The present invention includes a process for producing treated filler that includes (a) treating a slurry that includes untreated filler where the untreated filler has not been previously dried, with a treating composition that includes a treating agent, thereby forming a treated filler slurry, and (b) drying the treated filler slurry to produce treated filler. The treating agent can include at least one of an anhydride, a cyclic imide, and a derivative thereof. The present invention also is directed to treated filler prepared by the process, as well as rubber compounding compositions and tires including the treated filler.
TREATED FILLERS, COMPOSITIONS CONTAINING SAME, AND ARTICLES PREPARED THEREFROM

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 61/887,713, filed Oct. 7, 2013, which is hereby incorporated herein its entirety by reference.

FIELD OF INVENTION

[0002] The present invention is related to a process for the preparation of treated filler, treated filler produced by the process, and compositions and articles containing such treated filler.

BACKGROUND OF THE INVENTION

[0003] The use of silica/silane filler systems to reduce the rolling resistance and improve the wet traction of passenger car and truck tires is known in the art. A reduction of rolling resistance results in less fuel consumption.

[0004] The simultaneous improvement of rolling resistance, wear, and traction, known as expanding the “magic triangle”, requires new approaches to rubber composite development. Precipitated silica has played a major role in the emergence of the green tire, which boasts a large improvement in rolling resistance compared to past technologies. The direct cross-linking of silica (via coupling) into a highly cross-linked polymer matrix, while minimizing interactions between silica particles, is believed to be of vital importance to desirable dynamic mechanical properties of rubber used in the production of passenger car and truck tires. It has been noted that in natural rubber (typically used in the production of truck tires), the proteins present from natural rubber biosynthesis can adsorb preferentially to the silica surface, interfering with the in-situ coupling reaction. Increased dump temperatures, which might improve the coupling efficiency, have also been shown to degrade natural rubber. Thus, there continues to be a need in the rubber industry for improved silica-rubber coupling materials.

[0005] Further, it has been found that the incorporation of high surface area filler materials into rubber compositions can cause an undesirable increase in viscosity thereby limiting the amount of high surface area material contents that can be included in the rubber composition due to process problems. Thus, there is a need to treat such high surface materials (e.g., precipitated silica) with materials which can serve as to render the high surface materials more compatible with the polymeric matrix into which they are being incorporated, improve processing viscosity, and prevent phase separation of the high surface materials from the polymeric matrix.

SUMMARY OF THE INVENTION

[0006] In accordance with the present invention, there is provided a process for producing treated filler that includes: (a) treating a slurry that includes untreated filler, where the untreated filler has not been previously dried, with a treating composition that includes a treating agent, thereby forming a treated filler slurry; and (b) drying the treated filler slurry to produce treated filler. The treating agent can include at least one of an anhydride, a cyclic imide, and a derivative thereof.

[0007] In accordance with the present invention, there is further provided a process for producing treated precipitated silica that includes: (a) combining an alkali metal silicate and an acid to form a slurry that includes untreated silica, where the untreated silica has not been previously dried; (b) treating said slurry with a treating composition that includes a treating agent, thereby forming a treated slurry; and (c) drying said treated slurry to produce treated precipitated silica. The treating agent can include at least one of an anhydride, a cyclic imide, and a derivative thereof.

[0008] In accordance with the present invention, there is further provided a process for producing a treated precipitated silica that includes: (a) combining an alkali metal silicate and an acid to form an untreated slurry that includes untreated silica, where the untreated silica has not been previously dried; (b) drying the untreated slurry to produce dried precipitated silica; (c) forming an aqueous slurry of the dried precipitated silica with a treating composition that includes a treating agent, and, optionally, a coupling agent and/or, optionally, a non-coupling agent to form a treated precipitated silica slurry; and (d) drying the treated precipitated silica slurry to produce a dried treated precipitated silica. The treating agent can include at least one of an anhydride, a cyclic imide, and a derivative thereof.

[0009] In accordance with the present invention, there is also provided treated filler prepared by the processes described herein, as well as rubber compositions such as rubber compounding compositions including the treated filler, and rubber articles that include the treated filler of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0010] As previously mentioned, the present invention provides a process for producing treated filler. The process can include: (a) treating a slurry that can include untreated filler where the untreated filler has not been previously dried, with a treating composition comprising a treating agent, thereby forming a treated filler slurry; and (b) drying the treated filler slurry to produce treated filler.

[0011] As used herein, with reference to filler (such as, treated and/or untreated filler), the term “not been previously dried” means filler that, prior to the treatment process, has not been dried to a moisture content of less than 20 percent by weight. For purposes of the present invention, untreated filler does not include filler that has been previously dried to a moisture content of less than 20 percent by weight and then rehydrated.

[0012] As used herein, the term “filler” means an inorganic material such as an inorganic oxide that can be used in a polymer composition to improve at least one property of the polymer. As used herein, the term “slurry” means a mixture including at least filler and water.

[0013] As used herein, the articles “a,” “an,” and “the” include plural referents unless otherwise expressly and unequivocally limited to one referent.

[0014] Unless otherwise indicated, all ranges or ratios disclosed herein are to be understood to encompass any and all subranges or subratios subsumed therein. For example, a stated range or ratio of “1 to 10” should be considered to include any and all subranges between (and inclusive of) the minimum value of 1 and the maximum value of 10; that is, all subranges or subratios beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less, such as but not limited to, 1 to 6.1, 3.5 to 7.8, and 5.5 to 10.

[0015] Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingre-
As used herein, molecular weight values of polymers, such as weight average molecular weights (Mw) and number average molecular weights (Mn), are determined by gel permeation chromatography using appropriate standards, such as polystyrene standards. As used herein, polydispersity index (PDI) values represent a ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the polymer (i.e., Mw/Mn).

As used herein, the term “polymer” means homopolymers (e.g., prepared from a single monomer species), copolymers (e.g., prepared from at least two monomer species), and graft polymers.

As used herein, the term “(meth)acrylate” and similar terms, such as “(meth)acrylic acid ester” means methacrylates and/or acrylates. As used herein, the term “(meth)acrylic acid” means methacrylic acid and/or acrylic acid.

All documents, such as but not limited to issued patents and patent applications, referred to herein, and unless otherwise indicated, are to be considered to be “incorporated by reference” in their entirety.

As used herein, recitations of “linear or branched” groups, such as linear or branched alkyl, are herein understood to include: a methylene group or a methyl group; groups that are linear, such as linear C₃-C₅₈ alkyl groups; and groups that are appropriately branched, such as branched C₃-C₅₈ alkyl groups.

As used herein, recitations of “optionally substituted” group, means a group, including but not limited to, alkyl group, cycloalkyl group, heterocycloalkyl group, aryl group, and/or heteroaryl group, in which at least one hydrogen of the group has been optionally replaced or substituted with a group that is other than hydrogen, such as, but not limited to, halo groups (e.g., F, Cl, I, and Br), hydroxy groups, ether groups, thiol groups, thio ether groups, carboxylic acid groups, carboxylic acid ester groups, phosphoric acid groups, phosphoric acid ester groups, sulfonic acid groups, sulfonic acid ester groups, nitro groups, cyano groups, hydrocarbyl groups (including, but not limited to: alkyl; alkenyl; alkynyl; cycloalkyl, including poly-fused-ring cycloalkyl and polycycloalkyl; heterocycloalkyl; aryl, including hydroxy substituted aryl, such as phenol, and including poly-fused-ring aryl; heteroaryl, including poly-fused-ring heteroaryl; and aralkyl groups), and amine groups, such as N(R₁,R₂)⁺(R₃,R₄)⁻ where R₁,R₂ and R₃,R₄ are each independently selected from hydrogen, hydrocarbyl groups.

