(54) 发明名称
印模，用于印模的印模胶筒及半成品

(57) 摘要
本发明涉及一种带有一个印刷单元 (3)、一个操纵单元 (2) 和一个连接件 (4) 的印模 (1)，印刷单元 (3) 通过连接件 (4) 与操纵单元 (2) 相连，另外，印刷单元 (3) 还具有一个固定元件 (6) 和一个槽截面为圆形的印刷模板 (9)，固定元件 (6) 用来固定印刷模板 (9)，利用操纵单元 (2) 通过轴向移动可以将印刷单元 (3) 从原始位置移动到印刷位置。另外，通过轴向移动可以将印刷模板 (9) 移动到一个定位位置，进而在该位置将所述的印刷模板 (9) 旋转到一个相对于操纵单元 (2) 的角度位置。
权利要求书

1. 带有一个印刷单元 (3)、一个操纵单元 (2) 和一个连接件 (4) 的印模 (1)，其中印刷单元 (3) 通过连接件 (4) 与操纵单元 (2) 相连，另外，印刷单元 (3) 还具有一个固定元件 (6) 和一个印模板 (9)，固定元件 (6) 用来固定印模板 (9)，利用操纵单元 (2) 通过轴向移动可以将印刷单元 (3) 从原始位置移动到印模位置。其特征在于：通过轴向移动可以将印模板 (9) 移动到一个定位位置，在该位置将所述的印模板 (9) 旋转到一个相对于操纵单元 (2) 的角度位置上。

2. 根据权利要求 1 所述的印模 (1)，其特征在于：所述印刷位置被设计在原始位置和定位位置之间。

3. 根据权利要求 1 或 2 所述的印模 (1)，其特征在于：通过一个固定框架 (8) 将印模板 (9) 固定在印刷单元 (3) 上，在印刷单元 (9) 处于定位位置时，所述固定框架 (8) 可以旋转。

4. 根据权利要求 3 所述的印模 (1)，其特征在于：所述印刷单元 (3) 具有一个用于印刷模板 (9) 的固定元件 (6)，该固定元件通过一个制动或卡扣连接与所述固定框架 (8) 相连。

5. 根据权利要求 4 所述的印模 (1)，其特征在于：所述制动或卡扣连接被设计成开槽弹簧连接件。

6. 根据权利要求 3 所述的印模 (1)，其特征在于：所述操纵单元 (2) 具有一个用于安装、至少是部分安装印刷单元 (3) 的外壳 (5)，在所述外壳 (5) 的一个与印刷单元 (3) 相对的内表面 (32) 上和 / 或在固定元件 (6) 和 / 或固定框架 (8) 的一个指向外壳 (5) 内表面 (32) 的外表面 (34) 上，安装了至少一个用于印刷单元 (3) 的旋转止动元件。

7. 根据权利要求 6 所述的印模 (1)，其特征在于：所述旋转止动元件由从外壳 (5) 内表面 (32) 向印刷单元 (3) 方向伸出的和 / 或从固定元件 (6) 外表面 (34) 朝外壳 (5) 内表面 (32) 方向伸出的连接片 (35) 构成。

8. 根据权利要求 7 所述的印模 (1)，其特征在于：在所述外壳 (5) 的内表面 (32) 上或所述固定元件 (6) 的外表面 (34) 上设计了至少一个凹槽，特指齿槽 (36)，该凹槽可以与一个连接片 (35) 共同发挥作用。

9. 根据权利要求 6 或 7 所述的印模 (1)，其特征在于：所述外壳 (5) 内表面 (32) 上和 / 或所述固定元件 (6) 和 / 或固定框架 (8) 外表面 (34) 上的旋转止动元件被设计成制齿 (33) 形状。

10. 根据权利要求 3 所述的印模 (1)，其特征在于：所述固定框架 (8) 通过一个螺纹连接件 (43) 或一个卡口接头与所述固定元件 (6) 相连。

11. 根据权利要求 3 所述的印模 (1)，其特征在于：所述固定元件 (6) 具有一个开口 (12)，连接件 (4) 穿过这个开口将固定元件 (6) 和操纵单元 (2) 相连和 / 或也可以将这个开口作为印模原件的加注口使用。

12. 根据权利要求 1 或 2 所述的印模 (1)，其特征在于：可以旋转的移动单元 (3) 移动到一个解锁位置，所述连接件 (4) 会在该位置解除与固定元件 (6) 之间的连接。

13. 根据权利要求 1 或 2 所述的印模 (1)，其特征在于：所述连接件 (4) 具有一个制动支脚 (18)，通过这个制动支脚可以将操纵单元 (2) 与印刷单元 (3) 相连。

14. 根据权利要求 13 所述的印模 (1)，其特征在于：可以设置至少两个制动支脚 (18)
并对其进行相互定位，使固定元件（6）方向上两者之间的距离较小。

15. 根据权利要求13所述的印模（1），其特征在于：所述制动机脚（18）具有至少三个节段，其中两个节段是接近垂直的，其中的节段是朝内倾斜的。

16. 根据权利要求1或2所述的印模（1），其特征在于：使用一个密封元件（13）、特指一块薄膜（13a）对所述固定元件（6）的开口（12）进行防水密封。

17. 根据权利要求1或2所述的印模（1），其特征在于：所述薄膜（13a）由一种厚度为30–50 μm的、经过热涂层处理的铝箔（13a）构成，作为优选，直接喷涂到薄膜（13a）上的聚合涂层具有一个20–50 μm的厚度。

18. 根据权利要求1或2所述的印模（1），其特征在于：所述固定元件（6）具有两个区域，其中一个区域用来容纳颜料（46），第二个区域用来安装颜料存储器（10）。

19. 根据权利要求1或2所述的印模（1），其特征在于：所述固定元件（6）具有至少一个指示元件（25）、特指柱状结构（26）。

20. 用于权利要求1到19所述的圆形印模（1）的印模胶筒（45），其作用是用首次灌注或加注颜料（46），其中包含一个槽形固定装置（6），该装置带有一个槽底（11）和至少一个侧壁以及一个与槽底（11）相对的上侧开口（11a），所述的上侧开口用于安装颜料存储器（10）。其特征在于：在所述槽底（11）中设置了至少一个开口（12），并使用一块薄膜（13a）对这个开口（12）和所述的上侧开口（11a）进行防水密封，另外，在所述固定元件（6）中包含颜料存储器（10）和颜料（46）。

21. 根据权利要求20所述的印模胶筒（45），其特征在于：所述薄膜（13a）最好由一种厚度为30–50 μm的、经过热涂层处理的铝箔（13a）构成，作为优选，直接喷涂到薄膜（13a）上的聚合涂层具有一个20–50 μm的厚度。

22. 根据权利要求20或21所述的印模胶筒（45），其特征在于：根据“玻璃遮盖法”所述的用于密封上侧（23a）和/或开口（12）的防水薄膜（13a）安装或固定在固定元件（6）上。

23. 根据权利要求20或21所述的印模胶筒（45），其特征在于：将所述胶筒安装到印模（1）或印刷单元（3）中时可以将开口（12）上的薄膜（13a）顶破。

24. 根据权利要求20或21所述的印模胶筒（45），其特征在于：所述固定装置（6）上侧（23a）上的薄膜（13a）是可以剥离或移除的。

25. 根据权利要求20或21所述的印模胶筒（45），其特征在于：所述固定元件（6）具有两个区域，其中一个区域用来容纳颜料（46），第二个区域用来安装颜料存储器（10）。

