02/43320 A2

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 May 2002 (30.05.2002)

PCT

(10) International Publication Number

WO 02/43320 A2

(51) International Patent Classification’: HO04L 12/00

(21) International Application Number: PCT/US01/45722

(22) International Filing Date:

2 November 2001 (02.11.2001)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/246,444
09/797,412

Us
Us

7 November 2000 (07.11.2000)
1 March 2001 (01.03.2001)

(71) Applicant: SURGIENT NETWORKS, INC. [US/US];
8303 North Mopac, Suite C-300, Austin, TX 78759 (US).

(72) Inventors: BAILEY, Brian W.,; 8804B Clearbrook Trail,
Austin, TX 78729 (US). RICHTER, Roger K.,; 15248
Faubion Trail, Leander, TX 78641 (US). WANG, Ho,;
2317 Waterway Bend, Austin, TX 78728 (US).

(74) Agent: ENDERS, William W.,; O’Keefe, Egan & Peter-
man, LLP, 1101 Capital of Texas Highway South, Suite
C-200, Austin, TX 78746 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA,
7ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

[Continued on next page]

(54) Title: NETWORK TRANSPORT ACCELERATOR

1200 |¢

SYSTEM
1060

Content
1090

I1060A

10608 /|O7OA\

\
/ O h \

1024

!
/
// EIOZZ‘S

Content

lConfent l\AHOO

(57) Abstract: A network endpoint system receives requests delivered in packet format via a network. The system uses a transport
accelerator at its front end, which performs all or some of the network protocol processing. The transport accelerator is directly
connected to one or more processing units, which respond to the requests. The protocol processing may be partitioned between the
transport accelerator and the processing units in a manner that best uses their different processing capabilities.

w0 02/43320 A2 L RUARAN AN A AR

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report

ning of each regular issue of the PCT Gazette.

10

15

20

25

30

35

WO 02/43320 PCT/US01/45722

1

NETWORK TRANSPORT ACCELERATOR

BACKGROUND OF THE INVENTION
This invention relates to computer networks, and more particularly to a processor-
based device that accelerates network endpoint processing by offloading networking protocol

processing from the rest of the system.

In today's computer networking world, bandwidths are moving rapidly toward the
gigabit per second (Gbps) range, due in part to the deployment of fiber optic media.
Conventional network server technology does not meet the demands for processing data at

these rates in a cost effective manner.

One obstacle to providing higher data rates is the bottleneck caused by network and
transport protocol processing. At a server-type endpoint, data packets traverse a stack of
protocols. Starting at the physical layer, a packet passes through successive protocol layers
until it reaches the top of the stack at the relevant application process. At each layer, the
server examines information appended by a particular protocol so that the server can properly

forward the packet to its destination.

Typically, the server processor is a general purpose processor, sufficiently versatile to
traverse the protocol stack as well as to perform the required application processing. One
approach to speeding up the protocol processing is to simply enhance the hardware associated

with the server's processor.

In a conventional endpoint system, a server processor performs behind a network
interface controller, which handles physical protocol processing, then passes the packet to the
server processor for processing at and above the data link layer. As a modification to this
conventional architecture, and as an attempt to alleviate the protocol processing bottleneck,
the network interface controller has been used to perform protocol processing. In both of the
above-described approaches, the entire stack is processed by one device or the other. In other

words, either the network controller or the server processor processes the entire stack.

10

15

20

25

30

WO 02/43320 PCT/US01/45722
2

However, due to the complexity of the network/transport layers, the processing has not
typically been split within them. For example, although TCP/IP processing might be
offloaded to a network interface controller, it has generally been either entirely offloaded or
not offloaded at all. A network interface card that splits the protocol processing is aiso
known. In this case, the network interface controller performs part of the TCP/IP processing
but not all TCP/IP processing. .

Additionally, regardless of whether protocol processing is performed by the network
interface controller or a server processor, the processor in both devices is typically a general
purpose processor. These processors are designed to execute programs that use arbitrary

combinations of processor-to-memory accesses and arithmetical and logical operations.

SUMMARY OF THE INVENTION

One aspect of the invention is a network endpoint system that responds to requests
delivered in packet form having a networking protocol, via a public or private network. A
transport accelerator is programmed to receive the packets and to perform at least some
processing of the transport protocol. The transport accelerator then delivers the packets to at
least one processing unit, which is programmed to respond to the requests. If the transport
accelerator has performed only some of the transport protocol, the processing unit also
performs the remainder of that processing. An interconnection medium directly connects the

transport accelerator to the processing unit.

An advantage of the invention is that protocol processing may be entirely or partially
offloaded to the transport accelerator from the server processors behind it. In embodiments
where the transport protocol processing is divided between the transport accelerator and the
processing units, each device can be assigned to perform that part of the protocol processing
for which its processor is optimized. This vastly increases the speed at which the endpoint

system can fulfill incoming requests from its clients.

In one embodiment the transport accelerator may be a network processor. Network
processors have been typically designed to switch network traffic at intermediate network
nodes. However, according to one aspect of the present invention a network processor may
be utilized for network protocol processing in a network endpoint system. The network

processor may be located in a network interface at the front end of the network endpoint

10

15

20

25

30

WO 02/43320 PCT/US01/45722
3

system. The network processor may perform all protocol processing or processing may be
split with another processor such as a general purpose processor. In a split architecture, the
network processor and other processor may be interconnected across a distributive

interconnect such as a switch fabric.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A is a representation of components of a content delivery system according to

one embodiment of the disclosed content delivery system.

FIG. 1B is a representation of data flow between modules of a content delivery
system of FIGURE 1A according to one embodiment of the disclosed content delivery

system.

~ FIG. 1C is a- simplified schematic diagram showing one possible network content

delivery system hardware configuration.

FIG. 1D is a simplified schematic diagram showing a network content delivery engine
configuration possible with the network content delivery system hardware configuration of
FIG. 1C.

FIG. 1E is a simplified schematic diagram showing an alternate network content
delivery engine configuration possible with the network content delivery sys‘;em hardware
configuration of FIG. 1C.

FIG. IF is a simplified schematic diagram showing another alternate network content
delivery engine configuration possible with the network content delivery system hardware
configuration of FIG. 1C.

FIGS. 1G-1]J illustrate exemplary clusters of network content delivery systems.

FIG. 2 is a simplified schematic diagram showing another possible network content

“delivery system configuration.

FIG. 2A is a simplified schematic diagram showing a network endpoint computing

10

15

20

25

30

WO 02/43320 PCT/US01/45722

system.

FIG. 2B is a simplified schematic diagram showing a network endpoint computing

system.
FIG. 3 is a functional block diagram of an exemplary network processor.

FIG. 4 is a functional block diagram of an exemplary interface between a switch

fabric and a processor.

FIG. 5 illustrates how network protocol processing may be offloaded to a network

processor from a processing units.

FIG. 6 illustrates how network/transport protocol processing may be partitioned

between a network processor and processing units.

FIGS. 7A - 7E illustrate various embodiments of a transport accelerator in accordance

with the invention.

FIGS. 8 - 11 illustrate various systems having a network fransport accelerator in

accordance with the invention.

DETAILED DESCRIPTION OF THE INVENTION

Disclosed herein are systems and methods for operating network connected
computing systems. The network connected computing systems disclosed provide a more
efficient use of computing system resources and provide improved performance as compared
to traditional network connected computing systems. Network connected computing systems
may include network endpoint systems. The systems and methods disclosed herein may be
particularly beneficial for use in network endpoint systems. Network endpoint systems may
include a wide variety of computing devices, including but not limited to, classic general
purpose servers, specialized servers, network appliances, storage area networks or other
storage medium, content delivery systems, corporate data centers, application service
providers, home or laptop computers, clients, any other device that operates as an endpoint

network connection, etc.

10

15

20

25

30

WO 02/43320 PCT/US01/45722

Other network connected systems may be considered a network intermediate node
system. Such systems are generally connected to some node of a network that may operate in
some other fashion than an endpoint. Typical examples include network switches or network
routers. Network intermediate node systems may also include any other devices coupled to

intermediate nodes of a network.

Further, some devices may be considered both a network intermediate node system
and a network endpoint system. Such hybrid systems may perform both endpoint
functionality and intermediate node functionality in the same device. For example, a network
switch that also performs some endpoint functionality may be considered a hybrid system.
As used herein such hybrid devices are considered to be a network endpoint system and are

also considered to be a network intermediate node system.

For ease of understanding, the systems and methods disclosed herein are described
with regards to an illustrative network connected computing system. In the illustrative
example the system is a network endpoint system optimized for a content delivery
application. Thus a content delivery system is provided as an illustrative example that
demonstrates the structures, methods, advantages and benefits of the network computing
system and methods disclosed herein. Content delivery systems (such as systems for serving
streaming content, HTTP content, cached content, etc.) generally have intensive input/output

demands.

