Innovation, Sciences et
Développement économique Canada

Office de la Propriété Intellectuelle du Canada

i+l

Innovation, Science and
Economic Development Canada

Canadian Intellectual Property Office

CA 3148299 C 2024/06/04

neEn 3 148 299

12 BREVET CANADIEN
CANADIAN PATENT
13 C

(86) Date de dépo6t PCT/PCT Filing Date: 2020/07/27

(87) Date publication PCT/PCT Publication Date: 2021/02/04
(45) Date de délivrance/lssue Date: 2024/06/04

(85) Entrée phase nationale/National Entry: 2022/01/21

(86) N° demande PCT/PCT Application No.: CN 2020/104785
(87) N° publication PCT/PCT Publication No.: 2021/018082

(30) Priorités/Priorities: 2019/07/26 (CN PCT/CN2019/097926),

2019/08/31 (CN PCT/CN2019/103892)

(51) CLInt./Int.Cl. HO4N 19/52(2014.01)

(72) Inventeurs/Inventors:
DENG, ZHIPIN, CN;
ZHANG, LI, US;
ZHANG, KAI, US;
LIU, HONGBIN, CN

(73) Propriétaires/Owners:
BEIJING BYTEDANCE NETWORK TECHNOLOGY CO.
LTD., CN;
BYTEDANCE INC., US

(74) Agent: MARKS & CLERK

(54) Titre : DETERMINATION D'UN MODE DE PARTITION D'IMAGE FONDE SUR LA TAILLE DE BLOC
(54) Title: DETERMINATION OF PICTURE PARTITION MODE BASED ON BLOCK SIZE

400

N

Using a dimension of a virtual pipeline data unit
used for a conversion between a video comprising
one or more video regions compriging one or more
video blocks and a bitstream representation of the

video to perform a determination of whether &
ternary-tree or a binary tree partitioning of a video
block of the one or more video blocks is enabled,
the dimension being equal to VSize in luma
samples, dimensions of the video block being
CtbSizeY in luma samples,
and VSize = min(M, CtbSizeY)

— 410

Performing, based on the determination, the
conversion

— 420

(57) Abrégé/Abstract:

Methods, systems, and devices for coding or decoding video wherein the picture partition mode is based on block size are
described. An example method for video processing includes using a dimension of a virtual pipeline data unit (VPDU) used for a
conversion between a video comprising one or more video regions comprising one or more video blocks and a bitstream
representation of the video to perform a determination of whether a ternary-tree (TT) or a binary tree (BT) partitioning of a video
block of the one or more video blocks is enabled, and performing, based on the determination, the conversion, wherein the
dimension is equal to VSize in luma samples, wherein dimensions of the video block are CtbSizeY in luma samples, wherein VSize

= min (M, CtbSizeY), and wherein M is a positive integer.

C ana dg http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - http:/cipo.ge.ca

OPIC - CIPO 191

OPIC

wo 2021/018082 A1 |0 0000 KRN0 0 0

CA 03148299 2022-01-21

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
04 February 2021 (04.02.2021)

(10) International Publication Number

WO 2021/018082 Al

WIPO I PCT

(51) International Patent Classification:
HO4N 19/52 (2014.01)

(21) International Application Number:
PCT/CN2020/104785

(22) International Filing Date:
27 July 2020 (27.07.2020)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
PCT/CN2019/097926
26 July 2019 (26.07.2019) CN
PCT/CN2019/103892

31 August 2019 (31.08.2019) CN

(71) Applicants: BEIJING BYTEDANCE NETWORK
TECHNOLOGY CO., LTD. [CN/CN]; Room B-0035, 2/
F, No. 3 Building, No. 30, Shixing Road, Shijingshan Dis-

(72)

(74)

trict, Beijing 100041 (CN). BYTEDANCE INC. [US/US];
12655 West Jefferson Boulevard, Sixth Floor, Suite No.
137, Los Angeles, California 90066 (US).

Inventors: DENG, Zhipin, Jinritoutiao Post Office, Chi-
na Satellite Communications Tower, No. 63, Zhichun Road,
Haidian District, Beijing 100080 (CN). ZHANG, Li; 12655
West Jefferson Boulevard, Sixth Floor, Suite No. 137, Los
Angeles, California 90066 (US). ZHANG, Kai, 12655
West Jefferson Boulevard, Sixth Floor, Suite No. 137,
Los Angeles, California 90066 (US). LIU, Hongbin; Jin-
ritoutiao Post Office, China Satellite Communications Tow-
et, No. 63, Zhichun Road, Haidian District, Beijing 100080
(CN).

Agent: LIU, SHEN & ASSOCIATES; 10th Floor, Build-
ing 1, 10 Caihefang Road, Haidian District, Beijing 100080
(CN).

(54) Title: DETERMINATION OF PICTURE PARTITION MODE BASED ON BLOCK SIZE

400

N\

Using a dimension of a virtual pipeline data unit
used for a conversion between a video comprising
one or more video regions comprising one or more
video blocks and a bitstream representation of the

video to perform a determination of whether a
ternary-tree or a binary tree partitioning of a video
block of the one or more video blocks is enabled,

the dimension being equal to VSize in luma
samples, dimensions of the video block being
CtbSizeY in luma samples,
and VSize = min(M, CtbSizeY)

— 410

Performing, based on the determination, the
conversion

—— 420

FIG. 4

(57) Abstract: Methods, systems, and devices for coding or decoding video wherein the picture partition mode is based on block size
are described. An example method for video processing includes using a dimension of a virtual pipeline data unit (VPDU) used for a
conversion between a video comprising one or more video regions comprising one or more video blocks and a bitstream representation
of the video to perform a determination of whether a termary-tree (TT) or a binary tree (BT) partitioning of a video block of the one
or more video blocks is enabled, and performing, based on the determination, the conversion, wherein the dimension is equal to VSize
in luma samples, wherein dimensions of the video block are CtbSizeY in luma samples, wherein VSize = min (M, CtbSizeY), and

wherein M is a positive integer.

[Continued on next page]

CA 03148299 2022-01-21

WO 20217018082 A1 |11} 00 0 00O TS0 OO 0

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP,KR,KW,KZ LA, LC,LK,LR,LS,LU,LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ,UA, UG, US,UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— of'inventorship (Rule 4.17(iv))

Published:
— with international search report (Art. 21(3))

Ch 03148290 2022~01~21

DETERMINATION OF PICTURE PARTITION MODE BASED ON BL.OCK SIZE

CROSS-REFERENCE TO RELATED APPLICATIONS
[001] This application is based on International Patent Application No. PCT/CN2020/104785,
filed on July 27, 2020, which claims the priority to and benefits of International Patent
Appilication No. PCT/CN2019/097926 filed on July 26, 2019 and International Patent Application
No. PCT/CN2019/103892 filed on August 31, 2019.

TECHNICAL FIELD
[002] This document is related to video and image coding and decoding technologies.

BACKGROUND
[003] Digital video accounts for the largest bandwidth use on the internet and other digital
communication networks. As the number of connected user devices capable of receiving and
displaying video increases, it is expected that the bandwidth demand for digital video usage will
continue o grow.

SUMMARY
[004] The disclosed techniques may be used by video or image decoder or encoder
embodiments to performing coding or decoding of video in which the picture partition mode is
determined based on block size.
[005] In an example aspect a method of video processing is disciosed. The method inciudes
using a dimension of a virtual pipeline data unit (VPDU) used for a conversion between a video
comprising one or more video regions comprising one or more video blocks and a bitstream
representation of the video to perform a determination of whether a ternary-tree (TT) or a binary
tree (BT) partitioning of a video block of the one or more video blocks is enabled, and
performing, based on the determination, the conversion, wherein the dimension is equal to
VSize in luma samples, wherein dimensions of the video block are CtbSizeY in luma samples,
wherein VSize = min(M, CtbSizeY), and wherein M is a positive integer.
[006] In another example aspect a method of video processing is disclosed. The method
includes using, for a conversion between a video comprising one or more video regions

Date Regue/Date Received 2022-01-21

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

comprising one or more video blocks and a bitstream representation of the video, a dimension
of a video block of the one or more video blocks to perform a determination of whether a
ternary-tree (TT) or a binary-tree (BT) partitioning of the video block is enabled, and performing,
based on the determination, the conversion.

[007] In yet another example aspect a method of video processing is disclosed. The method
includes using a height or a width of a video block to perform a determination of whether a
coding tool is enabled for a conversion between a video comprising one or more video regions
comprising one or more video blocks comprising the video block and a bitstream representation
of the video, and performing, based on the determination, the conversion, wherein the
determination is based on a comparison between the height or the width with a value N, where
N is a positive integer.

[008] In yet another example aspect a method of video processing is disclosed. The method
includes using comparison between a height or a width of a video block and a size of a
transform block to perform a determination of whether a coding tool is enabled for a conversion
between a video compriging one or more video regions comprising one or more video blocks
comprising the video block and a bitstream representation of the video, and performing, based
on the determination, the conversion.

[009] In yet another example aspect a method of video processing is disclosed. The method
includes using a height or a width of a video block to perform a determination of whether a
coding tool is enabled for a conversion between a video comprising one or more video regions
comprising one or more video blocks comprising the video block and a bitstream representation
of the video, and performing, based on the determination, the conversion.

[0010] In yet another example aspect a method of video processing is disclosed. The method
includes using a comparison between a dimension of a sub-partition of a video block and a
maximum transform size to perform (a) a determination of whether an intra sub-partition
prediction (ISP) mode is enabled for a conversion between a video comprising one or more
video regions comprising one or more video blocks comprising the video block, and (b) a
selection of one or more allowable partition types for the conversion, and performing, based on
the determination and the selection, the conversion, wherein, in the ISP mode, a video block of
the one or more video blocks is partitioned into multiple sub-partitions before application of an
intra-prediction and transform.

[0011] In yet another example aspect a method of video processing is disclosed. The method
includes performing a conversion between a video comprising one or more video regions

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

comprising one or more video blocks and a bitstream representation of the video, wherein the
conversion comprises a coding tool that has been disabled, and wherein syntax elements
related to the coding tool are excluded from the bitstream representation and inferred to be a
predetermined value specifying that the coding tool is disabled.

[0012] In yet another example aspect a method of video processing is disclosed. The method
includes performing a conversion between a video comprising one or more video regions
comprising one or more video blocks and a bitstream representation of the video, wherein the
conversion comprises a coding tool that has been disabled, and wherein the bitstream
representation comprises syntax elements related to the coding tool that are inferred fobe a
predetermined value based on the coding tool being disabled.

[0013] In yet another example aspect a method of video processing is disclosed. The method
includes using a dimension of a virtual pipeline data unit (VPDU) and/or a maximum transform
size used for a conversion between a video comprising one or more video regions comprising
one or more video blocks and a bitstream representation of the video to perform a determination
of whether an implicit (QT) partitioning of a video block of the one or more video blocks is
enabled, and performing, based on the determination, the conversion.

[0014] In yet another example aspect a method of video processing is disclosed. The method
includes performing a conversion between a video comprising one or more video regions
comprising one or more video blocks and a bitstream representation of the video, wherein the
conversion comprises a sub-block transform (SBT), wherein a maximum height or a maximum
width of the SBT is based on a maximum fransform size, and wherein the SBT comprises one
or more transforms being separately applied to one or more partitions of a video block of the
one or more video biocks.

[0015] In yet another example aspect a method of video processing is disclosed. The method
includes performing a conversion between a video comprising one or more video regions
comprising one or more video blocks and a bitstream representation of the video, wherein the
conversion comprises a transform skip mode and/or an intra block-based differential pulse code
modulation (BDPCM) mode, wherein a maximum block size used for the transform skip mode is
based on a maximum transform size, wherein the transform skip mode comprises skipping
transform and inverse transform processes for a corresponding coding tool, and wherein, in the
BDPCM mode, a residual of an intra prediction of the current video block is predictively coded
using a differential pulse coding modulation operation.

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

[0016] In yet another example aspect a method of video processing is disclosed. The method
includes using a comparison between a height or a width of a video block and a maximum
transform size to perform a determination of whether a combined inter intra prediction (CIIP)
mode is enabled for a conversion between a video comprising one or more video regions
comprising one or more video blocks comprising the video block and a bitstream representation
of the video, and performing, based on the determination, the conversion, wherein, in the CIIP
mode, a final prediction of the video block is based on a weighted sum of an inter prediction of
the video block and an intra prediction of the video block.

[0017] In yet another example aspect a method of video processing is disclosed. The method
includes making a determination, for a conversion between a video comprising one or more
video regions comprising one or more video blocks and a bitstream representation of the video,
regarding partitioning a video block of the one or more video blocks coded with combined inter
intra prediction (CIIP), and performing, based on the determination, the conversion, wheregin, in
the CIIP mode, a final prediction of the video block is based on a weighted sum of an inter
prediction of the video block and an intra prediction of the video block.

[0018] In yet another example aspect a method of video processing is disclosed. The method
includes performing a conversion between a video comprising a video region comprising
multiple video blocks and a bitstream representation of the video according to a rule, wherein
the rule specifies that a maximum block size of the multiple video blocks in the video region that
are coded in the bitstream representation using a transform coding determines a maximum
block size of the multiple video blocks in the video region that are coded in the bitstream
representation without using transform coding.

[0019] In yet another example aspect a method of video processing is disclosed. The method
includes performing a conversion between a video comprising a video region comprising
multiple video blocks and a bitstream representation of the video according to a rule, wherein
the rule specifies that a lura mapping with chroma scaling (LMCS) process is disabled for the
video region when lossless coding is enabled for the video region, wherein the video region is a
sequence, a picture, a subpicture, a slice, a tile group, a tile, a brick, a coding iree unit (CTU)
row, a CTU, a coding unit (CU), a prediction unit (PU), a transform unit (TU), or a subblock, and
wherein the LMCS process comprises luma samples of the video region being reshaped
between a first domain and a second domain and a chroma residual being scaled in a luma-
dependent manner,

[0020] In yet another example aspect, the above-described method may be implemented by a
video encoder apparatus that comprises a processor.

[0021] In yet another example aspect, these methods may be embodied in the form of
processor-executable instructions and stored on a computer-readable program medium.
[0021a] In accordance with an aspect of an embodiment, there is provided a method of
processing video data, comprising: determining, based on a dimension of a current video block
of a video, whether a first partitioning process that splits the current video block into two sub-
blocks or a second partitioning process that splits the current video block into three sub-blocks
in a horizontal direction or a vertical direction is allowed or not, wherein the dimension of the
current video block comprises a height or a width of the current video block in luma samples;
and performing, based on the determining, a conversion between the current video block and a
bitstream of the video, wherein the first partitioning process in the vertical direction is disabled in
a case where (i) a sum of the width of the current video block in luma samples and a horizontal
coordinate of a top-left luma sample of the current video block is greater than a width of a
picture or a width of a subpicture comprising the current video block in luma samples and (ii) the
height of the current video block in luma samples is greater than N; wherein N = 64; wherein the
second partitioning process is disabled in a case where the height or the width of the current
video block in luma samples being greater than 64; wherein the first partitioning process in the
vertical direction is disabled in a case where (i) the width of the current video block in luma
samples is less than or equal to N and (i) the height of the current video block in luma samples
is greater than N; wherein the first partitioning process in the horizontal direction is disabled in a
case where (i) the width of the current video block in luma samples is greater than N and (ii) the
height of the current video block in luma samples is less than or equal to N; wherein the first
partitioning process in the horizontal direction is disabled in a case where (i) a sum of the height
of the current video block in luma samples and a vertical coordinate of the top-left luma sample
of the current video block is greater than a height of a picture or a height of a subpicture
comprising the current video block in luma samples and (ii) the width of the current video block
in luma samples is greater than N; wherein, it cannot be determined that the first partitioning
process in the horizontal direction is disabled only according to a condition that a sum of the
width of the current video block in luma samples and a horizontal coordinate of a top-left luma
sample of the current video block is greater than a width of a picture comprising the current
video block in luma samples; and wherein the first partitioning process comprises a binary tree

(BT) partition, and the second partitioning process comprises a ternary tree (TT) partition.

Date Regue/Date Received 2023-10-26

[0021b] In accordance with another aspect of an embodiment, there is provided an apparatus
for processing video data comprising a processor and a non-transitory memory with instructions
thereon, wherein the instructions upon execution by the processor, cause the processor to:
determine, based on a dimension of a current video block of a video, whether a first partitioning
process that splits the current video block into two sub-blocks or a second partitioning process
that splits the current video block into three sub-blocks in a horizontal direction or a vertical
direction is allowed or not, wherein the dimension of the current video block comprises a height
or a width of the current video block in luma samples; and perform, based on the determining, a
conversion between the current video block and a bitstream of the video, wherein the first
partitioning process in the vertical direction is disabled in a case where (i) a sum of the width of
the current video block in luma samples and a horizontal coordinate of a top-left luma sample of
the current video block is greater than a width of a picture or a width of a subpicture comprising
the current video block in luma samples and (ii) the height of the current video block in luma
samples is greater than N; wherein N = 64; wherein the second partitioning process is disabled
in a case where the height or the width of the current video block in luma samples being greater
than 64; wherein the first partitioning process in the vertical direction is disabled in a case where
(i) the width of the current video block in luma samples is less than or equal to N and (ii) the
height of the current video block in luma samples is greater than N; wherein the first partitioning
process in the horizontal direction is disabled in a case where (i) the width of the current video
block in luma samples is greater than N and (ii) the height of the current video block in luma
samples is less than or equal to N; wherein the first partitioning process in the horizontal
direction is disabled in a case where (i) a sum of the height of the current video block in luma
samples and a vertical coordinate of the top-left luma sample of the current video block is
greater than a height of a picture or a height of a subpicture comprising the current video block
in luma samples and (ii) the width of the current video block in luma samples is greater than N;
wherein, it cannot be determined that the first partitioning process in the horizontal direction is
disabled only according to a condition that a sum of the width of the current video block in luma
samples and a horizontal coordinate of a top-left luma sample of the current video block is
greater than a width of a picture comprising the current video block in luma samples; and
wherein the first partitioning process comprises a binary tree (BT) partition, and the second
partitioning process comprises a ternary tree (TT) partition.

