Title: DEVICE FOR USE IN FLOWER ARRANGING

Abstract: A device for use in flower arranging is disclosed. The device can be used to facilitate manufacture of bouquets that have the appearance of a tied bouquet. The device comprises a body having a first aperture (32) extending through it along a first axis (A) and several secondary apertures (26) surrounding the central aperture (32). The secondary apertures (26) each extend along a respective secondary axis (B) that is inclined to the first axis (A). The secondary axes (B) are aligned to have at least a component that is tangent to a helix centred about the first axis. Various embodiments are disclosed. For example, the device may include similar upper and lower plates (22, 24) parallel and spaced apart, and rotated with respect to one another about the principal axis (A). Holes (26) are formed in the plates to constitute the secondary apertures. A foam body (30) may be disposed between the plates (22,24).
Device for use in flower arranging

This invention relates to a device for use in flower arranging.

In the florist's trade, it is frequently necessary to hand tie arrangements of flowers, for example, to produce a hand-tied bouquet. This procedure is often laborious and time-consuming, even for an experienced florist. The procedure involves angling and turning flowers by hand in such a way as to produce a splayed-out circular shape with an even distribution of stems. The aim is to create the appearance of volume together with a pleasing overall effect. Training and experience are necessary to be able to successfully master this skill, which makes the hand-tied bouquets an expensive product. An important feature of these bouquets is that the stems of the flowers or plants included in them are gathered together and, above and below the region at which they are gathered, spread outwards.

Above the gathered region, this spreading must create a pleasant arrangement of flowers and plans. Below the gathered region, the stems form a base upon which the bouquet can stand.

Various proposals exist to ease production of bouquets. Examples are shown in US-A-5 477 637 and US-A-1 664 436 that provide a body within which apertures are formed to receive plant stems. However, the effect has been to produce a bouquet that is splayed and open, and offers a poor resemblance to a traditional hand-tied bouquet.

An aim of this invention is to provide a device to enable the production of a bouquets that has the appearance of a hand-tied bouquet at reduced time and effort as compared with traditional methods.

From a first aspect, this invention provides a device for use in flower arranging comprising a body having a first aperture extending through it along a first axis and several secondary apertures surrounding the central aperture, the secondary apertures each extending along a respective secondary axis inclined to the first axis, whereby the secondary axis is aligned to have at least a component that is tangential (or is substantially or entirely tangential) to a helix centred about the first axis.
In use, the first axis is typically substantially vertical. The inventor has realised that the helical arrangement of the secondary apertures cause the stems of plants passed through them to adopt a helical arrangement that closely resembles the arrangement of flowers in a hand-tied bouquet.

Each secondary axis is typically inclined to the main axis helically. That is to say, when the first axis is vertical, each secondary axis is inclined several degrees to the vertical. More specifically, each secondary axis may intersect with a line that extends normally from the principal axis. At the point of intersection, the secondary axis may be tangential to a helix that is centred on the principal axis.

Some or all of the secondary apertures may be located on a circular locus centred on the first aperture. Alternatively, they may on several loci, for example concentric loci such as concentric circles, on one or more oval locus or on another shape to suit a particular application.

The device may include two or more discs spaced apart along a main axis. Each disc has several secondary apertures, the discs being rotated with respect to one another about the main axis. Each disc may have several secondary apertures, the discs being rotated with respect to one another about the main axis. A foam body is disposed between the discs to retain and support plant stems passed through it. The discs may be bonded to the foam body in a structural manner. Alternatively, the discs may be interconnected by a core, formed as an integral moulding.

In an alternative embodiment of the device, the central aperture and secondary apertures are constituted by tubular formations of a one-piece moulding. In such embodiments, the secondary tubular formations may be aligned along inclined axes. Alternatively, to facilitate manufacture, the secondary tubular formations may be aligned in parallel with the axis of the main aperture, each secondary tubular formation containing a plug, an inclined bore being formed through the plug. In such embodiments, the stems are supported within the bores.

Within one or more of the apertures, retaining means may be provided to locate the stems within the apertures. For example, these may take the form of resilient fingers that urge the stems towards the centre of the apertures.
Since some embodiments of the invention may not have apertures until brought into use, another aspect of the invention provides a device used in flower arranging comprising a body having, in use, a first aperture extending through it along a first axis and several secondary apertures surrounding the central aperture, the secondary apertures each extending along a respective secondary axis inclined to the first axis, whereby the secondary axis is aligned to have at least a component that is tangent to a helix centred about the first axis.

Embodiments of the invention will now be described in detail, by way of example, and with reference to the accompanying drawings, in which:

Figure 1 is a perspective view of a first embodiment of the invention;

Figure 2 is a perspective view of a first embodiment of the invention;

Figure 3 is a perspective view of a second embodiment of the invention;

Figures 4 and 5 are plan and side views of a fourth embodiment of the invention; and

Figure 6 shows, diagrammatically, an embodiment of the invention in use.