26. 根据权利要求20或21所述的印模胶筒（45），其特征在于：在所述固定元件（6）中灌注了特定数量的颜料（46），这些颜料量能够确保完全浸透颜料存储器（10）并提供插入式印刷模板（9）所需的颜料吸收量。

27. 根据权利要求20或21所述的印模胶筒（45），其特征在于：固定元件，尤其是槽底（11）和其中安装的部件被设计成圆形。

28. 用于权利要求1到19所述的圆形印模（1）的半成品，包含一个槽形固定元件（6），这个固定元件带有一个槽底（11）和至少一个侧壁（28a）以及一个与槽底（11）相对的上侧开口（12a），所述的上侧开口用于安装颜料存储器（10）。其特征在于：在所述槽底（12）中设置了至少一个开口（12），并使用一个密封元件（13）对这个开口进行防水密封。
29. 根据权利要求 28 所述的半成品，其特征在于：所述固定元件 (6) 具有两个区域，其中一个区域用来容纳颜料 (46)，第二个区域用来安装颜料存储器 (10)。
印模、用于印模的印模胶筒及半成品

【0001】本发明涉及一种带有铰接单元、一个操纵单元和一个连接件的印模，其中，印刷单元通过连接件与操纵单元相连，另外印刷单元还具有一个固定单元和一个印刷模板，固定单元用来固定印刷模板。利用所述的操纵单元通过轴向移动可以将印刷单元从原始位置移动到印刷位置。

【0002】另外，本发明也涉及一种适用于圆形印模的、用来一次灌注或加注颜料的印模胶筒，胶筒中包含一个槽形固定装置，该装置带有一个槽底和至少一个侧壁以及一个与槽底相对的用于安装颜料存储器的上侧开口。

【0003】再就是，本发明还涉及一种包含一个槽形固定单元的半成品，所述槽形固定单元同样带有一个槽底和至少一个侧壁以及一个与槽底相对的用于安装颜料存储器的上侧开口。

【0004】除了带有矩形或正方形印刷模板的传统印模之外，背景技术还对WO2004/060685A1或US2005/0056173A1即所谓的圆形印模做了描述。在此，印刷模板的横截面被设计成圆形。在现有的被称之为“预加墨印模”或类似名称的印模上，同样可以设计这种圆形的印刷模板，但存在一个问题，印模的正确位置都是相同的。通常情况下，在圆形印模或印模的上侧或侧面具有一个观察窗，通过观察窗可以观察印刷图案，因此应根据印模的正对面对印模印刷图案进行调整。如果观察窗中压印图像的相对位置与印版不符，那么在调整印模的过程中，印模模板就会根据观察窗中的压印图像生成一个扭曲的图像。在矩形的印刷模板中就不会出现这样的问题，因为几何形状决定了这种模板在印模外壳中只有两种安装可能性，而圆形印刷模板则恰恰相反，理论上可以考虑无穷多的安装位置。

【0005】在所述的产品中，从所谓的闪光时间点开始（或者从制作激光文字模板或凝胶文字模板开始）就必须注意，将印刷模板与印模设备的其它部件正确对齐。组装过程中，压印图像通常会靠近工作台侧，也就是说，在最终接合之前利用印模设备根本不能对配件进行控制，这就增加了上述的对齐过程。此外还必须将夹紧印刷模板所需的连接件精确对齐。出版物DE2912985A1和US4599494A对手动印模做了描述，这种印模具有一个由相互啮合的连接件构成的旋转止动元件，通过该元件可以改变印刷模板的垂直位置。

【0006】出版物GB2197821公开了一种带有圆形印刷模板的手动印模。其中，带有两个开槽弹簧连接件的插入式把手能够防止印模的扭转，但不能对其进行调整。

【0007】本发明的任务是提供一种简化圆形印模组装过程的方法。其中包含的另外一个任务是缩短印模的制作时间，尤其是颜料存储器的浸渍时间。

【0008】通过开头所述的印模能够完成上述的发明任务。在所述的印模中，可以通过轴向移动将印刷模板移动到定位位置，进而将定位位置将其旋转到一个相对于操纵单元的角度位置上。在安装整套印模之后，可以根据印刷模板的定位位置以及相关的可旋转性进行对齐过程，因此，这种印模与传统印刷模板的区别在于印刷模板的位置决定的过程中不必注意压印图像与整个印模之间的对齐过程，或者说不必注意组装过程中必要部件的定位方式。换句话说，组装期间部件的导向定位无关紧要。这种设计不仅降低了零售商组装印模的难度，还简化了用户更换印刷模板恢复正确位置的步骤。将印刷模板安装到印模中时不必注意部件
的相对位置。
[0009] 根据本发明的一个结构变型，可以将印刷位置设置在原始位置和定位位置之间，也就是说，模板可以通过轴向移动沿轴向方向到达印刷位置之后的定位位置，进而继续移动从印刷单元中突出出来，这样一来就可以更为轻易的对其进行控制。
[0010] 由此简化了印刷模板的定位过程，在印刷模板和整个印模之间能够更为简单的生成一个正确的相对角度。
[0011] 在这种结构中还能通过一个止动环将印刷模板固定在印刷单元上。
所述的止动环可以在印刷模板的定位位置中旋转。因此，想要旋转印刷模板时不需操纵模板本身，只需旋转止动环即可将模板调整到一个正确的相对角度。这样一来，在所谓的预压印模中的印刷模板被墨水浸湿之后，就可以通过这种方式实现一个更为干净的调整过程。
[0012] 还存在另外一种设计可能性，印刷单元具有一个用于印刷模板的固定元件。该固定元件通过一个制动或卡扣连接件与止动环相连。只需将止动环夹在固定元件上，这不仅降低了印模的组装难度，还简化了现有正确角度下印刷模板在固定元件中的固定过程，从而增加了印刷模板在相角度下的可调节性。
[0013] 作为优选，可以将所述的制动或卡扣连接件设计成开槽弹簧连接件。在这种印模设计中，可以在任意位置上旋转止动环和印刷模板。
[0014] 另外，操纵单元还可以具有一个用于安装，至少是部分安装印刷单元的外壳。在外壳的一个与印刷单元相对的内表面上和/或在固定元件或止动环的一个指向外壳内表面的外表面内，安装了一个用于印刷单元的旋转止动元件。可以对印模进行相应设计，使其旋转止动元件能够根据印刷单元与操纵单元之间的相位置在轴向方向上发挥作用或者使其在定位位置上被启用，由此简化印刷模板的旋转过程。通过简单的轴向移动可以实现印刷模板的可旋转性，或者在旋转止动元件在印刷位置上发挥作用之后，也能防止印刷模板的意外旋转。
[0015] 旋转止动元件可以由从外壳内表面朝印刷单元方向和/或从固定元件外表面朝外壳内表面方向伸出的连接件构成。这样一来，在印模处于原始位置和/或印刷位置时，所述的旋转止动元件就会处于外壳或固定元件的相对表面上并在摩擦阻力的作用下防止部件的意外旋转。
[0016] 为了提高旋转稳定性，可以在外壳的内表面或固定元件的外表面上设计至少一个槽口，槽口与连接件共同发挥作用，即将连接件啮合到所述的槽口中或者通过朝定位位置方向的轴向移动使连接件从槽口中伸出，从而实现部件的可旋转性。
[0017] 根据一个进一步的结构变型，可以将外壳内表面或者固定元件和/或止动环外表面上的旋转止动元件设计成制齿形状。如果在外壳和固定元件或止动环的表面上均设计了制齿结构，那么通过齿轮的相互啮合至少可以在印刷位置上改进旋转止动元件的止动作用。需要特别说明的是，通过环绕在外壳或者固定元件和/或止动环周围的制齿结构，以及必要时设计在固定元件和/或止动环上或者外壳内表面上，能够与相对的制齿结构共同发挥作用的连接片，一方面可以实现一个较大的用于旋转印刷模板的调整范围，另一方面还能通过将连接片从制齿结构中伸出或松开相对的制齿结构实现一个更为简单的、印刷模板的可调节性。在此需通过朝定位位置的轴向移动松开相对的制齿结构。
[0018] 根据另外一个结构变型，可以通过一个螺纹连接或卡口接头将止动环与固定元件
相连。在这种结构中，一方面可以通过相对较小的成本和简单的方法将印刷模板固定在固定元件上。在设计止动环或固定元件上的螺纹或相应的卡口接头时应确保，在拧紧或连接状态下印刷模板不会在摩擦或夹紧连接的作用下发生转动。另一方面还能实现定位位置与印刷位置的一致性，从而减小印模，尤其是轴颈印模的设计长度。通过旋转止动环四分之一圈，可以将止动环与印刷模板之间的摩擦或夹紧连接松开，由此释放待旋转的印刷模板，而不必进行前面所述的结构变形中的印模拆卸过程。

