发明名称 用于抑制蛋白酶酰胺激酶介导的细胞
增殖的 6-芳基吡啶并[2,3-d]嘧啶和
1,5-二氮杂环

摘要

6-芳基吡啶并[2,3-d]嘧啶和 1,5-二氮杂环
是蛋白质酰胺激酶的抑制剂，因此可用于治疗
由之介导的细胞增殖。这些化合物特别适用于治疗
动脉粥样硬化、再狭窄、牛皮癣，以及细菌感染。
权利要求书

1. 式 I 的化合物

其中

X 是 CH 或 N;
B 是卤素、氢或 NR₃N₄;
R₁、R₂、R₃ 和 R₄ 各自是氢、C₁ - C₈烷基、C₂ - C₈链烯基、C₂ - C₈炔基、Ar'、氨基、C₁ - C₈烷基氨基或二-C₁ - C₈烷基氨基;
其中烷基、链烯基和炔基基团可被 NR₅R₆ 取代，这里 R₅ 和 R₆ 独自是氢、C₁ - C₈烷基、C₂ - C₈链烯基、C₂ - C₈炔基、C₃ - C₁₀环烷基或

并且其中上述任何烷基、链烯基和炔基基团均可被羟基或含有 1 或 2 个选自氮、氧和硫的杂原子的 5 元或 6 元碳环或杂环取代，并且 R₉、R₁₀、R₁₁ 和 R₁₂ 各自是氢、硝基、三氟甲基、苯基，被取代的苯基，-C≡N、-COOR₈，-COR₈、-CR₈、-C-R₈，SO₂R₈，卤素，C₁ - C₈烷基，C₁ - C₈烷氧基，硫代，-S-C₁ - C₈烷基，羟基，C₁ - C₈链烷酰基，C₁ - C₈链烷酰氧基，或 -NR₅R₆，或者当 R₉ 和 R₁₀ 相邻时，它们一起可以是亚甲二氧基；n 是 0、1、2 或 3；并且其中 R₅ 和 R₆ 与它们所连接的氮一起组成一个有 3 至 6 碳原子，并且可含有选自氮、
氧和硫的杂原子的环；

R₁和R₂与它们所连接的氧一起，以及R₃和R₄与它们所连接的氮一起也可以是（H, CH₃，或NH₂）

-N=C-R₈

或者可构成一个有3至6个碳原子，并可含有1或2个选自氧、氮及硫的杂原子的环。R₁和R₃还可以是选自

-O-
[-C-R₈，-C=O₈，-C-R₈，

-NH-O-
[-C-R₈，-S-R₈，或-N=N-(CH₂)₁,₂,₃

的酰基类似物，其中R₈是氢、C₁-C₈烷基、C₂-C₈链烯基、C₂-C₈炔基、C₃-C₁₀环烷基，并可含有氧、氮或硫原子，

以及-NR₅R₆，并且其中R₈烷基、链烯基和炔基基团可被NR₅R₆所取代；

Ar和AR'是选自苯基、烯丙基、乙烯基、丙烯基、噻唑基、苯并噻唑基、苯并噻吩基、苯并呋喃基、吲哚基、吡嗪基、嘧啶基、嘧啶基、嘌呤基、异喹啉基、喹啉基、噻吩基、苯并基的未被取代或被取代的芳族或杂芳族基团，其中取代基是如上文限定的R₉、R₁₀、R₁₁和R₁₂；

以及其医药上可接受的酸和碱加成盐；条件是当X是N且B是NR₅R₆时，R₃和R₄之一是氢以外的其他基团。

2.有下列结构式的化合物
其中
X 是 CH 或 N；
B 是卤素、氢或 NR₃N₄；

R₁, R₂, R₃ 和 R₄ 各自是氢、C₁ - C₆烷基、C₂ - C₆链烯基、C₂ - C₆炔基、Ar'、氨基、C₁ - C₆烷基氨基或二 - C₁ - C₆烷基氨基；
其中烷基、链烯基和炔基基团可被NR₅R₆取代，这里R₅和R₆独自是氢、C₁ - C₆烷基、C₂ - C₆链烯基、C₂ - C₆炔基、C₃ - C₁₀环烷基式

并且其中上述任何烷基、链烯基和炔基基团均可被羟基或含有 1 或 2 个选自氢、氧和硫的杂原子的 5 元或 6 元环烷环或杂环取代，并且 R₉、R₁₀、R₁₁ 和 R₁₂各自是氢、硝基、三氟甲基、苯基、被取代的苯基、- C≡N、COOR₈、- COR₈、- CR₈、- C - R₈、SO₂R₈、卤素、C₁ - C₆烷基、C₁ - C₆烷氧基、硫代、- S - C₁ - C₆烷基、羟基、C₁ - C₆链烷酰基、C₁ - C₆链烷酰氧基，或 - NR₅R₆，或者当 R₉ 和 R₁₀相邻时它们一起可以是亚甲二氧基；n 是 0、1、2 或 3；并且其中 R₅ 和 R₆与它们所连接的氮一起组成一个有 3 至 6 碳原子，并且可含有选自氢、氧和硫的杂原子的环；

R₁ 和 R₂与它们所连接的氢一起，以及 R₃ 和 R₄ 与它们所连接的氢一起可构成一个有 3 至 6 个碳原子，并可含有 1 或 2 个选自氢、氧及硫的杂原子的环，R₁ 和 R₃ 还可以是选自
的酰基类似物，其中 R_8 是氢， $C_1 - C_6$ 异基， $C_2 - C_6$ 链烯基， $C_2 - C_6$ 烷基， $C_3 - C_6$ 环烷基，

![化合物结构](image)

以及 $-NR_3R_6$，并且其中烷基、链烯基和烯基基团可被 NR_3R_6 所取代；

Ar 是选自苯基，咪唑基，吡咯基，吡啶基，嘧啶基，苯并咪唑基，苯并异基，苯并噻吩基，吲哚基，吡嗪基，噻唑基，嘧啶基，异呀啶基，呋喃基，噻吩基，苯基的未被取代或被取代的芳族或杂芳族基团，其中取代基是如上文限定的 R_9，R_{10}，R_{11}；

其医药上可接受的和碱加成盐；条件是当 X 是 N 且 B 是 NR_3R_4 时， R_3 和 R_4 之一是氢以外的其他基团。

3. 权利要求 1 的化合物，其中 B 是卤素或氢。
4. 权利要求 1 的化合物，其中 B 是 NR_3R_4。
5. 权利要求 4 的化合物，其中 X 是 CH。
6. 权利要求 5 的化合物，其中 Ar 可以是式

![化合物结构](image)

的被取代的苯环。

7. 权利要求 6 的化合物，其中 R_2 和 R_4 是氢。
8. 权利要求 7 的化合物，其中 R_1 和 R_3 独自是氢， $C_1 - C_6$ 烷基， $-C-R_8$, 或 $-C-R_8$.。
9. 权利要求 8 的化合物，其中 R₈ 是 C₁ - C₆ 烷基、- NR₅R₆ 或 C₁ - C₆ 烷基 - NR₅R₆。

10. 权利要求 9 的化合物，其中 R₅ 和 R₆ 仅是氢、C₁ - C₆ 烷基或 C₁ - C₆ 烷基 - NR₅R₆。

11. 权利要求 8 的化合物，其为 3 - 邻甲苯基 - [1, 6] - 1, 5 - 二氮杂环 - 2, 7 - 二胺。

12. 权利要求 8 的化合物，其为 3 - (2 - 氯 - 苯基) - [1, 6] - 1, 5 - 二氮杂环 - 2, 7 - 二胺。

13. 权利要求 5 的化合物，其中 Ar 是可以被取代的杂芳环。

14. 权利要求 4 的化合物，其中 X 是 N。

15. 权利要求 14 的化合物，其中 Ar 是式

\[
\begin{array}{c}
\text{Ar} \\
\text{R₉} \\
\text{R₁₀}
\end{array}
\]

的可被取代的苯环。

16. 权利要求 15 的化合物，其中 R₂ 和 R₄ 是氢。

17. 权利要求 16 的化合物，其中 R₁ 和 R₃ 仅是氢、C₁ - C₆ 烷基、\(-\text{C-R₈}, \text{或} -\text{C-R₈}\)。

18. 权利要求 17 的化合物，其中 R₈ 是 C₁ - C₆ 烷基、- NR₅R₆ 或 - C₁ - C₆ 烷基 - NR₅R₆。

19. 权利要求 18 的化合物，其中 R₅ 是氢，R₆ 是 C₁ - C₆ 烷基或 C₁ - C₆ 烷基 - NR₅R₆。

20. 权利要求 19 的化合物选自

1 - 异丁基 - 3 - [7 - (3 - 异丁基烷基) - 6 - (2, 6 - 二氮苯基) - 吡啶并[2, 3-d]嘧啶 - 2 - 基] 萘；

1 - [2 - 氨基 - 6 - (2, 6 - 二氮苯基) - 吡啶并[2, 3-d]嘧啶 - 7 - 基] - 3 - 异丁基烷基；

1 - 异丁基 - 3 - [7 - (3 - 异丁基烷基) - 6 - 邻 - 甲苯基 - 吡啶并[2, 3-d]嘧啶 - 2 - 基] 萘；
1 - [2 - 氨基 - 6 - 邻甲苯基 - 吡啶并 [2, 3 - d] 吡啶 - 7 - 基] - 3 - 叔丁基脲；
1 - [2 - 氨基 - 6 - (2, 6 - 二甲基苯基) - 吡啶并 [2, 3 - d] 吡啶 - 7 - 基] - 3 - 叔丁基脲；
N - [2 - 乙酰氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并 [2, 3 - d] 吡啶 - 7 - 基] - 乙酰胺；
N^2 - N^7 - 二甲基 - 6 - 苯基 - 吡啶并 [2, 3 - d] 吡啶 - 2, 7 - 二胺；
1 - [2 - 氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并 [2, 3 - d] 吡啶 - 7 - 基] - 3 - 叔丁基 - 肽；
1 - [2 - 氨基 - 6 - (2, 6 - 二溴苯基) - 吡啶并 [2, 3 - d] 吡啶 - 7 - 基] - 3 - 叔丁基 - 肽；
1 - [2 - 氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并 [2, 3 - d] 吡啶 - 7 - 基] - 3 - 异丙基 - 肽；
1 - [2 - 氨基 - 6 - 苯基 - 吡啶并 [2, 3 - d] 吡啶 - 7 - 基] - 3 - 叔丁基 - 肽；
1 - [2 - 氨基 - 6 - (2, 3 - 二甲基苯基) - 吡啶并 [2, 3 - d] 吡啶 - 7 - 基] - 3 - 叔丁基 - 肽；
1 - [2 - 氨基 - 6 - (3, 5 - 二甲基苯基) - 吡啶并 [2, 3 - d] 吡啶 - 7 - 基] - 3 - 叔丁基 - 肽；
1 - [2 - 氨基 - 6 - (2 - 甲氧基 - 苯基) - 吡啶并 [2, 3 - d] 吡啶 - 7 - 基] - 3 - 叔丁基 - 肽；
1 - [2 - 氨基 - 6 - (3 - 甲氧基 - 苯基) - 吡啶并 [2, 3 - d] 吡啶 - 7 - 基] - 3 - 叔丁基 - 肽；
1 - [2 - 氨基 - 6 - (2 - 溴 - 6 - 氯 - 苯基) - 吡啶并 [2, 3 - d] 吡啶 - 7 - 基] - 3 - 叔丁基 - 肽；和
1 - [2 - 氨基 - 6 - (2 - 溴 - 6 - 氯 - 苯基) - 吡啶并 [2, 3 - d] 吡啶 - 7 - 基] - 3 - 叔丁基 - 肽。
[2, 3 - d] 喹啶 - 7 - 基] - 3 - 叔丁基 - 葸;

21. 有下列结构式的权利要求 1 的化合物，

其中 R₁, R₂, R₉, R₁₀ 是如权利要求 1 中限定的。

22. 权利要求 21 的化合物，其中 R₉ 和 R₂₀ 都是卤素或甲基。

23. 权利要求 22 的化合物，其中 R₁ 和 R₂ 都是氢。

24. 权利要求 23 的化合物，其为 1 - [2 - 氨基 - 6 - (2, 6 - 二氨苯基) - 吡啶] - 吡啶并 [2, 3 - d] 喹啶 - 7 - 基] - 吡喙烷 - 2 - 酮。

25. 具有下列结构式的权利要求 1 的化合物

其中 R₁, R₂, R₅, R₆, R₉ 和 R₁₀ 是如权利要求 1 中限定。
26. 具有下列结构式的权利要求1的化合物

27. 权利要求26的化合物，其中\(R_3\)是

28. 权利要求27的化合物，其为

1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - 二乙氨基 - 丙氨基) - 吡啶并 [2, 3 - d] 喹啶 - 7 - 基] - 脲;

1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - 二甲基氨基 - 丙氨基) - 吡啶并 [2, 3 - d] 喹啶 - 7 - 基] - 脲;

1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - 二甲基氨基 - 2, 2 - 二甲基 - 丙氨基) - 吡啶并 [2, 3 - d] 喹啶 - 7 - 基] - 脲;

1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - 甲基氨基 - 喷啶 - 1 - 基) - 丙氨基] - 吡啶并 [2, 3 - d] 喹啶 - 7 - 基] - 脲;

1 - [6 - (2, 6 - 二氯苯基) - 2 - (4 - 二乙氨基 - 丁胺基) - 吡啶并 [2, 3 - d] 喹啶 - 7 - 基] - 3 - 苯基 - 脲;

1 - [6 - (2, 6 - 二氯苯基) - 2 - (4 - 二乙氨基 - 丁胺基) - 吡啶并 [2, 3 - d] 喹啶 - 7 - 基] - 3 - 乙基 - 脲;
1 - [6 - (2, 6 - 二氯苯基) - 2 - (4 - 二乙氨基 - 丁氨基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 3 - 乙基脲； 盐酸盐；
1 - 环己基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (4 - 二乙氨基 - 丁氨基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 脲；
1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - 二乙氨基 - 丙氨基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 脲；
1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (2 - 二乙氨基 - 乙氨基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 脲；
1 - [6 - (2, 6 - 二氯苯基) - 2 - (2 - 二乙氨基 - 乙氨基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 3 - 乙基脲；
1 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - 二乙氨基 - 丙氨基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 3 - 异丙基脲；
1 - [2 - (3 - 二甲氨基 - 丙氨基) - 6 - (2, 6 - 二甲基 - 苯基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 3 - 乙基脲；
1 - 叔丁基 - 3 - [2 - (3 - 二乙氨基 - 丙氨基) - 6 - (2, 6 - 二甲基 - 苯基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 脲；
1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (4 - 二乙氨基 - 丁氨基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 脲；
和
1 - [6 - (2, 6 - 二氯苯基) - 2 - (4 - 二乙氨基 - 丁氨基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 3 - 乙基脲；
29. 具有下列结构式的权利要求 27 的化合物
30. 权利要求 29 的化合物，其为

1 - 叔丁基 - 3 - {6 - (2, 6 - 二氯苯基) - 2 - [4 - (4 - 甲基 - 吲哚 - 1 - 基) - 丁氨基]} - 吲哚并[2, 3 - d]嘧啶 - 7 - 基} - 腺；

1 - 环己基 - 3 - {6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 吲哚 - 1 - 基) - 丙氨基]} - 吲哚并[2, 3 - d]嘧啶 - 7 - 基} - 腺；

1 - {6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 吲哚 - 1 - 基) - 丙氨基]} - 吲哚并[2, 3 - d]嘧啶 - 7 - 基} - 异丙基 - 腺；

1 - 苯基 - 3 - {6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 吲哚 - 1 - 基) - 丙氨基]} - 吲哚并[2, 3 - d]嘧啶 - 7 - 基} - 腺；

1 - 烯丙基 - 3 - {6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 吲哚 - 1 - 基) - 丙氨基]} - 吲哚并[2, 3 - d]嘧啶 - 7 - 基} - 腺；
1 - \{6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 喹啉 - 1 - 基) - 丙氨酸] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基\} - 3 - (4 - 甲氧基 - 苯基) - 腺；
1 - \{6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 喹啉 - 1 - 基) - 丙氨酸] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基\} - 3 - (3 - 甲氧基 - 苯基) - 腺；
1 - \{6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 喹啉 - 1 - 基) - 丙氨酸] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基\} - 3 - (2 - 甲氧基 - 苯基) 腺；
1 - \{4 - 氯 - 苯基\} - 3 - \{6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 喹啉 - 1 - 基) - 丙氨酸] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基\} - 膜；
1 - \{4 - 氯 - 苯基\} - 3 - \{6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 喹啉 - 1 - 基) - 丙氨酸] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基\} - 膜；
1 - \{6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 喹啉 - 1 - 基) - 丙氨酸] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基\} - 3 - 对甲苯基 - 腺；
1 - \{6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 喹啉 - 1 - 基) - 丙氨酸] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基\} - 3 - 辛基 - 腺；
1 - \{6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 喹啉 - 1 - 基) - 丙氨酸] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基\} - 3 - (4 - 三氯甲基 - 苯基) - 腺；
1 - \{6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 喹啉 - 1 - 基) - 丙氨酸] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基\} - 3 - 乙基 - 腺；
1 - \{6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 喹啉 - 1 - 基) - 丙氨酸] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基\} - 3, 3 - 二乙基 - 腺；
1 - \{6 - (2, 6 - 二氯苯基) - 2 - \{3 - (4 - 甲基 - 吡嗪 - 1 - 基) - 丙氨基\} - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基\} - 3 - 蒽 - 1 - 基 - 脲;

1 - \{6 - (2, 6 - 二氯苯基) - 2 - \{3 - (4 - 甲基 - 吡嗪 - 1 - 基) - 丙氨基\} - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基\} - 3 - 苯基 - 脲;

1 - 叔丁基 - 3 - \{6 - (2, 6 - 二氯苯基) - 2 - \{3 - (4 - 甲基 - 吡嗪 - 1 - 基) - 丙氨基\} - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基\} - 脲；和

1 - 叔丁基 - 3 - \{2 - [3 - (4 - 甲基 - 吡嗪 - 1 - 基) - 丙氨基\} - 6 - (2, 3, 5, 6 - 四甲基 - 苯基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基\} - 脲。

31. 具有下列结构式的权利要求 1 的化合物

![化合物结构式](image)

32. 权利要求 31 的化合物，其为 6 - (4 - 甲氧基苯基) - N^7 - 甲基 - 吡啶并 [2, 3 - d] 嘧啶 - 2, 7 - 二胺。

33. 具有下列结构式的权利要求 1 的化合物
34.权利要求33的化合物，其为
2-[(2-氨基-6-(2,6-二氯苯基)-呫啶并[2,3-d]噻啶-7-基]-氨基-4,5-二氢呫啶；和
6-(2,6-二氯苯基)-N^2-[(3-(4-甲基-嘧啶-1-基)-丙基)-N^7-(5,6-二氢-4H-\([1,3]\)呫啶-2-基)呫啶并[2,3-d]噻啶-2,7-二胺。

35.具有下列结构式的权利要求1的化合物

36.权利要求35的化合物，其为
1-[(2-氨基-6-(2,6-二氯苯基)-呫啶并[2,3-d]噻啶-7-基]-3-(3-呫嗪-4-基-丙基)-硫脲；
1-丁基-3-[7-(3-丁基-哒嗪基)-6-(2, 6-二氯苯基)-呫啶并[2, 3-d]哒啶-2-基]-胺；
1-[2-氨基-6-(2, 6-二氯苯基)-呫啶并[2, 3-d]哒啶-7-基]-3-丙基-胺；
1-叔丁基-3-[6-(2, 6-二氯苯基)-2-(3-吗啉-4-基-丙氨丙基)-呫啶并[2, 3-d]哒啶-7-基]-胺；
1-叔丁基-3-{6-(2, 6-二氯苯基)-2-[3-(4-甲基-哌嗪-1-基)-丙氨丙基]-呫啶并[2, 3-d]哒啶-7-基}-硫胺；
1-叔丁基-3-{6-(2, 6-二氯苯基)-2-[N-(3-二甲氨基丙基)-N-甲氨丙基]-呫啶并[2, 3-d]哒啶-7-基}-胺；
1-[6-(2, 6-二氯苯基)-2-(4-二乙氨基-丁氨丙基)-呫啶并[2, 3-d]哒啶-7-基]-3-(3-吗啉-4-基-丙氨丙基)-硫胺；及
1-叔丁基-3-{6-(2, 6-二氯苯基)-2-[N-(3-二甲氨基丙基)-N-甲氨丙基]-呫啶并[2, 3-d]哒啶-7-基}-胺。

37. 具有下列结构式的权利要求1的化合物

![化合物结构式](image)
38. 权利要求37的化合物，其为
\[1 - \left[2 - \text{氨基} - 6 - (\text{吡啶} - 2 - \text{基}) - \text{吡啶并} [2, 3-d] - \text{嘧啶} - 7 - \text{基} \right] - 3 - \text{叔丁基} - \text{腺} ; \]
\[1 - \left[2 - \text{氨基} - 6 - (\text{吡啶} - 3 - \text{基}) - \text{吡啶并} [2, 3-d] - \text{嘧啶} - 7 - \text{基} \right] - 3 - \text{叔丁基} - \text{腺} ; \]
以及
\[1 - \left[2 - \text{氨基} - 6 - (\text{吡啶} - 4 - \text{基}) - \text{吡啶并} [2, 3-d] - \text{嘧啶} - 7 - \text{基} \right] - 3 - \text{叔丁基} - \text{腺} . \]

39. 具有下列结构式的权利要求1的化合物

![结构式](attachment:image.png)

40. 权利要求39的化合物，其为
\[N - \left[6 - (2, 6 - \text{二氯苯基}) - 2 - (3 - \text{二乙氨基} - \text{丙氨基}) - \text{吡啶并} [2, 3-d] \text{嘧啶} - 7 - \text{基} - N'' - \text{乙基} - \text{腺} ; \]
\[N' - \left[6 - (2, 6 - \text{二氯苯基}) - 2 - \{ 3 - (\text{二乙氨基} - \text{丙氨基}) - \text{吡啶并} [2, 3-d] \text{嘧啶} - 7 - \text{基} \} - N , N - \text{二甲基} - \text{甲腺} ; \]
\[N' - \left[6 - (2, 6 - \text{二氯苯基}) - 7 - (\text{二甲氨基} - \text{甲氨基}) - \text{吡啶并} [2, 3-d] \text{嘧啶} - 2 - \text{基} \} - N , N - \text{二甲基} - \text{甲腺} ; \]
和
41. 具有下列结构式的权利要求 1 的化合物

![化合物结构图](image)

42. 权利要求 41 的化合物，其为

1 - 叔丁基 - 3 - [[6 - (2, 6 - 二氯苯基) - 2 - 苯氨基] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 腺。

43. 具有下列结构式的权利要求 1 的化合物

![化合物结构图](image)

44. 权利要求 43 的化合物，其为

1 - [2 - 氨基 - 6 - (2, 3, 5, 6 - 四甲基 - 苯基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 3 - 叔丁基 - 腺；

1 - [2 - 氨基 - 6 - (2, 4, 6 - 三甲基 - 苯基) - 吡啶 - 7 - 基] - 腺。
并 [2, 3-d] 喹啶 - 7-基] - 3-叔丁基-脲; 和
1 - [2-氨基 - 6 - (2, 3, 6-三氯-苯基) - 吡啶并
[2, 3-d] 喹啶 - 7-基] - 3-叔丁基-脲。

45. 权利要求 1 的化合物，其为
丙烷 - 1 - 硫酸 [2-氨基 - 6 - (2, 6-二氯苯基) - 吡
啶并 [2, 3-d] 喹啶 - 7-基] - 酰胺。

46. 包含权利要求 1 的化合物连同其医药上可接受的载体、稀
释剂或赋形剂的药物制剂。

47. 权利要求 46 的制剂，其中使用 B 是 NR₃R₄ 的化合物。

48. 权利要求 47 的制剂，其中应用 X 是 CH 的化合物。

49. 权利要求 48 的制剂，其中应用 Ar 是有下列结构式的可被
取代的苯环的化合物

\[\text{R}_9 \]
\[\text{R}_{10} \]

50. 权利要求 49 的制剂，其中应用 R₂ 和 R₄ 是氢，并且 R₁ 和
R₃ 独自是氢、C₁-C₆烷基，

\[\text{S} \]
\[\text{O} \]
\[\text{R}_8 \]

而 R₈ 是 C₁-C₆烷基或 - NR₅R₆ 的化合物。

51. 权利要求 47 的制剂，其中应用 X 是 N 的化合物。

52. 权利要求 51 的制剂，其中利用 Ar 为下式任意取代的苯环
的化合物:

\[\text{R}_9 \]
\[\text{R}_{10} \]

53. 权利要求 52 的制剂，其中利用 R₂ 和 R₄ 是氢，R₁ 和 R₃ 各
自是氢、C₁-C₆烷基，

\[\text{S} \]
\[\text{O} \]
\[\text{R}_8 \]

\[\text{R}_8 \]
而 R₈ 是 C₁ - C₆ 烷基或 - NR₅R₆ 的化合物。

54. 治疗包括动脉粥样硬化和外科手術後再狭窄在內的血管平
滑肌增生性疾病的方法，其包括给患有这些疾病的宿主投用单位剂
量形式的治疗有效量的权利要求 1 的化合物。

55. 抑制细胞增殖和迁移的方法，其包括给患有这些病状的宿
主投用单位剂量形式的治疗有效量的权利要求 1 的化合物。

56. 治疗牛皮癣的方法，其包括给患有牛皮癣的宿主投用治疗
有效量的权利要求 1 的化合物。

57. 抑制表皮生长因子受体酪氨酸激酶的方法，其包括给需要
这种处理的哺乳动物投用有效抑制量的权利要求 1 的化合物。

58. 抑制 Erb-B2 或 Erb-B3 或 Erb-B4 酪氨酸激酶的方法，其
包括给有需要的哺乳动物投用有效抑制量的权利要求 1 的化合物。

59. 抑制蛋白质酪氨酸激酶的方法，其包括给有需要的哺乳动
物投用有效抑制量的权利要求 1 的化合物。

60. 抑制 C - src 酪氨酸激酶的方法，其包括给有需要的哺乳动
物投用有效抑制量的权利要求 1 的化合物。

61. 抑制 V - src 酪氨酸激酶的方法，其包括给有需要的哺乳动
物投用有效抑制量的权利要求 1 的化合物。

62. 抑制碱性成纤维细胞生长因子和/或酸性成纤维细胞生长
因子受体酪氨酸激酶的方法，其包括给有需要的哺乳动物投用有效
抑制量的权利要求 1 的化合物。

63. 治疗哺乳动物的细菌感染的方法，其包括投用抗生素有效
量的权利要求 1 的化合物。

64. 治疗哺乳动物的血管再狭窄的方法，其包括投用有效量的
权利要求 1 的化合物。

65. 治疗气球血管成形术后冠状动脉再狭窄的方法，其包括给
需要治疗的病人投用有效量的权利要求 1 的化合物。

66. 抑制正常器官移植后血管狭窄的方法，其包括投用有效量
的权利要求 1 的化合物。
67.抑制旁路病移植物狭窄的方法，其包括给需要治疗的病人投
用有效量的权利要求1的化合物。

68.抑制静脉移植后狭窄的方法，其包括投用有效抑制量的权
利要求1的化合物。

69.抑制血管成形术后外周血管狭窄的方法，其包括投用有效
量的权利要求1的化合物。

70.抑制血小板衍生的生长因子受体酪氨酸激酶的方法，其包
括给有其需要的哺乳动物投用权利要求1的化合物。
用于抑制蛋白质酪氨酸激酶介导的细胞增殖的 6-芳基吡啶并[2, 3-d]噻唑和 1, 5-二氯杂苯

