proteins such as PEG-modified asparaginase, PEG-adenosine deaminase (PEG-ADA) or PEG-superoxide dismutase (see for example, Fuertges et al. (1990) "The Clinical Efficacy of Poly(Ethylene Glycol)-Modified Proteins" *J. Control. Release* 11, 139-148). The molecular weight of such a polymer, preferably polyethylene glycol, may range from about 300 to about 70,000 Dalton, including, for example, polyethylene glycol with a molecular weight of about 10,000, of about 20,000, of about 30,000 or of about 40,000 Dalton. Moreover, e.g. as described in US patents 6,500,930 or 6,620,413, carbohydrate oligo- and polymers such as starch or hydroxyethyl starch (HES) can be conjugated to a mutein of the invention for the purpose of serum half-life extension.

[0070] In another embodiment, in order to provide suitable amino acid side chains for conjugating one of the above compounds to the muteins of the invention artificial amino acids may be introduced by mutagenesis. Generally, such artificial amino acids are designed to be more reactive and thus to facilitate the conjugation to the desired moiety. One example of such an artificial amino acid that may be introduced via an artificial tRNA is para-acetyl-phenylalanine.

[0071] For several applications of the muteins disclosed herein, it may be advantageous to use them in the form of fusion proteins. In some embodiments, the inventive mutein is fused at its N-terminus and/or its C-terminus to a protein, a protein domain or a peptide such as a signal sequence and/or an affinity tag.

[0072] For pharmaceutical applications, a mutein of the invention may be fused to a fusion partner that extends the *in vivo* serum half-life of the mutein (see again PCT publication WO 2006/56464 where suitable fusion partner are described with references to muteins of human neutrophile gelatinase-associated lipocalin with binding affinity for CTLA-4). Similar to the conjugated compounds described above, the fusion partner may be an Fc part of an immunoglobulin, a C_H3 domain of an immunoglobulin, a C_H4 domain of an immunoglobulin, albumin, an albumin binding peptide or an albumin binding protein, to name only a few. Again, the albumin binding protein may be a bacterial albumin binding protein or a lipocalin mutein with binding activity for albumin. Accordingly, suitable fusion partners for extending the half-life of a lipocalin mutein of the invention include albumin (Osborn, B.L. et al. (2002) *supra* *J. Pharmacol. Exp. Ther.* 303, 540-548), or an albumin binding protein, for example, a bacterial albumin binding domain, such as streptococcal protein G (König, T. and Skerra, A. (1998) *supra* *J. Immunol. Methods* 218, 73-83). The albumin binding peptides described in Dennis et al, *supra* (2002) or US patent application 2003/0069395 having a Cys-Xaa₁-Xaa₂-Xaa₃-Xaa₄-Cys consensus sequence, wherein Xaa₁ is Asp, Asn, Ser, Thr, or Trp; Xaa₂ is Asn, Gin, His, Ile, Leu, or Lys; Xaa₃ is Ala, Asp, Phe, Trp, or Tyr; and Xaa₄ is Asp, Gly, Leu, Phe, Ser, or Thr can also be used as fusion partner. It is also possible to use albumin itself or a biological active fragment of albumin as fusion partner of a lipocalin mutein of the invention. The term "albumin" includes all mammal albumins such as human serum albumin or bovine serum albumin or rat serum albumin. The recombinant production of albumin or fragments thereof is well known in

the art and for example described in US patent 5,728,553, European patent application EP 0 330 451 or EP 0 361 991.

[0073] The fusion partner may confer new characteristics to the inventive lipocalin mutein such as enzymatic activity or binding affinity for other molecules. Examples of suitable fusion proteins are alkaline phosphatase, horseradish peroxidase, glutathione-S-transferase, the albumin-binding domain of protein G, protein A, antibody fragments, oligomerization domains, lipocalin muteins of same or different binding specificity (which results in the formation of "duocalins," cf. Schlehuber, S., and Skerra, A. (2001), Duocalins, engineered ligand-binding proteins with dual specificity derived from the lipocalin fold (Biol. Chem. 382, 1335-1342), or toxins.

[0074] In particular, it may be possible to fuse a lipocalin mutein of the invention with a separate enzyme active site such that both "components" of the resulting fusion protein together act on a given therapeutic target. The binding domain of the lipocalin mutein attaches to the disease-causing target, allowing the enzyme domain to abolish the biological function of the target.

[0075] Affinity tags such as the Strep-tag® or Strep-tag® II (Schmidt, T.G.M. et al. (1996) J. Mol. Biol. 255, 753-766), the myc-tag, the FLAG-tag, the His₆-tag or the HA-tag or proteins such as glutathione-S-transferase also allow easy detection and/or purification of recombinant proteins are further examples of preferred fusion partners. Finally, proteins with chromogenic or fluorescent properties such as the green fluorescent protein (GFP) or the yellow fluorescent protein (YFP) are suitable fusion partners for a lipocalin mutein of the invention as well.

[0076] The term "fusion protein" as used herein also includes lipocalin muteins according to the invention containing a signal sequence. Signal sequences at the N-terminus of a polypeptide direct this polypeptide to a specific cellular compartment, for example the periplasm of *E. coli* or the endoplasmatic reticulum of eukaryotic cells. A large number of signal sequences is known in the art. A preferred signal sequence for secretion a polypeptide into the periplasm of *E. coli* is the OmpA-signal sequence.

[0077] The present invention also relates to nucleic acid molecules (DNA and RNA) comprising nucleotide sequences coding for muteins as described herein. Since the degeneracy of the genetic code permits substitutions of certain codons by other codons specifying the same amino acid, the invention is not limited to a specific nucleic acid molecule encoding a mutein of the invention but includes all nucleic acid molecules comprising nucleotide sequences encoding a functional mutein.

[0078] A nucleic acid molecule disclosed in this application may be "operably linked" to a regulatory sequence (or regulatory sequences) to allow expression of this nucleic acid molecule.

[0079] A nucleic acid molecule, such as DNA, is referred to as "capable of expressing a

nucleic acid molecule" or capable "to allow expression of a nucleotide sequence" if it includes sequence elements which contain information regarding to transcriptional and/or translational regulation, and such sequences are "operably linked" to the nucleotide sequence encoding the polypeptide. An operable linkage is a linkage in which the regulatory sequence elements and the sequence to be expressed are connected in a way that enables gene expression. The precise nature of the regulatory regions necessary for gene expression may vary among species, but in general these regions include a promoter which, in prokaryotes, contains both the promoter *per se*, i.e. DNA elements directing the initiation of transcription, as well as DNA elements which, when transcribed into RNA, will signal the initiation of translation. Such promoter regions normally include 5' non-coding sequences involved in initiation of transcription and translation, such as the -35/-10 boxes and the Shine-Dalgarno element in prokaryotes or the TATA box, CAAT sequences, and 5'-capping elements in eukaryotes. These regions can also include enhancer or repressor elements as well as translated signal and leader sequences for targeting the native polypeptide to a specific compartment of a host cell.

[0080] In addition, the 3' non-coding sequences may contain regulatory elements involved in transcriptional termination, polyadenylation or the like. If, however, these termination sequences are not satisfactory functional in a particular host cell, then they may be substituted with signals functional in that cell.

[0081] Therefore, a nucleic acid molecule of the invention can include a regulatory sequence, preferably a promoter sequence. In another preferred embodiment, a nucleic acid molecule of the invention includes a promoter sequence and a transcriptional termination sequence. Suitable prokaryotic promoters are, for example, the *tet* promoter, the *lacUV5* promoter or the T7 promoter. Examples of promoters useful for expression in eukaryotic cells are the SV40 promoter or the CMV promoter.

[0082] The nucleic acid molecules of the invention can also be part of a vector or any other kind of cloning vehicle, such as a plasmid, a phagemid, a phage, a baculovirus, a cosmid or an artificial chromosome such as a YAC or BAC.

[0083] The DNA molecule encoding lipocalin muteins of the invention, and in particular a cloning vector containing the coding sequence of such a lipocalin mutein can be transformed into a host cell capable of expressing the gene. Transformation can be performed using standard techniques (Sambrook, J. et al. (2001), *supra*).

[0084] Thus, the invention is also directed to a host cell containing a nucleic acid molecule as disclosed herein.

[0085] The invention also relates to a method for the production of a mutein of the invention, wherein the mutein, a fragment of the mutein or a fusion protein of the mutein and another polypeptide is produced starting from the nucleic acid coding for the mutein by means of genetic engineering methods. The method can be carried out *in vivo*, the mutein can for example be produced in a bacterial or eucaryotic host organism and then enriched, purified or

isolated from this host organism or its culture. It is also possible to produce a protein *in vitro*, for example by use of an *in vitro* translation system. The term "enriched" means that the mutein or a functional fragment thereof constitutes a significantly higher fraction of the total protein present in a sample or solution of interest than in a sample or solution from which it was taken. Enrichment may for instance include the isolation of a certain fraction from a cell extract. This may be obtained by standard techniques such as centrifugation. Examples of other means of enrichment are filtration or dialysis, which may for instance be directed at the removal of undesired molecules below a certain molecular weight, or a precipitation using organic solvents or ammonium sulphate. Purification may for instance include a chromatographic technique, for example gel filtration, ion exchange chromatography, affinity purification, hydrophobic interaction chromatography or hydrophobic charge induction chromatography. Another example for a purification is an electrophoretic technique, such as preparative capillary electrophoresis. Isolation may include the combination of similar methods. As used herein, "substantially pure" or "substantially purified" means a compound or species that is the predominant species present (i.e., on a molar basis it is more abundant than any other individual species in the composition). In some examples, a substantially purified composition is a composition in which the species includes at least about 50 percent (on a molar basis) of all molecular or, as applicable, all macromolecular species present. In certain examples, a substantially pure composition will have more than about 80%, about 85%, about 90%, about 95%, or about 99% of all molecular or, as applicable, all macromolar species present in the composition.

[0086] When producing the mutein *in vivo*, a nucleic acid encoding a mutein of the invention is introduced into a suitable bacterial or eukaryotic host organism by means of recombinant DNA technology (as already outlined above). For this purpose, the host cell is first transformed with a cloning vector comprising a nucleic acid molecule encoding a mutein of the invention using established standard methods (Sambrook, J. et al. (1989), *supra*). The host cell is then cultured under conditions, which allow expression of the heterologous DNA and thus the synthesis of the corresponding polypeptide. Subsequently, the polypeptide is recovered either from the cell or from the cultivation medium.

[0087] In one aspect, the present disclosure relates to a method for the generation of a mutein which binds GPC3, comprising:

subjecting a nucleic acid molecule encoding a lipocalin to mutagenesis, resulting in one or more mutein nucleic acid molecule(s).

[0088] The method can further include:

expressing the one more mutein nucleic acid molecule(s) obtained in (a) in a suitable expression system,

bringing the plurality of muteins into contact with at least a fragment or a mature form of

GPC3, and

enriching the one or more mutein(s) having a detectable binding affinity for a given target by means of selection and/or isolation.

[0089] The term "mutagenesis" as used herein means that the experimental conditions are chosen such that the amino acid naturally occurring at a given sequence position of the lipocalin, including Lcn 2 (hNGAL; Swiss-Prot data bank entry P80188) can be substituted by at least one amino acid that is not present at this specific position in the respective natural polypeptide sequence. The term "mutagenesis" also includes the (additional) modification of the length of sequence segments by deletion or insertion of one or more amino acids. Thus, it is within the scope of the disclosure that, for example, one amino acid at a chosen sequence position is replaced by a stretch of three random mutations, leading to an insertion of two amino acid residues compared to the length of the respective segment of the wild type protein. Such an insertion of deletion may be introduced independently from each other in any of the peptide segments that can be subjected to mutagenesis in the disclosure. In one example of the disclosure, an insertion of several mutations may be introduced into the loop AB of the chosen lipocalin scaffold (cf. International Patent Application WO 2005/019256). The term "random mutagenesis" means that no predetermined single amino acid (mutation) is present at a certain sequence position but that at least two amino acids can be incorporated with a certain probability at a predefined sequence position during mutagenesis.

[0090] In one non-limiting approach, the coding sequence of human Lipocalin 2 can be used as a starting point for the mutagenesis of the peptide segments selected in the present disclosure. For the mutagenesis of the recited amino acid positions, the person skilled in the art has at his disposal the various established standard methods for site-directed mutagenesis (Sambrook, J. et al. (2001), *supra*). A commonly used technique is the introduction of mutations by means of PCR (polymerase chain reaction) using mixtures of synthetic oligonucleotides, which bear a degenerate base composition at the desired sequence positions. Other similar techniques are well known to those of skill in the art.

[0091] The nucleic acid molecules defined above can be connected by ligation with the missing 5'- and 3'-sequences of a nucleic acid encoding a lipocalin polypeptide and/or the vector, and can be cloned in a known host organism. A multitude of established procedures are available for ligation and cloning (Sambrook, J. et al. (2001), *supra*). For example, recognition sequences for restriction endonucleases also present in the sequence of the cloning vector can be engineered into the sequence of the synthetic oligonucleotides. Thus, after amplification of the respective PCR product and enzymatic cleavage the resulting fragment can be easily cloned using the corresponding recognition sequences.

[0092] Longer sequence segments within the gene coding for the protein selected for mutagenesis can also be subjected to random mutagenesis via known methods, for example by use of the polymerase chain reaction under conditions of increased error rate, by chemical

mutagenesis or by using bacterial mutator strains. Such methods can also be used for further optimization of the target affinity or specificity of a lipocalin mutein. Mutations possibly occurring outside the segments of experimental mutagenesis are often tolerated or can even prove to be advantageous, for example if they contribute to an improved folding efficiency or folding stability of the lipocalin mutein.

[0093] In a further example, the method includes subjecting the nucleic acid molecule to mutagenesis at nucleotide triplets coding for at least any 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 of the sequence positions corresponding to the sequence positions 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79, 81, 96, 100, 103, 106, 125, 127, 132, and 134 of the linear polypeptide sequence of the lipocalin, in particular of the linear polypeptide sequence of NGAL (SEQ ID NO: 27). Such a nucleic acid may be subjected to mutagenesis and introduced into a suitable bacterial or eukaryotic host organism by using recombinant DNA technology. Obtaining a nucleic acid library of a lipocalin can be carried out using any suitable technique that is known in the art for generating lipocalin muteins with antibody-like properties, i.e. muteins that have affinity towards a given target. Examples of such combinatorial methods are described in detail in the international patent applications WO 99/16873, WO 00/75308, WO 03/029471, WO 03/029462, WO 03/029463, WO 2005/019254, WO 2005/019255, WO 2005/019256, or WO 2006/56464 for instance. After expression of the nucleic acid sequences that were subjected to mutagenesis in an appropriate host, the clones carrying the genetic information for the plurality of respective lipocalin muteins, which bind a given target can be selected from the library obtained. Well known techniques can be employed for the selection of these clones, such as phage display (reviewed in Kay, B.K. et al. (1996) *supra*; Lowman, H.B. (1997) *supra* or Rodi, D.J., and Makowski, L. (1999) *supra*), colony screening (reviewed in Pini, A. et al. (2002) *Comb. Chem. High Throughput Screen.* 5, 503-510), ribosome display (reviewed in Amstutz, P. et al. (2001) *Curr. Opin. Biotechnol.* 12, 400-405) or mRNA display as reported in Wilson, D.S. et al. (2001) *Proc. Natl. Acad. Sci. USA* 98, 3750-3755 or the methods specifically described in WO 99/16873, WO 00/75308, WO 03/029471, WO 03/029462, WO 03/029463, WO 2005/019254, WO 2005/019255, WO 2005/019256, or WO 2006/56464.

[0094] In accordance with this disclosure, another example of the above methods comprises:

1. (i) providing at least a fragment of GPC3 as a given target/ligand for example,

contacting the plurality of muteins with said target/ligand in order to allow formation of complexes between said ligand and muteins having binding affinity for said target/ligand, and removing muteins having no or no substantial binding affinity.

[0095] In one example of the methods of the disclosure, the selection binding affinity is carried out under competitive conditions. Competitive conditions as used herein means that selection of muteins encompasses at least one step in which the muteins and the fragment of GPC3 are brought in contact in the presence of an additional ligand, which competes with binding of the muteins to the target (GPC3). Alternatively, the additional ligand competes with binding of the muteins by complexing an epitope distinct from the binding site of the muteins to the target by allosteric effects. Accordingly, any fragment, precursor or mature form of GPC3 can be used in

the generation of muteins of the invention.