[0021¢] In accordance with yet another aspect of an embodiment, there is provided a non-

transitory computer-readable storage medium storing computer program instructions that, when

5a

Date Regue/Date Received 2023-10-26

executed by a processor, cause the processor to: determine, based on a dimension of a current
video block of a video, whether a first partitioning process that splits the current video block into
two sub-blocks or a second partitioning process that splits the current video block into three
sub-blocks in a horizontal direction or a vertical direction is allowed or not, wherein the
dimension of the current video block comprises a height or a width of the current video block in
luma samples; and perform, based on the determining, a conversion between the current video
block and a bitstream of the video, wherein the first partitioning process in the vertical direction
is disabled in a case where (i) a sum of the width of the current video block in luma samples and
a horizontal coordinate of a top-left luma sampie of the current video block is greater than a
width of a picture or a width of a subpicture comprising the current video block in luma samples
and (ii) the height of the current video block in luma samples is greater than N; wherein N = 64;
wherein the second partitioning process is disabled in a case where the height or the width of
the current video block in luma samples being greater than 64; wherein the first partitioning
process in the vertical direction is disabled in a case where (i) the width of the current video
block in luma samples is less than or equal to N and (ii) the height of the current video block in
luma samples is greater than N; wherein the first partitioning process in the horizontal direction
is disabled in a case where (i) the width of the current video block in luma samples is greater
than N and (ii) the height of the current video biock in luma samples is less than or equal to N;
wherein the first partitioning process in the horizontal direction is disabled in a case where (i} a
sum of the height of the current video block in luma samples and a vertical coordinate of the
top-left luma sample of the current video block is greater than a height of a picture or a height of
a subpicture comprising the current video block in luma samples and (ii) the width of the current
video block in luma samples is greater than N; wherein, it cannot be determined that the first
partitioning process in the horizontal direction is disabled only according to a condition that a
sum of the width of the current video block in luma samples and a horizontal coordinate of a top-
left luma sample of the current video block is greater than a width of a picture comprising the
current video block in luma samples; and wherein the first partitioning process comprises a
binary tree (BT) partition, and the second partitioning process comprises a ternary tree (TT)
partition.

[0021d] In accordance with yet another aspect of an embodiment, there is provided a method
for storing a bitstream of a video comprising: determining, based on a dimension of a current
video block of the video, whether a first partitioning process that splits the current video block

into two sub-blocks or a second partitioning process that splits the current video block into three

5b

Date Regue/Date Received 2023-10-26

sub-blocks in a horizontal direction or a vertical direction is allowed or not, wherein the
dimension of the current video block comprises a height or a width of the current video block in
luma samples; generating the bitstream based on the determining; and storing the bitstream in a
non-transitory computer-readable recording medium, wherein the first partitioning process in the
vertical direction is disabled in a case where (i) a sum of the width of the current video block in
luma samples and a horizontal coordinate of a top-left luma sample of the current video block is
greater than a width of a picture or a width of a subpicture comprising the current video block in
luma samples and (ii) the height of the current video block in luma samples is greater than N;
wherein N = 64; wherein the second partitioning process is disabled in a case where the height
or the width of the current video block in luma samples being greater than 64; wherein the first
partitioning process in the vertical direction is disabled in a case where (i) the width of the
current video block in luma samples is less than or equal to N and (ii) the height of the current
video block in luma samples is greater than N; wherein the first partitioning process in the
horizontal direction is disabled in a case where (i) the width of the current video block in luma
samples is greater than N and (ii) the height of the current video block in luma samples is less
than or equal to N; wherein the first partitioning process in the horizontal direction is disabled in
a case where (i) a sum of the height of the current video block in luma samples and a vertical
coordinate of the top-left luma sample of the current video block is greater than a height of a
picture or a height of a subpicture comprising the current video block in luma samples and (ii}
the width of the current video block in luma samples is greater than N; wherein, it cannot be
determined that the first partitioning process in the horizontal direction is disabled only
according to a condition that a sum of the width of the current video block in luma samples and
a horizontal coordinate of a top-left luma sampie of the current video block is greater than a
width of a picture comprising the current video block in luma samples; and wherein the first
partitioning process comprises a binary tree (BT) partition, and the second partitioning process
comprises a ternary tree (TT) partition.

[0022] These, and other, aspects are further described in the present document.

5¢c

Date Regue/Date Received 2023-10-26

BRIEF DESCRIPTION OF THE DRAWINGS
[0023] FIG. 1 shows examples of binary-tree (BT) and ternary-tree (TT) splitting depending on
the video block size.
[0024] FIG. 2 is a block diagram of an example of a hardware platform used for implementing
technigues described in the present document.
[0025] FIG. 3 is a block diagram of an example video processing system in which disclosed
techniques may be implemented.
[0026] FIG. 4 is a flowchart for an example method of video processing.
[0027] FIG. 5 is a flowchart for another example method of video processing.
[0028] FIG. 6 is a flowchart for yet another example method of video processing.
[0029] FIG. 7 is a flowchart for yet another example method of video processing.
[0030] FIG. 8 is a flowchart for yet another example method of video processing.
[0031] FIG. 9 is a flowchart for yet another example method of video processing.
[0032] FIG. 10 is a flowchart for yet another example method of video processing.
[0033] FIG. 11 is a flowchart for yet another example method of video processing.
[0034] FIG. 12 is a flowchart for yet another example method of video processing.
[0035] FIG. 13 is a flowchart for yet another example method of video processing.
[0036] FIG. 14 is a flowchart for yet another example method of video processing.
[0037] FIG. 15 is a flowchart for yet another example method of video processing.
[0038] FIG. 16 is a flowchart for yet another example method of video processing.
[0039] FIG. 17 is a flowchart for yet another example method of video processing.
[0040] FIG. 18 is a flowchart for yet another example method of video processing.

DETAILED DESCRIPTION
[0041] The present document provides various techniques that can be used by a decoder of

image or video bitstreams to improve the quality of decompressed or decoded digital video or
images. For brevity, the term "video” is used herein to include both a sequence of pictures

5d

Date Recue/Date Received 2023-04-26

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

(traditionally called video) and individual images. Furthermore, a video encoder may also
implement these techniques during the process of encoding in order to reconstruct decoded
frames used for further encoding.
[0042] Section headings are used in the present document for ease of understanding and do
not limit the embodiments and techniques to the corresponding sections. As such, embodiments
from one section can be combined with embodiments from other sections.
1. Summary
[0043] This document is related to video coding technologies. Specifically, it is about rules for
controlling size of coding tree unit or transform unit in video coding and decoding. It may be
applied to the existing video coding standard like HEVC, or the standard (Versatile Video
Coding) to be finalized. It may be also applicable to future video coding standards or video
codec.
2. Initial discussion
[0044] Video coding standards have evolved primarily through the development of the well-
known ITU-T and ISONEC standards. The ITU-T produced H.261 and H.263, ISO/IEC produced
MPEG-1 and MPEG-4 Visual, and the two organizations jointly produced the H.262/MPEG-2
Video and H.264/MPEG-4 Advanced Video Coding (AVC) and H.265/HEVC standards. Since
H.262, the video coding standards are based on the hybrid video coding structure wherein
temporal prediction plus transform coding are utilized. To explore the future video coding
technologies beyond HEVC, Joint Video Exploration Team (JVET) was founded by VCEG and
MPEG jointly in 2015. 8ince then, many new methods have been adopted by JVET and put into
the reference software named Joint Exploration Model (JEM). The JVET meeting is concurrently
held once every quarter, and the new coding standard is targeting at 50% bitrate reduction as
compared to HEVC. The new video coding standard was officially named as Versatile Video
Coding (VVC) in the April 2018 JVET meeting, and the first version of VVC test model (VTM)
was released at that time. As there are continuous effort contributing to VVC standardization,
new coding techniques are being adopted to the VVC standard in every JVET meeting. The
VVC working draft and test model VTM are then updated after every meeting. The VVC project
is now aiming for technical completion (FDIS) at the July 2020 meeting.

2.1 CTU size in VVC
[0045] VTM-5.0 software allows 4 different CTU sizes: 16x16, 32x32, 64x64 and 128x128.
However, at the July 2019 JVET meeting, the minimum CTU size was redefined to 32x32 due to

CA 03146299 2022~01m21

WO 2021/018082

PCT/CN2026/104785

the adoption of JVET-00526. And the CTU size in VVC working draft 6 is encoded in the SPS

header in a UE-encoded syntax element called log2_ctu_size_minus_5.

[0046] Below are the corresponding spec modifications in VVC draft 6 with the definition of

Virtual pipeline data units (VPDUs) and the adoption of JVET-00526.
7.3.2.3.Sequence parameter set RBSP syntax

seq_parameter_set_rbsp() {

Descriptor

XT3

log2_ctu_size_minus5

w2)

7.4.3.3. Sequence parameter set RBSP semantics

(31X

log2_ctu_gsize_minus5 plus 5 specifies the luma coding tree block size of each CTU. It is a requirement of

bitstream conformance that the value of log2_ctu_size_minus5 be less than or equal to 2.

log2 _min_luma_coding_block_size_minus2 plus 2 specifies the minimum luma coding block size.
The variables CtbLog28SizeY, CtbSizeY, MinCbLog2SizeY, MinCbSizeY, IbcBufWidthY, Ibe BufWidthC and

Vsize are derived as follows:
CtblLog28izeY = log2_ctu_size_minuss + 5
(7-15}
CibSizeY = | << CtbLog2SizeY
MinChLog2SizeY = log2 min_luma_coding block_size minus2 + 2
MinCbhSizeY = I << MinCbELog2SizeY
IbeBufWidthy = 128 * 128 / CtbSizeY
TbeBufWidthC = IhcBufWidthY / SubWidthC
(7-20)
VSize = Min(64, CtbSizeY)

(7-16)
(7-17)
(7-18)
(7-19)

(7-21)

The variables CtbWidthC and CthHeightC, which specify the width and height, respectively, of the array

Jor each chroma CTB, are derived as follows:

— I chroma_format_idc is equal to O (monochrome) or separate_colour_plane_flag is equal to 1,

CtbWidthC and CthHeightC are both equal to 0.
— Otherwise, CtbWidthC and CthbHeightC are derived as follows:
CtbWidthC = CtbSizeY / SubWidthC
CtbHeightC = CtbSizeY / SubHeightC

(7-22)
(7-23)

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

For log2BlockWidth ranging from 0 to 4 and for log2BlockHeight ranging from 0 to 4, inclusive, the up-
right diagonal and raster scan order array initialization process as specified in clause 6.5.2 is invoked
with 1 << log2BlockWidth and | << log2BlockHeight as inputs, and the output is assigned to
DiagScanOrder[log2BlockWidth][log2BlockHeight | and

RasterScanOrder[log2BlockWidth][log2BlockHeight].

slice_log2_diff_max_bt_min_gt_luma specifies the difference berween the base 2 logarithm of the
maximum size (width or height) in luma samples of a luma coding block that can be split using a binary
split and the minimum size (width or height) in luma samples of a luma leaf block resulting from quadtree
splitting of a CTU in the current slice. The value of slice_log2_diff. max_bt_min_gt_luma shall be in the
range of 0 to CtbLog2SizeY — MinQrLog28izeY, inclusive. When not present, the value of
slice_log2_diff max_bt_min_qt_luma is inferred as follows:
~ Ifslice_type equal to 2 (1), the value of slice_log2_diff _max_bt_min_qt_Iuma is inferred to be equal to
sps_log2_diff max_bt_min_gt_intra_slice_luma
- QOtherwise (slice_type equal to 0 (B) or 1 (P)), the value of slice_log2_diff max_bt_min_qt_luma is
inferred to be equal to sps_log2_ diff. max_bt_min_qt_inter_slice.
slice_log2_diff_max_tt_min_gt_luma specifies the difference between the base 2 logarithm of the
maximum size (width or height) in luma samples of a luma coding block that can be split using a ternary
split and the minimum size (width or height) in luma samples of a luma leaf block resulting from quadtree
splitting of a CTU in in the current slice. The value of slice_log2_diff max_ttr_min_gt_luma shall be in the
range of 0 to CithLog2SizeY — MinQtLog2SizeY, inclusive. When not present, the value of
slice_log2_diff max_rt_min_gt_luma is inferred as follows:
- If slice_type equal to 2 (1), the value of slice_log2_diff_max_tt_min_gt_luma is inferred to be equal to
sps_log2_diff_max_tt_min_gt_intra_slice_luma
— Otherwise (slice_type equal to 0 (B) or 1 (P)), the value of slice_log2_diff_ max_tt_min_qgt_lwma is
inferred 1o be equal to sps_log2_diff max_tt_min_qt_inter_slice.
slice_log2_diff min_qgt_min_ch_chrema specifies the difference between the base 2 logarithm of the
minimum size in luma samples of a chroma leaf block resulting from guadtree splitting of a chroma CTU
with treeType equal to DUAL_TREE_CHROMA and the base 2 logarithm of the minimum coding block
size in luma samples for chroma CUs with treeType equal to DUAL_TREE_CHROMA in the current slice.
The value of slice_log2 diff min_gt min_ch chroma shall be in the range of 0 1o
CtbLog28izeY - MinCbLog28SizeY, inclusive. When not present, the value of

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

slice_log2_diff_min_qgt_min_cb_chroma is inferred to be equal to
sps_log2 diff_min_qgt_min_cbh_intra_slice_chroma.
slice_max_mtt_hierarchy_depth_chroma specifies the maximum hierarchy depth for coding units
resulting from multi-type tree splitting of a quadtree leaf with treelype equal to DUAL_TREE_CHROMA
in the current slice. The value of slice_max_mit_hierarchy_depth_chroma shall be in the range of 0 to
CtbLog?2SizeY — MinCbLog2SizeY, inclusive. When not present, the values of
slice_max_mut_hierarchy_depth_chroma is inferred to be equal to
Sps_max_mzt_hierarchy_depth_intra_slices_chroma.
slice_log2_diff max_bt min_qt_chroma specifies the difference between the base 2 logarithm of the
muximum size (width or height) in luma samples of a chroma coding block that can be split using o binary
split and the minimum size (width or height) in luma samples of a chroma leaf block resulting from quadtree
splitting of a chroma CTU with treeType equal to DUAL_TREF,_CHROMA in the current slice. The value
of slice_log2_diff max_bt_min_gt_chroma shall be in the range of 0 to CtbLog2SizeY — MinQtLog2SizeC,
inclusive. When not present, the value of slice_log2_diff max_bt_min_gt_chroma is inferred to be equal to
sps_log2 _diff max_bt_min_qgt_intra_slice_chroma
slice_log2_ diff max_tt min_qgt_chroma specifies the difference between the base 2 logarithm of the
maximum size (width or height) in luma samples of a chroma coding block that can be split using a ternary
split and the minimum size (width or height) in luma samples of a chroma leaf block resulting from quadtree
splitting of a chroma CTU with treeType equal to DUAL_TREE_CHROMA in the current slice. The value
of stice_log2 diff_ max_tt_min_gt_chroma shall be in the range of O to CtbLog28izeY — MinQtlLog28izeC,
inclusive. When not present, the value of slice_log2_diff max_tt_min_qt_chroma is inferred to be equal to
sps_log2 diff max_tt_min_qt_intra_slice_chroma
The variables MinQtLog2SizeY, MinQtLog2SizeC, MinQtSizeY, MinQtSizeC, MaxBtSizeY, MaxBtSizeC,
MinBtSizeY, MaxTtSize¥, MaxTtSizeC, MinTtSizeY, MaxMtDepthY and MaxMuDepthC are derived as
follows:
MinQtLog2SizeY = MinCbLog28izeY + slice_log2_diff min_qgt_min_cb_luma (7-86)
MinQtLog25izeC = MinChLog28izeY + slice_log2_diff min_qgt_min_cb_chroma (7-87)
MinQiSizeY = I << MinQtLog2SizeY

(7-88)
MinQtSizeC = 1 << MinQtlLog28izeC

(7-89)
MaxBtSizeY = 1 << (MinQtLog2SizeY + slice_log2_diff max_bt_min_qt_luma)(7-90)
MaxBtlizeC = 1 << (MinQtLog28izeC + slice_log2_diff max_bt_min_gt_chroma) 7-91)

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

MinBt8izeY = 1 << MinCbLog2SizeY

(7-92)
MaxTtSizeY = 1 << (MinQtLog2SizeY + slice_log2 diff max_tt min_qt_luma)(7-93)
MaxTtSizeC = 1 << (MinQtLog2SizeC + slice_log2_ diff max_ut_min_gt_chroma }(7-94)
MinTtSizeY = 1 << MinCbLog2SizeY

(7-95)
MaxMiuDepthY = slice_max_mit_hierarchy_depth_luma (7-96)
MaxMuDepthC = slice_max_mit_hierarchy_depth_chroma (7-97)

2.2 Maximum transform size in VVC
[0047] In VVC Draft 5, the max transform size is signalled in the SPS but it is fixed as 64-length
and not configurable. However, at the July 2019 JVET meeting, it was decided to enable the
max luma transform size to be either 64 or 32 only with a flag at the SPS level. Max chrora
transform size is derived from the chroma sampling ratio relative to the max luma transform
size.
[0048] Below are the corresponding spec modifications in VVC draft 6 with the adoption of
JVET-O05xxx.
7.3.2.3.8equence parameter set RBSP syntax

seq_parameter_set_rbsp() { Descriptor

“en

sps_max_luma_transform_size 64_flag u(l)

anm

7.4.3.3. Sequence parameter set RBSP semantics

sps_max_luma_transform_size_64_flag equal to 1 specifies that the maximum transform size in luma
samples is equal to 64, sps_max_luma_transform_size_64._flag equal to 0 specifies that the maximum
transform size in luma samples is equal to 32,

When CthSizeY is Iess than 64, the value of sps_max_luma_transform_size_64_flag shall be equal to 0,
The variables MinTbLog2SizeY, MaxTbLog2SizeY, MinTbSizeY, and MaxThSizeY are derived as follows:

MinTkhLog28izeY = 2 (7-27)
MaxThLog2SizeY = sps_max_luma_transform_size_64 flag ? 6 : 5 (7-28)
MinTbSizeY = 1 << MinTbLog2SizeY (7-29)

10

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

MaxThSizeY =1 << MaxTbLog2SizeY
(7-30)

sps_sbt_max_size_64_flag equal to 0 specifies that the maximum CU width and height for allowing

subblock transform is 32 luma samples. sps_sbt_max_size_64_flag equal to 1 specifies that the maximum

CU width and height for allowing subblock transform is 64 luma samples.
MuaxShiSize = Min(MaxTbSizeY, sps_sbt_max_size 64 _flag ? 64 : 32)(7-31)

3. Examples of technical problems addressed by the disclosed technical solutions

[0049] There are several problems in the latest VVC working draft JVET-02001-v1 1, which are
described below.

1)

4)

In current VVC draft 8, the maximum transform size and CTU size are defined independently.
E.g., CTU size could be 32, whereas transform size could be 64. It is desirable that the
maximum transform size should be equal or smaller than the CTU size.

In current VVC draft 6, the block partition process depends on the maximum transform block

size other than the VPDU size. Therefore, if the maximum transform block size is 32x32, in
addition to prohibit 128x128 TT split and 64x128 vertical BT split, and 128x64 horizontal BT
split to obey the VPDU rule, it further prohibits TT split for 64x64 block, prohibits vertical BT
split for 32x64/16x64/8x64 coding block, and also prohibits horizontal BT split for
64x8/64x16/64x32 coding block, which may not efficient for coding efficiency.