【0019】固定元件可以具有至少一个开口，连接件穿过这个开口将固定元件与操纵单元相连和/或也可以将这个开口作为印模颜料的加注口使用。由此实现了操纵单元与固定元件之间的简单的连接可能性和/或简化了印模颜料的加注过程。

【0020】另外，在这种设计中还能通过轴向移动将印刷单元移动到一个第三或第四位置中，即所谓的解锁位置。连接件会在该位置解除与固定元件之间的连接。需要特别说明的是，在最后提到的这种固定元件带有开口的变形结构中，可以将整个印刷单元从印模上去除，由此不仅能够对印刷模板本身进行更为简单的更换，或者说更换或更新用于印刷模板的印模盒，也能在较小的角度范围内实现印刷模板的可旋转性，即不必旋转360°，这样一来就可以在组装过程中对印刷模板进行粗略的预调并通过印刷模板的旋转将其精确定位在定位位置。如果粗调的结果不能令人满意，还可通过简单的方式将整个印刷单元从印模上再次拆卸，然后进行重新调整。

【0021】连接件可以具有至少一个制动支脚，最好具有两个相对的制动支脚。通过制动支脚将操纵单元与印刷单元相连。尤其是在固定元件带有开口的结构中，可以对对制动支脚的挤压将印刷单元简单的从解锁位置上拆除，或者也可以通过印刷单元的插入进行简单安装。

【0022】此外，可以对至少两个的制动支脚进行相互定位，使固定元件方向上两者之间的距离较小，这样一来就可以通过简单的轴向移动实现制动支脚的自动挤压，从而达到释放印刷单元的目的。也就是说，除了所述的轴向移动之外，在拆除印刷单元时不需采取其它的手动干预。

【0023】这种结构的优点在于，如果制动支脚具有至少三个节段，并且其中两个节段至少是接近垂直的，中间的节段是倾斜的，那么一方面可以通过对制动支脚的挤压实现印刷单元的接单解锁，另一方面也能通过垂直的节段对印刷单元与固定元件之间的连接件进行更好的支承或制动。

【0024】在另外一个优选设计中，固定元件的开口是防水的，被一个密封元件、特指一块薄膜封闭起来，由此可以防止颜料进入到固定元件的内腔中。这样就实现了一个简单的颜料灌注过程。

【0025】当然，所述的薄膜也可以由一种厚度为30~50μm的、经过热涂层处理的铝箔构成，作为优选，直接喷涂到铝箔上的聚合体涂层应具有一个20~50μm的厚度。通过所述结构可以简单的实现固定元件，尤其是开口部分的防水密封或防水封闭。

【0026】在某些设计中，固定元件具有两个区域，其中一个区域用来容纳颜料，第二个区域用来安装颜料存储器。通过这种设计可以实现固定元件的分离灌注。当颜料存储器不再提供颜料时，可以通过另外一个区域直接灌注颜料，而不必等待颜料被接收到颜料存储器中，这就省去了一个较长的浸润时间，从而大大减小了颜料的灌注时间。
[0027] 在另外一种优选设计中，固定元件具有相应的指示元件。通过所述的指示元件可以对颜料的灌注量进行控制。
[0028] 本发明所述任务的另外一个解决方案是，在槽底设置至少一个开口并使用防水薄膜将所述开口和上侧开口封闭起来。此外，固定元件中还需包含颜料存储器和颜料。这种设计的优点在于能够实现一个非常高精度的设计。通过所述的防水密封还能实现一个非常长的储存时间。这种设计的主要优点是，完成印模胶筒的制作后即可在正确的储存位置开始颜料存储器用于吸收颜料的浸透过程。这样一来，在安装印模胶筒时颜料存储器就已经被完全浸透。另外一个主要优点是，可以灌注适量的多余颜料，这样一来，即使颜料存储器将颜料完全吸收，固定元件内部仍然存在液态的颜料。在印模的组装过程中可以通过印刷模板吸收这些多余的颜料。
[0029] 在密封膜由一种经过热涂层处理的铝箔构成的结构中，作为优选，薄膜的厚度最好为 30-50 μm，直接喷涂到铝箔 (13a) 上的聚合体涂层的厚度最好为 20-50 μm。通过这种设计可以实现部件的防水密封。
[0030] 这种设计还具有一个优点，根据“玻璃遮盖法”在固定元件上安装或固定用于封闭上侧和 / 或开口的防水薄膜时，可以使用其它专业领域的背景技术所述的简单方法。这就保证了一个较长的防水储藏和简单的生产过程。
[0031] 当然，还存在另外一种优选设计。在这种设计中，采用印模或印制单元中用于封闭开口的薄膜是可以顶破的。这样一来，在将新的薄膜安装到印模或印制单元中时就不必拆除之前薄膜。例如，在此可以将开口上的薄膜设计较薄。
[0032] 在某些设计中，固定装置上侧的薄膜是可以剔除或移除的。使用这种设计能够简化薄膜的移除，尤其是剔除过程。固定薄膜时最好确保，剔除时能够将部件中的整个薄膜完全剔除。在固定元件的边缘上不会存在薄膜残留物。
[0033] 在另外一种优选设计中，固定元件具有两个区域，其中一个区域用来容纳颜料，第二个区域用来安装颜料存储器。通过这种设计可以实现固定元件中颜料的连续灌注，也就是说，可以首先在固定元件中灌注特定数量的颜料，然后立即插入颜料存储器。由此就省去了颜料存储器吸收颜料所需的特定时间，这样一来就可以在连续的工作流程中进行颜料灌注，不需要中断流程。这不仅简化、加速了生产过程，而且还降低了生产成本。
[0034] 这种设计还具有一个优点，在固定元件中可以灌注特定数量的颜料，确保能够完全浸透颜料存储器并提供插入式印刷模板所需的颜料吸收量，从而获得一个尽可能大的图章数量。
[0035] 在某些设计中，固定元件，尤其是槽底和其中安装的元件被设计成圆形。这种设计的优点在于，可以被应用到相应的印模中。在这种设计中，用于固定印刷模板的固定元件还可以具备其它的部件、组件，比如制齿结构。因此这种设计可以被应用到最不同的印模类型当中。
[0036] 除此之外，本发明所述任务还有一个解决方案：在槽底设置至少一个开口，并使用密封元件对这个开口进行防水密封。这种设计的优点在于，可以将固定元件提供给印模制造方并将其同时作为备件使用。这样一来，销售商就可以对印模进行单独装配，也就是说，可以在印刷上安装一种专门用于该种印刷的颜料存储器并灌注一种专门的颜料或者通过这种方式对印模进行装配。
[0037] 最后还有一种优选设计，在这种设计中固定元件具有两个区域，其中一个区域用来容纳基板，第二个区域用来安放基板存储器。通过这种设计，可以对含有基板和包含基板存储器的固定元件进行单独装配，使装配过程更加干净。这样一来就不必考虑特定的浸渍时间，在印模的组装过程中也就不产生相应的等待时间。