[0096] A further example of the methods of the disclosure involves operably fusing a nucleic acid coding for the plurality of muteins of the invention and resulting from mutagenesis at the 3' end with a gene coding for the coat protein pIII of a filamentous bacteriophage of the M13-family or for a fragment of this coat protein, in order to select at least one mutein for the binding of a given ligand.

[0097] The fusion protein may include additional components such as an affinity tag, which allows the immobilization, detection and/or purification of the fusion protein or its parts. Furthermore, a stop codon can be located between the sequence regions encoding the lipocalin or its muteins and the phage capsid gene or fragments thereof, wherein the stop codon, preferably an amber stop codon, is at least partially translated into an amino acid during translation in a suitable suppressor strain.

[0098] For example, the phasmid vector pTLC27, now also called pTlc27 that is described here can be used for the preparation of a phagemid library encoding muteins of the invention. The inventive nucleic acid molecules coding for muteins of the invention can be inserted into the vector using the two *Bst*XI restriction sites. After ligation a suitable host strain such as *E. coli* XL1-Blue is transformed with the resulting nucleic acid mixture to yield a large number of independent clones. A respective vector can be generated for the preparation of a hyperphagemid library, if desired.

[0099] Once a mutein with affinity to a given target has been selected, it is additionally possible to subject such a mutein to another mutagenesis in order to subsequently select variants of even higher affinity or variants with improved properties such as higher thermostability, improved serum stability, thermodynamic stability, improved solubility, improved monomeric behavior, improved resistance against thermal denaturation, chemical denaturation, proteolysis, or detergents etc. This further mutagenesis, which in case of aiming at higher affinity can be considered as *in vitro* "affinity maturation," can be achieved by site specific mutation based on rational design or a random mutation. Another possible approach for obtaining a higher affinity or improved properties is the use of error-prone PCR, which results in point mutations over a selected range of sequence positions of the lipocalin mutein. The error-prone PCR can be carried out in accordance with any known protocol such as the one described by Zaccolo et al. (1996) *J. Mol. Biol.* 255, 589-603. Other methods of random mutagenesis that are suitable for such purposes include random insertion/deletion (RID) mutagenesis as described by Murakami et al. (2002) *Nat. Biotechnol.* 20, 76-81 or nonhomologous random recombination (NRR) as described by Bittker et al. (2002) *Nat. Biotechnol.* 20, 1024-1029. If desired, affinity maturation can also be carried out according to the procedure described in WO 00/75308 or Schlehuber et al. (2000) *J. Mol. Biol.* 297, 1105-1120, where muteins of the bilin-binding protein having high affinity to digoxigenin were obtained. A further approach for improving the affinity is to carry out positional saturation mutagenesis. In this approach "small" nucleic acid libraries can be created in which amino acid exchanges/mutations are only introduced at single positions within any of the four loop

segments. These libraries are then directly subjected to a selection step (affinity screening) without further rounds of panning. This approach allows the identification of residues that contribute to improved binding of the desired target and allows identification of "hot spots" that are important for the binding.

[0100] In one example, the above method for modifying a mutein further includes introducing a Cys residue at at least one of any of the sequence positions that correspond to sequence positions 14, 21, 60, 84, 88, 116, 141, 145, 143, 146 or 158 of the wild type sequence of human Lipocalin 2 and coupling a moiety that is able to modify the serum half time of said mutein via the thiol group of a Cys residue introduced at at least one of any of the sequence positions that correspond to sequence positions 14, 21, 60, 84, 88, 116, 141, 145, 143, 146 or 158 of the wild type sequence of hNGAL. The moiety that is able to modify the serum half time of said mutein may be selected from the group consisting of a polyalkylene glycol molecule and hydroxyethylstarch.

[0101] Where a protein of the invention is a human Lipocalin 2 mutein of the invention, the naturally occurring disulfide bond between Cys 76 and Cys 175 may be removed. Accordingly, such muteins (or any other human Lipocalin 2 mutein that does not include an intramolecular disulfide bond) can be produced in a cell compartment having a reducing redox milieu, for example, in the cytoplasma of Gram-negative bacteria.

[0102] In case a lipocalin mutein of the invention includes intramolecular disulfide bonds, it may be preferred to direct the nascent polypeptide to a cell compartment having an oxidizing redox milieu using an appropriate signal sequence. Such an oxidizing environment may be provided by the periplasm of Gram-negative bacteria such as *E. coli*, in the extracellular milieu of Gram-positive bacteria or in the lumen of the endoplasmatic reticulum of eukaryotic cells and usually favors the formation of structural disulfide bonds.

[0103] It is, however, also possible to produce a mutein of the invention in the cytosol of a host cell, preferably *E. coli*. In this case, the polypeptide can either be directly obtained in a soluble and folded state or recovered in form of inclusion bodies, followed by renaturation *in vitro*. A further option is the use of specific host strains having an oxidizing intracellular milieu, which may thus allow the formation of disulfide bonds in the cytosol (Venturi et al. (2002) *J. Mol. Biol.* 315, 1-8.).

[0104] However, a mutein of the invention may not necessarily be generated or produced only by use of genetic engineering. Rather, a lipocalin mutein can also be obtained by chemical synthesis such as Merrifield solid phase polypeptide synthesis or by *in vitro* transcription and translation. It is for example possible that promising mutations are identified using molecular modeling and then to synthesize the wanted (designed) polypeptide *in vitro* and investigate the binding activity for a given target. Methods for the solid phase and/or solution phase synthesis of proteins are well known in the art (reviewed, e.g., in Lloyd-Williams et al. (1997) *Chemical Approaches to the Synthesis of Peptides and Proteins*. CRC Press, Boca Raton, Fields, GB, and Colowick (1997) *Solid-Phase Peptide Synthesis*. Academic Press, San Diego, or

Bruckdorfer et al. (2004) Curr. Pharm. Biotechnol. 5, 29-43).

[0105] In another example, the muteins of the invention may be produced by *in vitro* transcription/translation employing well-established methods known to those skilled in the art.

[0106] The invention also relates to a pharmaceutical composition that includes at least one inventive mutein referred to in the claims or a fusion protein or conjugates thereof and, optionally, a pharmaceutically acceptable excipient.

[0107] The lipocalin muteins according to the invention can be administered via any parenteral or non-parenteral (e.g. enteral) route that is therapeutically effective for proteinaceous drugs. Parenteral application methods include, for example, intracutaneous, subcutaneous, intramuscular or intravenous injection and infusion techniques, e.g. in the form of injection solutions, infusion solutions or tinctures, as well as aerosol installation and inhalation, e.g. in the form of aerosol mixtures, sprays or powders. Non-parenteral delivery modes are, for instance, orally, e.g. in the form of pills, tablets, capsules, solutions or suspensions, or rectally, e.g. in the form of suppositories. The muteins of the invention can be administered systemically or topically in formulations containing conventional non-toxic pharmaceutically acceptable excipients or carriers, additives and vehicles as desired.

[0108] In one embodiment of the present invention the pharmaceutical is administered parenterally to a vertebrate animal, including a mammal, and in particular to a human. Corresponding administration methods include, but are not limited to, for example, intracutaneous, subcutaneous, intramuscular or intravenous injection and infusion techniques, e.g. in the form of injection solutions, infusion solutions or tinctures as well as aerosol installation and inhalation, e.g. in the form of aerosol mixtures, sprays or powders. A combination of intravenous and subcutaneous infusion and /or injection might be most convenient in case of compounds with a relatively short serum half life. The pharmaceutical composition may be an aqueous solution, an oil-in water emulsion or a water-in-oil emulsion.

[0109] In this regard it is noted that transdermal delivery technologies, e.g. iontophoresis, sonophoresis or microneedle-enhanced delivery, as described in Meidan and Michniak (2004) Am. J. Ther. 11(4), 312-316, can also be used for transdermal delivery of the muteins described herein. Non-parenteral delivery modes are, for instance, oral, e.g. in the form of pills, tablets, capsules, solutions or suspensions, or rectal administration, e.g. in the form of suppositories. The muteins of the invention can be administered systemically or topically in formulations containing a variety of conventional non-toxic pharmaceutically acceptable excipients or carriers, additives, and vehicles.

[0110] The dosage of the mutein applied may vary within wide limits to achieve the desired preventive effect or therapeutic response. It will, for instance, depend on the affinity of the compound for a chosen ligand as well as on the half-life of the complex between the mutein and the ligand *in vivo*. Further, the optimal dosage will depend on the biodistribution of the mutein or its fusion protein or its conjugate, the mode of administration, the severity of the

disease/disorder being treated as well as the medical condition of the patient. For example, when used in an ointment for topical applications, a high concentration of a protein of the invention can be used. However, if wanted, the protein may also be given in a sustained release formulation, for example liposomal dispersions or hydrogel-based polymer microspheres, like PolyActive™ or OctoDEX™ (cf. Bos et al., Business Briefing: Pharmatech 2003: 1-6).

[0111] Accordingly, the muteins of the present invention can be formulated into compositions using pharmaceutically acceptable ingredients as well as established methods of preparation (Gennaro and Gennaro (2000) Remington: The Science and Practice of Pharmacy, 20th Ed., Lippincott Williams & Wilkins, Philadelphia, PA). To prepare the pharmaceutical compositions, pharmaceutically inert inorganic or organic excipients can be used. To prepare e.g. pills, powders, gelatine capsules or suppositories, for example, lactose, talc, stearic acid and its salts, fats, waxes, solid or liquid polyols, natural and hardened oils can be used. Suitable excipients for the production of solutions, suspensions, emulsions, aerosol mixtures or powders for reconstitution into solutions or aerosol mixtures prior to use include water, alcohols, glycerol, polyols, and suitable mixtures thereof as well as vegetable oils.

[0112] The pharmaceutical composition may also contain additives, such as, for example, fillers, binders, wetting agents, glidants, stabilizers, preservatives, emulsifiers, and furthermore solvents or solubilizers or agents for achieving a depot effect. The latter is that fusion proteins may be incorporated into slow or sustained release or targeted delivery systems, such as liposomes and microcapsules.

[0113] The formulations can be sterilized by numerous means, including filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile medium just prior to use.

[0114] A mutein of the present invention or a fusion protein or a conjugate thereof can be employed in many applications. In general, such a mutein can be used in all applications antibodies are used, except those which specifically rely on the glycosylation of the Fc part.

[0115] A lipocalin mutein described herein can be administered to an organism, including a human patient per se, or in a pharmaceutical composition where it may include or be mixed with pharmaceutically active ingredients or suitable carriers or excipient(s). Techniques for formulation and administration of a respective lipocalin mutein composition resemble or are identical to those of low molecular weight compounds well established in the art. Exemplary routes include, but are not limited to, oral, transdermal, and parenteral delivery. A lipocalin mutein or a respective composition may be used to fill a capsule or tube, or may be provided in compressed form as a pellet. The lipocalin mutein or a respective composition may also be used in injectable or sprayable form, for instance as a suspension of a respective lipocalin mutein.

[0116] A composition that includes a lipocalin mutein of the invention may for instance be applied onto the skin or onto a wound. Further suitable routes of administration may, for example, include depot, oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intravenous, intramedullary injections, as well as intrathecal, direct intraventricular, intraperitoneal, intranasal, or intraocular injections. In some embodiments one may administer a lipocalin mutein or a respective composition in a local rather than systemic manner, for example, via injection.

[0117] Pharmaceutical compositions that include a lipocalin mutein of the present invention may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. A pharmaceutical composition for use in accordance with the present invention thus may be formulated in conventional manner using one or more physiologically acceptable carriers including excipients and auxiliaries that facilitate processing of the hydrogel and/or peptide/peptoid into preparations that can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen.

[0118] For injection, the lipocalin mutein or a respective composition may be formulated in aqueous solutions, for instance in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

[0119] For oral administration, the lipocalin mutein or a respective composition can be formulated readily by combining them with pharmaceutically acceptable carriers well known in the art. Such carriers enable the lipocalin mutein or a respective composition, as well as a pharmaceutically active compound where present, to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained by adding a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatine, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.

[0120] Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

[0121] Pharmaceutical preparations that can be used orally include push-fit capsules made of gelatine, as well as soft, sealed capsules made of gelatine and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the peptides/peptoids may be suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

[0122] A lipocalin mutein of the invention may be formulated for parenteral administration by injection, e.g., by intramuscular injections or bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multidose containers, with an added preservative. The respective compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

[0123] A lipocalin mutein of the invention may also be used to target a compound to a pre-selected site. In one such embodiment, a lipocalin mutein of the invention is used for the targeting of a pharmaceutically active compound to a pre-selected site in an organism or tissue, comprising:

1. a) conjugating the lipocalin mutein with said compound, and
2. b) delivering the lipocalin mutein/compound complex to the pre-selected site.

[0124] For such a purpose the mutein is contacted with the compound of interest in order to allow complex formation. Then the complex comprising the mutein and the compound of interest are delivered to the pre-selected site. This may, for example, be achieved by coupling the mutein to a targeting moiety, such as an antibody, antibody fragment or lipocalin mutein or lipocalin mutein fragment with binding affinity for the selected target.

[0125] This use is in particular suitable, but not restricted to, for delivering a drug (selectively) to a pre-selected site in an organism, such as an infected body part, tissue or organ which is supposed to be treated with the drug. Besides formation of a complex between mutein and compound of interest, the mutein can also be reacted with the given compound to yield a conjugate of mutein and compound. Similar to the above complex, such a conjugate may be suitable to deliver the compound to the pre-selected target site. Such a conjugate of mutein and compound may also include a linker that covalently links mutein and compound to each other. Optionally, such a linker is stable in the bloodstream but is cleavable in a cellular environment.

[0126] The muteins disclosed herein and its derivatives can thus be used in many fields

similar to antibodies or fragments thereof. In addition to their use for binding to a support, allowing the target of a given mutein or a conjugate or a fusion protein of this target to be immobilized or separated, the muteins can be used for labeling with an enzyme, an antibody, a radioactive substance or any other group having biochemical activity or defined binding characteristics. By doing so, their respective targets or conjugates or fusion proteins thereof can be detected or brought in contact with them. For example, muteins of the invention can serve to detect chemical structures by means of established analytical methods (e.g. ELISA or Western Blot) or by microscopy or immunosensorics. Here, the detection signal can either be generated directly by use of a suitable mutein conjugate or fusion protein or indirectly by immunochemical detection of the bound mutein via an antibody.

[0127] Numerous possible applications for the inventive muteins also exist in medicine. In addition to their use in diagnostics and drug delivery, a mutant polypeptide of the invention, which binds, for example, tissue- or tumor-specific cellular surface molecules can be generated. Such a mutein may, for example, be employed in conjugated form or as a fusion protein for "tumor imaging" or directly for cancer therapy.

[0128] In a further aspect, the present disclosure also encompasses the use of a mutein according to the invention for the manufacture of a pharmaceutical composition. The pharmaceutical composition thus obtained may be suited for the treatment of an anaemia. The pharmaceutical composition may be used as monotherapy or as combination therapy. Accordingly, the invention also relates to a mutein as defined above for the treatment of a disease or disorder associated with an altered, e.g. increased or reduced, level of GPC3, such as an anaemia.

[0129] In yet another aspect the invention relates to the use of a mutein according to the invention in diagnosis. The use of a mutein according to the invention is typically for the diagnosis of a disease or disorder associated with an altered level of GPC3 as well as a respective method of diagnosis.

[0130] Accordingly, the invention also relates to a mutein as defined above for the diagnosis of a disease or disorder associated with an altered, e.g. increased or reduced, level of GPC3. In some embodiments the disease is cancer, including, but not limited to, liver cancer or melanoma. The cancer to be diagnosed is not particularly limited, and specific examples may include liver cancer, pancreatic cancer, cholangiocarcinoma, lung cancer, colon cancer, colorectal malignancies, neurofibrosarcoma, neuroblastoma, mammary cancer, breast cancer, ovarian cancer, prostate cancer, leukemia and lymphoma, Wilm's tumor, preferably liver cancer or (primary/early) hepatocellular carcinoma (see Sinnett D. GPC3 (glypican 3). *Atlas Genet Cytogenet Oncol Haematol*. May 2002).

[0131] Also, the disclosure relates to a method of treating a tumor or cancer, the method comprising administering a pharmaceutical composition as described herein containing a mutein of the invention to a subject in need thereof. Likewise, the invention relates to a mutein of the invention for use in treating a tumor or cancer. Similarly, the disclosure concerns the use of a

mutein of the invention for the preparation of a pharmaceutical composition for treating a tumor or cancer. The cancer or tumor to be treated is not particularly limited, and specific examples may include liver cancer, pancreatic cancer, cholangiocarcinoma, lung cancer, colon cancer, colorectal malignancies, neurofibrosarcoma, neuroblastoma, mammary cancer, breast cancer, ovarian cancer, prostate cancer, leukemia and lymphoma, Wilm's tumor, preferably liver cancer or (primary/early) hepatocellular carcinoma (see Sinnott D . GPC3 (glypican 3). Atlas Genet Cytogenet Oncol Haematol. May 2002).