Some compounds that can be used with the method of the present invention include groups and subgroups that can in each case be independently selected from hydrocarbyl and/or substituted hydrocarbyl and/or functional hydrocarbyl (or hydrocarbyl groups having one or more functional groups). As used herein, and in accordance with some embodiments, the term “hydrocarbyl” and similar terms, such as “hydrocarbyl substituent,” means: linear or branched C₁-C₁₆ alkyl (e.g., linear or branched C₁-C₁₀ alkyl); linear or branched C₂-C₅₈ alkenyl (e.g., linear or branched C₂-C₁₀ alkenyl); linear or branched C₂-C₅₈ alkynyl (e.g., linear or branched C₂-C₁₀ alkynyl); C₅-C₁₂ cycloalkyl (e.g., C₇-C₁₀ cycloalkyl); C₃-C₁₈ aryl (including poly cyclic aryl groups) (e.g., C₇-C₁₀ aryl); and C₆-C₁₄ aralkyl (e.g., C₆-C₁₀ aralkyl).

Representative alkyll groups include but are not limited to methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, octyl, nonyl and decyl. Representative alkenyl groups include but are not limited to vinyl, allyl and propenyl. Representative alkynyl groups include but are not limited to ethenyl, 1-propynyl, 2-propynyl, 1-butylnyl, and 2-butylnyl. Representative cycloalkyl groups include but are not limited to cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl substituents. Representative aralkyl groups include but are not limited to benzy1, and phenethyl.

The term “substituted hydrocarbyl” and similar terms, such as “functional hydrocarbyl” (or hydrocarbyl having at least one functional group) as used herein means a hydrocarbyl group in which at least one hydrogen thereof has been substituted with a group that is other than hydrogen, such as, but not limited to, halo groups, hydroxy groups, ether groups, thiol groups, thio ether groups, carboxylic acid groups, carboxylic acid ester groups, phosphoric acid groups, phosphoric acid ester groups, sulfonic acid groups, sulfonic acid ester groups, nitro groups, cyano groups, hydrocarbyl groups (e.g., alkyl, alkenyl, alkyny1, cycloalkyl, aryl, and aralkyl groups), heterocycloalkyl groups, heteroaryl groups, and amine groups, such as —N(R₃,R₄)⁺(R₅,R₆)⁻ where R₃,R₄ and R₅,R₆ are each independently selected from hydrogen, hydrocarbyl and/or substituted hydrocarbyl.

The term “alkyl” as used herein, in accordance with some embodiments, means linear or branched alkyl, such as but not limited to, linear or branched C₁-C₁₆ alkyl, or linear or branched C₇-C₁₀ alkyl, or linear or branched C₇-C₁₀ alkyl. Examples of alkyl groups from which the various alkyl groups of the present invention can be selected from, include, but are not limited to, those recited previously herein. Alkyl groups of the various compounds of the present invention can, with some embodiments, include one or more unsaturated linkages selected from —CH=CH— groups and/or one or more —C—C— groups, provided the alkyl group is free of two or more conjugated unsaturated linkages. With some embodiments, the alkyl groups are free of unsaturated linkages, such as —CH=CH— groups and —C—C— groups.

The term “cycloalkyl” as used herein, in accordance with some embodiments, means groups that are appropriately cyclic, such as but not limited to, C₅-C₁₂ cycloalkyl (including, but not limited to, cyclic C₅-C₈ alkyl) groups. Examples of cycloalkyl groups include, but are not limited to, those recited previously herein. The term “cycloalkyl” as used herein in accordance with some embodiments also includes: bridged rings polycycloalkyl groups (or bridged ring polycyclic alkyl groups), such as but not limited to, bicyclo[2.2.1] heptyl (or norbornyl) and bicyclo[2.2.2]octyl; and fused ring polycycloalkyl groups (or fused ring polycyclic alkyl groups), such as, but not limited to, octahydro-1H-indenyl, and decahydro-1H-naphthalenyl.

The term “heterocycloalkyl” as used herein, in accordance with some embodiments, means groups that are appropriately cyclic (having at least one heteroatom in the cyclic ring), such as but not limited to, C₅-C₁₂ heterocycloalkyl groups or C₅-C₁₂ heterocycloalkyl groups, and which have at least one hetero atom in the cyclic ring, such as, but not limited to, O, S, N, P, and combinations thereof. Examples of heterocycloalkyl groups include, but are not limited to, imidazolyl, tetrahydrofuranyl, tetrahydropyranyl, and piperidin-
nyl. The term “heterocycloalkyl” as used herein, in accordance with some embodiments, also includes: bridged ring polycyclic heterocycloalkyl groups, such as but not limited to, 7-oxabicyclo[2.2.1]heptanyl, and fused ring polycyclic heterocycloalkyl groups, such as but not limited to, octahydrocyclopenta[6]pyranyl, and octahydroindenyl 1H isochromenyl.

[0029] As used herein, and in accordance with some embodiments, the term “aryl” includes C6–C16 aryl, such as C6–C10 aryl (and includes polycyclic aryl groups, including polycyclic fused ring aryl groups). Representative aryl groups include, but are not limited to, phenyl, naphthyl, anthracenyl, and triptycencynyl.

[0030] The term “heteroaryl,” as used herein, in accordance with some embodiments, means aryl groups having at least one heteroatom in the ring, and includes but is not limited to C5–C13 heteroaryl, such as but not limited to C5–C10 heteroaryl (including fused ring polycyclic heteroaryl groups) and means an aryl group having at least one hetero atom in the aromatic ring, or in at least one aromatic ring in the case of a fused ring polycyclic heteroaryl group. Examples of heteroaryl groups include, but are not limited to, furanyl, pyranyl, pyridinyl, isodimino, and pyrimidinyl.

[0031] As used herein, the term “fused ring polycyclic-aryl-alkyl” group and similar terms such as, fused ring polycyclic-aryl-alkyl group, fused ring polycyclic-aryl-alkyl group, and fused ring polycyclic-aryl-alkyl group means a fused ring polycyclic group that includes at least one aryl ring and at least one cycloalkyl ring that are fused together to form a fused ring structure. For purposes of non-limiting illustration, examples of fused ring polycyclic-aryl-alkyl groups include, but are not limited to indenyl, 9H-flourenyl, cyclopentanophenyl, and indacencynyl.

[0032] The term “aralkyl” as used herein, and in accordance with some embodiments, includes but is not limited to C6–C14 aralkyl, such as but not limited to C6–C10 aralkyl, and means an aryl group substituted with an alkyl group. Examples of aralkyl groups include, but are not limited to, those recited previously herein.

[0033] Suitable untreated fillers for use in process of the present invention can include a wide variety of materials known to have ordinary skill in the art. Non-limiting examples can include inorganic oxides such as inorganic particulate and amorphous solid materials which possess either oxygen (chemisorbed or covalently bonded) or hydroxyl (bound or free) at an exposed surface, such as but not limited to oxides of the metals in Periods 2, 3, 4, 5 and 6 of Groups Ib, Iib, Ia, IIIb, Iva, Ivb (except carbon), Va, VIA, VIIa and VIII of the Periodic Table of the Elements in Advanced Inorganic Chemistry: A Comprehensive Text by F. Albert Cotton et al., Fourth Edition, John Wiley and Sons, 1980. Non-limiting examples of suitable inorganic oxides can include but are not limited to aluminum silicates, silica such as silica gel, colloidal silica, precipitated silica, and mixtures thereof.

[0034] The inorganic oxide can be silica with some embodiments. For example, in certain embodiments, the inorganic oxide can include precipitated silica, colloidal silica, and mixtures thereof. The silica can have an average ultimate particle size of less than 0.1 micron, or greater than 0.001 micron, or from 0.01 to 0.05 micron, or from 0.015 to 0.02 micron, as measured by electron microscopy. Further, the silica can have a surface area of from 25 to 1000 square meters per gram, such as from 75 to 250 square meters per gram, or from 100 to 200 square meters per gram, as determined by the Brunauer, Emmett, and Teller (BET) method in accordance with ASTM D1970-91. With some embodiments, the filler is precipitated silica.