It will be recognized that the hardware and methods discussed below may be
incorporated into other hardware or applied to other applications. For example with respect
to hardware, the disclosed system and methods may be utilized in network switches. Such
switches may be considered to be intelligent or smart switches with expanded functionality
beyond a traditional switch. Referring to the content delivery application described in more
detail herein, a network switch may be configured to also deliver at least some content in
addition to traditional switching functionality. Thus, though the system may be considered
primarily a network switch (or some other network intermediate node device), the system
may incorporate the hardware and methods disclosed herein. Likewise a network switch
performing applications other than content delivery may utilize the systems and methods

disclosed herein. The nomenclature used for devices utilizing the concepts of the present

10

15

20

25

30

WO 02/43320 PCT/US01/45722

6

invention may vary. The network switch or router that includes the content delivery system
disclosed herein may be called a network content switch or a network content router or the
like. Independent of the nomenclature assigned to a device, it will be recognized that the

network device may incorporate some or all of the concepts disclosed herein.

The disclosed hardware and methods also may be utilized in storage area networks,
network attached storage, channel attached storage systems, disk arrays, tape storage systems,
direct storage devices or other storage systems. In this case, a storage system having the
traditional storage system functionality may also include additional functionality utilizing the
hardware and methods shown herein. Thus, although the system may primarily be
considered a storage system, the system may still include the hardware and methods disclosed
herein. The disclosed hardware and methods of the present invention also may be utilized in
tr;clditional personal computers, portable computers, servers, workstations, mainframe
computer systems, or other computer systems. In this case, a computer system having the
traditional computer system functionality associated with the particular type of computer
system may also include additional functionality utilizing the hardware and methods shown
herein. Thus, although the system may primarily be considered to be a particular type of

computer system, the system may still include the hardware and methods disclosed herein.

As mentioned above, the benefits of the present invention are not limited to any
specific tasks or applications. The content delivery applications described herein are thus
illustrative only. Other tasks and applications that may incorporate the principles of the
present invention include, but are not limited to, database management systems, application
service providers, corporate data centers, modeling and simulation systems, graphics
rendering systems, other complex computational analysis systems, etc. Although the
principles of the present invention may be described with respect to a specific application, it
will be recognized that many other tasks or applications performed with the hardware and

methods.

Disclosed herein are systems and methods for delivery of content to computer-based
networks that employ functional multi-processing using a “staged pipeline” content delivery
environment to optimize bandwidth utilization and accelerate content delivery while allowing
greater determination in the data traffic management. The disclosed systems may employ

individual modular processing engines that are optimized for different layers of a software

10

15

20

25

30

WO 02/43320 PCT/US01/45722
7

stack. Each individual processing engine may be provided with one or more discrete
subsystem modules configured to run on their own optimized platform and/or to function in
parallel with one- or more other subsystem modules across a high speed distributive
interconnect, such as a switch fabric, that allows peer-to-peer communication between
individual subsystem modules. The use of discrete subsystem modules that are distributively
interconnected in this manner advantageously allows individual resources (e.g., processing
resources, memory resources) to be deployed by sharing or reassignment in order to
maximize acceleration of content delivery by the content delivery system. The use of a
scalable packet-based interconnect, such as a switch fabric, advantageously allows the
installation of additional subsystem modules without significant degradation of system
performance. Furthermore, policy enhancement/enforcement may be optimized by placing

intelligence in each individual modular processing engine.

The network systems disclosed herein may operate as network endpoint systems.
Examples of network endpoints include, but are not limited to, servers, content delivery
systems, storage syétems, application service providers, database management systems,
corporate data center servers, etc. A client system is also a network endpoint, and its
resources may typically range from those of a general purpose computer to the simpler
resources of a network appliance. The various processing units of the network endpoint

system may be programmed to achieve the desired type of endpoint.

Some embodiments of the network endpoint systems disclosed herein are network
endpoint content delivery systems. The network endpoint content delivery systems may be
utilized in replacement of or in conjunction with traditional network servers. A "server" can
be any device that delivers content, services, or both. For example, a content delivery server
receives requests for content from remote browser clients via the network, accesses a file
system to retrieve the requested content, and delivers the content to the client. As a}nother
example, an applications server may be programmed to execute applications software on
behalf of a remote .client, thereby creating data for use by the client. Various server

appliances are being developed and often perform specialized tasks.

As will be described more fully below, the network endpoint system disclosed herein
may include the use of network processors. Though network processors conventionally are

designed and utilized at intermediate network nodes, the network endpoint system disclosed

10

15

20

25

30

WO 02/43320 PCT/US01/45722
8

herein adapts this type of processor for endpoint use.

The network endpoint system disclosed may be construed as a switch based
computing system. The system may further be characterized as an asymmetric multi-

processor system configured in a staged pipeline manner.

EXEMPLARY SYSTEM OVERVIEW

FIG. 1A is a representation of one embodiment of a content delivery system 1010, for

example as may be employed as a network endpoint system in connection with a network
1020. Network 1020 may be any type of computer network suitable for linking computing
systems. Content delivery system 1010 may be coupled to one or more networks including,
but not limited to, the public internet, a private intranet network (e.g., linking users and hosts
such as employees of a corporation or institution), a wide area network (WAN), a local area
network (LAN), a wireless network, any other client based network or any other network
environment of connected computer systems or online users. Thus, the data provided from
the network 1020 may be in any networking protocol. In one embddiment, network 1020
may be the public internet that serves to provide access to content delivery system 1010 by
multiple online users that utilize internet web browsers on personal computers operating
through an internet service provider. In this case the data is assumed to follow one or more of
various Internet Protocols, such as TCP/IP, UDP, HTTP, RTSP, SSL, FTP, etc. However,
the same concepts apply to networks using other existing or future protocols, such as IPX,
SNMP, NetBios, Ipv6, etc. The concepts may also apply to file protocols such as network
file system (NFS) or common internet file system (CIFS) file sharing protocol.

Examples of content that may be delivered by content delivery system 1010 include,
but are not limited to, static content (e.g., web pages, MP3 files, HTTP object files, audio
stream files, video stream files, efc.), dynamic content, efc. In this regard, static content may
be defined as content available to content delivery system 1010 via attached storage devices
and as content that does not generally require any processing before delivery. Dynamic
content, on the other hand, may be defined as content that either requires processing before
delivery, or resides remotely from content delivery system 1010. As illustrated in FIG. 1A,
content sources may include, but are not limited to, one or more storage devices 1090
(magnetic disks, optical disks, tapes, storage area networks (SAN’s), efc.), other content

sources 1100, third party remote content feeds, broadcast sources (live direct audio or video

10

15

20

25

30

WO 02/43320 PCT/US01/45722
9

broadcast feeds, etc.), delivery of cached content, combinations thereof, efc. Broadcast or
remote content may be advantageously received through second network connection 1023
.and delivered to network 1020 via an accelerated flowpath through content delivery system
1010. As discussed below, second network connection 1023 may be connected to a second
network 1024 (as shown). Alternatively, both network connections 1022 and 1023 may be
connected to network 1020.

As shown in FIG. 1A, one embodiment of content delivery system 1010 includes
multiple system engines 1030, 1040, 1050, 1060, and 1070 communicatively coupled via
distributive interconﬁecﬁon 1080. In the exemplary embodiment provided, these system
engines operate as content delivery engines. As used herein, "content delivery engine"
generally includes any hardware, software or hardware/software combination capable of
performing one or more dedicated tasks or sub-tasks associated with the delivery or
transmittal of content from one or more content sources to one or more networks. In the
embodiment illustrated in FIG. 1A content delivery processing engines (or “processing
blades”) include network interface processing engine 1030, storage processing engine 1040,
network transport / protocol processing engine 1050 (referred to hereafter as a transport
processing engine), system management processing engine 1060, and application processing
engine 1070. Thus configured, content delivery system 1010 is capable of providing multiple
dedicated and independent processing engines that are optimized for networking, storage and
application protocols, each of which is substantially self-contained and therefore capable of

functioning without consuming resources of the remaining processing engines.

It will be understood with benefit of this disclosure that the particular number and
identity of content delivery engines illustrated in FIG. 1A are illustrative only, and that for
any given content delivery system 1010 the number and/or identity of content delivery
engines may be varied to fit particular needs of a given application or installation. Thus, the
number of engines employed in a given content delivery system may be greater or fewer in
number than illustrated in FIG. 1A, and/or the selected engines may include other types of
content delivery engines and/or may not include all of the engine types illustrated in FIG. 1A.
In one embodiment, the content delivery system 1010 may be implemented within a single

chassis, such as for example, a 2U chassis.