[0038] 为了更好的理解本发明，将借助于后面的示意图对本发明进行解释。

[0039] 示出的示意图均为简化图：

[0040] 图 1:本发明所述印模的一个透视图；

[0041] 图 2:印模一种结构型式的分解图；

[0042] 图 3:印模单元的一个分解图；

[0043] 图 4:印模单元与操纵单元接合之前，印模的一个剖面图；

[0044] 图 5:印模单元与操纵单元接合之后，印模的一个剖面图；

[0045] 图 6:经过操纵单元的第一个操纵行程之后，图 4 和 5 所示印模的示意图；

[0046] 图 7:图 4-6 所示印模的印刷位置；

[0047] 图 8:图 4-7 所示印模在定位位置的一个截面图；

[0048] 图 9:图 4-8 所示印模在解锁位置的一个截面图；

[0049] 图 10:印刷单元结构变型的一个部分截面图；

[0050] 图 11:印模胶筒在注墨位置的一个透视图；

[0051] 图 12:印模胶筒在储藏位置的一个透视图；

[0052] 图 13:印模胶筒灌满颜料时的一个剖面示意图；

[0053] 图 14:一个半成品的结构示例图。

[0054] 首先指出，在所述的不同结构型式中，相同部件设置了相同的附图标记或相同的部件名称，可以根据具有相同附图标记或部件名称的相同部件对综合说明书中包含的公开内容进行相应修改。同样，在说明书中选用的位置标注比如上、下、侧面等仅针对即将描述或展示的示意图。位置发生变化时需要根据新的位置对使用的位置标注进行修改。此外，来自所述或所述的不同结构示例的单个标记以及标记组合，也能对单独的、具有创造性的或根据本发明的设计方案进行描述。

[0055] 图 1 示出了印模 1 的一个分解图。印模 1 主要由一个操纵单元 2 和一个印刷单元 3 构成，其中操纵单元负责控制印模 1 的提升运动并由此激活印刷过程，印刷单元通过一个连接件 4 与操纵单元 2 相连，具有一个外壳 5，一个至少部分安装在外壳 5 中的固定元件 6 和一个护罩 7。护罩 7一方面能够防止印模 1 变干，另一方面还能在不印刷时避兔意外着色。

[0056] 通过图 2 可以更好的看出，除外壳 5、固定元件 6 以及护罩 7 之外，印刷单元 3 还具有一个固定框架 8，一个印刷模板 9 和一个颜料存储器 10。在安装状态下，印刷模板 9 被放在颜料存储器 10 上。固定元件 6 会将颜料存储器 10 包围，至少部分包围起来。通过固定框架 8 可以将印刷模板 9 和颜料存储器 10 固定支撑在固定元件 6 的上面或内部。

[0057] 安装在外壳 5 中的固定元件 6 被设计成槽形结构。印模 1 处于组装状态时，槽底 11 指向操纵单元 2。在这种结构变型的槽底 11 中设置了一个开口 12，这个开口用来通过连接件 4 将印刷单元 3 与操纵单元 2 相连。

[0058] 在本发明的范围内，如果至少一部分开口 12 被用作印模颜料或墨水或一种着色
剂的加注口，那么也可以在槽底 11 或固定元件 6 中设置更多的开口 12，比如可以设置两个、四个，五个，六个等数目的开口 12。当然，也可以将仅有的一个开口 12 设计成印模颜料的加注口。

【0059】至少在首次灌注模 1 时，使用一个密封元件 13 将开口 12 封闭起来。作为优选，密封元件 13 最好由一种薄膜 13a 材料构成。密封元件 13 在开口 12 上形成一道防水封闭层。部分情况下，密封元件也是可以拆卸的，具体步骤会在后面进行描述。开口 12 多于一个时，可以在多个或所有开口上设置一个密封元件 13。

【0060】在最简单的情况下，密封元件 13 由一块薄膜 13a 构成。在印模 1 组装时可以将所述的薄膜顶破或者在组装之前将其至少部分剥离。薄膜 13a 可以随意设计，例如可以设计成单层或多层的塑料薄膜和或金属箔 13a，比如铝箔。薄膜的安装可以根据已知的方法，例如“玻璃遮盖法”进行，可以通过粘接或焊接方式将其与固定装置相连。在本发明的范围内也可以使用带有自粘性的薄膜。唯一重要的一个问题的是，必须将防水薄膜 13a 安装在固定元件 6 上。根据技术手段可以获知安装薄膜所使用的“玻璃遮盖法”，因此不再对这种方法做深入研究。作为优选，在要求最高密封性时应使用所述的“玻璃遮盖法”，最好使用铝箔 13a 作为密封元件。安装时，将密封元件沿待封闭开口 12 的边缘进行粘贴或者在高温情况下进行密封处理。在对薄膜 13a 进行密封处理时，要求在薄膜 13a、特指铝箔 13a 上设置一道塑料涂层。在此，首先将塑料加热到熔点温度，然后利用喷嘴将其直接喷涂到薄膜 13a、特指铝箔 13a 上。这样一来就可以通过相应的处理工艺，比如加热元件将防水薄膜 13a 固定在槽形固定元件 8 上。

【0061】作为优选，还使用一种可以进行热压粘合的、经过热涂层处理的铝箔 13a 作为薄膜 13a、薄膜 13a、特指铝箔 13a 具有一个 30-50 μm 的厚度，直接喷涂到薄膜 13a 上的聚合体涂层最好具有一个 20-50 μm 的厚度。固定元件 6 最好由一种热塑性容器或部件构成，这样才能达到最佳的防水密封效果。在设计固定元件 6 时最好确保，固定元件 6、特指内腔或前侧腔室 24 被划分为两个区域。其中一个区域用来容纳颜料 46，第二个区域用来安装颜料存储器 10。通过这种设计，可以实现含有颜料 46 的固定元件 6 与颜料存储器 10 的分离灌注。