[0035] As previously mentioned, the untreated filler slurry is treated with a treating composition that can include a treating agent. In certain embodiments, the treating agent can act as a coupling agent. The term “coupling agent” as used herein means a material that binds (ionically or covalently) to (i) groups present on the surface of the filler particle (such as on the silica surface), as well as to (ii) functional groups present on the component(s) of the polymeric matrix into which the filler is incorporated. Thus, the filler particles can be “coupled” to the components in the polymeric matrix.

[0036] Alternatively, with some embodiments, the treating agent can act as a non-coupling agent. The term “non-coupling agent” as used herein means a material that serves to compatibilize the treated filler with the polymeric composition in which the treated filler ultimately is used. That is, the non-coupling agent can affect the free surface energy of the treated filler particles to make the treated filler particles have a surface energy similar to that of the polymeric composition. This facilitates incorporation of the treated filler into the polymeric composition, and can serve to improve (such as decrease) mix viscosity of the composition. It should be noted that non-coupling agents are not expected to couple with the rubber matrix beyond Van der Waal interactions. As used herein, the term “non-coupling agent” can be used interchangeably with “compatibilizer”.

[0037] It should be noted that many of the treatment agents may simultaneously function as both a coupling agent and a non-coupling agent/compatibilizer.

[0038] The treating agent, with some embodiments of the present invention, can include at least one of an anhydride, a cyclic imide, and a derivative thereof. In one embodiment, the anhydride can be a cyclic anhydride. Non-limiting examples of suitable anhydrides, cyclic imides, and derivatives thereof include benzoic anhydride, acetic anhydride, maleic anhydride, succinic anhydride, maleimide, succinimide, and/or derivatives thereof. As used herein, “derivatives” refers to salts, ring opened products (including carboxylic acid esters, di-carboxylic acid esters, and di-carboxylic acids thereof), and substituted products of anhydrides and cyclic imides. In certain embodiments, the ring opened products can be formed through a hydrolysis reaction. As used herein, the term “substituted products” with regard to the treating agents, such as anhydrides and cyclic imides, means that such compounds include one or more substituents covalently bonded thereto, such as, but not limited to, those substituents and groups described previously herein with regard to substituted hydrocarbyls and, optionally substituted groups. With some of these embodiments, the anhydrides and/or cyclic imides are substituted with a group that includes a carbon-carbon double bond. Non-limiting examples of groups that include carbon-carbon double bonds include alkene, allyl, alkenyl, vinyl, and combinations thereof.

[0039] With some embodiments, the treating agent includes at least one of maleimide, succinimide, and fused ring succinimide that can each be represented by the following formulas (A), (B), and (C):
where R* in each case is independently hydrogen, or linear or branched C\textsubscript{1} to C\textsubscript{10} hydrocarbyls. With reference to formula (C), ring-A can selected from, for example, cycloalkyl, fused ring polycycloalkyl, heterocycloalkyl, fused ring polycyclic heterocycloalkyl, aryl, fused ring polycyclicaryl, heteroaryl, fused ring polycyclic heteroaryl, and fused ring polycyclic-aryl-alkyl, which can each independently be optionally substituted. With some embodiments, ring-A is substituted with at least one group having a carbon-carbon double bond. With some embodiments, ring-A is an optionally substituted cyclohexane ring, or an optionally substituted benzene ring.

[0040] With some other embodiments, the maleimide, such as represented by formula (A), is prepared by reacting maleic anhydride with an amine followed by dehydration in accordance with art-recognized methods. With some further embodiments, the succinimide, such as represented by formula (B), is prepared by reacting succinic anhydride with an amine followed by dehydration in accordance with art-recognized methods. With some embodiments, the fused ring succinimide, such as represented by formula (C), is prepared by reacting fused ring succinimide with an amine followed by dehydration in accordance with art-recognized methods.

[0041] With some embodiments, the treating agent includes a cyclic anhydride that can be represented by the following formula (D):

[0042] With reference to formula (D), ring-A is as described previously herein with reference to ring-A of formula (C).

[0043] With some embodiments, in addition to the treatment agents listed above, the treating composition can further include a first or additional coupling agent that is different than the treating agent. In certain embodiments, the coupling agent can include any of a variety of organosilanes. Examples of suitable organosilanes that can be used with some embodiments of the present invention include those represented by Formula (I):

\[(R_1)_n(R_2)SnX_{4-n}, \quad (I)\]

With reference to Formula (I), R\textsubscript{1} is independently for each “a”, a hydrocarbyl group having 1 to 36 carbon atoms and a functional group. The functional group of the hydrocarbyl group is vinyl, allyl, hexenyl, epoxy (oxirane), glycidoxy, (meth)acryloxy, sulfide, isocyanato (-NCO), polysulfide, mercapto, or halogen. With reference to Formula (I), R\textsubscript{2} is independently for each “b” a hydrocarbyl group having from 1 to 36 carbon atoms or hydrogen. X of Formula (I) is independently halogen or alkoxide having 1 to 36 carbon atoms; subscript “a” is 0, 1, 2, or 3; subscript “b” is 0, 1, or 2; (a+b) is 1, 2, or 3. With some embodiments, there is the proviso that when b is 1, (a+b) is 2 or 3. With some further embodiments of the present invention, the treating composition further a coupling agent represented by Formula (I), in which X is alkoxide, a is 1, b is 0, and the functional group of the hydrocarbyl of R\textsubscript{1}, is halogen.

[0044] Examples of halo-functional organosilanes, such as those represented by Formula (I), include, but are not limited to, \((4\text{-chloromethyl-phenyl})\text{trimethoxysilane}, (4\text{-chloromethyl-phenyl})\text{triethoxysilane}, [2\text{-}(4\text{-chloromethyl-phenyl})\text{-ethyl}]\text{trimethoxysilane}, [2\text{-}(4\text{-chloromethyl-phenyl})\text{-ethyl}]\text{triethoxysilane}, (3\text{-chloro-propeny1})\text{trimethoxysilane}, (3\text{-chloro-propeny1})\text{triethoxysilane}, (3\text{-chloro-propyl})\text{trimethoxysilane}, (3\text{-chloro-propyl})\text{triethoxysilane}, triethoxy-2\text{-p-tolyl-ethyl}silane and/or triethoxy-2\text{-p-tolyl-ethyl}silane.

[0045] In certain embodiments, the additional coupling agent can be present in the slurry in an amount ranging from 0.25 to 30.0 weight percent, such as 1 to 15 weight percent, or 5 to 10 weight percent based on the total mass of SiO\textsubscript{2}, which has been precipitated.