Content delivery engines 1030, 1040, 1050, 1060 and 1070 are present to

10

15

20

25

30

WO 02/43320 PCT/US01/45722

10

indepéndently perform selected sub-tasks associated with content delivery from content
sources 1090 and/or 1100, it being understood however that in other embodiments any one or
more of such subtasks may be combined and performed by a single engine, or subdivided to
be performed by more than one engine. In one embodiment, each of engines 1030, 1040,
1050, 1060 and 1070 may employ one or more independent processor modules (e.g., CPU
modules) having independent processor and memory subsystems and suitable for
performance of a given function/s, allowing independent operation without interference from
other engines or modules. Advantageously, this allows custom selection of particular
‘processor—types based on the particular sub-task each is to perform, and in consideration of
factors such as speed or efficiency in performance of a given subtask, cost of individual
processor, etc. The processors utilized may be any processor suitable for adapting to
endpoint processing. Any "PC on a board" type device may be used, such as the x86 and
Pentium processors from Intel Corporation, the SPARC processor from Sun Microsystems,
Inc., the PowerPC processor from Motorola, Inc. or any other microcontroller or
microprocessor. In addition, network processors (discussed in more detail below) may also
be utilized. The modular multi-task configuration of content delivery system 1010 allows the
number and/or type of content delivery engines and processors to be selected or varied to fit

the needs of a particular application.

The configuration of the content delivery system described above provides scalability
without having to scale all the resources of a system. Thus, unlike the traditional rack and
stack systems, such as server systems in which an entire server may be added just to expand ,
one segment of system resources, the content delivery system allows the particular resources
needed to be the only expanded resources. For example, storage resources may be greatly

expanded without having to expand all of the traditional server resources.

DISTRIBUTIVE INTERCONNECT
Still referring to FIG. 1A, distributive interconnection 1080 may be any multi-node

I/0O interconnection hardware or hardware/software system suitable for distributing
functionality by selectively interconnecting two or more content delivery engines of a content
delivery system including, but not limited to, high speed interchange systems such as a switch
fabric or bus architecture. Examples of switch fabric architectures include cross-bar switch
fabrics, Ethernet switch fabrics, ATM switch fabrics, etc. Examples of bus architectures
include PCI, PCI-X, S-Bus, Microchannel, VME, etc. Generally, for purposes of this

10

15

20

25

30

WO 02/43320 PCT/US01/45722
11

description, a "bus" is any system bus that carries data in a manner that is visible to all nodes
on the bus. Genefally, some sort of bus arbitration scheme is implemented and data may be
carried in parallel, as n-bit words. As distinguished from a bus, a switch fabric establishes
independent paths from node to node and data is specifically addressed to a particular node
on the switch fabric. Other nodes do not see the data nor are they blocked from creating their
own paths. The result is a simultaneous guaranteed bit rate in each direction for each of the

switch fabric's ports.

The use of a distributed interconnect 1080 to connect the various processing engines
in lieu of the network connections used with the switches of conventional multi-server
endpoints is beneficial for several reasons. As compared to network connections, the
distributed interconnect 1080 is less error prone, allows more deterministic content delivery,
and provides higher bandwidth connections to the various processing engines. The distributed
interconnect 1080 also has greatly improved data integrity and throughput rates as compared

to network connections.

Use of the distributed interconnect 1080 allows latency between content delivery
engines to be short, finite and follow a known path. Known maximum latency specifications
are typically associated with the various bus architectures listed above. Thus, when the
employed interconnect medium is a bus, latencies fall within a known range. In the case of a
switch fabric, latencies are fixed. Further, the connections are "direct", rather than by some
undetermined path. In general, the use of the distributed interconnect 1080 rather than
network connections, permits the switching and interconnect capacities of the content
delivery system 1010 to be predictable and consistent.

One example interconnection system suitable for use as distributive interconnection
1080 is an 8/16 port 28.4 Gbps high speed PRIZMA-E non-blocking switch fabric switch
available from IBM. It will be understood that other switch fabric configurations having
greater or lesser numbers of ports, throughput, and capacity are also possible. Among the
advantages offered by such a switch fabric interconnection in comparison to shared-bus
interface interconnection technology are throughput, scalability and fast and efficient
communication between individual discrete content delivery engines of content delivery
system 1010. In the embodiment of FIG. 1A, distributive interconnection 1080 facilitates

parallel and independent operation of each engine in its own optimized environment without

10

15

20

25

30

WO 02/43320 PCT/US01/45722
12

bandwidth interference from other engines, while at the same time providing peer-to-peer
communication between the engines on an as-needed basis (eg., allowing direct
communication between any two content delivery engines 1030, 1040, 1050, 1060 and 1070).
Moreover, the distributed interconnect may directly transfer inter-processor communications
between the various engines of the system. Thus, communication, command and control
information may be provided between the various peers via the distributed interconnect. In
addition, communication from one peer to multiple peers may be implemented through a
broadcast communication which is provided from one peer to all peers coupled to the
interconnect. The interface for each peer may be standardized, thus providing ease of design

and allowing for system scaling by providing standardized ports for adding additional peers.

NETWORK INTERFACE PROCESSING ENGINE

As illustrated in FIG. 1A, network interface processing engine 1030 interfaces with
network 1020 by receiving and processing requests for content and delivering requested
content to network 1020. Network interface processing engine 1030 may be any hardware or
hardware/software subsystem suitable for connections utilizing TCP (Transmission Control
Protocol) IP (Internet Protocol), UDP (User Datagram Protocol), RTP (Real-Time Transport
Protocol), Internet Protocol (IP), Wireless Application Protocol (WAP) as well as other
networking protocols. Thus the network interface processing engine 1030 may be suitable
for handling queue management, buffer management, TCP connect sequence, checksum, IP
address lookup, internal load balancing, packet switching, efc. Thus, network interface
processing engine 1030 may be employed as illustrated to process or terminate one or more
layers of the network protocol stack and to perform look-up intensive operations, offloading
these tasks from other content delivery processing engines of content delivery system 1010.
Network interface processing engine 1030 may also be employed to load balance among
other content delivery processing engines of content delivery system 1010. Both of these
features serve to accelerate content delivery, and are enhanced by placement of distributive
interchange and protocol termination processing functions on the same board. Examples of
other functions that may be performed by network interface processing engine 1030 include,

but are not limited to, security processing.

With regard to the network protocol stack, the stack in traditional systems may often
be rather large. Processing the entire stack for every request across the distributed

interconnect may significantly impact performance. As described herein, the protocol stack

10

15

20

25

30

WO 02/43320 PCT/US01/45722
13

has been segmented or “split” between the network interface engine and the transport
processing engine. An abbreviated version of the protocol stack is then provided across the
interconnect. By utilizing this functionally split version of the protocol stack, increased
bandwidth may be obtained. In this manner the communication and data flow through the
content delivery system 1010 may be accelerated. The use of a distributed interconnect (for
example a switch fabric) further enhances this acceleration as compared to traditional bus

interconnects.

The network interface processing engine 1030 may be coupled to the network 1020
through a Gigabit (Gb) Ethernet fiber front end interface 1022. One or more additional Gb
Ethernet interfaces 1023 may optionally be provided, for example, to form a second interface
with network 1020, or to form an interface with a second network or application 1024 as
shown (e.g., to form an interface with one or more server/s for delivery of web cache content,
etc.). Regardless of whether the network connection is via Ethernet, or some other means, the
network connection could be of any type, with other examples being ATM, SONET, or
wireless. The physical medium between the network and the network processor may be

copper, optical fiber, wireless, etc.

In one embodiment, network interface processing engine 1030 may utilize a network
processor, although it will be understood that in other embodiments a network processor may
be supplemented with or replaced by a general purpose processor or an embedded
microcontroller. The network processor may be one of the various types of specialized
processors that have been designed and marketed to switch network traffic at intermediate
nodes. Consistent with this conventional application, these processors are designed to
process high speed streams of network packets. In conventional operation, a network
processor receives a packet from a port, verifies fields in the packet header, and decides on an
outgoing port to which it forwards the packet. The processing of a network processor may be
considered as "pass through" processing, as compared to the intensive state modification
processing performed by general purpose processors. A typical network processor has a
number of processing elements, some operating in parallel and some in pipeline. Often a
characteristic of a network processor is that it may hide memory access latency needed to
perform lookups and modifications of packet header fields. A network processor may also
have one or more network interface contfollers, such as a gigabit Ethernet controller, and are

generally capable of handling data rates at "wire speeds".

10

15

20

25

30

WO 02/43320 PCT/US01/45722
14

Examples of network processors include the C-Port processor manufactured by
Motorola, Inc., the IXP1200 processor manufactured by Intel Corporation, the Prism
processor manufactured by SiTera Inc., and others manufactured by MMC Networks, Inc.
and Agere, Inc. These processors are programmable, usually with a RISC or augmented RISC

instruction set, and are typically fabricated on a single chip.