发明的所属领域

本发明涉及抑制蛋白质酪氨酸激酶（RTK）介导的细胞增殖。更具体地说，本发明涉及吡啶并[2, 3-d]噻唑和 1, 5-二氯杂苯化合物在抑制细胞增殖和蛋白质酪氨酸激酶促活性中的应用。

发明的背景

有许多疾病状态是以细胞的不受控制的增殖和分化为特征的。这些疾病状态牵涉到各种各样的细胞类型和病症，例如肿瘤、动脉硬化及再狭窄。细胞内蛋白质底物的生长因子刺激作用、自磷酸化和磷酸化是增殖性疾病的病理机制中的重要生物学过程。

在正常细胞中，蛋白质底物上酪氨酸残基的磷酸化在通过受刺激的细胞外生长因子受体发动的细胞内生长信号传递途径中具有重要功能。例如，血小板衍生的生长因子（PDGF）、成纤维细胞生长因子（FGF）及表皮生长因子（EGF）等生长因子与其各自的细胞外受体结合，将激活这些受体的细胞内酪氨酸激酶区域，从而催化细胞内底物或受体本身的磷酸化。在对配体结合反应中生长因子受体的磷酸化称为自身磷酸化。

例如，EGF 受体具有其当作最重要的配体 EGF 和转化生长因子α（TGFα）。受体在正常成年人中似乎只有很小功能，但它们可卷入大部分肿瘤，特别是结肠癌和乳腺癌的疾病过程中。密切相关的 Erb-B2 和 Erb-B3 受体具有一个 Heregulins 家族作为它们的主要配体，并且受体过表达和成熟已明确地证明它们是预后不良的乳腺癌的主要危险因子。

血管平滑肌细胞（VSMC）的增殖和定向迁移是血管再建、再狭窄和动脉硬化等过程中的重要构成部分。已将血小板衍生的生长因子鉴定为最强有力的内源性 VSMC 促分裂原和化学引诱物之一。已在气球损伤

因此，EGF、PDGF、FGF 及其他生长因子在肿瘤、动脉硬化及再狭窄等细胞增殖性疾病的病理机制中起着关键性作用。在与其各自的受体结合之后，这些生长因子刺激酪氨酸激酶活性，作为最初的生化过程之一导致 DNA 合成和细胞分裂。从而抑制与细胞内生长因子信号转导途径相关之蛋白质酪氨酸激酶的化合物可以用作治疗细胞增殖性疾病的药剂。我们现已发现，某些吡啶并[2,3-d]噻唑和 1,5-二氢杂萘可抑制蛋白质酪氨酸激酶，并可用于治疗和预防动脉硬化，再狭窄及肿瘤。

几种吡啶并[2,3-d]噻唑和 1,5-二氢杂萘是已知的。例如，美国专利 No.3,534,039 公开了一系列作为利尿剂的 2,7-二氨基-6-芳基吡啶并[2,3-d]噻唑化合物；美国专利 No.3,639,
401 公开了一系列作为利尿剂的 6-芳基-2, 7-双[（三烷基甲硅烷基）氨基] 咪啶并[2, 3-d]嘧啶化合物; 美国专利 No.4,271,164 公开了一系列抗高血压剂的 6 位取代的芳基咪啶并[2, 3-d]嘧啶-7-胺及衍生物; 欧洲公开专利申请 No.0537463 A2 公开了一系列用作除草剂的取代的咪啶并[2, 3-d]嘧啶; 美国专利 No.4,771,054 公开了某些作为抗生素的 1, 5-二氨杂藤。上述参考文献均没有提到本发明的化合物，也没有提示这些化合物可用于治疗动脉硬化，血管再狭窄和肿瘤。

发明的概要

本发明提供用于抑制蛋白质酶氨酰胺激酶，并因而可有效地治疗动脉硬化、血管再狭窄及肿瘤等细胞增殖性疾病的，有咪啶并[2, 3-d]嘧啶和 1, 5-二氮杂藤特征的新化合物。本发明特别涉及由下列式 I 限定的化合物。

![化学结构式](image)

其中

X 是 CH 或 N；

B 是卤素、氢或 NR₃N₄；

R₁、R₂、R₃ 和 R₄ 各自是烷基、C₁-C₈烷基、C₂-C₈链烯基、C₂-C₈炔基、Ar’、氢基、C₁-C₈烷基氨基或二-C₁-C₈烷基氨基；其中烷基、链烯基和炔基基团可被 NR₃R₆取代，这里 R₅ 和 R₆ 独自是烷基、C₁-C₈烷基、C₂-C₈链烯基、C₂-C₈炔基、C₃-C₁₀环烷基或

![化学结构式](image)
并且其中上述任何烷基、链烯基和炔基基团均可被羟基或含有 1 或 2 个选自氮、氧和硫的杂原子的 5 元或 6 元碳环或杂环取代，并且 R₉、R₁₀、R₁₁ 和 R₁₂ 各自是氢、硝基、三氯甲基、苯基、被取代的苯基、-CℓN、

-COOR₈、-COR₈、-CR₈、-C-R₈、SO₂R₈、卤素、C₁-C₈烷基、C₁-C₈烷氧基、硫代、-S-C₁-C₈烷基、羟基、C₁-C₈链烷酰基、C₁-C₈链烷酰氧基，或 NR₅R₆，或者当 R₉ 和 R₁₀ 相邻时它们一起可以是亚甲二氧基；n 是 0、1、2 或 3；并且其中 R₅ 和 R₆与它们所连接的氯一起组成一个有 3 至 6 碳原子，并且可含有选自氮、氧和硫的杂原子的环。

R₁ 和 R₂ 与它们所连接的氯一起，以及 R₃ 和 R₄ 与它们所连接的氯一起也可以是 (H、CH₃、或 NH₂)

-N=C-R₈，

或者可构成一个有 3 至 6 个碳原子，并可含有 1 或 2 个选自氮、氧及硫的杂原子的环，R₁ 和 R₃ 还可以是选自

O C-R₈，-C-OR₈，-C-R₈，-C-R₈，-S-R₈，或

的酰基类似物，其中 R₈ 是氢、C₁-C₈烷基、C₂-C₈链烯基、C₂-C₈炔基、C₃-C₁₀环烷基，并可含有氧、氮或硫原子，

以及 NR₅R₆，并且其中 R₈ 烷基、链烯基和炔基基团可被 NR₅R₆ 所取代；
Ar 和 AR’是选自苯基、咪唑基、吡咯基、吡啶基、噻啶基、苯并咪唑基、苯并噻吩基、苯并呋喃基、吲哚基、吡嗪基、噻唑基、恶唑基、异噁唑基、呋喃基、噻吩基、苯基的未被取代或被取代的芳族或杂芳族基团，其中取代基是如上文限定的 R₉、R₁₀、R₁₁ 和 R₁₂。

以及其医药上可接受的酸和碱加成盐；条件是当 X 是 N 且 B 是 NR₃R₄ 时，R₃ 和 R₄ 之一是氢以外的其他基团。

优选的化合物为其中 Ar 是苯基或式

![苯基结构式](image)

之被取代苯基的式 I 化合物。

另外优选的是其中 B 为 ~ NR₃R₄ 的化合物。

再一种优选的化合物是其中 R₁ 和 R₃ 之一或两者为

![其他结构式](image)

且 R₂ 和 R₄ 为氢的化合物。

进一步优选的化合物是其中 B 为 NR₃R₄，R₁ 和 R₃ 独自为氢，

![其他结构式](image)

这里 R₈ 为 C₁ - C₈ 烷基或 NR₅R₆ 的式 I 化合物。

一组特别优选的化合物具有下列结构式
其中 R_2 和 R_4 是氢， R_1 和 R_3 独自是氢、$C_1 - C_8$ 烷基，

$$\begin{align*}
&\text{或} \\
\end{align*}$$

这里 R_8 是 $C_1 - C_8$ 烷基或 $-NR_5R_6$， R_5 是氢且 R_6 是 $C_1 - C_8$ 烷基， R_9 和 R_{10} 独自是氢、卤素、$C_1 - C_8$ 烷基或 $C_1 - C_8$ 烷氧基。

另一组特别优选的化合物具有下列结构式

其中 R_1、R_2、R_9 和 R_{10} 定义同上。

再一组优选的化合物是下列结构式的化合物
再一组优选的化合物是下列结构式的化合物

特别是其中 R_5 和 R_6 与它们所连接的氮一起形成环，例如吡啶代、嘧啶子基、4-烷基嘧啶子基等。

再一组优选的化合物是下列结构式的化合物
其中 \(R_2 \) 和 \(R_4 \) 是氢，\(R_1 \) 和 \(R_3 \) 独自是氢，\(C_1 - C_6 \) 烷基，

\[
\frac{S}{\text{O}} \quad \frac{\text{O}}{\text{C}=\text{R}_9} \quad \text{或} \quad \frac{\text{S}}{\text{C}=\text{R}_9},
\]

这里 \(R_8, \ R_9 \) 和 \(R_{10} \) 是如上文所定义的。

再一组优选的化合物是下列结构式的化合物

特别是其中 \(R_5 \) 和 \(R_6 \) 与它们所连接的氢一起形成环，例如吗啉代、喹唑子基、\(4 - \) 烷基喹唑子基等。

本发明的优选的化合物包括：

1 - 叔丁基 - 3 - [7 - (3 - 叔丁基噻基) - 6 - (2, 6 - 二氯苯基) - 吡啶并[2, 3 - d]嘧啶 - 2 - 基] 腺;

1 - [2 - 氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并[2, 3 - d]嘧啶 - 7 - 基] - 3 - 叔丁基腺;

1 - 叔丁基 - 3 - [7 - (3 - 叔丁基噻基) - 6 - 邻 - 甲苯基 - 吡啶并[2, 3 - d]嘧啶 - 2 - 基] 腺;

1 - [2 - 氨基 - 6 - 邻 - 甲苯基 - 吡啶并[2, 3 - d]嘧啶 - 7 - 基] - 3 - 叔丁基腺;
1 - [2 - 氨基 - 6 - (2, 6 - 二甲基苯基) - 吡啶并[2, 3 - d] 嘧啶 - 7 - 基] - 3 - 叔丁基脲;
N - [2 - 乙酰氧基 - 6 - (2, 6 - 二氯苯基) - 吡啶并[2, 3 - d] 嘧啶 - 7 - 基] - 乙酰胺;
N^7 - 丁基 - 6 - 苯基 - 吡啶并[2, 3 - d] 嘧啶 - 2, 7 - 二胺;
3 - 邻甲苯基 - [1, 6] - 1, 5 - 二氯杂环 - 2, 7 - 二胺;
3 - (2 - 氯苯基) - [1, 6] - 1, 5 - 二氯杂环 - 2, 7 - 二胺;
N^2, N^7 - 二甲基 - 6 - 苯基 - 吡啶并[2, 3 - d] 嘧啶 - 2, 7 - 二胺;
7 - 氨基 - 6 - (2, 6 - 二氯苯基) - 2 - (3 - 二乙基氨基 - 丙基氨基) - 吡啶并[2, 3 - d] 嘧啶;
1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 吡啶并[2, 3 - d] 嘧啶 - 7 - 基] - 丙基氨基) - 吡啶并[2, 3 - d] 嘧啶 - 7 - 基] - 3 - 乙基脲;
1 - [2 - 氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并[2, 3 - d] 嘧啶 - 7 - 基] - 3 - (3 - 吡啶基 - 4 - 基 - 丙基) - 硫代脲;
1 - [2 - 氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并[2, 3 - d] 嘧啶 - 7 - 基] - 吡啶并[2, 3 - d] 嘧啶 - 7 - 基] - 喹啉代 - 2 - 酮;
N^2 - [7 - (3 - 二乙基 - 甲基基) - 6 - (2, 6 - 二氯苯基) - 吡啶并[2, 3 - d] 嘧啶 - 2 - 基] - N, N - 二甲基 - 甲基;
N^2 - [6 - (2, 6 - 二氯苯基) - 7 - (二甲基氨基 - 甲基基氨基) - 吡啶并[2, 3 - d] 嘧啶 - 2 - 基] - N, N - 二甲基 - 甲基;
1 - 叔丁基 - 3 - [2 - (3 - 二乙基基 - 丙基氨基) - 6 - (2, 6 - 二甲基 - 苯基) - 吡啶并[2, 3 - d] 嘧啶 - 7 - 基] - 脲;
1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - 4 - (二乙基基 - 丁基基氨基) - 吡啶并[2, 3 - d] 嘧啶 - 7 - 基] - 脲;
1 - [2 - 氨基 - 6 - (2, 3 - 二氯苯基) - 吡啶并[2, 3 - d] 嘧啶 - 7 - 基] - 3 - 乙基基 - 脲;
1 - [2 - 氨基 - 6 - (3 - 甲氧基 - 苯基) - 吡啶并[2, 3 - d] 喹啶 - 7 - 基] - 3 - 叔丁基 - 腺;
1 - [2 - 氨基 - 6 - (2, 3 - 二甲基 - 苯基) - 吡啶并[2, 3 - d] 喹啶 - 7 - 基] - 3 - 叔丁基 - 腺;
1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - 二乙氨基 - 丙氨基) - 吡啶并[2, 3 - d] 喹啶 - 7 - 基] - N, N - 二甲基 - 甲脲;
1 - [2 - 氨基 - 6 - (2, 3, 6 - 三氯 - 苯基) - 吡啶并[2, 3 - d] 喹啶 - 7 - 基] - 3 - 叔丁基 - 腺;
1 - [2 - 氨基 - 6 - (2 - 甲氧基 - 苯基) - 吡啶并[2, 3 - d] 喹啶 - 7 - 基] - 3 - 叔丁基 - 腺;
1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - 二甲基氨基 - 丙基) - 甲基 - 氨基] - 吡啶并[2, 3 - d] 喹啶 - 7 - 基] - 腺;
1 - (2 - 氨基 - 6 - 吡啶 - 3 - 基 - 吡啶并[2, 3 - d] 喹啶 - 7 - 基] - 3 - 叔丁基 - 腺;
1 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - (4 - 甲基 - 喹嗪 - 1 - 基) - 丙氨基) - 吡啶并[2, 3 - d] 喹啶 - 7 - 基] - 3 - 苯基脲;
1 - [2 - 氨基 - 6 - (2, 3, 5, 6 - 四甲基 - 苯基) - 吡啶并[2, 3 - d] 喹啶 - 7 - 基] - 3 - 叔丁基 - 腺;
1 - [2 - 氨基 - 6 - (2 - 溴 - 6 - 氯苯基) - 吡啶并[2, 3 - d] 喹啶 - 7 - 基] - 3 - 叔丁基 - 腺;
1 - (2 - 氨基 - 6 - 吡啶 - 4 - 基 - 吡啶并[2, 3 - d] 喹啶 - 7 - 基] - 3 - 叔丁基 - 腺;
1 - [2 - 氨基 - 6 - (3, 5 - 二甲基 - 苯基) - 吡啶并[2, 3 - d] 喹啶 - 7 - 基] - 3 - 叔丁基 - 腺;
1 - [2 - 氨基 - 6 - (2 - 溴 - 6 - 氯 - 苯基) - 吡啶并[2, 3 - d] 喹啶 - 7 - 基] - 3 - 叔丁基 - 腺;
1 - [6 - (2, 6 - 二氯苯基) - 2 - (4 - 二乙基氨基 - 丁基氨基) - 吡啶并[2, 3-d]嘧啶 - 7 - 基] - 3 - 乙基 - 胺;
丙烷 - 1 - 磺酸[2 - 氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并[2, 3-d]嘧啶 - 7 - 基] - 酰胺;
1 - [2 - 氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并[2, 3-d]嘧啶 - 7 - 基] - 3 - 叔丁基脲;
1 - 叔丁基 - 3 - [6 - (2, 6 - 二溴苯基) - 2 - (3 - 二乙氨基 - 丙氨基) - 吡啶并[2, 3-d]嘧啶 - 7 - 基] - 胺;
1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - 二甲氨基 - 2, 2 - 二甲基 - 丙氨基) - 吡啶并[2, 3-d]嘧啶 - 7 - 基] - 胺;
1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - (2 - 甲基 - 吡啶 - 1 - 基) - 丙氨基) - 吡啶并[2, 3-d]嘧啶 - 7 - 基] - 胺;
1 - 金剛烷 - 1 - 基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - (4 - 甲基 - 吡啶 - 1 - 基) - 丙氨基) - 吡啶并[2, 3-d]嘧啶 - 7 - 基] - 胺;
1 - 环己基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - (4 - 甲基 - 吡啶 - 1 - 基) - 丙氨基) - 吡啶并[2, 3-d]嘧啶 - 7 - 基] - 胺;
1 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - (4 - 甲基 - 吡啶 - 1 - 基) - 丙氨基) - 吡啶并[2, 3-d]嘧啶 - 7 - 基] - 3 - (3 - 甲氧基 - 苯基) - 胺;
1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (4 - (4 - 甲基 - 吡啶 - 1 - 基) - 丁氨基) - 吡啶并[2, 3-d]嘧啶 - 7 - 基] - 胺;
1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - (4 - 甲基 - 吡啶 - 1 - 基) - 丙氨基) - 吡啶并[2, 3-d]嘧啶 - 7 - 基] - 3 - (3 - 甲氧基 - 苯基) - 胺;
- 基} - 硫代脲;

1 - 叔丁基 - 3 - {2 - [3 - (4 - 甲基 - 吩嗪 - 1 - 基) - 丙氨基] - 6 - (2, 3, 5, 6 - 四甲基苯基) - 吩啶并[2, 3 - d]嘧啶 - 7 - 基} - 脲;

1 - 咯丙基 - 3 - {6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 吩嗪 - 1 - 基) - 丙氨基] - 吩啶并[2, 3 - d]嘧啶 - 7 - 基} - 脲;

6 - (2, 6 - 二氯苯基 - N - (5, 6 - 二氢 - 4H - [1, 3]嗯嗪 - 2 - 基) - N - [3 - (4 - 甲基 - 吩嗪 - 1 - 基) - 丙基] - 吩啶并[2, 3 - d]嘧啶 - 2, 7 - 二胺; 以及

3 - {6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 吩嗪 - 1 - 基) - 丙氨基] - 吩啶并[2, 3 - d]嘧啶 - 7 - 基} - 1, 1 - 二乙基脲。

再一组优选的化合物是有下列结构式的酰胺

![酰胺结构式]

特别是其中 R₈ 为一 NR₅R₆。

另一组优选的化合物是其中 Ar 为苯基或被取代苯基以外基团的式 I 化合物。这组化合物中典型的是有下列结构式的吡啶:
本发明还提供包含式I的化合物连同医药上可接受的载体、稀释剂或其赋形剂的药物配制晶。

本发明范围内的化合物对EGF、FGF、PDGF、V-src和C-src之酪氨酸激酶区域的一个或多个底物位点具有特异亲和性。本发明范围内的化合物有效地抑制受体的EGF和PDGF自身磷酸化作用，并抑制血管平滑肌细胞增殖和迁移。

作为蛋白质激酶的抑制剂，本发明的化合物可用于控制哺乳动物的包括白血病、肿瘤、牛皮癣、与动脉硬化相关的血管平滑肌增殖，以及手术后血管狭窄及再狭窄在内的增殖性疾病。

本发明的再一个实施方式是治疗患有由血管平滑肌增殖引起之疾病的治疗对象的方法。该方法包括给需要治疗的对象投用有效量的式I化合物，以抑制血管平滑肌增殖和/或迁移。

最后，本发明涉及制备式I化合物及合成的中间体的方法。

本发明的详细描述

本发明的化合物可以以未溶剂化的以及溶剂化的，包括水合的形式存在。一般说来，溶剂化的形式，包括水合的形式等同于未溶剂化的形式，并且意欲包括在本发明的范围之内。在式I的化合物中，术语“C_{1} - C_{8}烷基”是指有1至8个碳原子的直链或支链烃烷基，并包括例如甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、2、2-二甲基丙基、正己基、正庚基、正辛基等。优选的是C_{1} - C_{6}烷基基团。
“卤素”包括氟、氯、溴和碘。

“C₂ - C₈链烯基”是指有2至8个碳原子并有1个双键的直链和支链烃残基，并包括乙烯基、3-丁烯-1-基、2-乙烯基、3-辛烯-1-基等。典型的C₂ - C₈炔基基团包括丙炔基、2-丁炔-1基、3-戊炔-1-基等。其中C₂ - C₆链烯基是优选的。

“C₃ - C₁₀环烷基”是指环氧环基基团，如环丙基、环丁基、环己基、环戊基、环己基、环己烷基、环己基环基、环己基环基[3.2.1]辛基、环己基环基[2.2.1]庚基等，以及杂环烷基基团如哌嗪基、四氢吡喃基、吡咯烷基等。

“C₁ - C₈烷氧基”是指通过氧连接的上述烷基基团，其例子包括甲氧基、乙氧基、异丙氧基、叔丁氧基、正丙氧基等。优选的是C₁ - C₆烷氧基。

典型的“C₁ - C₈链烷酰基”基团包括甲酰基、乙酰基、丙酰基、丁酰基及异丁酰基。“C₁ - C₈链烷酰氧基”包括乙酰氧基、叔丁酰氧基、戊酰氧基等。

烷基链烯基和炔基均可被NR₅R₆和5元或6元碳环和含有1个或2个选自氮、氧和硫的杂环基团取代。这样环也可以是例如被1个或2个C₁ - C₆烷基基团取代的。其例子包括乙二氨基甲基、4-二乙氨基-3-丁烯-1-基、5-苯基甲基、3-戊烯-1-基-4-吗啉代丁基、4-(4-甲基喹唑啉-1-基)丁基、4-四氢吡啶基丁基-2-甲基四氢吡啶并甲基-、3-吗唑烷-1-基丙基、4-四氢噻唑-3-基-丁基、苯基甲基、3-氯苯基甲基等。

术语“Ar”和“Ar’”是指未被取代和被取代的芳族和杂芳族基团，例如苯基、3-氯苯基、2，6-二溴苯基、吡啶基、3-甲基吡啶基、苯并噻吩基、2，4，6-三溴苯基、4-乙基苯并噻吩基、呋喃基、3，4-二乙基呋喃基、苯基、4，7-二氟苯基等。

优选的Ar和Ar’基团是苯基和被1、2或3个独自选自卤素、烷基、烷氧基、硫代、硫代烷基、羟基、烷酰基、-CN、-NO₂、-COOR₈、-CF₃、烷酰氧基、或式-R₅R₆-R₆的亚氨基基团取代的苯基。优选的二取代的苯基，且特别优选的是2，6-二取代的苯基。其他优选的Ar和Ar’基团包括吡啶基，例如2-吡啶基和4-吡啶基。
因此典型的 Ar 和 Ar’取代的苯基基团包括 2 - 氨基苯基、3 - 氯 - 4 - 甲氧基苯基、2, 6 - 二乙基苯基、2 - 正丙基 - 3 - 氟苯基、3 - 羟苯基、3, 4 - 二甲氧基苯基、2, 6 - 二氯苯基、2 - 氯 - 6 - 甲基苯基、2, 4, 6 - 三氯苯基、2, 6 - 二甲氧基苯基、2, 6 - 二环己基苯基、2, 6 - 二乙基苯基、2, 6 - 二甲基苯基、2, 6 - 二甲苯基等。式 I 的化合物能够进一步形成医药上可接受酸加成盐和/或碱性盐。所有这些形式都在本发明范围内。

式 I 化合物的医药上可接受的酸加成盐包括衍生于无机酸例如盐酸、硝酸、磷酸、硫酸、氢溴酸、氢碘酸、亚磷酸等的盐，以及衍生于有机酸例如脂族单和双羧酸、苯基取代的链烷酸、羟基链烷酸、链烷双酸、芳族酸、脂族和芳族磺酸等的盐。因此这些盐包括硫酸盐、焦硫酸盐、双硫酸盐、亚硫酸盐、双亚硫酸盐、硝酸盐、磷酸盐、磷酸一氢盐、磷酸二氢盐、偏磷酸盐、焦磷酸盐、氯化物、溴化物、碘化物、乙酸盐、丙酸盐、辛酸盐、丁酸盐、草酸盐、丙二酸盐、琥珀酸盐、辛二酸盐、癸二酸盐、富马酸盐、马来酸盐、扁桃酸盐、苯甲酸盐、氯代苯甲酸盐、甲基苯甲酸盐、二硝基苯甲酸盐、邻苯二甲酸盐、苯磺酸盐、甲苯磺酸盐、苯乙酸盐、柠檬酸盐、乳酸盐、马来酸盐、酒石酸盐、甲磺酸盐等。另外，还可包括氨基酸的盐，例如精氨酸盐等，以及葡糖酸盐和半乳糖醛酸盐（例如参见 Berge S.M.et al., “Pharmaceutical Salts ”, J. of Pharmaceutical Science,66:1-19(1977)）。

可以使游离碱形式的化合物与足够量的所需酸接触，以常规方法产生所称碱性化合物的酸加成盐。可以使盐形式的化合物与碱接触，并以常规方法分离游离碱，从而再生游离碱形式的化合物。游离碱形式在某些物质性质方面，例如在极性溶剂中的溶解度稍微不同于它们各自的盐，但从本发明目的考虑，盐等同于它们各自的游离碱。

与金属或胺，例如碱金属和碱土金属或有机胺形成医学上可接受的碱加成盐。作为阳离子使用的金属可以是钠、钾、镁、钙等。适当的胺的例子是 N, N’ - 二苯基乙二胺、氯代普普卡因、胆碱、二乙醇胺、乙

使游离酸形式的化合物与足够量的所需碱接触，以常规方法产生所说的酸性化合物的碱加成盐。也可以使盐形式的化合物与酸接触，并按常规方法分离游离酸以再生游离酸形式的化合物。游离酸形式在某些物理性质，例如在极性溶剂中的溶解度方面稍不同于它们各自的盐形式，但就本发明的目的来说盐等于它们各自的游离酸。

虽然在本文中本发明是以优选实施方案的形式给出的，但还可能有许多其他方案。本文中使用的术语只是描述性的，而不是用于限制本发明，所以可以在不背离本发明的精神和范围的前提下对本发明作出各种改变。

路线 I 描述了制备 1-叔丁基-3-[7-(3-叔丁基脲基)-6-(芳基)-吡啶并[2,3-d]喹啶-2-基]脲和 1-[2-氨基-6-(芳基)-吡啶并[2,3-d]喹啶-7-基]-3-叔丁基脲的典型方法，其中所使用关键性中间体 2, 7-二氯基-6-(芳基)-吡啶并[2,3-d]喹啶可按美国专利 No.3,534,039 中所述的方法制得。一般说来，可使 2, 7-二氯基-6-(芳基)-吡啶并[2,3-d]喹啶化合物与一当量的酰化剂例如异氯酸烷基酯、异硫氯酸盐、氨基甲酰氯、氨基甲酰溴、氯磺酰氯、氯甲酸酯、或其他活化的酸衍生物例如对称酸酐、混合酸酐等反应，以完成此反应。反应在净异氯酸酯
中进行，或者在适当的非反应性溶剂如二甲基甲酰胺、二噁烷中，于碱特别是氢化钠存在下进行。可以使用两倍过量或更大量的酰化试剂按上述同样方式与起始材料 2，7-二氨基-6-(芳基)-噁唑并[2,3-d]噁唑反应，主要得到二酰化的化合物，例如1-叔丁基-3-(7-(3-叔丁基呋喃基)-6-(芳基)-吡啶并[2,3-d]喹唑-2基)磷酸。