Current VVC draft 6 allows CTU size equal to 32, 64, and 128, However, it is possible that the
CTU size could be larger than 128. Thus some syntax elements need to be modified.

a) Iflarger CTU size is allowed, the block partition structure and the signaling of block split
flags may be redesigned.

b) If larger CTU size is allowed, then some of the current design (e.g., affine parameters
derivation, IBC prediction, IBC buffer size, merge triangle prediction, CIIP, regular merge
mode, and etc.) may be redesigned.

In current VVC draft 6, the CTU size is signaled at SPS level. However, since the adoption of

reference picture resampling (a.k.a. adaptive resolution change) allows that the pictures could

be coded with difference resolutions in one bistream, the CTL) size may be different across
multiple layers.

11

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

5) In WD6, the maximurn block size used for MIP and ISP are dependent on the maximum
transform size, other than the VPDU size or 64x64, which may not efficient for coding
efficiency.

6) In WD86, the maximum block size used for transform skip and intra BDPCM are dependent on
the maximum transform skip size, which is restrict by the maximum transform size.

7) In WDG, the maximum block size used for SBT are dependent on the maximum SBT size,
which is restrict by the maximum transform size.

8) In WD, the size of coding block used for IBC and PLT are limited to 64x64, which may be
adjusted by maximum transform size, CTU size, and/or VPDU size.

9) In WDB, the size of coding block used for CIIP could be larger than maximum transform size.

10) In WD6, the LMCS enabled flag is not conditioned by transform quantization bypass flag.

4. Example embodiments and techniques

[0050] The listing of solutions below should be ¢onsidered as examples to explain some

concepts. These items should not be interpreted in a narrow way. Furthermore, these items can

be combined in any manner.

[0051] In this document, C=min(a,b) indicates that the C is equal to the minimum value between

aandb.

[0052] In this document, the video unit size/dimension may be either the height or width of a

video unit (e.g., width or height of a picture/sub-picture/slice/brick/tile/CTU/CU/CB/TU/MTB). ifa

video unit size is denoted by MxN, then M denotes the width and N denotes the height of the
video unit.

[0053] In this document, “a coding block™ may be a luma coding block, and/or a chroma coding

block. The size/dimension in luma samples for a coding block may be used in this invention to

represent the size/dimension measured in luma samples. For example, a 128x128 coding block

(or a coding block size 128x128 in luma samples) may indicate a 128x128 luma coding block,

and/or a 64x64 chroma coding block for 4:2:0 color format. Similarly, for 4:2:2 color format, it

may refer to a 128x128 luma coding block and/or a 64x128 chroma coding block. For 4:4:4 color
format, it may refer to a 128x128 luma coding block and/or a 128x128 chroma coding block.

1. ltis proposed that different CTU dimensions (such as width and/or height) may be allowed

for different video units such as Layers/Pictures/Subpictures/Slices/Tiles/Bricks.

» il “le

12

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

a) In one example, one or multiple sets of CTU dimensions may be explicitly signaled at a
video unit level such as VPS/DPS/SPS/PPS/APS/Picture/Subpicture/Slice/Slice
header/Tile/Brick level.

b) In one example, when the reference picture resampling (a.k.a. Adaptive Resolution
Change) is allowed, the CTU dimensions may be different across difference layers.

i For example, the CTU dimensions of an inter-layer picture may be implicitly
derived according to the downsample/upsample scaling factor.

1. For example, if the signaled CTU dimensions for a base layer is MxN (such as
M=128 and N=128) and the inter-layer coded picture is resampled by a scaling
factor S in width and a scaling factor T in height, which may be larger or
smaller than 1 (such as S=1/4 and T=1/2 denoting the inter-layer coded picture
is downsampled by 4 times in width and downsamied by 2 times in height),
then the CTU dimensions in the inter-layer coded picture may be derived to
(Mx8) x (NxT), or (M/S) x (N/T).

i, For example, different CTLJ dimensions may be explicitly signalled for muliiple
layers at video unit level, e.g., for inter-layer resampling pictures/subpictures, the

CTU dimensions may be signaled at

VPS/DPS/SPS/IPPS/APS/picture/subpicture/Slice/Slice header/Tile/Brick level

which is different from the base-layer CTU size.

2. lItis proposed that whether TT or BT split is allowed or not may be dependent on VPDU
dimensions (such as width and/or height). Suppose VPDU is with dimension VSize in luma
samples, and the coding free block is with dimension CtbSizeY in luma samples.

a) Inone example, VSize = min(M, CtbSizeY). M is an integer value such as 64.
b) In one example, whether TT or BT split is allowed or not may be independent of the
maximum transform size.
¢) Inone example, TT split may be disabled when a coding block width or height in luma
samples is greater than min(VSize, maxTiSize).
i. In one example, when maximum transform size is equal to 32x32 but VSize is
equal to 64x64, TT split may be disabled for 128x128/128x64/64x128 coding block.
i, In one example, when maximum transform size is equal to 32x32 but VSize is
equal to 64x64, TT split may be allowed for 64x64 coding block.

13

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

d) In one example, vertical BT split may be disabled when a coding block width in luma
samples is less than or equal to VSize, but its height in luma samples is greater than
VSize.

i. In one example, in case of maximum transform size 32x32 but VPDU size equal to
64x64, vertical BT split may be disabled for 64x128 coding block.

ii. In one example, in case of maximum transform size 32x32 but VPDU size equal to
64x64, vertical BT split may be allowed for 32x64/16x64/8x64 coding block.

e) In one example, vertical BT split may be disabled when a coding block exceeds the
Picture/Subpicture width in luma samples, but its height in luma samples is greater than
VSize.

i. Alternatively, horizontal BT split may be allowed when a coding block exceeds the
Picture/Subpicture width in luma samples.

f) In one example, horizontal BT split may be disabled when a coding block width in luma
samples is greater than VSize, but its height in luma samples is less than or equal to
VSize.

i, In one example, in case of maximum transform size 32x32 but VPDU size equal to
64x64, vertical BT split may be disabled for 128x64 coding block.

i, In one example, in case of maximum transform size 32x32 but VPDU size equal to
64x64, horizontal BT split may be allowed for 64x8/64x16/64x32 coding block.

9) Inone example, horizontal BT split may be disabled when a coding block exceeds the
Picture/Subpicture height in luma samples, but its width in luma samples is greater than
VSize.

i. Alternatively, vertical BT split may be allowed when a coding block exceeds the
Picture/Subpicture height in luma samples.

h) Inone example, when TT or BT split is disabled, the TT or BT split flag may be not

signaled and implicitly derived to be zero.
i, Alternatively, when TT and/or BT split is enabled, the TT and/or BT split flag may
be explicitly signaled in the bitstream.
i. Alternatively, when TT or BT split is disabled, the TT or BT split flag may be
signaled but ignored by the decoder.
iii. Alternatively, when TT or BT split is disabled, the TT or BT split flag may be
signaled but it must be zero in a conformance bitstream.

14

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

. ltis proposed that the CTU dimensions (such as width and/or height) may be larger than
128.
a) Inone example, the signaled CTU dimensions may be 256 or even larger (e.g.,
log2_ctu_size minus5 may be equal to 3 or larger).
b) In one example, the derived CTU dimensions may be 256 or even larger.
i For example, the derived CTU dimensions for resampling pictures/subpictures may
be larger than 128.
. ltis proposed that when larger CTU dimensions is allowed (such as CTU width and/or height
is larger than 128), then the QT split flag may be inferred to be true and the QT split may be
recursively applied till the dimension of split coding block reach a specified value (e.g., a
specified value may be set to the maximum transform block size, or 128, or 64, or 32).
a) In one example, the recursive QT split may be implicilly conducted without signaling,
until the split coding block size reach the maximum transform block size.
b) In one example, when CTU 256x256 is applied to dual tree, then the QT split flag may
be not signalled for a coding block larger than maximum transform block size, and the
QT split may be forced to be used for the coding block until the split coding block size
reach the maximum transform block size.
. ltis proposed that TT split flag may be conditionally signalled for CU/PU dimensions (width
and/or height) larger than 128.
a) Inone example, both horizontal and vertical TT split flags may be signalled for a
256x266 CLJ.
b) In one example, vertical TT split but not horizontal TT split may be signalled for a
256x128/256x64 CU/PU.
¢) Inone example, horizontal TT split but not vertical TT split may be signalled for a
128x256/64x256 CU/PU.
d) In one example, when TT split flag is prohibited for CU dimensions larger than 128,
then it may not be signalled and implicitly derived as zero,
i. In one example, horizontal TT split may be prohibited for 256x128/256x64 CU/PU.
i, In one example, vertical TT split may be prohibited for 128x256/64x256 CU/PU.
. Itis proposed that BT split flag may be conditionally signalled for CU/PU dimensions (width
and/or height} larger than 128.
a) Inone example, both horizontal and vertical BT split flags may be signalled for
256x266/266x128/128x2566 CU/PLU.,

15

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

b) In one example, horizontal BT split flag may be signaled for 64x256 CU/PU.

¢) Inone example, vertical BT split flag may be signaled for 2566x64 CL/PU.

d) Inone example, when BT split flag is prohibited for CU dimension larger than 128, then
it may be not signalled and implicitly derived as zero.

i\ In one example, vertical BT split may be prohibited for Kx256 CU/PU (such as K is
equal to or smaller than 64 in luma samples), and the vertical BT split flag may be
riot signaled and derived as zero.

1. For example, in the above case, vertical BT split may be prohibited for 64x256
CU/PU.

2. For example, in the above case, vertical BT split may be prohibited to avoid
32x256 CU/PU at picture/subpicture boundaries.

ii. In one example, vertical BT split may be prohibited when a coding block exceeds
the Picture/Subpicture width in luma samples, but its height in luma samples is
greater than M (such as M=64 in luma samples).

iii, In one example, horizontal BT split may be prohibited for 266xK (such as K is
equal to or smaller than 64 in luma samples) coding block, and the horizontal BT
split flag may be not signaled and derived as zero.

1. For example, in the above case, horizontal BT split may be prohibited for
256x64 coding block.

2. For example, in the above case, horizontal BT split may be prohibited to avoid
256x32 coding block at picture/subpicture boundaries.

iv. In one example, horizontal BT split may be prohibited when a coding block
exceeds the Picture/Subpicture height in luma samples, but its width in luma
samples is greater than M (such as M=64 in luma samples).

. ltis proposed that the affine model parameters calculation may be dependent on the CTU

dimensions.

a) Inone example, the derivation of scaled motion vectors, and/or control point motion
vectors in affine prediction may be dependent on the CTU dimensions.

. ltis proposed that the intra block copy (IBC) buffer may depend on the maximum

configurable/allowable CTL) dimensions.

a} For example, the IBC buffer width in luma samples may be equal to NxN divided by
CTU width (or height) in luma samples, wherein N may be the maximum configurable
CTU size in luma samples, such as N = 1 << (log2_ctu_size_minus5 + 5),

16

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

9. ltis proposed that a set of specified coding tool(s) may be disabled for a large CU/PU,
where the large CU/PU refers to a CU/PU where either the CU/PU width or CU/PU height is
larger than N (such as N=64 or 128).

a) In one example, the above-mentioned specified coding tool(s) may be palette, and/or
intra block copy (IBC), and/or intra skip mode, and/or triangle prediction mode, and/or
CIIP mode, and/or regular merge mode, and/or decoder side motion derivation, and/or
bi-directional optical flow, and/or prediction refinement based optical flow, and/or affine
prediction, and/or sub-block based TMVP, and etc.

i Alternatively, screen content coding tool(s) such as palette and/or intra block copy
(IBC) mode may be applied to large CU/PU.

b) In one example, it may explicitly use syntax constraint for disabling the specified coding
tool(s) for a large CU/PL.

i. For example, Palette/IBC flag may explicitly signal for a CU/PU which is not a large
CU/PU.

¢) In one example it may use bitstream constraint for disabling specified coding tool(s) for
a large CU/PU.

10. Whether TT or BT split is allowed or not may be dependent on the block dimensions.

a) Inone example, TT split may be disabled when a coding block width or height in luma
samples is greater than N (e.g., N=64).

i In one example, when maximum transform size is equal to 32x32, TT split may be
disabled for 128x128/128x64/64x128 coding block.

ii. In one example, when maximum transform size is equal to 32x32, TT split may be
allowed for 64x64 coding block.

b) In one example, vertical BT split may be disabled when a coding block width in lJuma
samples is less than or equal to N (e.g., N=64), but its height in luma samples is
greater than N (e.g., N=64),

i, In one example, in case of maximum transform size 32x32, vertical BT split may be
disabled for 64x128 coding block.

il In one example, in case of maximum transform size 32x32, vertical BT split may be
allowed for 32x64/16x64/8x64 coding block.

¢} Inone example, vertical BT split may be disabled when a coding block exceeds the
Picture/Subpicture width in luma samples, but its height in luma samples is greater than
64,

17

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

i Atternatively, horizontal BT split may be allowed when a coding block exceeds the
Picture/Subpicture width in luma samples.

d) In one example, horizontal BT split may be disabled when a coding block width in luma
samples is greater than N (e.g., N=64), but its height in luma samples is less than or
equal to N (e.g., N=64).

i In one example, in case of maximum transform size 32x32, vertical BT split may be
disabled for 128x64 coding block.

i, In one example, in case of maximum transform size 32x32, horizontal BT split may
be allowed for 64x8/64x16/64x32 coding block.

e) In one example, horizontal BT split may be disabled when a coding block exceeds the
Picture/Subpicture height in luma samples, but its width in luma samples is greater than
N (e.g., N=64).

i. Alternatively, vertical BT split may be allowed when a coding block exceeds the
Picture/Subpicture height in luma samples.

Configurable maximum transform size related
11. ltis proposed that the maximum TU size may be dependent on CTU dimensions (width
and/or height), or CTU dimensions may be dependent on the maximum TU size

a) Inone example, a bitstream constraint may be used that the maximum TU size shall be
smaller or equal to the CTU dimensions.

b) In one example, the signaling of maximum TU size may depend on the CTU
dimensions.

i For example, when the CTU dimensions are smaller than N {e.g. N=64), the
signaled maximum TU size must be smaller than N.

i, For example, when the CTU dimensions are smaller than N (e.g. N=64), the
indication of whether the maximum luma transform size is 64 or 32 (e.g.,
sps_max_luma_transform_size 64_flag) may not be signaled and the maximum
luma transform size may be derived as 32 implicitly.

12. A certain coding tool may be enabled for a block with width and/or height greater than the
transform block size.

a) In one example, the certain coding tool may be the intra sub-partition prediction (ISP),
MIP, SBT or other cading tools that may split one CU into muliiple TUs or one CB to
multiple TBs.

18

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

b) In one example, the certain coding tool may be a coding tool which doesn’t apply
transform (or only identity transform is applied), such as Transform Skip mode,
BDPCM/DPCM/PCM.

c) The certain tool may be Intra Block Copy (IBC), Palette (PLT).

d) The certain tool may be combined inter intra prediction (CIIP).

13. Whether a certain coding tool is enabled or not may be dependent on the coding block
dimensions.

a) In one example, the certain coding tool may be the intra sub-partition prediction (ISP),
matrixed based intra prediction (MIP), Sub-block transform {(8BT), Intra Block Copy
(IBC), Palette (PLT), and etc.

b) In one example, the certain coding tool (such as ISP, MIP) may be allowed when a
coding block width and/or height in luma samples are smaller than or equal to N (e.g.,
N=64).

i Alternatively, the certain coding tool may be disabled when a coding block width
and/or height in luma samples is greater than N (e.g., N=64).

c) Whether the certain coding tool (such as ISP, MIP) is enabled or not may be dependent
on the relationship between the coding block size and VPDU size.

i, In one example, the certain coding tool may be allowed when a coding block width
and/or height in luma samples are smaller than or equal fo the VPDU size (such as
32 or 64).
1. Alternatively, the certain coding tool may be disabled when a coding block
width and/or height in luma samples is greater than the VPDU size (such as 32
or 64).

d) Whether the intra sub-partition prediction (ISP) is enabled or not and/or which partition
type(s) (e.g., splitting direction) is (are) allowed may be dependent on the relationship
between the sub-partition’s dimensions and maximum transform block size.

I In one example, if the sub-partition width and/or height is no greater than the
maximum transform block size for at least one partition type, ISP may be enabled.
1. Alternatively, furthermore, otherwise, IPS may be disabled.

i, In one example, if the sub-partition width and/or height is no greater than the
maximum transform block size for all allowed partition types, ISP may be enabled.
1. Alternatively, furthermore, otherwise, ISP may be disabled.

19

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

i, In one example, the signaling of partition type (e.g.,
intra_subpartitions_split_flag) may depend on the relationship between the
corresponding sub-partition’s width and/or height based on the partition type and
maximum transform block size.

1. In one example, if only one partition type satisfies the condition that the
corresponding sub-partition’s width and/or height based on the partition type is
no greater than the maximum transform block size, the partition type may be
not signalled and inferred.

e) Whether the certain coding tool (such as IBC, PLT) is enabled or not may be
dependent on the relationship between the coding block size and maximum transform
size (such as 32 or 64).

i. In one example, whether the certain coding tool (such as IBC, PLT) is enabled or
not may be NOT conditioned on the relationship between the coding block
dimension and a fixed number 64.

i, In one example, the certain coding tool (such as IBC, PLT) may be allowed when a
coding block width and height in luma samples are NO greater than the maximum
transform size.

1. In one example, the certain coding tool (such as IBC, PLT) may be disabled
when the block width and/or height in luma samples is greater than the
maximurn transform size,

2. In one example, when the maximum transform size is equal to 32, the certain
coding tool (such as IBC, PLT) may be disabled when the block width and/or
height in luma samples is equal to 64.

f) If the certain coding tool is disabled, the related syntax elements (such as
intra_subpartitions_mode_flag and intra_subpartitions_split_flag for ISP,
intra_mip_flag and intra_mip_mode for MIP, pred_mode_ibc_flag for IBC,
pred_mode_pit_flag for PL.T) may be not signaled and inferred to be 0.

g} M the ceriain coding tool is disabled, the related syntax elements {such as
intra_subpartitions_mode_flag and intra_subpartitions_split_flag for ISP,
intra_mip_flag and intra_mip_mode for MIP, pred_mode_Iibc_flag for IBC,
pred_mode_plt_flag for PLT) may be signaled but must be ¢ in a conformance
bitstream.

14, The implicit QT split may be dependent on the VPDU size and/or maximum transform size,

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

a) In one example, the implicit QT split may be NOT conditioned on the relationship
between the coding block dimension and a fixed number 64.

b) In one example, a coding block may be implicitly split into quad-partitions, and each
sub-partition may be recursively implicit split until both width and height of the sub-
partition reaches the VPDU size.

¢) Inone example, a coding block may be implicitly split into quad-partitions, and each
sub-partition may be recursively implicitly split until both width and height of the sub-
partition reaches the maximum transform size.