The processing cores of a network processor are typically accompanied by special
purpose cores that perform specific tasks, such as fabric interfacing, table lookup, queue
management, and buffer management. Network processors typically have their memory
management optimized for data movement, and have multiple I/O and memory buses. The
programming capability of network processors permit them to be programmed for a variety
of tasks, such as load balancing, network protocol processing, network security policies, and
QoS/CoS support. These tasks can be tasks that would otherwise be performed by another
processor. For example, TCP/IP processing may be performed by a network processor at the
front end of an endpoint system. Another type of processing that could be offloaded is
execution of network security policies or protocols. A network processor could also be used
for load balancing. Network processors used in this manner can be referred to as “network
accelerators” because their front end “look ahead” processing can vastly increase network
response speeds. Network processors perform look ahead processing by operating at the
front end of the network endpoint to process network packets in order to reduce the workload
placed upon the remaining endpoint resources. Various uses of network accelerators are
described in the following concurrently filed U.S. patent applications: Serial No. 09/797,507,
entitled “Single Chassis Network Endpoint System With Network Processor For Load
Balancing,” by Richter et. al; and Serial No. 09/797,411, entitled “Network Security
Accelerator,” by Canion et. al; the disclosures of which are all incorporated herein by
reference. When utilizing network processors in an endpoint environment it may be
advantageous to utilize techniques for order serialization of information, such as for example,
as disclosed in concurrently filed U.S. patent application no. 09/797,197, entitled “Methods
and Systems For The Order Serialization Of Information In A Network Processing

Environment,” by Richter et. al, the disclosure of which is incorporated herein by reference.

FIG. 3 illustrates one possible general configuration of a network processor. As

illustrated, a set of traffic processors 21 operate in parallel to handle transmission and receipt

10

15

20

25

30

WO 02/43320 PCT/US01/45722
15

of network traffic. These processors may be general purpose microprocessors or state
machines. Various core processors 22 - 24 handle special tasks. For example, the core
processors 22 - 24 may handle lookups, checksums, and buffer management. A set of serial
data processors 25 provide Layer 1 network support. Interface 26 provides the physical
interface to the network 1020. A general purpose bus interface 27 is used for downloading
code and configuration tasks. A specialized interface 28 may be specially programmed to

optimize the path between network processor 12 and distributed interconnection 1080.

As mentioned above, the network processors utilized in the content delivery system
1010 are utilized for endpoint use, rather than conventional use at intermediate network
nodes. In one embodiment, network interface processing engine 1030 may utilize a
MOTOROLA C-Port C-5 network processor capable of handling two Gb Ethernet interfaces
at wire speed, and optimized for cell and packet processing. This network processor may
contain sixteen 200 MHz MIPS processors for cell/packet switching and thirty-two serial
processing engines for bit/byte processing, checksum generation/verification, etc. Further
processing capability may be provided by five co-processors that perform the following
network specific tasks: supervisor/executive, switch fabric interface, optimized table lookup,
queue management, and buffer management. The network processor may be coupled ‘\to the
network 1020 by using a VITESSE GbE SERDES (serializer-deserializer) device (for
example the VSC7123) and an SFP (small form factor pluggable) optical transceiver for LC

fiber connection.

TRANSPORT / PROTOCOL PROCESSING ENGINE
Referring again to FIG. 1A, transport processing engine 1050 may be provided for

performing network transport protocol sub-tasks, such as processing content requests
received from network interface engine 1030. Although named a "transport" engine for
discussion purposes, it will be recognized that the engine 1050 performs transport and
protocol processing and the term transport processing engine is not meant to limit the
functionality of the engine. In this regard transport processing engine 1050 may be any
hardware or hardware/software subsystem suitable for TCP/UDP processing, other protocol
processing, transport processing, efc. In one embodiment transport engine 1050 may be a
dedicated TCP/UDP processing module based on an INTEL PENTIUM III or MOTOROLA
POWERPC 7450 based processor running the Thread-X RTOS environment with protocol
stack based on TCP/IP technology.

10

15

20

25

30

WO 02/43320 PCT/US01/45722
16

As compared to traditional server type corrnputing systems, the transport processing
engine 1050 may off-load other tasks that traditionally a main CPU may perform. For
example, the performance of server CPUs significantly decreases when a large amount of
network connections are made merely because the server CPU regularly checks each
connection for time outs. The transport processing engine 1050 may perform time out checks
for each network connection, session management, data reordering and retransmission, data
queueing and flow control, packet header generation, etc. off-loadiﬁg these tasks from the
application processiﬂg engine or the network interface proceséing engine. The transport
processing engine 1050 may also handle error checking, likewise freeing up the resources of

other processing engines.

NETWORK INTERFACE / TRANSPORT SPLIT PROTOCOL

The embodiment of FIG. 1A conterﬁplates that the protocol processing is shared

between the transport processing engine 1050 and the network interface engine 1030. This
sharing technique may be called “split protocol stack” processing. The division of tasks may
be such that higher tasks in the protocol stack are assigned to the transport processor engine.
For example, network interface engine 1030 may processes all or some of the TCP/IP
protocol stack as well as all protocols lower on the network protocol stack. Another approach

could be to assign state modification intensive tasks to the transport processing engine.

In one embodiment related to a content delivery system that receives packets, the
network interface engine performs the MAC header identification and verification, IP header
identification and verification, IP header checksum validation, TCP and UDP header
identification and validation, and TCP or UDP checksum validation. It also may perform the
lookup to determine the TCP connection or UDP socket (protocol session identifier) to which
a received packet belongs. Thus, the network interface engine verifies packet lengths,
checksums, and validity. For transmission of packets, the network interface engine performs
TCP or UDP checksum generation, IP header generation, and MAC header generation, IP
checksum generation, MAC FCS/CRC generation, etc.

Tasks such as those described above can all be performed rapidly by the parallel and
pipeline processors within a network processor. The “fly by” processing style of a network

processor permits it to look at each byte of a packet as it passes through, using registers and

10

15

20

25

30

WO 02/43320) PCT/US01/45722

17

other alternatives to memory access. The network processor’s “stateless forwarding”
operation is best suited for tasks not involving complex calculations that require rapid

updating of state information.

An appropriate internal protocol may be provided for exchanging information
between the network interface engine 1030 and the transport engine 1050 when setting up or
terminating a TCP and/or UDP connections and to transfer packets between the two engines.
For example, where the distributive interconnection medium is a swith:h fabric, the internal
protocol may be implemented as a set of messages exchanged across the switch fabric. These
messages indicate the arrival of new inbound or outbound connections and contain inbound
or outbound packets on existing connections, along with identifiers or tags for those
connections. The internal protocol may also be used to transfer identifiers or tags between
the transport engine 1050 and the application processing engine 1070 and/or the storage
processing engine 1040. These identifiers or tags may be used to reduce or strip or accelerate

a portion of the protocol stack.

For example, with a TCP/IP connection, the network interface engine 1030 may
receive a request for a new connection. The header information associated with the initial
request may be provided to the transport processing engine 1050 for processing. That result
of this processing may be stored in the resources of the transport processing engine 1050 as
state and management information for that particular network session. The transport
processing engine 1050 then informs the network interface engine 1030 as to the location of
these results. Subsequent packets related to that connection that are processed by the network
interface engine 1030 may have some of the header information stripped and replaced with an
identifier or tag that is provided to the transport processing engine 1050. The identifier or tag
may be a pointer, index or any other mechanism that provides for the identification of the
location in the transi)ort processing engine of the previously setup state and management
information (or the corresponding network session). In this manner, the transport processing
engine 1050 does not have to process the header information of every packet of a connection.
Rather, the transport interface engine merely receives a contextually meaningful identifier or

tag that identifies the previous processing results for that connection.

In one embodiment, the data link, network, transport and session layers (layers 2-5) of

a packet may be replaced by identifier or tag information. For packets related to an

10

15

20

25

30

WO 02/43320 PCT/US01/45722

18

established connection the transport processing engine does not have to perform intensive
processing with regard to these layers such as hashing, scanning, look up, etc. operations.
Rather, these layers- have already been converted (or processed) once in the transport
processing engine and the transport processing engine just receives the identifier or tag
provided from the network interface engine that identifies the location of the conversion

results.

In this manner an identifier or tag is provided for each packet of an established
connection so that the more complex data computations of converting header information
may be replaced with a more simplistic analysis of an identifier or tag. The delivery of
content is thereby accelerated, as the time for packet processing and the amount of system
resources for packet processing are both reduced. The functionality of network processors,
which provide efficient parallel processing of packet headers, is well suited for enabling the
acceleration described herein. In addition, acceleration is further provided as the physical

size of the packets provided across the distributed interconnect may be reduced.

Though described herein with reference to messaging between the network interface
engine and the transport processing engine, the use of identifiers or tags may be utilized
amongst all the engines in the modular pipelined processing described herein. Thus, one
engine may replace packet or data information with contextually meaningful information that
may require less processing by the next engine in the data and communication flow path. In
addition, these techniques may be utilized for a wide variety of protocols and layers, not just

the exemplary embodiments provided herein.

With the above-described tasks being performed by the network interface engine, the
transport engine may perform TCP sequence number processing, acknowledgement and
retransmission, segmentation and reassembly, and flow control tasks. These tasks generally
call for storing and modifying connection state information on each TCP and UDP
connection, and therefore are considered more appropriate for the processing capabilities of

general purpose processors.