一般在大约20 °C 至80 °C的温度下反应1-3小时即可基本上完成酰化作用。可按常规方法，例如过滤固体物并蒸发除去反应溶剂而很容易地分离出产物。必要时可用常规方法，例如从乙酸乙酯、乙醇或乙醚等有机溶剂中结晶，以及在固相载体例如硅凝胶上层析等方法进一步纯化产物。本发明的化合物一般是很易于结晶的固体物。

路线II图解显示2，7-二氨基-6-(芳基)-吡啶并[2,3-d]喹唑的典型酰化反应，其中使用2倍过量或更大过量的乙酸，经加热制备二酰化产物例如 N-(2-乙酰氨基-6-(芳基)-吡啶并[2,3-d]喹唑-7-基)-乙酰胺。更一般地说，可以用这种方法从适当的2，7-二氨基-6-(芳基)-吡啶并[2,3-d]喹唑化合物开始，用过量的酰化剂例如酸酐、混合酸酐，或活化的酰基衍生物如酰基氯和磺酰氯处理之，以制得这种类型的二酰化化合物。反应一般在大约20-200 °C的温度下进行。为了清除反应过程中产生的酸性付产物，可以进行有机或无机酸例如三乙胺和氢氧化钠的加成反应，可以用如上所述的层析和结晶方法很容易地分离并纯化二酰化产物。

基）- 吡啶并[2, 3-d]嘧啶-2, 7-二胺。或者，也可以经酶
化作用除去甲脉功能性，以提供7-氯衍生物，即2-氨基-7-氯-6
-(芳基)- 吡啶并[2, 3-d]嘧啶-2, 7-氯间产物与亲核试剂
如烷基胺反应，得到相应的6-(芳基)-N7-烷基- 吡啶并[2, 3-
d]嘧啶-2, 7-二胺。

路线IV 描述3-(芳基)-[1, 6]1, 5-二氯杂萘-2, 7
-二胺的制备，并代表制备这些化合物的通用方法学。6-溴-2, 4
-二氯基-5-氯基吡啶氯解（JACS, 80: 2838-2840(1958)）后
得到中间体2, 4-二氯基-5-氯基吡啶。氯基吡啶化合物例如在适
用于钯氏镍催化剂的甲酸-水混合物中氯化，得到关键性的多变中间体
2, 4-二氯基-5-吡啶-甲醛（carboxaldehyde）。然后该醛与路
线IV中所述的芳基乙胺缩合，得到3-(芳基)-[1, 6]1, 5-二氯杂萘-2, 7-二胺。再醇化物碱，例如乙醇钠或2-乙氧基乙醇
钠（其可在原位自乙醇或2-乙氧基乙醇中加入钠金属或氢化钠而产生）
存在下完成缩合反应。路线IV 描述制备本发明3-(芳基)-[1, 6]
1, 5-二氯杂萘-2, 7-二胺的通用方法学。

路线V 图解说明在高温下高压气体贮罐中使用烷基胺对6-芳基
- 吡啶并[2, 3-d]嘧啶-2, 7-二胺（美国专利No.3,534,039）
进行直接二烷基化，得到N2, N7-二烷基-6-芳基- 吡啶并[2, 3-
d]嘧啶-2, 7-二胺。一般地说，该反应是使用净的氨试剂例如
异丁胺和正乙胺，于约150-300°C温度下在高压气体贮罐中完成的。

路线VI 图解显示其中R1可以是氨基烷基基团例如二乙氨基丙基的
式1化合物的合成。6-(芳基)-2, 7-二氧基- 吡啶并[2, 3-
d]嘧啶可在高压气体贮罐中，于酸例如甲磺酸存在下与胺亲核试剂，
例如氨基烷胺（如H2N烷胺-NR5R6）反应，以产生本发明的氨基烷基
取代的化合物。必要时可用常规方法进一步酯化该化合物。很容易使用
结晶和层析等常规方法学分离和纯化所需化合物。

路线VII 图解说明其中R3和R4-它所连接的氮一起形成环的式1
化合物的合成。环上可包括另一个杂原子例如氮、氧或硫。在流程VII
中，二氧基吡啶并嘧啶与异氯酸卤代乙酯反应，产生味唑咪酮。反应一
般是在有机溶剂例如二甲基甲酰胺中，并于碱例如氢氧化钠存在下进行。当反应温度为 30 ℃时，反应通常需 8 至 16 小时完成。可用常规方法很容易地分离和纯化产物。

上述反应还产生其中 R₁ 或 R₃ 是式

```
(\text{CH}_2)_{1,2,\text{或} 3}
```

的酰基类似物的式 I 化合物。

路线 VIIa 图解显示该反应，可用层析、分级结晶等常规方法分离产物。

本发明提供的另一组化合物是肽，其中 R₁ 和 R₂ 连同它们所连接的氮一起，以及 R₃ 和 R₄ 连接它们所连接的氮一起可以是具有式

```
(\text{H}, \text{CH}_3, \text{或} \text{NH}_2)
```

之基团的式 I 化合物。 -N=C-R₈.

路线 VIII 图解说明典型的吡啶并喹唑啉的合成，其可由氨基吡啶并喹唑与酰胺或环酰胺的乙缩醛，例如 N, N-二甲基甲酰胺的二甲基乙缩醛或 N-甲基吡咯烷酮的二甲基乙缩醛反应而生成。一般可在互溶剂例如二甲基甲酰胺、二甲基亚砜、四氢呋喃等溶剂中，使氨基吡啶并喹唑与大约等摩尔量的或过量的乙缩醛混合进行该反应。反应一般在大约 5 – 50 ℃温度条件下进行约 3 – 6 小时。可用常规方法很容易地分离产物，并在必要时可用层析、结晶等常规技术纯化之。

本发明还提供其中氨基基团被芳基 Ar′，例如苯基、被取代苯基、吡啶基、喹唑基、喹唑基等取代的氨基吡啶并喹唑。优选的 N-芳基化合物具有下列结构式：

```
```

19
其中 Ar、Ar'和 B 的定义如上文所述。可用几种方法中的任何一种，例如流程 IX 和 X 中所述的方法制备这样的化合物。

在路线 IX 中，使例如在 2 位上被烷基硫代、烷基亚砜或烷基砜取代的吡啶并噻唑与芳基胺（例如 Ar’NH₂）反应，进行硫代亚砜或砜取代基的置换，以产生相应的 N-芳基氨基吡啶并噻唑。置换反应一般在例如二甲基甲酰胺有机溶剂中，于大约 20 - 80 °C 的温度下进行。反应时间约为 3 - 8 小时，并可将反应混合物加到水中，然后用溶剂例如二氯甲烷等提取产物而很容易地分离出所需产物。

路线 X 同样说明从适当的被取代噻唑，例如 4-氨基-2-氯嘧啶-5-腈开始合成 N-芳基氨基吡啶并噻唑的步骤。经与芳胺（Ar’NH₂）反应置换卤素基团，得到在 5 位上有氯基基团的相应的 L-N-芳基氨基噻唑。经与阮氏镍在水和甲酸中反应使氯基基团转变成醛，并按路线 IV 中所述方法使所得到的 2-芳基氨基-4-氨基-嘧啶-5-羧醛与芳基乙腈（例如苯基乙腈、2-吡啶基乙腈等）反应，以得到相应的本发明的 N-芳基-氨基-吡啶并噻唑。
路线 I

1. NaH, DMF
2. (CH₃)₂C=N=O

\[
\begin{align*}
&\text{H₂N} & & \text{H₂N} \\
&\text{N} & & \text{N} \\
&\text{O} & & \text{O} \\
&\text{C} & & \text{C} \\
&\text{N} & & \text{N} \\
&\text{H} & & \text{H} \\
&\text{N} & & \text{N} \\
&\text{O} & & \text{O} \\
&\text{C} & & \text{C} \\
&\text{N} & & \text{N} \\
&\text{H} & & \text{H} \\
&\text{N} & & \text{N} \\
&\text{O} & & \text{O} \\
&\text{C} & & \text{C} \\
&\text{N} & & \text{N} \\
&\text{H} & & \text{H} \\
&\text{N} & & \text{N} \\
&\text{O} & & \text{O} \\
&\text{C} & & \text{C} \\
\end{align*}
\]
路线 II

\[
\begin{align*}
\text{过量} & \quad \text{AC}_2\text{O} \\
\end{align*}
\]
Diagram I

Diagram II

Diagram III
路线 IV

\[
\begin{align*}
\text{Pd/C, H}_2 & \quad \xrightarrow{\text{THF}} \\
\text{Ra/Ni, H}_2\text{O} & \quad \text{Mc} \\
\text{Na} & \quad 2-\text{乙氧基乙醇}
\end{align*}
\]
路线 V

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\text{H}_2\text{N} & \quad \text{N} \\
\text{N} & \quad \text{N} \\
\text{N} & \quad \text{H}_2\text{N}
\end{align*}
\]

\[
\begin{align*}
\text{R}_9 & \quad \text{R}_{10} \\
\text{R}_9 & \quad \text{R}_{10}
\end{align*}
\]

\[\text{C}_1\text{--C}_6 \xrightarrow{\Delta \text{ (高压气体膨胀)}} \text{C}_1\text{--C}_6 \text{ alkyl} \]

\[\text{烷基} \]

………………
路线 VIII
路线 VIII（续）
路线 IX

\[\text{MeS} \begin{array}{c}
\text{CO}_2\text{Et} \\
\text{Cl}
\end{array} \xrightarrow{\text{NH}_2\text{OH} / \text{EtOH}} \begin{array}{c}
\text{MeS} \\
\text{NH}_2
\end{array} \xrightarrow{\text{LAH/THF}} \begin{array}{c}
\text{MeS} \\
\text{CO}_2\text{Et}
\end{array} \]

\[\begin{array}{c}
\text{MeS} \\
\text{NH}_2
\end{array} \xrightarrow{\text{MnO}_2/\text{CHCl}_3} \begin{array}{c}
\text{MeS} \\
\text{CHO}
\end{array} \xrightarrow{\text{NaH/DMF}} \begin{array}{c}
\text{MeS} \\
\text{ArCH}_2\text{CN}
\end{array} \]

\[\begin{array}{c}
\text{MeS} \\
\text{NH}_2
\end{array} \xrightarrow{\text{Ar'NH}_2} \begin{array}{c}
\text{Ar}
\end{array} \]

\[\begin{array}{c}
\text{MeS} \\
\text{NH}_2
\end{array} \xrightarrow{\text{R}_1\text{R}_2\text{NH}_2\text{Cl}} \begin{array}{c}
\text{Ar}
\end{array} \]

\[\begin{array}{c}
\text{MeS} \\
\text{NH}_2
\end{array} \xrightarrow{\text{Ar'NH}_2} \begin{array}{c}
\text{Ar}
\end{array} \]
路线 X

\[
\text{Cl} \quad \text{NH}_2 \quad \text{CN} \quad \text{Ar'} \quad \text{NH}_2 \quad \text{CN} \quad \text{RaNi/H}_2\text{O} \\
\text{DIEA/THF} \quad \text{Ar'} \quad \text{HN} \quad \text{Ar'} \quad \text{HN} \quad \text{Ar'} \quad \text{HN} \quad \text{Ar'} \\
\text{CHO} \quad \text{EtOCH}_2\text{CH}_2\text{OH} \quad \text{NaH/ArCH}_2\text{CN} \quad \text{Ar} \quad \text{Ar} \\
\text{NaH/DMF} \quad \text{R}_3\text{NCO} \quad \text{Ar} \quad \text{Ar} \quad \text{NH} \quad \text{Ar} \quad \text{HN} \quad \text{Ar} \quad \text{NH} \\
\text{O} \quad \text{NHR}_3

可以以多种口服和胃肠道外给药的剂型配制并服用（包括经皮内和直肠给药）本发明的化合物。本领域技术人员可以理解到，下述剂型中可包含作为活性成分的式 I 化合物或其医药上可接受的相应的盐，或式 I 化合物的溶剂化物。

本发明的再一个实施方案是包含式 I 化合物连同其医药上可接受的载体、稀释剂或赋形剂的药物配制品。为了制备本发明化合物的药物组合物，医药上可接受的载体可以是固体或液体的。固体形式的制剂包括粉末剂、片剂、胶囊剂、药丸、扁囊剂、栓剂及可分散颗粒。固体载体可以是一种或多种也能用作稀释剂、香味剂、粘合剂、防腐剂、药片崩解剂或胶囊封装材料的物质。

在粉末剂中，载体是精细粉碎的固体，例如与精细粉碎的活性成分混合的滑石粉或淀粉。

在片剂中，活性成分与适当比例的，有必要的粘结性质的载体混合，并压制成有所需形状和大小的药片。

本发明的药物配制品较好含有大约 5% 至 70% 的活性化合物。适当的载体包括碳酸镁、硬脂酸镁、滑石粉、糖、乳糖、果胶、糊精、淀粉、明胶、黄原胶、甲基纤维素、羧甲基纤维素钠、低溶点蜡、可可脂等。口服用药的优选剂型是胶囊剂，其包含活性化合物与作为载体的胶囊包
裹材料的配制品，在其所提供的胶囊中加有或没有其他载体的活性成分被载体所包绕，因而与之相联系。同样，也包括扁囊剂和锭剂。片剂、粉末剂、胶囊、药丸、扁囊剂和锭剂可用作适于口服给药的固体剂型。

为了制备栓剂，首先熔化低熔点蜡，例如脂肪酸甘油酯或可可脂的混合物，并于搅拌下将活性成分均匀地分散于其中。然后将熔化的物质混合物倒入常规大小的模子中，使之冷却并进而固化成形。

液体制剂包括溶液、悬液和乳液，例如水溶液或水-丙二醇溶液。为了胃肠道外注射，可在聚乙二醇水溶液、等渗盐水、5%葡萄糖溶液等溶液中配制液体制剂。

可以将活性成分溶解于水中并根据需要加入适当的着色剂、香料、稳定剂和增稠剂，以制得适于口服使用的水溶液。

可以将细微粉碎的活性成分分散于含亲性材料例如天然或合成树脂，树脂、甲基纤维素、羧甲基纤维素钠，以及其他已知悬浮剂的水中，以制得适于口服使用的含水悬液。

另外还包括可在临用前转化成适于口服给药之液体制剂的固体形式的制剂。这样的液体制剂型包括溶液、悬液和乳液。这些制剂除活性成分外，还可含有着色剂、香料、稳定剂、缓冲剂、人工和天然甜味剂、分散剂、增稠剂、增溶剂等。可以利用蜡、聚合物等制备缓释剂型。另外，可利用渗透泵长时间均匀地释放活性化合物。

本发明的药物制剂较好是单位剂量形式的。在这种剂型中，制剂被分成含有适当量活性成分的单位剂量。单位剂量形式可以是包装的制剂，含有不同量制剂的包装，例如包装的片剂、胶囊及在小瓶或安瓶中的粉末。另外，单位剂量形式可以是胶囊、片剂、扁囊剂或锭剂本身，或者是在包装中的适当数目的单位制剂。

治疗有效剂量的式 I 合化合物一般为大约每天每公斤体重 1mg 至 100mg。典型的成人剂量约为每天 50 至 800mg。根据活性化合物的特殊应用和效力的不同，单位剂量制剂中活性成分的量可有所不同并可以从大约 0.1mg 到 500mg，较好大约 0.5mg 到 100mg。需要时，化合物还可含有其他相容性治疗剂。需要以式 I 合化合物治疗的对象每天可服用大约 1 至 500mg，并在 24 小时内一次或多次服用。
已使用检测对酪氨酸激酶抑制作用的标准检测法估测了本发明的化合物。其中一种检测法如下所示：

表皮生长因子受体酪氨酸激酶的纯化

按下列方法从 A431 表皮样癌细胞中分离人 EGF 受体酪氨酸激酶。细胞生长于可加有 50 % Delbuco 氏改良的 Eagle 培养基和 50 % 含 10 % 胎牛血清之 HAM F - 12 营养培养基（ Gibco）的转瓶内。使大约 10⁹个细胞在含有 20 mM 2-（4N - [2-羟乙基]-咪唑-1-基）乙磺酸（pH7.4）、5 mM 乙二醇双（2-羟基乙基醚）N, N, N', N'-四乙酸、1 % Triton x-100、10 % 甘油、0.1 mM 原酸钠、5 mM 氯化钠、4 mM 焦磷酸盐、4 mM 苯甲酰胺、1 mM 二硫苏糖醇、80 μ g/mL 抑蛋白酶肽、40 μ g/mL 亮抑蛋白酶肽和 1 mM 苯甲基甲磺酰氯的 2 倍体积缓冲液中溶胞。25,000 xg 离心 10 分钟后，用 10 mL 预先在 50 mM Hapes、10 % 甘油、0.1 % Triton X-100 和 150 mM NaCl（pH7.5）（平衡缓冲液）中平衡过的麦胚凝集素溶液将上清液 4 ℃ 平衡 2 小时。用加在平衡缓冲液中的 1 M NaCl 从树脂上洗掉污染蛋白，并用加在平衡缓冲液中的 0.5 M N-乙酰-1 - D - 葡糖胺洗脱酶。IC₅₀ 值的测定

在含有 25 mM Hapes（pH7.4）、5 mM MgCl₂、2 mM MnCl₂、50 μ m 钾酸钠、5 - 10 ng EGF 受体酪氨酸激酶、200 μ M 底物肽，例如（Ac-Lys-His-Lys-Lys-Leu-Ala-Glu-Gly-Ser-Ala-Tyr⁻⁷²-Glu-Glu-Val-NH₂）（Wahl M.L.,et al.,J.Biol.Chem.,265:3944-3948 (1990)）、10 μ M ATP（含 1 μ Ci [³²P] ATP）的 0.1 mL 总反应体积中进行 IC₅₀ 检测的酶试验，并于室温下保温 10 分钟。加入 2 mL 75 mM 磷酸终止反应并通过 2.5 cm 磷酸纤维素滤膜圆盘以结合肽。用 75 mM 磷酸将滤膜洗 5 次并放在含 5 mL 闪烁液（Ready gel Beckman）的小瓶内。

PDGF 和 FGF 受体酪氨酸激酶检测法

中，并分离重组体病毒。用病毒感染 SF9 昆虫细胞以过表达蛋白质，并用细胞溶胞物进行检测。检测在 96 孔平板（100 μ l/保温/孔），所用条件应最适于测定 γ - P - ATP 内的 sm - P 向谷氨酰 - 酰氨酸共聚物底物中的掺入。简单地说，向各孔内加入 82.5 μ l 含有 25mM Hepes(pH7.0),
150mM NaCl 、0.1 % Triton X-100 、0.2mM PMSF 、0.2mM Na3VO4 、10mM MnCl2 和 750 μ g/mL 聚 (4: 1) 谷氨酰 - 酰氨酸的温缓冲液，然后加入 2.5 μ L 抑制剂和 5 μ L 酶溶胞物（7.5 μ g/μ L FGF - TK 或 6.0 μ g/μ L PDGF - TK）以启动反应。25 ℃保温 10 分钟后，向各孔内加入 10 μ L γ - P - ATP (0.4 μ Ci 加 50 μ M ATP) 并将样品继续 25 ℃保温 10 分钟。加入 100 μ L 含 20mM 焦磷酸钠的 30 % 三氯乙酸 (TCA ）终止反应，并使材料沉淀在玻璃纤维滤膜 簧（Wallac）上。用含有 100mM 焦磷酸钠的 15 % TCA 洗滤膜 3 次，并在 Wallac1250 β 平板读数器中计数滤膜上保温的放射性活性。非特异性定义为样品单独与缓冲液（无酶）保温后留在滤膜上的放射性活性。特异性酶促活性定义为总活性（酶加缓冲液）减去非特异性活性的值。基于抑制曲线确定抑制 50 % 特异性活性时化合物的浓度（ IC₅₀ ）。

V - src 和 C - src 激酶检测法

使用针对 N 末端 2 - 17 个氨基酸的抗肽单克隆抗体从杆状病毒感染的昆虫细胞溶胞产物中纯化 V - src 或 C - src 激酶。向由 150mM NaCl 、50mM Tris pH7.5 、1mM DTT 、1 % NP - 40 、2mM EGTA 、1mM 醋酸钠、1mM PMSF 、各 1 μ g/ml 亮抑蛋白酶肽、抑 胃酶肽和抑蛋白酶肽组成昆虫细胞溶胞缓冲液的�液内加入共价结合到 0.65 - μ m 胶乳小球上的抗体。将含有 C-src 或 V-src 蛋白质的昆虫细胞溶胞物与这些小球于 4 ℃下旋转保温 3 - 4 小时。在保温结束时，在溶胞缓冲液并洗小球 3 次，再悬浮于含有 10 % 甘油的溶胞缓冲液中并冷冻。融化这些乳胶小球，在由 40mM Tris pH7.5, 5mg MgCl₂ 组成的检 测缓冲液淋洗 3 次，并悬浮于同样缓冲液中。在带有聚亚乙烯膜底部的 Millipore96 孔平板上加入以下反应成分：10 μ L V - src 或 C - src 小球、10 μ L 2.5mg/mL 聚 Glu Tyr 底物, 含 0.2 μ Ci 标记的 32P - ATP 的 5 μ M ATP、含有抑制剂或溶剂对照物的 5 μ M DMSO，以及补足
细胞培养

从大鼠的胸主动脉中分离大鼠主动脉平滑肌细胞（RASM C）并按照 Ross, J. Cell. Biol., 30:172-186(1971)的方法进行体外细胞培养。使细胞生长于含有 18% 胎牛血清（FBS, Hyclone, Logan, Vtah), 1% 谷氨酰胺 (Gibco) 和 1% 青霉素/链霉素 (Gibco) 的 Bulbecco 氏改善的 Eagle 氏培养基 (DMEM, Gibco) 中。根据其“坡和谷”（hill and valley）生长特征并用 SMC μ - 肌动蛋白特异性单克隆抗体（Sigma）进行荧光染色来鉴定细胞。所有实验均使用 5 - 20 培养的 RASM C。在二甲基亚砜 (DMSO) 中制备试验化合物，以实现在载体中的一致性并保证化合物溶解性。同时用试验化合物试验适当的 DMSO 对照。

[³H] 胸苷掺入试验

将悬浮在含 10% FBS 之 DMEM 中的 RASM C 铺数于 24 孔平板中（30, 000 细胞/孔）。4 天后，细胞达到汇合状态并经在含有 0.2% FBS 的 DMEM /F12 培养基（Gibco）中继续保温 2 天而进入静止状态。将细胞与加在 0.5mL/孔血清替代培养基（DMEM/F12 + 1% CPSR, Sigma）中的 PDGF - BB, bFGF 或 FBS 加上试验化合物保温 22 小时，以诱导 DNA 合成。18 小时后，加入 0.25 μ Ci/孔 [³H] - 胸苷。4 小时后，除去放射活性培养基终止保温，用 1mL 冷磷酸盐缓冲盐洗细胞两次，然后再用冷 5% 三氯乙酸洗两次。在 0.75mL 0.25N NaOH 中裂解酸不溶性部分并用液体闪烁计数法测定放射活性。作图确定 IC₅₀ 值。

PDGF 受体自磷酸化

使 RASM C 在 100mm 平皿中生长至细胞汇合。除去生长培养基更换无血清培养基，并将细胞于 37 ℃ 继续保温 24 小时。然后向培养基直接加入试验化合物并再将细胞保温 2 小时。2 小时后，以 30ng/mL 的
终浓度加入 PDGF - BB，于 37 ℃ 处理 5 分钟以刺激 PDGF 受体的自身磷酸化。生长因子处理后除去培养基，用冷磷酸盐缓冲盐水洗细胞并立即用 1mL 溶胞缓冲液（50mM HEPES[pH7.5]、150 mM NaCl、10% 甘油、1% Triton X-100、1 mM MEDTA、1 mM EGTA、50 mM NaF、1 mM 原钒酸钠、30 mM 磷酸对硝基苯酯、5 mM 焦磷酸钠、1 mM 苯基甲基磺酰氟、10 μg/mL 抑蛋白酶肽和 10 μg/mL 亮抑蛋白酶肽）裂解细胞。将溶胞产物以 10,000g 离心 10 分钟。将上清液与 10 μL 兔抗人 PDGF - A 受体抗体（1：1000）一起保温 2 小时。保温后，加入蛋白 A - 琼脂糖凝胶小珠持续混合 2 小时，并用 1 mL 溶胞洗涤缓冲液将与小珠结合的免疫复合物洗 4 次。将免疫复合物溶解于 40 μL Laemmli 样品缓冲液中并在 4 - 20% SDS 聚丙烯酰胺凝胶中电泳。电泳后，将分离的蛋白转移到硝酸纤维素膜上并用抗磷酸酪氨酸抗血清进行免疫印迹分析。与 125I - 蛋白 A 保温后，用磷影象分析法检测酪氨酸磷酸化蛋白质的水平，并以光密度分析法定量蛋白质带。根据光密度检测数据得出 IC50 值。