[0046] In certain embodiments, the treating composition useful in the process of the present invention also can further include a sulfur-containing organosilane that is different from the aforementioned optional organosilane coupling agents, such as represented by Formula (I). Non-limiting examples of such materials can include, but are not limited to, organosilanes represented by the following Formula (II):

\[(R_3)_n(R_4)SnY_{4-n}, \quad (II)\]

With reference to Formula (II), R\textsubscript{3} independently for each “c” can be a hydrocarbyl group having 1 to 12 carbon atoms and a functional group. The functional group can be sulfide, polysulfide or mercapto. With reference to Formula (II), R\textsubscript{4} independently for each “d” can be a hydrocarbyl group having from 1 to 18 carbon atoms or hydrogen. Each Y each can independently be halogen or an alkoxide group having from 1 to 12 carbon atoms. Subscript “c” can be 0, 1, 2, or 3; subscript “b” can be 0, 1, or 2; and c+d can be 1, 2, or 3. With some embodiments, there is the proviso that when b is 1 then a+b is 2 or 3. The R\textsubscript{3} and R\textsubscript{4} groups of Formula (II) can be selected such that they can react with the polymeric composition in which the treated filler can be incorporated. Additionally, the sulfur-containing organosilane can include bis(alkoxysilylalkyl)polysulfides represented by following Formula (III):

\[Z'\text{-alk}_n\text{-alk}', (III)\]

With reference to Formula (III), “alk” represents a divalent hydrocarbon radical having from 1 to 18 carbon atoms; n is an integer from 2 to 12; and Z’ is:
in which R_5 is independently an alkyl group having from 1 to 4 carbon atoms or phenyl, and each R_6 is independently an alkoxy group having from 1 to 8 carbon atoms, a cycloalkoxy group with from 5 to 8 carbon atoms, or a straight or branched chain alkymercapto group with from 1 to 8 carbon atoms. The R_5 and R_6 groups can be the same or different. Also, the divalent alk group can be straight or branched chain, a saturated or unsaturated aliphatic hydrocarbon group or a cyclic hydrocarbon group. Non-limiting examples of bis(alkoxysilylalkyl)-polysulfides can include bis(2-trialkoxysilylalkyl)-polysulfides in which the trialkoxy group can be trimethoxy, triethyl(hydroxy), tripropoxy, tributoxy, etc. up to trioctyloxy and the polysulfide can be either di-, tri-, tetra-, penta-, or hexaalkyl polysulfide. Further non-limiting examples can include the corresponding bis(3-trialkoxysilylpropyl), bis(3-trialkoxysilylsubstituted, -bis(4-trialkoxysilylbutyl), etc. up to bis(6-trialkoxysilylhexyl)-polysulfides. Further non-limiting examples of bis(alkoxysilylalkyl)-polysulfides are described in U.S. Pat. No. 3,873,489, column 6, lines 5-55, and in U.S. Pat. No. 5,580,919, at column 11, lines 11-41. Further non-limiting examples of such compounds can include: 3,3’-bis(trimethoxyisilyl)trisulfide.

[0047] 3,3’-bis(triethoxysilylpropyl)trisulfide,
[0048] 3,3’-bis(triethoxysilylpropyl)tetrasulfide, 2,2’-bis(triethoxysilylalkyl)tetrasulfide,
[0049] 3,3’-bis(triethoxysilylpropyl)trisulfide, 3,3’-bis(triethoxysilylalkyl)trisulfide,
[0050] 3,3’-bis(triethoxysilylpropyl)disulfide, 3,3’-bis(triethoxysilylpropyl)hexaalkyl,
[0051] 3,3’-bis(triethoxysilylalkyl)disulfide and mixtures thereof.

The sulfur-containing organosilane also can be a mercaptoorganometallic compound represented by the following Formula (IV):

$$
\text{HS} - R_5 - M' - Q_{(n)}
$$

With reference to Formula (IV), M' is silicon, L is halogen or $-OR_8$, Q is hydrogen, C_1-C_{12} alky1, or halo-substituted C_1-C_{12} alkyl, R_5 is C_1-C_{12} alkylnylene, R_6 is C_1-C_{12} alkoxyalkyl containing from 2 to 12 carbon atoms, the halogen or (h) groups being chloro, bromo, iodo or fluoro, and n is 1, 2 or 3. In a non-limiting embodiment, mercaptoorganometallic reactants having two mercapto groups can be used.

[0052] Non-limiting examples of useful mercaptoorganometallic compounds include but are not limited to mercaptopropyltrimethoxysilane, mercaptopropylmethoxysilane, mercaptopropyltrimethylsiolate, mercaptoethyltrimethoxysilane, mercaptoethylmethoxysilane, mercaptopropyltrimethoxysilane, mercaptoethyltrimethylsiloxane, mercaptopropyltrimethylsiloxane, mercaptopropyltrimethylsiloxane, and mixtures thereof.

[0053] With some embodiments of the present invention, the sulfur-containing organosilane can be a mercaptoorganometallic compound such as a mercaptosilane different from the organosilane used in the treating composition of step (a), for example, mercaptopropyltrimethoxysilane and/or mercaptopropyltrimethylsiloxane.

[0054] Also, it is contemplated that the sulfur-containing organosilane represented by Formula (IV), which is different from the aforementioned organosilane coupling agent represented by Formula (I), that can be used in step (a) of the process of the present invention, can be a mercaptoorganometallic compound in which the mercapto group is blocked, i.e., the mercapto hydrogen atom is replaced by another group. Blocked mercaptoorganometallic compounds can have an unsaturated heterooatom or carbon bound directly to sulfur via a single bond. Non-limiting examples of specific blocking groups can include thioacetoxy ester, dithiocarbamate ester, thiosulfonate ester, thiosulfate ester, thiophosphate ester, thiophosphonate ester, and thiophosphinate ester.

[0055] With some non-limiting embodiments, in which a blocked mercaptoorganometallic compound is used as an optional coupling material, a deblocking agent can be added to the polymeric compound mixture to deblock the blocked mercaptoorganometallic compound. With some non-limiting embodiments in which water and/or alcohol are present in the mixture, a catalyst, such as, tertiary amines, Lewis acids or thiol, can be used to initiate and promote the loss of the blocking group by hydrolysis or alcoholysis to liberate the corresponding mercaptoorganometallic compounds. Non-limiting examples of blocked mercaptoorganometallic compounds include but are not limited to 2-triethoxysilyl-1-ethyl thioacetate, 3-triethoxysilyl-1-propyl thioacetate, bis-(3-triethoxysilyl-1-propyl)-methylthiophosphonate, 3-triethoxysilyl-1-propyl-kdimethylthiophosphinate, 3-triethoxysilyl-1-propylmethylthiosulfate, and mixtures thereof.

[0056] The amount of these optional sulfur-containing organosilanes can vary widely and can depend upon the particular material selected. For example, the amount of these optional sulfur-containing organosilanes can be greater than —OR_a_ bonded to a single Si atom through Si—O bonds to form a ring; and/or (ii) the alkoxo groups are covalently bonded to at least two Si atoms through Si—O bonds to form a dimer, oligomer, or polymer in which adjacent siloxane units are bonded to each other through bridged alkoxoalkoxy structures. Such halo-functional organosiloxanes are described in detail in United States Published Patent Application No. 2011/003922A1, published Jan. 6, 2011, at paragraphs [0020] to [0057], the cited portions of which are incorporated by reference herein.

[0057] In certain embodiments, the treating composition can further include a halo-functional organosiloxane, which includes a monomeric, dimeric, oligomeric and/or polymeric compound possessing halogen functionality and alkoxysiloxane functionality derived from: (i) polyhydroxyl-containing compounds in which the alkoxo group is covalently bonded to a single Si atom through Si—O bonds to form a ring; and/or (ii) the alkoxo groups are covalently bonded to at least two Si atoms through Si—O bonds to form a dimer, oligomer, or polymer in which adjacent siloxane units are bonded to each other through bridged alkoxoalkoxy structures. Such halo-functional organosiloxanes are described in detail in United States Published Patent Application No. 2011/0003922A1, published Jan. 6, 2011, at paragraphs [0020] to [0057], the cited portions of which are incorporated by reference herein.

[0058] Mixtures of any of the aforementioned coupling agents can be used in the process of the present invention.
With some embodiments, in addition to treating agent described previously herein, the treating composition can optionally further include a first or additional non-coupling agent/compatibilizer that is different from the treating agent. The additional non-coupling agent/compatibilizer can be selected from saturated biopolymers, saturated fatty acids, saturated organic acids, saturated polymer emulsions, saturated polymer coating composition, and mixtures thereof. The additional non-coupling agent/compatibilizer can alternatively or further include a surfactant selected from anionic, nonionic and amphoteric surfactants, and mixtures thereof.