[0132] In still another aspect, the present invention features a diagnostic or analytical kit comprising a mutein according to the present invention.

[0133] The subject in need of such a treatment may be a mammal, such as a human, a dog, a mouse, a rat, a pig, an ape such as cynomolgous monkeys to name only a few illustrative examples.

[0134] In still another aspect, the present disclosure features a method for *in vivo* imaging in a subject, including administering to said subject a mutein of the invention or a pharmaceutical composition comprising a mutein of the invention. The subject may be defined as above.

[0135] It must be noted that as used herein, the singular forms "a", "an", and "the", include plural references unless the context clearly indicates otherwise. Thus, for example, reference to "a reagent" includes one or more of such different reagents and reference to "the method" includes reference to equivalent steps and methods known to those of ordinary skill in the art that could be modified or substituted for the methods described herein.

[0136] Unless otherwise indicated, the term "at least" preceding a series of elements is to be understood to refer to every element in the series. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the present invention.

[0137] Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integer or step. When used herein the term "comprising" can be substituted with the term "containing" or sometimes when used herein with the term "having".

[0138] When used herein "consisting of" excludes any element, step, or ingredient not specified in the claim element. When used herein, "consisting essentially of" does not exclude materials or steps that do not materially affect the basic and novel characteristics of the claim. In each instance herein any of the terms "comprising", "consisting essentially of" and "consisting of" may be replaced with either of the other two terms.

[0139] Several documents are cited throughout the text of this specification. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

[0140] The invention is further illustrated by the following non-limiting Examples and the attached drawings. However, these Examples should not be construed so as to limit the invention. Rather, they are merely exemplary embodiments.

[0141] Unless otherwise indicated, established methods of recombinant gene technology were used, for example, as described in Sambrook et al. (2001), *supra*.

Example 1: Construction of a mutant Lcn2 phage display library

[0142] A combinatorial library of Lcn2 variants was generated on the basis of the cloned cDNA (Breustedt et al. (2006) *Biochim. Biophys. Acta* 1764, 161-173), which carried the amino acid substitutions Cys87Ser, to remove the single unpaired thiol side chain (Goetz et al. (2000) *Biochemistry* 39, 1935-1941), as well as Gln28His to introduce a second *Bst*XI restriction site. Mutagenesis and polymerase chain reaction (PCR) assembly of this region was essentially performed according to a published strategy (Beste et al. (1999) *Proc. Natl. Acad. Sci. USA* 96, 1898-1903; Skerra (2001) *J. Biotechnol.* 74, 257-275), this time using a one pot amplification reaction with oligodeoxynucleotides (sequences of SEQ ID NO: 16 to SEQ ID NO: 25) as illustrated in Figure 1. Oligodeoxynucleotides were designed such that the primers with sequences of SEQ ID NO: 16 to SEQ ID NO: 19 corresponded to the coding strand and carried degenerate codons at the amino acid positions 36, 40, 41, 49, 52, or 68, 70, 72, 73, 77, 79, 81, or 96, 100, 103, 106, or 125, 127, 132, 134 respectively, while primers with sequences of SEQ ID NO: 20 to SEQ ID NO: 23 corresponded to the non-coding strand and did not carry degenerate codons or anticodons. The two flanking primers with SEQ ID NO: 24 and SEQ ID NO: 25 were used in excess and served for the amplification of the assembled randomized gene fragment. All PCR steps were performed using Go-Taq Hot Start DNA polymerase (Promega, Mannheim, Germany) as described (Schlehuber et al. (2000) *J. Mol. Biol.* 297, 1105-1120).

[0143] Oligodeoxynucleotides that did not carry degenerate codons were purchased in HPLC grade from Metabion (Munich, Germany). NNK-containing oligodeoxynucleotides were purchased desalted from the same vendor and further purified by urea PAGE. The resulting DNA library was cut with *Bst*XI (Promega, Mannheim, Germany) and cloned on the phagemid vector phNGAL102 (SEQ ID NO: 10), which is based on the generic expression vector pASK111 (Vogt and Skerra (2001) *J. Mol. Recognit.* 14 (1), 79-86) and codes for a fusion protein composed of the *OmpA* signal peptide, the modified mature Lcn2, followed by an amber codon, and the C-terminal fragment of the gene III coat protein of the filamentous bacteriophage M13, i.e. similar as previously described for the bilin-binding protein (Beste et al., *supra*; Skerra, *supra*). After electroporation of *E. coli* XL1-Blue (Bullock et al. (1987) *Biotechniques* 5, 376-378) with the ligation mixture of 8.4 µg digested PCR product and 94 µg

digested plasmid DNA, 1×10^{10} transformants were obtained.

[0144] Alternatively, a cloned synthetic Lcn2 random library, which is described in Figure 2, was obtained from Sloning BioTechnology GmbH (Puchheim, Germany). The central gene cassette flanked by the two *Bst*XI restriction sites was amplified via PCR in 20 cycles using appropriate primers (SEQ ID NO: 15 and SEQ ID NO: 26) and subcloned on phNGAL108 (SEQ ID NO: 11), which is based on the generic expression vector pASK75 (Skerra (1994) Gene 151, 131-135) and carries essentially the same features as phNGAL102 (SEQ ID NO: 10) but mediates ampicillin resistance instead of chloramphenicol resistance and carries a strep-tag I between the mutein and phage pIII protein, in the same way, yielding a library with a complexity corresponding to 1.7×10^{10} independent transformants.

[0145] The following steps in library generation were performed identically for both Lcn2 libraries. 100 ml of the culture, containing the cells which were transformed with the phasmid vectors on the basis of phNGAL102 or phNGAL108, respectively, coding for the library of the lipocalin muteins as phage pIII fusion proteins, were transferred to a sterile Erlenmeyer flask and incubated for one hour at 37 °C, 160 rpm in 2YT medium without antibiotic selection pressure. Before infection with VCS-M13 helper phage the culture was diluted in 2YT medium to an OD550 of 0.1 with the corresponding antibiotic added and further grown under identical conditions until an OD550 of 0.6 was reached. After infection with VCS-M13 helper phage (Agilent Technologies, La Jolla, USA) at a multiplicity of infection of approximately 10 the culture was shaken for additional 30 min at 37 °C, 100 rpm. Then the incubator temperature was lowered to 26 °C and the shaker speed was increased again to 160 rpm, after 10 min kanamycin (70 µg/ml) was added, followed by induction of gene expression via addition of anhydrotetracycline (ACROS Organics, Geel, Belgium) at 25 µg/l (125 µl of a 200 µg/ml stock solution in dimethylformamide, DMF per liter of culture). Incubation continued for another 12-15 h at 26 °C, 160 rpm.

[0146] Cells from the complete culture were sedimented by centrifugation (30 min, 18000 g, 4 °C). The supernatant containing the phagemid particles was sterile-filtered (0.45 µm), mixed with 1/4 volume 20 % w/v PEG 8000, 15 % w/v NaCl, and incubated on ice for at least 2 h. After centrifugation (30 min, 18000 g, 4 °C) the precipitated phagemid particles from 1 liter of culture were dissolved in 30 ml of cold BBS/E (200 mM Na-borate, 160 mM NaCl, 1 mM EDTA pH 8.0) containing 50 mM benzamidine (Sigma) and Pefabloc 1 µg/ml (Roth, Karlsruhe, Germany). The solution was incubated on ice for 1 h. After centrifugation of undissolved components (10 min, 43000 g, 4 °C) each supernatant was transferred to a new reaction vessel.

[0147] Addition of 1/4 volume 20 % w/v PEG 8000, 15 % w/v NaCl and incubation for 60 min on ice served to reprecipitate the phagemid particles until the phagemids were aliquoted and frozen at -80°C for storage. For the first selection cycle phagemids were thawed and centrifuged (30 min, 34000 g, 4 °C), the supernatant was removed, and the precipitated phagemid particles were dissolved and combined in a total of 400 µl PBS containing 50 mM benzamidine. After incubation for 30 min on ice the solution was centrifuged (5 min, 18500 g,

4°C) in order to remove residual aggregates and the supernatant was used directly for the phage display selection.

Example 2: Procurement of soluble recombinant human Glypican-3

[0148] Recombinant human Glypican-3 expressed in NS0 cells was purchased from R&D systems and for selection experiments it was randomly biotinylated via Lysine residues using EZ-Link Sulfo-NHS-LC-LC-Biotin (Pierce) at a four-fold molar excess.

Example 3: Phagemid presentation and selection of NGAL muteins with affinity for human Glypican-3 (GPC3)

[0149] Phagemid display and selection was performed employing the phagemids obtained from Example 1 essentially as described in international patent application WO/2005/019256. The library was subjected to 4 cycles of phage display selection against the recombinant biotinylated human GPC3.

[0150] 2×10^{12} to 1×10^{13} phagemids of the library obtained in Example 1 were used. In brief, the phagemids were centrifuged (21460 x g, 4 °C, 20 min) and resuspended in 1 ml PBS (4 mM KH₂PO₄, 16 mM Na₂BPO₄, 115 mM NaCl, pH 7.4) containing 50 mM benzamidine. PBS containing 1 % w/v Casein (Sigma) and 0.1 % Tween 20® was used as blocking buffer. Prior to the incubation with the target protein, phagemids from the library were incubated either on casein-blocked Neutravidin coated microtiter plates or with casein-blocked Streptavidin beads and Neutravidin for 60 minutes for the depletion of phagemids representing multi-reactive or misfolded lipocalin mutein specific for Neutravidin or Streptavidin bead-specific muteins.

[0151] In different Panning approaches a 1 µg/ml solution of target was either captured on Neutavidin-coated (5 µg/ml), 1% Casein-blocked microtiter plates (solid-phase approach) or a 200 nM solution of biotinylated GPC3 was incubated in solution with $1 \cdot 10^{13}$ phagemids from the NGAL library blocked with 1 % Casein (solution approach). In the solution approach target bound phagemids were captured via Streptavidin™-coated magenetic beads (Invitrogen/Dynal) or Neutravidin-coated magnetic beads (Distrilab) in alternating manner within 20 min, followed by 8 wash cycles and elution with either 300 µL 70 mM Triethylamin for 10 min, and neutralization with an appropriate amount of 1 M Tris/HCl, pH 7.4 (basic elution) followed by 300 µL 0.1 M Glycin/HCl pH 2.2 for 10 min. and neutralization with an appropriate amount of 0.5 M Tris-Base (acidic elution) or with bacterial elution.

[0152] In the solid-phase approach blocked phagemids were incubated with the biotinylated target followed by 8 wash cycles and elution as described above. Beginning with the second enrichment cycle, only half of the combined phagemid solutions were used for phagemid amplification.

[0153] Phagemid amplification between each panning cycle was performed as described in Schlehuber, S. et al. (J. Mol. Biol. (2000), 297, 1105-1120).

[0154] Three further selection rounds against Glycan-3 were carried out in this way employing the preparation of amplified phagemids from the respective previous enrichment cycle with the exception that only about 1×10^{11} phagemids were utilized beginning with the second enrichment cycle.

Example 4: Identification of hGPC-3-specific muteins using high-throughput ELISA screening

[0155] Screening of the muteins selected according to Example 3 was performed essentially as described in Example 3 of international patent application WO 2006/56464.

[0156] Lipocalin muteins from round three and four of the previously described panning process were selected in a HT-screening ELISA. Therein, NGAL variants equipped with a T7 detection tag (Novagen) as well as a Strep-tag II affinity tag (IBA) were soluble expressed in a 96 well microtiter plate using the *E. coli* strain TG1/ F- with phNGAL 101. This vector corresponds to phNGAL 98 (SEQ ID NO: 9) with an N-terminal T7 tag consisting of 11 amino acids (MASMTGGQQMNG) (SEQ ID NO: 12, see also Fig. 4B). Lipocalin mutein expression was induced overnight at 22 °C at 700 rpm with anhydrotetracycline (0.2µg/ml) at an OD₅₅₀ of 0.6. Afterwards, cells were lysed (100 mM Na-borate, pH 8.0, 80 mM NaCl, 1 mM EDTA, 0.025 % w/v lysozyme) for 1 h under agitation. To minimize non-specific binding in the subsequent ELISA screen, the crude cell lysates were supplemented with 2 % w/v BSA and 0.1 % v/v Tween 20 and tested in ELISA for binding to human Glycan-3. Therefore, biotinylated human GPC-3 was captured with 1 µg/ml via immobilized Neutravidin (5 µg/ml, Thermo Scientific) on wells of black Fluotrac 600 ELISA plates (Greiner; 384 well). Neutravidin, Streptavidin, 5 µg/ml each, and 3 % milk were used as negative control. Plates were blocked with PBST/0.1 containing 2 % w/v BSA, and subsequently incubated with the bacterial cell extract for 1 h at room temperature plates were washed five times and bound Lipocalin muteins were detected via an anti-T7 monoclonal antibody-HRP conjugate (Novagen), diluted 1:10.000 in PBST/0.1. Therefore, QuantaBlu™ (Pierce; 1:2 diluted in PBS/T 0.1%) was used as fluorogenic HRP substrate. After 45 min of signal development at room temperature fluorescence was excited at a wavelength of 320 nm (± 12.5 nm) and measured at 430 nm (± 17.5 nm) in a GENiosPlus plate reader (Tecan).

[0157] In a reverse ELISA approach soluble expressed muteins from the crude cell lysate were captured in ELISA plates via a rabbit polyclonal NGAL-specific antibody following incubation with varying amounts of biotinylated human Glycan-3 (10, 5, and 1 nM) to reach target-limiting conditions in order to differentiate the muteins by their affinity. Binding of the target was detected via Neutravidin-HRP conjugate (Pierce). One could compete for mutein

binding by the addition of 100 nM non-biotinylated human Glycan-3 indicating, that the muteins bind the non-modified human Glycan-3 as well. The identical assay approach was also used to compete with 100 nM of non-modified Glycan-5 (R&D Systems) in order to demonstrate target specificity.

[0158] Screening of 1440 clones, selected as described in Example 3, led to the identification of more than 700 primary hits indicating the successful isolation of target-specific muteins. The reverse ELISA approach under target-limiting conditions and the competition ELISA allowed for a differentiation of GPC3-specific muteins in terms of their target affinity and specificity. Using these ELISA approaches the clones with SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, and SEQ ID NO: 8, were identified. The sequences of these muteins are depicted in Figure 3.

Example 5: Production of Glycan3-binding muteins (NGAL)

[0159] The recombinant Lcn2 and the human Glycan-3-specific Lcn2 variants were produced by periplasmic secretion in *E. coli* K12 strain JM83 (Yanisch-Perron et al. (1985) Gene 33, 103-119), the *E. coli* supE strain TG1-F- (a derivative of *E. coli* K12 TG1 [Kim et al. (2009) J. Am. Chem. Soc. 131, 3565-3576] that was cured from its episome using acridinium orange), or *E. coli* W3110 (Bachmann (1990) Microbiol. Rev. 54, 130-197).

[0160] For a small scale soluble protein expression the plasmid phNGAL98 (SEQ ID NO: 9) was used, encoding a fusion of the OmpA signal peptide with the respective mutein and the C-terminal Strep-tag II, whereby the plasmid carries the two non-compatible BstXI restriction sites for unidirectional subcloning of the mutated gene cassette. Growth was allowed to occur in a 2 L shaking flask culture in the presence of LB-Ampicillin medium according to the protocol described in Schlehuber, S. et al. (J. Mol. Biol. (2000), 297, 1105-1120). For larger amounts of protein the periplasmatic production was performed with the same vector expressed in the *E. coli* strain W3110 via bench top fermenter cultivation in a 1 l or 10 l vessel based on the protocol described in Schiweck, W., and Skerra, A. Proteins (1995) 23, 561-565).

[0161] The Lcn2 variants were purified from the periplasmic fraction in a single step via streptavidin affinity chromatography (*Strep-Tactin™ Superlow, IBA*) using a column of appropriate bed volume according to the procedure described by Skerra, A. & Schmidt, T. G. M. (2000) (Use of the Strep-tag and streptavidin for detection and purification of recombinant proteins. Methods Enzymol. 326A, 271-304). To achieve higher purity and to remove any aggregated recombinant protein, a gel filtration of the muteins was finally carried out on a Superdex 75 HR 10/30 column (24-ml bed volume, Amersham Pharmacia Biotech, Freiburg, Germany) in the presence of PBS buffer. The monomeric protein fractions were pooled, analysed for purity by SDS-PAGE (Fling and Gregerson (1986) Anal. Biochem. 155, 83-88), and used for further biochemical characterization.