As will be discussed with references to alternative embodiments (such as FIGS. 2 and
2A), the transport engine 1050 and the network interface engine 1030 may be combined into

a single engine. Such a combination may be advantageous as communication across the

10

15

20

25

30

WO 02/43320 PCT/US01/45722

19

switch fabric is not necessary for protocol processing. However, limitations of many
commercially available network processors make the split protocol stack processing

described above desirable.

APPLICATION PROCESSING ENGINE

Application processing engine 1070 may be provided in content delivery system 1010

for application processing, and may be, for example, any hardware or hardware/software
subsystem suitable for session layer protocol processing (e.g., HTTP, RTSP streaming, efc.)
of content requests received from network transport processing engine 1050. In one
embodiment application processing engine 1070 may be a dedicated application processing
module based on an INTEL PENTIUM III processor running, for example, on standard x86
OS systems (e.g., Linux, Windows NT, FreeBSD, efc.). Application processing engine 1070
may be utilized for dedicated application-only processing by virtue of the off-loading of all
network protocol and storage processing elsewhere in content delivery system 1010. In one
embodiment, processor programming for application processing engine 1070 may be
generally similar to that of a conventional server, but without the tasks off-loaded to network
interface processing engine 1030, storage processing engine 1040, and transport processing

engine 1050.

STORAGE MANAGEMENT ENGINE

Storage management engine 1040 may be any hardware or hardware/software

subsystem suitable for effecting delivery of requested content from content sources (for
example content sources 1090 and/or 1100) in response to processed requests received from
application processing engine 1070. It will also be understood that in various embodiments a
storage management engine 1040 may be employed with content sources other than disk
drives (e.g., solid state storage, the storage systems described above, or any other media
suitable for storage of data) and may be programmed to request and receive data from these

other types of storage.

In one embodiment, processor programming for storage management engine 1040
may be optimized for data retrieval using techniques such as caching, and may include and
maiﬁtain a disk cache to reduce the relatively long time often required to retrieve data from
content sources, such as disk drives. Requests received by storage management engine 1040

from application processing engine 1070 may contain information on how requested data is

10

15

20

25

30

WO 02/43320 PCT/US01/45722
20

to be formatted and its destination, with this information being comprehensible to transport
processing engine 1050 and/or network interface processing engine 1030. The storage
management engine 1040 may utilize a disk cache to reduce the relatively long time it may
take to retrieve data stored in a storage medium such as disk drives. Upon receiving a
request, storage management engine 1040 may be programmed to first determine whether the
requested data is cached, and fhen to send a request for data to the appropriate content source
1090 or 1100. Such a request may be in the form of a conventional read request. The
designated content source 1090 or 1100 responds by sending the requested content to storage
management engine 1040, which in turn sends the content to transport processing engine

1050 for forwarding to network interface processing engine 1030.

Based on the data contained in the request received from application processing
engine 1070, storage processing engine 1040 sends the requested content in proper format
with the proper destination data included. Direct communication between storage processing
engine 1040 and transport processing engine 1050 enables application processing engine
1070 to be bypassed with the requested content. Storage processing engine 1040 may also be
configured to write data to content sources 1090 and/or 1100 (e.g., for storage of live or

broadcast streaming content).

In one embodiment storage management engine 1040 may be a dedicated block-level
cache processor capable of block level cache processing in support of thousands of
concurrent multiple readers, and direct block data switching to network interface engine
1030. In this regard storage management engine 1040 may utilize a POWER PC 7450
processor in conjunction with ECC memory and a LSI SYMFC929 dual 2GBaud fibre
channel controller for fibre channel interconnect to content sources 1090 and/or 1100 via dual
fibre channel arbitrated loop 1092. It will be recognized, however, that other forms of
interconnection to storage sources suitable for retrieving content are also possible. Storage
management engine 1040 may include hardware and/or software for running the Fibre
Channel (FC) protocol, the SCSI (Small Computer Systems Interface) protocol, iSCSI

protocol as well as other storage networking protocols.

Storage management engine 1040 may employ any suitable method for caching data,
including simple computational caching algorithms such as random removal (RR), first-in

first-out (FIFO), predictive read-ahead, over buffering, etc. algorithms. Other suitable

10

15

20

25

30

WO 02/43320 PCT/US01/45722

21

caching algorithms include those that consider one or more factors in the manipulation of
content stored within the cache memory, or which employ multi-level ordering, key based
ordering or function based calculation for replacement. In one embodiment, storage
management engine may implement a layered multiple LRU (LMLRU) algorithm that uses
an integrated block/buffer management structure including at least two layers of a
configurable number of multiple LRU queues and a two-dimensional positioning algorithm
for data blocks in the memory to reflect the relative priorities of a data block in the memory
in terms of both recency and frequency. Such a caching algorithm is described in further
detail in concurrently filed U.S. patent application no. 09/797,198, entitled “Systems and
Methods for Management of Memory” by Qiu et. al, the disclosure of which is incorporated

herein by reference.

For increasing delivery efficiency of continuous content, such as streaming
multimedia content, storage management engine 1040 may employ caching algorithms that
consider the dynamic characteristics of continuous content. Suitable examples include, but
are not limited to, interval caching algorithms. In one embodiment, improved caching
performance of continuous content may be achieved using an LMLRU caching algorithm that
weighs ongoing viqwer cache value versus the dynamic time-size cost of maintaining
particular content in cache memory. Such a caching algorithm is described in further detail in
concurrently filed U.S. patent application no. 09/797,201, entitled “Systems and Methods for
Management of Memory in Information Delivery Environments” by Qiu et. al, the disclosure

of which is incorporated herein by reference.

SYSTEM MANAGEMENT ENGINE

System management (or host) engine 1060 may be present to perform system

management functions related to the operation of content delivery system 1010. Examples of
system management functions include, but are not limited to, content provisioning/updates,
comprehensive statistical data gathering and logging for sub-system engines, collection of
shared user bandwidth utilization and content utilization data that may be input into billing
and accounting systems, “on the fly” ad insertion into delivered content, customer
programmable sub-system level quality of service-(“QoS”) parameters, remote management

(e.g., SNMP, web-based, CLI), health monitoring, clustering controls, remote/local disaster

" recovery functions, predictive performance and capacity planning, efc. In one embodiment,

content delivery bandwidth utilization by individual content suppliers or users (e.g.,

10

15

20

25

30

WO 02/43320 PCT/US01/45722
22

individual supplier/user usage of distributive interchange and/or content delivery engines)
may be tracked and logged by system management engine 1060, enabling an operator of the
content delivery system 1010 to charge each content supplier or user on the basis of content

volume delivered.

System management engine 1060 may be any hardware or hardware/software
subsystem suitable for performance of one or more such system management engines and in
one embodiment may be a dedicated application processing module based, for example, on
an INTEL PENTIUM III processor running an x86 OS. Because system management engine
1060 is provided as a discrete modular engine, it may be employed to perform system
management functions from within content delivery system 1010 without adversely affecting
the perfonnaﬁce of the system. Furthermore, the system management engine 1060 may
maintain information on processing engine assignment and content delivery paths for various
content delivery applications, substantially eliminating the need for an individual processing

engine to have intimate knowledge of the hardware it intends to employ.

Under manual or scheduled direction by a user, system management processing
engine 1060 may retrieve content from the network 1020 or from one or more external
servers on a second network 1024 (e.g., LAN) using, for example, network file system (NFS)
or common internet file system (CIFS) file sharing protocol. Once content is retrieved, the
content delivery system may advantageously maintain an independent copy of the original
content, and therefore is free to employ any file system structure that is beneficial, and need

not understand low level disk formats of a large number of file systems.

Management interface 1062 may be provided for interconnecting system management
engine 1060 with a network 1200 (e.g., LAN), or connecting content delivery system 1010 to
other network appliances such as other content delivery systems 1010, servers, computers,
efc. Management interface 1062 may be by any suitable network interface, such as 10/100
Ethernet, and may support communications such as management and origin traffic. Provision
for one or more terminal management interfaces (not shown) for may also be provided, such
as by RS-232 port, efc. The management interface may be utilized as a secure port to provide
system management and control information to the content delivery system 1010. For
example, tasks which may be accomplished through the management interface 1062 include

reconfiguration of the allocation of system hardware (as discussed below with reference to

10

15

20

25

30

WO 02/43320 PCT/US01/45722

23

FIGS. 1C-1F), programming the application processing engine, diagnostic testing, and any
other management or control tasks. Though generally content is not envisioned being
provided through the management interface, the identification of or location of files or
systems containing content may be received through the management interface 1062 so that
the content delivery system may access the content through the other higher bandwidth

interfaces.