With some alternative embodiments, the present invention is directed to a process for producing a treated precipitated silica that includes:

(a) combining alkali metal silicate and acid to form an untreated slurry;
(b) optionally, treating the untreated slurry with the treating composition including the treating agent to form a treated slurry;
(c) drying the untreated slurry of (a), or drying the treated slurry of (b), to in each case produce dried precipitated silica;
(d) forming an aqueous slurry of the dried precipitated silica of step (c) with the treatment composition that includes the treating agent to form a treated silica slurry; and
(e) drying the treated silica slurry to produce a dried treated precipitated silica.

With some embodiments and with reference to the above-summarized process, whether or not a treatment composition has been included in the untreated slurry prior to drying, an aqueous slurry of the dried precipitated silica (treated or untreated) can be prepared, and a treatment composition can then be added to form a treated slurry of precipitated silica, which is subsequently re-dried to produce a treated precipitated silica.

Additionally the precipitated silica of any of the foregoing embodiments can be included in a polymer blend and compounded with a treatment composition as described previously herein.

Further detailed descriptions of the process for forming the treated silica can be found herein below in the Examples.

Suitable metal silicates that can be used with some embodiments of the present invention can include a wide variety of materials known in the art. Non-limiting examples can include but are not limited to alumina silicate, lithium silicate, sodium silicate, potassium silicate, and mixtures thereof. The metal silicate can be represented by the following structural formula: M₄O(SiO₂)ₓ where M can be alumina, lithium, sodium or potassium, and x can range from 0.1 to 4.

Suitable acids that can be used with some embodiments of the present invention can be selected from a wide variety of acids known in the art. Non-limiting examples can include but are not limited to mineral acids, organic acids, carbon dioxide, sulfuric acid, and mixtures thereof.

The treated fillers which are prepared by the processes of the present invention are suitable for inclusion in organic polymeric compositions. The treated filler materials prepared by the process of the present invention are useful with some embodiments in rubber compounding compositions, such as rubber compositions used in the manufacture of tires and tire components such as tire treads.

Polymeric compositions into which treated fillers prepared according with the method of the present invention include, but are not limited to, those described in Kirk Othmer Encyclopedia of Chemical Technology, Fourth Edition, 1996, Volume 19, pp 881-904, which description is herein incorporated by reference. The treated filler prepared in accordance with various embodiments of the present invention can be admixed with the polymer or the polymerizable components thereof while the physical form of the polymer or polymerizable components is in any liquid or compoundable form such as a solution, suspension, latex, dispersion, and the like. The polymeric compositions containing the treated filler of
the present invention can be milled, mixed, molded and, optionally, cured, by any manner known in the art, to form a polymeric article. Classes of polymers can include but are not limited to thermoplastic and thermosetting resins, rubber compounds and other polymers having elastomeric properties.

The aforementioned polymers can include, for example, alkyd resins, oil modified alkyd resins, unsaturated polyesters, natural oils (e.g., linseed, tung, soybean), epoxides, nylon, thermoplastic polyester (e.g., poly(ethylene-terephthalate, poly(ethylene-terephthalate), polycarbonates, i.e., thermoplastic and thermoset, polyethylene, polybutylenes, polystyrenes, polypropylene, ethylene propylene co- and terpolymers, acrylies, homopolymer and copolymers of acrylic acid, acrylates, methacrylates, acrylamides, their salts, hydroxalides, etc.), phenolic resins, polyoxymethylene (homopolymers and copolymers), polyurethanen, polysulfones, polysulfide rubbers, nitrocellulose, vinyl butyrates, vinyls (vinyl chloride and/or vinyl acetate containing polymers), ethyl cellulose, the cellulose acetates and butyrates, viscos nylon, shellac, waxes, ethylene copolymers (e.g., ethylene-vinyl acetate copolymers, ethylene-acrylic rubber copolymers, ethylene-ethylene-acrylate copolymers), organic rubbers (both synthetic and natural rubbers) and the like.

The amount of treated filler that can be used in a polymeric composition can vary widely depending upon the polymeric composition and the desired properties of the article to be formed from the polymeric composition. For example, the amount of treated filler present in the polymeric composition can range from 5 up to 70 weight %, based on the total weight of the polymeric composition.

With some non-limiting embodiments, the polymeric composition can include an organic rubber. Non-limiting examples of such rubbers can include but are not limited to natural rubber; those formed from the homopolymerization of butadiene and its homologues and derivatives such as: cis-1,4-polyisoprene; 3,4-polyisoprene; cis-1,4-polybutadiene; trans-1,4-polybutadiene; 1,2-polybutadiene; and those formed from the copolymerization of butadiene and its homologues and derivatives with one or more copolymerizable monomers containing ethylenic unsaturation such as styrene and its derivatives, vinyl-pyridine and its derivatives, acrylonitrile, isobutylene and alkyl-substituted acrylates such as methyl methacrylate. Further non-limiting examples can include styrene-butadiene copolymer rubber composed of various percentages of styrene and butadiene and employing the various isomers of butadiene as desired (hereinafter “SBR”); terpolymers of styrene, isoprene and butadiene polymers, and their various isomers; acrylonitrile-based copolymer and terpolymer rubber compositions; and isobutylene-based rubber compositions; or a mixture thereof, as described in, for example, U.S. Pat. Nos. 4,530,959; 4,616,065; 4,748,199; 4,866,131; 4,894,420; 4,925,894; 5,082,901; and 5,162,409.

Non-limiting examples of suitable organic polymers can include copolymers of ethylene with high alpha olefins such as propylene, butene-1 and pentene-1 and a diene monomer. The organic polymers can be block, random, or sequential and can be prepared by methods known in the art such as but not limited to emulsion (e.g., e-SBR) or solution polymerization processes (e.g., s-SBR). Further non-limiting examples of polymers for use in the present invention can include those which are partially or fully functionalized including coupled or star-branched polymers. Additional non-limiting examples of functionalized organic rubbers can include polychloroprene, chlorobutyl and bro-mobutyl rubber as well as brominated isotene-co-paramethlystyrene rubber. In a non-limiting embodiment, the organic rubber can be polybutadiene, s-SBR and mixtures thereof.

The polymeric composition can be a curable rubber. The term “curable rubber” is intended to include natural rubber and its various raw and reclaimed forms as well as various synthetic rubbers. In alternate non-limiting embodiments, curable rubber can include combinations of SBR and butadiene rubber (BR), SBR, BR and natural rubber and any other combinations of materials previously disclosed as organic rubbers. In the description of this invention, the terms “rubber”, “elastomer” and “rubbery elastomer” can be used interchangeably, unless indicated otherwise. The terms “rubber composition”, “compounded rubber” and “rubber compound” are used interchangeably to refer to rubber which has been blended or mixed with various ingredients and materials, and such terms are well-known to those having skill in the rubber mixing or rubber compounding art.

Rubber compositions that include the treated filler produced by the process of the present invention and can be used in the manufacture of a myriad of rubber articles, such as for example, a tire at least one component of which, e.g., the tread, comprises the cured rubber composition, as well as other rubber articles such as shoe soles, hoses, seals, cable jackets, gaskets, belts, and the like. Rubber compositions comprising the treated filler produced by the process of the present invention are particularly advantageous for use in the manufacture of tire treads exhibiting low rolling resistance and high wear resistance, including when the tire treads are based on natural rubber. Moreover, with some embodiments, lower cure temperatures can be achieved for such natural rubber compositions containing the treated filler produced by the process of the present invention.

The treated filler of the present invention (as a powder, granule, pellet, slurry, aqueous suspension, or solvent suspension) may be combined with base material, i.e., material used in the product to be manufactured, to form a mixture referred to as a master batch. In the master batch, the treated filler may be present in higher concentration than in the final product. Aliquots of this mixture are typically added to production-size quantities during mixing operations in order to aid in uniformly dispersing very small amounts of such additives to polymeric compositions, e.g., plastics, rubbers and coating compositions.