With reference to Figure 1, a first embodiment of the invention is formed as a moulding of suitable plastic material. The device is formed as an annular body 10, having parallel upper and lower surfaces 12, 14. A cylindrical first aperture 16 extends from the upper to the lower surface, through the body 10, centred and parallel to a principal axis A. The body has a circular periphery centred upon the axis A.

Surrounding the first aperture 16, arranged on a circular locus, are several secondary apertures 18, each extending from the upper to the lower surface. Each secondary aperture 18 has a circular cross-section. Each secondary aperture 18 is aligned on one of several parallel secondary axes B. Each of the secondary axes B is inclined to the principal axis A. The alignment of these secondary axes can be understood by way of the following constriction, described with reference to Figure 2.

Each secondary axis intersects with a line C that extends normally from the principal axis A. At the point of intersection, the secondary axis B is tangential to a helix that is centred on the principal axis A. The helix has a pitch that is many times the thickness of the body 10, such
that the secondary axes are inclined at an angle of between 5° and 10° to the principal axis A. In this embodiment, the lines C are angularly equally spaced about the principal axis A and are eight in number.

An alternative way to perceive the same construction is to consider that the lower surface 14 is similar to the upper surface 12, but rotated about the principal axis A. The secondary apertures 18 interconnect holes in the upper and lower surfaces, these apertures being angled with respect to the principal axis A as a result of the rotation.

A second embodiment is shown in Figure 2. This embodiment comprises similar upper and lower annular plates 22, 24. The annular plates 22, 24 are formed from a moulded plastic material. Each plate has several circular apertures 26 formed through it, equally spaced around a circular locus centred on the main axis A, and a central circular main aperture 28. A body 30 of foam material is disposed between the plates, the plates 22, 24 being bonded to the body 30. The body 30 has an outer surface that is of substantially the same diameter as the plates 22, 24.

A main bore 32 is formed through the body 30 interconnecting the main apertures 28 of the two plates. The plates 22, 24 are arranged on the body 30 such that they are rotated with respect to one another about the central axis A by about 5°, and a respective secondary bore 34 is formed through the body to interconnect respective apertures 28 in the plates 22, 24. As can be seen from Figure 2, the effect of this is that the secondary bores have the helical arrangement as described above.

In a modification to this embodiment, the bores 32, 34 are not formed in the body 30 during manufacture, but instead are formed when plant stems are pushed through the body, the effect being to grip the stems. A narrow pilot bore may be formed to guide the passage of the stems.

In a further low-cost embodiment, the above-described second embodiment may be modified by omitting the plates 22, 24 and providing a foam body of sufficient strength to retain the plant stems.

In Figure 3, a further embodiment is shown that is similar to that last previously-described. This embodiment comprises upper and lower plates 50, 52 interconnected by a core 54. The core has an axial central passage that constitutes the first aperture and holes 56 in the plates
50, 52 form the secondary apertures. As in the preceding embodiments, the secondary holes in the plates 56 are rotated with respect to one another about the principal axis A. Optionally, a filling such as foam can be introduced between the plates 50, 52.

With reference now to Figures 4 and 5, a fourth embodiment of the invention is constructed in a moulded plastic body 40. The body has a central cylindrical section 42 that constitutes a main aperture through which flower stems can pass. Surrounding the central cylindrical section 42 are several tubes 44 of narrow diameter that constitute secondary aperture within which plant stems can be located. As with the above embodiments, the tubes 44 are arranged in a helical inclination as described in detail above. The body as described above can be formed as a one-piece plastic moulding.

Within each of tubes 44 and the central section there are several inwardly-directed resilient fingers 46 approximately half way along the tube. In this embodiment, the fingers are formed from flexible rubber or synthetic rubber. Alternatively, they might be formed as moulded formations integral with the tubes. Such fingers serve to retain the flower stems in position within the device.

In yet another embodiment, a moulding is provided that is similar to that described above, but with the axes of the tubes 44 parallel to the principal axis A. Each of such tubes is filled with a foam plug through which a bore is formed having a helical axis, as described above. However, the diameter of the tubes must be sufficient to allow the bores to be formed without intersecting the tube walls.

In all of the above embodiments, the secondary apertures are disposed upon a circular locus. However, this is by no means an essential feature of the invention. The secondary apertures may be on a locus of another shape (e.g., oval in the example below) or on several loci, such as on several concentric shapes.

A modification to the above-described embodiment can be made for production of a flat bouquet widely used for making funeral sprays. These bouquets differ from the hand-tied bouquets in that they have a more flattened form, the back of the arrangement being created by laying the flowers in a straight position, more flowers are then placed from both the left and right side across one another to create a triangular effect. The stems are then secured and then placed in a transparent plastic sleeve. Any of the above embodiments may be adapted to produce such a bouquet. In such cases, the first aperture has an oval shaped, and
the secondary apertures are angled in a helical arrangement as before. These secondary apertures position the flowers at an angle across the main body of central flowers.

As shown in Figure 6, a bouquet can be constructed using a device embodying the invention. The illustrated example is most similar to the embodiment described above with reference to Figures 4 and 5, but the same principles apply to use of the other embodiments.