下列表 I 和 II 中给出前述检测试验中测得的本发明有代表性化合物的生物学数据。
<table>
<thead>
<tr>
<th>实施例</th>
<th>PDGF</th>
<th>FGF</th>
<th>EGF</th>
<th>V-src</th>
<th>C-src</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.2</td>
<td>2.99</td>
<td>52.3%</td>
<td>(-2.4%)</td>
<td>0.21</td>
</tr>
<tr>
<td>2</td>
<td>10.2</td>
<td>1.60</td>
<td>1.17</td>
<td>46.8%</td>
<td>19.5</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>0.140</td>
<td>1.17</td>
<td>46.8%</td>
<td>0.22</td>
</tr>
<tr>
<td>4</td>
<td>(31.9%)</td>
<td>(21.5%)</td>
<td>(36.65%)</td>
<td>(3.1%)</td>
<td>(33.6%)</td>
</tr>
<tr>
<td>5</td>
<td>0.466</td>
<td>1.40</td>
<td>0.928</td>
<td>(23.3%)</td>
<td>0.407</td>
</tr>
<tr>
<td>6</td>
<td>0.34</td>
<td>0.397</td>
<td>0.457</td>
<td>(39.8%)</td>
<td>0.11</td>
</tr>
<tr>
<td>7</td>
<td>(33.5%)</td>
<td>17.9</td>
<td>(25.15%)</td>
<td>7.6%</td>
<td>2.3</td>
</tr>
<tr>
<td>9</td>
<td>25.1</td>
<td>10.56</td>
<td>18.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>(18.2%)</td>
<td>36.3</td>
<td>21.28</td>
<td>(15.9%)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>10.72</td>
<td>9.21</td>
<td>7.08</td>
<td>(10.3%)</td>
<td>1.38</td>
</tr>
<tr>
<td>17</td>
<td>27.0</td>
<td>4.50</td>
<td>7.22</td>
<td>(5.3%)</td>
<td>2.76</td>
</tr>
<tr>
<td>18</td>
<td>21.3</td>
<td>1.19</td>
<td>18.2</td>
<td>(21.4%)</td>
<td>0.514</td>
</tr>
<tr>
<td>19</td>
<td>(47.7%)</td>
<td>16.93</td>
<td>(26.1%)</td>
<td>(5.2%)</td>
<td>(52.8%)</td>
</tr>
<tr>
<td>20</td>
<td>46.1</td>
<td>2.38</td>
<td>(51.7%)</td>
<td>0.748</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.66</td>
<td>0.0824</td>
<td>6.97</td>
<td>(49.4%)</td>
<td>0.073</td>
</tr>
<tr>
<td>22</td>
<td>1.3</td>
<td>0.128</td>
<td>(90.4%)</td>
<td>(46.9%)</td>
<td>0.077</td>
</tr>
<tr>
<td>23</td>
<td>4.51</td>
<td>0.291</td>
<td>(104.8%)</td>
<td>(10.2%)</td>
<td>0.613</td>
</tr>
<tr>
<td>24</td>
<td>11.38</td>
<td>7.29</td>
<td>(58.3%)</td>
<td>(15.6%)</td>
<td>0.214</td>
</tr>
<tr>
<td>25</td>
<td>6.04</td>
<td>11.82</td>
<td>(57.55%)</td>
<td>(0.0%)</td>
<td>0.207</td>
</tr>
<tr>
<td>26</td>
<td>1.08</td>
<td>0.116</td>
<td>0.0395</td>
<td>0.117</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0.676</td>
<td>0.075</td>
<td></td>
<td></td>
<td>(46.8%)</td>
</tr>
<tr>
<td>30</td>
<td>1.78</td>
<td>0.264</td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>32</td>
<td>0.415</td>
<td>0.0739</td>
<td></td>
<td></td>
<td>0.011</td>
</tr>
<tr>
<td>34</td>
<td>0.349</td>
<td>0.0552</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>2.08</td>
<td>(97.9%)</td>
<td></td>
<td></td>
<td>0.184</td>
</tr>
<tr>
<td>36</td>
<td>22.88</td>
<td>0.523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>0.263</td>
<td>0.0401</td>
<td>(106.5%)</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>0.360</td>
<td>0.047</td>
<td></td>
<td></td>
<td>0.021</td>
</tr>
<tr>
<td>39</td>
<td>1.98</td>
<td>0.125</td>
<td></td>
<td></td>
<td>0.086</td>
</tr>
<tr>
<td>40</td>
<td>0.697</td>
<td>0.0574</td>
<td></td>
<td></td>
<td>0.032</td>
</tr>
<tr>
<td>41</td>
<td>0.793</td>
<td>0.139</td>
<td></td>
<td></td>
<td>0.011</td>
</tr>
<tr>
<td>42</td>
<td>0.624</td>
<td>0.108</td>
<td></td>
<td></td>
<td>0.023</td>
</tr>
<tr>
<td>43</td>
<td>0.405</td>
<td>0.091</td>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>44</td>
<td>1.55</td>
<td>0.196</td>
<td></td>
<td></td>
<td>0.161</td>
</tr>
<tr>
<td>45</td>
<td>1.85</td>
<td>0.198</td>
<td></td>
<td></td>
<td>0.26</td>
</tr>
<tr>
<td>47</td>
<td>6.17</td>
<td>0.637</td>
<td></td>
<td></td>
<td>0.024</td>
</tr>
<tr>
<td>48</td>
<td>5.32</td>
<td>0.613</td>
<td></td>
<td></td>
<td>0.024</td>
</tr>
<tr>
<td>49</td>
<td>0.420</td>
<td>0.0535</td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>50</td>
<td>2.60</td>
<td>0.305</td>
<td></td>
<td></td>
<td>0.032</td>
</tr>
<tr>
<td>51</td>
<td>0.573</td>
<td>0.084</td>
<td></td>
<td></td>
<td>0.153</td>
</tr>
<tr>
<td>52</td>
<td>0.468</td>
<td>0.051</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>7.08</td>
<td>0.693</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>0.231</td>
<td>0.0954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>19.0</td>
<td>3.46</td>
<td>(109.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>0.838</td>
<td>0.072</td>
<td></td>
<td></td>
<td>0.085</td>
</tr>
<tr>
<td>实施例</td>
<td>PDGF</td>
<td>FGF</td>
<td>EGF</td>
<td>V-src</td>
<td>C-src</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>60</td>
<td>35.9</td>
<td>13.0</td>
<td></td>
<td></td>
<td>1.57</td>
</tr>
<tr>
<td>61</td>
<td>45.6</td>
<td>7.85</td>
<td></td>
<td></td>
<td>0.764</td>
</tr>
<tr>
<td>63</td>
<td>7.01</td>
<td>0.543</td>
<td></td>
<td></td>
<td>1.78</td>
</tr>
<tr>
<td>64</td>
<td>(13.0%)</td>
<td>(23.8%)</td>
<td></td>
<td>(0.0%)</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>(29.6%)</td>
<td>17.0</td>
<td></td>
<td>(95.0%)</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>5.19</td>
<td>1.28</td>
<td></td>
<td></td>
<td>3.42</td>
</tr>
<tr>
<td>67</td>
<td>12.05</td>
<td>1.39</td>
<td></td>
<td></td>
<td>1.56</td>
</tr>
<tr>
<td>69</td>
<td>15.55</td>
<td>1.96</td>
<td></td>
<td></td>
<td>4.66</td>
</tr>
<tr>
<td>70</td>
<td>31.35</td>
<td>2.59</td>
<td></td>
<td></td>
<td>0.529</td>
</tr>
<tr>
<td>78</td>
<td>32.9</td>
<td>4.01</td>
<td></td>
<td></td>
<td>3.99</td>
</tr>
<tr>
<td>79</td>
<td>17.78</td>
<td>8.09</td>
<td></td>
<td>(60.93%)</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>(22.9%)</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td>(-20.3%)</td>
<td>(67.5%)</td>
</tr>
<tr>
<td>82</td>
<td>4.67</td>
<td>3.71</td>
<td></td>
<td></td>
<td>(77.6%)</td>
</tr>
<tr>
<td>83</td>
<td>42.5</td>
<td>1.98</td>
<td></td>
<td>(-9.8%)</td>
<td>53.6%</td>
</tr>
<tr>
<td>84</td>
<td>2.26</td>
<td>0.162</td>
<td></td>
<td></td>
<td>3.82</td>
</tr>
<tr>
<td>85</td>
<td>7.63</td>
<td>0.129</td>
<td></td>
<td></td>
<td>4.46</td>
</tr>
<tr>
<td>86</td>
<td>2.96</td>
<td>0.114</td>
<td></td>
<td></td>
<td>1.41</td>
</tr>
<tr>
<td>87</td>
<td>1.88</td>
<td>0.118</td>
<td></td>
<td></td>
<td>(92.7%)</td>
</tr>
<tr>
<td>88</td>
<td>0.711</td>
<td>0.148</td>
<td></td>
<td>(34.48%)</td>
<td>0.213</td>
</tr>
<tr>
<td>89</td>
<td>0.857</td>
<td>0.111</td>
<td></td>
<td></td>
<td>0.036</td>
</tr>
<tr>
<td>90</td>
<td>8.01</td>
<td>11.46</td>
<td>22.75</td>
<td>(16.8%)</td>
<td>1.63</td>
</tr>
<tr>
<td>92</td>
<td>(33.1%)</td>
<td>2.01</td>
<td></td>
<td>(-10.1%)</td>
<td>(44.5%)</td>
</tr>
<tr>
<td>93</td>
<td>6.05</td>
<td>0.343</td>
<td></td>
<td></td>
<td>4.17</td>
</tr>
<tr>
<td>94</td>
<td>(11.5%)</td>
<td>17.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>41.6</td>
<td>0.605</td>
<td></td>
<td></td>
<td>(0.0%)</td>
</tr>
<tr>
<td>96</td>
<td>27.4</td>
<td>3.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>1.73</td>
<td>0.34</td>
<td></td>
<td></td>
<td>(28.9%)</td>
</tr>
<tr>
<td>98</td>
<td>(34.3%)</td>
<td>1.80</td>
<td></td>
<td>(0.5%)</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>(15.5%)</td>
<td>0.708</td>
<td></td>
<td></td>
<td>(17.1%)</td>
</tr>
<tr>
<td>100</td>
<td>(22.3%)</td>
<td>(27.1%)</td>
<td>(6.0%)</td>
<td></td>
<td>(46.6%)</td>
</tr>
<tr>
<td>101</td>
<td>4.48</td>
<td>11.22</td>
<td></td>
<td></td>
<td>19.3</td>
</tr>
<tr>
<td>102</td>
<td>(44.48%)</td>
<td>3.11</td>
<td></td>
<td>(-8.2%)</td>
<td>(0.8%)</td>
</tr>
<tr>
<td>103</td>
<td>19.6</td>
<td>0.300</td>
<td></td>
<td></td>
<td>36.4</td>
</tr>
<tr>
<td>104</td>
<td>36.7</td>
<td>5.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>0.618</td>
<td>0.181</td>
<td></td>
<td></td>
<td>0.214</td>
</tr>
<tr>
<td>106</td>
<td>4.8</td>
<td>0.361</td>
<td></td>
<td></td>
<td>0.236</td>
</tr>
<tr>
<td>107</td>
<td>(20.5%)</td>
<td>(37.2%)</td>
<td>(1.4%)</td>
<td></td>
<td>(37.0%)</td>
</tr>
<tr>
<td>108</td>
<td>13.7</td>
<td>4.48</td>
<td></td>
<td></td>
<td>5.66</td>
</tr>
<tr>
<td>109</td>
<td>(23.6%)</td>
<td>(10.3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>11.5</td>
<td>12.8</td>
<td></td>
<td></td>
<td>(27.5%)</td>
</tr>
<tr>
<td>111</td>
<td>23.3</td>
<td>(47.7%)</td>
<td></td>
<td>(-26.4%)</td>
<td>(15.7%)</td>
</tr>
<tr>
<td>112</td>
<td>1.26</td>
<td>0.128</td>
<td></td>
<td></td>
<td>0.077</td>
</tr>
<tr>
<td>113</td>
<td>1.09</td>
<td>0.077</td>
<td></td>
<td></td>
<td>0.078</td>
</tr>
<tr>
<td>114</td>
<td>23.9</td>
<td>19.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 I. 对蛋白酶激活酶的抑制作用
（IC$_{50}$的μm数或在50μm时的（百分抑制率））

<table>
<thead>
<tr>
<th>实施例</th>
<th>PDGF</th>
<th>FGF</th>
<th>EGF</th>
<th>V-src</th>
<th>C-src</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>2.63</td>
<td>1.24</td>
<td></td>
<td></td>
<td>0.024</td>
</tr>
<tr>
<td>116</td>
<td>0.804</td>
<td>0.335</td>
<td></td>
<td></td>
<td>0.098</td>
</tr>
<tr>
<td>117</td>
<td>2.79</td>
<td>0.135</td>
<td></td>
<td></td>
<td>(100%)</td>
</tr>
<tr>
<td>118</td>
<td>1.92</td>
<td>0.126</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>62.4</td>
<td>7.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>3.84</td>
<td>3.27</td>
<td></td>
<td></td>
<td>42.7</td>
</tr>
<tr>
<td>121</td>
<td>(21.8%)</td>
<td>0.142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>1.46</td>
<td>0.171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>0.26</td>
<td>0.045</td>
<td></td>
<td></td>
<td>0.029</td>
</tr>
<tr>
<td>124</td>
<td>0.253</td>
<td>0.059</td>
<td></td>
<td></td>
<td>0.026</td>
</tr>
</tbody>
</table>

表 II. 细胞试验（IC$_{50}$=μm）

<table>
<thead>
<tr>
<th>实施例</th>
<th>对PDGF刺激的受体自身磷酸化的抑制作用 (IC$_{50}$=μM)</th>
<th>对生长因子刺激的3H_1_胸苷摄入的抑制作用 (IC$_{50}$=μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.97</td>
<td>2.7 (PDGF), 0.9 (FGF)</td>
</tr>
<tr>
<td>124</td>
<td>0.245</td>
<td>0.55 (PDGF), 0.93 (FGF)</td>
</tr>
<tr>
<td>51</td>
<td>0.365</td>
<td>< 0.30 (PDGF), 0.32 (FGF)</td>
</tr>
<tr>
<td>123</td>
<td>0.296</td>
<td>0.45 (PDGF), 0.40 (FGF)</td>
</tr>
<tr>
<td>52</td>
<td>0.241</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>6.46</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>1.63</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>9.42</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>5.13</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>5.29</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>15.86</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3.73</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>>10 (PDGF), 20.0 (FGF)</td>
</tr>
</tbody>
</table>
本发明的化合物特别适用于治疗偏合的动脉气球血管成形术后的再狭窄。进行已钙化动脉之血管成形术的病人约有 40% 发生再狭窄，而且是用这种方法治疗心脏病人所造成的一个主要问题。用下述常规实验证明本发明的化合物具有良好的活性。

大鼠颈动脉的气球血管成形术

将雄性 Spragul-Dawley大鼠（350 - 450g ）分成两个治疗组：一组大鼠用药物处理（100mg/kg 口服，每日两次）（n=10），第二组接受载体（2mL/kg 口服，每日两次）（n=10）。外科手术前所有动物都预处理 2 天，并在损伤后直到处死前每日接受药物处理。

按照下述方法造成大鼠颈动脉中的气球损伤。用 Telazol（0.1mL/100g 肌肉注射）麻醉大鼠，通过在颈部前正中线切开以暴露颈动脉。在颈内和外动脉的分叉处分离颈动脉。将 2F 检塞切除导管插入颈外动脉并向下通过总颈达到动脉拱的水平。吹胀气球并将导管拉回到进入点，然后放气。将此过程重复 2 次以上。然后移出检塞切除导管并结扎颈外动脉，留下完整无损的颈内动脉血流通道。封闭手术切口，使动物静息。醒后仍放回笼内。

在损伤后的不同时间点，经 CO₂ 吸入使动物无痛致死。灌注固定并加压颈动脉，用于组织学检查。测量颈动脉的面积（以个别动物的平均比例表示），得出损伤的形态学检测结果。每只动物制备多达 16 个切片，求出沿着颈动脉长度的平均损伤大小。使用 Princeton Gamma Tech（Princeton, New Jersey）的影像分析程度定量血管的横截面积。

下列实施例举例说明制备本发明中间体和终产物的方法。它们不是用于限制本发明的范围。溶剂的混合物是以体积/体积表示。

实施例 1

2 - 7 - 二氧基 - 6 - (2, 6 - 二氧苯基) - 吲哚并[2, 3 - d]

（按照美国专利 No. 3,534,039 的方法制备的）。向用 0.14g 骨和 60mL 2 - 乙氧基乙醇制备的 2 - 乙氧基乙醇钠溶液中加入 2.07g 2, 4 - 二氧基 - 5 - 呋喃羧酸和 2.79g 2, 6 - 二氧基乙胺。将混合物加热回

41
流 4 小时，冷却，并用二乙醚洗可溶性产物得到 2，7-二氯基-6-(2，6-二氯苯基)-吡啶并[2，3-d]嘧啶，mp 325-332℃（MS）。

实施例 2

1-叔丁基-3-[7-(3-叔丁基脲基)-6-(2，6-二氯苯基)-吡啶并[2，3-d]嘧啶-2-基]脲

向3.0g如上制得的2，7-二氯基-6-(2，6-二氯苯基)-吡啶并[2，3-d]嘧啶在45mL DMF 中形成的浆液内分几次加入 0.48g 氯化钠（50%，加在矿物油中）。将混合物搅拌 1 小时，加入 1.0g 叔丁基异氯酸盐并将反应混合物室温搅拌 16 小时。过滤反应混合物以除去小量不溶性材料并用 500mL 水稀释滤液。过滤收集不溶性产物，先用水，然后再用醚洗，并在滤膜上风干。经硅凝胶层析（用溶于氯仿的 0-1% 甲醇梯度洗脱）纯化产物，从乙醇中结晶后得到 0.7g 1-叔丁基-3-[7-(3-叔丁基脲基)-6-(二氯苯基)-吡啶并[2，3-d]嘧啶-2-基]脲，mp.200℃（分解）。

C_{23}H_{22}Cl_{2}N_{7}O_{2}·0.1H_{2}O 的元素分析:
理论值：C,54.57;H,5.42;N,19.37;H_{2}O,0.36.
实测值：C,54.05;H,5.43;N,19.08;H_{2}O,0.37.

实施例 3

1-[2-氯基-6-(2，6-二氯苯基)-吡啶并[2，3-d]嘧啶-7-基]-3-叔丁基脲

继续上述实施例 2 的洗涤，从乙醇中结晶后得到 1.5g 1-[2-氯基-6-(2，6-二氯苯基)-吡啶并[2，3-d]嘧啶-7-基]-3-叔丁基脲，mp335℃。

C_{18}H_{18}Cl_{2}N_{6}O·0.5H_{2}O 的元素分析:
理论值：C,52.18;H,4.62;N,20.28;H_{2}O,2.17.
实测值：C,51.90;H,4.56;N,20.01;H_{2}O,2.39.

实施例 4

1-叔丁基-3-[7-(3-叔丁基脲基)-6-邻甲苯基-吡啶并[2，3-d]嘧啶-2-基]脲
使 0.5g 按上文实施例 1 中所述方法制备的 2, 7-二氯基-6-邻甲苯基-咔啶并[2, 3-d]咔啶在 10mL 二甲基甲酰胺中的悬液与 0.16g 60% 氢氧化钠反应，并于室温搅拌 1.5 小时。向悬液内加入 0.49mL 叔丁基氨基苯并混合物室温搅拌过夜。过滤反应混合物以除去不溶性盐，并于减压下蒸发滤液用乙稀释残留物，过滤聚集不溶性粗产物并真空干燥。从乙烷乙酸乙酯: 二氯甲烷混合物 (3: 2: 5 v/v/v) 中结晶后得到标椎化合物，mp.209-212 °C（分解）。

C₂₄H₃₁N₇O₂ · 0.3H₂O 的分析计算值:
理论值: C, 63.36; H, 7.00; N, 21.55。
实测值: C, 63.37; H, 6.92; N, 21.16。

实施例 5

1-[2-氨基-6-邻甲苯基-咔啶并[2, 3-d]咔啶-7基]-3-叔丁基脲

按上述实施例 2 所述，从 2, 7-二氯基-6-邻甲苯基-咔啶并[2, 3-d]咔啶开始制备，得到标椎化合物 1-[2-氨基-6-邻甲苯基-咔啶并[2, 3-d]咔啶-7基]-3-叔丁基脲，mp.285-290 °C（分解）； MS (Cl)。

实施例 6

1-[2-氨基-6-(2, 6-二甲基苯基)-咔啶并[2, 3-d]咔啶-7基]-3-叔丁基脲

从 2, 7-二氯基-6-(2, 6-二甲基苯基)-咔啶并[2, 3-d]咔啶开始，按上述实施例 2 的方法制备，得到标椎化合物 1-[2-氨基-6-(2, 6-二甲基苯基)-咔啶并[2, 3-d]咔啶-7基]-3-叔丁基脲，mp.203-205 °C（分解）；CIMS（溶于甲醇的 1% 氯水）365 (M+1, 50), 366 (M+2, 10), 84 (100)。

实施例 7

N-[2-乙酰氨基-6-(2, 6-二氯苯基)-咔啶并[2, 3-d]-咔啶-7基]-乙酰胺

将 10g 实施例 1 中所注方法制备的 2, 7-二氯基-6-(2, 6-二氯苯基)-咔啶并[2, 3-d]咔啶在 100mL 乙酸酐中的混合物

43
回流 2 小时。将反应混合物冷却至室温并于真空下除去过量的乙酸酐。
将残留物溶解于乙醇中，活性炭吸附，过滤并于 0 ℃冷却过夜。过滤收
集不溶性粗产物，用二乙醚洗并真空干燥。使用活性炭从煮沸乙酸乙酯
中结晶出粗产物，得到 2.7g 不纯产物，然后在热乙酸乙酯中制成淤浆进
一步纯化并收集不溶性纯产物 (1.2g)，mp.223-225 ℃。
C₁₇H₁₃Cl₂N₅O₂ 的元素分析计算结果：
理论值：C,52.32;H,3.36;N,17.95。
实测值：C,51.92;H,3.43;N,17.78。

实施例 8

2 - 氧基 - 6 - 苯基 - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 酮

向 2L 浓 HCl 和 1L 水的溶液内加入 300g 2, 7 - 二氧基 - 6 - 苯基
吡啶并 [2, 3 - d] 嘧啶的焦硫酸盐，并将所得混合物回流搅拌过夜。
在冰浴中冷却反应混合物，过滤，并用水再用乙醇洗可溶性产物，
得到 149g 标题化合物 2 - 氧基 - 6 - 苯基 - 吡啶并 [2, 3 - d] 嘧啶
- 7 - 酮，mp.390 - 395 ℃ (350 ℃以上慢慢变暗)。

实施例 9

N⁷ - 丁基 - 6 - 苯基 - 吡啶并 [2, 3 - d] 嘧啶 - 2, 7 - 二胺

向 23.8g 如上实施例 8 中制备的 2 - 氧基 - 6 - 苯基 - 吡啶并 [2, 3 - d]
嘧啶 - 7 - 酮，250mL 二氯甲烷和 77.5mL 二甲基甲酰胺的混
合物中逐滴加入冷却的 36mL 亚硫酸氢铵使温度保持在 15 ℃以下。加完
之后，搅拌下将悬浮液加热回流 5 小时。在保持低于 60 ℃的温度下真空除
去溶剂。冷却下将所得固体物加到 250mL 正丁胺中，并在搅拌下将悬浮
液回流 6 小时。将反应混合物冷却至室温，过滤，并在旋转蒸发器上真空
除去溶剂的挥发成分。将粘稠油分配于二乙醚和水之间，分离浮层，分
用水洗酯层。在无水硫酸镁上干燥有机层，过滤并蒸发。将残留物分
配于二乙醚和 1N 稀盐酸之间。用二乙醚洗水层 3 次，并加入氢氧化钠
使之碱化至 pH12。过滤收集固体产物并真空干燥，得到 6.5g 标题化合
物 N⁷ - 丁基 - 6 - 苯基 - 吡啶并 [2, 3 - d] 嘧啶 - 2, 7 - 二胺，
mp.174 - 181 ℃（分解）。
C₁₇H₁₉N₅ 的元素分析:

44
理论值: C,69.60; H,6.53; N,23.87.

实施例 10

2-氨基-6-(4-甲氧基苯基)-吡啶并[2, 3-d]嘧啶-7-醇

按实施例8中所述方法从2, 7-二氯基-6-(4-甲氧基苯基)-吡啶并[2, 3-d]嘧啶(美国专利 No.3,534,039)制备标题化合物，mp.380-385℃(分解)。

C_{14}H_{12}N_{4}O_{2}·0.75H_{2}O 的元素分析:
实测值: C,60.10; H,4.32; N,19.64.

实施例 11

N'-(7-氯-6-(4-甲氧基苯基)-吡啶并[2, 3-d]嘧啶-2-基)-N, N-二甲基-甲脒

冷却下向 67.0g 实施例 10 的 2-氨基-6-(4-甲氧基苯基)-吡啶并[2, 3-d]嘧啶-7-醇、1L 二氯甲烷和 135mL 二甲基甲酰胺的混合物中滴加 72mL 温度保持在 15℃以下的亚硫酸氢。搅拌下将悬液加热回流 6 小时。过滤反应混合物并在保持温度低于 60℃的真空条件下蒸发滤液。将所得残留物溶解在冰水中并加入带冰的氢氧化钠水溶液。使产物溶解于氯仿，用水洗，在无水碳酸钾上干燥并蒸发。用乙腈将残留物制成浆液并过滤收集不溶性产物，得到31g 标题化合物 N’-(7-氯-6-(4-甲氧基苯基)-吡啶并[2, 3-d]嘧啶-2-基)-N, N-二甲基-甲脒。产物不经进一步纯化即用于下一步骤。

实施例 12

2-氨基-7-氯-6-(4-甲氧基苯基)-吡啶并[2, 3-d]嘧啶

将 10g 实施例 11 中得到的 N’-(7-氯-6-(4-甲氧基苯基)-吡啶并[2, 3-d]嘧啶-2-基)-N, N-二甲基甲脒和 500mL 95% 乙醇的混合物回流 3 小时。在真空中浓缩溶液并过滤收集沉淀物。从乙醇中结晶后得到 2.7g 标题化合物 2-氨基-7-氯-6-(4-甲
氧基苯基) - 吡啶并 [2 , 3 - d] 咪唑， mp.275 - 280 ℃ (分解)。

\(\text{C}_{14}\text{H}_{11}\text{N}_{4}\text{ClO} \) 的元素分析:

理论值： C,58.64; H,3.87; N,19.54。
实测值： C,58.70; H,3.94; N,19.51。

实施例 13

\(6 - (4 - \text{甲氧基苯基}) - \text{N}^7 - \text{甲基} - \text{吡啶并} [2 , 3 - d] \) 咪唑

- 2 , 7 - 二胺

在气流浴上的高压气体贮罐中, 将 3.4g 2 - 氨基 - 7 - 氯 - 6 - (4 - 甲氧基苯基) - 吡啶并 [2 , 3 - d] 咪唑 (得自实施例 12), 10mL 无水甲苯和 10mL 甲醇的混合物加热 4 小时。冷却后, 用 50mL 甲醇/水 (50: 50) 将悬液洗出高压气体贮罐, 并在真空下蒸发溶剂。固体残留物加 50mL 水制成浆液, 过滤并从甲醇中结晶得到 2.2g 标题化合物 6 - (4 - 甲氧基苯基) - \text{N}^7 - \text{甲基} - \text{吡啶并} [2 , 3 - d] \) 咪唑 - 2 , 7 - 二胺, mp.270 - 275 ℃ (分解)。

\(\text{C}_{15}\text{H}_{15}\text{N}_{5}\text{O} \) 的元素分析:

理论值： C,64.03; H,5.37; N,24.90。
实测值： C,63.82; H,5.17; N,24.94。

实施例 14

2 , 4 - 二氧基 - 5 - 氨基吡啶

在氨气环境下, 于 Parr 装置中振盛 21.3g 6 - 氯 - 2 , 4 - 二氧基 - 5 - 氨基吡啶 (JACS, 80: 2838 - 2840(1958)) 和 1g 20 % 钯/活性炭在 250mL 四氢呋喃中形成的悬液。2 小时后, 停止反应并加入 10g 乙酸钾和 50mL 甲醇。向反应混合物中再次充入氢气并振盛 18 小时。减压下除去溶剂并从异丙醇中结晶出残留物, 得到标题化合物 2 , 4 - 二氧基 - 5 - 氨基吡啶, mp.201-202 ℃。

\(\text{C}_{6}\text{H}_{6}\text{N}_{4} \) 的元素分析:

理论值： C,53.73; H,4.51; N,41.78。
实测值： C,53.69; H,4.18; N,41.40。

实施例 15

2 , 4 - 二氧基烟碱酸

46
在氨气环境下，于 Parr 装置中振荡 13.4g 2，4-二氨基-5-氨基吡啶（实施例 14），2g 阴氏镍催化剂、40mL 97-100% 甲酸和 80mL 水的混合液，直到消耗一定量的氢。减压下除去溶剂并用 17mL 浓 HCl 处理残留物。将所得粉色固体物在小量水中制成浆液，过滤，用异丙醇再用二乙醚洗，并干燥。从甲醇中结晶得到 6.5g 标题化合物 2，4-二氨基烟碱酸。

C₆H₈N₃ClO 的元素分析:
理论值： C,41.52; H,4.65; N,24.21.
实测值： C,41.47; H,4.63; N,24.05.

实施例 16
3-邻甲苯基-[(1, 6)] 1，5-二氧杂萘-2，7-二胺

向溶于 50mL 2-乙氧基乙醇的 0.55g 钠的溶液中加入 2.3g 2-甲苯基乙腈和 3.0g 2，4-二氧基烟碱酸（得自实施例 15）。将反应混合物加热回流 6 小时。过滤除去不溶性盐并用 2-乙氧基乙醇洗。用活性炭处理滤液，过滤并蒸发至干。在 Florosil 上层析（用溶于氯仿的 0-8% 甲醇梯度洗脱）纯化残留物，得到 0.7g 标题化合物 3-邻甲苯基-[(1, 6)] 二氧杂萘-2，7-二胺，mp.200-201.5°C（分解）。

C₁₃H₁₄N₄ 的元素分析:
理论值： C,72.03; H,5.63; N,22.38.
实测值： C,71.79; H,5.45; N,22.18.