The treated filler may be combined with emulsion and/or solution polymers, e.g., organic rubber comprising solution styrene/butadiene (SBR), polybutadiene rubber, or a mixture thereof, to form a master batch. One contemplated embodiment is a master batch comprising a combination of organic rubber, water-immiscible solvent, treated filler and, optionally, processing oil. Such a product may be supplied by a rubber producer to a tire manufacturer. The benefit to the tire manufacturer of using a master batch is that the treated filler is uniformly dispersed in the rubber, which results in minimizing the mixing time to produce the compounded rubber. The master batch can contain from 10 to 150 parts of treated silica per 100 parts of rubber (phr), or from 20 to 130 phr, or from 30 to 100 phr, or from 50 to 80 phr.

The present invention is more particularly described in the following examples, which are intended to be illustrative only, since numerous modifications and variations
therein will be apparent to those skilled in the art. Unless otherwise specified, all parts and all percentages are by weight.

Examples

Part 1—Analytical Testing

[0087] The silica CTAB surface area values reported in the examples of this application were determined using a CTAB solution and the hereinbefore described method. The analysis was performed using a Metrohm 751 Titrino automatic titrator, equipped with a Metrohm Interchangeable “Snap-In” 50 milliliter burette and a Dr. Krommer Probe Colorimeter Model PC 910 equipped with a 550 nm filter. In addition, a Mettler Toledo HB43 or equivalent was used to determine the 105°C moisture loss of the silica and a Fisher Scientific Centriflic™ Centrifuge Model 225 was used for separating the silica and the residual CTAB solution. The excess CTAB was determined by auto titration with a solution of AEROSOL® OT (dioctylsodium sulfosuccinate, available from Cytec Industries, Inc.) until maximum turbidity was attained, which was detected with the probe colorimeter. The maximum turbidity point was taken as corresponding to a millivolt reading of 150. Knowing the quantity of CTAB adsorbed for a given weight of silica and the space occupied by the CTAB molecule, the exterior specific surface area of the silica was calculated and reported as square meters per gram on a dry weight basis.

[0088] Solutions for pH 9.6, tetrahexadecyltrimethyl ammonium bromide (CTAB, also known as hexadecyltrimethyl ammonium bromide, technical grade), AEROSOL® OT and 1N sodium hydroxide. The buffer solution of pH 9.6 was prepared by dissolving 3.101 g of orthoboric acid (99%; technical grade, crystalline) in a one-liter volumetric flask, containing 500 milliliters of deionized water and 3.708 grams of potassium chloride solids (Fisher Scientific, Inc., technical grade, crystalline). Using a burette, 36.85 milliliters of the 1N sodium hydroxide solution was added. The solution was mixed and diluted to volume.

[0089] The CTAB solution was prepared using 11.0 g/L of powdered silica was weighed into a 50-milliliter container containing a stir bar. Granulated silica samples, were riffled (prior to grinding and weighing) to obtain a representative sub-sample. A coffee mill style grinder was used to grind granulated materials. Then 30 milliliters of the pH adjusted CTAB solution was pipetted into the sample container containing the 0.30 grams of powdered silica. The silica and CTAB solution was then mixed on a stirrer for 35 minutes. When mixing was completed, the silica and CTAB solution were centrifuged for 20 minutes to separate the silica and excess CTAB solution. When centrifuging was complete, the CTAB solution was pipetted into a clean container minus the separated solids, referred to as the “centrifugate”. For sample analysis, 50 milliliters of deionized water was placed into a 150-milliliter beaker containing a stir bar. Then 10 milliliters of the sample centrifugate was pipetted for analysis into the same beaker. The sample was analyzed using the same technique and programmed procedure as used for the blank solution.

[0092] The BET surface area values reported in the examples of this application were determined in accordance with the Brunauer-Emmett-Teller (BET) method in accordance with ASTM D1993-03. The BET surface area was determined by fitting five relative-pressure points from a nitrogen sorption isotherm measurement made with a Micromeritics TriStar 3000™ instrument. A flow Prep060™ station provided heat and a continuous gas flow to prepare samples for analysis. Prior to nitrogen sorption, the silica samples were dried by heating to a temperature of 160°C in flowing nitrogen (P5 grade) for at least one (1) hour.

[0093] The weight percent carbon (C) and sulfur (S) values reported in the examples of this application were determined using a Flash 2000 elemental analyzer. This system was set up to monitor carbon and sulfur. Typical parameters included: the combustion furnace being set to 950°C, the GC oven temperature being set to 65°C, the carrier helium gas flow rate being set to 140 mL/min, the reference helium gas flow rate being set to 100 mL/min, the oxygen flow rate being set to 250 mL/min and oxygen injection time of 5 seconds.
given run, calibration standards, samples, and controls were typically run. To each 8-10 mg of vanadium pentoxide (V2O5) was added. The sample size was between 2-4 mg and they were sealed in tin capsules prior to analysis. If the control standard was not within ±10% relative of the known accepted value or the samples run in duplicate do not match (±5% relative), the entire sample run was reanalyzed.

The weight percent mercaptan (SH) values reported in the examples of this application were determined using a back-titration method. The samples were dispersed in 75 mL of 2-Propanol, followed by addition of excess 0.1N Iodine solution. The test solution was then flushed with nitrogen, capped and allowed to stir for 15 minutes. The unreacted iodine was subsequently back-titrated with standardized 0.05N sodium thiosulfate to a colorless end point.

Part 2—Compound Testing Procedures and Equipment

Test Methods and Equipment Used

<table>
<thead>
<tr>
<th>Property</th>
<th>Method</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>ASTM D1646-00</td>
<td>Alpha Technologies Moneyer MV2000 Viscometer</td>
</tr>
<tr>
<td>Cure</td>
<td>ASTM D20/84-01</td>
<td>Monsanto MDR-2000</td>
</tr>
<tr>
<td>Stress/Strain</td>
<td>ASTM D412-98A</td>
<td>Instron 4204-44/0R</td>
</tr>
<tr>
<td>Density</td>
<td>ISO 2787-2008</td>
<td>Mettler Toledo XSS203S</td>
</tr>
<tr>
<td>with water</td>
<td></td>
<td>with density kit</td>
</tr>
<tr>
<td>Rebound</td>
<td>ISO 4662</td>
<td>Zwick 5109</td>
</tr>
<tr>
<td>Hardness</td>
<td>ASTM D2240-02</td>
<td>Zwick Digital Durometer</td>
</tr>
<tr>
<td>Dynamic Properties</td>
<td>ASTM D5992-96</td>
<td>Area-G2 Rheometer</td>
</tr>
<tr>
<td>Filler</td>
<td>parallel plate geometry</td>
<td></td>
</tr>
<tr>
<td>Dispersion</td>
<td>ISO 11345, method B,</td>
<td>Optizide All DisperGrinder</td>
</tr>
<tr>
<td>Abraision</td>
<td>100X Magnification, Ref. Lib. G (CB/Silica)</td>
<td>1000 NT+</td>
</tr>
<tr>
<td>Resistance</td>
<td>ASTM D-5963-97A</td>
<td>DIN Abrasion Tester</td>
</tr>
</tbody>
</table>

Example A

Precipitated silica slurry was produced through the sulfuric acid neutralization of a sodium silicate. This slurry was filtered and washed to produce a filter cake. This filter cake was mixed with a Cowles blade to form a solid in liquid suspension. The percent solids of this liquefied slurry was determined and used in Equation 1 along with the values shown for the respective treatment materials in Table 1 to determine the amount of treatment applied for the respective examples shown in Table 1.

\[
\text{Treatment (g)} = \text{Weight of slurry (g) \times solids (wt. \%)}
\]

Example A

<table>
<thead>
<tr>
<th>Example</th>
<th>Type of anhydride</th>
<th>Amount of anhydride (wt. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.E.A.1</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>A.2</td>
<td>Succinic anhydride</td>
<td>0.75</td>
</tr>
<tr>
<td>A.3</td>
<td>Allyl succinic anhydride</td>
<td>0.75</td>
</tr>
</tbody>
</table>

The respective treatment materials were added and mixed with a Cowles blade for a minimum of 10 minutes. This treated slurry was then dried in a Niro spray drier (inlet temperature about 400°C, outlet temperature about 105°C). The moisture of the spray dried powders was in the 4-7 weight percent range. The spray dried powders were granulated using an Alexanderwerk WP 120x40 Roller Compactor using a feed screw speed of 54.5 rpm, a roll compactor speed of 4.6 rpm, a cruiser speed of 55.0 rpm, a screen gap of 1.5 mm, a vacuum pressure of 26.2 BAR and at granulation pressure of 20 BAR. The resulting physical and chemical properties are shown in Table 2. The detectable carbon on Examples A.2 and A.3 is indicative of the anhydride treatment remaining on the silica.