【0062】如图 4 所示，也可以将密封元件 13 设计成斜面形结构，从下部将其安装到开口 12 中并与固定元件 6 相连。而在槽形的固定元件 6 中，所述密封元件的安装方向为从里向外。斜面形密封元件 13 可以具有一个环形的边缘 14。所述的边缘部分被固定在固定元件 6 内侧的槽底 11 上，例如可以与固定元件 6 粘接在一起。密封元件 13 也可以被压到开口 12 中。通常情况下，这种印模 1 大部分是由塑料构成的，也就是说固定元件 6 也是由塑料制造而成，这样一来，生产期间就可以通过一种所谓的 2-K 压铸法将密封元件 13 安装并压铸到固定元件 6 的开口 12 中。也可以将密封元件 13 设计成一个球形密封件，与钢笔墨水囊的球形密封件相似。灌注时，如果固定元件 6 位于一个平面（灌注位置）上，球形密封件就会将开口 12 封闭起来。安装印模 1 时需要旋转固定元件 6，这时可以通过降低或推出球形密封件将开口 12 打开（安装位置或储藏位置）。

【0063】外壳 5 具有一个圆顶状的顶盖 15，这个顶盖指向操纵单元 2。连接件 4 被设计成至少近似于圆柱形的形状。在这个结构变化的下部区域中存在一个圆柱形护套。在这个护套上设置了凹槽 17。这个凹槽 17 不是强制存在的，因此也可以将连接件 4 的圆柱形护套设
计成全表面的。

[0064] 连接件 4 的外径应该与圆顶状顶盖 15 的内径相配，这样才能在轴向方向上对连接
件 4 进行相应的引导。另外，连接件 4 具有至少一个用于连接印刷单元 3 的制动支脚 18，最
好两个。与印刷单元之间的连接会在后面进行详细说明。所述的一个制动支脚 18 或两个
制支脚 18 会吻合在固定单元 6 的开口 12 中。

[0065] 通过图 4 可以更好的看出，弹簧 19 的一端被固定在圆柱形护套与制动支脚 18 之
间，另一端被安装在印模 1 当中，另外，弹簧还被支撑在圆顶状顶盖 15 中，例如支撑在一个
相应的连接片上。通过这个弹簧 19 可以使安装在印刷单元 3 中，用于生成印制图案的印刷
模板 9 克服存在的反作用力，从原始位置移动到印刷位置。完成印刷之后，如果不再对印模
1 施加作用力，操纵单元 2 以及印刷模板 9 就会自动返回到原始位置。在制动支脚 18 的下
部末端区域中具有一个定位横档 20，该定位横档会啮合在固定单元 6 开口 12 的边缘下部。

[0066] 除了连接件 4 之外，操纵单元 2 还具有一个把手 21，在把手 21 的相应凹槽中可以
存在一个透明的盖板 22。众所周知，这个盖板 22 的作用是用来保存印模 1 生成的印刷图
案。

[0067] 把手 21 被推到连接件 4 上，因此在把手 21 的内侧应具有相应的连接片或支撑
件，这样才能建立与连接件 4 之间的连接。另外，把手 21 应具备合适的直径，确保在把手和
连接件 4 之间能够生成一个摩擦连接。

[0068] 为此，还可以在圆顶状顶盖 15 中设置至少一个

[0069] 导槽 23 并在把手 21 上与顶盖 15 对应的内表面上设置一个连接片。将这个连接
片啮合到所述的导槽 23 中，以便在轴向运动期间对操纵单元 2 进行引导。导槽 23 也可以
具有一个燕尾形的截面。

[0070] 图 3 以透视图的形式示出了处于旋转位置的槽形固定单元 6，并以分解图的形式
再次示出颜料存储器 10、印刷模板 9、密封元件 13 以及固定框架 8。固定单元 6 的旋转位
置即（首次）灌注位置。其中，上侧开口 23a 朝上，固定元件 6 位于槽底 11 上。为了对印模
1 进行灌注，需要将带有嵌入式或压入式密封元件 13 的槽形固定单元 6 向后放到一个平面上，
这样才能在固定单元 6 的前侧腔室 24 中将印模颜料灌注到规定的水平或者灌注规定量的
印模颜料。

[0071] 灌注黑色印模颜料时，为了更好的确认规定水平，可以在固定单元 6 的前侧腔室
24 中设置相应的指示器元件 25，作为优选可以将指示元件设计成柱状结构 26，该指示元件被
安装或设计在固定单元 6 的一个内表面 27 上，可以至少显示印模颜料的最大灌注高度。指
示元件 25 可以是柱状的，被设计在槽底 11 的内表面 27 上，同样，也可以在固定单元 6 的侧
壁 28a 区域中设置一个环形的连接片 28。如果有，可以只设置一个指示元件 25、特指柱状
结构 26，或者也可以对图 3 所示柱状结构的数目进行自由设置。将颜料灌注至柱状结构的
高度或连接片 28 所处的高度位置。灌注量应与颜料存储器 10 中印模颜料的容纳量相配。作
为优选，颜料水平可以略微低于柱状结构的表面 28b。这样一来就可在印模中始终灌注
一个准确的、可以预选规定的颜料量。与此同时，还可以将指示元件 25 和连接片 28 设计成
颜料存储器 10 的支承面，这样就可以在插入颜料存储器 10 的过程中将其定位在前侧腔室
24 中灌注的颜料上方（未示出）。也就是说，如果印模颜料的液面略微低于支承面，特指柱状
结构的表面 28b，就可以顺利的插入颜料存储器 10，从而避免因挤压造成的污染。
在此需要提及的一点是，颜料存储器10可以由一种塑料泡沫构成，其中至少含有一部分用于吸收印模颜料的开孔结构。这与背景技术中所述的相同。

在后面的步骤中需要将颜料存储器10插入到固定元件6中，然后将印刷模板9放到颜料存储器上，最后将这些部件与固定框架8相连。在这个状态下系统仍然是“未激活的”，也就是说仍然不能从颜料存储器10中吸收印模颜料，这就保证了部件组装过程的清洁性。此外还应指出，需要将印刷模板9放到侧壁28a的表面上并通过固定框架8将其与固定元件6相连。固定框架8会朝侧壁28a方向挤压印刷模板9，以便在印刷模板9上部形成一个非常好的密封效果，确保只有在规定的印刷过程中印模颜料才会渗出。当然，也可以对侧壁28a进行放大设计，使印刷模板9能够像颜料存储器10一样插入到固定元件6中。

通过连接件4连接操纵单元2时应确保，印刷单元3外壳5的圆顶状顶盖15可以推动操纵单元2并且操纵单元2的第一个操纵行程是在印刷单元3的方向上进行的。在这个操纵行程中，制动支脚18会将密封元件13从固定元件6的开口12中推出，至少是部分推出，由此将开口打开。在之后，连接件4的两个制动支脚18就可以穿过开口12与固定元件6啮合或咬合在一起，从而建立连接，如图5所示。使用薄膜13a的情况下，通过制动支脚18可以很容易顶破薄膜13a。因此，如果没有将薄膜13a安装在固定装置6的外侧或者在组装模具1之前通过手动剥离薄膜或剥离的并不均匀，那么在固定元件6上就可能存在薄膜13a残留物（如图5所示）。这就意味着，所述结构变形中的密封元件13具有、至少在某个部分一个确定断裂点，即材料的变薄位置。安装期间，密封元件13会在这个确定断裂点上发生破损，这就导致了只有一部分密封元件13从固定元件6的前侧腔室24中被挤出。

如图4所示，弹簧19支撑在一个位于制动支脚18之间的支承元件29上。操纵行程期间，弹簧会被挤压在一起，然后通过放松过程产生的作用力使系统即印模1的操纵单元2重新返回到原始位置。