18. The maximum block width and/or height used for sub-block transform (SBT) may be
dependent on the maximum transform size.

a) In one example, the maximum SBT size may be set equal to the maximum transform
size.

b) In one example, the syntax elemernit (such as sps_sbt_max_size_64_flag) related to
maximum SBT size may be not signalled.

i, For example, sps_sbt_max_size_64 flag is not signaled and inferred to be 0
when the maximum transform size is smaller than 64.

il For example, sps_sbt_max_size_64_flag is signaled when the maximum
transform size is smaller than 64, but it must be equal to 0 in a conformance
bitstream.

¢) Inone example, signaling of the related syntax element (such as cu_sbt_flag) may be
dependent on the maximum transform size.

d) In one example, signaling of the related syntax element (such as cu_sbt_flag) may be
independent on the maximum SBT size.

16. The maximum block size used for transform skip and/or intra BDPCM may be dependent on
the maximum transform size.

a) Inone example, the maximum transform skip size may be set equal to maximum
transform size.

b} In one example, the syntax element (such as
log2_transform_skip_max_size_minus2) related to maximum transform skip size
may be not signalled.

17. The maximum block size used for intra BDPCM may be independently signaled.

a) Inone example, the maximum block size used for intra BDPCM may be not dependent

on the maximum block size used for transform skip.

21

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

b) In one example, a SPS/NVPS/PPS/Slice/VPDU/CTU/CU level flag may be signaled in
the bitstream for specifying the maximum block size used for intra BDPCM.

18. Whether to enable or disable combined inter intra prediction {ClIP) for a block may depend
on the relationship between the block width and/or height and the maximum transform size.

a) Inone example, CIIP may be disabled for a block if a block width and/or height greater
than the maximum transform size.

b) In one example, the syntax element to indicate CHP (such as a ciip_flag) may not be
signaled if ClIP is disabled.

19. When both width and height of a CU coded with CIIP are smaller than 128, it is not allowed
to split a CU into several sub-partitions, wherein the intra-prediction for a first sub-partition
may depend on the reconstruction of a second sub-partition, on which the intra-prediction is
performed before that on the first sub-partition.

20. ltis allowed to split a CU coded with CIIP into several sub-partitions, wherein the intra-
prediction for a first sub-partition may depend on the reconstruction of a second sub-
partition, on which the intra-prediction is performed before that on the first sub-partition,

transform is applied) is derived from the maximum size for transform applied blocks (e.g.,

MaxTbSizeY).

a) In one example, Maximum size for transform skip coded blocks is inferred to
MaxTbSizeV.

b) In one example, signaling of Maximum size for transform skip coded blocks is skipped.

22. When lossless coding is enabled, the Luma Mapping Chroma Scaling (LMCS) may be
disabled for the current video unit in sequence/picture/subpicture/slice/tile
groupftite/brick/CTU row/CTU/CU/PU/TU/subblock level.

a) Inone example, the LMCS enabled flag (such as sps_Imes_enabled_fiag,
slice_Imcs_enabled_flag, slice_chroma_residual_scale_flag, imes_data, and etc.)
may be signaled conditioning on the transform quantization bypass flag (such as sps__
transquant_bypass_flag, pps_ transquant_bypass_flag, cu_
transquani_bypass_flag,) in sequence/picture/subpicture/slice/tile
groupitile/brick/CTU row/CTU/ CU/PU/T U/subblock level.

I In one example, if the transform quantization bypass flag is equal to 1, the LMCS
enabled flag may be not signaled and inferred to be 0.

22

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

1. In one example, if the sequence level transform guantization bypass flag (such
as sps_ transquant_bypass_flag) is equal to 1, the sequence and below
level LMCS enabled flag (such as sps_Imcs_enabled_flag,
slice_Imes_enabled_flag, slice_chroma_residual_scale_flag) may be not
signaled and inferred to be 0.

2. In one example, if the sequence level TransquantBypassEnabledFlag is equal
to 1, the APS level imes_data may be not signaled.

3. In one example, if the PPS level transform quantization bypass flag (such as
pps_ transquant_bypass_flag) is equal to 1, the slice level LMCS enabled
flag (such as slice_Imes_enabled_flag, slice_Imes_aps_id,
slice_chroma_residual_scale_flag) may be not signaled and inferred to be
0.

b) In one example, a bitstream constraint may be applied that the LMCS enabled flag

should be equal to 0 when the transform quantization bypass flag is equal to 1.

5. Embodiments
[0054] Newly added parts are enclosed in bolded double parentheses, e.g., {{a}} denotes that
“a” has been added, whereas the deleted parts from VVC working draft are enclosed in bolded
double brackets, e.g., [[b]] denotes that “b” has been deleted. The modifications are based on
the latest VVC working draft (JVET-02001-v11).

5.1 An example embodiment #1

[0055] The embodiment below is for the invented method that making the maximum TU size
dependent on the CTU size.
7.4.3.3. Sequence parameter set RBSP semantics

sps_max_luma_transform_size_64_flag equal 1o I specifies that the maximum transform size in luma
samples is equal to 64. sps_muax_luma_transform_size_64_flag equal to 0 specifies that the maximum
transform size in luma samples is equal to 32.

When CtbSizeY is less than 64, the value of sps_max_luma_transform_size_64_flag shall be equal to O.
The variables MinTbLog2SizeY, MaxTbLog2SizeY, MinTbSizeY, and MaxThSizeY are derived as follows:

MinThLog28izeY = 2 (7-27)
MaxTbLog2SizeY = sps_max_luma_transform_size_64 flag 7 6 - 5 (7-28)
MinTbSizeY = 1 << MinTbLog2SizeY (7-29)
MaxThSizeY = {{min(CtbSizeY,] << MaxTbLog2SizeY)}} (7-30)

23

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

5.2 An example embodiment #2
The embodiment below is for the invented method that making the TT and BT split process
dependent on the VPDU size.
6.4.2Allowed binary split process

The variuble allowBtSplit is derived as follows:

Otherwise, if all of the following conditions are true, allowBtSplit is set equal to FALSE
— biSplit is equal to SPLIT_BT_VER
—~ cbHeight is greater than [[MaxTbhSizeY] {{VSize}}
— x0 + chWidth is greater than pic_width_in_luma_samples
— Otherwise, if all of the following conditions are true, allowBtSplit is set equal to FALSE
— biSplit is equal to SPLIT_BT_HOR
- chWidth is greater than [[MaxThSizeY]] {{VSize}}
~ y0 + c¢bHeight is greater than pic_height_in luma_samples

i

Otherwise if all of the following conditions are true, allowBtSplit is set equal to FALSE
— DbtSplit is equal to SPLIT_BT VER
— chWidth is less than or equal to [[MaxTbSizeY]) {{VSize}}
— cbHeight is greater than [[MaxThSizeY]] {{VSize}}
— Otherwise if all of the following conditions are true, allowBtSplit is set equal to FALSE
—~ biSplit is equal to SPLIT_BT_HOR
- cbWidth is greater than [[MaxThSizeY]} {{VSize}}
— cbHeight is less than or equal to [[MaxTbSize¥Y1] {{VSize}}
6.4.3Allowed ternary split process

The variable allowTtSplit is derived as follows:

~ If one or more of the following conditions are true, allowTtSplit is set equal to FALSE:
chSize is less than or equal to 2 * MinT(SizeY

— chWidth is greater thar Min([[MaxTbSizeY]] {{VSize}}, maxT:Size }

cbHeight is greater than Min([[MaxTbSizeY1] {{VSize}}, maxTtSize)

mitDepth is greater than or equal to maxMrtDepth

i

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

— x0 + cbWidth is greater than pic_width_in_luma_samples
—~ ¥0 + cbhHeight is greater than pic_height_in_luma_samples
— treeType is equal 10 DUAL _TREE CHROMA and
(cbWidth / SubWidthC) * (cbHeight / SubHeightC) is less than or equal to 32
~ treeType is equal to DUAL_TREE_CHROMA and modeType is equal to INTRA
— Otherwise, allowTSplit is set equal to TRUE.
5.3 An example embodiment #3
The embodiment below is for the invented method that making the affine model parameters
calculation dependent on the CTU size.
7.4.3.3. Sequence parameter set RBSP semantics

log2_ctu_size_minus5 plus 5 specifies the luma coding tree block size of each CTU. It is a requirement of
bitstream conformance that the value of log2_ctu_size_minus5 be less than or equal to [121] {{3 (could be
larger per specified)}}.

CtbLog2SizeY = log2_ ctu_size minus5 + 5

{{CtbLog28izeY is used to indicate the CTU size in luma sampales of current video unit. When a single
CTU size is used for the current video unit, the CthLog2SizeY is calculated by above equation. Otherwise,
CtbLog2SizeY may depend on the actual CTU size which may be explicit signalled or implicit derived for
the current video unit. (an example) }}

8.5.5.5 Derivation process for luma affine control point motion vectors from a neighbouring block

The variables mvScaleHor, mvScaleVer, dHorX and dVerX are derived as follows:

— IfisCTUboundary is equal to TRUE, the following applies:
mvScaleHor = MvLX{[xNb J{ yNb + nNbH ~ 1 J[0] << [[7]) {{CtbLog2SizeY}} (8-533)
mvScaleVer = MyvLX[xNb][yNb + nNbH —] J[1] << [[7IN {{CrbLog28izeY}} (8-534)

~ Otherwise (isCTUboundary is equal to FALSE), the following applies:
mvScaleHor = CpMvLX[xNb][yNb][0][0] < < [I71) {{CthLog25SizeY}}
(8-537)
myScaleVer = CoMyLX[xNb][yNb][0][1] << [I71] {{CtbLog2SizeY}}
(8-538)

25

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

8.5.5.6 Derivation process for constructed affine control point motion vector merging candidates

When availableFlagCorner[0] is egual to TRUE and availableFlagCorner[2 | is equal to TRUE, the
Jollowing applies:
— For X being replaced by O or 1, the following applies:
~ The variable availableFlagLX is derived us follows:
~ If all of following conditions are TRUE, availableFlagLX is set equal to TRUE:
— predFlaglXCorner[0] is equal to 1
— predFlaglXCorner(2] is equal to 1
~ refldxLXCorner[0] is equal to refldxLXCorner[2 |
- Otherwise, availableFlagLX is set equal to FALSE.
~ When availableFlagLX is equal to TRUE, the following applies:
~ The second control point motion vector cpMvILXCorner[1] is derived as follows:
cpMyLXCorner[1 J[O | = (cpMvILXCorner[0][0] << [[7]]
{{CtbLog28izeY}}) +
((coMvLXCorner[2][1] ~ ecpMvIXCorner[O][1])
(8-606)
<< (17N {{CbLog2SizeY}} + Log2(cbHeight / cbWidth) })
cpMvLXCorner[1 J[1] = (coMvLXCorner[O][1] << [[7]]
{{CrbLog2SizeY}}) +
((coMvLXCorner[2][O } ~ cpMvLXCornerf O][0])
(8-607)
<< ([[71] {{CtbLag28izeY}} + Log2(cbHeight / cbWidth)))

8.5.5.9 Derivation process for motion vector arrays from affine control point motion vectors
The variables mvScaleHor, mvScaleVer, dHorX and dVerX are derived as follows:
myScaleHor = cpMvLX[0 JF 0] << [[7T} {{CtbLog2SizeY}}
(8-665)
mvScaleVer = cpMvIX[0][1] << [[7W {{CtbLog28izeY}}
(8-666)

26

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

5.4 Embodiment #4 on allowing BT and TT split depending on block size

[0056] As shown in FIG. 1, TT split may be allowed for a coding block with block size 64x64,
and BT split may be allowed for block sizes 32x64, 16x64, 8x64, 64x32, 64x16, 64x8, no matter
the maximum transform size is 32x32 or 64x64.

[0057] FIG. 1 is an example of allowing BT and TT split depending on block size.

5.5 Embodiment #5 on applying ISP dependent on the VPDU size, or 64x64

The modifications are based on the latest VVC working draft (JVET-Q2001-v14)
Coding unit syntax

coding_unit{ x0, y0, cbWidth, ebHeight, cqtDepth, treeType, modeType) { Descriptor

chType = treelype = = DUAL_TREE_CHROMA? 1 : 0

ift intra_mip_flag| x0 J[y0 1)

intra_mip_mode[x0 J[y0] ae(v)
else {
iff sps_mrl_enabled flag && ({y0 % CtbSizeY') > 0))
intra lume_ref_idx(x0 Jf y0] aelv)

if(sps_isp_enabled_flog && intra_luma_ref idxf x0][y0] = =0 &&
(cbWidth == [[MaxTbSizeY1} {{64 (or another option: Vsize)}y&d& cbHeight <=
[[MaxTbSize¥1l {{64 (or another option: Vsize}}}) &&
(cbWidth * cbHeight > MinTbSizeY * MinTbSizeY) }

intra_subpartitions_mode_flag[x0][y0 | ae(v)
il intra_subpartitions_mode flag[x0 [y] == 1}

intra, subpartitions_ split_flag] x0][y0 | ae(v)
IR imra, luma_ref idx[x0 J[y0] = = 0)

intra_luma_mpm._flag[x0][y0] ae(v)

iff intra_luma mpm_flag{ x0 [[yO] } {

it intra_luma_ref_idx{ x0 J{ y0 J = = D)

intra_tuma_not_planar_flag{ x0 J[y0] aelv)
il intra_tuma_not_planar_flagl x0][y0 1)
intra_lema_ _idxf x0 I yO | ae(v)
} else
intra_luma_mpm_remainder(x0][y0] ae(v)
}

27

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2020/10478S
Transform tree syntax
transform_tree(x0, y0, tbWidth, thHeight , treeType, chType) { Descriptor

InferTuChfLuma = 1

ifl IntraSubPartitionsSplitType = = ISP, NO_SPLIT && fecu sbt flug) {

ifl tbWidth > MaxTbSizeY || tbHeight > MaxTbSizeY) {

verSplitFirst = (tbWidth > MaxTb8izeY && thWidth > thHeight) ? 1 : 0

trafoWidth = verSplitFirst 2 (tbWidth / 2) : tbWidth

trafoHeight = IverSplitFirst ? (tbHeight /2) : tbHeight

transform_tree(x0, Y0, trafoWidsh, trafoHeight, chType)

if(verSplitFirst)

transform_tree{ x0 + trafoWidth, y0, trafoWidth, trafoHeight, treeType, ckType)

else

transform_tree(20, y0 + trafoHeight, trafoWidth, trafoHeight, treeType, chType)

Jelse f

transform_unit(x0, y0, tbWidsh, tbHeight, treeType, 0, chType)

J

] else Ifl cu_sht_flag) {

i /cu_sbi_horigontal_flag) {

trafoWidth = tbWidth * SbtNumFourthsTh0 /4

transform_unit(x0, y0, trafoWidth, thHeight, treelype, 0,0)

transform_unit(x0 + trafoWidth, v0, tbWidth — trafoWidth, tbHeight, treeType, 1, 0)

Jelse [

trafoHeight = tbHeight * SbtNumFourthsTb0 / 4

transform_unit(x0, y0, thWidth, trafoHeight, treeType , 0, 0)

transform_unit(x0, yO + trafoHeight, tb Width, tbHeight — trafoHeight, treeType, 1, 0)

}

) else if{ IntraSubPartitionsSplitType = = ISP_HOR_SPLIT) {

trafoHeight = tbHeight / NumlntraSubPartitions

for(partldx = 0; parddx < NumIntraSubPariitions; partldx++ }

28

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

(b Width > MaxTbSizeY) {

transform_unit(x0, y0 + trafoFleight * partldx, tbWidth/2, trafoHeight, treeType, partldx, 0)

transform_unit(x04
tbWidth/2, y0 + trafoHeight * partldx, tbWidth/2, trafoHeight, treeType, partldx, 0)

Jelse ()

transform_unit(x0, y0 + trafoHeight * partldyx, tbWidth, trafoHeight, treeType, partldx, 0)

m

ity

] else if{ IntraSubPartitionsSplitType = = ISP_VER_SPLIT) {

tmfaﬁ’idth = thWidth / NumIntraSubPartitions

Jor(partldx = O; partldx < NumlntraSubPartitiens; partldx++ } {{{

ifiHeight > MaxTbSizeY) {

transform_unit(x0 + trafoWidth * partldx, 0, trafoWidth, thHeight/2, treeType, partldx, 0)

transform_unit(x0 + trafoWidth * partldx, y0
+tbHeight/2, trafoWidth, tbHeight/2, treeType, partldx, 0)

Jelse 1)

transform_unit(x0 + trafoWidth * partldx, 0, trafoWidth, thHeight, treeType, partldx, 0)

im

1N

}

Coding unit semantics

intra_subpartitions_split_flag[x0][y0] specifies whether the intra subpartitions split type Is horizontal

or vertical. When intra_subpartitions_split_flag] xC][yO } is not present, it is inferred os follows:

— If ebHeight is greater than [[MaxTbSizeY]] {{64 (or another option: Vsize)}},
intra_subpartitions_split_flag[x0][v0] is Inferred to be equal to 0,

— Dtherwise (cbWidth is greater than [[MaxTbsizeY]] {{64 (or another option: Vsize)}l}),

intra_subpuartitions_split_flag[x0 J{ y0] is inferred to be equal to 1.