Example 6: Affinity measurement using ELISA techniques

[0162] A "direct" ELISA was performed to verify the binding affinity and specificity of the selected Lcn2 muteins. Therefore, a constant concentration of 1 µg/ml biotinylated human Glycan 3 (R&D Systems) was captured on the surface of a polystyrol plate (Greiner, GE) via BSA blocked Neutravidin (Thermo Scientific, 5 µg/ml). Two step dilution series of purified Lcn2 muteins were incubated with the captured GPC-3 for 1h at room temperature and detected either via the Strep-tag II using a rabbit anti-strep-tag II polyconal antibody (GenScript, USA) or by using a scaffold-specific polyclonal rabbit antibody. In both cases an anti rabbit IgG-HRP conjugate (Abcam, UK) was employed as secondary detection antibody.

[0163] The absorption ΔA at 320 nm was measured in an ELISA reader (Tecan, GE) and the data were fitted with Graphpad Prism software (Statcom, USA).

[0164] Results from measurements employing the muteins of the sequences of SEQ ID NO: 1 to SEQ ID NO: 8, as well as of SEQ ID NO: 9 as a negative control are summarized in Table 1.

Table 1: Affinity constants of muteins to the target human Glycan-3

Mutein	KD [nM]
PIE-G3A	7,6
PIE-G3B	0,27
PIE-G3C	0,32
PIE-G3D	0,46
PIE-G3E	0,2
PIE-G3F	0,35
PIE-G3G	0,27
PIE-G3H	0,3

[0165] K_D values of the selected Lcn2 muteins vary from 200 pM up to 7,6 nM, whereas the negative control showed no binding at all. Fig. 4 shows a graphical representation of these data.

[0166] The binding affinity of the Lcn2 muteins to non-modified Glycan-3 in solution was evaluated in a competition ELISA approach. Therefore, a constant concentration of 1µg/ml biotinylated human Glycan-3 (R&D Systems) was captured on the surface of a polystyrol plate (Greiner, GE) via Neutravidin (Thermo Scientific, 5 µg/ml, GE). In parallel a two step dilution series of non-biotinylated human Glycan-3 starting from 1,5 µM was incubated with a constant concentration of GPC3-specific mutein for 1h at room temperature in a non-protein binding 96 well polypropylene plate (Nunc, GE). The constant concentration of lipocalin muteins corresponds to the EC_{50} of the respective muteins as determined in a direct ELISA as described above in this example. In the following the mixture of non-modified human GPC3

and lipocalin mutein was transferred onto the GPC3-captured Neutravidin plate. The biotinylated GPC3 was allowed to compete with the non-modified GPC3 for Anticalin binding for 1 h at room temperature. During these 1 h, free lipocalin mutein was bound to the captured GPC3 and detected via a rabbit anti-strep-tag II polyconal antibody (GenScript, USA). A goat anti-rabbit IgG-HRP conjugate (Abcam, UK) was employed as secondary detection antibody. Parallel to the competition assay, anticalin binding was determined on the same plate in a "direct" ELISA, in order to obtain a standard curve linking the RFU values to anticalin concentration. This curve was then used to standardize competition data to the level of anticalins bounds to the plate and fitted with Graphpad software. IC₅₀ values correspond to the half-maximum amount of lipocalin mutein bound to the plate.

[0167] Results from measurements employing the muteins of the sequences of SEQ ID NO: 1 to SEQ ID NO: 8 are summarized in Fig. 5.

[0168] IC₅₀ values of the selected Lcn2 muteins vary from 70 pM up to 1 nM.

Example 7: Measurement of binding affinity for Glypican-3 via surface plasmon resonance on a Biacore T100 instrument

[0169] Surface plasmon resonance was used to measure binding kinetics and affinity of the lipocalin muteins disclosed herein.

[0170] Real time analysis of the binding of the Lcn2 muteins to Glypican-3 was performed on a Biacore T100 system (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) using HBS-EP+ (BR-1006-69, GE Healthcare Bio-Sciences AB, Uppsala, Sweden) as running buffer. A 10 µg/mL solution of Glypican-3 in 10 mM sodium acetate pH 4.5 was immobilized onto a CM5 chip (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) using standard amine coupling chemistry, resulting in a ligand density of 467 RU. The purified Lcn2 muteins were applied in concentrations of 40 nM and 120 nM at a flow rate of 30 µL/min. The dilutions were injected with association times of 120 sec and dissociation times of 420 sec to obtain *ka* and *kd* information. Regeneration of the ligand was achieved by injecting either 6 M Guanidinium-HCl (120 sec / 300 sec) or 3 M MgCl₂ (900 sec) with a flow rate of 10 µL/min. Injection of regeneration solutions was followed by an extra wash step with running buffer and a stabilization period of 180 sec.

[0171] The data were double-referenced by subtraction of the corresponding signals measured for the control channel, which had been activated and blocked with ethanolamine and by subtraction of buffer injections from the binding responses. *ka* and *kd* for the binding reaction were determined using Biacore T100 Evaluation Software V2.0.1 for data processing and kinetic fitting. The data were globally fit with 1:1 binding model.

[0172] The values determined for *ka* and *kd* for the muteins of the sequences of SEQ ID NO:

1 to SEQ ID NO: 8 are summarized in Fig. 6.

Example 8: Species-crossreactivity of Glypican 3 muteins on SK-Hep1 transfectants

[0173] SK-HEP1 from the DSMZ cell bank which do not express detectable levels of endogenous GPC3 as assessed by flow cytometry were stably transfected with an expression vector encoding human, cynomolgus or mouse GPC3. Empty vector control cells were also obtained and analyzed in parallel. Detection of GPC3 was achieved using mouse anti-glypican 3 clone 1 G12 monoclonal antibody (DCS).

[0174] In order to assess binding of muteins to the GPC3 on the cell surface, 200,000 cells in PBS/2% FCS were used in each binding reaction. Reactions were performed on ice in 30 μ l for 2h. Following two washing steps in PBS/2% FCS a secondary rabbit anti-hNGAL scaffold antiserum was employed for 30 min. followed another two wash steps. Detection was achieved with anti-rabbit IgG-PE (30min.). Measurements were performed on a FACSCalibur flow cytometer where 10,000 events were acquired for each sample. Geometric mean values were compiled in FlowJo (Treestar software) and fitted to a sigmoidal dose response model in the Prism 5 program (GraphPad) to obtain EC50 values.

[0175] Fig. 7 shows binding affinities to human, cyno, and mouse GPC3 transfected SK-Hep1 cells.

SEQUENCE LISTING

[0176]

<110> Pieris AG

<120> Muteins of human lipocalin 2 with affinity for Glypican-3 (GPC3)

<130> PIE13917PCT

<150> US 61/413,706

<151> 2010-11-15

<150> EP 10 191 228.5

<151> 2010-11-15

<160> 27

<170> PatentIn version 3.5

<210> 1

<211> 188

<212> PRT

<213> artificial

<220>

<223> Mutein of hNGAL (G08)

<400> 1

Gln	Asp	Ser	Thr	Ser	Asp	Leu	Ile	Pro	Ala	Pro	Pro	Leu	Ser	Lys	Val
1					5				10					15	

Pro Leu Gln Gln Asn Phe Gln Asp Asn Gln Phe His Gly Lys Trp Tyr
 20 25 30

Val Val Gly Ile Ala Gly Asn Trp Ile Leu Arg Glu Asp Lys Asp Pro
35 40 45

Pro Lys Met Arg Ala Thr Ile Tyr Glu Leu Lys Glu Asp Lys Ser Tyr
50 55 60

Asn	Val	Thr	Arg	Val	Arg	Phe	Asp	Glu	Lys	Lys	Cys	Gly	Tyr	Gly	Ile
65					70					75					80

Ala Thr Phe Val Pro Gly Ser Gln Pro Gly Glu Phe Thr Leu Gly Val
85 90 95

Ile Lys Ser Arg Pro Gly Ile Thr Ser Asp Leu Val Arg Val Val Ser
100 105 110

Thr Asn Tyr Asn Gln His Ala Met Val Phe Phe Lys Phe Val Lys Gln
115 120 125

Asn Arg Glu Tyr Phe Gly Ile Thr Leu Tyr Gly Arg Thr Lys Glu Leu
 130 135 140

Thr Ser Glu Leu Lys Glu Asn Phe Ile Arg Phe Ser Lys Ser Leu Gly
 145 150 155 160

Leu Pro Glu Asn His Ile Val Phe Pro Val Pro Ile Asp Gln Cys Ile
165 170 175

Asp Gly Ser Ala Trp Ser His Pro Gln Phe Glu Lys
180 185

<210> 2

<211> 188

<212> PRT

<213> artificial

<220>

<223> Mutein of hNGAL (A16)

<400> 2

Gln Asp Ser Thr Ser Asp Leu Ile Pro Ala Pro Pro Leu Ser Lys Val
1 5 10 15

Pro Leu Gln Gln Asn Phe Gln Asp Asn Gln Phe His Gly Lys Trp Tyr
20 25 30

Val Val Gly Val Ala Gly Asn Ala Met Leu Arg Glu Asp Lys Asp Pro
35 40 45

Leu Lys Met Arg Ala Thr Ile Tyr Glu Leu Lys Glu Asp Lys Ser Tyr
50 55 60

Asn Val Thr Gly Val Ser Phe Trp Arg Lys Lys Cys His Tyr Lys Ile
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

65	70	75	80
Gly Thr Phe Val Pro Gly Ser Gln Pro Gly Glu Phe Thr Leu Gly Asp			
85	90	95	

Ile Lys Ser Gly Pro Gly Gln Thr Ser Asn Leu Val Arg Val Val Ser			
100	105	110	

Thr Asn Tyr Asn Gln His Ala Met Val Phe Phe Lys Glu Val Arg Gln			
115	120	125	

Asn Arg Glu Trp Phe Ala Ile Thr Leu Tyr Gly Arg Thr Lys Glu Leu			
130	135	140	

Thr Ser Glu Leu Lys Glu Asn Phe Ile Arg Phe Ser Lys Ser Leu Gly			
145	150	155	160

Leu Pro Glu Asn His Ile Val Phe Pro Val Pro Ile Asp Gln Cys Ile			
165	170	175	

Asp Gly Ser Ala Trp Ser His Pro Gln Phe Glu Lys			
180	185		

<210> 3

<211> 188

<212> PRT

<213> artificial

<220>

<223> Mutein of hNGAL (M02)

<400> 3

Gln Asp Ser Thr Ser Asp Leu Ile Pro Ala Pro Pro Leu Ser Lys Val			
1	5	10	15

Pro Leu Gln Gln Asn Phe Gln Asp Asn Gln Phe His Gly Lys Trp Tyr			
20	25	30	

Val Val Gly Arg Ala Gly Asn Val Ala Leu Arg Glu Asp Lys Asp Pro			
35	40	45	

Pro Lys Met Arg Ala Thr Ile Tyr Glu Leu Lys Glu Asp Lys Ser Tyr			
50	55	60	

Asn Val Thr Asn Val Arg Phe Ala Met Lys Lys Cys Met Tyr Ser Ile			
65	70	75	80

Gly Thr Phe Val Pro Gly Ser Gln Pro Gly Glu Phe Thr Leu Gly Gln			
85	90	95	

Ile Lys Ser Glu Pro Gly Asn Thr Ser Asn Leu Val Arg Val Val Ser			
100	105	110	

Thr Asn Tyr Asn Gln His Ala Met Val Phe Phe Lys Glu Val Tyr Gln			
115	120	125	

Asn Arg Glu Ile Phe Phe Ile Thr Leu Tyr Gly Arg Thr Lys Glu Leu			
130	135	140	

Thr Ser Glu Leu Lys Glu Asn Phe Ile Arg Phe Ser Lys Ser Leu Gly			
145	150	155	160

Leu Pro Glu Asn His Ile Val Phe Pro Val Pro Ile Asp Gln Cys Ile			
165	170	175	

Asp Gly Ser Ala Trp Ser His Pro Gln Phe Glu Lys			
180	185		

Arg Lys Met His Ala Ile Ile Tyr Cys Leu Lys Cys Asp Lys Ser Tyr
 50 55 60

Asn Val Thr Asn Val Thr Phe Arg Glu Lys Lys Cys His Tyr Ser Ile
 65 70 75 80

Gly Thr Phe Val Pro Gly Ser Gln Pro Gly Glu Phe Thr Leu Gly Lys
 85 90 95

Ile Lys Ser Asn Pro Gly Met Thr Ser Phe Leu Val Arg Val Val Ser
 100 105 110

Thr Asn Tyr Asn Gln His Ala Met Val Phe Phe Lys Lys Val His Gln
 115 120 125

Asn Arg Glu Gln Phe Asn Ile Thr Leu Tyr Gly Arg Thr Lys Glu Leu
 130 135 140

Thr Ser Glu Leu Lys Glu Asn Phe Ile Arg Phe Ser Lys Ser Leu Gly
 145 150 155 160

Leu Pro Glu Asn His Ile Val Phe Pro Val Pro Ile Asp Gln Cys Ile
 165 170 175

Asp Gly Ser Ala Trp Ser His Pro Gln Phe Glu Lys
 180 185

<210> 6

<211> 188

<212> PRT

<213> artificial

<220>

<223> Mutein of hNGAL (002)

<400> 6

Gln Asp Ser Thr Ser Asp Leu Ile Pro Ala Pro Pro Leu Ser Lys Val
 1 5 10 15

Pro Leu Gln Gln Asn Phe Gln Asp Asn Gln Phe His Gly Lys Trp Tyr
 20 25 30

Val Val Gly Ile Ala Gly Asn Gly Gln Leu Arg Glu Asp Lys Asp Pro
 35 40 45

Trp Lys Met Ser Ala Thr Ile Tyr Glu Leu Lys Glu Asp Lys Ser Tyr
 50 55 60

Asn Val Thr Ser Val Arg Phe Arg Leu Lys Lys Cys Ser Tyr Trp Ile
 65 70 75 80

Tyr Thr Phe Val Pro Gly Ser Gln Pro Gly Glu Phe Thr Leu Gly Gly
 85 90 95

Ile Lys Ser Asn Pro Gly Asp Thr Ser Asn Leu Val Arg Val Val Ser
 100 105 110

Thr Asn Tyr Asn Gln His Ala Met Val Phe Phe Lys Tyr Val Ile Gln
 115 120 125

Asn Arg Glu Trp Phe Ile Ile Thr Leu Tyr Gly Arg Thr Lys Glu Leu
 130 135 140

Thr Ser Glu Leu Lys Glu Asn Phe Ile Arg Phe Ser Lys Ser Leu Gly
 145 150 155 160

Leu Pro Glu Asn His Ile Val Phe Pro Val Pro Ile Asp Gln Cys Ile
 165 170 175

Asp Gly Ser Ala Trp Ser His Pro Gln Phe Glu Lys
180 185

<210> 7

<211> 188

<212> PRT

<213> artificial

<220>

<223> Mutein of hNGAL (M04)

<400> 7

Gln Asp Ser Thr Ser Asp Leu Ile Pro Ala Pro Pro Leu Ser Lys Val
1 5 10 15

Pro Leu Gln Gln Asn Phe Gln Asp Asn Gln Phe His Gly Lys Trp Tyr
20 25 30

Val Val Gly Met Ala Gly Asn Ala Ser Leu Arg Glu Asp Lys Asp Pro
35 40 45

Arg Lys Met Asn Ala Thr Ile Tyr Glu Leu Lys Glu Asp Lys Ser Tyr
50 55 60

Asn Val Thr Lys Val Arg Phe Trp His Lys Lys Cys Tyr Tyr Ser Ile
65 70 75 80

Thr Thr Phe Val Pro Gly Ser Gln Pro Gly Glu Phe Thr Leu Gly Asp
85 90 95

Ile Lys Ser Tyr Pro Gly Trp Thr Ser Tyr Leu Val Arg Val Val Ser
100 105 110

Thr Asn Tyr Asn Gln His Ala Met Val Phe Phe Lys Gly Val Arg Gln
115 120 125

Asn Arg Glu Trp Phe Ser Ile Thr Leu Tyr Gly Arg Thr Lys Glu Leu
130 135 140

Thr Ser Glu Leu Lys Glu Asn Phe Ile Arg Phe Ser Lys Ser Leu Gly
145 150 155 160

Leu Pro Glu Asn His Ile Val Phe Pro Val Pro Ile Asp Gln Cys Ile
165 170 175

Asp Gly Ser Ala Trp Ser His Pro Gln Phe Glu Lys
180 185

<210> 8

<211> 188

<212> PRT

<213> artificial

<220>

<223> Mutein of hNGAL (012)