在此需要提及的一点是，本发明中制动支脚18的数量并不仅限于所述结构变形中的两个，也可以设置更多这样的制动支脚18，比如四个。同样也可以只设置一个制动支脚18。这种情况下，需要在固定元件6或外壳5上设置一个相应的支座，代替前面所述的第二个制动支脚18。

在本结构变形中，环形连接片28形式的指示元件26同时还构成了一个颜料存储器10的支承面。柱状结构的指示元件25同样可以支撑颜料存储器10。

将把手21从连接件4上拔下来之后才能打开开口12。通过打开的开口可以对印模1进行简单的灌注或加注。加注颜料时需首先拆除印刷部件3，然后在固定元件10旋转180°的情况下将颜料存储器10再次浸湿，或者通过一个新的、已经浸湿的颜料存储器10代替之前的存储器，或者使用一个后会再次进行描述的印模胶筒45。

在印模1的结构变形中，在固定元件6的表面上具有一个环形的凹槽30，在此请同时参考图3。在一个末端区域内，固定框架8或起动环具有相应的定位凸缘31，通过所述的定位凸缘可以构成一个“开槽弹簧连接件”。在环形凹槽30的基础上，可以在随意位置将固定框架8与固定元件10相连，也就是说，部件相互之间的径向定位无关紧要。也可能存在
多于两个的定位凸缘 31 分布在固定框架 8 的内圆周上。如有必要,可以将环形的连接片设计成定位凸缘 31。在倾斜面上推动部件时,可以更加容易的将定位凸缘 31 朝外挤压。因此定位凸缘 31 应具有一个如图 4 所示的倾斜面,以简化在凹槽 30 中的咬合过程。

【0081】 通过图 4 和 5 还可以看出,在印模 1 处于正常状态时,外壳 5 的圆顶状顶盖 15 被安装在把手 21 和连接件 4 的护套之间,这种设计可以在轴向行程期间实现对操纵单元 2 的引导。

【0082】 通过图 4 以及图 3 的一部分可以更好的看出,在所述的印模 1 结构型式中,在外壳 5 的一个内表面 32 上设置了一个制齿结构 33,在固定元件 6 的一个外表面 34 上安装了一个从所述表面上突出出来的连接片 35。齿槽 36 形状的制齿结构 33 被外壳 5 的内圆周包围,位于外壳 5 的侧面上。因此可以在外壳 5 上,至少在制齿结构所在的区域中设计一个比下部末端区域更大的壁厚,如图 4 所示。在设计齿槽 36 的槽宽 37 时应确保,齿槽可以将固定元件 6 的连接片 35 容纳其中。另外,齿槽在轴向上也要具备足够的长度 38,确保印刷单元 3 处于刷印位置(图 7)和原始位置时连接片 35 能够啮合到齿槽 33 中;印刷单元 3 通过轴向移动越过刷印位置到达印刷单元 3 的定位位置(图 8)后,连接片 35 被松开,这时印刷单元 3 就可以进行径向旋转,从而将固定元件 6 从制齿结构 33 中推出。

【0083】 在齿槽 36 的上端,即指圆顶状顶盖 15 的一端,可以设置一个斜面。如图 4 所示,还可以将两个相邻齿槽 36 的侧壁设计的朝外倾斜,使之相互之间能够形成一个锐角。这样一来就可以更加容易的将连接片 35 导入到齿槽 36 当中。另外在导入齿槽 36 的过程中,还能通过固定元件 6 上,完全或部分包围固定元件的连接片 35 将固定元件 6 与制齿结构 33 对齐。在没有所述锐角结构的结构变化中也能实现上述操作。原则上讲,可以自由选择齿槽 36 的间距、相相邻齿槽 36 之间的距离。相对于齿槽 36 间距较大的情况,间距变小时不同位置上齿槽的数目会较多,这样能够提高印刷模板 9 的定位准确性。

【0084】 在某些结构变化中,可以选择较大的齿槽 36 长度 38,这样一来,即使在定位位置上固定元件 6 也能通过连接片 35 部分啮合到齿槽 36 中。印刷单元 3 处于定位位置时,印刷模板 9 可以通过可旋转的固定框架 8 进行旋转。

【0085】 可在本发明的范围内还可以将齿槽 36 设计在固定元件 6 的外表面 32 上,将连接片 35 设计在外壳 5 的内表面 32 上。这种设计具有相同的效果。

【0086】 在本发明中,图 3 所示的连接片 35 数目(四个)以及图 4 所示的齿槽 36 数目(在此以纵剖图的形式示出了半个印模,因此齿槽 36 的数目应该加倍)并不是限定的。因此可以设置不同于四个的连接片 35 数目,比如一个、两个、三个、五个、六个、八个等等。这个数目可以不断增加。当然针对存在的连接片 35 还需设计相应的制齿,以便与各个配合件的制齿 33 共同发挥作用。设计制齿时应参照配合件制齿 33 或连接片 35 的位置。需要特别说明的是,其它制齿上连接片 35 的数目可以与制齿 33 上齿槽 36 的数目相符。

【0087】 另外,齿槽 36 的数目也可以与连接片 35 的数目相配,这样就不要设计制齿结构。尽管固定元件 6 的相对可调节性被限制在径向方向上,但也能进行相应的调整,而精调过程则需通过固定框架 8 的可旋转性实现。

【0088】 根据本发明另外一种变型,既可以设计从外壳 5 内表面 32 突出的连接片 35 也可以设计从固定元件 6 外表面 34 突出的连接片 35,由此实现一个相互啮合在一起的齿轮形式的制齿结构,也就是说,固定元件 6 的各个连接片 35 会啮合在外壳 5 的连接片 35 之间。为
此，需要对连接片 35 之间的距离进行相应选择。

根据本发明另外一种结构变型，固定框架 8 也可以具有至少一个这样的连接片 35。在印刷位置或原始位置时，所述连接片会啮合到一个齿槽 36 中，而在定位位置时则不被占用，这样就可以实现印刷模板 9 的可旋转性。当然还存在另外一种可能，在定位位置时固定元件 6，即安装在固定元件上的连接片 35 会与齿槽 36 分开。除了上述的方式之外，也可以将连接片 35 仅设计在固定框架 8 的外表面上。

最简单的结构变型中，可以仅在外壳 5 的内表面 32 上或者固定元件 6 和 / 或固定框架 8 的外表面 34 设置多个连接片 35，。在印模 1 处于印刷位置或原始位置时，所述连接片通过摩擦连接与相对的配件接触，从而达到旋转止动的效果。与此同时，也可以在共同发挥作用的配件上设置一个配合件，由此增大连接件的旋转止动作用。

这种结构变型同样具有一个旋转止动元件。通过该元件至少可以在印刷位置上防止印刷模板 9 的意外旋转。

通常情况下，连接片 35 可以具有一个约等于槽长 38 的长度或者连接片 35 也可以延伸到槽长 38 的部分区域内，如图 5 所示。作为优选，连接片 35 应以单块结构的形式与各个配件连接或设计在一起。

如图 3 所示，除了至少接近矩形的连接片 35 端面之外，连接片 35 还可以具有一从固定元件 6 或外壳 5 的表面 34 或 32 向外逐渐变薄的横截面。各个配件的周围没有设置制齿时，通过这种设计可以更为简单的将连接片导入到齿槽 36 或凹槽当中。相反，连接片 35 也可以具有一个逐渐变大的横截面。这种情况下，所述的齿槽 36 或凹槽会具有一个互补的横截面形状，比如设置相应的咬边。