Model Passenger Tread Formulation I

The model passenger tread formulations used to compare the Example A inventive and comparative silicas is shown in Table 3. A 1.89 liter (L) Kobeico Stewart Bolting Inc. mixer (Model "00") equipped with 4 wing rotors and a Farrell 12 inch two-roll rubber mill were used for mixing the ingredients following ASTM D3182-89.

The formulations were mixed using one non-productive pass, allowing the compound to cool, followed by a mill finish on a two roll mill. For the first pass, the mixer speed was adjusted to 85 rpm and a starting temperature of 150°F. Both the solution Styrenebutadiene rubber (SBR), BUNA® VSL 5228-2 (vinyl content: 52%; styrene content: 28%; Treated Distillate Aromatic Extract (TDAE) oil content: 37.5 parts per hundred rubber (phr); Mooney viscosity (ML(1+4100°C) C):50) obtained commercially from LANXESS, and butadiene rubber (BR), BUDENET™ 1207 (cis 1,4 content 98%; Mooney viscosity (ML(1+4100°C) C):55) obtained commercially from The Goodyear Tire & Rubber Company; polymers were added to the mixer. After 30 seconds into the mix cycle half of the test silica and all of the Si-69® Silane (Di(tributyl)silylpropyl)tetrasulfide, obtained commercially from Evonik) was added to the mixer. After another 30 seconds into the mix cycle the other half of the test silica as well as the Vivatec® 500 TDAE processing oil obtained commercially from the H & R Group Inc. was added to the mixer. After another 30 seconds into the mix cycle, the ram was raised and the chutie swept, i.e., the covering on the entry chute was raised and any material that was found in the chute was swept back into the mixer and the ram lowered. After another 30 seconds into the mix cycle the combination of Kadox®-720C surface treated zinc oxide, obtained commercially from Zinc Corporation of America, Rubber grade stearic acid, obtained commercially from R.E. Carroll, Stangard Santoflex® 13 antiozonant, described as N-(1,3-dimethylbutyl)-N-phenyl-p-phenylenediamine, obtained commercially from Harwick Standard and SUNPROOF® Improved antiozonant hydrocarbon was obtained commercially from
ADDIVANT™ USA, LLC. was added to the mixer. After another 30 seconds, the ram was raised and the chute swept. From 150 seconds into the mix cycle forward the mixer speed was adjusted to reach and/or maintain a temperature of 338° F.+/−5° F. for over a 390 second timeframe. The first pass was dropped at a temperature of 338° F.+/−5° F. after approximately 540 seconds of total mix time.

[0100] Rubber Makers sulfur ("RM sulfur"), 100% active, obtained commercially from Taber, Inc., the Santocure CBS, n-cyclohexyl-1-2-benzothiazolesulfenamide obtained commercially from Harwick Standard, and the diphenylguanidine, obtained commercially from Harwick Standard Inc., were blended into the cooled first pass Masterbatch on a two-roll rubber mill. Milling was done for approximately 5 minutes performing 5 side cuts and 5 end passes.

<table>
<thead>
<tr>
<th>TABLE 3</th>
<th>Model Passenger Tread Formulation 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLE</td>
<td>A.1A</td>
</tr>
<tr>
<td>PASS 1</td>
<td>Mix Program Step</td>
</tr>
<tr>
<td>POLYMERS</td>
<td>VLS 5228-2</td>
</tr>
<tr>
<td>SILICA of</td>
<td>BR 1207</td>
</tr>
<tr>
<td>Example CE-A.1</td>
<td>Silica</td>
</tr>
<tr>
<td>SILICA of</td>
<td>Example CE-A.1</td>
</tr>
<tr>
<td>SILICA of</td>
<td>Example A.2</td>
</tr>
<tr>
<td>SILANE</td>
<td>Si-69</td>
</tr>
<tr>
<td>SILICA of</td>
<td>Example A.3</td>
</tr>
<tr>
<td>SILICA of</td>
<td>Example CE-A.1</td>
</tr>
<tr>
<td>SILICA of</td>
<td>Example A.2</td>
</tr>
<tr>
<td>VIVATEC 500</td>
<td>5.00</td>
</tr>
<tr>
<td>Zinc Oxide (720 C.)</td>
<td>2.50</td>
</tr>
<tr>
<td>Stearic Acid</td>
<td>1.00</td>
</tr>
<tr>
<td>SANTOFLEX 13</td>
<td>2.00</td>
</tr>
<tr>
<td>SUNPOOF Improved</td>
<td>1.50</td>
</tr>
<tr>
<td>Subtotal wt.</td>
<td>227.10</td>
</tr>
</tbody>
</table>

STOCK SHEETED OFF AT APPROXIMATELY .085" STOCK WAS COOLED BEFORE MILL FINISH AFTER A MINIMUM OF ONE HOUR REST

<table>
<thead>
<tr>
<th>MILL FINISH</th>
<th>Additions</th>
<th>Weight, grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masterbatch (from Pass 1)</td>
<td>227.10</td>
<td>227.10</td>
</tr>
<tr>
<td>RM Sulfur</td>
<td>1.40</td>
<td>1.40</td>
</tr>
<tr>
<td>SANTOCURE CBS</td>
<td>1.70</td>
<td>1.70</td>
</tr>
<tr>
<td>DPG</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>18 END PASSES</td>
<td>232.20</td>
<td>232.20</td>
</tr>
</tbody>
</table>

[0101] Stress/Strain test specimens were cured for 30° at 150° C, while all other test specimens were cured for 40° at 150° C. Specimen preparation and testing were performed using the procedures and equipment shown in part 2. The compound performance properties are shown in Table 4.

<table>
<thead>
<tr>
<th>TABLE 4</th>
<th>Model Passenger Tread Formulation Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>CE-A.1A</td>
</tr>
<tr>
<td>Anhydride Treatment</td>
<td>Description</td>
</tr>
<tr>
<td>Si-69 Addition (PHR)</td>
<td>7.0</td>
</tr>
<tr>
<td>Mooney Viscosity, ML (1 + 4)</td>
<td>82.1</td>
</tr>
<tr>
<td>Stress Strain</td>
<td>227.10</td>
</tr>
<tr>
<td>300/100% Modulus ratio</td>
<td>5.4</td>
</tr>
<tr>
<td>DIN Abrasion Loss, mm²</td>
<td>144</td>
</tr>
<tr>
<td>ARES - Temperature Sweep, 1 Hz, 2% strain</td>
<td></td>
</tr>
<tr>
<td>@ 60° C.</td>
<td>0.053</td>
</tr>
<tr>
<td>@ 0° C.</td>
<td>0.323</td>
</tr>
<tr>
<td>Delta: 0° C - 60° C.</td>
<td>0.270</td>
</tr>
<tr>
<td>ARES - Strain Sweep, 30° C, 1 Hz</td>
<td></td>
</tr>
<tr>
<td>∆ G', 0.5% - 10%</td>
<td>0.403</td>
</tr>
</tbody>
</table>

[0102] It can be seen that the inventive silicas reduce the Mooney viscosity, ML (1+4) with respect to the comparative control. Furthermore, similar or reduced wear is observed as well as a small increase in the reinforcement ratio (300/100% Modulus). Other important properties are not negatively affected by the treatment.