实施例 17
3-[(2-氯苯基)]-[(1, 6)] 二氧杂萘-2，7-二胺

用 2-氯苯基乙腈代替 2-甲基苯基乙腈，按实施例 16 的方法制备 3-[(2-氯苯基)]-[(1, 6)] 二氧杂萘-2，7-二胺，mp.175°C（MS）。

实施例 18
3-[(2, 6-二氯苯基)]-[(1, 6)] 二氧杂萘-2，7-二胺

用 2, 6-二氯苯基乙腈代替 2-甲基苯基乙腈，按实施例 16 的方法制备 3-[(2, 6-二氯苯基)]-[(1, 6)] 二氧杂萘-2，7-
二胺，mp.235-237°C（分解）。

C_{14}H_{10}N_{4}Cl_{2}的元素分析:
理论值：C,55.10;H,3.30;N,18.36;Cl,23.24.
实测值：C,54.87;H,3.21;N,18.45;Cl,23.04.

实施例19

N^2, N^7-二甲基-6-苯基-吡啶并[2,3-d]嘧啶-2,7-二胺

在高压气体贮罐中将45g6-苯基-吡啶并[2,3-d]嘧啶-2,7-二胺（美国专利No.3,534,039）的二氯基磷酸盐和500g甲胺的混合物于205-210°C加热10小时。用甲醇洗涤高压气体贮罐，并与反应混合物合并。将混合物加热至沸，过滤并用200mL水稀释。真空除去滤液并将残留物在冰-水中制成浆液。过滤不溶性材料并用冷水洗。将固体物溶解在氨液中，过滤除去杂质，并用水洗几次。干燥（磷酸钾）有机层并蒸发之。产物从异丙醇中结晶后得到15g标题化合物N^2, N^7-二甲基-6-苯基-吡啶并[2,3-d]嘧啶-2,7-二胺，mp.204-205°C。

C_{15}H_{15}N_{5}的元素分析:
理论值：C,67.90;H,5.70;N,26.90.
实测值：C,67.89;H,5.62;N,26.66.

实施例20

7-氨基-6-(2,6-二氯苯基)-2-(3-二乙氨基-丙氨基)-吡啶并[2,3-d]嘧啶

搅拌下将2,7-二氯基-6-(2,6-二氯苯基)-吡啶并[2,3-d]嘧啶(3.0g)（得自实施例1）、氨基磺酸（2g）和3-(二乙氨基)丙胺（30mL）的混合物加热回流18小时。将反应混合物冷却到室温并倒入冰-水（500mL中。过滤不溶性产物，用水洗，在温异丙醇中制成浆液并过滤得到白色固体物。从乙酸乙酯中结晶得到1.5g7-氨基-6-(2,6-二氯苯基)-2-(3-二乙氨基-丙氨基)-吡啶并[2,3-d]嘧啶，mp.220-230°C。

实施例21
1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - 二乙氨基 - 丙氨基) 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 胺

向溶于 DMF (5mL) 的 7 - 氨基 - 6 - (2, 6 - 二氯苯基) - 2 - (3 - 二乙氨基 - 丙氨基) 吡啶并 [2, 3 - d] 嘧啶 (0.48g)（自实施例 10）的溶液中加入 60 ％氯化钠悬液 (46mg)，并在室温下将混合物搅拌 1 小时。向反应混合物中加入异氯酸正丁酯 (0.113g)并将在混合物搅拌 18 小时。用水稀释反应混合物并过滤收集不溶性材料。将固体物悬浮于水 (20mL) 中并用 1.0N HCl 酸化形成溶液。向溶液内加入活性碳，通过硅藻土过滤悬液并用水洗。用 1.0N NaOH 将滤液制成碱性，过滤收集不溶性产物并用水洗。进一步在 C18 反相柱上经反相制备性 HPLC 纯化产物，其中使用从加在水/14 ％乙腈中的 86 ％的 0.1 ％三氯乙酸到加在水/86 ％乙腈中的 14 ％的 0.1 ％三氯乙酸，于 22 分钟时间内进行梯度洗脱，得到 165mg 1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - 二乙氨基 - 丙氨基) 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] 胺，mp.>80 ℃ (分解)。

C_{25}H_{33}N_{7}O_{1}Cl_{2} - 0.22CF_{3}CO_{2}H 的元素分析：
理论值： C,56.21;H,6.16;N,18.04.
实测值： C,56.13;H,6.02;N,18.14.

实施例 22

1 - [2 - 氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 3 - 乙基脲

按照实施例 2 的一般方法使 2, 7 - 二氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并 [2, 3 - d] - 嘧啶与异氯酸乙酯反应。经经向层析纯化粗产物，其中用 70 ％乙酸乙酯/30 ％氯仿到 100 ％氯仿的梯度洗脱后得到标题化合物，即 1 - [2 - 氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 3 - 乙基脲，mp.185-187 ℃。

C_{16}H_{14}N_{6}O_{1}Cl_{2} - 0.15EtOAc 的元素分析：
理论值： C,51.07;H,3.92;N,21.52.
实测值： C,50.74;H,3.75;N,21.50.

实施例 23
1 - [2 - 氨基 - 6 - (2 , 6 - 二氯苯基) - 吡啶并 [2 , 3 - d] 唑啶 - 7 - 基] - 3 - (3 - 吡喃 - 4 - 基 - 丙基) - 硫脲

按照实施例 21 的通用方法，使 2 , 7 - 氨基 - 6 - (2 , 6 - 二甲基苯基) - 吡啶并 [2 , 3 - d] 唑啶与 3 - 吡喃代丙基异硫氰酸酯反应。以经向层析法纯化粗产物，用溶于二氯甲烷的 2 - 8 % 甲醇梯度洗脱后得到 1 - [2 - 氨基 - 6 - (2 , 6 - 二氯苯基) - 吡啶并 [2 , 3 - d] 唑啶 - 7 - 基] - 3 - (3 - 吡喃 - 4 - 基 - 丙基) - 硫脲，mp.178-181 °C（分解）。

C_{21}H_{23}N_{7}O_{4}Cl_{2} 的元素分析:
理论值: C,51.22; H,4.71; N,79.91。
实际值: C,50.95; H,4.63; N,19.74。
实施例 24
2 - [2 - 氨基 - 6 - (2 , 6 - 二氯苯基) - 吡啶并 [2 , 3 - d] 唑啶 - 7 - 基] - 氨基 - 4 , 5 - 二氯 - 哩唑

向溶于 DMF (50mL) 中的 2 , 7 - 氨基 - 6 - (2 , 6 - 二氯苯基) - 吡啶并 [2 , 3 - d] 喹啶 (5.0g)（得自实施例 1）的溶液内分几次加入 0.65g NaH (60 %)。将混合物室温搅拌 1 小时，然后加入 2 - 氨基乙基异硫氰酸酯 (1.72g)，再次将混合物室温搅拌 18 小时。用 100mL 水稀释反应混合物，过滤得到不溶性粗产物。经步骤层析纯化粗产物，用溶于二氯甲烷的 2 - 3 % 甲醇梯度洗脱后得到 1.0g 白色固体物。从氯仿 - 乙酸乙酯中重结晶进一步纯化该固体物，得到标题化合物 2 - [2 - 氨基 - 6 - (2 , 6 - 二氯苯基) - 吡啶并 [2 , 3 - d] 喹啶 - 7 - 基] - 氨基 - 4 , 5 - 二氯 - 哩唑。进一步分析反应混合物也显示存在 1 - [2 - 氨基 - 6 - (2 , 6 - 二氯苯基) - 吡啶并 [2 , 3 - d] 唑啶 - 7 - 基] - 咪唑啉 - 2 - 酮。MS (FAB)。

C_{16}H_{13}N_{6}O_{4}Cl_{2} · 0.12CHCl_{3} · 0.04H_{2}O 的元素分析:
理论值: C,51.22; H,4.71; N,19.91。
实际值: C,50.95; H,4.63; N,19.74。
实施例 25
1 - 丁基 - 3 - [7 - (3 - 丁基 - 胺基) - 6 - (2 , 6 - 二氯
苯基）- 吡啶并[2, 3-d]嘧啶 - 2 - 基] - 腮

将 0.5g 2, 7 - 二氧基 - 6 - (2, 6 - 二氯苯基) - 吡啶并 [2, 3 - d] 嘧啶 (得自实施例 1) 和 15mL 异氧酸正丁酯的混合物回流 2 小时，将反应混合物冷却到室温并滤出不溶性材料。固体物从乙醇中重结晶几次后得到标题化合物；mp.200 - 202 °C。

C_{23}H_{27}Cl_{12}N_{7}O_{2} · 0.35H_{2}O 的元素分析：
理论值： C,54.09; H,5.47; N,19.20；
实测值： C,54.09; H,5.27; N,19.14．

实施例 26

1 - [2 - 氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并[2, 3 - d] 嘧啶 - 7 - 基] - 3 - 丙基醚

使 1.0g 2, 7 - 二氧基 - 6 - (2, 6 - 二氯苯基) - 吡啶并 [2, 3 - d] 嘧啶 (得自实施例 1) 和 0.339g 异氧酸正丙酯反应，按实施例 2 中所述方法制备标题化合物。用 10 - 100 % 乙酸乙酯/己烷梯度洗脱，经过向层析纯化产物。MS (Cl)。

C_{17}H_{16}Cl_{2}N_{6}O_{1} · 0.43H_{2}O 的元素分析：
理论值： C,51.17; H,4.26; N,21.06；
实测值： C,51.15; H,3.90; N,20.80．

实施例 27

7 - 氨基 - 6 - (2, 6 - 二氯苯基) - 2 - (3 - 二甲氨基 - 丙氨基) - 吡啶并 [2, 3 - d] 嘧啶

按照实施例 20 中所述方法，由 3.0g 2,7 - 二氧基 - 6 - (2, 6 - 二氯苯基) - 吡啶并 [2, 3 - d] 嘧啶 (得自实施例 1) 与 60mL 3 - (二甲氨基) 丙胺反应，制备并得到标题化合物。

实施例 28

1 - 甲基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - 二甲氨基 - 丙氨基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 腮

按照实施例 21 的方法，由 1.62g 7 - 氨基 - 6 - (2, 6 - 二氯苯基) - 2 - (3 - 二甲氨基 - 丙氨基) - 吡啶并 [2, 3 - d] 嘧啶 (得自实施例 27) 与 0.48g 异氧酸正丁酯反应，制得标题化合物，熔点>130
（逐渐分解）。

\[\text{C}_{23}\text{H}_{29}\text{C}_{12}\text{N}_{7}\text{O}_{1} \cdot 1.45\text{H}_{2}\text{O} \] 的元素分析：

理论值： C,53.48; H,6.22; N,18.98；
实测值： C,53.50; H,5.84; N,18.73。

实施例 29
7-氨基-6-(2,6-二氯苯基)-2-(3-二甲基氨基-2,
2-二甲基-丙基氨基)-吡啶并[2,3-d]嘧啶

按照实施例 20 中所述，使 2.0g 2,7-二氧基-6-(2,6-二氯苯基)-吡啶并[2,3-d]嘧啶（得自实施例 1）与 16mL N,N,
2,2-四甲基-1,3-丙二胺反应，以制得标题化合物。

实施例 30
1-叔丁基-3-(6-(2,6-二氯苯基)-2-(3-二甲
2,2-二甲基-丙基氨基)-吡啶并[2,3-d]嘧啶-7-
基]-腺

按照实施例 21 的方法，使 7-氨基-6-(2,6-二氯苯基)-
2-(3-二甲氨基-2,2-二甲基-丙氨苯基)-吡啶并[2,3-d]嘧啶（得自实施例 29）与 0.26g 异氯酸叔丁酯反应，得到标题化合物;

mp.161-170 °C.

\[\text{C}_{25}\text{H}_{33}\text{Cl}_{2}\text{N}_{7}\text{O}_{1} \cdot 0.74\text{H}_{2}\text{O} \] 的元素分析：

理论值： C,56.46; H,6.54; N,18.44；
实测值： C,56.47; H,6.24; N,18.41。

实施例 31
7-氨基-6-(2,6-二氯苯基)-2-(3-(2-甲基吡
啶)-丙氨基)-吡啶并[2,3-d]嘧啶

按照实施例 20 中所述的方法，从 2.0g 2,7-二氧基-6-(2,
6-二氯苯基)-吡啶并[2,3-d]嘧啶（得自实施例 1）和 15mL
1-(3-氨基丙基)-2-甲基吡啶开始制备并得到标题化合物。

实施例 32
1-叔丁基-3-(6-(2,6-二氯苯基)-2-[3-(2-
甲基-哌啶-1-基)-丙基氨基]-吡啶并[2,3-d]嘧啶-7

52
按照实施例 21 的方法，使 1.54g 7 - 氨基 - 6 - (2, 6 - 二氯苯基) - 2 - (3 - (2 - 甲基吡啶) - 丙基氨基) - 吡啶并 [2, 3 - d] 吡啶 (得自实施例 31) 与 0.377g 异氰酸叔丁酯反应，得到标题化合物。

C_{27}H_{35}Cl_2N_7O_1 的元素分析:
理论值: C, 59.56; H, 6.48; N, 18.01;
实际值: C, 59.71; H, 6.53; N, 17.62。

实施例 33
7 - 氨基 - 6 - (2, 6 - 二氨基) - 2 - (4 - (4 - 甲基 - 哌嗪 - 1 - 基) - 丁氨基) - 吡啶并 [2, 3 - d] 吡啶

按照实施例 20 的方法，使 2.0g 2, 7 - 二氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并 [2, 3 - d] 吡啶 (得自实施例 1) 与 15mL 1 - (4 - 氨基丁基) - 4 - 甲基 - 哌嗪反应，得到标题化合物。

实施例 34
1 - 氨基 - 3 - { 6 - (2, 6 - 二氨基) - 2 - [4 - (4 - 甲基 - 哌嗪 - 1 - 1 基) - 丁氨基] - 吡啶并 [2, 3 - d] 吡啶 - 7 - 基 } - 氨

按照实施例 21 的方法，使 1.07g 7 - 氨基 - 6 - (2, 6 - 二氯苯基) - 2 - (4 - (4 - 甲基哌嗪) - 丁氨基) - 吡啶并 [2, 3 - d] 吡啶 (得自上述实施例 33) 与 0.253g 异氰酸叔丁酯反应，得到标题化合物。

ESMS m/z (相对强度) 559 (M^+, 100)
C_{27}H_{36}Cl_2N_8O_1 · 0.6H_2O 的元素分析:
理论值: C, 56.86; H, 6.57; N, 19.65;
实际值: C, 56.87; H, 6.31; N, 19.57。

实施例 35
6 - (2, 6 - 二胺基) - N^7 - (5, 6 - 二氯 - 4H - [1, 3] 哌嗪 - 2 - 基) - N^2 - [3 - (4 - 甲基 - 哌嗪 - 1 - 基) - 丙基] - 吡啶并 [2, 3 - d] 吡啶 - 2, 7 - 二胺

向 1.0g 6 - (2, 6 - 二氯苯基) - N^2 - [3 - (4 - 甲基 - 哌嗪 - 1 - 基) - 丙基] - 吡啶并 [2, 3 - d] 吡啶 - 2, 7 - 二胺
- 1 - 基）- 丙基[2, 3-d] - 吡啶 - 2, 7 - 二胺（得自实施例 36）在 10mL 二甲基甲酰胺中形成的溶液内加入氯化钠（在油中 60% 0.094mg），并将混合物室温搅拌 1 小时。向该反应混合物中加入 0.268g 3 - 氯丙基异氰酸酯，并将混合物室温搅拌 18 小时。用水稀释此反应混合物并用乙酸乙酯提取两次。干燥（MgSO4）、过滤并蒸发合并的有机层。用乙酸乙酯/甲醇/三乙胺 (89: 10: 1v/v/v) 洗脱，经经向层析纯化粗产物后得到标题化合物。

ESMS m/z（相对强度）529.4(M+,100)

实施例 36

N2 - [3 - (4 - 甲基 - 吡嗪 - 1 - 基) - 丙基] - 6 - (2, 6 - 二氯苯基) - 吡啶并[2, 3-d] 吡啶 - 2, 7 - 二胺

将 2, 7 - 二氯基 - 6 - (2, 6 - 二氯苯基) - 吡啶并[2, 3-d] 吡啶（3.0g）（得自实施例 1）、氨磺酸 1.9g 和 1 - (3 - 氯基丙基) - 4 - 甲基吡嗪（15mL）的混合物于大约 150 ℃加热 24 小时。冷却后将残留物溶解在水中。用饱和碳酸氢钠溶液使该水溶液成为碱性并用二氯甲烷提取几次。合并二氯甲烷层，在硫酸镁上层干燥并真空浓缩。从乙酸乙酯中重结晶残留物后得到 2.0g 6 - (2, 6 - 二氯苯基) - N2 - [3 - (4 - 甲基 - 吡嗪 - 1 - 基) - 丙基] - 吡啶并[2, 3-d] 吡啶 - 2, 7 - 二胺，CIMS（加在 CH4 中的 1% NH3）: 474 = M+ + C2H5, 446 = M+ + H (Base); mp.208 - 211 ℃。

C22H25N7Cl2 · 0.25H2O 的元素分析:

理论值：C,55.94;H,5.70;N,21.75;
实测值：C,55.85;H,5.55;N,21.65。

实施例 37

1 - 环己基 - 3 - {6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 吡嗪 - 1 - 基) - 丙基基] - 吡啶并[2, 3-d] 吡啶 - 7 - 基} - 胺

向溶于 DMF（15mL）的 6 - (2, 6 - 二氯苯基) - N2 - [3 - (4 - 甲基 - 吡嗪 - 1 - 基) - 丙基] - 吡啶并[2, 3-d] 吡啶 - 2, 7 - 二胺（1.0g）（得自实施例 36）的溶液中加入 1 当量的 60
% 氢化钠溶液（0.90g）。室温下搅拌约1小时后加入1当量的异氯酸环己酯（0.19g），并以薄层层析法监测反应。约24小时之后，真空除去溶剂。将残留物溶解于乙酸乙酯中，并先用水然后用饱和氢化钠溶液将该溶液洗几次。用硫酸镁干燥并在真空中蒸发浓缩乙酸乙酯层。使用乙酸乙酯/甲醇/三乙胺（9：2：1v/v/v）洗脱，在硅凝胶上层析纯化残留物后得到0.75g1-环己基-3-{6-（2，6-二氯苯基）-2-[3-(4-甲基-吡啶-1-基)-丙氨]基}-吡啶并[2，3-d]嘧啶-7-基}胺。ESMS（20/80MeOH/CH3CN + 0.1 % AcOH）：M\(^+\) + H = 571；mp.101-106.5℃。

C\(_{28}\)H\(_{36}\)N\(_8\)Cl\(_2\)O · 0.50H\(_2\)O的元素分析；
理论值：C,57.93；H,6.42；N,19.30；Cl,12.21；H\(_2\)O,1.55。
实际值：C,58.06；H,6.32；N,18.91；Cl,12.11；H\(_2\)O,1.68。
实施例38
1-{6-（2，6-二氯苯基）-2-[3-(4-甲基-吡啶-1-基)-丙氨]基}-吡啶并[2，3-d]嘧啶-7-基}3-异丙基脲
按照实施例37的通用方法，使6-（2，6-二氯苯基）-N\(^2\)-[3-(4-甲基-吡啶-1-基)-丙氨]基]-吡啶并[2，3-d]嘧啶-2，7-二胺（1.09g）（得自实施例36）与0.19g异氯酸异丙酯反应8小时，得到1-{6-（2，6-二氯苯基）-2-[3-(4-甲基-吡啶-1-基)-丙氨]基}-吡啶并[2，3-d]嘧啶-7-基}3-异丙基脲。MS（ES + 20/80 MeOH/CH\(_3\)CN + 0.1 % AcOH）：M\(^+\) + H = 531；mp.94 - 98℃。

C\(_{25}\)H\(_{32}\)N\(_8\)Cl\(_2\)O · 0.75H\(_2\)O/0.10 EtOAc的元素分析；
理论值：C,55.09；H,6.24；N,20.23；Cl,12.80；H\(_2\)O,2.44。
实际值：C,55.14；H,6.19；N,20.03；Cl,13.17；H\(_2\)O,2.14。
实施例39
1-苄基-3-{6-（2，6-二氯苯基）-2-[3-(4-甲基-吡啶-1-基)-丙氨]基}-吡啶并[2，3-d]嘧啶-7-基}胺
按照实施例37的通用方法使6-（2，6-二氯苯基）-N\(^2\)-[3-
- (4-甲基-嗪嗪-1-基)-丙基]-吡啶并[2,3-d]嘧啶-2,7-二胺（1.08g）与0.298g异氯酸苄酯反应，得到0.822g1-苄基-3-{6-(2,6-二氯苯基)-2-[3-(4-甲基-嗪嗪-1-基)-丙基]-丙基}-吡啶并[2,3-d]嘧啶-7-基]-脲，ESMS (20/80 MeOH/CH₃CN + 0.1% AcOH): M⁺ + H = 579; mp.144-148.5℃。

C₂₉H₃₂N₈Cl₂O·0.10H₂O·0.10Et₂O的元素分析:
理论值: C,59.98; H,5.68; N,19.03; Cl,12.04; H₂O,0.31.
实测值: C,59.60; H,5.63; N,18.87; Cl,12.25; H₂O,0.49.
实施例40
1-烯丙基-3-{6-(2,6-二氯苯基)-2-[3-(4-甲基-嗪嗪-1-基)-丙基]-丙基}-吡啶并[2,3-d]嘧啶-1-基]-脲

使6-(2,6-二氯苯基)-N²-[3-(4-甲基-嗪嗪-1基)-丙基]-吡啶并[2,3-d]嘧啶-2,7-二胺（得自实施例36）按照实施例37的一般方法与0.186g异氯酸烯丙酯反应。产物经层析纯化并从乙酸乙酯中结晶后得到0.31g1-烯丙基-3-{6-(2,6-二氯苯基)-2-[3-(4-甲基-嗪嗪-1基)-丙基]-丙基}-吡啶并[2,3-d]嘧啶-7-基]-脲，ESMS(20/80 MeOH/CH₃CN+0.1%AcOH): M⁺ + H = 529(Base), 472, 446; mp.104-108℃。

C₂₅H₃₀N₈Cl₂O·1.00H₂O的元素分析:
理论值: C,54.85; H,5.89; N,20.47; Cl,12.95; H₂O,3.29.
实测值: C,55.08; H,5.68; N,20.33; Cl,12.65; H₂O,3.60.
实施例41
1-{6-(2,6-二氯苯基)-2-[3-(4-甲基-嗪嗪-1基)-丙基]-丙基}-吡啶并[2,3-d]嘧啶-7-基]-3-(4-甲氧基-苯基)-脲

按照实施例37的一般方法，使6-(2,6-二氯苯基)-N²-[3-(4-甲基-嗪嗪-1基)-丙基]-吡啶并[2,3-d]
嘧啶-2，7-二胺（1.0g）（得自实施例36）与4-甲氧基苯基异氰酸酯（0.334g）反应，得到1.16g1-{6-（2，6-二氯苯基）-2-[3-（4-甲基-吡啶-1-基）-丙基基]-吡啶并[2，3-d]嘧啶-7-基}{3-（4-甲氧基-苯基）-脲，ESMS（20/80MeOH/CH3CN+0.1%AcOH）：M^+ + H = 595；mp.93.5-100.5℃．

C29H32N8Cl2O2·0.40H2O·0.10EtOAc的元素分析:
理论值：C,57.74；H,5.54；N,18.32；Cl,11.59；H2O,1.18.
实测值：C,58.04；H,5.51；N,18.15；Cl,11.25；H2O,1.38．

实施例42

1-{6-（2，6-二氯苯基）-2-[3-（4-甲基-嘧啶）-丙基基]-吡啶并[2，3-d]嘧啶-7-基}{3-（3-甲氧基-苯基）-脲

按照实施例37的一般方法，使6-（2，6-二氯苯基）-N2-3-（4-甲基-嘧啶-1-基）-丙基基]-吡啶并[2，3-d]嘧啶-2，7-二胺（1.0g）（得自实施例36）与0.334g3-甲氧基苯基异氰酸酯反应，得到0.920g1-{6-（2，6-二氯苯基）-2-[3-（4-甲基-嘧啶-1-基）-丙基基]-吡啶并[2，3-d]嘧啶-7-基}{3-（3-甲氧基苯基）-脲，ESMS（20/80MeOH/CH3CN+0.1%AcOH）：M^+ + H = 595；mp.87.5-92.5℃．

C29H32N8Cl2O2·0.50H2O的元素分析:
理论值：C,57.62；H,5.50；N,18.54；Cl,11.73；H2O,1.49．
实测值：C,57.93；H,5.62；N,18.47；Cl,11.66；H2O,1.10．

实施例43

1-{6-（2，6-二氯苯基）-2-[3-（4-甲基-嘧啶-1-基）-丙基基]-吡啶并[2，3-d]嘧啶-7-基}{3-（2-甲氧基-苯基）-脲

按照实施例37的一般方法，使6-（2，6-二氯苯基）-N2-3-（4-甲基-嘧啶-1-基）-丙基基]-吡啶并[2，3-d]嘧啶-2，7-二胺（1.0g）（得自实施例36）与0.334g2-甲氧基异氰酸酯反应，得到0.9232g1-{6-（2，6-二氯苯基）-2-[3-（4
- 甲基 - 吡唑 - 1 - 基） - 丙氨基] - 吡啶并 [2 , 3 - d] 吡啶 - 7 基} - 3 - (2 - 甲氧基 - 苯基） - 腺 , ESMS (20/80 MeOH/CH₃CN+0.1%AcOH) : M⁺ + H = 595 ; mp.152.5-154 °C

C₂₉H₃₂N₈Cl₂O₂ 的元素分析:
理论值: C, 58.49; H, 5.42; N, 18.82; Cl, 11.91.
实测值: C, 58.42; H, 5.56; N, 18.59; Cl, 11.82.

实施例 44
1 - (4 - 溴 - 苯基） - 3 - {6 - (2, 6 - 二氯苯基） - 2 - [3 - (4 - 甲基 - 吡唑 - 1 - 基） - 丙氨基] - 吡啶并 [2 , 3 - d] - 吡啶 - 7 - 基} - 腺

按照实施例 37 的一般方法, 使 6 - (2, 6 - 二氯苯基） - N² - [3 - (4 - 甲基 - 吡唑 - 1 - 基） - 丙氨基] - 吡啶并 [2 , 3 - d] 吡啶 - 2 , 7 - 二胺 (1.0g) (得自实施例 36) 与 0.344g 4 - 氯苯基异氮酸酯反应, 得到 0.8424g 1 - (4 - 氯 - 苯基） - 3 - {6 - (2, 6 - 二氯苯基） - 2 - [3 - (4 - 甲基 - 吡唑 - 1 - 基） - 丙氨基] - 吡啶并 [2 , 3 - d] 吡啶 - 7 - 基} - 腺 , ESMS (20/80 MeOH/CH₃CN+0.1%AcOH+DMSO) : M⁺ + H = 645; mp 171-175 °C.

C₂₈H₂₉N₈Cl₂OBr 的元素分析:
理论值: C, 52.19; H, 4.54; N, 17.39; Cl, 11.00; Br, 12.40.
实测值: C, 51.93; H, 4.71; N, 17.14; Cl, 10.81; Br, 12.18.