<400> 8

Gln Asp Ser Thr Ser Asp Leu Ile Pro Ala Pro Pro Leu Ser Lys Val
1 5 10 15

Pro Leu Gln Gln Asn Phe Gln Asp Asn Gln Phe His Gly Lys Trp Tyr
20 25 30

Val Val Gly Ile Ala Gly Asn Tyr Ile Leu Arg Glu Asn Lys Asp Pro

val val ser ile and ser met tyr ile leu lys glu asp lys ser tyr
 35 40 45
 Pro Lys Met Arg Ala Thr Ile Tyr Glu Leu Lys Glu Asp Lys Ser Tyr
 50 55 60
 Asn Val Thr Arg Val Phe Phe Ser Arg Lys Lys Cys Asp Tyr Ile Ile
 65 70 75 80
 Trp Thr Phe Val Pro Gly Ser Gln Pro Gly Glu Phe Thr Leu Gly Phe
 85 90 95
 Ile Lys Ser Asn Pro Gly Leu Thr Ser Leu Leu Val Arg Val Val Ser
 100 105 110
 Thr Asn Tyr Asn Gln His Ala Met Val Phe Phe Lys Trp Val Asp Gln
 115 120 125
 Asn Arg Glu Val Phe Gly Ile Thr Leu Tyr Gly Arg Thr Lys Glu Leu
 130 135 140
 Thr Ser Glu Leu Lys Glu Asn Phe Ile Arg Phe Ser Lys Ser Leu Gly
 145 150 155 160
 Leu Pro Glu Asn His Ile Val Phe Pro Val Pro Ile Asp Gln Cys Ile
 165 170 175
 Asp Gly Ser Ala Trp Ser His Pro Gln Phe Glu Lys
 180 185

<210> 9

<211> 3745

<212> DNA

<213> artificial

<220>

<223> Expression vector phNGAL98 with AmpR encoding wild type Lcn2 with the C-terminal Strep-tagII

<400> 9

ccatcgaaatg gccagatgat taattcctaa tttttgttga cactctatca ttgatagagt	60
tattttacca ctccctatca gtgatagaga aaagtgaat gaataggatc acaaaaatct	120
agataacgag ggcaaaaaat gaaaaagaca gctatcgca ttgcagtggc tctggctggc	180
ttcgctaccc tagcgcaggc ccaggactcc acctcagacc tgatcccagg cccacatctg	240
agcaaggatcc ctatgcagca gaacttccag gacaaccaat tccatggaa gtggatgtg	300
gtaggatctcg cagggaatgc aatttcaga gaagacaaag acccgcaaaa gatgtatgcc	360
accatctatg agctgaaaga agacaagagc tacaatgtca cctccgtcct gtttaggaaa	420
aagaagtgtg actactggat caggactttt gttccaggtt cccagccagg cgagttcacg	480
ctgggcaaca ttaagagttt ccctggatta acgagttacc tcgtccgagt ggtgagcacc	540
aactacaacc agcatgtat ggtgttcttc aagaaagttt ctcaaaacag ggagtacttc	600
aagatcaccc tctacgggag aaccaaggag ctgacttcgg aactaaagga gaacttcatc	660
cgcttctcca aatctctggg cctccctgaa aaccacatcg tctccctgt cccaaatcgac	720
cagtgtatcg acggcagcgc ttggatctcacc cccgagttcg aaaaataata agcttgaccc	780
gtgaagtgaa aatggcgca cattgtgcga cattttttt gtctgccgtt taccgctact	840

cggtcacgga tctccacgca ccctgtacgc ggcattaaag cgccgggggt gtgggttta	900
cgcgacgt gaccgtaca cttgccagcg ccctagcgcc cgctcccttc gctttcttcc	960
cttccttct cggcacgttc gccggcttc cccgtcaagc tctaaatcgg gggctccctt	1020
tagggttccg atttagtgct ttacggcacc tggaccccaa aaaacttgat tagggtgatg	1080
gttcacgtag tggccatcg ccctgataga cggttttcg cccttgacg ttggagtcca	1140
 cgttcttaa tagtggactc ttgttccaaa ctggacaac actcaaccct atctcggtct	1200
attctttga tttataaggg atttgccga ttccggctta ttggtaaaaa aatgagctga	1260
tttaacaaaa atttaacgcg aatttaaca aatattaac gtttacaatt tcaggtggca	1320
ctttcgggg aatgtgcgc ggaaccccta tttgttatt tttctaaata cattcaaata	1380
tgtatccgct catgagacaa taacectgat aatgttca ataatattga aaaaggaaaga	1440
gtatgagtat tcaacatttc cgtgtggccc ttattccott tttgcggca tttgccttc	1500
ctgttttgc tcacccagaa acgtgtgtga aagtaaaaaga tgctgaagat cagttggtg	1560
cacgagtggg ttacatcgaa ctggatctca acagcggtaa gatcctttag agtttcgccc	1620
ccgaagaacg tttccaatg atgagcattt taaaagttct gctatgtggc ggggtattat	1680
cccgattga cggccggcaa gagcaactcg gtcggccat acactattct cagaatgact	1740
tggtgagta ctcaccagtc acagaaaagc atcttacgga tggcatgaca gtaagagaat	1800
tatgcagtgc tgccataacc atgagtgata acactgcggc caacttactt ctgacaacga	1860
tcggaggacc gaaggagcta accgaaaaat tgcacaacat gggggatcat gtaactcgcc	1920
ttgatcgttg ggaaccggag ctgaatgaag ccataccaaa cgacgagcgt gacaccacga	1980
tgcctgttagc aatggcaaca acgttgcgc aactattaac tggcgaacta cttaactctag	2040
cttccggca acaattgata gactggatgg aggccgataa agttgcagga ccacttctgc	2100
gctcgccct tccggctggc tggtttattt ctgataaattc tggagccgggt gacgtggct	2160
ctcgccgtat cattgcagca ctggggccag atggtaagcc ctcccgatc ctgttatct	2220
acacgacggg gagtcaggca actatggat aacgaaatag acagatcgat gagataggta	2280
cctcaactgat taagcattgg taggaattaa tggatgtctcg tttagataaa agtaaagtga	2340
ttaacagcgc attagagctg cttaatgagg tggaaatcgaa aggttaaca acccgtaaac	2400
tcgcccagaa gctaggtgta gagcagccta cattgtattt gcatgtaaaa aataagcggg	2460
ctttgctcga cgccttagcc attgagatgt tagataggca ccatactcac tttgcctt	2520
tagaaggggaa aagctggcaa gatTTTTTAC gtaataacgc taaaagttt agatgtgctt	2580
tactaagtca tggcgatggaa gcaaaaatgtc atttaggtac acggccctaca gaaaacagt	2640
atgaaactct cggaaatcaa ttacccctttt tatgccaaca aggttttca ctagagaatg	2700
cattatatgc actcagcgca gtggggcatt ttactttagg ttgcgtattt gaagatcaag	2760
agcatcaagt cgctaaagaa gaaaggaaaa cacctactac tggatgtatg cggccattat	2820
tacgacaagc tatcgaattt tttgatcacc aagggtgcaga gccagccccc ttattcggcc	2880
ttgaatttgcatcatgcgaa ttggaaaaac aacttaaatg tgaaagtggg tcttaaaagc	2940
agcataaccc tttccgtga tggtaacttc actagttaa aaggatctag gtgaagatcc	3000
 tttttgcataa tctcatgacc aaaatccctt aacgtgagtt ttcgttccac tgagcgtag	3060

accccgtaga aaagatcaa ggatcttctt gagatccctt tttctgcgc gtaatctgct	3120
gcttgcacaaac aaaaaaaacca ccgctaccag cggtggtttg tttgccggat caagagctac	3180
caactctttt tccgaaggta actggcttca gcagagcgcga gataccaaat actgtccctc	3240
tagttagtgcg caccacttca agaactctgt agcaccgcct acataccctcg	3300
ctctgctaat cctgttacca gtggctgctg ccagtggcga taagtctgtgt cttaccgggt	3360
tggactcaag acgatagttt ccggataagg cgcagcggc gggctgaacg gggggttcgt	3420
gcacacagcc cagcttggag cgaacgcactt acaccgaact gagataccta cagcgtgagc	3480
tatgagaaag cgcacgcgtt cccgaaggga gaaaggcggc caggtatccg gtaagcggca	3540
gggtcggAAC aggagagcgc acgagggagc ttccaggggg aaacgcctgg tatctttata	3600
gtctgtcgg gtttcggccac ctctgacttg agcgtcgatt tttgtatgc tcgtcagggg	3660
ggcggagcct atggaaaaac gccagcaacg cggccctttt acggttctgt gctttgtct	3720
gcccctttgc tcacatgacc cgaca	3745

<210> 10

<211> 4746

<212> DNA

<213> artificial

<220>

<223> Phage display vector phNGAL102 with CamR used as backbone for NNK-Library

<400> 10

ccataaacgct cgggtggcgc cggcgctttt ttattggcca gatgattaat tcctaatttt	60
tgttgcacact ctatcattgg tagagttattt ttaccactcc ctatcaatgtga tagagaaaaag	120
tgaaatgaat agttcgacaa aaatcttagat aacgagggca aaaaatgaaa aagacagctca	180
tcgcgattgc agtggctctg gctggcttcg ctaccgtac gcaggcccag gactccacct	240
cagacctgat cccagccccca cctctgagca aggtccctct gcagcagaac ttccaggaca	300
accaattcca tgggaagtgg tatgtggtag gtctcgcagg gaatgcaatt ctcagagaag	360
acaaagaccc gcaaaagatg tatgccacca tctatgagct gaaagaagac aagagctaca	420
atgtcaccc tcgtctgttt agaaaaaaaga agtgtgacta ctggatcagg acttttggc	480
caggttccca gccaggcgag ttacacgtgg gcaacattaa gagttaccct ggatTAACGA	540
gttacctcgt ccgagtggtg agcaccaact acaaccagca tgctatggtg ttcttcaaga	600
aagtttctca aaacaggggag tacttcaaga tcaccctcta cgggagaacc aaggagctga	660
tttcggaaact aaaggagaac ttcatccgct tctccaaatc tctgggcctc cctgaaaacc	720
acatcgcttt ccctgtccca atcgaccagt gtatcgacgg cagcgtgggt ggggctaga	780
ctgttgaag ttgttagca aaacccata cagaaaattc atttactaac gtctggaaag	840
acgacaaaac ttttagatcgt tacgctaact atgagggctg tctgtggat gctacaggcg	900
ttgttagttt tactggtgac gaaactcagt gtacggtagt atgggttcctt attgggttttg	960
ctatccctga aaatgagggtt ggtggctctg agggtggcggg ttctgagggtt ggcgggtctg	1020
----- tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	1000

agggtggcgg tactaaaccc cctgagtaacg gtgatacacc tattccgggc tataacttata	1080
tcaaccctct cgacggcaact tatccgcctg gtactgagca aaaccggct aatcctaatac	1140
cttctcttga ggagtctcag cctcttaataa ctttcatgtt tcagaataat aggttccgaa	1200
ataggcaggg ggcattaact gtttatacgg gcactgttac tcaaggcaact gaccccgta	1260
aaacttatttta ccagtacact cctgtatcat caaaagccat gtatgacgct tactggaacg	1320
gtaaattcag agactgogct ttccattctg gcttaatga ggttccattc gtttgtgaat	1380
atcaaggcca atcgtctgac ctgcctcaac ctccgtcaa tgctggggc ggtctggtg	1440
gtgggttggg tgggggtctt gagggtggg gctctgtggg tgggggttctt gagggtggcg	1500
gctctgaggg aggccgttcc ggtgggtggct ctgggtccgg tgatttgtat tatgaaaaga	1560
tggcaaaccgc taataagggg gctatgaccg aaaatgcggta tgaaaacgcg ctacagtctg	1620
acgctaaagg caaacttgtat tctgtcgcta ctgattacgg tgctgctatc gatggttca	1680
ttggtgacgt ttccggcctt gctaatggta atggtgctac tggtgatttt gatggctcta	1740
attcccaat ggctcaagtc ggtgacggtg ataattcacc ttaatgaat aattccgtc	1800
aatatttacc ttccctccct caatcggttg aatgtcgccc tttgtcttt ggccgtggta	1860
aaccatatga attttctatt gatttgaca aaataaaactt atccgtggt gtctttgcgt	1920
ttctttata tgttgcacc tttatgtatg tatttttac gtttgcatac atactgcgtat	1980
ataaggagtc ttaataagct tgacgtgtatc agtggaaaat ggcgcacatt gtgcgcacatt	2040
ttttttgtct ggccgttacc gctactgctg cacggatctc cacggccct gtagccgc	2100
attaagccgcg gccccgtgg tggttacgcg cagcgtgacc gctacacttg ccagccct	2160
agccgcgcgtt ctttgcgtt tttcccttc ctttgcgtt acgttgcggc gtttccacgg	2220
tcaagctcta aatcgggggc tccctttagg gttccgattt agtgccttac ggcacctcga	2280
ccccaaaaaa cttgatttagg gtgtatggtc acgtatggg ccatcgccct gatagacggt	2340
ttttcgccct ttgacgttgg agtccacgtt cttaatagt ggacttctgt tccaaactgg	2400
aacaacactc aaccctatctt cggcttatttc tttgattta taaggattt tgccgatttc	2460
ggcctattgg ttaaaaaatg agctgattta aaaaaatattt aacgcgaatt ttaacaaaat	2520
ttggcgaaaa tgagacgttgc atcggcacgt aagaggttcc aactttcacc ataatgaaat	2580
aagatcacta ccggcgat ttttgatgtt atcgagat ttcaaggatca aggaagctaa	2640
aatggagaaaa aaaatcactg gatataccac cgttgatata tcccaatggc atcgtaaaga	2700
acattttgag gcatttcagt cagttgctca atgtacctat aaccagaccg ttcaagctgga	2760
tattacggcc tttttaaaga ccgtaaagaa aaataagcac aagttttatc cggccctttat	2820
tcacattctt gcccgcctga tgaatgctca tccggaaattc cgtatggcaa tgaaagacgg	2880
tgagctgggt atatggata gtgttcaccc ttgttacacc gttttccatg agcaaactga	2940
aacgttttca tgcgtctggta gtgaataccca cgacgatttc cggcagtttc tacacatata	3000
ttcgcaagat gtggcggtt acggtaaaaa cctggccat tttccctaaag ggtttattga	3060
gaatatgtt ttgcgtctcag ccaatccctg ggtgatgttcc accagtttgcgtt atttaaacgt	3120
ggccaaatatg gacaacttct tgcggccgtt tttcaactatg ggccaaatattt atacgcagg	3180
cgacaagggtg ctgtatggcgc tggcgatcc ggttcatcat gccgtttgtg atggcttcca	3240
tgtcgccaga atgcattaaatg aattacaaca gtactgcgtat gagtggcagg gccccggta	3300
-----	3360

ataggaatta atgatgtctc gtttagataa aagtaaagtgc attaacacgcg cattagagct	3360
gcttaatgag gtcggaatcg aaggtttaac aaccgcataa ctcgcccaga agcttaggtgt	3420
agagcagcct acattgtatt ggcatgtaaa aaataagcgg gctttgtctcg acgccttagc	3480
cattgagatg ttagataggc accatactca ctttgcctt ttagaagggg aaagctggca	3540
agattttta cgtaataacg ctaaaagttt tagatgtgct ttactaagtc atcgcgtatgg	3600
agcaaaaagta catttaggta cacggcctac agaaaaacag tatgaaactc tcgaaaatca	3660
attagcctt ttatgccaac aaggtttttc actagagaat gcattatatg cactcagcgc	3720
agtggggcat tttactttag gttgcgtatt ggaagatcaa gagcatcaag tcgctaaaga	3780
agaaaggaa acacctacta ctgatagttat gccgccatta ttacgacaag ctatcgaatt	3840
atttgtatcac caagggtgcag agccagcctt cttattcggc cttgaattga tcataatgcgg	3900
attagaaaaaa caacttaaat gtgaaagtgg gtcttaaaag cagcataacc tttttccgtg	3960
atggtaactt cactagtta aaaggatcta ggtgaagatc cttttgata atctcatgac	4020
caaaatccct taacgtgagt tttcggttca ctgagcgtca gaccccgtag aaaagatcaa	4080
aggatcttct tgagatcctt ttttctgcg cgtaatctgc tgcttgcaaa caaaaaacc	4140
acggctacca ggggtggttt gtttgcggta tcaagagcta ccaactttt ttccgaaggt	4200
aactggcttc agcagagcgc agataccaa tactgttctt ctatgttagc cgtatgtttagg	4260
ccaccacttc aagaactctg tagcaccgc tacatacctc gctctgtcaa tcctgttacc	4320
agtggctgct gccagtgccgataagtcgtg tcttacccggg ttggactcaa gacgatagtt	4380
acggataag ggcgcggcgt cgggctgaac ggggggttcg tgcacacagc ccagcttgg	4440
gcgaacgacc tacacccgaac tgagataacct acagcgtgag ctatgaaaaa ggcacacgct	4500
tcccgaaggg agaaaggccg acaggtatcc gtatagcggc agggtcggaa caggagagcg	4560
cacgaggggag ctccagggg gaaacgcctg gtatctttat agtccgtcg ggttcgcca	4620
cctctgactt gagcgtcgat ttttgcgtat ctgcgtcaggg gggcggagcc tatggaaaaaa	4680
cggcagcaac gggccctttt tacggttactt ggccctttgc tggccctttg ctcacatgac	4740
ccgaca	4746