[0103] Although the present invention has been described with references to specific details of certain embodiments thereof, it is not intended that such details should be regarded as limitations upon the scope of the invention except in so far as they are included in the claims.

What is claimed is:

1. A process for producing treated filler comprising:
 (a) treating a slurry comprising untreated filler wherein said untreated filler has not been previously dried, with a treating composition comprising a treating agent, thereby forming a treated filler slurry; and
 (b) drying said treated filler slurry to produce treated filler, wherein said treating agent comprises at least one of an anhydride, a cyclic imide, and a derivative thereof.

2. The process of claim 1, wherein said untreated filler is chosen from aluminum silicate, silica gel, colloidal silica, precipitated silica, and mixtures thereof.

3. The process of claim 1, wherein the filler comprises precipitated silica.

4. The process of claim 1, wherein the treating agent comprises a ring opened product of the cyclic imide and/or a cyclic anhydride.

5. The process of claim 1, wherein the treating agent comprises a salt of the anhydride and/or the cyclic imide.

6. The process of claim 1, wherein the treating agent comprises at least one of benzoic anhydride, acetic anhydride, maleic anhydride, succinic anhydride, maleimide, succinimide, and/or derivatives thereof.

7. The process of claim 1, wherein the anhydride, the cyclic imide, and/or derivative thereof each independently further comprises at least one group having a carbon-carbon double bond.
8. The process of claim 1, wherein the treating composition further comprises an organosilane coupling agent represented by formula (II):

\[(R_1)_m(R_2)_nSiX_{a-b} \]

(II),

wherein each \(R_1 \) is independently a hydrocarbyl group comprising 1 to 36 carbon atoms and a functional group, wherein the functional group of the hydrocarbyl group is vinyl, allyl, hexenyl, epoxy, glycidoxy, (meth)acryloxy, sulfide, isocyanato, polysulfide, mercapto, or halogen; each \(R_2 \) is independently a hydrocarbyl group having from 1 to 36 carbon atoms or hydrogen, \(X \) is independently halogen or alkoxy having 1 to 36 carbon atoms; \(a \) is 0, 1, 2, or 3; \(b \) is 0, 1, or 2; \((a+b)\) is 1, 2, or 3; provided that when \(b = 1 \), \((a+b)\) is 2 or 3.

9. The process of claim 8, wherein the treating composition further comprises an organosilane different from the organosilane represented by formula (II).

10. The process of claim 1, wherein the treating composition further comprises a coupling agent comprising an organosilane selected from the group consisting of (4-chloromethyl-phenyl)trimethoxysilane, (4-chloromethyl-phenyl)triethoxysilane, [2-(4-chloromethyl-phenyl)-ethyl]trimethoxysilane, [2-(4-chloromethyl-phenyl)-ethyl]triethoxysilane, (3-chloro-propenyl)-trimethoxysilane, (3-chloro-propenyl)-triethoxysilane, (3-chloro-propyl)-trimethoxysilane, (3-chloro-propyl)-triethoxysilane, triethoxysilane and triethoxy-(2-p-tolyethyl)silane, and combinations thereof.

11. The process of claim 1, wherein the treating composition further comprises a non-coupling agent that is different from the treating agent and wherein the non-coupling agent that is different from the treating agent is one or more of a biopolymer, fatty acid, organic acid, polymer emulsion, polymer coating composition, and combinations thereof.

12. The process of claim 1, wherein the treating composition further comprises a non-coupling agent selected from an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, and combinations thereof, present in an amount of from greater than 1% to 25% by weight based on the weight of untreated filler.

13. The process of claim 1, wherein the treated filler comprises treated precipitated silica, and the treating composition further comprises:

(i) at least one coupling agent, and

(ii) a non-coupling agent chosen from anionic, nonionic and/or amphoteric surfactants, which is present in an amount of from greater than 1% to 25% by weight based on the weight of untreated filler.

15. A rubber composition comprising the treated filler produced by the process of claim 1.

16. The rubber composition of claim 15, wherein the rubber composition comprises natural rubber.

17. The rubber composition of claim 15, wherein the rubber composition is a rubber compounding master batch.

18. A process for producing treated precipitated silica comprising:

(a) combining an alkali metal silicate and an acid to form a slurry comprising untreated silica, wherein said untreated silica has not been previously dried;

(b) treating said slurry with a treating composition comprising a treating agent, thereby forming a treated slurry; and

(c) drying said treated slurry to produce a treated precipitated silica, wherein said treating agent comprises at least one of anhydride, a cyclic imide, and a derivative thereof.

19. The process of claim 18, wherein the treating agent comprises a ring opened product of the cyclic imide and/or a cyclic anhydride.

20. The process of claim 18, wherein the treating agent comprises a salt of the anhydride and/or the cyclic imide.

21. The process of claim 18, wherein the treating agent comprises at least one of benzoic anhydride, acetic anhydride, maleic anhydride, succinic anhydride, maleimide, succinimide, and/or derivatives thereof.

22. The process of claim 18, wherein the anhydride, the cyclic imide, and/or derivative thereof each independently further comprises at least one group having a carbon-carbon double bond.

23. The process of claim 18, wherein said alkali metal silicate comprises aluminum silicate, lithium silicate, sodium silicate, and/or potassium silicate.

24. The process of claim 18, wherein the treating composition further comprises a coupling agent comprising an organosilane, selected from the group consisting of (4-chloromethyl-phenyl)trimethoxysilane, (4-chloromethyl-phenyl)triethoxysilane, [2-(4-chloromethyl-phenyl)-ethyl]trimethoxysilane, [2-(4-chloromethyl-phenyl)-ethyl]triethoxysilane, (3-chloro-propenyl)-trimethoxysilane, (3-chloro-propenyl)-triethoxysilane, (3-chloro-propyl)-trimethoxysilane, (3-chloro-propyl)-triethoxysilane, triethoxysilane and triethoxy-(2-p-tolyethyl)silane, and combinations thereof.

25. The process of claim 18, wherein the treating composition further comprises a non-coupling agent selected from an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, and combinations thereof, present in an amount of from greater than 1% to 25% by weight based on the weight of untreated filler.

26. A process for producing treated precipitated silica comprising:

(a) combining an alkali metal silicate and an acid to form an untreated slurry comprising untreated silica, wherein said untreated silica has not been previously dried;

(b) drying the untreated slurry to produce dried precipitated silica;

(c) forming an aqueous slurry of the dried precipitated silica with a treating composition comprising a treating agent, and, optionally, a coupling agent and/or, optionally, a non-coupling agent to form a treated precipitated silica slurry; and

(d) drying the treated precipitated silica slurry to produce a dried treated precipitated silica, wherein said treating agent comprises at least one of an anhydride, a cyclic imide, and a derivative thereof.

27. The process of claim 26, wherein the treating agent comprises a ring opened product of the cyclic imide and/or a cyclic anhydride.

28. The process of claim 26, wherein the treating agent comprises a salt of the anhydride and/or the cyclic imide.

29. The process of claim 26, wherein the treating agent comprises at least one of benzoic anhydride, acetic anhydride, maleic anhydride, succinic anhydride, maleimide, succinimide, and/or derivatives thereof.
30. The process of claim 26, wherein the anhydride, the cyclic imide, and/or derivative thereof each independently further comprises at least one group having a carbon-carbon double bond.

32. A rubber composition comprising the treated precipitated silica produced by the process of claim 26.

* * * * *