MANAGEMENT PERFORMED BY THE NETWORK INTEFACE

Some of the system management functionality may also be performed directly within

the network interface processing engine 1030. In this case some system policies and filters
may be executed by the network interface engine 1030 in real-time at wirespeed. These
polices and filters may manage some traffic / bandwidth management criteria and various
service level guarantee policies. Examples of such system management functionality of are
described below. It will be recognized that these functions may be performed by the system

management engine 1060, the network interface engine 1030, or a combination thereof.

For example, a content delivery system may contain data for two web sites. An
operator of the content delivery system may guarantee one web site (“the higher quality site”)
higher performance or bandwidth than the other web site (“the lower quality site”),
presumably in exchange for increased compensation from the higher quality site. The
network interface processing engine 1030 may be utilized to determine if the bandwidth
limits for the lower quality site have been exceeded and reject additional data requests related
to the lower quality site. Alternatively, requests related to the lower quality site may be
rejected to ensure the guaranteed performance of the higher quality site is achieved. In this
manner the requests may be rejected immediately at the interface to the external network and
additional resources of the content delivery system need not be utilized. In another example,
storage service providers may'use the content delivery system to charge content providers
based on system bandwidth of downloads (as opposed to the traditional storage area based
fees). For billing purposes, the network interface engine may monitor the bandwidth use
related to a content provider. The network interface engine may also reject additional
requests related to content from a content provider whose bandwidth limits have been
exceeded. Again, in this manner the requests may be rejected immediately at the interface to
the external network and additional resources of the content delivery system need not be

utilized.

10

15

20

25

30

WO 02/43320 PCT/US01/45722
24

Additional system management functionality, such as quality of service (QoS)
functionality, also may be performed by the network interface engine. A request from the
external network to the content delivery system may seek a specific file and also may contain
Quality of Service (QoS) parameters. In one example, the QoS parameter may indicate the
priority of service that a client on the external network is to receive. The network interface
engine may recognize the QoS data and the data may then be utilized when managing the
data and communication flow through the content delivery system. The request may be
transferred to the storage management engine to access this file via a read queue, e.g.,

[Destination IP][Filename][File Type (CoS)][Transport Priorities (QoS)]. All file read
requests may be stored in a read queue. Based on CoS/QoS policy parameters as well as
buffer status within the storage management engine (empty, full, near empty, block seq#,
etc), the storage management engine may prioritize which blocks of which files to access
from the disk next, and transfer this data into the buffer memory location that has been
assigned to be transmitted to a specific IP address. Thus based upon QoS data in the request
provided to the content delivery system, the data and communication traffic through the
system may be prioritized. The QoS and other policy priorities may be applied to both
incoming and outgoing traffic flow. Therefore a request having a higher QoS priority may
be received after a lower order priority request, yet the higher priority request may be served

data before the lower priority request.

The network interface engine may also be used to filter requests that are not supported
by the content delivery system. For example, if a content delivery system is configured only
to accept HTTP requests, then other requests such as FTP, telnet, etc. may be rejected or
filtered. This filtering may be applied directly at the network interface engine, for example
by programming a network processor with the appropriate system policies. Limiting
undesirable traffic directly at the network interface offloads such functions from the other
processing modules and improves system performance by limiting the consumption of system
resources by the undesirable traffic. It will be recognized that the filtering example described

herein is merely exemplary and many other filter criteria or policies may be provided.

MULTI-PROCESSOR MODULE DESIGN

As illustrated- in FIG. 1A, any given processing engine of content delivery system

1010 may be optionally provided with multiple processing modules so as to enable parallel or

10

15

20

25

30

WO 02/43320 PCT/US01/45722
25

redundant processing of data and/or communications. For example, two or more individual
dedicated TCE/UDP processing modules 1050a and 1050b may be provided for transport
processing engine 1050, two or more individual application processing modules 1070a and
1070b may be provided for network application processing engine 1070, two or more
individual network interface processing modules 1030a and 1030b may be provided for
network interface processing engine 1030 and two or more individual storage management
processing modules 1040a and 1040b may be provided for storage management processing
engine 1040. Using such a configuration, a first content request may be processed between a
first TCP/UDP processing module and a first application processing module via a first switch
fabric path, at the same time a second content request is processed between a second
TCP/UDP processing module and a second application processing module via a second
switch fabric path. Such parallel processing capability may be employed to accelerate

content delivery.

Alternatively, or in combination with parallel processing capability, a first TCP/UDP
processing module 1050a may be backed-up by a second TCP/UDP processing module
1050b that acts as an automatic failover spare to the first module 1050a. In those
embodiments employing multiple-port switch fabrics, various combinations of multiple
modules may be selected for use as desired on an individual system-need basis (e.g., as may
be dictated by module failures and/or by anticipated or actual bottlenecks), limited only by
the number of available ports in the fabric. This feature offers great flexibility in the
operation of individual engines and discrete processing modules of a content delivery system,
which may be translated into increased content delivery acceleration and reduction or

substantial elimination of adverse effects resulting from system component failures.

In yet other embodiments, the processing modules may be specialized to specific
applications, for example, for processing and delivering HTTP content, processing and
delivering RTSP content, or other applications. For example, in such an embodiment an
application processing module 1070a and storage processing module 1040a may be specially
programmed for processing a first type of request received from a network. In the same
system, application processing module 1070b and storage processing module 1040b may be
specially programmed to handle a second type of request different from the first type.
Routing of requests to the appropriate respective application and/or storage modules may be

accomplished using a distributive interconnect and may be controlled by transport and/or

10

15

20

25

30

WO 02/43320 PCT/US01/45722
26

interface processing modules as requests are received and processed by these modules using

policies set by the system management engine.

Further, by employing processing modules capable of performing the function of
more than one engine in a content delivery system, the assigned functionality of a given
module may be changed on an as-needed basis, either manually or automatically by the
system management engine upon the occurrence of given parameters or conditions. This
feature may be achieved, for example, by using similar hardware modules for different
content delivery engines (e.g, by employing PENTIUM III based processors for both
network transport processing modules and for application processing modules), or by using
different hardware modules capable of performing the same task as another module through
software programmability (e.g., by employing a POWER PC processor based module for
storage management- modules that are also capable of functioning as metwork transport
modules). In this regard, a content delivery system may be configured so that such
functionality reassignments may occur during system operation, at system boot-up or in both
cases. Such reassignments may be effected, for example, using software so that in a given
content delivery system every content delivery engine (or at a lower level, every discrete
content delivery processing module) is potentially dynamically reconfigurable using software
commands. Benefits of engine or module reassignment include maximizing use of hardware
resources to deliver content while minimizing the need to add expensive hardware to a

content delivery system.

Thus, the system disclosed herein allows various levels of load balancing to satisfy a
work request. At a system hardware level, the functionality of the hardware may be assigned
in a manner that optimizes the system performance for a given load. At the processing
engine level, loads may be balanced between the multiple processing modules of a given

processing engine to further optimize the system performance.

CLUSTERS OF SYSTEMS

The systems described herein may also be clustered together in groups of two or more

to provide additional processing power, storage connections, bandwidth, etc. Communication
between two individual systems each configured similar to content delivery system 1010 may
be made through network interface 1022 and/or 1023. Thus, one content delivery system

could communicate with another content delivery system through the network 1020 and/or

10

15

20

25

30

WO 02/43320 PCT/US01/45722
27

1024. For example, a storage unit in one content delivery system could send data to a
network interface engine of another content delivery system. As an example, these
communications could be via TCP/IP protocols. Alternatively, the distributed interconnects
1080 of two content delivery systems 1010 may communicate directly. For example, a
connection may be made directly between two switch fabrics, each switch fabric being the

distributed interconnect 1080 of separate content delivery systems 1010.

FIGS. 1G-17 illustrate four exemplary clusters of content delivery systems 1010. It
will be recognized that many other cluster arrangements may be utilized including more or
less content delivery systems. As shown in FIGS. 1G-1J, each content delivery system may
be configured as described above and include a distributive interconnect 1080 and a network
interface processing engine 1030. Interfaces 1022 may connect the systems to a network
1020. As shown in FIG. 1G, two content delivery systems may be coupled together through
the interface 1023 that is connected to each system’s network interface processing engine
1030. FIG. 1H shows three systems coupled together as in FIG. 1G. The interfaces 1023 of
each system may be coupled directly together as shown, may be coupled together through a

network or may be coupled through a distributed interconnect (for example a switch fabric).