图 6 示出了处于原始位置的、已经完成组装的印模 1。其中，操作单元 2 与印刷单元 3 相互啮合在一起，固定元件 6 上侧的开口 12 已被打开，根据后面的步骤中对系统进行颜料加注。护罩 7 被安装在印刷单元 3 上并通过一个弹簧锁或螺旋塞与之相连。在这种结构中，也可以通过相应直径调节生成一个摩擦连接。图 7 示出了如何使用印模 1 生成一个印刷图案。操作过程中需要将护罩 7（图 6）拆除，然后朝印刷面（箭头 39）方向移动把手 21，通过这种方式可以将固定元件 6 同样朝印刷面方向移动。此外，印刷模板 9 会从外壳 5 中突出出来。

图 8 示出了一个处于定位位置的印模 1 的截面图。根据该示意图可以将印刷模板 9 径向对齐。通过把手 21 将固定元件 6 沿径向方向从外壳 5 中移动出来，使连接片 35 不再与齿槽 36 相互啮合。这样一来，固定元件 6 就可以和印刷模板 9 一起沿径向方向旋转（参看双箭头 40），从而使印刷图案自动对齐，而不必对印模 1 进行拆解。在该位置上，制动支脚 18 始终通过定位横档 20 与开口 12 咬合在一起。这就是说，固定元件 6 始终与印模 1 相连。通过这种方式，固定元件 6 会从印模 1 的外壳 5 下部突出出来，从而可以对其它进行更好的抓取控制，而不必对印刷模板 9 本身进行干预。完成调整后重新松开把手 21，在弹簧 19 预紧力的作用下使印模 1 返回到原始位置。与此同时，连接片 35 也会重新啮合到齿槽 36 中，但并不能啮合到对齐印刷模板 9 之前的同一齿槽 36 中。

在前面所述的其它结构变型中，可以对用于调整的机械装置进行相应修改。

图 9 示出了处于解锁位置的印模 1。通过拔出把手 21（例如图 8）可以将整个印刷单元 9 重新与操纵单元 2 脱开。为此还需将连接件 4 推压到外壳 5 上的挡块处（箭头 39）。
在这个过程中，连接件 4 的制动支脚 18 会被挤压在一起，定位横档 20 也会从固定元件 6 的开口 12 中滑动出来。也就是说，通过连接件 4 的轴向移动可以将制动连接自动松开。通过这种方式，一方面可以对印刷单元 3 进行重新的粗略定位，另一方面还能在必要时对整个印刷单元 3 进行更换。如果不能对印模 1 进行加注，和/或需要插入一个新的印刷模板 9，也可以使用一个新的、预先浸湿的颜料存储器 10 或一个新的印模胶筒 45。在此必须将固定框架 8 独自从固定元件 6 上拆卸下来。

在制动支脚 18 的高度方向上，分段或分级设计一个倾斜的过渡区域，与弹簧 19 的相应区域相比，两个制动支脚 18 在与固定元件 6 之间的移动区域中具有一个相对较小的间距。外壳 5 在固定元件 6 的开口 12 区域中具有一个裂口 41，可以作为制动支脚 18 的部分套管使用。制动支脚 18 在其上部的、与连接件 4 相对的区域中做轴向移动时，会靠近所述裂口 41 的一个指向制动支脚 18 的分界面 42。制动支脚 18 的下部区域用来生成与固定元件 6 之间的制动连接。通过上述操作可以继续挤压该区域，从而松开生成的制动连接。印模 1 返回原始位置的同时，制动支脚 18 也会自动返回到初始位置。

如图 9 所示，裂口 41 的分界面 42 会在指向把手 21 的区域中内倾斜，这样就可以更为简单的对制动支脚 18 进行引导。

在制动支脚 18 上不必强制设计图 9 所示的三个区域，制动支脚 18 也可以具有一个近似直线的走向。这种情况下，需要将制动支脚朝内倾斜安装，这样才能通过轴向移动与开口 12 脱开。通常情况下，也可以将制动支脚 18 设计成其它形状，但最好具备所述的自动解锁功能。

如图 9 所示，使用印模颜料再次浸湿印模 1 时同样需要拆除把手 21。但不同的是，印模 1（图 6）的再次浸湿是在原始位置进行的。在此，需要将护罩 7 重新安装到外壳 5 上并将印刷模板 9 调节到原始位置，使其远离护罩 7。拆除把手 21 后凹槽 16 被重新打开。将密封元件 13 顶出或至少部分移除后，用于加注颜料的固定装置 6（图 3）的前侧腔室 24 也被打开。

同上所述，颜料加注或颜料存储器 10 的再次浸湿也可以在印模 1 外部进行，但需要在拆除把手 21 的过程中将整个印刷单元拆卸或脱开。

图 10 显示出了印模 1 的一个结构变形。其中仅通过剖面图的形式展示了带有颜料存储器 10、印刷模板 9 和固定框架 8 的固定元件 6。所述的固定框架 8 通过一个螺纹连接件 43 与固定元件 6 相连。在设计部件尺寸时应确保，固定框架 8 处于拧紧状态时印刷模板 9 不能对着颜料存储器 10 旋转，但可以朝固定元件 6 方向对其进行挤压。通过略微松开固定框架 8 比如松开四分之一圈，可以恢复印刷模板 9 的可旋转性，这样一来存在的压力就会消除，从而导致印刷模板 9 本身或多或少的发生松动。也可以使用一个卡口接头代替所述的螺纹连接件 43。

颜料存储器 10 不能仅仅是部分开孔的，需要具有附加的、比如孔眼形状的连续凹槽 44，通过这种设计可以在旋转固定装置 6 之后缩短颜料存储器 10 的浸透时间。在颜料存储器 10 中也可以设置冲孔形状的凹槽 44。这些凹槽 44 可以具有不同的直径或形状。另外，凹槽 44 也可以具有一个非环形的横截面，比如正方形、椭圆形、矩形等。凹槽 44 并未覆盖颜料存储器 10 的整个厚度范围，仅被设计在颜料存储器 10 的部分区域内。

在此还需要提及的一点是，固定元件 6 中的开口 12 可以具有一个不同于所示横截
面的横截面，比如正方形、矩形等。当然，固定元件 6 或外壳 5 也可以具有一个不同于所述横截面的横截面，比如正方形、椭圆形或多边形。

【0106】 此外还需要指出，连接件 4 和把手 21 也可以被设计成单块结构。因此，图 8 所示的结构型变型非常有利于印模 1 的颜料加注。固定框架 8 上的定位凸缘 31 （图 3）也可以被安装在固定元件 6 上，这种情况下，最好在固定框架上设计一个环形的凹槽 30 （图 3）。尽管前面结构示例中所述的固定元件 6 的槽底 11 始终带有至少一个开口 12，但在本发明的范围内，也可以不必在所述的槽底 11 或固定元件 6 上设计类似的开口 12。换句话说，通过构成固定元件的材料对固定元件 6 进行防水密封。这种情况下，也可以通过连接件 4 将固定元件 6 与操纵单元 2 相连，但需要在槽底 11 中设计一个切口，必要时所述切口还需具有一个咬边。作为所述切口的替代，也可以设置一个能够与操纵单元 2 或连接件 4 共同发挥作用的凸起。