实施例 45
1 - (4 - 氯 - 苯基） - 3 - {6 - (2, 6 - 二氯苯基） - 2 - [3 - (4 - 甲基 - 吡唑 - 1 - 基） - 丙氨基] - 吡啶并 [2 , 3 - d] - 吡啶 - 7 - 基} - 腺

按照实施例 37 的一般方法, 将实施例 36 的 6 - (2, 6 - 二氯苯基） - N² - [3 - (4 - 甲基 - 吡唑 - 1 - 基） - 丙基] - 吡啶并 [2 , 3 - d] 吡啶 - 2 , 7 - 二胺 (1.0g) 与 0.344g 异氯酸 4 - 氯苯酯反应得到 0.842g 1 - (4 - 氯 - 苯基） - 3 - {6 - (2, 6 - 二氯苯基） - 2 - [3 - (4 - 甲基 - 吡唑 - 1 - 基） - 丙氨基] - 吡啶并 [2 , 3 - d]
嘧啶-7-基-脲，ESMS（20/80 MeOH/CH₃CN+0.1%AcOH+DMSO）：M⁺+H⁺=601；mp.175.5-181℃。

C₂₈H₂₉N₈Cl₃O的元素分析：
理论值：C,56.06;H,4.87;N,18.68;Cl,17.73。
实测值：C,56.11;H,5.14;N,18.47;Cl,17.67。

实施例46
1-{6-(2,6-二氯苯基)-2-[3-(4-甲基-嘧啶-1基)-丙氨基]-吡啶并[2,3-d]嘧啶-7-基}-3-对甲苯基-脲

按照实施例37的一般方法，使6-(2,6-二氯苯基)-2-[3-(4-甲基-嘧啶-1基)-丙基]-吡啶并[2,3-d]嘧啶-2,7-二胺（得自实施例36）与0.29g 4-甲苯基异氰酸酯反应，得到0.9492g 标题化合物。ESMS（20/80MeOH/CH₃CN+0.1%AcOH）：M⁺+H⁺=579。

C₂₉H₃₂N₈Cl₂O·0.30H₂O·0.20EtOAc的元素分析
理论值：C,59.40;H,5.72;N,18.60;Cl,11.77;H₂O,0.90。
实测值：C,59.69;H,5.61;N,18.41;Cl,11.50;H₂O,1.30。

实施例47
1-{6-(2,6-二氯苯基)-2-[3-(4-甲基-嘧啶-1基)-丙氨基]-吡啶并[2,3-d]嘧啶-7-基}-3-辛基-脲

按照实施例21的一般方法使6-(2,6-二氯苯基)-N²-[3-(4-甲基-嘧啶-1基)-丙基]-吡啶并[2,3-d]嘧啶-2,7-二胺（得自实施例36）与0.348g 异氰酸酯反应。层析纯化所得产物，先用乙酸乙酯/甲醇/三乙胺（90：10：1）, 然后转换成乙酸乙酯/乙醇/三乙胺（9：2：1）进行洗脱，得到1.011g 标题化合物1-{6-(2,6-二氯苯基)-2-[3-(4-甲基-嘧啶-1基)-丙氨基]-吡啶并[2,3-d]嘧啶-7-基}-3-辛基-脲，ESMS（20/80MeOH/CH₃CN+0.1%AcOH）：M⁺+H⁺=601；mp.54.5-57.5℃。
C₃₀H₄₂N₈Cl₂O · 0.75H₂O 的元素分析:
理论值： C,58.58; H,7.13; N,18.22; Cl,11.53; H₂O,2.20.
实测值： C,58.51; H,7.13; N,18.13; Cl,11.55; H₂O,2.32.

实施例 48
1 - {6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 哌啶 - 1
- 基) - 丙氨基] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基} - 3 - (4 - 三氟甲基 - 苯基) - 蒽

按照实施例 37 的一般方法，使 6 - (2, 6 - 二氯苯基) - N² - [3 - (4 - 甲基 - 哌啶 - 1 - 基) - 丙基] - 吡啶并 [2, 3 - d] 嘧啶 - 2, 7 - 二胺 (得自实施例 36) 与异氯酸三氟甲苯酯反应。层析纯化产物，先用乙酸乙酯 / 甲醇 / 三乙胺 (90: 10: 1) 然后转换成乙酸乙酯 / 乙醇 / 三乙胺 (9: 2: 1) 进行洗脱，得到 0.8650g 标题化合物
1 - {6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 哌啶 - 1
- 基) - 丙氨基] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基} - 3 - (4 - 三氟甲基 - 苯基) - 蒽，ESMS (20/80 MeOH/CH₃CN+0.1%AcOH): M⁺ + H = 633; mp.145.5-151 ℃.

C₂₉H₂₉N₈Cl₂F₃O · 0.50H₂O 的元素分析:
理论值： C,54.21; H,4.71; N,117.44; Cl,11.04; F,8.87; H₂O,1.40.
实测值： C,54.39; H,4.59; N,11.28; Cl,11.00; F,9.17; H₂O,1.61.

实施例 49
1 - {6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 哌啶 - 1
- 基) - 丙氨基] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基} - 3 - 乙基 - 蒽

按照实施例 37 的一般方法，使 6 - (2, 6 - 二氯苯基) - N² - [3 - (4 - 甲基 - 哌啶 - 1 - 基) - 丙基] - 吡啶并 [2, 3 - d] 嘧啶 - 2, 7 - 二胺 (1.0g) (得自实施例 36) 与 0.159g 异氯酸乙酯反应，得到 0.86g 1 - {6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 哌啶 - 1 - 基) - 丙氨基] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基} - 3 - 乙基 蒽，MS (ES + 20/80 MeOH/CH₃CN+0.1%AcOH): M⁺ + H = 517; mp.82-90 ℃.
C_{24}H_{30}N_{8}Cl_{2}O \cdot 1.00H_{2}O 的元素分析：
理论值： C,53.83; H,6.02; N,20.93; Cl,13.24; H_{2}O,3.26.
实测值： C,53.94; H,6.07; N,20.53; Cl,13.14; H_{2}O,3.28.
实施例 50
1 - \{ 6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 喹啉 - 1 - 基) - 丙氨基] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 3 - 茶 - 1 - 基 - 嗪

按照实施例 37 的一般方法，使 6 - (2, 6 - 二氯苯基) - N^{2} - \{ 3 - (4 - 甲基 - 喹啉 - 1 - 基) - 丙氨基] - 吡啶并 [2, 3 - d] 嘧啶 - 2, 7 - 二胺 (1.0g) (得自实施例 36) 与 0.378g 1 - 茶基异氰酸酯反应。层析纯化反应产物先用乙酸乙酯/甲醇/二氯甲烷 (90 : 10 : 1) 然后转换为乙酸乙酯/乙醇/三氯甲烷 (9 : 2 : 1) 洗脱，得到 0.97g 标题化合物 1 - \{ 6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 喹啉 - 1 - 基) - 丙氨基] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 3 - 茶 - 1 - 基 - 嗪。 ESMS (20/80MeOH/CH_{3}CN+0.1 % AcOH) : \text{M}^{+} + \text{H} = 615 (\text{Base}) , 446; \text{mp} 186.5-189 \degree C.

C_{32}H_{32}N_{8}Cl_{2}O \cdot 0.10H_{2}O 的元素分析：
理论值： C,62.26; H,5.26; N,18.15; Cl,11.49; H_{2}O,0.29.
实测值： C,62.25; H,5.26; N,18.38; Cl,11.39; H_{2}O,0.51.
实施例 51
1 - \{ 6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 喹啉 - 1 - 基) - 丙氨基] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 3 - 苯基 - 嗪

按照实施例 37 的一般方法，使溶于 DMF (10mL) 中的得自实施例 36 的 6 - (2, 6 - 二氯苯基) - N^{2} - \{ 3 - (4 - 甲基 - 喹啉 - 1 - 基) - 丙氨基] - 吡啶并 [2, 3 - d] 嘧啶 - 2, 7 - 二胺 (13.0g) 与 60 % 氨化钠悬浮液 (1.16g) 和异氰酸苯酯 (3.47g) 反应。从乙酸乙酯中重结晶出经过层析的产物，得到 10.78g 标题化合物 1 - \{ 6 - (2, 6 - 二氯苯基) - 2 - [3 - (4 - 甲基 - 喹啉 - 1 - 基) - 丙氨基] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 3 - 苯基 - 嗪。 ESMS (20/80
MeOH/CH₃CN+0.1%AcOH:M⁺+H=565。

C₂₈H₃₀N₈Cl₂O·0.30H₂O·0.20EtOAc 的元素分析:
理论值：C,58.78;H,5.51;N,19.04;Cl,12.05;H₂O,0.92。
实测值：C,58.72;H,5.55;N,18.84;Cl,11.98;H₂O,1.01。
实施例 52
1-叔丁基-3-[6-(2,6-二氯苯基)-2-[3-(4-甲基-嘧啶-1-基)-丙基]-吡啶并[2,3-d]嘧啶-7-基]-脲

按照实施例 21 的一般方法，使得自实施例 36 的 6-(2,6-二氯苯基)-N²-[3-(4-甲基-嘧啶-1-基)-丙基]-吡啶并[2,3-d]嘧啶-2,7-二胺与 0.22g 异氯酸叔丁酯反应 1.5 小时，得到 0.85g 标题化合物 1-叔丁基-3-[6-(2,6-二氯苯基)-2-[3-(4-甲基-嘧啶-1-基)-丙基]-吡啶并[2,3-d]嘧啶-7-基]-脲，CIMS（加在 CH₄ 中的 1% NH₃）: 545 = M⁺ + H, 544 = M⁺, 446, 84（Base）; mp.97.5 ℃（分解），熔融 106 - 109 ℃。

C₂₆H₃₄N₈Cl₂O 的元素分析:
理论值：C,57.25;H,6.28;N,20.25。
实测值：C,56.91;H,6.31;N,20.30。

实施例 53
6-(2,6-二氯苯基)-N²-(4-二乙氨基-丁基)-吡啶并[2,3-d]嘧啶-2,7-二胺

将 2,7-二氯基-6-(2,6-二氯苯基)-吡啶并[2,3-d]嘧啶（40g，得自实施例 1）, 氯磺酸 (25.4g) 和二乙氨基丁胺 (205mL) 的混合物于 150 ℃加热 28 小时。将反应温度降至 50 ℃，并在真空中除去过量的二乙氨基丁胺。冷却至 25 ℃后将残留物悬浮于水中。用饱和碳酸氢钠溶液将此水溶液调成碱性并用二氯甲烷提纯几次。合并二氯甲烷层，先用饱和碳酸氢钠溶液，再用饱和氯化钠溶液洗几次，在硫酸镁上方干燥并在真空中浓缩。反复用二乙醚洗残留物，然后从乙酸乙酯中结晶之。经柱层析进一步纯化重结晶的产物，先用乙酸乙酯/甲
醇/三乙胺（85: 14: 1），然后用乙酸乙酯/乙醇/三乙胺（9: 2: 1）洗脱得到36.2g 标题化合物 6 - (2, 6 - 二氯苯基) - N\(^2\) - (4 - 二乙氨基 - 丁基) - 吡啶并[2, 3 - d] 啶啶 - 2, 7 - 二胺, CIMS (溶于 CH\(_4\)的1 % N\(_3\)): 461 = M' + C\(_2\)H\(_5\), 433 = M' + H (Base), 417, 403, 360。

C\(_{21}\)H\(_{26}\)N\(_6\)Cl\(_2\) 的元素分析:
理论值: C,58.20; H,6.05; N,19.39; Cl,16.36.
实测值: C,58.11; H,6.21; N,19.09; Cl,16.55。
实施例 54
1 - (6 - (2, 6 - 二氯苯基) - 2 - (4 - 二乙氨基 - 丁氨基) 吡啶并 [2, 3 - d] 啶啶 - 7 - 基] - 3 - 苯基 - 腈

向溶于 DMF (15mL) 的6 - (2, 6 - 二氯苯基) - N\(^2\) - (4 - 二乙氨基 - 丁基) - 吡啶并 [2, 3 - d] 吡啶 - 2, 7 - 二胺（得自实施例 53）的溶液中加入 1 当量的 60% 氯化钠溶液 (0.93g)。室温搅拌约 1 小时后加入 1 当量的异氯酸苯酯 (0.275g)，并用薄层层析法监测反应情况。约 24 小时后真空除去溶剂。将残留物溶解于乙酸乙酯中，先用水再用饱和氯化钠溶液将该溶液洗几次。用硫酸镁干燥乙酸乙酯层并真空浓缩。在硅胶柱上层析残留物，先用乙酸乙酯/甲醇/三乙胺 (90: 10: 1)，然后用乙酸乙酯/乙醇/三乙胺 (9: 2: 1) 洗脱得到 0.8461g 标题化合物 1 - (6 - (2, 6 - 二氯苯基) - 2 - (4 - 二乙氨基 - 丁氨基) - 吡啶并 [2, 3 - d] 吡啶 - 7 - 基] - 3 - 苯基 - 腈，ESMS (20/80 MeOH/CH\(_3\)CN+0.1%AcOH): M' + H = 552 (Base), 433; mp.81-87.5 °C.

C\(_{28}\)H\(_{31}\)N\(_7\)Cl\(_2\)O · 0.25H\(_2\)O 的元素分析:
理论值: C,60.38; H,5.70; N,17.60; Cl,12.73; H\(_2\)O,0.81.
实测值: C,60.24; H,5.61; N,17.42; Cl,12.61; H\(_2\)O,0.54.
实施例 55
1 - (6 - (2, 6 - 二氯苯基) - 2 - (4 - 二乙氨基 - 丁氨基) 吡啶并 [2, 3 - d] 吡啶 - 7 - 基] - 3 - 乙基 - 腈

按照实施例 54 的一般方法，使溶于 DMF (75mL) 的6 - (2,
6-二氯苯基-N²-(4-二乙氨基-丁基)-吡啶并[2,3-d]嘧啶-2，7-二胺（5.0g，得自实施例53）与60%氢化钠悬浮液（0.461g）和异氯酸乙酯（0.820g）反应，层析并用乙酸乙酯/乙醇/三乙胺（9：2：1）洗脱得到4.26g标题化合物1-[6-(2，6-二氯苯基)-2-(4-二乙氨基-丁氨基)-吡啶并[2,3-d]嘧啶-7-基]-3-乙基-脲，ESMS（20/80 MeOH/CH₃CN+0.1%AcOH）：M⁺+H = 504（Base），433。

实施例56

1-[6-(2，6-二氯苯基)-2-(4-二乙氨基-丁氨基)-吡啶并[2,3-d]嘧啶-7-基]-3-乙基-脲，盐酸盐

向得自实施例55的1-[6-(2，6-二氯苯基)-2-(4-二乙氨基-丁氨基)-吡啶并[2,3-d]嘧啶-7-基]-3-乙基-脲（3.253g）的水溶液中加入1当量1N盐酸（6.44mL）。室温下搅拌溶液直到固体物溶解，过滤并冷冻。冻干后得到3.63g1-[6-(2，6-二氯苯基)-2-(4-二乙氨基-丁氨基)-吡啶并[2,3-d]嘧啶-7-基]-3-乙基-脲，ESMS（20/80 MeOH/CH₃CN+1%AcOH）：M⁺+H = 504；mp.(分解)>50℃。

C₂₄H₃₁N₇Cl₂O·1.10HCl·2.20H₂O的元素分析：
理论值：C,49.34；H,6.30；N,16.78；Cl总，18.81；Cl离子，6.67；H₂O，6.78。

实测值：C,49.61；H,6.21；N,16.75；Cl总，18.70；Cl离子，6.68；水，6.88。

实施例57

1-环己基-3-[6-(2，6-二氯苯基)-2-(4-二乙氨基-丁氨基)-吡啶并[2,3-d]嘧啶-7-基]脲

按照实施例54的一般方法，使溶于DMF（15mL）的实施例53的6-(2，6-二氯苯基)-N²-(4-二乙氨基-丁基)-吡啶并[2,3-d]嘧啶-2，7-二胺（1.0g）与60%氢化钠悬浮液（0.092g）和异氯酸环己酯（0.289g）反应，产生0.927g标题化合物，ESMS（20/80 MeOH/CH₃CN+0.1%AcOH）：M⁺+H = 558，433。
\(\text{C}_{28}\text{H}_{37}\text{N}_{7}\text{Cl}_{2}\text{O} \cdot 0.10\text{H}_{2}\text{O} \) 的元素分析:

理论上: C,60.02; H,6.69; N,17.50; Cl,12.65; H,O,0.32.

实测值: C,59.75; H,6.69; N,17.41; Cl,12.71; H,O,0.40.

实施例 58

\[
6 - (2, 6 - \text{二氯苯基}) - N^2 - (3 - \text{吗啉} - 4 - \text{基} - \text{丙基}) -
\]

吡啶并[2, 3-d]嘧啶 - 2, 7 - 二胺。

使 2, 7 - 二氯基 - 6 - (2, 6 - 二氯苯基) - 吡啶并[2, 3-d]嘧啶 (4.00g, 得自实施例 1)、氯磷酸 (2.53g) 和氨丙基吗啉 (30mL) 的混合物发生反应。在这种情况下，用热乙酰乙酯，然后再用二乙酰氯粗残留物，以得到 3.95g 标题化合物 6 - (2, 6 - 二氯苯基) - N^2 - (3 - 吗啉 - 4 - 基 - 丙基) - 吡啶并[2, 3-d]嘧啶 - 2, 7 - 二胺。CIMS（溶于 CH₄ 的 1% NH₃）: 461 = M⁺ + C₂H₅, 433 = M⁺ + H⁺ (Base), 346, 332; mp.224-230.5°C.

\(\text{C}_{20}\text{H}_{22}\text{N}_{6}\text{Cl}_{2}\text{O} \) 的元素分析:

理论上: C,55.43; H,5.12; N,19.39.

实施例 59

\[
1 - \text{叔丁基} - 3 - [6 - (2, 6 - \text{二氯苯基}) - 2 - (3 - \text{吗啉} - 4 - \text{基} - \text{丙基}) - \text{吡啶并[2, 3-d]嘧啶} - 7 - \text{基}] - \text{脲}
\]

向溶于 DMF (15mL) 的 6 - (2, 6 - 二氯苯基) - N^2 - (3 - 吗啉 - 4 - 基 - 丙基) - 吡啶并[2, 3-d]嘧啶 - 2, 7 - 二胺 (1.0g，得自实施例 58) 的溶液中加入 1 当量的 60% 氢氧化钠悬液 (0.92g)。室温下搅拌约 1 小时后加入 1 当量异氰酸叔丁酯 (0.230g)，并以薄层层析法监测反应。约 4 小时后，真空下除去溶剂。使残留物分配于乙酸乙酯和水之间。用乙酸乙酯将水层洗几次，合并乙酸乙酯层，用硫酸镁干燥并真空浓缩。在硅凝胶上层析纯化残留物，使用乙酸乙酯再用乙酸 - 乙酯/乙醇/三乙胺 (18: 2: 1) 洗脱得到 0.98g 标题化合物 1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - 吗啉 - 4 - 基 - 丙基) - 吡啶并[2, 3-d]嘧啶 - 7 - 基] - 脲。CIMS（溶于 CH₄ 的 1% NH₃）: 532 = M⁺ + H⁺, 531 = M⁺, 433, 84
(Base)；mp.236-240℃。

C_{25}H_{31}N_{7}Cl_{2}O_{2} \cdot 0.25EtOAc 的元素分析：
理论值：C,56.32;H,6.00;N,17.68。
实测值：C,56.48;H,6.06;N,17.63。
实施例60
6-(2, 6-二溴-苯基)-吡啶并[2, 3-d]-嘧啶-2, 7-二胺

向溶于11.0mL2-乙氧基乙醇中的0.23g 60%氯化钠悬液的溶液内
加入4.18g 2, 6-二溴苯基乙腈和2.00g 2, 4-二氯基嘧啶-5-羧
醛。将反应混合物回流4小时，冷却，并倒入冰水中。先用乙腈，再用
乙酸乙酯充分洗涤，得到3.62g 6-(2, 6-二溴苯基)-吡啶并
[2, 3-d]-嘧啶-2, 7-二胺，CIMS（加于CH_{4}中的1%NH_{3}）：
422 = M^+ + C_{2}H_{5}, \quad 396 (Base), \quad 394M^+ + H, \quad 393 = M^+; \quad
mp.284-289℃。

C_{13}H_{9}N_{5}Br_{2} 的元素分析：
理论值：C,39.52;H,2.30;N,17.73。
实测值：C,39.20;H,2.27;N,17.77。
实施例61
6-(2, 6-二溴-苯基)-N^2-(3-二乙氨基-丙基)-吡
啶并[2, 3-d]-嘧啶-2, 7-二胺

使得自实施例60的6-(2, 6-二溴-苯基)-吡啶并[2, 3-
-d]-嘧啶-2, 7-二胺（1.0g）、氯磺酸（0.49g）和二乙氨基丙
胺（8.0ml）的混合物反应5小时，并按实施例53中所述方法处理得到
0.79g 标题化合物6-(2, 6-二溴-苯基)-N^2-(3-二乙氨基-
-丙基)-吡啶并[2, 3-d]-嘧啶-2, 7-二胺，CIMS（加于
CH_{4}中的1%NH_{3}）：507 = M^+ + H, \quad 506 = M^+, \quad 112 (Base); \quad
mp.226-230℃。

C_{20}H_{24}N_{6}Br_{2} 的元素分析：
理论值：C,47.26;H,4.76;N,16.53。
实测值：C,47.61;H,4.69;N,16.40。
实施例 62
1-叔丁基-3-[(6-(2,6-二氯-苯基))-2-(3-二乙氨基-丙氨基)]-吡啶并[2,3-d]嘧啶-7-基]-腺

按照实施例 54 的一般方法使得实施例 61 的 6-(2,6-二溴苯基)-N2-(3-二乙氨基-丙基)-吡啶并[2,3-d]嘧啶-2,7-二胺 (0.34g) 与 0.066g 异氰酸叔丁酯反应，用乙酸乙酯/乙醇/三乙胺 (9:2:1) 洗脱，以薄层层析法纯化粗产物，然后使用 Vydac 218TP 1022 反相柱进行制备性 HPLC 层析，用 0.1% 三氟乙酸/水和 0.1% 二氧乙酸/乙腈梯度洗脱，得到 0.214g 标题化合物，ESMS (20/80MEOH/CH3CN+0.1%AcOH): 606 = M+ + H; mp.(分解)>45℃。

C25H33N7Br2O · 2.50TFA · H2O 的元素分析:
理论值: C,39.58; H,4.15; N,10.77.
实际值: C,39.54; H,3.82; N,10.49。

实施例 63
6-(2,6-二氯-苯基)-吡啶并[2,3-d]嘧啶-2,7-二胺

按照实施例 60 中所述方法，使用 4.65g 2,6-二氯苯基苯胺制备 6-(2,6-二氯-苯基)-吡啶并[2,3-d]嘧啶-2,7-二胺，CIMS（加于 CH4 中的 1% NH3）: 414 = M+ + C3H5, 302 = M+ + C2H5, 274 = M+ + H (Base), 273 = M+, 254 = M+ - F; mp >300℃。

实施例 64
6-(2,6-二甲氧基-苯基)-吡啶并[2,3-d]嘧啶-2,7-二胺

按照实施例 60 所述的方法，用 2,6-二甲氧基苯乙胺代替 2,6-二溴苯基乙胺, 反应 3 小时并从乙醇中结晶制得 6-(2,6-二甲氧基-苯基)-吡啶并[2,3-d]嘧啶-2,7-二胺，CIMS（加于 CH4 中的 1% NH3）: 326 = M+ + C2H5, 298 = M+ + H (Base), 297 = M+, 266 = M+ - OMe; mp >300℃。
C_{15}H_{15}N_{5}O_{2} \cdot 0.50H_{2}O 的元素分析：
理论值：C,58.82;H,5.26;N,22.86。
实测值：C,58.81;H,5.04;N,22.54。
实施例 65
6 - (2, 6 - 二氯苯基) - N^{2} - (2 - 二乙氧基 - 乙基) - 吡啶
并 [2, 3 - d] 嘧啶 - 2, 7 - 二胺

将 2, 7 - 二氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并 [2, 3 - d] 嘧啶（4.0g，得自实施例 1）、氯磺酸（2.53g）和二乙氧基乙胺（40mL）的混合物于大约 150 ℃加热 29 小时。真空下除去过量的二乙氧基乙胺。将所得油状物溶于二乙醚中，用水稀释，然后过滤。将所得固体物溶于二氯甲烷中，用水洗几次，用硫酸镁干燥并真空浓缩。从乙酸乙酯中结晶残留物后得到标题化合物 6 - (2, 6 - 二氯苯基)
- N^{2} - (2 - 二乙氧基 - 乙基) - 吡啶并 [2, 3 - d] 嘧啶 - 2, 7 - 二胺，CIMS（加在 CH_{4} 中的 1% NH_{3}）：433 = M^{+} + C_{2}H_{5}, 405 = M^{+} + H, 389 = M^{+} - Et, 360；mp.216-219.5 ℃。

C_{19}H_{22}N_{6}Cl_{2} 的元素分析：
理论值：C,56.30;H,5.47;N,20.73。
实测值：C,56.31;H,5.39;N,20.46。
实施例 66
1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (2 - 二乙氧基 - 乙氨基 - 乙氧基)] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 嘧

按照实施例 54 的一般方法，使溶于 DMF（10mL）的 6 - (2, 6 - 二氯苯基) - N^{2} - (2 - 二乙氧基 - 乙基) - 吡啶并 [2, 3 - d] 嘧啶 - 2, 7 - 二胺（1.0g，得自实施例 65）与 60% 氢化钠悬液（0.099g）和异氰酸叔丁酯（0.244g）反应 1 小时。层析纯化并用乙酸乙酯/乙醇/三乙胺（18：2：1）洗脱得到 0.76g 标题化合物 1 - 叔丁基
- 3 - [6 - (2, 6 - 二氯苯基) - 2 - (2 - 二乙氧基 - 乙氨基 - 乙氧基)] - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 嘧，CIMS（加在 CH_{4} 中的 1% NH_{3}）：504 = M^{+} + H, 84（Base）；mp.94.5-96.5 ℃。

C_{24}H_{31}N_{7}Cl_{2}O 的元素分析：
实施例 67

1 - [6 - (2, 6 - 二氯苯基)] - 2 - (2 - 二乙氨基 - 乙氨基)
- 吡啶并[2, 3 - d] 嘧啶 - 7 - 基] - 3 - 乙基 - 腺

按照实施例 54 的一般方法，以溶于 DME (10mL) 的 6 - (2, 6 - 二氯苯基) - N² - (2 - 二乙氨基 - 乙基) - 吡啶并[2, 3 - d]
嘧啶 - 2, 7 - 二胺 (1.0g，得自实施例 65) 与 60 % 氢化钠溶液
(0.099g) 和异氯酸乙酯 (0.175g) 反应，得到 0.86g 标题化合物 1 -
[6 - (2, 6 - 二氯苯基)] - 2 - (2 - 二乙氨基 - 乙氨基) - 吡啶
并[2, 3 - d] 嘧啶 - 7 - 基] - 3 - 乙基 - 腺。CIMS (加于 CH₄
中的 1% NH₃): 476 = M⁺ + H, 86 (Base); mp 86.5 - 89.5 ℃.