5.6 Embodiment #6 on applying MIP dependent on the VPDU size, or 64x64
The embodiment below is for the invented method that making the ISP dependent on the VPDU size. The

modifications are based on the latest VVC working draft (JVET-02001-v14)
Coding unit syntax

coding_unit(x0, y0, cbWidth, cbHeight, cqiDepth, treeType, modelype) {

Descriptor

chType = treeType = = DUAL_TREE_CHROMA? 1 : 0

29

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

Jelse{

ifl sps_bdpcm_enabled_flug & &
cbWidth <= MuxTsSize && cbHeight <= MaxTsSize)

intra_bdpcm_flag

ae(v)

ifl intra_bdpem_flag }

intra_bdpem_dir. flag

ae(v)

else {

ifl sps_mip_enabled flag &&
(Abs(Log2(cbWidih) — Log2(cbHeight }) <=2) &&
cbWidth <= [IMaxTbSize Y]} {{64 (or another option: Vsize)}} &&
cbHeight <= [[MaxTbSizeY]] {{64 (or another option: Vsize)}})

intra_mip_flag[x0 J[yO |

ae(y)

ifl intra_mip_flag[x0][y0])

intra_mip_mode[x0 J[vO]

ae(v)

else

5.7 Embodiment #7 on applying SBT dependent on the maximum

transform size

Sequence parometer set RBSP syntax

sps_sbt_enabled_flag

w(l)

[I iff sps_sbt_enabled_flag)

sps_sbt_max_size_64_flag

u(1)l

sps_affine_enabled_flag

(1)

ifl sps._affine_enabled_flag) {

sps_affine_type_flag

wl)

sps_affine_amyr_enabled_flag

w(l)

sps_affine_prof_enabled_flag

u(l)

Coding unit syntax

30

CA 03146299 2022~01m21

WO 2021/018082

PCT/CN2026/104785

coding_unit(x0, 0, cbWidth, cbHeight, cqiDepth, treeType, modelype) [

Descripto
r

chType = treeType = = DUAL_TREE_CHROMA? 1 : 0

ifl cu_cbf)(

iff CuPredMode[chType J[x0 J[y0] = = MODE_INTER && sps_sbt_enabled flag
&& Iciip_flagf x0][¥0 | && !MergeTriangleFlag| x0][yO |) {

ifl cbWidth <= [[MaxShtSize]] ({MaxTb8izeY}} && cbHeight <= [[MaxSbtSizel]
{{MaxTbSizeY}}) {

allowShtVerH = cbWidth >= 8

allowSbtVerQ = cbWidth >= 16

allowShtHorH = cbHeight >= 8

allowSbtHor(Q = cbHeight >= 16

ifl allowSbtVerH || allowSbtHorH || allowSbtVerQ || allowSbtHorQ)

cu_sht flag

ae(v)
/
il cu_sbt_flag) {
ifl (allowSbtVerH || allowSbtHorH) && (allowSbtVer(|| allowSbtHorQ))
cu_sht_quad_flag ae(v)
il (cu_sbt_quad_flag && allowSbtVerQ && allowSbtHorQ) | |
{ leu _sbt_guad flag && allowShtVerH & & allowSbtHorH))
cn_sbt_horizontal_flog ae(v)
cu_sht_pos_flog ae(v)
/

Sequence parameter set RBSP semantics

[[sps_sbt_max_size 64_flag equol to O specifies that the maximum CU width and height for allowing

subblock transform is 32 luma samples. sps_sbt_max_size_64_flag equal to 1 specifies that the

maximum CU width and height for allowing subblock transform is 64 luma samples.

MaxSbtSize = Min(MaxTbSizeY, sps_sbt_max_size 64 _flag ? 64 :32) 73211

31

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

5.8 Embodiment #8 on applying transform skip dependent on the

maximum transform size

Picture parameter set RBSP syntax

pic_parameter_set_rbsp() { Descriptor
num_ref_idx_default_active_minusl[i] ue(v)
rpll_idx_present_flag u(l)
init_qp_minus26 se(v)

L it sps_transform_skip_enabled_flag)

log2_transform_skip_max_size_minus2 ue(v)Il
cu_gp._delta_enabled_flag u(l)
ifl cu_qp.delta_enabled_flag)
cu_qp. delta_subdiy ue(v)
pps_cb_qp_offset se(v)
pps.cr.qp.offset se(v)
Coding unit syntax
coding _unit{ x0, yO, cbWidth, cbHeight, cqtDepth, treeType, modeType) { Descriptor

iR CuPredMode[chType J[x0][y0] = = MODE_INTRA ||
CuPredMode[chType J[x0][y0] == MODE_PLT) {

if{ treeType = = SINGLE_TREE || treelype = = DUAL_TREE_LUMA) {

ifl pred_mode_pit_flag) {

ifl treeType = = DUAL_TREE_LUMA)

palette_coding(x0, y0, cbWidth, cbHeight, 0, 1)

else /* SINGLE_TREE */

palette_coding(x0, yO, cbWidth, cbHeight, 0, 3)

Jelse

iU sps_bdpcm_enabled_flag &&
cbWidth <= [[MaxTsSizell {{MaxTbSizeY}} && cbHeight <= [[MaxTsSizell
{{MaxThbSizeX}})

intra_bdpem_flag ae(v)

32

CA 03146299 2022~01m21

WO 2021/018082

PCT/CN2020/10478S
ifl intra_bdpcem_flag)
intra_bdpcm_dir_flag ae(v)
else {
Transform unit syntax
transform_unit(x0, y0, tbWidth, tbHeight, treeType, subTulndex, chType) { Descriptor

iR tu_chf lumaf x0][y0] && treelype != DUAL_TREE_CHROMA
&& (tbWidth <= 32) & & (thHeight <= 32)
&& (IntraSubPartitionsSplitf x0][yO] = = ISP_NO_SPLIT)
&& (lou_sbt_flag))
ifl sps_transform_skip_enabled flag && !BdpemFlagf x0][yO] &&
tbWidth <= [[MaxTsSize]] {{MuxTbSizeY}} && thHeight <= [[Max1sSize]]
{{MaxTbSizeY}})
transform_skip_flag{ x0][y0 | ae(v)
ifl ((CuPredModef chType][x0][y0 | = = MODE_INTER &&
sps_explicit_mis_inter_enabled_flag)
| | (CuPredMode[chType J[x0][¥0] = = MODE_INTRA &&
sps_explicit_mits_intra_enabled_flag)) && (Itransform skip_flagf x0 Jf y0]))
tu_mits_jdx| x0 J[yO]

ae(y)

Picture parameter set RBSP semantics

[[log2_transform_skip_max_size _minus2 specifies the maximum block size used for transform skip, and
shall be in the range of 0 to 3.

When not present, the value of log2_transform_skip_max_size_minus2 is inferred to be equal to 0.

The variable MaxTsSize is set equal to 1 << { log2_transform_skin_max_size_minus2 + 2).1]

33

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

5.9 Embodiment #9 on ciip_flag dependent on the maximum transform size
Merge data syntax

34

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

merge_data(x0, y0, cbWidth, cbHeight, chT'ype) { Descriptor

if (CuPredMode[chType][x0][y0] = = MODE_IBC) {

ifft MaxNumIbcMergeCand > 1)

merge_idx[x0][y0] ae(v)
belsef
ifft MaxNumSubblockMergeCand > 0 && cbWidth >=8 && cbHeight >=8)
merge_subblock_ flag[x0][y0] ae(v)

ifl merge_subblock _flagl x0)[yO] == 1){

ifl MaxNumSubblockMergeCand > 1)

merge_subblock_idx[x0][y0] ae(v)

Jelse {

ifl (cbWidth * cbHeight) >= 64 & & ((sps_ciip_enabled flag &&
cu_skip_flag[x0 J[yO] = = 0 && cbWidth <= {{MaxTbSizeY}} & &
cbHeight <= {{MaxThSizeY}}) | |
¢ sps_triangle_enabled_flag & & MaxNumTriangleMergeCand > 1 &&
slice_type==B)))

regular_merge_flag[x0][v0] ae(v)

if (regular_merge_flag[x0][y0] = =1){

ifl sps_mmvd_enabled_flag)

mmvd_merge_flag[x0 J[y0] ae(v)
il mmvd_merge flag[x0][yO]==1){
il MaxNumMergeCand > 1)
mmvd_cand_flag[x0][y0] ae(v)
mmvd_distance_idx[x0][y0] ae(v)
mmyd_direction_idx[x0][y0 | ae(v)
Jelse !
ifl MaxNumMergeCand > 1)
merge_idx[x0][y0 | ae(v)
}
Jelsef

35

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

ifl sps_clip_enabled_flag && sps_triangle_enabled_flag &&
MaxNumTriangleMergeCaond > 1 && slice_type = =B &&
cu_skip_flag[x0][0] == 0 &&
(cbWidth * cbHeight) >= 64 &d& cbWidth <= {{MaxTbSizeY}} &&
cbHeight <= {{MaxTbSizeY}}) {

ciip_flagl x0 J[Y0] ae(v)
if{ ciip_flagf x0 Jf y0] && MaxNumMergeCand > 1)
merge._idx[x0 J[y0] ae(v)
ifl Iciip_flagl x0 J[yO] && MaxNumTriangleMergeCand > 1) {
merge_triangle_split_dir[x0][yO | ae(v)
merge._triangle_idx0[x0][0] ae(v)
merge_triangle_idx1[x0 [y0] ae(v)
J
}
}

}

ciip_flag[x0 I y0] specifies whether the combined inter-picture merge and intra-picture prediction is
applied for the current coding unit. The array indices x0, yO specify the location (x0, y0O) of the top-left
luma sample of the considered coding block relative to the top-left luma sample of the picture.
When ciip_flag[x0][y0 | is not present, it is inferred as follows:
- If all the following conditions are true, ciip_flag[x0 J[y0] is inferred to be equal tv 1:
- sps_ciip_enabled_flag Is equal to 1.
— general_merge_flagf x0 J[y0] is equal to 1.
- merge_subblock_flagl x0)[y0 | is equal to 0.
~ regular_merge_flag[x0][v0] is equal ta 0,
— cbWidth is less than or equal to {{MaxThSizeY}}.
- cbHeight is less than or equal to {{MaxTbSizeY}}.
cbWidth * chHelght is greater than or equal to 64,
— Otherwise, ciip_flag[x0][yo] is inferred to be equal to 0.

36

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

5.10 Embodiment #10 on sps_max_luma_transform_size_64_flag dependent on
CtbSizeY

7.3.2.3 Sequence parameter set RBSP syntax

seq_parameter_set_rbsp() { Descriptor

if(gtbtt_dual_tree_intra_flag) {

sps_log2_ diff min_qgt min_eb_intra_slice_chroma ue(v)
sps_max_mtt_hierarchy_depth_jntra_slice_chroma ue(v)
if (sps_max_mtt_hierarchy_depth_intra_slice_chroma = 0) {
sps_log2_diff_max_bt_min_qt_intra_slice_chroma ue(v)
sps_log2_diff_max_tt_min_qt_intra_slice_chroma ue(v)
}
}
{{if(log2_ctu_size_minus5 = 0)}}
sps_max_luma_transform_size, 64 flag u(l)
if(ChromaArrayType |=0) {
same_qp._table_for chroma u(l)
for(i= 0;i < same_gp_table_for _chroma ? 1 : 3; i++) {
mm_points_jin_gp_table_minusl[i] ue(v)
for(j = 0; j <=num_points_in_gp_table_minusl[i J; j++) {
delta_qp_in_val_ minusi[i][j] ue(v)
delta_qp_out_val[i][j] ue(v)
}

7.4.3.3. Sequence parameter set RBSP semantics

sps_max_luma_transform_size_64_flag equal to 1 specifies that the maximum transform size in luma

samples is equal to 64. sps_max_luma_transform_size_64_flag equal to 0 specifies that the maximum
transform size in lumq samples is equal to 32.

37

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

When [[CtbSizeY is less than 64,11 {{sps_max_luma_transform_size_64_flag is not present,}} the value of
sps_max_luma_transform_size_64_flag [[shalll] {{is inferred to}} be equal to 0.
The variables MinTbLog2SizeY, MaxThLog2SizeY, MinTbSizeY, and MaxThSizeY are derived as follows:

MinThLog2SizeY = 2 (7-27)
MaxTbLog2SizeY = sps_max_luma_transform_size 64 _flag ? 6 : 5 (7-28)
MinThbSizeY = 1 << MinTbLog2SizeY (7-29)
MaxTbSizeY = 1 << MuxTbLog2SizeY

(7-30)

[0058] FIG. 2 is a block diagram of a video processing apparatus 200. The apparatus 200 may
be used to implement one or more of the methods described herein. The apparatus 200 may be
embodied in a smartphone, tablet, computer, Internet of Things (IoT) receiver, and so on. The
apparatus 200 may include one or more processors 202, one or more memories 204 and video
processing hardware 206. The processor(s) 202 may be configured to implement one or more
methods described in the present document. The memory (memories) 204 may be used for
storing data and code used for implementing the methods and techniques described herein. The
video processing hardware 206 may be used to implement, in hardware circuitry, some
techniques described in the present document. In some embodiments, the video processing
hardware 206 may be at least partially within the processors 202 (e.g., a graphics co-
processor).

[0059] In some embodiments, the video coding methods may be implemented using an
apparatus that is implemented on a hardware platform as described with respect to FIG. 2.
[0060] Some embodiments of the disclosed technology include making a decision or
determination to enable a video processing tool or mode. In an example, when the video
processing tool or mode is enabled, the encoder will use or implement the tool or mode in the
processing of a block of video, but may not necessarily modify the resulting bitstream based on
the usage of the tool or mode. That is, a conversion from the block of video to the bitstream
representation of the video will use the video processing tool or mode when it is enabled based
on the decision or determination. In another example, when the video processing tool or mode
is enabled, the decoder will process the bitstream with the knowledge that the bitsiream has
been modified based on the video processing tool or mode. That is, a conversion from the
bitstream representation of the video to the block of video will be performed using the video
processing tool or mode that was enabled based on the decision or determination.

38

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

[0061] Some embodiments of the disclosed technology include making a decision or
determination to disable a video processing tool or mode. In an example, when the video
processing tool or mode is disabled, the encoder will not use the tool or mode in the conversion
of the block of video to the bitstream representation of the video. In another example, when the
video processing tool or mode is disabled, the decoder will process the bitstream with the
knowledge that the bitstream has not been modified using the video processing tool or mode
that was enabled based on the decision or determination.

[0062] FIG. 3 is a block diagram showing an example video processing system 300 in which
various techniques disclosed herein may be implemented. Various implementations may include
some or all of the components of the system 300. The system 300 may include input 302 for
receiving video content. The video content may be received in a raw or uncompressed format,
e.g-, 8 or 10 bit multi-component pixel values, or may be in a compressed or encoded format.
The input 302 may represent a network interface, a peripheral bus interface, or a storage
interface. Examples of network interface include wired interfaces such as Ethernet, passive
optical network (PON), etc. and wireless interfaces such as Wi-Fi or cellular interfaces.

[0063] The system 300 may include a coding component 304 that may implement the various
coding or encoding methods described in the present document. The coding component 304
may reduce the average bitrate of video from the input 302 to the output of the coding
component 304 to produce a coded representation of the video. The coding techniques are
therefore sometimes called video compression or video transcoding techniques. The output of
the coding component 304 may be either stored, or transmitted via a communication connected,
as represented by the component 306. The stored or communicated bitstream (or coded)
representation of the video received at the input 302 may be used by the component 308 for
generating pixel values or displayable video that is sent to a display interface 310. The process
of generating user-viewable video from the bitstiream representation is sometimes called video
decompression. Furthermore, while certain video processing operations are referred to as
“coding” operations or tools, it will be appreciated that the coding tools or operations are used at
an encoder and corresponding decoding tools or operations that reverse the resulis of the
coding will be performed by a decoder.

[0064] Examples of a peripheral bus interface or a display interface may include universal serial
bus (USB) or high definition multimedia interface {HDMI) or Displayport, and so on. Examples of
storage interfaces include SATA (serial advanced technology attachment), PCI, IDE interface,
and the like. The techniques described in the present document may be embodied in various

39

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

electronic devices such as mobile phones, laptops, smartphones or other devices that are
capable of performing digital data processing and/or video display.

[0065] FIG. 4 is a flowchart for a method 400 of video processing. The method 400 includes, at
operation 410, using a dimension of & virtual pipeline data unit (VPDU) used for a conversion
between a video comprising one or more video regions comprising one or more video blocks
and a bitstream representation of the video to perform a determination of whether a ternary-tree
(TT) or a binary tree (BT) partitioning of a video block of the vne or more video blocks is
enabled, the dimension being equal to VSize in luma samples.

[0066] The method 400 includes, at operation 420, performing, based on the determination, the
conversion.

[0067] FIG. 5 is a flowchart for a method 500 of video processing. The method 500 includes, at
operation 510, using, for a conversion between a video comprising one or more video regions
comprising one or more video blocks and a bitstream representation of the video, a dimengion
of a video block of the one or more video blocks to perform a determination of whether a
ternary-tree (TT) or a binary-tree (BT) partitioning of the video block is enabled.

[0068] The method 500 includes, at operation 520, performing, based on the determination, the
conversion.

[0069] FIG. 6 is a flowchart for a method 600 of video processing. The method 600 includes, at
operation 610, using a height or a width of a video block to perform a determination of whether a
coding tool is enabled for a conversion between a video comprising one or more video regions
comprising one or more video blocks comprising the video block and a bitstream representation
of the video, the determination being based on a comparison between the height or the width
with a value N, and N being a positive integer.

[0070] The method 600 includes, at operation 620, performing, based on the determination, the
conversion.

[0071] FIG. 7 is a flowchart for & method 700 of video processing. The method 700 includes, at
operation 710, using comparison between a height or a width of a video block and a size of a
transform block to perform a determination of whether a coding tool is enabled for a conversion
between a video comprising one or more video regions comprising one or more video blocks
comprising the video block and a bitstream representation of the video.

[0072] The method 700 includes, at operation 720, performing, based on the determination, the
conversion.

40

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

[0073] FIG. 8 is a flowchart for a method 800 of video processing. The method 800 includes, at
operation 810, using a height or a width of a video block to perform a determination of whether a
coding tool is enabled for a conversion between a video comprising one or more video regions
comprising one or more video blocks comprising the video block and a bitstream representation
of the video.

[0074] The method 800 includes, at operation 820, performing, based on the determination, the
conversion.

[0075] FIG. 9 is a flowchart for a method 900 of video processing. The method 900 includes, at
operation 910, using a comparison between a dimension of a sub-partition of a video block and
a maximum transform size to perform (a) a determination of whether an intra sub-partition
prediction (ISP) mode is enabled for a conversion between a video comprising one or more
video regions comprising one or more video blocks comprising the video block, and (b) a
selection of one or more allowable partition types for the conversion.

[0076] The method 900 includes, at operation 920, performing, based on the determination and
the selection, the conversion.

[0077] FIG. 10 is a flowchart for a method 1000 of video processing. The method 1000 includes,
at operation 1010, performing a conversion between a video comprising one or more video
regions comprising one or more video blocks and a bitstream representation of the video, the
conversion comprising a coding tool that has been disabled, and syntax elements related fo the
coding tool being excluded from the bitstream representation and inferred to be a predetermined
value specifying that the coding tool is disabled.

[0078] FIG. 11 is a flowchart for a method 1100 of video processing. The method 1100 includes,
at operation 1110, performing a conversion between a video comprising one or more video
regions comprising one or more video blocks and a bitstream representation of the video, the
conversion comprising a coding tool that has been disabled, and the bitstream representation
comprising syntax elements related to the coding tool that are inferred to be a predetermined
value based on the coding tool being disabled.

[0079] FIG. 12 is a flowchart for a method 1200 of video processing. The method 1200 includes,
at operation 1210, using a dimension of a virtual pipeline data unit (VPDU) and/or a maximum
transform size used for a conversion between a video comprising one or more video regions
comprising one or more video blocks and a bitstream representation of the video to perform a
determination of whether an implicit (QT) partitioning of a video block of the one or more video
blocks is enabled.

41

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

[0080] The method 1200 includes, at operation 1220, performing, based on the determination,
the conversion.