【0107】 提供的固定元件 6 可以是一种半成品。在这些固定元件 6 中已经灌注了印模颜料并安装了颜料存储器 10。但是还未安装印刷模板 9。在这种结构型式中，使用一个盖子形状的密封元件将固定元件 6、也就是槽的开口封闭起来，以起到防水密封的效果。将印刷模板 9 安装到固定元件 6 中之前需移除这个密封元件。在对印刷模板 9 进行雕刻时，这种设计可以简化印模 1 的处理过程。

【0108】 在对印模 1 进行首次灌注或加注颜料时，也可以使用一个安装在印模 1 当中的印模胶筒 45，如图 11-13 所示。

【0109】 图 11-13 示出了未装配状态下的印模胶筒 45。胶筒包含一个槽形固定装置 6，所述装置带有一个槽底 11 和至少一个侧壁 28a 以及一个与槽底 11 相对的用于安装颜料存储器 10 上侧开口 23a。槽底 11 具有至少一个用来与元件、特指印模 1 的制动支脚 18 固定在一起的开口 12。使用防水薄膜 13a 将至少存在一个的开口 12 封闭起来。在固定装置 6 中灌注颜料 46 并安装颜料存储器 10 之后，使用薄膜 13a 将上侧开口 23a 重新封闭起来。完成印模胶筒 45 的制作后，如果将颜料存储器 10 旋转到储藏位置，它就会开始吸收颜料 46。 使用薄膜 13a 将固定装置 6 密封起来，这样能够保证了一个非常长的储藏时间，而且还能有效避免颜料 46 的变干。在灌注或制作印模胶筒 45 时应确保，将带有封闭开口 12 的固定装置 6 颠倒放置，这样一来上侧开口 23a 就会朝上，也就是说，印模胶筒 45 被放置在上侧 11 上，使侧壁 28a 朝上突出，这样就形成了所述的上侧开口 23a。在这之后，将颜料 46 灌注到内腔，特指前侧腔室 24 中。在前侧腔室的上部，颜料存储器 12 被放置在指示元件 25、特指栓状结构 26 上。颜料 46 的灌注量最大与颜料存储器 10 以及印刷模板 9 的吸收能力相配。这种情况下，颜料 46 的水平最好处于指示元件 25 的下方。也就是说，颜料存储器 10 完全吸收颜料，即饱和之后，剩余的未被吸收的颜料 46 能够恰好被印刷模板 9 吸收或使其达到饱和状态。因此，需要对固定元件 6、特指储备槽 24 的尺寸进行设计，确保灌注的颜料 46 水平能够达到或略微低于指示元件 25 的高度，这样一来，在插入颜料存储器 10 时就不会造成污染。将所有组件、特指颜料 46 和颜料存储器 10 灌注或插入到固定装置中之后，使用薄膜 13a，最好使用之前提到的“玻璃遮盖法”将其封闭起来。在这之后可以对所述的固定装置 6 进行转动，这样就能使颜料存储器 12 开始吸收颜料 46。

【0110】 通过上述方式可以获得一个较高的预制度，与此同时，在安装印模胶筒 45 之后就可以将其投入使用，这就省去了从颜料存储器 10 中吸收颜料所需的等待时间。也就是说，
只需要等待印刷模板9被完全浸透，然后就可以立即开始盖印操作，这样大大缩短了首次盖印所需的等待时间。

[0111] 安装印刷胶筒45时应首先将上侧开口11a上的薄膜13a移除，为了更好的抓紧薄膜13a，最好安装或设计一个接片47。在这之后将印刷模板9放置并固定在颜料存储器12上，接着将开口12仍然封的固定装置6简单的安装在所述的印刷模板上。也就是说，不需要将开口12中的薄膜13a移除，只需在安装或首次盖印时将其顶破即可。顶破薄膜后就可以将制动支脚18啮合到开口12中。

[0112] 图14示出了一个圆形的半成品，这个半成品是由槽形的固定元件6构成。在出的结构示例中，固定元件6在其槽底11上具有一个开口12。利用密封元件13将开口12封闭起来。所述的密封元件13由一块薄膜13a构成。

[0113] 在设计槽形固定元件6的内腔时应确保，能够插入一个前面所述的颜料存储器10。可以使用一个未浸湿的或被颜料46浸湿的颜料存储器。作为优选，用于容纳颜料46的固定元件6应具有一个备储腔24。也就是说，在插入颜料存储器10的情况下需要在颜料存储器和开口12之间设置一个用于容纳颜料46的备储腔24。当然也可以省去所述的备储腔24，但需要在安装颜料存储器10之前使用颜料46将其浸湿然后在浸湿情况下进行安装，或者将颜料46直接灌注到已安装的颜料存储器10上。

[0114] 根据更进一步的使用方式，可以在灌注之后将半成品直接安装到印刷单元3或印模1当中，或者也可以使用一个密封元件13、特指一块薄膜13a将上侧23a封闭起来，以便储藏。再次强调，同样需要对所述的上侧23a进行防水密封处理并使用“玻璃遮盖法”对密封元件进行固定。

[0115] 在图14所示的结构示例中，仅示出了主体结构，即带有开口12的固定元件6，所述开口会被密封元件13、特指薄膜13a防水封闭起来。在后面会根据之前所述的结构变型对图中示出的主体结构进行更进一步的处理或使用。在这些条件或替换件的基础上，印模销售商可以使用自己的颜料存储器和/或颜料。

[0116] 总而言之，所述的印刷模板1是由一个操纵单元2和一个印刷单元3构成的，其中印刷单元3可以在定位位置上相对于操纵单元2进行转动。与此同时，在设计用于印刷单元3或印模1的固定元件6时应确保，所述的固定元件6具有两个区域，其中一个区域用来容纳颜料46，第二个区域用来安装颜料存储器10。将所述的固定元件安装到印模1或印刷单元3之之前，需使用薄膜13a对槽底11上的开口12进行防水密封，这样才能在内腔中灌注颜料46。为了保证一个尽可能长的储藏时间，在完成灌注、即装入颜料46和颜料存储器10之后，同样需要使用薄膜13a对上侧23a进行防水密封。在安装到印模1或印刷单元3中时，再将薄膜13从上侧23a重新移除。

[0117] 结构示例示出了印模1可能的结构变型。在此需要注意，本发明并不局限于专门示出的结构变型，而是可能存在多种不同的单个结构变型的组合。在技术领域中相关专家的能力范围内，这些变型可能性在技术原理的基础上以具体发明的形式存在。

[0118] 原则上讲，最好将本发明所述方案应用于带有圆形印刷模板9的印模，因为这种印模存在多种不同的位置。当然，也可以将所述方案应用到印刷模板9为椭圆形、矩形、正方形等形状的印模1中。只是这些印模的调整可能性会受到限制。

[0119] 为了便于整理，本发明采用部分未按比例和/或夸大和/或缩小的方式对印模1
的组成部分做了图示说明，这样可以更好的理解印模的结构。

【0120】此外，来自所示或所述的不同结构示例的单个标记以及标记组合，也能对单独的、具有创造性的或根据本发明的设计方案进行描述，所述方案特指设计制动支脚 18、将固定元件 6 从外壳 5 中移除以及将颜料存储器 10 或灌有印模颜料的固定元件 6 设计成半成品等。
图8
图9