C₂₂H₂₃N₇Cl₂O 的元素分析:

理论值: C, 55.47; H, 5.71; N, 20.58。
实际值: C, 55.18; H, 5.74; N, 20.20。

实施例 68

6 - (2, 6 - 二氯苯基) - N² - (3 - 二甲氨基 - 丙基) - N²
- 甲基 - 吡啶并[2, 3 - d] 嘧啶 - 2, 7 - 二胺

将得自实施例 1 的 2, 7 - 二氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并[2, 3 - d] 嘧啶 (4.0g)，与氯磺酸 (2.53g) 和 N, N, N',
- 三甲基 - 1, 3 - 丙二胺 (20mL) 的混合物在高压气体贮罐中于
165 ℃ 加热 16 小时，然后再于 225 ℃ 加热 16 小时。冷却后，真空浓缩反应
混合物。将残留物分配于稀硫酸氢钠和二氯甲烷之间。用二氯甲烷将
水溶液提取几次。合并二氯甲烷层，过滤，并真空浓缩。层析纯化残留
物，用乙酸乙酯 / 乙醇 / 三乙胺 (9: 3: 1) 洗脱得到标题化合物 6 -
(2, 6 - 二氯苯基) - N² - (3 - 二甲氨基 - 丙基) - N² - 甲基 - 吡啶
并[2, 3 - d] 嘧啶 - 2, 7 - 二胺。

实施例 69

1 - 丁基 - 3 - [6 - (2, 6 - 二氯苯基)] - 2 - (3 - 二甲
氨基 - 丙基) - 甲基 - 腺基] - 吡啶并[2, 3 - d] 嘧啶 - 7 - 基] -
按照实施例 54 的一般方法，由溶于 DMF (7.0mL) 的 6 -(2, 6 - 二氯苯基) - N² -(3 - 二甲氨基 - 丙基) - N² - 甲基 - 吡啶并 (2, 3 - d) 唑啶 - 2, 7 - 二胺 (0.38g, 得自实施例 68) 与 60 % 氢化钠悬浮液 (0.022g) 和异氯酸叔丁酯 (0.093g) 反应，得到 0.25g 标题化合物 1 - 氯丁基 - 3 -(6 - (2, 6 - 二氯苯基) - 2 - (3 - 二甲氨基 - 丙基) - 甲基 - 氨基) - 吡啶并 (2, 3 - d) 唑啶 - 7 - 基} - 萝，CIMS (加于 CH₄ 中的 1 % NH₃): 504 = M⁺ + H, 84 (Base); mp. (分解) 76 ℃, 然后 (熔融) 87.5-91 ℃.

C₂₄H₃₁N₇Cl₂O · 0.25H₂O 的元素分析:
实测值: C, 56.55; H, 6.07; N, 18.94.

实施例 70
2 -({3 - [7 - 氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并 (2, 3 -d) 唑啶 - 2 - 苯基] - 丙基} - 乙基 - 氨基) - 乙醇

按照实施例 36 的一般方法，使 2, 7 - 二氯基 - 6 - (2, 6 - 二氯苯基) - 吡啶并 (2, 3 - d) 唑啶 (3.0g, 得自实施例 1)、氯磺酸 (1.9g) 和 N' - 乙基 - N' - (2 - 聚乙基) - 丙二胺 (10.0g) (J.Med.Chem.,11(3):583-591(1968)) 的混合物反应 18 小时。在这种情况下，使用乙酸乙酯/乙醇/三乙胺 (9; 3; 1) 洗脱，层析纯化残留物，得到 2.71g 标题化合物 2 -({3 - [7 - 氨基 - 6 - (2, 6 - 二氯苯基) - 吡啶并 (2, 3 - d) 唑啶 - 2 - 丙基氨基] - 丙基} - 乙基 - 氨基) - 乙醇，CIMS (加于 CH₄ 中的 1 % NH₃): 463 = M⁺ + C₂H₅, 435 = M⁺ + H, 346 (Base); mp.201 - 204 ℃.

C₂₀H₂₄N₆Cl₂O 的元素分析:
理论值: C, 55.18; H, 5.56; N, 19.30.
实测值: C, 55.11; H, 5.53; N, 19.09.

实施例 71
4 - 氨基 - 2 - 苯氨基 - 喹啶 - 5 - 胺

将溶于四氢呋喃 (40.0mL) 和二异丙基乙胺 (4.60g) 中的苯胺 (3.31g) 溶液加到 4 - 氨基 - 2 - 氯代喹啶 - 5 - 胺 (5.00g) 在四氨
呋喃（50.0mL）中制成的溶液内，加热回流反应混合物。3天后，向反应中加入另一份苯胺（6.02g）和二丙基甲烷（8.36g）。24小时后，真空浓缩反应混合物，并使残留物分配于乙酸乙酯和水之间。用水洗乙酸乙酯层，然后通过玻璃纤维滤器过滤以分散原存在的乳液。用水再用饱和氯化钠洗滤液用硫酸镁干燥并真空浓缩。用乙酸乙酯洗残留物得到6.00g标题化合物，CIMS（加于CH₄中的1%NH₃）：252 = M⁺ + C₃H₅，240 = M⁺ + C₂H₅，212 = M⁺ + H（Base），211 = M⁺。C₁₁H₉N₅的元素分析：
理论值：C,62.55;H,4.29;N,33.16。
实测值：C,62.85;H,4.47;N,33.18。
实施例72
4-氨基-2-苯基胺-嘧啶-5-羧醛

在Parr振荡器中，将得自实施例71的4-氨基-2-苯基胺-嘧啶-5-胺（2.00g）与湿阮氏锌（2.00g）、98%甲酸（60mL）和水（40mL）合并。在氩气环境下（42psi）发生反应并振荡20分钟。过滤反应物并真空浓缩滤液。将残留物悬浮于水中，用饱和碳酸氢钠调成碱性，并用乙酸乙酯提取3次。通过玻璃纤维滤膜过滤水层以分散原有的乳液。用乙酸乙酯洗含水滤液。合并乙酸乙酯洗出液，过滤，用饱和氯化钠洗，用硫酸镁干燥并真空浓缩。用硅凝胶层析用乙酸乙酯/己烷（2:1）洗脱得到0.73g标题化合物，CIMS（加于CH₄中的1%NH₃）：
243 = M⁺ + C₂H₅，215 = M⁺ + H（Base），214 = M⁺。
C₁₁H₁₀N₄O的元素分析：
理论值：C, 61.67;H,4.71;N,26.15。
实测值：C,61.79;H,4.71;N,26.11。
实施例73
6-(2,6-二氯苯基)-N²-苯基-吡啶并[2,3-d]嘧啶-2,7-二胺

向0.022g 60%氢氧化钠溶液在2.00mL 2-乙氧基乙醇中制成的溶液中加入0.46g 2,6-二氯苯基乙胺和0.50g 4-氨基-2-苯基胺-嘧啶-5-羧醛（得自实施例72）。将反应混合物回流4小时，冷却，倒
入水中并用二氯甲烷提取几次。合并二氯甲烷洗出液，用饱和氯化钠洗，
用硫酸镁干燥并真空浓缩。用二乙醚洗残留物，得到 0.61g 标题化合物，
CIMS（加于 CH₄ 中的 1% NH₃）：410 = M⁺ + C₂H₅，382 = M⁺ + H，381 = M⁺。

按照实施例 52 的方法，可在上述化合物与异氯酸叔丁酯反应得到 1
- 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - 苯氨基] - 吲哚并
[2, 3 - d] 嘧啶 - 7 - 基} - 咪。

实施例 74

4 - 氨基 - 2 - 甲磺酰基 - 嘧啶 - 5 - 羧酸乙酯

向 4 - 氨 - 2 - 甲基硫代 - 5 - 嘧啶羧酸乙酯（25g）在乙醇
(200mL) 中制成的悬液内加入 30% 氢氧化铵 (38mL)。室温搅拌 5
小时后，于真空下浓缩反应混合物。将残留物悬浮于水中并过滤。用水
再用二乙醚洗过滤垫，得到 17.68g 标题化合物，CIMS（加于 CH₄ 中的
1% NH₃）：242 = M⁺ + C₂H₅，214 = M⁺ + H（Base），213 =
M⁺，168 = M⁺ - OEt。

C₈H₁₁N₃SO₂ 的元素分析:
理论值：C,45.06; H,5.20; N,19.70。
实测值：C,44.84; H,5.14; N,19.64。

实施例 75

4 - 氨基 - 2 - 甲磺酰基 - 嘧啶 - 5 - 基 - 甲醇

向氢化铝锂（1.45g）在四氢呋喃（50mL）中制成的悬液内滴加
4 - 氨基 - 2 - 甲磺酰基 - 嘧啶 - 5 - 基 - 甲醇（5.00g）（得自实施例
74）在四氢呋喃（120mL）中形成的溶液。室温搅拌 1 小时后，用水
(1.5mL)，15% 氢氧化钠 (1.5mL)，最后再用水 (4.5mL) 酸冷
反应混合物。过滤后用四氢呋喃洗滤垫。真空浓缩滤液得到 3.83g 标题化
合物，CIMS（加于 CIH₄ 中的 1% NH₃）：200 = M⁺ + C₂H₅，172
= M⁺ + H（Base），171 = M⁺，154 = M⁺ - OH。

实施例 76

4 - 氨基 - 2 - 甲磺酰 - 嘧啶 - 5 - 糠醛

经 3 分钟时间，向粗制 4 - 氨基 - 2 - 甲磺酰 - 嘧啶 - 5 - 基）-
甲醇（1.5g）（得自实施例76）在氯仿（150mL）中形成的溶液内分几次加入二氧化锰。室温反应6小时后，通过硅藻土过滤反应混合物。用氯仿再用乙酸乙酯洗滤垫。合并滤液并真空浓缩，得到1.40g标题化合物。

实施例77

6 - (2, 6 - 二氯苯基) - 2 - 甲磺酰 - 吡啶并[2, 3 - d]

噻唑 - 7 - 基胺

向2, 6 - 二氯苯基乙腈（0.55g）在二甲基甲酰胺（5mL）中制成的溶液内加入1当量60%氢化钠悬浮液（0.12g）。10分钟后，加入得自实施例76的4-氨基-2-甲磺酰-噻唑-5-羧酸。室温搅拌过夜后，用水骤冷反应混合物。用1N盐酸酸化水溶液至pH7，并用二氯甲烷提取几次。用饱和氯化钠洗合并的二氯甲烷层，用硫酸镁干燥，并真空下浓缩。用硅凝胶层析纯化残留物，用乙酸乙酯/乙烷（2:1）洗脱得到0.32g标题化合物，CIMS（加于CH₄中的1%NH₃）：365 = M⁺ + C₂H₅；337 = M⁺ + H（Base），336 = M⁺。

实施例78

N’ - [6 - (2, 6 - 二氯苯基) - 2 - {3 - (二乙氨基) 丙氨基} 吡啶并[2, 3 - d] 吡啶并[2, 3 - d]] 噻唑 - 7 - 基] - N，N - 二甲基甲胺

向210mg（1毫摩尔）7 - 氨基 - 6 - (2, 6 - 二氯苯基) - 2 - [3 - (二乙氨基) 丙氨基] - 吡啶并[2, 3 - d] 噻唑（得自实施例20）在0.8mL DMF中制成的溶液内加入0.8mL DMF二甲基乙酸醚。将混合物室温搅拌5.5小时，然后于真空下浓缩。使残留的油状物分配于二氯甲烷和水之间。在硫酸镁上方干燥有机相，然后浓缩并从乙腈中结晶得到160mg（68%）N’ - [6 - (2, 6 - 二氯苯基) - 2 - {3 - (二乙氨基) 丙氨基} - 吡啶并[2, 3 - d] 噻唑 - 7 - 基] - N，N - 二甲基甲胺；mp.100-104 °C。CIMS（加在甲烷中的1%氯）：m/z（相对强度）476（MH⁺ + 2, 60），474（MH⁺, 94），361（100）。

C₂₃H₂₉Cl₂N₇ · 0.4H₂O 的元素分析：

理论值：C, 57.36; H, 6.24; N, 20.36.
实施例 79

\[N' - [7 - (3 - 叔丁基脲基) - 6 - (2 , 6 - 二氯苯基) - 吡啶并 [2 , 3 - d] 嘧啶 - 2 - 基] - N , N - 二甲基甲烷 \]

按实施例 78 所述方法，使 1 - [2 - 氨基 - 6 - (2 , 6 - 二氯苯基) - 吡啶并 [2 , 3 - d] - 嘧啶 - 7 - 基] - 3 - 叔丁基脲（得自实施例 3）与 DMF 二甲基乙缩醛反应 13.5 小时。按上述方法处理，然后经急骤硅凝胶层析纯化，依次用 100 : 10 , 3 : 1 , 1 : 1 和 0 : 100 二氯甲烷 : 乙酸乙酯洗脱。在 2 - 丙醇中研制洗脱得到的固体物后，最终生产出标题化合物 N’ - [7 - (3 - 叔丁基脲基) - 6 - (2 , 6 - 二氯苯基) - 吡啶并 [2 , 3 - d] 嘧啶 - 2 - 基] - N , N - 二甲基甲烷，mp.190-193 °C。

CIMS（加在甲烷中的 1 % 氨）：m/z（相对强度）462（MH⁺ + 2 , 0.78）, 460（MH⁺ , 0.93）。

C₂₁H₂₃Cl₂N₇O · 0.20C₃H₈O · 0.2C₃H₇NO 的元素分析：
理论值：C,54.75;H,5.38;N,20.17。
实测值：C,54.73;H,5.31;N,20.65。

实施例 80

N’ - [6 - (2 , 6 - 二氯苯基) - 7 - (二甲氨基) 亚甲基 - 氨基] - 吡啶并 [2 , 3 - d] 嘧啶 - 2 - 基] - N , N - 二甲基甲胺

按实施例 78 所述，使 2 , 7 - 二氯基 - 6 - (2 , 6 - 二氯苯基) - 吡啶并 [2 , 3 - d] 嘧啶（得自实施例 1）与 DMF 二甲基乙缩醛反应 23 小时。按上述方法分离后经急骤硅凝胶层析法纯化，依次用 100 : 0 , 9 : 1 , 4 : 1 和 7 : 3 乙酸乙酯 / 甲醇梯度洗脱得到油状物，从乙酸乙酯中结晶产生 N’ - [6 - (2 , 6 - 二氯苯基) - 7 - (二甲氨基) 亚甲氨基] - 吡啶并 [2 , 3 - d] 嘧啶 - 2 - 基] - N , N - 二甲基甲胺，mp.269 - 272 °C。CIMS（加在甲烷中的 1 % 氨）：m/z（相对强度）418（MH⁺ + 2 , 60）, 416（MH⁺ , 100）。

C₁₉H₁₉Cl₂N₇ · 0.3H₂O 的元素分析：
理论值：C,54.11;H,4.68;N,23.25。
实施例 81

6-苯基-吡啶并[2, 3-d]嘧啶-2, 7-二胺

按照实施例 1 的方法，由苯乙腈与 2, 4-二氯基-5-嘧啶-羧酸反应，得到标题化合物：mp.317 - 318 °C。

实施例 82

1-(2-氯基-6-苯基-吡啶并[2, 3-d]嘧啶-7-基)-3-叔丁基-脲

按照实施例 2 的方法，由 0.246g 得自实施例 81 的 6-苯基-吡啶并[2, 3-d]嘧啶-2, 7-二胺与 0.128mL 异氰酸叔丁酯反应。使用硅凝胶以中等压力层析法纯化产物，经 1: 1 CHCl₃/EtOAc 梯度洗脱得到标题化合物；mp.>250 °C，CIMS（加于甲烷中的 1% 氯）m/z（相对强度）337（MH⁺ + 1, 64），338（MH⁺ + 2, 11），236（100）。

实施例 83

6-(2, 3-二氯苯基)-吡啶并[2, 3-d]嘧啶-2, 7-二胺

按照实施例 1 的方法，由 2, 3-二氯苯基乙腈与 2, 4-二氯基-5-嘧啶羧酸反应，产生标题化合物；mp.366-369 °C（分解）。

实施例 84

1-[2-氯基-6-(2, 3-二氯苯基)-吡啶并[2, 3-d]嘧啶-7-基]-3-叔丁基-脲

按照实施例 2 的一般方法，由 0.502g 6-(2, 3-二氯苯基)-吡啶并[2, 3-d]嘧啶-2, 7-二胺（得自实施例 83）与 0.206mL 异氰酸叔丁酯反应。经硅凝胶层析法纯化产物，用 CHCl₃: EtOAc (98: 2) 至 CHCl₃: EtOAc (1: 2) 的梯度洗脱，产生标题化合物；mp.356-358 °C。

C₁₈H₁₈Cl₂N₆O₁·0.05H₂O 的元素分析：
理论值： C, 53.34; H, 4.48; N, 20.74。
实测值： C, 53.44; H, 4.47; N, 20.29。
实施例 85

\[6 - (2, 3, 6 - \text{三氯苯基}) - 吡啶并 [2, 3 - d] 嘧啶 - 2, 7 - \text{二胺} \]

按照实施例 1 的方法，从 1.0g (2, 3, 6 - 三氯) - 苯基 - 乙腈
和 0.6g 2, 4 - 二氨基 - 5 - 嘧啶 - 苄基开始制备标题化合物；mp.320
- 322 ℃。

C\text{13}H\text{8}Cl\text{3}N\text{5} 的元素分析：

理论值：C,45.84; H,2.37; N,20.56

实测值：C,46.22; H,2.57; N,20.54

实施例 86

\[1 - (2 - \text{氯基} - 6 - (2, 3, 6 - \text{三氯} - \text{苯基}) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - \text{基}) - 3 - \text{叔丁基} - \text{脲} \]

按照实施例 2 的方法，以 0.30g 6 - (2, 3, 6 - 三氯 - 苯基) - 吡啶并 [2, 3 - d] 嘧啶 - 2, 7 - 二胺（得自实施例 85）与异氨酸
酸叔丁酯（0.108mL）反应。使用硅凝胶甲中等压力层析法纯化产物，用
CHCl\text{3}; EtOAc（1:1）洗脱得到标题化合物; mp.329-330 ℃, CIMS
（加于甲烷中的 1% 氮）: m/z（相对强度）439 (MH\text{+} - 1, 3),
441 (MH\text{+} + 1, 3), 84 (100)。

实施例 87

\[1 - (2 - \text{氯基} - 6 - (2, 6 - \text{二氯苯基}) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - \text{基}) - 3 - \text{叔丁基} - \text{脲} \]

按照实施例 2 的方法，从 0.25g 6 - (2, 6 - 二氯苯基) - 吡啶并
[2, 3 - d] 嘧啶 - 2, 7 - 二胺（得自实施例 63）和 0.112mL 异氧
酸叔丁酯制备标题化合物。经 MPLC 纯化产物，用 CHCl\text{3}; EtOAc（1:1）
至 EtOAc 的 梯度洗脱得到纯产物; mp.>300 ℃, CIMS（加于甲
烷中的 1% 氮）: m/z（相对强度）373 (MH\text{+} + 1, 60), 374 (MH\text{+} +
2, 10), 274 (100)。

实施例 88

\[1 - (2 - \text{氯基} - 6 - (2, 6 - \text{二溴苯基}) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - \text{基}) - 3 - \text{叔丁基} - \text{脲} \]
按照实施例 2 的方法，从 0.25g 6-（2，6-二溴-苯基）-吡啶并[2,3-d]嘧啶-2,7-二胺（得自实施例 60）和 0.077mL 异氯酸叔丁酯制备标题化合物。经 MPLC 纯化产物，用 CHCl₃：EtOAc（1：1）至 EtOAc 的梯度洗脱得到纯产物：mp.>300℃（分解）。

C₁₈H₁₈Br₂N₆O₁·0.35H₂O 的元素分析：
理论值：C,43.20；H,3.77；N,16.79；Br,31.93。
实测值：C,43.53；H,3.64；N,16.41；Br,31.79。

实施例 89

1-（2-氨基-6-（2,6-二氯苯基）-吡啶并[2,3-d]-嘧啶-7-基）-3-异丙基-脲

按照实施例 2 的方法，从 0.5g 6-（2,6-二氯苯基）-吡啶并[2,3-d]嘧啶-2,7-二胺（得自实施例 1）和 0.172mL 异氯酸异丙酯制备标题化合物。经 MPLC 纯化产物，用 CHCl₃：EtOAc（1：1）的梯度洗脱得到纯产物；mp.184～188℃，CIMS（加于甲烷中的 1% 氦）：m/z（相对强度）391（MH⁺,16），393（MH⁺+2,11），306（100）。

实施例 90

6-邻甲苯基-吡啶并[2,3-d]嘧啶-2,7-二胺

按照实施例 1 的方法，从 2-甲基苄基氯和 2,4-二氨基-5-嘧啶-羧酸制备标题化合物；mp.300-302℃。

C₁₄H₁₃N₅ 的元素分析：
理论值：C,66.92；H,5.21；N,27.87。
实测值：C,66.4；H,5.2；N,27.9。

实施例 91

1-（2-氨基-6-邻甲苯基-吡啶并[2,3-d]嘧啶-7-基）-3-叔丁基-脲

按照实施例 2 的方法，从 6-邻甲苯基-吡啶并[2,3-d]嘧啶-2,7-二胺（得自实施例 90）和异氯酸叔丁酯制备标题化合物。经 MPLC 纯化产物，用 CHCl₃：EtOAc（1：1）洗脱得到纯产物；mp.195～197℃，CIMS（加于甲烷中的 1% 氦）：m/z（相对强度）

77
实施例 92

6-[(2, 3-二甲基-苯基)-吡啶并[2, 3-d]嘧啶-2, 7-二胺]

从2, 3-二甲苯基乙腈和2, 4-二氯基-5-嘧啶-羧酸开始制备目标化合物; mp.330-333 °C。

实施例 93

1-[(2-氨基-6-(2, 3-二甲基-苯基)-吡啶并[2, 3-d]嘧啶-7-基)-3-叔丁基-胺]

按照实施例2的方法从0.5007 g 6-(2, 3-二甲基-苯基)-吡啶并[2, 3-d]嘧啶-2, 7-二胺(自实施例92)和0.23mL异氰酸叔丁酯制备目标化合物。经MPLC纯化产物，用CHCl₃: EtOAc (2:1) CHCl₃: EtOAc (1:1)的梯度洗脱得到终产物; mp.326-333 °C, MS (CI)。

C₂₀H₂₄N₆O₁ · 0.81H₂O 的元素分析:
理论值: C,63.38; H,6.81; N,22.17。
实测值: C,63.54; H,6.47; N,21.77。

实施例 94

6-(3, 5-二甲基苯基)-吡啶并[2, 3-d]嘧啶-2, 7-二胺

从2.0g 3, 5-二甲苯基乙腈和1.81g 2, 4-二氯基-5-嘧啶-羧酸开始，按实施例1的方法制备目标化合物; mp.298-302 °C, MS (CI)。

C₁₅H₁₅N₅ 的元素分析:
理论值: C,67.91; H,5.70; N,26.40。
实测值: C,67.87; H,5.75; N,26.38。

实施例 95

1-[(2-氨基-6-(3, 5-二甲基-苯基)-吡啶并[2, 3-d]嘧啶-7-基)-3-叔丁基-胺]

按照实施例2的方法，从0.30g 6-(3, 5-二甲基-苯基)-吡啶并[2, 3-d]嘧啶-2, 7-二胺制备目标化合物。
啶并[2, 3-d]啶并-2, 7-二胺（得自实施例94）和0.14mL异氰酸叔丁酯制备标题化合物。经MPLC纯化产物，用1:1CHCl3:EtOAc洗脱得到纯产物；mp.180-182°C；CIMS（加在甲烷中的1％氨）: m/z（相对强度）365（MH+ + 1, 16），366（MH+ + 2, 3），84（100）。

实施例96
6-(2, 4, 6-三甲基-苯基)-吡啶并[2, 3-d]啶并-2, 7-二胺

从0.915g 2, 4, 6-三甲基苯和0.76g 2, 4-二氨基-5-啶并-羧酸开始，按实施例1所述方法制备标题化合物；mp.276-282°C；CIMS（加于甲烷中的1％氨）: m/z（相对强度）279（MH+, 54），280（MH+ + 1, 100）。

实施例97
1-(2-氨基-6-(2, 4, 6-三甲基-苯基)-吡啶并[2, 3-d]啶并-7-基)-3-叔丁基-脲

由0.25g得自实施例96的6-(2, 4, 6-三甲基-苯基)-吡啶并[2, 3-d]啶并-2, 7-二胺和0.109mL异氰酸叔丁酯制备标题化合物。用1:1CHCl3:EtOAc洗脱经中压柱相层析法纯化产物；mp.281-297°C；CIMS（加于甲烷中的1％氨）: m/z（相对强度）379（MH+ + 1, 100），380（MH+ + 2, 23）。

实施例98
6-(2, 3, 5, 6-四甲基-苯基)-吡啶并[2, 3-d]啶并-2, 7-二胺

从1.999g 2, 3, 5, 6-四甲基苯和1.52g 2, 4-二氨基-5-啶并-羧酸开始，按实施例1所述方法制备标题化合物；mp.327-331°C；CIMS（溶于CH4中的1％氨）: m/z（相对强度）293（MH+, 65），294（MH+ + 1, 100）。

实施例99
1-(2-氨基-6-(2, 3, 5, 6-四甲基-苯基)-吡啶并[2, 3-d]啶并-7-基)-3-叔丁基-脲

79
按照实施例 2 的方法从 0.3g 6 - (2 , 3 , 5 , 6 - 四甲基 - 苯基) - 吡啶并 [2 , 3 - d] 嘧啶 - 2 , 7 - 二胺 (得自实施例 98) 和 0.125mL 异氟酸叔丁酯制备目标化合物。用 1 : 1 CHCl₃: EtOAc 洗脱, 以中压液相层析法纯化产物; mp. >300 °C; CIMS (加于甲烷中的 1 % 氮): m/z (相对分子量) 393 (MH⁺, 55), 394 (MH⁺ + 1, 13), 84 (100).