[0081] FIG. 13 is a flowchart for a method 1300 of video processing. The method 1300 includes,
at operation 1310, performing a conversion between a video comprising one or more video
regions comprising one or more video blocks and a bitstream representation of the video, the
conversion comprising a sub-block transtorm (SBT), and a maximum height or a maximum
width of the SBT being based on a maximum transform size.

[0082] FIG. 14 is a flowchart for a method 1400 of video processing. The method 1400 includes,
at operation 1410, performing a conversion between a video comprising one or more video
regions comprising one or more video blocks and a bitstream representation of the video, the
conversion comprising a transform skip mode and/or an intra block-based differential pulse code
modulation (BDPCM) mode, and a maximum block size used for the transform skip mode being
based on a maximum transform size.

[0083] FIG. 15 is a flowchart for a method 1500 of video processing. The method 1500 includes,
at operation 1510, using a comparison between a height or a width of a video block and a
maximum transform size to perform a determination of whether a combined inter intra prediction
(CIIP) mode is enabled for a conversion between a video comprising one or more video regions
comprising one or more video blocks comprising the video block and a bitstream representation
of the video.

[0084] The method 1600 includes, at operation 1520, performing, based on the determination,
the conversion,

[0085] FIG. 16 is a flowchart for a method 1600 of video processing. The method 1600 includes,
at operation 1610, making a determination, for a conversion between a video comprising one or
more video regions comprising one or more video blocks and a bitstream representation of the
video, regarding partitioning a video biock of the one or more video blocks coded with combined
inter intra prediction (CIIP).

[0086] The method 1600 includes, at operation 1620, performing, based on the determination,
the conversion.

[0087] FIG. 17 is a flowchart for a method 1700 of video processing. The method 1700 includes,
at operation 1710, performing a conversion between a video comprising a video region
comprising multiple video blocks and a bitstream representation of the video according to a rule,
the rule specifying that a maximum block size of the multiple video blocks in the video region
that are coded in the bitstream representation using a transform coding determines a maximum

42

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

block size of the multiple video blocks in the video region that are coded in the bitstream
representation without using transtorm coding.

[0088] FIG. 18 is a flowchart for a method 1800 of video processing. The method 1800 includes,
at operation 1810, performing & conversion between a video comprising a video region
comprising multiple video blocks and a bitstream representation of the video according to a rule,
the rule specifying that a luma mapping with chroma scaling (LMCS) process is disabled for the
video region when lossless coding is enabled for the video region, and the video region being a
sequence, a picture, a subpicture, a slice, a tile group, a tile, a brick, a coding tree unit (CTU)
row, a CTU, a coding unit (CU), a prediction unit (PU), a transform unit (TU), or a subblock.
[0089] In the methods 400-1800, in the ISP mode, a video block of the one or more video
blocks is partitioned into multiple sub-partitions before application of an intra-prediction and
transform.

[0090] In the methods 400-1800, the SBT comprises one or more transforms being separately
applied to one or more patrtitions of a video block of the one or more video blocks.

[0091] In the methods 400-1800, the transform skip mode comprises skipping transform and
inverse transform processes for a corresponding coding tool, and in the BDPCM mode, a
residual of an intra prediction of the current video block is predictively coded using a differential
pulse coding modulation operation.

[0092] In the methods 400-1800, in the CIIP mode, a final prediction of the video block is based
on a weighted sum of an inter prediction of the video block and an intra prediction of the video
block.

[0093] In the methods 400-1800, the LMCS process comprises luma samples of the video
region being reshaped between a first domain and a second domain and a chroma residual
being scaled in a luma-dependent manner.

[0094] In some embodiments, the following technical solutions may be implemented:

[0095] A1. A method of video processing, comprising using a dimension of a virtual pipeline
data unit (VPDU) used for a conversion between a video comprising one or more video regions
comprising one or more video blocks and a bitstream representation of the video to perform a
determination of whether a ternary-tree (TT) or a binary tree (BT) partitioning of a video block of
the one or more video blocks is enabled; and performing, based on the determination, the
conversion, wherein the dimension is equal to VSize in luma samples, wherein dimensions of
the video block are CtbSizeY in luma samples, wherein VSize = min{M, CtbSizeY), and wherein
M is a positive integer.

43

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

[0096] A2. The method of solution A1, wherein M = 64,

[0097] A3. The method of solution A1 or A2, wherein the dimension of the VPDU is a height or a
width.

[0098] A4. The method of solution A1, wherein the determination is independent of a maximum
transform size.

[0099] A5. The method of any of solutions A1 to A4, wherein VSize is a predetermined value.
[00100] A6. The method of solution A5, wherein VSize = 64,

[00101] A7. The method of solution A1, wherein determination of the TT partitioning is based on
a width or a height of the video block in luma samples being greater than min(VSize,
maxTiSize), and wherein maxTtSize is a maximum transform size.

[00102] A8. The method of solution A1, wherein determination of the TT partitioning is based on
a width or a height of the video block in luma samples being greater than VSize.

[00103] A9. The method of solution A7, wherein maxTtSize is 32x32 and VSize is 64x64, and
wherein the TT partitioning is disabled when a size of the video block is 128x128, 128« 64, or
684x128,

[00104] A10. The method of solution A7, wherein maxTiSize is 32x32 and VSize is 64x64, and
wherein the TT partitioning is enabled when a size of the video block is 64x64.

[00105] A11. The method of solution A1, wherein the determination of a vertical BT partitioning
is based on a width of the video block in luma samples being less than or equal to VSize and a
height of the video block in luma samples being greater than VSize.

[00106] A12. The method of solution A11, wherein a maximum transform size is 32x32 and
VSize is 64x64, and wherein the vertical BT partitioning is disabled when a size of the video
block is 64x128.

[00107] A13. The method of solution A11, wherein a maximum transform size is 32x32 and
VSize is 64x64, and wherein the vertical BT partitioning is enabled when a size of the video
block is 32x64, 16x64, or 8x64,

[00108] A14. The method of solution A1, wherein a vertical BT partitioning is disabled when (i) a
sum of a width of the video block in luma samples and a horizontal coordinate of a top-ieft luma
sample of the video block is greater than a width of a picture or a width of a subpicture
comprising the video block in luma samples and (ii) a height of the video block in luma samples
is greater than VSize.

[00109] A15. The method of solution A1, whereir a horizontal BT partitioning is enabled when a
sum of a width of the video block in luma samples and a horizontal coordinate of a top-left luma

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

sample of the video block is greater than a width of a picture or a width of a subpicture
comprising the video block in luma samples.

[00110] A16. The method of solution A1, wherein the determination of a horizontal BT
partitioning is based on a width of the video block in luma samples being greater than VSize and
a height of the video block in luma samples being less than or equal to VSize.

[00111] A17. The method of solution A16, wherein a maximum transform size is 32x32 and
VSize is 64x64, and wherein the horizontal BT partitioning is disabled when 4 size of the video
block is 128x64.

[00112] A18. The method of solution A16, wherein a maximum transform size is 32x32 and
VSize is 64x64, and wherein the horizontal BT partitioning is enabled when a size of the video
block is 64x8, 64x16, or 64x32.

[00113] A19. The method of solution A1, wherein a horizontal BT partitioning is disabled when
(i) a sum of a height of the video block in luma samples and a vertical coordinate of a top-left
luma sample of the video block is greater than a height of & picture or a height of a subpicture
comprising the video block in luma samples and (ii) a width of the video block in luma samples
is greater than VSize.

[00114] A20. The method of solution A1, wherein a vertical BT partitioning is enabled when a
sum of a height of the video block in lJuma samples and a vertical coordinate of a top-left luma
sample of the video block is greater than a height of a picture or a height of a subpicture
comprising the video block in luma samples.

[00115] A21. The method of solution A1, wherein the TT or the BT partitioning is disabled and
an indication of the TT or the BT partitioning is excluded from the bitstream representation, and
wherein the indication is implicitly derived to be a predetermined value that indicates the TT or
the BT partitioning is disabled.

[00116] A22. The method of solution A21, wherein the predetermined value is zero.

[00117] A23. The method of solution A1, wherein the TT or the BT partitioning is enabled and
an indication of the TT or the BT partitioning is signaled in the bitstream representation.
[00118] A24. The method of solution A1, wherein the TT or the BT partitioning is disabled,
wherein an indication of the TT or the BT partitioning is signaled in the bitstream representation,
and wherein the indication is ignored by a decoder.

[00119] A25. The method of solution A1, wherein the TT or the BT partitioning is disabled,
wherein an indication of the TT or the BT partitioning is signaled in the bitstream representation,
and wherein the indication is zero based on the TT or the BT partitioning being disabled.

45

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

[00120] A26. A method of video processing, comprising using, for a conversion between a video
comprising one or more video regions comprising one or more video blocks and a bitstream
representation of the video, a dimension of a video block of the one or more video blocks to
perform a determination of whether a ternary-tree (TT) or a binary-tree (BT) partitioning of the
video block is enabled; and performing, based on the determination, the conversion.

[00121] A27. The method of solution A26, wherein the determination of the TT or the BT
partitioning is based on a height or a width of the video block in luma samples being greater
than N, and wherein N is a positive integer.

[00122] A28. The method of solution A27, wherein N = 64.

[00123] A29. The method of solution A27 or 28, wherein a maximum transform size is 32x32,
and wherein the TT partitioning is disabled when a size of the video block is 128x128, 128x64,
or 64x128.

[00124] A30. The method of solution A27 or 28, wherein a maximum transform size is 32x32,
and wherein the TT partitioning is enabled when a size of the video block is 64x64.

[00125] A31. The method of solution A26, wherein the determination of a vertical BT patrtitioning
is based on a width of the video block in luma samples being less than or equal to N and a
height of the video block in luma samples being greater than N, and wherein N is a positive
integer.

[00126] A32. The method of solution A31, wherein N = 64.

[00127] A33. The method of solution A31 or 32, wherein a maximum transform size is 32x32,
and wherein the vertical BT partitioning is disabled when a size of the video block is 64x128.
[00128] A34. The method of solution A31 or 32, wherein a maximum transform size is 32x32,
and wherein the vertical BT partitioning is enabled when a size of the video block is 32x64,
16x64, or 8x64.

[00129] A35. The method of solution A26, wherein a vertical BT partitioning is disabled when (i)
a sum of a width of the video block in luma samples and a horizontal coordinate of a top-left
luma sample of the video block is greater than a width of a picture or a width of a subpicture
comprising the video block in luma samples and (ii) a height of the video block in luma samples
is greater than 64,

[00130] A36. The method of solution A26, wherein a horizontal BT partitioning is enabled when
a sum of a width of the video block in lJuma samples and a horizontal coordinate of a top-left
luma sample of the video block is greater than a width of a picture or a width of a subpicture
comprising the video block in luma samples.

46

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

[00131] A37. The method of solution A26, wherein the determination of a horizontal BT
partitioning is based on a width of the video block in luma samples being greater than N and a
height of the video block in luma samples being less than or equal to N, and wherein N is an
integer.

[00132] A38. The method of solution A37, wherein N = 64,

[00133] A39. The method of solution A37 or 38, wherein a maximum transform size is 32x32,
and wherein the horizontal BT partitioning is disabled when a size of the video block is 128x64.
[00134] A40. The method of solution A37 or 38, wherein a maximum transform size is 32x32,
and wherein the horizontal BT partitioning is enabled when a size of the video block is 64x8,
64x16, or 64x32.

[00135] A41. The method of solution A26, wherein a horizontal BT partitioning is disabled when
(i) a sum of a height of the video block in luma samples and a vertical coordinate of a luma
sample of the video block is greater than a height of a picture or a height of a subpicture
comprising the video block in luma samples and (ii) a width of the video block in luma samples
is greater than N, and wherein N is a positive integer.

[00136] A42. The method of solution A26, wherein a vertical BT partitioning is enabled when a
sum of a height of the video block in luma samples and a vertical coordinate of a top-left luma
sample of the video block is greater than a height of a picture or a height of a subpicture
comprising the video block in luma samples.

[00137] A43. The method of any of solutions A1 to A42, wherein the video block corresponds to
a coding tree unit (CTU) representing a logical partition used for coding the video into the
bitstream representation.

[00138] A44. The method of any of solutions A1 to A43, wherein performing the conversion
comprises generating the bitstream representation from the video region.

[00139] A45. The method of any of solutions A1 to A43, wherein performing the conversion
comprises generating the video region from the bitstream representation.

[00140] A46. An apparatus in a video system comprising a processor and a non-transitory
memory with instructions thereon, wherein the instructions upon execution by the processor,
cause the processor to implement the method in any one of solutions A1 to A45.

[00141] A47. A computer program product stored on a non-transitory computer readable media,
the computer program product including program code for carrying out the method in any one of
solutions A1 to A45,

[00142] In some embodiments, the following technical solutions may be implemented:

47

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

[00143] B1. A method of video processing, comprising using a height or a width of a video block
to perform a determination of whether a coding tool is enabled for a conversion between a video
comprising one or more video regions comprising one or more video blocks comprising the
video block and a bitstream representation of the video; and performing, based on the
determination, the conversion, wherein the determination is based on a comparison between
the height or the width with a value N, where N is a positive integer.

[00144] B2. The method of solution B1, wherein N = 64.

[00145] B3. The method of solution B1, wherein N = 128,

[00146] B4. The method of any of solutions B1 to B3, wherein the coding tool that is disabled
comprises a palette coding mode, an intra block copy (IBC) mode, and/or a combined intra-inter
prediction (CIIP) mode.

[00147] B5. The method of any of solutions B1 to B4, wherein the coding tool further comprises
an intra skip mode, a triangle prediction mode, a regular merge mode, a decoder side motion
derivation mode, a bi-directional optical flow mode, a prediction refinement based optical flow
mode, an affine prediction mode, and/or a sub-block based temporal motion vector prediction
(TMVP) mode.

[00148] B6. The method of any of solutions B1 to B3, wherein the coding tool that is enabled
comprises a palette coding mode and/or an intra block copy (IBC) mode.

[00149] B7. The method of any of solutions B1 {o B3, wherein the bitstream representation
comprises an explicit syntax constraint for disabling the coding tool.

[00150] B8. The method of solution B7, wherein the explicit syntax constraint comprises a
palette coding mode flag and/or an intra block copy (IBC) mode flag.

[00151] BY. The method of any of solutions B1 to B8, wherein the video block comprises a
coding unit (CU) or a prediction unit (PU).

[00152] B10. A method of video processing, comprising using comparison between a height or
a width of a video block and a size of a transform block to perform a determination of whether a
coding tool is enabled for a conversion between a video comprising one or more video regions
comprising one or more video blocks comprising the video block and a bitstream representation
of the video; and performing, based on the determination, the conversion.

[00153] B11. The method of solution B10, wherein the coding tool comprises intra sub-partition
prediction (ISP), matrix-based intra prediction (MIP), a sub-block transform {(SBT), or a coding
tool that splits one coding unit (CU) associated with the video region into multiple transform

48

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

units (TUs) or one coding block associated with the video region into multiple transform blocks
(TBs).

[00154] B12. The method of solution B10, wherein the coding tool comprises a transform skip
mode, block-based delta pulse code modulation (BDPCM), DPCM, or PCM.

[00155] B13. The method of solution B10, wherein the coding tool comprises an intra block
copy (IBC) mode or a palette mode (PLT).

[00156] B14. The method of solution B10, wher¢in the coding tool comprises a combined intra-
inter prediction (CIIP) mode.

[00157] B15. A method of video processing, comprising using a height or a width of a video
block to perform a determination of whether a coding tool is enabled for a conversion between a
video comprising one or more video regions comprising one or more video blocks comprising
the video block and a bitstream representation of the video; and performing, based on the
determination, the conversion.

[00158] B16. The method of solution B15, wherein the coding tool comprises an intra sub-
partition prediction (ISP}, a sub-block transform (SBT), an intra block copy (IBC), or a palette
mode.

[00159] B17. The method of solution B15, wherein the coding tool comprises an intra sub-
partition prediction (ISP} that is enabled when the height or the width of the video block in luma
samples is less than or equal to N, and wherein N is a positive integer.

[00160] B18. The method of solution B15, wherein the coding tool comprises an intra sub-
partition prediction (ISP) that is disabled when the height or the width of the video block in luma
samples is greater than N, and wherein N is a positive integer.

[00161] B19. The method of solution B17 or B18, wherein N = 64.

[00162] B20. The method of solution B15, wherein the determination is based on a comparison
between the height or the width of the video block with a size of a virtual pipeline data unit
(VPDU).

[00163] B21. The method of solution B20, wherein the coding tool is enabled when the height or
the width of the video block in luma samples is less than or equal to the size of the VPDU.
[00164] B22. The method of solution B20, wherein the coding tool is disabled when the height
or the width of the video block in luma samples is greater than the size of the VPDLJ.

[00165] B23. The method of solution B21 or B22, wherein the size of the VPDU is 32 or 64.
[00166] B24. A method of video processing, comprising using a comparison between a
dimension of a sub-partition of a video block and a maximum transform size to perform (a) a

49

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

determination of whether an intra sub-partition prediction (ISP) mode is enabled for a
conversion between a video comprising one or more video regions comprising one or more
video blocks comprising the video block, and (b) a selection of one or more allowable partition
types for the conversion; and performing, based on the determination and the selection, the
conversion, wherein, in the ISP mode, a video block of the one or more video blocks is
partitioned into multiple sub-partitions before application of an intra-prediction and transform.
[00167] B25. The method of solution B24, wherein the ISP mode is enabled when a height or a
width of the video block is less than or equal to the maximum transform size for at least one of
the one or more allowable partition types.

[00168] B26. The method of solution B24, wherein the ISP mode is disabled when a height or a
width of the video block is greater than the maximum transform size for at least one of the one
or more allowable partition types.

[00169] B27. The method of solution B24, whergin the ISP mode is enabled when a height or a
width of the video block is less than or equal to the maximum transform size for each of the one
or more allowable partition types.

[00170] B28. The method of solution B24, wherein the ISP mode is disabled when a height or a
width of the video block is greater than the maximum transform size for each of the one or more
allowable partition types.

[00171] B29. The method of solution B24, wherein signaling the one or more allowable partition
types in the bitstream representation is based on a relationship between a height or a width of a
corresponding sub-partition and the maximum transform size.

[00172] B30. The method of solution B24, wherein signaling the one or more allowable partition
types in the bitstream representation is based on a relationship between a height or a width of
the video block and the maximum transform size.

[00173] B31. The method of solution B24, wherein enabling or disabling an application of a
coding tool on the video block is based on a relationship between a size of the video block and
the maximum transform size.

[00174] B32. The method of soluticn B31, wherein the maximum transform size is 32 or 64.
[00175] B33. The method of solution B31 or B32, wherein the coding tool is enabled when a
height or a width of the video block is less than or equal to the maximum transform size.
[00176] B34. The method of any of solutions B31 to B33, wherein the coding tool comprises an
intra block copy (IBC) mode or a palette mode.