FIG. 1I illustrates a cluster in which the distributed interconnects 1080 of two systems
are directly coupled together through an interface 1500. Interface 1500 may be any
communication connection, such as a copper connection, optical fiber, wireless connection,
etc. Thus, the distributed interconnects of two or more systems may directly communicate
without communication through the processor engines of the content delivery systems 1010.
FIG. 17 illustrates the distributed interconnects of three systems directly communicating
without first requiring communication through the processor engines of the content delivery
systems 1010. As shown in FIG. 1], the interfaces 1500 each communicate with each other
through another distributed interconnect 1600. Distributed interconnect 1600 may be a

switched fabric or any other distributed interconnect.
The clustering techniques described herein may also be implemented through the use

of the management interface 1062. Thus, communication between multiple content delivery

systems 1010 also may be achieved through the management interface 1062

EXEMPLARY DATA AND COMMUNICATION FLOW PATHS

10

15

20

25

30

WO 02/43320 PCT/US01/45722
28

FIG. 1B illustrates one exemplary data and communication flow path configuration
among modules of one embodiment of content delivery system 1010. The flow paths shown
in FIG. 1B are just one example given to illustrate the significant improvements in data
processing capacity and content delivery acceleration that may be realized using multiple
content delivery engines that are individually optimized for different layers of the software
stack and that are distributively interconnected as disclosed herein. The illustrated
embodiment of FIG. 1B employs two network application processing modules 1070a and
1070b, and two network transport processing modules 1050a and 1050b that are
communicatively coupled with single storage management processing module 1040a and
single network interface processing module 1030a. The storage management processing
module 1040a is in turn coupled to content sources 1090 and 1100. In FIG. 1B, inter-
processor command or control flow (i.e. incoming or received data request) is represented by
dashed lines, and delivered content data flow is represented by solid lines. Command and
data flow between modules may be accomplished through the distributive interconnection

1080 (not shown), for example a switch fabric.

As shown in FIG. 1B, a request for content is received and processed by network
interface processing module 1030a and then passed on to either of network transport
processing modules 1050a or 1050b for TCP/UDP processing, and then on to respective
application processing modules 1070a or 1070b, depending on the transport processing
module initially selected. After processing by the appropriate network application processing
module, the request is passed on to storage management processor 1040a for processing and
retrieval of the requested content from appropriate content sources 1090 and/or 1100.
Storage management processing module 1040a then forwards the requested content directly
to one of network transport processing modules 1050a or 1050b, utilizing the capability of
distributive interconnection 1080 to bypass network application processing modules 1070a
and 1070b. The requested content may then be transferred via the network interface
processing module 1030a to the external network 1020. Benefits of bypassing the application
processing modules with the delivered content include accelerated delivery of the requested
content and offloading of workload from the application processing modules, each of which
translate into greater processing efficiency and content delivery throughput. In this regard,
throughput is generally measured in sustained data rates passed through the system and may
be measured in bits per second. Capacity may be measured in terms of the number of files

that may be partially cached, the number of TCP/IP connections per second as well as the

10

15

20

25

30

WO 02/43320 PCT/US01/45722

29

number of concurrent TCP/IP connections that may be maintained or the number of
simultaneous streams of a certain bit rate. In an alternative embodiment, the content may be
delivered from the storage management processing module to the application processing
module rather than bypassing the application processing module. This data flow may be
advantageous if additional processing of the data is desired. For example, it may be desirable

to decode or encode the data prior to delivery to the network.

To implement the desired command and content flow paths between multiple
modules, each module may be provided with means for identification, such Jas a component
ID. Components may be affiliated with content requests and content delivery to effect a
desired module routing. The data-request generated by the network interface engine may
include pertinent information such as the component ID of the various modules to be utilized
in processing the request. For example, included in the data request sent to the storage
management engine may be the component ID of the transport engine that is designated to
receive the requested content data. When the storage management engine retrieves the data
from the storage device and is ready to send the data to the next engine, the storage

management engine‘knows which component ID to send the data to.

As further illustrated in FIG. 1B, the use of two network transport modules in
conjunction with two network application processing modules provides two parallel
processing paths for network transport and network application processing, allowing
simultaneous processing of separate content requests and simultaneous delivery of separate
content through the parallel processing paths, further increasing throughput/capacity and
accelerating content delivery. Any two modules of a given engine may communicate with
separate modules of another engine or may communicate with the same module of another
engine. This is illustrated in FIG. 1B where the transport modules are shown to communicate
with separate application modules and the application modules are shown to communicate

with the same storage management module.

FIG. 1B illustrates only one exemplary embodiment of module and processing flow
path configurations that may be employed using the disclosed method and system. Besides
the embodiment illustrated in FIG. 1B, it will be understood that multiple modules may be
additionally or alternatively employed for one or more other network content deiivery

engines (e.g., storage management processing engine, network interface processing engine,

10

15

20

25

30

WO 02/43320 PCT/US01/45722
30

system management processing engine, efc.) to create other additional or alternative parallel
processing flow paths, and that any number of modules (e.g., greater than two) may be
employed for a given processing engine or set of processing engines so as to achieve more
than two parallel processing flow paths. For example, in other possible embodiments, two or
more different network transport processing engines may pass content requests to the same

application unit, or vice-versa.

Thus, in addition to the processing flow paths illustrated in FIG. 1B, it will be
understood that the disclosed distributive interconnection system may be employed to create
other custom or optimized processing flow paths (e.g., by bypassing and/or interconnecting
any given number of processing engines in desired sequence/s) to fit the requirements or
desired operability of a given content delivery application. For example, the content flow
path of FIG. 1B illustrates an exemplary application in which the content is contained in
content sources 1090 and/or 1100 that are coupled to the storage processing engine 1040.
However as discussed above with reference to FIG. 1A, remote and/or live broadcast content
may be provided to the content delivery system from the networks 1020 and/or 1024 via the
second network interface connection 1023. In such a situation the content may be received
by the network interface engine 1030 over interface connection 1023 and immediately re-
broadcast over interface connection 1022 to the network 1020. Alternatively, content may be
proceed through the network interface connection 1023 to the network transport engine 1050
prior to returning to the network interface engine 1030 for re-broadcast over interface
connection 1022 to the network 1020 or 1024. In yet another alternative, if the content
requires some manner of application processing (for example encoded content that may need
to be decoded), the content may proceed all the way to the application engine 1070 for
processing. After application processing the content may then be delivered through the
network transport engine 1050, network interface engine 1030 to the network 1020 or 1024.

In yet another embodiment, at least two network interface modules 1030a and 1030b
may be provided, as' illustrated in FIG. 1A. In this embodiment, a first network interface
engine 1030a may receive incoming data from a network and pass the data directly to the
second network interface engine 1030b for transport back out to the same or different
network. For example, in the remote or live broadcast application described above, first
network interface engine 1030a may receive content, and second network interface engine

1030b provide the content to the network 1020 to fulfill requests from one or more clients for

10

15

20

25

30

WO 02/43320 PCT/US01/45722
31

this content. Peer-to-peer level communication between the two network interface engines
allows first network interface engine 1030a to send the content directly to second network
interface engine 1030b via distributive interconnect 1080. If necessary, the content may also
be routed through transport processing engine 1050, or through transport processing engine

1050 and application processing engine 1070, in a manner described above.

Still yet other applications may exist in which the content required to be delivered is
contained both in the attached content sources 1090 or 1100 and at other remote content
sources. For example in a web caching application, not all content may be cached in the
attached content sources, but rather some data may also be cached remotely. In such an
application, the data and communication flow may be a combination of the various flows
described above for content provided from the content sources 1090 and 1100 and for content

provided from remote sources on the networks 1020 and/or 1024.

The content delivery system 1010 described above is configured in a peer-to-peer
manner that allows the various engines and modules to communicate with each other directly
as peers through the distributed interconnect. This is contrasted with a traditional server
architecture in which there is a main CPU. Furthermore unlike the arbitrated bus of
traditional servers, the distributed interconnect 1080 provides a switching means which is not
arbitrated and allows multiple simultaneous communications between the various peers. The
data and communication flow may by-pass unnecessary peers such as the return of data from
the storage management processing engine 1040 directly to the network interface processing

engine 1030 as described with reference to FIG. 1B.

Communications between the various processor engines may be made through the use
of a standardized internal protocol. Thus, a standardized method is provided for routing
through the switch fabric and communicating between any two of the processor engines
which operate as peers in the peer to peer environment. The standardized internal protocol
provides a mechanism upon which the external network protocols may "ride" upon or be
incorporated within. In this manner additional internal protocol layers relating to internal
communication and data exchange may be added to the external protocol layers. The
additional internal layers may be provided in addition to the external layers or may replace
some of the external protocol layers (for example as described above portions of the external

headers may be réplaced by identifiers or tags by the network interface engine).

10

15

20

25

30

WO 02/43320 PCT/US01/45722
32

The standardized internal protocol may consist of a system of message classes, or
types, where the different classes can independently include fields or layers that are utilized
to identify the destination processor engine or processor module for communication, control,
or data messages provided to the switch fabric along with information pertinent to the
corresponding message class. The standardized internal protocol may also include fields or
layers that identify the priority that a data packet has within the content delivery system.
These priority levels may be set by each processing engine based upon system-wide policies.
Thus, some traffic within the content delivery system may be prioritized over other traffic
and this priority level may be directly indicated within the internal protocol call scheme
utilized to enable communications within the system. The prioritization helps enable the
predictive traffic flow between engines and end-to-end through the system such that service

level guarantees may be supported.