实施例 100

6 - (2 - 甲氧基 - 苯基) - 吡啶并 [2 , 3 - d] 嘧啶 - 2 , 7 - 二胺

按照实施例 1 的方法，从 2 - 乙基基芳基氯和 2 , 4 - 二氯基 - 5 - 嘧啶 - 苄基酯制备目标化合物; mp. 304-306 °C (分解)。

C₁₄H₁₃N₅O₁ 的元素分析:
理论值: C, 62.91; H, 4.90; N, 26.20。
实测值: C, 63.16; H, 5.13; N, 26.42。

实施例 101

1 - [2 - 氯基 - 6 - (2 - 甲氧基 - 苯基) - 吡啶并 [2 , 3 - d] 嘧啶 - 7 - 基] - 3 - 叔丁基 - 腥

按照实施例 2 的方法，由 0.203g 6 - (2 - 甲氧基 - 苯基) - 吡啶并 [2 , 3 - d] 嘧啶 - 2 , 7 - 二胺 (得自实施例 100) 和 0.093mL 异氟酸叔丁酯制备目标化合物。用 1 : 1 CHCl₃: EtOAc 洗脱, 以中压液相层析法纯化产物; mp. 300 - 301 °C; CIMS (加于甲烷中的 1 % 氮): m/z (相对分子量) 367 (MH⁺ + 1, 67), 368 (MH⁺ + 2, 14), 236 (100)。

实施例 102

6 - (3 - 甲氧基 - 苯基) - 吡啶并 [2 , 3 - d] 嘧啶 - 2 , 7 - 二胺

按照实施例 1 所述方法，从 3 - 甲氧基苄氯和 2 , 4 - 二氯基 - 5 - 嘧啶 - 苄基酯制备目标化合物; mp. 284-286 °C。

C₁₄H₁₃N₅O₁ 的元素分析:
理论值: C, 62.9; H, 4.9; N, 26.2。
实际值：C,62.8; H,5.0; N,26.3。

实施例103
1 - (2 - 氨基 - 6 - (3 - 甲氧基 - 苯基) - 吡啶并[2, 3 - d]嘧啶 - 7 - 基) - 3 - 叔丁基 - 膦

按照实施例2的方法，从0.50g6 - (3 - 甲氧基 - 苯基) - 吡啶并[2, 3 - d]嘧啶 - 2, 7 - 二胺（得自实施例102）和0.23mL异氰酸叔丁酯制备目标化合物。用CHCl₃: EtOAc (2:1)至CHCl₃: EtOAc (1:1)的梯度洗脱，以中压液相层析法纯化产物；mp.275 - 280°C; MS (Cl)。

C₁₉H₂₂N₆O₂·0.45H₂O的元素分析:
理论值：C,60.93; H,6.19; N,22.44。
实际值：C,61.22; H,5.89; N,22.09。

实施例104
6 - (2 - 溴 - 6 - 氟 - 苯基) - 吡啶并[2, 3 - d]嘧啶 - 2, 7 - 二胺

按照实施例1中所述方法，从1.0g2 - 溴 - 6 - 氯苯基乙腈和0.57g2, 4 - 二氨基 - 5 - 吡啶 - 硼酸制备目标化合物; mp.264 - 280°C;
MS (Cl)。

C₁₃H₉Cl₁、Br₁N₅的元素分析:
理论值：C,44.53; H,2.59; N,19.97。
实际值：C44.48; H,2.87; N,20.10。

实施例105
1 - [2 - 氨基 - 6 - (2 - 溴 - 6 - 氟 - 苯基) - 吡啶并[2, 3 - d] - 嘧啶 - 7 - 基] - 3 - 叔丁基 - 膦

按照实施例2的方法，使用0.30g6 - (2 - 溴 - 6 - 氯 - 苯基) - 吡啶并[2, 3 - d]嘧啶 - 2, 7 - 二胺（得自实施例104）和0.105mL异氰酸叔丁酯制备目标化合物。经MPLC纯化产物并用1:1CHCl₃:EtOAc洗脱；mp.314°C（分解）; MS (Cl)。

C₁₈H₁₈Br₁Cl₁N₆O₁·0.43CHCl₃·0.27C₄H₈O₂的元素分析:
理论值：C,44.65; H,3.95; N,16.01; Br,15.22; Cl,15.47。
实施例 106
丙烷-1-磺酸（2-氯基-6-(2,6-二氯苯基)-吡啶并[2,3-d]嘧啶-7-基）-酰胺
向1.00g 2, 7-二氯基-6-(2,6-二氯苯基)- 吡啶并[2,3-d]嘧啶（得自实施例1）在15mLDMF中制成的浆液内分几次加入0.15g 氯化钠（60%在矿物油中），并将混合物搅拌1小时。逐滴加入丙基磺酰氯并将反应混合物室温搅拌16小时。过滤反应混合物以除去小量不溶性材料并干真空下蒸发滤液。使用硅凝胶进行中压液相层析法（MPLC）纯化产物并用CHCl₃：EtOAc（2：1）至CHCl₃：EtOAc（1：1）梯度洗脱，得到目标化合物。

C₁₆H₁₅Cl₂N₅O₂S₁· 0.25CHCl₃的元素分析：
理论值：C,44.14; H,3.48; N,15.84; S,7.25。
实测值：C,43.92; H,3.38; N,15.54; S,7.04。

实施例 107
6-吡啶-3-基-吡啶并[2,3-d]嘧啶-2,7-二胺
按照实施例1的方法，由3-吡啶基乙腈和2,4-二氯基-5-嘧啶-3-羧酸反应得到目标化合物；mp.317-319℃（分解）。

C₁₂H₁₀N₆的元素分析：
理论值：C,60.50; H,4.23; N,35.27。
实测值：C,60.5; H,4.3; N,35.6。

实施例 108
1-(2-氯基-6-吡啶-3-基-吡啶并[2,3-d]嘧啶-7-基)-3-叔丁基-胺
按照实施例2的方法，由0.30g 2, 7-二氯基-6-(3-吡啶基)-吡啶并[2,3-d]嘧啶（得自实施例107）与0.16mL异氰酸-叔丁酯反应。使用硅凝胶以中压液相层析法纯化产物，并用90：10：1EtOAc：MeOH：TEA洗脱得到目标化合物；mp.>300℃。CIMS(甲烷中的1%氩): m/z(相对强度) 338 (MH⁺ + 1, 8), 339 (MH⁺ + 2, 1), 84 (100)。
实施例 109

6 - 吲哚 - 4 - 基 - 吲哚并 [2, 3 - d] 喹啶 - 2, 7 - 二胺

向冷却的 (0 ℃) 2 - 乙氧基乙醇 (13mL) 中分次加入 0.30g 氢化钠 (在矿物油中 60 % 浓度), 并将悬液搅拌 10 分钟。向该悬液内加入 1.06g 4 - 盐酸吲哚基乙腈, 并将混合物室温搅拌 30 分钟。将 4 - 吲哚基乙腈在 2 - 乙氧基乙醇中形成的中和的溶液加入到含有 2 - 乙氧基乙醇钠 (由 0.11g 氢化钠和 4.76mL 2 - 乙氧基乙醇制得) 和 0.9g 2, 4 - 二氯基 - 5 - 吲哚羧酸的反应混合物中。将所得到的反应混合物加热回流 2 小时, 冷却并将二乙酸和乙酸乙酯洗不溶性产物得到标题化合物; mp.>340 ℃; MS (Cl).

C_{12}H_{10}N_{6} · 0.05H_{2}O 的元素分析:
理论值: C, 60.27; H, 4.26; N, 35.14 .
实测值: C, 60.35; H, 4.31; N, 34.75 .

实施例 110

1 - (2 - 氨基 - 6 - 吲哚 - 4 - 基 - 吲哚并 [2, 3 - d] 喹啶 - 7 - 基) - 3 - 叔丁基 - 唑

按照实施例 2 的方法, 用 0.30g 2, 7 - 二氯基 - 6 - (4 - 吲哚基) - 吲哚并 [2, 3 - d] 喹啶 (得自实施例 109) 与 0.154mL 异氯酸叔丁酯反应, 使用硅凝胶以中压层析法纯化产物, 用 90 : 10 : 1EtOAc : MeOH : TEA 洗脱得到标题化合物, mp.>350 ℃; CIMS(甲烷中的 1 % 氦): m/z (相对强度) 338 (MH' + 1, 6), 339 (MH' + 2, 1), 84 (100) .

实施例 111

6 - 吲哚 - 2 - 基 - 吲哚并 [2, 3 - d] 喹啶 - 2, 7 - 二胺

按照实施例 1 的方法, 使 0.84g 2 - 吲哚基乙腈与 1.0g 2, 4 - 二氯基 - 5 - 吲哚羧酸反应, 得到标题化合物; mp.312 - 321 ℃.

C_{12}H_{10}N_{6} · 0.07H_{2}O 的元素分析:
理论值: C, 60.18; H, 4.27; N, 35.09 .
实测值: C, 60.46; H, 4.34; N, 34.70 .

实施例 112
1 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - 二乙氨基 - 丙基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 3 - 乙基 - 蒽

按照实施例 21 的一般方法，使 0.85g 7-氨基 - 6 - (2, 6 - 二氯苯基) - 2 - (3 - 二乙氨基 - 丙基) - 嘧啶并 [2, 3 - d] 嘧啶 (得自实施例 20) 与 0.176mL 异氯酸乙酯反应。在 C18 反相柱上以反相制备性 HPLC 纯化产物，用从 90 % 加在水中的 0.1 % 三氯乙酸/10 % 加在乙腈中的 0.1 % 三氯乙酸到 60 % 加在水中的 0.1 % 三氯乙酸/40 % 加在乙腈中的 0.1 % 三氯乙酸的溶剂梯度进行洗脱得到目标化合物，mp.92 - 108 °C.

\[C_{23}H_{29}Cl_2N_7O_1 \cdot 0.25H_2O\] 的元素分析:

理论值: C,55.82;H,6.01;N,19.81.
实测值: C,55.84;H,6.02;N,19.68.

实施例 113

1 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - 二乙氨基 - 丙基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 3 - 异丙基 - 蒽

按照实施例 21 的方法，由 0.30g 7 - 氨基 - 6 - (2, 6 - 二氯苯基) - 2 - (3 - 二乙氨基 - 丙基) - 吡啶并 [2, 3 - d] 嘧啶 (得自实施例 20) 与 0.071g 异氯酸异丙酯反应。在硅胶柱上的中压层析法纯化产物，用 90: 10: 1 EtOAc: MeOH: TEA 洗脱得到目标化合物; mp.88-100 °C; CIMS (甲烷中的 1 % 氮); m/z（相对强度）504 (MH^+, 3), 506 (MH^+ + 2, 2, 1), 86 (100).

实施例 114

N^2 - (3 - 二乙氨基 - 丙基) - 6 - (2, 6 - 二乙基 - 苯基) - 吡啶并 [2, 3 - d] 嘧啶 - 2, 7 - 二胺

按照实施例 20 的方法，使 3.0g 2, 7 - 二氨基 - 6 - (2, 6 - 二甲基苯基) - 吡啶并 [2, 3 - d] 嘧啶 (得自实施例 6) 与 30mL 1 - 氨基 - 3 - (N, N - 二乙氨基) 丙烷反应得到目标化合物; mp.216 - 219 °C.

\[C_{22}H_{30}N_6 \cdot 0.15H_2O\] 的元素分析:

理论值: C,69.31;H,8.01;N,22.04.
实测值： C,69.29;H,7.89;N,22.04．

实施例115

1 - [(2 - (3 - 二甲氨基 - 丙氨基) - 6 - (2, 6 - 二甲基 - 苯基) - 吡啶并 [2, 3 - d] 唑啶 - 7 - 基)] - 3 - 乙基 - 腺

按照实施例21所述的方法，从自实施例114的7 - 氨基 - 6 - (2, 6 - 二甲苯基) - 2 - (3 - 二乙氨基 - 丙氨基) - 吡啶并 [2, 3 - d] 唑啶和异氰酸乙酯开始制备。在C18反相柱上以反相制备性HPLC法纯化产物，用从100 %加在水中的0.1 %三氯乙酸/0 %加在乙腈中的0.1 %三氯乙酸到70 %加在水中的0.1 %三氯乙酸/30 %加在乙腈中的0.1 %三氯乙酸的溶剂梯度洗脱得到纯产物；mp.64-70 ℃。

C25H35N7O1 · 0.35H2O 的元素分析:

理论值： C,65.86;H,7.89;N,21.51

实测值： C, 65.78;H,7.63;N,21.39

实施例116

1 - 叔丁基 - 3 - [(2 - (3 - 二乙氨基 - 丙氨基) - 6 - (2, 6 - 二甲基 - 苯基) - 吡啶并 [2, 3 - d] 唑啶 - 7 - 基)] - 腺

从0.50g 7 - 氨基 - 6 - (2, 6 - 二甲基苯基) - 2 - (3 - 二乙氨基 - 丙氨基) - 吡啶并 [2, 3 - d] 唑啶(得自实施例114)和0.17mL异氰酸叔丁酯开始，按实施例21中所述方法制备。在C18反相柱上以反相制备性HPLC法纯化产物，用从95 %溶于水中的0.1 %三氯乙酸/5 %溶于乙腈的0.1 %三氯乙酸开始到65 %溶于水中的0.1 %三氯乙酸/35 %溶于乙腈的0.1 %三氯乙酸的溶剂梯度洗脱，mp.86-91 ℃。

C27H39N7O1 的元素分析:

理论值： C,67.89;H,8.23;N,20.53

实测值： C,67.70;H,8.24;N,20.43

实施例117

1 - 金钢烷 - 1 - 基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (3 - (4 - 甲基 - 哌嗪 - 1 - 基) - 丙氨基) - 吡啶并 [2, 3 - d] 唑啶 - 7 - 基] - 腺

按照实施例37中所述方法，从0.5g N2 - [(3 - (4 - 甲基 - 哌嗪
- 1-基)-丙基]-6-(2, 6-二氯苯基)-吡啶并[2, 3-d]嘧啶-2, 7-二胺（得自实施例36）和0.218g 1-间氮烷异氰酸酯开始制备。使用硅凝胶以中压层析法纯化产物，用90: 10: 1 EtOAc: MeOH: TEA 洗脱得到标题化合物; mp.>200 ℃（分解）; ESMS (20/80 MeOH/CH₃CN+0.1 % AcOH): m/z（相对强度）623.4(MH⁺, 100), 625.5 （MH⁺ + 2, 48）。

C₃₂H₄₀Cl₂N₈O₁·0.52H₂O 的元素分析:
理论值: C,60.72;H,6.54;N,17.70。
实测值: C,61.06;H,6.58;N,17.30。

实施例118
1-叔丁基-3-{6-(2, 6-二氯苯基)-2-[(3-(4-甲基-嘧啶-1-基)-丙氨基]-吡啶并[2, 3-d]嘧啶-7-基}-硫脲

按照实施例37中所述方法，从 0.5g N²-[3-(4-甲基-嘧啶-1-基)-丙基]-6-(2, 6-二氯苯基)-吡啶并[2, 3-d]嘧啶-2, 7-二胺（得自实施例36）和 0.142g 异硫氰酸叔丁酯开始制备。使用硅凝胶以中压层析法纯化产物，用90: 10: 1 EtOAc: MeOH:TEA 洗脱得到两种产物的混合物。进一步在 C18 反相柱上以反相制备性 HPLC 法纯化，用 95 % 溶于水中的 0.1 % 三氯乙酸/5 % 溶于乙腈的 0.1 % 三氯乙酸到 65 % 溶于水中的 0.1 % 三氯乙酸/35 % 溶于乙腈的 0.1 % 三氯乙酸的溶剂梯度进行洗脱、得到标题化合物; mp.>200 ℃（分解）。

实施例119
3-{6-(2, 6-二氯苯基)-2-[(3-(4-甲基-嘧啶-1-基)-丙氨基]-吡啶并[2, 3-d]嘧啶-7-基}-1-1-二乙基

向0.50g N²-[3-(4-甲基-嘧啶-1-基)-丙基]-6-(2, 6-二氯苯基)-吡啶并[2, 3-d]嘧啶-2, 7-二胺（得自实施例36）在5mL DMF 中制成的溶液内加入 0.10g 60 % 氯化钠，并将混合物室温搅拌 1 小时。将溶液冷却到 0 ℃并逐渐加入 0.15mL 二乙基氨基甲
酰氯。加完之后，使反应混合物升至室温并在室温下搅拌 18 小时。真空浓缩该混合物并在硅凝胶上以中压层析法纯化产物，用 90：10：1EtOAc：MeOH：TEA 洗脱得到标题化合物；mp.>200 °C（分解）；MS（ES）。

实施例 120
N²-[3-(4-甲基-嘧啶-1-基)-丙基]-6-(2, 3, 5, 6-四甲基-苯基)- 吡啶并[2, 3-d]嘧啶-2, 7-二胺

搅拌下将 1.00g 6-(2, 3, 5, 6-四甲基-苯基)- 吡啶并[2, 3-d]嘧啶-2, 7-二胺（得自实施例 98），0.66g 氯磷酸和 10mL 1-(3-氯丙基)-4-甲基嘧啶的混合物加热回流 34 小时。将反应瓶配以短经蒸馏柱并在高真空下蒸馏除去过量的胺。用 40mL 二氯甲烷稀释残留物，用 10mL 水再用饱和 15mL 饱和碳酸氢钠洗。用二氯甲烷（3×25mL）提取碱性含水层，并反过来用盐水（3×25mL）洗合并的有机层。在硫酸镁上方干燥有机层，过滤并真空浓缩。使用硅凝胶以中压层析法纯化产物，用 90：10：1EtOAc：MeOH：TEA 洗脱得到标题化合物；mp.218-223 °C；MS（APCI）。

C₂₅H₃₅N₇· 0.30C₄H₈O₂ 的元素分析：
理论值：C,68.41；H,8.19；N,21.31。
实测值：C,68.05；H,7.95；N,21.70。

实施例 121
1-叔丁基-3-{2-(4-甲基-嘧啶-1-基)-丙氨基}-6-(2, 3, 5, 6-四甲基-苯基)- 吡啶并[2, 3-d]嘧啶-7-基}-胺

按照实施例 37 的方法，由 0.41g N²-[3-(4-甲基-嘧啶-1基)-丙基]-6-(2, 3, 5, 6-四甲基-苯基)- 吡啶并[2, 3-d]嘧啶-2, 7-二胺（得自实施例 120）和 0.12mL 异氯酸叔丁酯开始制备。使用硅凝胶以中压层析法纯化产物，用 90：10：1EtOAc：MeOH：TEA 洗脱得到标题化合物；mp.185 - 198 °C。

C₃₀H₄₄N₈O₁ 的元素分析：
理论值：C,67.64；H,8.33；N,21.03。
实施例 122

$$1 - [6 - (2, 6 - 二氯苯基) - 2 - (4 - 二乙氨基 - 丁氨基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 3 - (3 - 吡嗪 - 4 - 基 - 丙基) - 硫脲$$

接照实施例 37 中所述方法，从 0.3926g N\(^2\) - [3 - (4 - 甲基 - 嘧嗪 - 1 - 基) - 丙基] - 6 - (2, 6 - 二氯苯基) - 吡啶并 [2, 3 - d] 嘧啶 - 2, 7 - 二胺 (得自实施例 53) 和 0.18g 3 - 吡嗪代丙基异硫氰酸酯开始制备。在硅凝胶上以中压层析法纯化产物，用 90: 10: 1 EtOAc: MeOH:TEA 的溶剂混合物纯化得到标题化合物； mp.>200℃ (分解)； ESMS (20/80 MeOH/CH\(_3\)CN+0.1% AcOH)： m/z (相对强度) 619.4 (MH\(^+\), 100), 621.5 (MH\(^+\), 77)。

实施例 123

$$1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (4 - 二乙氨基 - 丁氨基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 脲$$

向 6 - (2, 6 - 二氯苯基) - N\(^2\) - (4 - 二乙氨基 - 丁基) - 吡啶并 [2, 3 - d] 嘧啶 - 2, 7 - 二胺 (25.0g) (得自实施例 53) 在 DMF (300mL) 中制成的溶液内加入 1 当量 60% 氨化钠悬液 (2.31g)。室温下搅拌约 2 小时后，加入 1 当量异氯酸苯基酯 (5.72g) 并用薄层层析法监测反应。约 24 小时后，真空除去溶剂。将残留物溶解于二氯甲烷中并首先用水，然后用饱和氯化钠溶液将该溶液洗几次。用硫酸镁干燥二氯甲烷层并真空浓缩之。在硅凝胶上层析纯化残留物并用乙酸乙酯: 乙醇: 三乙胺 (9 : 2 : 1) 洗脱，然后从叔丁基甲酯中结晶出 21.58g 标题化合物 1 - 叔丁基 - 3 - [6 - (2, 6 - 二氯苯基) - 2 - (4 - 二乙氨基 - 丁氨基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 脲， ESMS (20/80 MeOH/CH\(_3\)CN+0.1% AcOH)： M\(^+\) + H = 532；mp.157℃ (分解)。

$$\text{C}_{26}\text{H}_{35}\text{N}_7\text{Cl}_2\text{O} \cdot 0.1\text{H}_2\text{O}$$ 的元素分析:

理论值: C,58.45; H,6.64; N,18.35; Cl,13.27; H\(_2\)O,0.34。

实测值: C,58.51; H,6.75; N,18.37; Cl,13.17; H\(_2\)O,0.57。
实施例 124

1 - [6 - (2, 6 - 二氯苯基) - 2 - (4 - 二乙氧基 - 丁氧基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] - 3 - 乙基 - 脲

向冷却的 6 - (2, 6 - 二氯苯基) - N^2 - (4 - 二乙氨基 - 丁基) - 吡啶并 [2, 3 - d] 嘧啶 - 2, 7 - 二胺 (0.61g) (得自实施例 53) 在 THF (6mL) 中制成的溶液内分几份加入六甲基硅氮烷钾 (0.308g)。使反应混合物升至室温并搅拌 30 分钟。然后加入异丙酸乙酯，并于室温下将反应混合物继续搅拌 18 小时。将反应混合物倒入约 200mL 0.25N 含水 HCl 加并过滤所得溶液以分离产物。用 50 % 氢氧化钠水溶液将滤液调成碱性，并用乙酸乙酯提取含水层。干燥 (MgSO_4) 合并的有机提取液，过滤并在真空下浓缩滤液。用经向层析法纯化产物，以 90 : 10 : 1 EtOAc:MeOH:TEA 的溶剂混合物洗脱得到标题化合物。

C_{24}H_{31}Cl_2N_7O_1 · 0.78H_2O 的元素分析:
理论值: C,55.59; H,6.33; N,18.91。
测定值: C,55.59; H,5.93; N,18.62。

实施例 125

N - [6 - (2, 6 - 二氯苯基) - 2 - (3 - 二乙氧基 - 丙氧基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基 - N” - 乙基 - 脲]

向 7 - 氨基 - 6 - (2, 6 - 二氯苯基) - 2 - (3 - 二乙氧基 - 丙氨基) - 吡啶并 [2, 3 - d] 嘧啶 (42mg) (得自实施例 20) 在 DMF (1mL) 制成的溶液内加入 60 % 氢化钠溶液 (5mg)，并将反应混合物搅拌 0.5 小时。向反应混合物中加入 N, N” - 双 (叔丁氧基 - 羧基) - N - (乙基) - 5 - (乙基) 硫脲 (37mg)，并将混合物搅拌 18 小时。用二氯甲烷 (50mL) 稀释反应混合物并用水 (2 × 15mL) 洗。用硫酸钠干燥有机层并浓缩之。在硅凝胶上层析纯化所得的油状物，用甲醇/乙酸乙酯/三乙胺 (8.5/1.5/0.3) 洗脱得到 7 - 氨基 - 6 - (2, 6 - 二氯苯基) - 2 - (3 - 二乙氧基 - 丙氨基) - 吡啶并 [2, 3 - d] 嘧啶 (40mg) 和 |||6 - (2, 6 - 二氯苯基) - 2 - (3 - 二乙氨基 - 丙氨基) - 吡啶并 [2, 3 - d] 嘧啶 - 7 - 基] 亚氨基 [1, 1 - 二甲基乙氧基] 稀基 [氨基] 甲基 - 乙氨基 [氨基甲酸 - 1, 1 - 二甲基
乙基酯的混合物。将混合物溶解在含有 2，6-二甲基吡啶的无水二氯甲烷（0.5mL）中。加入三氟甲基磺酸三甲基甲烷基酯（6mg），并将混合物室温下搅拌 30 小时。将混合物倒入饱和碳酸氢钠水溶液中，用二氯甲烷提取，在硫酸钠上层析并浓缩。在硅凝胶层析所得到的油，用甲醇/乙酸乙酯/丙酮（8.5 : 1.5 : 0.3）洗脱得到标题化合物（7mg），ESMS (1/4 MeOH/CH₃CN+0.1% AcOH): m/z（相对强度）490.5（M⁺，100），491.5（M⁺ + 1，27），492.5（M⁺ + 2，64）。

以下实施例进一步举例描述本发明提供的典型物配方。

实施例 126

使用下列成分配制用于口服给药的硬明胶胶囊制剂：

<table>
<thead>
<tr>
<th>成分</th>
<th>量（mg/胶囊）</th>
</tr>
</thead>
<tbody>
<tr>
<td>活性化合物</td>
<td>250</td>
</tr>
<tr>
<td>淀粉粉末</td>
<td>200</td>
</tr>
<tr>
<td>硬脂酸镁</td>
<td>10</td>
</tr>
<tr>
<td>总计</td>
<td>260</td>
</tr>
</tbody>
</table>

混合上述成分并以 460mg 的量加入硬明胶胶囊中。典型的活性成分是 N-(2-甲酰氨基-6-(3,5-二甲苯基)-吡啶并[2,3-d]嘧啶-7-基)-正丁酰胺。用于治疗外科手术后血管再狭窄时每天投用 2-4 次组合物。

实施例 127

口服悬液配方

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-(4,5-二溴苯基)-[1,6]-1,5-二氢杂环-2,7-二胺</td>
<td>500mg</td>
</tr>
<tr>
<td>山梨醇溶液（70% N.F.）</td>
<td>40mL</td>
</tr>
<tr>
<td>苯甲酸钠</td>
<td>150mg</td>
</tr>
<tr>
<td>糖精</td>
<td>10mg</td>
</tr>
<tr>
<td>樱桃香料</td>
<td>50mg</td>
</tr>
</tbody>
</table>
蒸馏水 加至 100mL

在 40mL 蒸馏水中加入山梨醇溶液并将 1，5-二氯杂基加入其中。加入糖精、苯甲酸钠和香料剂并溶解之。用蒸馏水将体积调到 100mL。每毫升糖浆含有 5mg 活性成分。

实施例 128
每片含 60mg 活性成分的片剂

<table>
<thead>
<tr>
<th>活性成分</th>
<th>60g</th>
</tr>
</thead>
<tbody>
<tr>
<td>淀粉</td>
<td>45mg</td>
</tr>
<tr>
<td>微晶纤维素</td>
<td>35mg</td>
</tr>
<tr>
<td>聚乙烯吡咯烷酮（在水中的 10% 溶液）</td>
<td>4mg</td>
</tr>
<tr>
<td>硝甲基淀粉钠</td>
<td>4.5mg</td>
</tr>
<tr>
<td>硬脂酸镁</td>
<td>0.5mg</td>
</tr>
<tr>
<td>滑石</td>
<td>1.0mg</td>
</tr>
<tr>
<td>总计</td>
<td>150mg</td>
</tr>
</tbody>
</table>

使活性成分、淀粉和纤维素通过 45 号目美国筛网并彻底混合。将聚乙烯吡咯烷酮的溶液与所得粉末混合，然后通过 14 号目美国筛网。于 50-60℃干燥所得颗粒并通过 18 号目美国筛网。然后将预先已通过 60 号目美国筛网的硝甲基纤维素钠、硬脂酸镁和滑石加到颗粒中，混合后在压片机上压制成每片重 150mg 的片剂。

上述制剂中使用的典型活性成分是实施例 21 中所述的化合物。

实施例 129
将 100mg 1-[2-氯基-6-(二氯苯基)-吡啶并[2,3-d]嘧啶-7-基]-3-(3-吗啉-4-基-丙基)-硫脲溶解在 250mL 0.9% 氯化钠水溶液中并将溶液的 pH 调到大约 7.0。该制剂特别适于治疗乳腺癌。

实施例 130
栓剂的制备
将 500mg 1-(2-氯基-6-(2,6-二氯苯基)-吡啶并[2,3-d]嘧啶-7-基)-咪唑烷-2-酮和 1500mg 可可油的混合物于
60 ℃掺和均匀。在加善模中将混合物冷却到 24 ℃。每个药栓重约 2g，用于处理细菌感染时每天使用 1 - 2 次。

实施例 131
局部制剂

<table>
<thead>
<tr>
<th>成分</th>
<th>量（mg）</th>
</tr>
</thead>
<tbody>
<tr>
<td>N⁷-(3-甲基氨基基)-6-(3,5-二甲氧基苯基)-吡啶并 [2, 3 - d] 嘧啶-2,7-二胺</td>
<td>20</td>
</tr>
<tr>
<td>丙二醇</td>
<td>100</td>
</tr>
<tr>
<td>白矿脂</td>
<td>500</td>
</tr>
<tr>
<td>Cetearyl Alcohol</td>
<td>50</td>
</tr>
<tr>
<td>硬脂酸甘油酯</td>
<td>100</td>
</tr>
<tr>
<td>PEG 100 硬脂酸酯</td>
<td>100</td>
</tr>
<tr>
<td>Ceteth-20</td>
<td>50</td>
</tr>
<tr>
<td>磷酸氢钠</td>
<td>80</td>
</tr>
<tr>
<td>总计</td>
<td>1000</td>
</tr>
</tbody>
</table>