50

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

[00177] B35. A method of video processing, comprising performing a conversion between a
video comprising one or more video regions compriging one or more video blocks and a
bitstream representation of the video, wherein the conversion comprises a coding tool that has
been disabled, and wherein syntax elements related to the coding tool are excluded from the
bitstream representation and inferred to be a predetermined value specifying that the coding
tool is disabled.

[00178] B36. A method of video processing, comprising performing a conversion betweeri a
video comprising one or more video regions comprising one or more video blocks and a
bitstream representation of the video, wherein the conversion comprises a coding tool that has
been disabled, and wherein the bitstream representation comprises syntax elements related to
the coding tool that are inferred to be a predetermined value based on the coding tool being
disabled.

[00179] B37. The method of solution B35 or B36, wherein the predetermined value is zero.
[00180] B38. The method of solution B35 or B36, wherein the coding tool comprises an intra
sub-partition prediction (18P), and wherein the syntax elements indicate whether a video block
of the one or more video blocks is divided into multiple sub-partitions (denoted
intra_subpartitions_mode_flag) and/or how to partition the video block into multiple sub-
partitions (denoted intra_subpartitions_split_flag).

[00181] B39. The method of solution B35 or B36, wherein the coding tool comprises a matrix-
based intra prediction (MIP), and wherein the syntax elements indicate whether a video block of
the one or more video blocks uses the MIP (denoted intra_mip_flag) and/or an indication of an
MIP mode index (denoted intra_mip_mode).

[00182] B40. The method of solution B35 or B36, wherein the coding tool comprises an intra
block copy (IBC) mode, and wherein the syntax elements indicate whether a video block of the
one or more video blocks uses the IBC mode (denoted pred_mode_ibc_flag).

[00183] B41. The method of solution B35 or B36, wherein the coding tool comprises a palette
mode, and wherein the syntax elements indicate whether a video block of the one or more video
blocks uses a palette mode (denoted pred_mode_plt_flag).

[00184] B42. A method of video processing, comprising using a dimension of a virtual pipeline
data unit (VPDU) and/or a maximum transform size used for a conversion between a video
comprising one or more video regions comprising one or more video blocks and a bitstream
representation of the video to perform a determination of whether an implicit (QT) partitioning of

51

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

a video block of the one or more video blocks is enabled; and performing, based on the
determination, the conversion.

[00185] B43. The method of solution B42, wherein each sub-partition of the implicit QT
partitioning is recursively partitioned until a size of the sub-partition equals a size of the VPDU.
[00186] B44. The method of solution B42, wherein each sub-partition of the implicit QT
partitioning is recursively partitioned until a size of the sub-partition equals the maximum
transform size.

[00187] B45. A method of video processing, comprising performing a conversion between a
video compriging one or more video regions comprising one or more video blocks and a
bitstream representation of the video, wherein the conversion comprises a sub-block transform
(SBT), wherein a maximum height or a maximum width of the SBT is based on a maximum
transform size, and wherein the SBT comprises one or more transforms being separately
applied to one or more partitions of a video block of the one or more video biocks.

[00188] B46. The method of solution B45, wherein at least one of the maximum height or the
maximum width of the 8BT is set equal to the maximum transform size.

[00189] B47. The method of solution B45, wherein the bitstream representation excludes a
syntax element related to the maximum height or the maximum width of the SET.

[00190] B48. The method of solution B47, wherein the syntax element is
sps_sbt_max_size_64 flag and is inferred to be a predetermined value indicating the maximum
transform size is less than 64,

[00191] B49. The method of solution B48, wherein the predetermined value is zero.

[00192] B50. The method of solution B47, wherein signaling a syntax element related to the
SBT in the bitstream representation is based on the maximum fransform size.

[00193] B51. A method of video processing, comprising performing a conversion between a
video comprising one or more video regions comprising one or more video blocks and a
bitstream representation of the video, wherein the conversion comprises a transform skip mode
and/or an intra block-based differential pulse code modulation (BDPCM) mode, wherein a
maximum block size used for the transform skip mode is based on a maximum transform size,
wherein the transform skip mode comprises skipping transform and inverse transform
processes for a corresponding coding tool, and wherein, in the BDPCM mode, a residual of an
intra prediction of the current video block is predictively coded using a differential pulse coding
modulation operation.

52

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

[00194] B52. The method of solution B51, wherein the maximum block size for the transform
skip mode is set equal to the maximum transform size.

[00195] B53. The method of solution B51, wherein the bitstream representation excludes a
syntax element related to the maximum block size for the transform skip mode.

[00196] B54. The method of solution B51, wherein a maximum block size used for the intra
BDPCM maode is independently signaled in the bitstream representation.

[00197] B55. The method of solution B54, wherein a maximum block size used for the intra
BDPCM mode is not based on the maximum block size for the transform skip mode.

[00198] B56. The method of solution B51, wherein a maximum block size used for the intra
BDPCM mode is signaled in a sequence parameter set (SPS), a video parameter set (VPS), a
picture parameter set (PPS), a slice header, a virtual pipeline data unit (VPDU), a coding tree
unit (CTU), or a coding unit (CU) in the bitstream representation.

[00199] B57. A method of video processing, comprising using a comparison between a height
or a width of a video block and a maximum transform size to perform a determination of whether
a combined inter intra prediction (ClIP) mode is enabled for a conversion between a video
comprising one or more video regions comprising one or more video blocks comprising the
video block and a bitstream representation of the video; and performing, based on the
determination, the conversion, wherein, in the CIIP mode, a final prediction of the video block is
based on a weighted sum of an inter prediction of the video block and an intra prediction of the
video block.

[00200] B58. The method of solution B57, wherein the CIIP mode is disabled when the height
and/or the width of the video block is greater than the maximum transform size.

[00201] B59. A method of video processing, comprising making a determination, for a
conversion between a video comprising one or more video regions comprising one or more
video blocks and a bitstream representation of the video, regarding partitioning a video block of
the one or more video blocks coded with combined inter intra prediction (CIIP); and performing,
based on the determination, the conversion, wherein, in the CIIP mode, a final prediction of the
video block is based on a weighted sum of an inter prediction of the video block and an intra
prediction of the video block.

[00202] B60. The method of solution B59, wherein the video block is not partitioned when a
height and a width of the coding unit are less than 128.

[00203] B61. The method of solution B59, wherein the video block is not partitioned when a
height and a width of the coding unit are less than or equal to 64,

53

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

[00204] B62. The method of solution B59, wherein the video block is partitioned into multiple
sub-partitions, wherein an intra-prediction for a first sub-partition of the multiple sub-partitions is
based on a reconstruction of a second partition of the multiple sub-partitions, and wherein the
intra-prediction of the second is performed prior to the intra-prediction of the first sub-partition.
[00205] B63. The method of any of solutions B59 to B62, wherein the video block is a coding
unit (CU).

[00206] B64. A method of video processing, comprising performing a conversion betweeri a
video comprising a video region comprising multiple video blocks and a bitstream representation
of the video according to a rule, wherein the rule specifies that a maximum block size of the
multiple video blocks in the video region that are coded in the bitstream representation using a
transform coding determines a maximum block size of the multiple video blocks in the video
region that are coded in the bitstream representation without using transform coding.

[00207] B65. The method of solution B64, whergin the maximum size for the transform skip
mode is equal to MaxTbSizeY.

[00208] B66. The method of solution B64, wherein the bitstream representation excludes an
indication of the maximum size for the transform skip mode.

[00209] B67. A method of video processing, comprising performing a conversion between a
video compriging a video region comprising multiple video blocks and a bitstream representation
of the video according to a rule, wherein the rule specifies that a luma mapping with chroma
scaling (LMCS) process Is disabled for the video region when lossless coding is enabled for the
video region, wherein the video region is a sequence, a picture, a subpiciure, a slice, a tile
group, a tile, a brick, a coding tree unit (CTU) row, a CTU, a coding unit (CU), a prediction unit
(PU), a transform unit (TU), or a subblock, and wherein the LMCS process comprises luma
samples of the video region being reshaped between a first domain and a second domain and a
chroma residual being scaled in a luma-dependent manner.

[00210] B68. The method of solution B67, wherein signaling an indication related to the LMCS
process is based on a transform quantization bypass flag for the video region.

[00211] B69. The method of solution B68, wherein the indication related o the LMCS process is
excluded from the bitstream representation and inferred to be zero when the transform
quantization bypass flag is equal to one.

[00212] B70. The method of any of sclutions B1 to B69, wherein performing the conversion
comprises generating the bitstream representation from the video region.

54

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

[00213] B71. The method of any of solutions B1 to B69, wherein performing the conversion
comprises generating the video region from the bitstream representation.

[00214] B72. An apparatus in a video system comprising a processor and a non-transitory
memory with instructions thereon, wherein the instructions upon execution by the processor,
cause the processor to implement the method in any one of solutions B1 to B71.

[00215] B73. A computer program product stored on a non-transitory computer readable media,
the computer program product including program code for carrying out the method in any one of
solutions B1 to B71.

[00216] The disclosed and other solutions, examples, embodiments, modules and the functional
operations described in this document can be implemented in digital electronic circuitry, or in
computer software, firmware, or hardware, including the structures disclosed in this document
and their structural equivalents, or in combinations of one or more of them. The disclosed and
other embodiments can be implemented as one or more computer program products, i.e., one
or more modules of computer program instructions encoded on a computer readable medium
for execution by, or to control the operation of, data processing apparatus. The computer
readable medium can be a machine-readable storage device, a machine-readable storage
substrate, a memory device, a composition of matter effecting a machine-readable propagated
signal, or a combination of one or more them. The term “data processing apparatus”
encompasses all apparatus, devices, and machines for processing data, inciuding by way of
example a programmable processor, a computer, or multiple processors or computers. The
apparatus can include, in addition to hardware, code that creates an execution environment for
the computer program in question, e.g., code that constitutes processor firmware, a protocol
stack, a database management system, an operating system, or a combination of one or more
of them. A propagated signal is an artificially generated signal, e.g., a machine-generated
electrical, optical, or electromagnetic signal, that is generated to encode information for
transmission to suitable receiver apparatus.

[00217] A computer program (also known as a program, software, software application,
script, or code) can be written in any form of programming language, including compiled or
interpreted languages, and it can be deployed in any form, including as a stand-alone program
or as a module, component, subroutine, or other unit suitable for use in a computing
environment. A computer program does not necessarily correspond to a file in a file system. A
program can be stored in a portion of a file that holds other programs or data (e.g., one or more
scripts stored in a markup language document), in a single file dedicated to the program in

55

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

question, or in multiple coordinated files (e.g., files that store one or more modules, sub
programs, or portions of code). A computer program can be deployed to be executed on one
computer or on multiple computers that are located at one site or distributed across multiple
sites and interconnected by a communication network.

[00218] The processes and logic flows described in this document can be performed by one
or more programmable processors executing one or more computer programs to perform
functions by operating on input data and generating output. The processes and logic flows can
also be performed by, and apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific
integrated circuit).

[00219] Processors suitable for the execution of a computer program include, by way of
example, both general and special purpose microprocessors, and any one or more processors
of any kind of digital computer. Generally, a processor will receive instructions and data from a
read only memory or a random-access memory or both. The essential elements of a computer
are a processor for performing instructions and one or more memory devices for storing
instructions and data. Generally, a computer will also include, or be operatively coupled to
receive data from or transfer data to, or both, one or more mass storage devices for storing
data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not
have such devices. Computer readable media suitable for storing computer program
instructions and data include all forms of non-volatile memory, media and memory devices,
including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and
flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can be
supplemented by, or incorporated in, special purpose logic circuitry.

[00220] While this patent document contains many specifics, these should not be construed
as limitations on the scope of any subject matter or of what may be claimed, but rather as
descriptions of features that may be specific to particular embodiments of particular techniques.
Certain features that are described in this patent document in the context of separate
embodiments can also be implemented in combination in a single embodiment. Conversely,
various features that are described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any suitable subcombination. Moreover,
although features may be described above as acting in certain combinations and even initially
claimed as such, one or more features from a claimed combination can in some cases be

56

CA 03146299 2022~01m21

WO 2021/018082 PCT/CN2026/104785

excised from the combination, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

[00221] Similarly, while operations are depicted in the drawings in a particular order, this
should not be understood as requiring that such operations be petformed in the particular order
shown or in sequential order, or that all illustrated operations be performed, to achieve desirable
resulis. Moreover, the separation of various system components in the embodiments described
in this patent document should not be understood as requiring such separation in all
embodiments.

[00222] Only a few implementations and examples are described and other implementations,
enhancements and variations c¢an be made based on what is described and illustrated in this
patent document.

57

What is claimed is:
1. A method of processing video data, comprising:

determining, based on a dimension of a current video block of a video, whether a first
partitioning process that splits the current video block into two sub-blocks or a second
partitioning process that splits the current video block into three sub-blocks in a horizontal
direction or a vertical direction is allowed or not, wherein the dimension of the current video
block comprises a height or a width of the current video block in luma samples; and

performing, based on the determining, a conversion between the current video block and a
bitstream of the video,

wherein the first partitioning process in the vertical direction is disabled in a case where (i) a
sum of the width of the current video block in luma samples and a horizontal coordinate of a top-
left luma sample of the current video block is greater than a width of a picture or a width of a
subpicture comprising the current video block in luma samples and (ii) the height of the current
video block in luma samples is greater than N; wherein N = 64;

wherein the second partitioning process is disabled in a case where the height or the width of
the current video block in luma samples being greater than 64;

wherein the first partitioning process in the vertical direction is disabled in a case where (i)
the width of the current video block in luma samples is less than or equal to N and (ii) the height
of the current video block in luma samples is greater than N;

wherein the first partitioning process in the horizontal direction is disabled in a case where (i)
the width of the current video block in luma samples is greater than N and (ii) the height of the
current video block in luma samples is less than or equal to N;

wherein the first partitioning process in the horizontal direction is disabled in a case where (i)
a sum of the height of the current video block in luma samples and a vertical coordinate of the
top-left luma sample of the current video block is greater than a height of a picture or a height of
a subpicture comprising the current video block in luma samples and (ii) the width of the current
video block in luma samples is greater than N;

wherein, it cannot be determined that the first partitioning process in the horizontal direction
is disabled only according to a condition that a sum of the width of the current video block in
luma samples and a horizontal coordinate of a top-left luma sample of the current video block is
greater than a width of a picture comprising the current video block in luma samples; and

wherein the first partitioning process comprises a binary tree (BT) partition, and the second

partitioning process comprises a ternary tree (TT) partition.

58

Date Regue/Date Received 2023-10-26

2. The method of claim 1, further comprises:
determining whether the first partitioning process or the second partitioning process is

allowed or not to be independent of a maximum transform size.

3. The method of claim 2, wherein the maximum transform size is dependent on a dimension of
a coding tree unit, and the dimension of the coding tree unit comprises a width and/or a height
of the coding tree unit.

4. The method of claim 2, wherein the maximum transform size is less than or equal to the
dimension of a coding tree unit.

5. The method of claim 2, wherein in a case where the dimension of a coding tree unit is less
than M, the maximum transform size is less than M, where M=64.

6. The method of any one of claims 1 to 5, wherein the conversion comprises encoding the

current video block into the bitstream.

7. The method of any one of claims 1 to 5, wherein the conversion comprises decoding the

current video block from the bitstream.

8. An apparatus for processing video data comprising a processor and a non-transitory memory
with instructions thereon, wherein the instructions upon execution by the processor, cause the
processor to:

determine, based on a dimension of a current video block of a video, whether a first
partitioning process that splits the current video block into two sub-blocks or a second
partitioning process that splits the current video block into three sub-blocks in a horizontal
direction or a vertical direction is allowed or not, wherein the dimension of the current video
block comprises a height or a width of the current video block in luma samples; and

perform, based on the determining, a conversion between the current video block and a
bitstream of the video,

wherein the first partitioning process in the vertical direction is disabled in a case where (i) a
sum of the width of the current video block in luma samples and a horizontal coordinate of a top-

left luma sample of the current video block is greater than a width of a picture or a width of a

59

Date Regue/Date Received 2023-10-26

subpicture comprising the current video block in luma samples and (i) the height of the current
video block in luma samples is greater than N; wherein N = 64;

wherein the second partitioning process is disabled in a case where the height or the width of
the current video block in luma samples being greater than 64;

wherein the first partitioning process in the vertical direction is disabled in a case where (i)
the width of the current video block in luma samples is less than or equal to N and (ii) the height
of the current video block in luma samples is greater than N;

wherein the first partitioning process in the horizontal direction is disabled in a case where (i)
the width of the current video block in luma samples is greater than N and (ii) the height of the
current video block in luma samples is less than or equal to N;

wherein the first partitioning process in the horizontal direction is disabled in a case where (i)
a sum of the height of the current video block in luma samples and a vertical coordinate of the
top-left luma sample of the current video block is greater than a height of a picture or a height of
a subpicture comprising the current video block in luma samples and (ii) the width of the current
video block in luma samples is greater than N;

wherein, it cannot be determined that the first partitioning process in the horizontal direction
is disabled only according to a condition that a sum of the width of the current video block in
luma samples and a horizontal coordinate of a top-left luma sample of the current video block is
greater than a width of a picture comprising the current video block in luma samples; and

wherein the first partitioning process comprises a binary tree (BT) partition, and the second
partitioning process comprises a ternary tree (TT) partition.

9. The apparatus of claim 8, further comprises: determining whether the first partitioning
process or the second partitioning process is allowed or not to be independent of a maximum
transform size.

10. The apparatus of claim 9, wherein the maximum transform size is dependent on a
dimension of a coding tree unit, and the dimension of the coding tree unit comprises a width

and/or a height of the coding tree unit.

11. The apparatus of claim 9, wherein the maximum transform size is less than or equal to the
dimension of a coding tree unit.

60

Date Regue/Date Received 2023-10-26

12. The apparatus of claim 9, wherein in a case where the dimension of a coding tree unit is

less than M, the maximum transform size is less than M, where M=64.