<210> 11

<211> 4963

<212> DNA

<213> artificial

<220>

<223> Phage display vector phNGAL108 with AmpR used for Cloning Library

<400> 11

ccatcgaatg gccagatgtatgtaattcctaa tttttgttga cactctatca ttgatagagt	60
tattttacca ctccctatca gtgatagaga aaagtgaat gaatgttgc aaaaaatct	120
agataacgag ggcaaaaaat gaaaaagaca gctatcgcga ttgcagtggc tctggctggc	180
ttcgctaccg tagcgcaggc ccaggactcc acctcagacc tgatcccagc cccacccctg	240
agcaagggtcc ctatgcagca gaacttccag gacaaccaat tccatggaa gtggatgtg	300

gtaggtctcg caggaaatgc aattctcaga gaagacaaaag acccgcaaaa gatgtatgcc 360
 accatctatg agctgaaaga agacaagagc tacaatgtca cctccgtcct gtttaggaaa 420
 aagaagtgtg actactggat caggactttt gttccaggtt cccagccagg cgagttcacg 480
 ctggcaaca ttaagagtta ccctggatta acgagttacc tcgtccgagt ggtgagcacc 540
 aactacaacc agcatgctat ggtgttcttc aagaaagttt ctcaaaccag ggagtacttc 600
 aagatcaccc tctacgggag aaccaaggag ctgacttcgg aactaaagga gaacttcac 660
 cgcttctcca aatctctggg cctccctgaa aaccacatcg tcttccctgt cccaatcgac 720
 cagtgtatcg acggcagcgc ttggcgtcac ccgcagttcg gtggggccta gactgttcaa 780
 agttgttag caaaacccca tacagaaaat tcatttacta acgtctggaa agacgacaaa 840
 actttagatc gttacgctaa ctatgagggc tgcgtgtgaa atgctacagg cgttgttagtt 900
 tgtactggtg acgaaactca gtgttacggt acatgggttc ctattgggtc tgctatccct 960
 gaaaatgagg gtgtggcgc tgaggggtgc gttctgagg gtggcggttc tgaggggtggc 1020
 ggtactaaac ctctgagta cggtgataca cctattccgg gctataactta tatcaaccct 1080
 ctgcacggca cttatccggc tggtaactgag caaaaccccg ctaatcctaa tccttcttt 1140
 gaggagtctc agcctcttaa tactttcatg ttctagaata ataggttccg aaataggcag 1200
 ggggcattaa ctgtttatac gggcactgtt actcaaggca ctgaccggcgt taaaacttat 1260
 taccagtaca ctctgtatc atcaaaagcc atgtatgacg cttaactggaa cggtaaattc 1320
 agagactgacg ctttccatcc tggcttaat gaggatccat tcgtttgtga atatcaaggc 1380

 caatcgtctg acctgcctca acctctgtc aatgctggcg gcggctctgg tgggtggct 1440
 ggtggcggtc ctgaggggtgg tggctctgag ggtggcggtt ctgaggggtgg cggctctgag 1500
 ggaggcggtt ccgggtgggtgg ctctgggtcc ggtgattttt attatgaaaa gatggcaaac 1560
 gctaataagg gggctatgac cggaaatgcc gatggaaaacg cgctacagtc tgacgctaaa 1620
 ggcaaaacttg attctgtcgc tactgattac ggtgctgcta tcgatggttt cattggtgac 1680
 gtttccggcc ttgctaattgg taatgggtct actgggtatt ttgctggctc taattccaa 1740
 atggctcaag tgggtgacgg tgataattca cctttaatga ataatttccg tcaatattta 1800
 ccttcctcc ctcaatccgt tgaatgtcgc ccttttgcgtt ttggcggtgg taaaccatata 1860
 gaattttcta ttgattgtga caaaataaac ttattccgtg gtgtctttgc gtttctttta 1920
 tatgttgcga cctttatgtt tgcatttttct acgtttgcta acataactgcg taataaggag 1980
 tcttaataag cttgacactgt gaagtgaaaa atggcgacaca ttgtgcgaca tttttttgt 2040
 ctgccgtta cggctactgc gtcacggatc tccacggcgc ctgtacggc gcattaagcg 2100
 cggcggtgtt ggtgggtacg cgcacgtga cggctacact tgccagcgcc ctagcgcccg 2160
 ctacttttgcg tttttccct tccttctcg ccacgttgc cggcttcccg cgtcaagctc 2220
 taaatcgcccc gctcccttta ggggtccgat tttagtgcattt acggcaccc gaccccaaaa 2280
 aacttgatta ggggtgatggt tcaacgtatgtt ggccatcgcc ctgatagacg gtttttcgccc 2340
 ctttgacgtt ggagtccacg ttctttaata gtggactctt gttccaaact ggaacaacac 2400
 tcaaccctat ctgggtctat tcttttgcatt tataaggat tttgcccattt tcggcctatt 2460
 ggttaaaaaaa tgagctgatt taacaaaaat ttaacgcgaa ttttaacaaa atattaacgc 2520

ttacaatttc aggtggcaact tttcggggaa atgtgcgcgg aacccttatt tgtttatttt	2580
tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat	2640
aatattgaaa aaggaagagt atgagtattc aacatttccg tgtcgcctt attcccttt	2700
ttgcggcatt ttgccttcct gttttgctc acccagaaac gctggtaaaa gtaaaagatg	2760
ctgaagatca gttgggtgca cgagtgggtt acatcgact ggatctcaac agcggtaa	2820
tccttgagag ttttcgcccc gaagaacgtt ttccaatgtat gagcactttt aaagttctgc	2880
tatgtggcgc ggtattatcc cgtattgacg cccggcaaga gcaactcggt cgccgcatac	2940
actattctca gaatgacttg gttgagttact caccagtcaac agaaaagcat cttacggatg	3000
gcatgacagt aagagaatta tgcagtgcgt ccataaccat gagtgataac actgcggcca	3060
acttacttct gacaacgatc ggaggaccga aggagctaac cgctttttt cacaacatgg	3120
gggatcatgt aactcgccctt gatcggttggg acccgagct gaatgaagcc ataccaa	3180
acgagcgtga caccacgatg cctgttagcaa tggcaacaac gttgcgc当地 ctattaactg	3240
gcgaactact tactcttagct tcccgcaac aattgataga ctggatggag gggataaag	3300
ttgcaggacc acttctgcgc tggcccttc cggctggctg gtttattgtt gataaatctg	3360
gagccggta gctggctct cgcgttatca ttgcagcaact gggccagat ggttaaggcc	3420
cccgatctgt agttatctac acgacgggaa gtcaggcaac tatggatgaa cgaatagac	3480
agatcgctga gataggtgcc tcactgatta agcattggta ggaattaatg atgtctcg	3540
tagataaaag taaagtgatt aacagcgcat tagagctgtc taatgaggtc ggaatcgaag	3600
gtttaacaac cctaaactc gcccagaac taggtgtaga gcagcctaca ttgtattggc	3660
atgtaaaaaa taagcgggct ttgctcgacg ctttagccat tgagatgtt gataggcacc	3720
atactcactt ttgccttta gaagggaaa gctggcaaga tttttacgt aataacgcta	3780
aaagtttag atgtcttta ctaagtcatc gcatggaggc aaaagtacat ttaggtacac	3840
ggcctacaga aaaacagtat gaaactctcg aaaatcaatt agcctttta tgccaca	3900
gttttcact agagaatgca ttatatgcac tcagcgcagt gggcatttt acttaggtt	3960
gcgtattgga agatcaagag catcaagtgc ctaaagaaga aaggaaaca cctactactg	4020
atagtatgcc gccatttata cgacaagctc tggatttatt tgatcacca ggtgcagagc	4080
cagccttctt attcggccott gaattgtatca tatggggatt agaaaaacaa cttaatgt	4140
aaagtgggtc taaaaggcag cataacctt ttccgtgatg gtaacttcac tagttaaa	4200
ggatcttagt gaagatcattt ttgataatc tcatgaccaa aatccctaa cgtgagttt	4260
cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatcctttt	4320
ttctgcgcgt aatctgctgc ttgcaaaacaa aaaaaccacc gctaccagcg gtggttgtt	4380
tgccggatca agagctacca actcttttc cgaaggtaac tggcttcagc agagcgcaga	4440
taccaaatac tgccttcta gtgtggccgt agttagggca ccacttcaag aactctgttag	4500
caccgcctac atacctcgat ctgctaatcc tggtaccagt ggctgtgcc agtggcata	4560
agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcg	4620
gctgaacggg gggttcgatc acacagccca gttggagcg aacgacccatc accgaactga	4680
ataccatata cccatcgatca taaaacccca ccacatcttc ccaaccccaaaa aaccccccaca	4740

```

ggtatccggt aagcggcagg gtccggAACAG gagAGCGCAC gagggAGGTT ccAGGGGGAA 4800
acgcctggta tctttatagt cctgtcgggt ttccGCCACCT ctgacttgag cgTCGATTT 4860
tgtgatgctc gtcAGGGGG CGGAGCCTAT ggaaaaACGC cAGCAACGCG gACTTTTAC 4920
ggttcctggc cttttgtgg cttttgctc acatgaccCG aCA 4963

```

<210> 12

<211> 197

<212> PRT

<213> Artificial

<220>

<223> hNGAL with T7 tag encoded by phNGAL 101

<400> 12

```

Gln Asp Ser Thr Ser Asp Leu Ile Pro Ala Pro Pro Leu Ser Lys Val
1 5 10 15

Pro Leu Gln Gln Asn Phe Gln Asp Asn Gln Phe His Gly Lys Trp Tyr
20 25 30

Val Val Gly Leu Ala Gly Asn Ala Ile Leu Arg Glu Asp Lys Asp Pro
35 40 45

Gln Lys Met Tyr Ala Thr Ile Tyr Glu Leu Lys Glu Asp Lys Ser Tyr
50 55 60

Asn Val Thr Ser Val Leu Phe Arg Lys Lys Cys Asp Tyr Trp Ile
65 70 75 80

Arg Thr Phe Val Pro Gly Ser Gln Pro Gly Glu Phe Thr Leu Gly Asp
85 90 95

Ile Lys Ser Tyr Pro Gly Leu Thr Ser Tyr Leu Val Arg Val Val Ser
100 105 110

Thr Asn Tyr Asn Gln His Ala Met Val Phe Phe Lys Thr Val Ser Gln
115 120 125

Asn Arg Glu Tyr Phe Lys Ile Thr Leu Tyr Gly Arg Thr Lys Glu Leu
130 135 140

Thr Ser Glu Leu Lys Glu Asn Phe Ile Arg Phe Ser Lys Ser Leu Gly
145 150 155 160

Leu Pro Glu Asn His Ile Val Phe Pro Val Pro Ile Asp Gln Cys Ile
165 170 175

Asp Gly Ser Ala Trp Ser His Pro Gln Phe Met Ala Ser Met Thr Gly
180 185 190

Gly Gln Gln Met Gly
195

```

<210> 13

<211> 18

<212> DNA

<213> Artificial

<220>

<223> Primer (ASKD20)

<400> 13

CCACTCCCTA TCAGTGAT 18

<210> 14

<211> 31

<212> DNA

<213> Artificial

<220>

<223> Primer (NGAL67)

<400> 14

CTTCACAGGT CAAGCTTATT ATTTTCGAA C 31

<210> 15

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Primer (3004-Slo1 bio)

<400> 15

CCAGGACAACCAATTCCATGGGAAATGGTATGTCGTGGC 30

<210> 16

<211> 88

<212> DNA

<213> Artificial

<220>

<223> NNK oligomer for positions 36, 40, 41, 49, 52

<220>

<221> misc_feature

<222> (20)..(21)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (22)..(22)

<223> k is g or t

<220>

<221> misc_feature

<222> (32)..(33)

<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (34)..(34)
<223> k is g or t

<220>
<221> misc_feature
<222> (35)..(36)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (37)..(37)
<223> k is g or t

<220>
<221> misc_feature
<222> (59)..(60)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (61)..(61)
<223> k is g or t

<220>
<221> misc_feature
<222> (68)..(69)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (70)..(70)
<223> k is g or t

<400> 16
gaagtggtat gtggtaggtn nkgcagggaa tnnknnkctc agagaagaca aagacccgnn 60
kaagatgnnk gccaccatct atgagctg 88

<210> 17
<211> 79
<212> DNA
<213> Artificial

<220>
<223> NNK oligomer for positions 68, 70, 72, 73, 77, 79, 81

<220>
<221> misc_feature
<222> (20)..(21)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (22)..(22)
<223> k is g or t

<220>
<221> misc_feature
<222> (26)..(27)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (28)..(28)
<223> k is g or t

<220>
<221> misc_feature
<222> (32)..(33)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (34)..(34)
<223> k is g or t

<220>
<221> misc_feature
<222> (35)..(36)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (37)..(37)
<223> k is g or t

<220>
<221> misc_feature
<222> (47)..(48)
<223> n is a, c, g, or t

<220>
<221> misc_feature

<222> (49)..(49)

<223> k is g or t

<220>

<221> misc_feature

<222> (53)..(54)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (55)..(55)

<223> k is g or t

<220>

<221> misc_feature

<222> (59)..(60)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (61)..(61)

<223> k is g or t

<400> 17

caagagctac aatgtcacon	nkgtcnnktt tnnknnkaag aagtgtnnkt acnnkacnn	60
kacttttgtt ccaggttcc		79

<210> 18

<211> 68

<212> DNA

<213> Artificial

<220>

<223> NNK oligomer for positions 96, 100, 103, 106

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (21)..(21)

<223> k is g or t

<220>

<221> misc_feature

<222> (31)..(32)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (33)..(33)

<223> k is g or t

<220>

<221> misc_feature

<222> (40)..(41)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (42)..(42)

<223> k is g or t

<220>

<221> misc_feature

<222> (49)..(50)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (51)..(51)

<223> k is g or t

<400> 18

ggcgagttca cgctggcnn	kattaagagt nnkcctggan nkacgagtnn	kctcgtccga	60
gtggtgag			68

<210> 19

<211> 68

<212> DNA

<213> Artificial

<220>

<223> NNK oligomer for positions 125, 127, 132, 134

<220>

<221> misc_feature

<222> (19)..(20)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (21)..(21)

<223> k is g or t

<220>
<221> misc_feature
<222> (25)..(26)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (27)..(27)
<223> k is g or t

<220>
<221> misc_feature
<222> (40)..(41)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (42)..(42)
<223> k is g or t

<220>
<221> misc_feature
<222> (46)..(47)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (48)..(48)
<223> k is g or t

<400> 19
gctatggtgt tcttcaagnn kgttnnkcaa aacagggagn nkttcnkakt caccctctac 60
gggagaac 68

<210> 20
<211> 45
<212> DNA
<213> Artificial

<220>
<223> PCR-Primer with fixed nucleotide sequences corresponding to the non-coding strand

<400> 20
ggtgacattg tagctcttgt ctctttcag ctcatagatg gtggc 45

<210> 21
<211> 42

<212> DNA

<213> Artificial

<220>

<223> PCR-Primer with fixed nucleotide sequences corresponding to the non-coding strand