Flowers 60 are arranged with their stems 62 passing through the apertures of a device 64 embodying the invention. The greater part of the stem is above the device (that is, between the device and the flower head). Several flowers pass through the main aperture and others pass through the secondary apertures. As can be seen from Figure 6 (albeit in very simplified form), the effect is to create a pleasing arrangement above the device 64 and to produce a base formed from the lower portions of the stems below the device.
Claims

1. A device for use in flower arranging comprising a body having a first aperture extending through it along a first axis and several secondary apertures surrounding the central aperture, the secondary apertures each extending along a respective secondary axis inclined to the first axis, whereby the secondary axis is aligned to have at least a component that is tangential to a helix centred about the first axis.

2. A device according to claim 1 in which each secondary axis is typically inclined to the main axis helically.

3. A device according to claim 2 in which each secondary axis intersects with a line that extends normally from the principal axis.

4. A device according to claim 3 in which, at the point of intersection, the secondary axis is tangential to a helix that is centred on the principal axis.

5. A device according to any preceding claim in which some or all of the secondary apertures may be located on a circular locus centred on the first aperture.

6. A device according to any preceding claim in which some or all of the secondary apertures may be located on a plurality of loci centred on the first aperture.

7. A device according to any preceding claim including two or more discs spaced apart along a main axis.

8. A device according to claim 7 in which each disc has several secondary apertures, the discs being rotated with respect to one another about the main axis.

9. A device according to claim 7 or claim 8 in which a foam body is disposed between the discs.
10. A device according to claim 9 in which the discs are bonded to the foam body.

11. A device according to any one of claims 7 to 10 in which the discs are interconnected by a core.

12. A device according to claim 11 in which the discs and the core are formed as an integral moulding.

13. A device according to any one of claims 1 to 6 in which the central aperture and secondary apertures are constituted by tubular formations of a one-piece moulding.

14. A device according to claim 13 in which the secondary tubular formations are aligned along inclined axes.

15. A device according to claim 13 in which the secondary tubular formations are aligned in parallel with the axis of the main aperture.

16. A device according to claim 15 in which each secondary tubular formation contains a plug, an inclined bore being formed through the plug.

17. A device according to any preceding claim having, within one or more of the apertures, retaining means may be provided to locate the stems within the apertures.

18. A device according to claim 9 in which the retaining means take the form of resilient fingers that urge the stems towards the centre of the apertures.

19. A device used in flower arranging comprising a body having, in use, a first aperture extending through it along a first axis and several secondary apertures surrounding the central aperture, the secondary apertures each extending along a respective secondary axis inclined to the first axis, whereby the secondary axis is aligned to have at least a component that is tangent to a helix centred about the first axis.

20. A device for use in flower arranging substantially as herein described with reference to the accompanying drawings.

21. A bouquet comprising a device according to any preceding claim and a plurality of plants, having their stems passing through the apertures of a device according to any preceding claim.
Fig 3
Fig 5
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>A01G5/04</th>
<th>A476/07</th>
</tr>
</thead>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC</th>
<th>A016</th>
<th>A476</th>
</tr>
</thead>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 683 762 A (BANSCHICK KENNETH A) 4 November 1997 (1997-11-04) column 10, line 42-56; figure 8</td>
<td>1-5, 7, 8, 11, 12, 19-21</td>
</tr>
<tr>
<td>X, P</td>
<td>WO 03/039241 A (LEBRETON JEAN-PIERRE ET AL) 15 May 2003 (2003-05-15) page 6, line 17-26; figure 2</td>
<td>1-6, 13-15, 19-21</td>
</tr>
<tr>
<td>X</td>
<td>US 3 745 702 A (OGAWA KOHEI) 17 July 1973 (1973-07-17) figures 1,2</td>
<td>1-4, 17, 19-21</td>
</tr>
<tr>
<td>A</td>
<td>GB 1 544 630 A (JAMES NAYLOR LTD) 25 April 1979 (1979-04-25) figure 4</td>
<td>9, 10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

Date of the actual completion of the international search

11 May 2004

Date of mailing of the international search report

19/05/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HN filipjenki
Tel: (+31-70) 940-20-40, Tx: 31 651 epc nl, Fax (+31-70) 940-30-16

Authorized officer

Reichhardt, O
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GB 2 191 692 A (FOSTER DAVID JOSEPH) 23 December 1987 (1987-12-23) figures 1,4</td>
<td>17,18</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4998793 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9305599 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2120752 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7502705 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9403669 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5380568 A</td>
</tr>
<tr>
<td>US 3745702 A</td>
<td>17-07-1973</td>
<td>NONE</td>
</tr>
<tr>
<td>GB 1544630 A</td>
<td>25-04-1979</td>
<td>AU 2591777 A</td>
</tr>
<tr>
<td>GB 2191692 A</td>
<td>23-12-1987</td>
<td>AU 7587987 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 8707823 A1</td>
</tr>
</tbody>
</table>