13. A non-transitory computer-readable storage medium storing computer program instructions
that, when executed by a processor, cause the processor to:

determine, based on a dimension of a current video block of a video, whether a first
partitioning process that splits the current video block into two sub-blocks or a second
partitioning process that splits the current video block into three sub-blocks in a horizontal
direction or a vertical direction is allowed or not, wherein the dimension of the current video
block comprises a height or a width of the current video block in luma samples; and

perform, based on the determining, a conversion between the current video block and a
bitstream of the video,

wherein the first partitioning process in the vertical direction is disabled in a case where (i) a
sum of the width of the current video block in luma samples and a horizontal coordinate of a top-
left luma sample of the current video block is greater than a width of a picture or a width of a
subpicture comprising the current video block in luma samples and (ii} the height of the current
video block in luma samples is greater than N; wherein N = 64;

wherein the second partitioning process is disabled in a case where the height or the width of
the current video block in luma samples being greater than 64;

wherein the first partitioning process in the vertical direction is disabled in a case where (i)
the width of the current video block in luma samples is less than or equal to N and (ii) the height
of the current video block in luma samples is greater than N;

wherein the first partitioning process in the horizontal direction is disabled in a case where (i)
the width of the current video block in luma samples is greater than N and (ii) the height of the
current video block in luma samples is less than or equal to N;

wherein the first partitioning process in the horizontal direction is disabled in a case where (i)
a sum of the height of the current video block in luma samples and a vertical coordinate of the
top-left luma sample of the current video block is greater than a height of a picture or a height of
a subpicture comprising the current video block in luma samples and (ii) the width of the current
video block in luma samples is greater than N;

wherein, it cannot be determined that the first partitioning process in the horizontal direction
is disabled only according to a condition that a sum of the width of the current video block in
luma samples and a horizontal coordinate of a top-left luma sample of the current video block is
greater than a width of a picture comprising the current video block in luma samples; and

61

Date Regue/Date Received 2023-10-26

wherein the first partitioning process comprises a binary tree (BT) partition, and the second

partitioning process comprises a ternary tree (TT) partition.

14. The non-transitory computer-readable storage medium of claim 13, wherein the
instructions further cause the processor to: determine whether the first partitioning process or
the second partitioning process is allowed or not to be independent of a maximum transform

size.

15. The non-transitory computer-readable storage medium of claim 14, wherein the maximum
transform size is dependent on a dimension of a coding tree unit, and the dimension of the

coding tree unit comprises a width and/or a height of the coding tree unit.

16. The non-transitory computer-readable storage medium of claim 14, wherein the maximum

transform size is less than or equal to the dimension of a coding tree unit.

17. The non-transitory computer-readable storage medium of claim 14, wherein in a case
where the dimension of a coding tree unit is less than M, the maximum transform size is less
than M, where M=64.

18. A method for storing a bitstream of a video, comprising:

determining, based on a dimension of a current video block of the video, whether a first
partitioning process that splits the current video block into two sub-blocks or a second
partitioning process that splits the current video block into three sub-blocks in a horizontal
direction or a vertical direction is allowed or not, wherein the dimension of the current video
block comprises a height or a width of the current video block in luma samples;

generating the bitstream based on the determining; and

storing the bitstream in a non-transitory computer-readable recording medium,

wherein the first partitioning process in the vertical direction is disabled in a case where (i) a
sum of the width of the current video block in luma samples and a horizontal coordinate of a top-
left luma sample of the current video block is greater than a width of a picture or a width of a
subpicture comprising the current video block in luma samples and (ii) the height of the current
video block in luma samples is greater than N; wherein N = 64;

wherein the second partitioning process is disabled in a case where the height or the width of
the current video block in luma samples being greater than 64;

62

Date Regue/Date Received 2023-10-26

wherein the first partitioning process in the vertical direction is disabled in a case where (i)
the width of the current video block in luma samples is less than or equal to N and (ii) the height
of the current video block in luma samples is greater than N;

wherein the first partitioning process in the horizontal direction is disabled in a case where (i)
the width of the current video block in luma samples is greater than N and (ii) the height of the
current video block in luma samples is less than or equal to N;

wherein the first partitioning process in the horizontal direction is disabled in a case where (i)
a sum of the height of the current video block in luma samples and a vertical coordinate of the
top-left luma sample of the current video block is greater than a height of a picture or a height of
a subpicture comprising the current video block in luma samples and (ii) the width of the current
video block in luma samples is greater than N;

wherein, it cannot be determined that the first partitioning process in the horizontal direction
is disabled only according to a condition that a sum of the width of the current video block in
luma samples and a horizontal coordinate of a top-left luma sample of the current video block is
greater than a width of a picture comprising the current video block in luma samples; and

wherein the first partitioning process comprises a binary tree (BT) partition, and the second
partitioning process comprises a ternary tree (TT) partition.

19. The method of claim 18, further comprises:

determining whether the first partitioning process or the second partitioning process is
allowed or not to be independent of a maximum transform size,

wherein the maximum transform size is dependent on a dimension of a coding tree unit, and
the dimension of the coding tree unit comprises a width and/or a height of the coding tree unit;

wherein the maximum transform size is less than or equal to the dimension of the coding tree
unit; and

wherein in a case where the dimension of the coding tree unit is less than M, the maximum
transform size is less than M, where M=64.

63

Date Regue/Date Received 2023-10-26

1/18

—
)
LL
8
mrmmrmm‘l‘
2| |
16
l I
% m
3 A £
3] =3
£ =
3 i
— WO
™
iy
w l
< A > N B ” — s

Date Regue/Date Received 2023-10-26

2/18

¢ Old

90¢ Aows\
Ayinong
Buissaoo.d 0apIA v0c
10ss3201d
AV 4

00¢

Date Regue/Date Received 2023-10-26

300

Date Regue/Date Received 2023-10-26

310

3/18

308

306

304

302

FIG. 3

4/18

¥ Old

0cy —

UOISISAUOD
8y} ‘uoljeulwls}ap 8y} uo paseq ‘Bulwiouad

oLy ——

(A9ZISA}D ‘N)ulw = 8ZISA pue
‘so|dwes ewn| Ul A9ZISAID
Bulaq %o0|q 09pIA 8y} JO suoisuawip ‘sojdwes
Bwn| Ul 8zISA 0} |lenba Buiag uoisuswip ayj
‘pajgeuS SI SHO0|q OSPIA BIOW JO SUO 8y} JO Y20|q
O9pIA e Jo Buluoniped aau) Aleuiq e 10 aal}-Aleuls)
B JaylayMm JO uoljeulursa)sp e wiouad 0} 0apiA
3y} JO uolejussalidal weallsiiq B pue s300|q 03pIA
aJjow 1o auo Buisudwod suoibal 08pIA 810w IO BUO
Buislidwod 08pIA B USOM}O(UOISISAUOD B IO} pasn
Hun ejep auljadid jenuIA B Jo uoisuawip e Buisn

_/

oov

Date Regue/Date Received 2023-10-26

5/18

G Old

0¢G ——

UOISIBAUOD
8y} ‘uoljeulwIs}ap 8y} Uo paseq ‘Bulwiouad

0l ——

psjqeus si %00[q O3pIA 8y}

Jo Buluoiiped sal-Aseuiq e 1o aal}-Aieuls) e Jayjaym
JO uoljeulwIa}ep B wiopad 0} $Y00|q 0SpIA ai0W
JO BUO 3] JO }20|q O3PIA B JO UOISUBWIP B ‘08pIA

3} JO uoljejuasaldal wealsiig B pue s300|q 08pIA
alow 10 auo Buisudwos suoibais 0apIA aiow 10 BUo

BuisLIdWOD 0BPIA B USOM]S(UOISISAUOD B 10} ‘Buisn

/

009

Date Regue/Date Received 2023-10-26

6/18

9 'Old

029 —

UOISIBAUOD
8y} ‘uoljeuiwls)ap a8y} uo peseq ‘Bulwiopad

09 ——

N 8njeA e iim yjpim

ay} Jo ybiay ay} usamjag uosiiedwod B Uo paseq
Buiaq uoneulwlalep sy} ‘0apIA ay} Jo uonejussaidal

wealJjsjig e pue 3o0|g oapIA ay} Buisudwod syo0|g

O8pIA 810w Jo auo Buisdwos suoibal 0spIA alow
JO auo Buislidwod 0spIA B Usam}ag UOISISBAUOD B JO}
pajqeus si 00} Buipod e Jayjaym JO uoijeuiwlalsp e
wouad 0] %00|q 08pIA B 1O yipim e 1o ybiay e Buisn

/

009

Date Regue/Date Received 2023-10-26

7/18

L Old

0¢. —

UOISIBAUOD
8y} ‘uoljeulwIs}ap 8y} Uo paseq ‘Bulwiouad

0L ——

O8pIA 38U} JO uoljejuasaldal Weal)s]iq B pue 3o0|q
08pIA 8y} Buisiidwod $)¥00|g 0SpPIA 810W JO BUO
BuisLidwo?d suoibal 0apIA alow 1o auo Buisudwod
O8pIA B USAM]BQ UOISISAUOD B 10} pajqeus
sl |00} Buipod e Jayjoym Jo uoljeulwlalap e wiopad
0} Y00|q WJojSuel} B JO ZIS B PUR }00|(q 03pIA
B JO Yipim e Jo Jybiay e usamjeq uosliedwod buisn

/

004

Date Regue/Date Received 2023-10-26

8/18

8 Old

0c8 —

UOISJSAUOD
8y} ‘uoljeulwlalep ay} uo peseq ‘Buiwiopled

08 ——

03pIA 8} JO uolejuasaidal
wealjsiqg e pue }o0|q 0apIA ay) Buisudwos s¥00|q
O8pIA aJow 10 auo Buistidwod suoibal 0spIA alow
10 auo Buislidwos 08pIA B UsaM}S(UOISISAUOD B 1O}
pajqeus s| |00} Buipod e Jayjaym JO uoijeuiwlalsp e
wiopad 03 %00|g 08pIA B Jo UYipim e o ybiay e Buisn

/

008

Date Regue/Date Received 2023-10-26

9/18

6 Old

06 —

UOISISAUOD 8U} ‘Uoijoslas
By} puke uoljeulwialap sy} uo paseq ‘Buiwiopad

06 ——

UOISISAUOD
2y} Jo} sadA} uoniued sjgemojje aJow Jo auo

JO uoog|as e (q) pue Yoojq oaplA ay)] Buisidwod
S)00|q 03pIA 810w 10 auo Buisudwod suoibal ospIA
alow Jo auo Buislidwod 0apIA B USaM}a] UOISIOAUOD
B 10} pajgeus s| apow uoioipaid uoijued-gns eiul

ue Jayjaym Jo uoljeuiwialap e (e) wiopad 0] azis
wiojsuel) wnwixew e pue }o0|g 08pIA e jo uoljiued
-gns B JO uoisuawip e usamjaq uostiedwod e Buisn

/

006

Date Regue/Date Received 2023-10-26

10/18

0L Old

010l ——

ps|qesip si joo} Bulpod sy}

1ey} BulAloads anjeA paulwisiapaid e aq 0} paliajul

pue uoljejussaidal wes}s)iq sy} WoJj papn|oxa

Bulaq |00} Buipod ay} 0} paje|a. sjuswiaje XejuAs pue

‘pajgesip usag sey ey} |00} Buipod e Buisdwod
UOISISAUOD 3y} ‘08pIA 8y} JO uoljejuasaidal
wealsiig B pue s)00|q 09pIA SJoW JO aUo

Buislidwo?d suoibal oapIA alow 10 suo Buisudwod

09pIA B UsBaM}aq UOISISAUOD e Bulwliouad

/

0001

Date Regue/Date Received 2023-10-26

11/18

Ll Old

oL —]

pajgesip Buiaq |00}

Buipoo ay}) uo paseq anjeA pauiwelepald e aq 0}
paliajul ale jey} |00} Buipod sy} 0] paje|al sJusWs|d
xejuAs Buisudwiod uonejussaidal weallsliq sy pue

‘pajgesip usag sey jeyj joo} Buipod e Buisudwod

UOISISAUOD 3y} ‘08pIA 8y} JO uolejuasaidal
weallsiig B pue s300|q 09pIA aJoW JO aUo

Buisuudwos suoibal 0apIA aiow 10 suo Buisudwos

O3pIA B USBM]S(UOISISAUOD B Bulwiouad

/

00LL

Date Regue/Date Received 2023-10-26

12/18

¢l 9ld

0ccL —

UOISISAUOD
8y} ‘uoljeuiwls)ap 8y} uo peseq ‘Bulwiioped

oLch ——

pajqeus si S¥00|g 08pIA
2J0OW JO 8UO 8y} JO Yo0|q OspIA e Jo Buiuoiiued
Holdwi ue Jsyjaym jo uoneulwlisiap e wiopad
0} 08pIA 8y} Jo uonejussaidal wealjs}iq e pue

S)00]g 08pIA aiow Jo auo Buisudwos suoibal ospiA
aJow Jo auo BuisLIdW o 0SPIA B USSM}S] UOISISAUOD

B 10J pasn 9zIs Wlojsuel] wnwixew e Jo/pue
Jun ejep auljadid jenliA e Jo uoisuswip e Buisn

/

00cl

Date Regue/Date Received 2023-10-26

13/18

€L old

olelL —

9ZIS Wiojsuel] wnwixew e uo paseq Buleq
19S 2y} 4O Yipim winwiixew e 10 jybiay wnwixew
e pue ‘(193) wiojsued; ¥o0jg-gns e Buisudwod
UOISISAUOD 3y} ‘08pIA 8y} Jo uoljejuasaidal
weallsiig B pue $300|q 09pIA aJOW JO 3UOo

Buislidwod suoibal 0apIA alow 10 auo Buisdwod

08pIA B USaM]a(q UOISIaAUOD & Buiwiopad

/

oocl

Date Regue/Date Received 2023-10-26

14/18

vl Old

oLvlL ——

azIs wojsuel)
wnuwixew e uo paseq buiaq spow diys wuojsuel)
3y} JoJ pasn azIs ¥00|g Wwhnwixew e pue ‘apowl
uonenpow apo2 asind |enualayip paseq-320|q
BIjUl UB 10/pue apow dpjs wiojsuel) e Buisidwod
UOISISAUOD 83U} ‘08pIA 8y} Jo uoljejuasaidal
weallsiig B pue $300|q 09pIA SJOW JO dUOo
Buislidwod suoibal 0apIA alow 10 auo Buisdwod
O8pIA B USBM]S(UOISISAUOD B Bulwiouad

/

oovi

Date Regue/Date Received 2023-10-26

15/18

GL Old

0csl —

UOISJBAUOD
8y} ‘uoljeulwls}ap 8y} uo paseq ‘Buliopad

oLglL ——

03pIA 8} JO uolejuasaidal
weaJjsig e pue)o0|g 0opIA ayj Buisudwod
S)00|q 08pIA 810w 10 auo Buisudwod suoibal ospIA
alow Jo auo Buislidwod 0apIA B UsaM}a(UOISISAUOD
B 1O} pa|geus si apow uoijaipald enul Jajul
pauIquwiod B Jayjaym JO uoljeuluslep e wiouad
0] 9ZIS WojSuel} Wnwixew e pue %00|q 08pIA e
1O yipim e 1o yblay e usamiaq uositiedwod e Buisn

/

00gG1

Date Regue/Date Received 2023-10-26

16/18

91 Old

0291 —

UOISISAUOD
8y} ‘uoljeuiwls)ep a8y} uo paseq ‘Bulwioped

091 ——

uoNoIpald Blul JaJUI PBUIGWOD Y)IIM Papod SH00|q
OSPIA 8I0W JO SUO 3} JO 300|q 0apIA e Buluoiped
Buipsebali ‘0apIA By} Jo uoleluasaldal weals)q
B pue S$)20|q 09pIA alow Jo auo Buisudwod
suoibal oapIA alow 10 auo Buisiudwod oapIA
B US9M}ag UOISISAUOD B 1o} ‘uoljeulwusiap e Bupjep

/

0091

Date Regue/Date Received 2023-10-26

17/18

Ll Old

OLLL ——

Buipos wiojsuel) Buisn Jnoyum uonejuasaldal
WweaJ}s}iq 8y} ul pepoa ale jey) uoibal oapiA ay)

Ul S)00|q 08pIA ajdijnW 8y} JO ZIS Y20|q WNWIXew e
saulwlialep Buipods wiojsuel) e Buisn uoljejussaidal

weaqsiiq 8y} ul pspod ale jey} uoibal ospiA 8y}

Ul S)00]|g 08pIA ajdi}jnW 8y} JO 8ZIS X20|g WnWiXew

e Jey} Buifyoads ajni ayj ‘aint e 03 Buipioooe

08pIA 83U} JO uoljejuasaidal Wealls}iq B pue s)o0|q
o9pIA ajdiinw Buisidwoo uoibai oapia e BuisLdwod

O8pIA B USaM]a(] UOISIaAUOD & Buiwioped

/

0041

Date Regue/Date Received 2023-10-26

18/18

81 Old

0L8L —

¥oolqgns e 1o ‘(NL) uun wuojsues; e ‘(Nd)

Hun uopdipaid e ‘(N9D) Hun Bulpos e ‘NLD e ‘Mol
(NLD) 1un aay Buipos e “Youg e ‘g e ‘dnoib 3|
B ‘92l|s e ‘ainjoidgns e ‘ainjoid e ‘@dusnbas e Buiaq
uolBal 0apIA 8y} pue ‘uoibal oapIA By} 1o} pajgeus si
Buipod ssa|sso| uaym uoibal 0apIA By} 104 pajgesip
sI ssao0ud (SONT) Bulieos ewolys yum buiddew
ewn| e jey} BulAyoads ajni ay) ‘sint e 0} Buipioooe
O8pIA 3y} JO uoljejuasaidal Wealls)iq B pue s)o0|q
o9pIA ajdiinw Buisidwoo uoibai oapia e HuisLdwod
O8pIA B USBM]S(UOISISAUOD B Bulwiouad

/

0081

Date Regue/Date Received 2023-10-26

400

N

Using a dimension of a virtual pipeline data unit
used for a conversion between a video comprising
one or more video regions comprising one or more
video blocks and a bitstream representation of the

video to perform a determination of whether a
ternary-tree or a binary tree partitioning of avideo —— 410
block of the ons or more video blocks is enabled,

the dimension being equal to VSize in luma
samples, dimensions of the video block being
CtbSizeY in luma samples,
and VSize = min{M, CtbSizeY)

Performing, based on the determination, the

conversion —— 420

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - DESCRIPTION
	Page 57 - DESCRIPTION
	Page 58 - DESCRIPTION
	Page 59 - DESCRIPTION
	Page 60 - DESCRIPTION
	Page 61 - DESCRIPTION
	Page 62 - DESCRIPTION
	Page 63 - DESCRIPTION
	Page 64 - DESCRIPTION
	Page 65 - CLAIMS
	Page 66 - CLAIMS
	Page 67 - CLAIMS
	Page 68 - CLAIMS
	Page 69 - CLAIMS
	Page 70 - CLAIMS
	Page 71 - DRAWINGS
	Page 72 - DRAWINGS
	Page 73 - DRAWINGS
	Page 74 - DRAWINGS
	Page 75 - DRAWINGS
	Page 76 - DRAWINGS
	Page 77 - DRAWINGS
	Page 78 - DRAWINGS
	Page 79 - DRAWINGS
	Page 80 - DRAWINGS
	Page 81 - DRAWINGS
	Page 82 - DRAWINGS
	Page 83 - DRAWINGS
	Page 84 - DRAWINGS
	Page 85 - DRAWINGS
	Page 86 - DRAWINGS
	Page 87 - DRAWINGS
	Page 88 - DRAWINGS
	Page 89 - REPRESENTATIVE_DRAWING