<400> 21

gcccagcgtaaactcgccctg gctggaaacc tggaacaaaaa gt 42

<210> 22

<211> 54

<212> DNA

<213> Artificial

<220>

<223> PCR-Primer with fixed nucleotide sequences corresponding to the non-coding strand

<400> 22

cttgaagaac accatagcat gctggttgta gttggtgctc accactcgga cgag 54

<210> 23

<211> 64

<212> DNA

<213> Artificial

<220>

<223> PCR-Primer with fixed nucleotide sequences corresponding to the non-coding strand

<400> 23

ggagaagcgg atgaagttct ccttttagttc cgaagtcaagg tcattggttc tcccgtagag 60
ggtg 64

<210> 24

<211> 40

<212> DNA

<213> Artificial

<220>

<223> 5' flanking PCR-Oligo biotinylated

<400> 24

ccaggacaac caattccatg ggaagtggta tgggttagt 40

<210> 25

<211> 40

<212> DNA

<213> Artificial

<220>

<223> 3' flanking PCR-Oligo biotinylated

<400> 25

ttcaggagg cccagagatt tggagaagcg gatgaagtcc 40

<210> 26

<211> 40

<212> DNA

<213> Artificial

<220>

<223> 3' flanking PCR-Oligo biotinylated for Sloning Fragment

<400> 26

TTCAGGGAGG CCCAGAGATT TGGAAAAGCG GATAAAATT 40

<210> 27

<211> 178

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<223> wt Lcn2 (hNGAL)

<400> 27

Gln Asp Ser Thr Ser Asp Leu Ile Pro Ala Pro Pro Leu Ser Lys Val
1 5 10 15

Pro Leu Gln Gln Asn Phe Gln Asp Asn Gln Phe His Gly Lys Trp Tyr
20 25 30

Val Val Gly Leu Ala Gly Asn Ala Ile Leu Arg Glu Asp Lys Asp Pro
35 40 45

Gln Lys Met Tyr Ala Thr Ile Tyr Glu Leu Lys Glu Asp Lys Ser Tyr
50 55 60

Asn Val Thr Ser Val Leu Phe Arg Lys Lys Cys Asp Tyr Trp Ile
65 70 75 80

Arg Thr Phe Val Pro Gly Ser Gln Pro Gly Glu Phe Thr Ile Gly Asn
85 90 95

Ile Lys Ser Tyr Pro Gly Leu Thr Ser Tyr Leu Val Arg Val Val Ser
100 105 110

Thr Asn Tyr Asn Gln His Ala Met Val Phe Phe Lys Lys Val Ser Gln
115 120 125

Asn Arg Glu Tyr Phe Lys Ile Thr Leu Tyr Gly Arg Thr Lys Glu Leu
130 135 140

Thr Ser Glu Leu Lys Glu Asn Phe Ile Arg Phe Ser Lys Ser Leu Gly
145 150 155 160

Leu Pro Glu Asn His Ile Val Phe Pro Val Pro Ile Asp Gln Cys Ile
165 170 175

Asp Gly

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO2009012394A [0005]
- WO2007137170A [0005]
- WO2007047291A [0005]
- WO2009156456A [0005]
- US7250297B [0029]
- WO200656464A [0063] [0072] [0093] [0093] [0155]
- US6696245B [0063]
- US20030069395A [0063] [0072]
- US5728553A [0064] [0072]
- EP0330451A [0064] [0072]
- EP0361991A [0064] [0072]
- WO2007038619A [0068]
- WO9964016A [0069]
- US6177074B [0069]
- US6403564B [0069]
- US6500930B [0069]
- US6620413B [0069]
- WO2005019256A [0089] [0093] [0093] [0149]
- WO9916873A [0093] [0093]
- WO0075308A [0093] [0093] [0093]
- WO03029471A [0093] [0093]
- WO03029462A [0093] [0093]
- WO03029463A [0093] [0093]
- WO2005019254A [0093] [0093]
- WO2005019255A [0093] [0093]
- US61413706B [0176]
- EP10191228A [0176]

Non-patent literature cited in the description

- **SASISEKHARAN** et al. *Nature Reviews Cancer*, 2002, vol. 2, [0002]
- **JAKUBOVICJOTHY** *Ex. Mol. Path.*, 2007, vol. 82, 184-189 [0003]
- **NAKATSURANISHIMURA** *Biodrugs*, 2005, vol. 19, 271-77 [0003] [0004]
- **PARIKHHYMAN** *Am J Med.*, 2007, vol. 120, 3194-202 [0004]
- **BULLOCK** et al. *BioTechniques*, 1987, vol. 5, 376-378 [0019]
- A Laboratory Manual **SAMBROOK** et al. *Molecular Cloning* Cold Spring Harbor Press 19890000 [0019]
- **SKERRA, A.** *Biochim. Biophys. Acta*, 2000, vol. 1482, 337-350 [0029]
- **III** et al. *Design and construction of a hybrid immunoglobulin domain with properties of both heavy and light chain variable regions* *Protein Eng.*, 1997, vol. 10, 949-57 [0034]
- **MARTIN** et al. *The affinity-selection of a minibody polypeptide inhibitor of human interleukin-6* *EMBO J.*, 1994, vol. 13, 5303-9 [0034]
- **HOLLIGER** et al. *Diabodies': small bivalent and bispecific antibody fragments* *PNAS USA*, 1993, vol. 90, 6444-6448 [0034]
- **TRAUNECKER** et al. *Bispecific single chain molecules (Janusins) target cytotoxic lymphocytes on HIV infected cells* *EMBO J.*, 1991, vol. 10, 3655-3659 [0034]
- **TRAUNECKER** et al. *Janusin: new molecular design for bispecific reagents* *Int J Cancer*, 1992, vol. 7, 51-52 [0034]
- **SILVERMAN, LU QBAKKER ATO WDUGUAY AALBA BMSMITH RRIVAS ALI PLE HWHITEHORN ENat Biotech**, 2005, vol. 23, 121556-61 [0034]
- *Nat Biotech.* 20051120 [0034]
- **SILVERMAN JLU QBAKKER ATO WDUGUAY AALBA BMSMITH RRIVAS ALI PLE HNat Biotech**, vol. 23, 121556-61 [0034]
- *Nat. Biotechnology*, 2005, [0034]
- **SAMBROOK, J. et al.** *Molecular Cloning: A Laboratory Manual* Cold Spring Harbor Laboratory Press 20010000 [0035]
- **ALTSHUL, S. F. et al.** *Nucl. Acids Res.*, 1997, vol. 25, 3389-3402 [0039]
- **ALTUVIA** et al. *J. Mol. Biol.*, 1995, vol. 249, 244-250 [0058]
- **MATEO** et al. *Hybridoma*, 2000, vol. 19, 6463-471 [0058]
- **GAILLARD PJ** et al. *International Congress Series*, 2005, vol. 1277, 185-198 [0062]
- **GAILLARD PJ** et al. *Expert Opin Drug Deliv.*, 2005, vol. 2, 2299-309 [0062]
- **VAJODUCKWORTH** *Pharmacol. Rev.*, 2000, vol. 52, 1-9 [0063]
- **OSBORN** et al. *J. Pharmacol. Exp. Ther.*, 2002, vol. 303, 540-548 [0063]
- **KÖNIG, T. SKERRA, A.** *J. Immunol. Methods*, 1998, vol. 218, 73-83 [0063] [0072]
- **DENNIS** et al. *J. Biol. Chem.*, 2002, vol. 277, 35035-35043 [0063]
- **FUERTGES** et al. *The Clinical Efficacy of Poly(Ethylene Glycol)-Modified Proteins* *J. Control. Release*, 1990, vol. 11, 139-148 [0069]
- **OSBORN, B.L. et al.** *J. Pharmacol. Exp. Ther.*, 2002, vol. 303, 540-548 [0072]
- **SCHLEHUBER, S. SKERRA, A.** *Duocalins, engineered ligand-binding proteins with dual*

specificity derived from the lipocalin foldBiol. Chem., 2001, vol. 382, 1335-1342 [0073]

- **SCHMIDT, T.G.M. et al.**J. Mol. Biol., 1996, vol. 255, 753-766 [0075]
- **PINI, A. et al.**Comb. Chem. High Throughput Screen., 2002, vol. 5, 503-510 [0093]
- **AMSTUTZ, P. et al.**Curr. Opin. Biotechnol., 2001, vol. 12, 400-405 [0093]
- **WILSON, D.S. et al.**Proc. Natl. Acad. Sci. USA, 2001, vol. 98, 3750-3755 [0093]
- **ZACCOLO et al.**J. Mol. Biol., 1996, vol. 255, 589-603 [0099]
- **MURAKAMI et al.**Nat. Biotechnol., 2002, vol. 20, 76-81 [0099]
- **BITTKER et al.**Nat. Biotechnol., 2002, vol. 20, 1024-1029 [0099]
- **SCHLEHUBER et al.**J. Mol. Biol., 2000, vol. 297, 1105-1120 [0099] [0142]
- **VENTURI et al.**J. Mol. Biol., 2002, vol. 315, 1-8 [0103]
- **LLOYD-WILLIAMS et al.**Chemical Approaches to the Synthesis of Peptides and ProteinsCRC Press19970000 [0104]
- **COLOWICK**Solid-Phase Peptide SynthesisAcademic Press19970000 [0104]
- **BRUCKDORFER et al.**Curr. Pharm. Biotechnol., 2004, vol. 5, 29-43 [0104]
- **MEIDANMICHNIAK**Am. J. Ther., 2004, vol. 11, 4312-316 [0109]
- **BOS et al.**Business Briefing: Pharmatech, 2003, 1-6 [0110]
- **GENNARO**Remington: The Science and Practice of PharmacyLippincott Williams & Wilkins20000000 [0111]
- **Atlas Genet Cytogenet Oncol Haematol.****SINNETT** DGPC3 (glycan 3)20020500 [0130] [0131]
- **BREUSTEDT et al.**Biochim. Biophys. Acta, 2006, vol. 1764, 161-173 [0142]
- **GOETZ et al.**Biochemistry, 2000, vol. 39, 1935-1941 [0142]
- **BESTE et al.**Proc. Natl. Acad. Sci. USA, 1999, vol. 96, 1898-1903 [0142]
- **SKERRAJ.** Biotechnol., 2001, vol. 74, 257-275 [0142]
- **VOGTSKERRAJ.** Mol. Recognit., 2001, vol. 14, 179-86 [0143]
- **BULLOCK et al.**Biotechniques, 1987, vol. 5, 376-378 [0143]
- **SKERRAGene**, 1994, vol. 151, 131-135 [0144]
- **SCHLEHUBER, S. et al.**J. Mol. Biol., 2000, vol. 297, 1105-1120 [0153] [0160]
- **YANISCH-PERRON et al.**Gene, 1985, vol. 33, 103-119 [0159]
- **KIM et al.**J. Am. Chem. Soc., 2009, vol. 131, 3565-3576 [0159]
- **BACHMANN**Microbiol. Rev., 1990, vol. 54, 130-197 [0159]
- **SCHIWECK, W. SKERRA, A.**Proteins, 1995, vol. 23, 561-565 [0160]
- **SKERRA, A. SCHMIDT, T. G. M.**Use of the Strep-tag and streptavidin for detection and purification of recombinant proteinsMethods Enzymol., 2000, vol. 326A, 271-304 [0161]
- **FLINGGREGERSON**Anal. Biochem., 1986, vol. 155, 83-88 [0161]

MUTEINER AF HUMAN LIPOCALIN 2 MED AFFINITET TIL GLYPLICAN-3
(GPC3)

Patentkrav

1. Lipocalinmutein, der omfatter 9 til 20 muterede aminosyrerester i sekvenspositionerne udvalgt fra gruppen, der består af sekvenspositionerne 36, 40, 41, 49, 52, 68, 70, 72, 73, 77, 79, 81, 96, 100, 103, 106, 125, 127, 132 og 134 i den lineære polypeptidsekvens for NGAL (SEQ ID NO: 27), hvor lipocalinmuteinet er i stand til at binde glypcan-3 (GPC3) med en affinitet med en K_D på ca. 10 nM eller lavere bestemt ved hjælp af overfladeplasmonresonans, hvor lipocalinmuteinet har mindst 80 % sekvensidentitet med den lineære polypeptidsekvens for NGAL (SEQ ID NO: 27), og hvor de muterede aminosyrerester er substitutioner udvalgt fra gruppen, der består af: Leu 36 → Ile, Val, Arg, Met eller Ser; Ala 40 → Trp, Val, His, Gly eller Tyr; Ile 41 → Met, Ala, Arg, Gln eller Ser; Gln 49 → Pro, Leu, Val, Arg eller Trp; Tyr 52 → Arg, Thr, His, Ser eller Asn; Ser 68 → Arg, Gly, Asn, Ala eller Lys; Leu 70 → Arg, Ser, Gln, Thr eller Phe; Arg 72 → Asp, Trp, Ala eller Ser; Lys 73 → Glu, Arg, Met, Leu eller His; Asp 77 → Gly, His, Met, Gln, Ser eller Tyr; Trp 79 → Gly, Lys, Ser eller Ile; Arg 81 → Ala, Gly, Thr, Tyr eller Trp; Asn 96 → Val, Asp, Gln, Lys, Gly eller Phe; Tyr 100 → Arg, Gly, Glu, Ile eller Asn; Leu 103 → Ile, Gln, Asn, Met, Asp eller Trp; Tyr 106 → Asp, Asn, Met, Phe eller Leu; Lys 125 → Phe, Glu, Arg, Tyr, Gly eller Trp; Ser 127 → Lys, Arg, Tyr, His, Ile eller Asp; Tyr 132 → Trp, Ile, Phe, Gln eller Val; og Lys 134 → Gly, Ala, Phe, Asp, Asn, Ile eller Ser.
2. Mutein ifølge krav 1, hvor aminosyresekvensen for muteinet omfatter ét af følgende sæt af aminosyresubstitutioner:
 - (a) Leu 36 → Ile; Ala 40 → Trp; Gln 49 → Pro; Tyr 52 → Arg; Ser 68 → Arg; Leu 70 → Phe; Arg 72 → Asp; Lys 73 → Glu; Asp 77 → Gly; Trp 79 → Gly; Arg 81 → Ala; Asn 96 → Val; Tyr 100 → Arg; Leu 103 → Ile; Tyr 106 → Asp; Lys 125 → Phe; Ser 127 → Lys; Lys 134 → Gly;
 - (b) Leu 36 → Val; Ile 41 → Met; Gln 49 → Leu; Tyr 52 → Arg; Ser 68 → Gly; Leu 70 → Ser; Arg 72 → Trp; Lys 73 → Arg; Asp 77 → His; Trp 79 → Lys; Arg 81 → Ile; Asn 96 → Val; Tyr 100 → Arg; Leu 103 → Ile; Tyr 106 → Asp; Lys 125 → Phe; Ser 127 → Lys; Lys 134 → Gly;

81 → Gly; Asn 96 → Asp; Tyr 100 → Gly; Leu 103 → Gln; Tyr 106 → Asn; Lys 125 → Glu; Ser 127 → Arg; Tyr 132 → Trp; Lys 134 → Ala;

(c) Leu 36 → Arg; Ala 40 → Val; Ile 41 → Ala; Gln 49 → Pro; Tyr 52 → Arg; Ser 68 → Asn; Leu 70 → Arg; Arg 72 → Ala; Lys 73 → Met; Asp 77 → Met;

5 Trp 79 → Ser; Arg 81 → Gly; Asn 96 → Gln; Tyr 100 → Glu; Leu 103 → Asn; Tyr 106 → Asn; Lys 125 → Glu; Ser 127 → Tyr; Tyr 132 → Ile; Lys 134 → Phe;

(d) Leu 36 → Met; Ile 41 → Arg; Gln 49 → Val; Tyr 52 → Thr; Ser 68 → Ala; Leu 70 → Gln; Lys 73 → Leu; Asp 77 → Gln; Trp 79 → Gly; Arg 81 → Thr; Asn 96 → Asp; Tyr 100 → Ile; Tyr 106 → Met; Lys 125 → Arg; Ser 127 → Arg;

10 Tyr 132 → Phe; Lys 134 → Asp;

(e) Leu 36 → Ser; Ala 40 → His; Ile 41 → Arg; Gln 49 → Arg; Tyr 52 → His; Ser 68 → Asn; Leu 70 → Thr; Lys 73 → Glu; Asp 77 → His; Trp 79 → Ser; Arg 81 → Gly; Asn 96 → Lys; Tyr 100 → Asn; Leu 103 → Met; Tyr 106 → Phe; Ser 127 → His; Tyr 132 → Gln; Lys 134 → Asn;

15 (f) Leu 36 → Ile; Ala 40 → Gly; Ile 41 → Gln; Gln 49 → Trp; Tyr 52 → Ser; Leu 70 → Arg; Lys 73 → Leu; Asp 77 → Ser; Arg 81 → Tyr; Asn 96 → Gly; Tyr 100 → Asn; Leu 103 → Asp; Tyr 106 → Asn; Lys 125 → Tyr; Ser 127 → Ile; Tyr 132 → Trp; Lys 134 → Ile;

(g) Leu 36 → Met; Ile 41 → Ser; Gln 49 → Arg; Tyr 52 → Asn; Ser 68 → Lys;

20 Leu 70 → Arg; Arg 72 → Trp; Lys 73 → His; Asp 77 → Tyr; Trp 79 → Ser; Arg 81 → Thr; Asn 96 → Asp; Leu 103 → Trp; Lys 125 → Gly; Ser 127 → Arg; Tyr 132 → Trp; Lys 134 → Ser; og

(h) Leu 36 → Ile; Ala 40 → Tyr; Gln 49 → Pro; Tyr 52 → Arg; Ser 68 → Arg; Leu 70 → Phe; Arg 72 → Ser; Lys 73 → Arg; Trp 79 → Ile; Arg 81 → Trp; Asn 96 → Phe; Tyr 100 → Asn; Tyr 106 → Leu; Lys 125 → Trp; Ser 127 → Asp; Tyr 132 → Val; Lys 134 → Gly.

3. Mutein ifølge et hvilket som helst af kravene 1 eller 2, der omfatter en aminosyresekvens udvalgt fra gruppen, der består af SEQ ID NO: 1-8.

4. Mutein ifølge et hvilket som helst af kravene 1 til 3, hvor muteinet har mindst

25 70 % sekvensidentitet med et mutein udvalgt fra gruppen, der består af sekvensen ifølge SEQ ID NO: 1-8.

5. Mutein ifølge et hvilket som helst af kravene 1 til 4, hvor muteinet er konjugeret til en forbindelse udvalgt fra gruppen, der består af et organisk molekyle, et enzymmærke, et radioaktivt mærke, et farvet mærke, et fluorescerende mærke, et kromogent mærke, et luminescerende mærke, en hapten, digoxigenin, biotin, et cytostatisk middel, et toksin, et metalkompleks, et metal og kolloidt guld.
6. Mutein ifølge et hvilket som helst af kravene 1 til 5, hvor muteinet er konjugeret til en forbindelse, der forlænger halveringstiden i serum for muteinet.
7. Fusionsprotein, der omfatter muteinet ifølge et hvilket som helst af kravene 1 til 6, hvor muteinet er fusioneret i dets N-terminal og/eller dets C-terminal til et protein, et proteindomæne eller et peptid.
8. Nukleinsyremolekyle, der omfatter en nukleotidsekvens, der koder for et mutein ifølge et hvilket som helst af kravene 1 til 6 eller fusionsproteinet ifølge krav 7.
- 15 9. Værtscelle, der indeholder et nukleinsyremolekyle ifølge krav 8.
10. Fremgangsmåde til fremstilling af et mutein ifølge et hvilket som helst af kravene 1 til 6 eller fusionsproteinet ifølge krav 7, hvor muteinet eller et fusionsprotein af muteinet og et andet polypeptid dannes startende fra nukleinsyren, der koder for muteinet, ved hjælp af gensplejsningsmetoder.
- 20 11. Farmaceutisk sammensætning, der omfatter et mutein ifølge et hvilket som helst af kravene 1 til 6 eller fusionsproteinet ifølge krav 7 og et farmaceutisk acceptabelt excipiens.
12. Anvendelse af et mutein ifølge et hvilket som helst af kravene 1 til 6 eller fusionsproteinet ifølge krav 7 til binding/påvisning af GPC3, der omfatter:
 - 25 (a) etablering af kontakt mellem muteinet og en testprøve, der formodes at indeholde GPC3, til derved muliggørelse af dannelsen af et kompleks mellem muteinet og GPC3 og
 - (b) påvisning af komplekset mellem muteinet og GPC3 ved hjælp af et egnet signal.
- 30 13. Diagnostisk eller analytisk kit, der omfatter et mutein ifølge et hvilket som helst af kravene 1 til 6 eller fusionsproteinet ifølge krav 7.

DRAWINGS

Figure 1



Figure 2

1 CCAATTCCATGGGAAATGGTATGTCGTGGCnnnGcccGGAAATnnnnnnCTGGTGAGGATAAGGATCCGnnnAAAATGnnnGGGACCAT 90
 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 CGTTTAAGGGTACCCCTAACCCATACACCCGACCCCCCTTACCGTAAGACGGCAGCTCCATTACGCTCTTACATAACGCTGCTGA
 GlnPheHisGlyLysTrpTyrValValGlyXaaAlaGlyAsnXaaXaaLeuArgGluAspLysAspProXaaLysMetXaaAlaThrIle
 8 12 13 21 24

91 TTACGAGTGAAGAGATAATCATATAACGTCACCCnnnGTGnnnTTnnnnnnAAGAAATGChnnnTACnnnATnnnnACCTTGTGCCC 180
 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 ATGCTCAACTTCTCTCTATTAGTATATTGCACTGGGCAACAAAGCGTTCATGCTGATGACCTAAGCATGGAAACACCG
 TyrGluLeuLysGluAspLysSerTyrAsnValThrXaaValXaaPheXaaXaaLysLysCysXaaTyrXaaIleXaaThrPheValPro
 40 42 44 45 49 51 53

181 GGGGAGCCAGCCGGGGCAGTTTACTT^{TTAGG}CnnnATTAAAAACTnnnCCGGGChnnnACATCnnnTTGCTCCGGCCTGCTGAGCACCAACTA 270
 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 CCCCCCTGGTCCGGCCGGCTCAATGAAATCCGTGTAATTTCATGGCCGGACGTTGAGTATGAACCAGGCCAGCAGCTGTTGATGAT
 GlySerGlnProGlyGluPheThrLeuGlyXaaIleLysSerXaaValXaaPheXaaXaaLysLysCysXaaTyrXaaIleXaaThrAsnTyr
 68 72 75 78

271 CAACCGGATGGCATGGTGTCTTCAAGGnnnGIGnnnCAGAACCCGGAGnnnTTnnnnATCACACTGTAGGGGCACGAAAGAACCTGAC 360
 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 GTTGGCTCGTACGGTACGGTACCAAGAGTTCTTCACAGGCTTGGGCTCATGAAATTCATGCTGACATGCCCGCTGCTTCTTCACTG
 AsnGlnHisAlaMetValPhePheLysXaaValXaaGlnAsnArgGluXaaPheXaaIleThrLeuTyrGlyArgThrLysGluLeuThr
 97 99 104 106

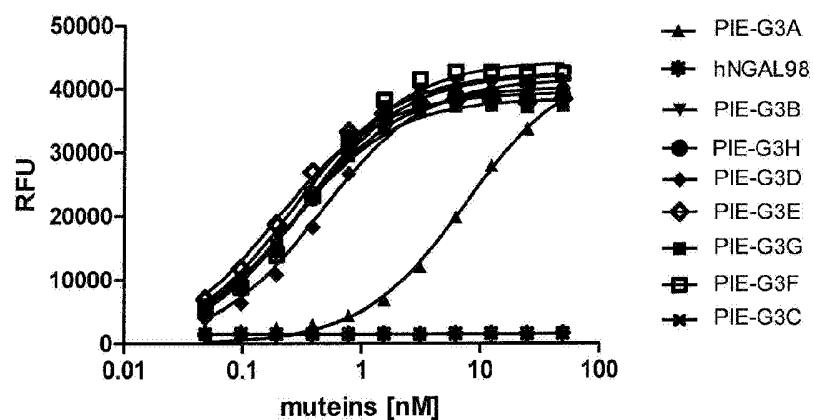

361 AAGGGAGGTGAAGGAAATTTTATCCGCTTTCCAAATCTCTGG 404
 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 TTTGGCTCGACTTCCTTAAATAGCGAAAAGCTTAAAGAGACC
 SerGluLeuLysGluAsnPheIleArgPheSerLysSerLeu

Figure 3

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30			
SEQ No 27	hNGAL98	Q	D	S	T	S	D	L	I	P	A	P	P	L	S	K	V	P	L	Q	Q	D	N	Q	F	H	G	K					
SEQ No 1	PIE-G3A	Q	D	S	T	S	D	L	I	P	A	P	P	L	S	K	V	P	L	Q	Q	N	F	Q	D	N	Q	F	H	G	K		
SEQ No 2	PIE-G3B	Q	D	S	T	S	D	L	I	P	A	P	P	L	S	K	V	P	L	Q	Q	N	F	Q	D	N	Q	F	H	G	K		
SEQ No 3	PIE-G3C	Q	D	S	T	S	D	L	I	P	A	P	P	L	S	K	V	P	L	Q	Q	N	F	Q	D	N	Q	F	H	G	K		
SEQ No 4	PIE-G3D	Q	D	S	T	S	D	L	I	P	A	P	P	L	S	K	V	P	L	Q	Q	N	F	Q	D	N	Q	F	H	G	K		
SEQ No 5	PIE-G3E	Q	D	S	T	S	D	L	I	P	A	P	P	L	S	K	V	P	L	Q	Q	N	F	Q	D	N	Q	F	H	G	K		
SEQ No 6	PIE-G3F	Q	D	S	T	S	D	L	I	P	A	P	P	L	S	K	V	P	L	Q	Q	N	F	Q	D	N	Q	F	H	G	K		
SEQ No 7	PIE-G3G	Q	D	S	T	S	D	L	I	P	A	P	P	L	S	K	V	P	L	Q	Q	N	F	Q	D	N	Q	F	H	G	K		
SEQ No 8	PIE-G3H	Q	D	S	T	S	D	L	I	P	A	P	P	L	S	K	V	P	L	Q	Q	N	F	Q	D	N	Q	F	H	G	K		
SEQ No 27	hNGAL98	W	Y	V	V	G	L	A	G	N	A	I	L	R	E	D	K	D	P	Q	K	M	Y	A	T	I	Y	E	L	K	E		
SEQ No 1	PIE-G3A	W	Y	V	V	G	I	A	G	N	W	I	L	R	E	D	K	D	P	R	K	M	R	A	T	I	Y	E	L	K	E		
SEQ No 2	PIE-G3B	W	Y	V	V	G	V	A	G	N	A	M	L	R	E	D	K	D	P	L	K	M	R	K	A	T	I	Y	E	L	K	E	
SEQ No 3	PIE-G3C	W	Y	V	V	G	F	A	G	N	V	A	L	R	E	D	K	D	P	P	K	M	R	K	A	T	I	Y	E	L	K	E	
SEQ No 4	PIE-G3D	W	Y	V	V	G	M	A	G	N	A	R	L	R	E	D	K	D	P	V	K	M	T	A	T	I	Y	E	L	K	E		
SEQ No 5	PIE-G3E	W	Y	V	V	G	S	A	G	N	H	R	L	R	E	D	K	D	P	R	K	M	H	S	A	T	I	Y	E	L	K	E	
SEQ No 6	PIE-G3F	W	Y	V	V	G	I	A	G	N	G	Q	L	R	E	D	K	D	P	W	K	M	N	R	A	T	I	Y	E	L	K	E	
SEQ No 7	PIE-G3G	W	Y	V	V	G	M	A	G	N	A	S	L	R	E	D	K	D	P	R	K	M	N	R	A	T	I	Y	E	L	K	E	
SEQ No 8	PIE-G3H	W	Y	V	V	G	I	A	G	N	A	Y	I	L	R	E	D	K	D	P	R	K	M	N	R	A	T	I	Y	E	L	K	E
SEQ No 27	hNGAL98	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90		
SEQ No 1	PIE-G3A	D	K	S	Y	N	V	T	S	V	L	F	R	K	K	C	D	Y	W	I	R	T	F	V	P	G	S	Q	P	G			
SEQ No 2	PIE-G3B	D	K	S	Y	N	V	T	R	V	R	F	D	E	K	K	C	G	Y	G	A	T	F	V	P	G	S	Q	P	G			
SEQ No 3	PIE-G3C	D	K	S	Y	N	V	T	G	V	S	F	W	R	K	K	C	H	Y	S	I	G	T	F	V	P	G	S	Q	P	G		
SEQ No 4	PIE-G3D	D	K	S	Y	N	V	T	N	V	R	F	A	M	K	K	C	W	Y	G	I	T	F	V	P	G	S	Q	P	G			
SEQ No 5	PIE-G3E	D	K	S	Y	N	V	T	A	V	Q	F	R	L	K	K	C	Q	Y	G	J	G	T	F	V	P	G	S	Q	P	G		
SEQ No 6	PIE-G3F	D	K	S	Y	N	V	T	N	V	R	F	E	K	K	K	C	H	Y	W	Y	T	F	V	P	G	S	Q	P	G			
SEQ No 7	PIE-G3G	D	K	S	Y	N	V	T	R	V	R	F	W	H	K	K	C	Y	Y	S	I	W	T	F	V	P	G	S	Q	P	G		
SEQ No 8	PIE-G3H	D	K	S	Y	N	V	T	R	V	R	F	W	H	K	K	C	Y	Y	S	I	W	T	F	V	P	G	S	Q	P	G		

Figure 3 (cont'd)

Figure 4

Figure 5

Mutein	IC50 [nM]
PIE-G3A	0,6
PIE-G3B	0,2
PIE-G3C	1,0
PIE-G3D	0,7
PIE-G3E	0,1
PIE-G3F	0,07
PIE-G3G	0,1
PIE-G3H	0,23

Figure 6

Mutein	evaluated conc [nM]	k_{on} [$M^{-1}s^{-1}$]	k_{off} [s^{-1}]	KD [nM]
PIE-G3A	40/120	1,60E+05	6,03E-04	3,78
PIE-G3B	40/120	4,38E+05	2,42E-04	0,55
PIE-G3C	40/120	1,97E+06	2,38E-03	1,21
PIE-G3D	40/120	7,81E+05	1,09E-03	1,40
PIE-G3E	40/120	5,11E+06	1,78E-03	0,35
PIE-G3F	40/120	4,09E+05	1,28E-03	3,13
PIE-G3G	40/120	1,42E+06	7,23E-04	0,51
PIE-G3H	120	1,95E+05	2,09E-04	1,07

Figure 7

Mutein	human GPC3-SK-HEP1 EC50 [nM]	cyno GPC3-SK-HEP1 EC50 [nM]	mouse GPC3-SK-HEP1 EC50 [nM]
PIE-G3A	>100	>100	n.d.
PIE-G3B	2,5	1,1	2,9
PIE-G3H	49	98	580
PIE-G3E	0,4	0,12	2,7
PIE-G3C	0,5	0,2	3,5
PIE-G3D	1	0,7	10,5
PIE-G3F	4,7	3,2	18,7
PIE-G3G	0,7	0,2	4,3

Figure 8

SEQ ID NO: 27

Gln Asp Ser Thr Ser Asp Leu Ile Pro Ala Pro Pro Leu Ser Lys Val
 1 5 10 15

Pro Leu Gln Gln Asn Phe Gln Asp Asn Gln Phe His Gly Lys Trp Tyr
 20 25 30

Val Val Gly Leu Ala Gly Asn Ala Ile Leu Arg Glu Asp Lys Asp Pro
 35 40 45

Gln Lys Met Tyr Ala Thr Ile Tyr Glu Leu Lys Glu Asp Lys Ser Tyr
 50 55 60

Asn Val Thr Ser Val Leu Phe Arg Lys Lys Cys Asp Tyr Trp Ile
 65 70 75 80

Arg Thr Phe Val Pro Gly Ser Gln Pro Gly Glu Phe Thr Leu Gly Asn
 85 90 95

Ile Lys Ser Tyr Pro Gly Leu Thr Ser Tyr Leu Val Arg Val Val Ser
 100 105 110

Thr Asn Tyr Asn Gln His Ala Met Val Phe Phe Lys Val Ser Gln
 115 120 125

Asn Arg Glu Tyr Phe Lys Ile Thr Leu Tyr Gly Arg Thr Lys Glu Leu
 130 135 140

Thr Ser Glu Leu Lys Glu Asn Phe Ile Arg Phe Ser Lys Ser Leu Gly
 145 150 155 160

Leu Pro Glu Asn His Ile Val Phe Pro Val Pro Ile Asp Gln Cys Ile
 165 170 175

Asp Gly
 178