Other internally added fields or layers may include processor engine state, system
timestamps, specific message class identifiers for message routing across the switch fabric
and at the receiving processor engine(s), system keys for secure control message exchange,
flow control information to regulate control and data traffic flow and prevent congestion, and
specific address tag fields that allow hardware at the receiving processor engines to move

specific types of data directly into system memory.

In one embodiment, the internal protocol may be structured as a set, or system of
messages with common system defined headers that allows all processor engines and,
potentially, processor engine switch fabric attached hardware, to interpret and process
messages efficiently and intelligently. This type of design allows each processing engine, and
specific functional entities within the processor engines, to have their own specific message
classes optimized functionally for the exchanging their specific types control and data
information. Some message classes that may be employed are: System Control messages for
system management, Network Interface to Network Transport messages, Network Transport
to Application Interface messages, File System to Storage engine messages, Storage engine to
Network Transport messages, etc. Some of the fields of the standardized message header may
include message priority, message class, message class identifier (subtype), message size,
message options and qualifier fields, message context identifiers or tags, etc. In addition, the

system statistics gathering, management and control of the various engines may be performed

10

15

20

25

30

WO 02/43320 PCT/US01/45722
33

across the switch fabric connected system using the messaging capabilities.

By providing a standardized internal protocol, overall system performance may be
improved. In particular, communication speed between the processor engines across the
switch fabric may be increased. Further, communications between any two processor engines
may be enabled. The standardized protocol may also be utilized to reduce the processing
loads of a given engine by reducing the amount of data that may need to be processed by a

given engine.

The internal protocol may also be optimized for a particular system application,
providing further performance improvements. = However, the standardized internal
communication protocol may be general enough to support encapsulation of a wide range of
networking and storage protocols. Further, while internal protocol may run on PCI, PCI-X,
ATM, IB, Lightening I/O, the internal protocol is a protocol above these transport-level
standards and is optimal for use in a switched (non-bus) environment such as a switch fabric.
In addition, the internal protocol may be utilized to communicate devices (or peers)
connected to the system in addition to those described herein. For example, a peer need not
be a processing engine. In one example, a peer may be an ASIC protocol converter that is
coupled to the distributed interconnect as a peer but operates as a slave device to other master
devices within the system. The internal protocol may also be as a protocol communicated

between systems such as used in the clusters described above.

Thus a system has been provided in which the networking / server clustering / storage
networking has been collapsed into a single system utilizing a common low-overhead internal

communication protocol / transport system.

CONTENT DELIVERY ACCELERATION

As described above, a wide range of techniques have been provided for accelerating

content delivery from the content delivery system 1010 to a network. By accelerating the
speed at which content may be delivered, a more cost effective and higher performance
system may be provided. These techniques may be utilized separately or in various

combinations.

One content acceleration technique involves the use of a multi-engine system with

10

15

20

25

30

WO 02/43320 PCT/US01/45722
34

dedicated engines for varying processor tasks. Each engine can perform operations
independently and iﬁ parallel with the other engines without the other engines needing to
freeze or halt operations. The engines do not have to compete for resources such as memory,
/O, processor time, etc. but are provided with their own resources. Each engine may also be
tailored in hardware and/or software to perform specific content delivery task, thereby
providing increasing content delivery speeds while requiring less system resources. Further,
all data, regardless of the flow path, gets processed in a staged pipeline fashion such that each
engine continues to process its layer of functionality after forwarding data to the next engine /

layer.

Content acceleration is also obtained from the use of multiple processor modules
within an engine. In this manner, parallelism may be achieved within a specific processing
engine. Thus, multiple processors responding to different content requests may be operating

in parallel within one engine.

Content acceleration is also provided by utilizing the multi-engine design in a peer to
peer environment in which each engine may communicate as a peer. Thus, the
communications and data paths may skip unnecessary engines. For example, data may be
communicated directly from the storage processing engine to the transport processing engine

without have to utilize resources of the application processing engine.

Acceleration of content delivery is also achieved by removing or stripping the
contents of some protocol layers in one processing engine and replacing those layers with
identifiers or tags for use with the next processor engine in the data or communications flow
path. Thus, the processing burden placed on the subsequent engine may be reduced. In
addition, the packet size transmitted across the distributed interconnect may be reduced.
Moreover, protocol processing may be off-loaded from the storage and/or application

processors, thus freeing those resources to focus on storage or application processing.

Content acceleration is also provided by using network processors in a network
endpoint system. Network processors generally are specialized to perform packet analysis
functions at intermediate network nodes, but in the content delivery system disclosed the
network processors have been adapted for endpoint functions. Furthermore, the parallel

processor configurations within a network processor allow these endpoint functions to be

10

15

20

25

30

WO 02/43320 PCT/US01/45722
35

performed efficiently.

In addition, content acceleration has been provided through the use of a distributed
interconnection such as a switch fabric. A switch fabric allows for parallel communications
between the various.engines and helps to efficiently implement some of the acceleration

techniques described herein.

It will be recognized that other aspects of the content delivery system 1010 also
provide for accelerated delivery of content to a network connection. Further, it will be
recognized that the techniques disclosed herein may be equally applicable to other network

endpoint systems and even non-endpoint systems.

EXEMPLARY HARDWARE EMBODIMENTS
FIGS. 1C-1F illustrate just a few of the many multiple network content delivery

engine configurations possible with one exemplary hardware embodiment of content delivery
system 1010. In each illustrated configuration of this hardware embodiment, content delivery
system 1010 includes processing modules that may be configured to operate as content
delivery engines 1030, 1040, 1050, 1060, and 1070 communicatively coupled via distributive
interconnection 1080: As shown in FIG. 1C, a single processor module may operate as the
network interface processing engine 1030 and a single processor module may operate as the
system management processing engine 1060. Four processor modules 1001 may be
configured to operate as either the transport processing engine 1050 or the application
processing engine 1070. Two processor modules 1003 may operate as either the storage
processing engine 1040 or the transport processing engine 1050. The Gigabit (Gb) Ethernet
front end interface 1022, system management interface 1062 and dual fibre channel arbitrated

loop 1092 are also shown.

As mentioned above, the distributive interconnect 1080 may be a switch fabric based
interconnect. As shown in FIG. 1C, the interconnect may be an IBM PRIZMA-E
eight/sixteen port switch fabric 1081. In an eight port mode, this switch fabric is an 8 x 3.54
Gbps fabric and in a sixteen port mode, this switch fabric is a 16 x 1.77 Gbps fabric. The
eight/sixteen port switch fabric may be utilized in an eight port mode for performance
optimization. The switch fabric 1081 may be coupled to the individual processor modules

through interface converter circuits 1082, such as IBM UDASL switch interface circuits. The

10

15

20

25

30

WO 02/43320 PCT/US01/45722
36

interface converter circuits 1082 convert the data aligned serial link interface (DASL) to a
UTOPIA (Universal Test and Operations PHY Interface for ATM) parallel interface. FPGAs
(field programmable gate array) may be utilized in the processor modules as a fabric interface
on the processor modules as shown in FIG. 1C. These fabric interfaces provide a 64/66Mhz
PCI interface to the interface converter circuits 1082. FIG. 4 illustrates a functional block
diagram of such a fabric interface 34. As explained below, the interface 34 provides an
interface between the processor module bus and the UDASL switch interface converter
circuit 1082, As shown in FIG. 4, at the switch fabric side, a physical connection interface 41
provides connectivity at the physical level to the switch fabric. An example of interface 41 is
a parallel bus interface complying with the UTOPIA standard. In the example of FIG. 4,
interface 41 is a UTOPIA 3 interface providing a 32-bit 110 Mhz connection. However, the
concepts disclosed herein are not protocol dependent and the switch fabric need not comply

with any particular ATM or non ATM standard.

Still referring to FIG. 4, SAR (segmentation and reassembly) unit 42 has appropriate
SAR logic 42a for performing segmentation and reassembly tasks for converting messages to
fabric cells and vice-versa as well as message classification and message class-to-queue
routing, using memory 42b and 42c¢ for transmit and receive queues. This permits different
classes of messages and permits the classes to have different priority. For example, control
messages can be classified separately from data messages, and given a different priority. All
fabric cells and the associated messages may be self routing, and no out of band signaling is

required.

A special memory modification scheme permits one processor module to write
directly into memory of another. This feature is facilitated by switch fabric interface 34 and
in particular by its message classification capability. Commands and messages follow the
same path through switch fabric interface 34, but can be differentiated from other control and
data messages. In this manner, processes executing on processor modules can communicate

directly using their own memory spaces.

Bus interface 43 permits switch fabric interface 34 to communicate with the processor
of the processor module via the module device or I/O bus. An example of a suitable bus
architecture is a PCI architecture, but other architectures could be used. Bus interface 43 is a

master/target device, permitting interface 43 to write and be written to and providing

10

15

20

25

30

WO 02/43320 PCT/US01/45722
37

appropriate bus control. The logic circuitry within interface 43 implements a state machine

that provides the communications protocol, as well as logic.for configuration and parity.

Referring again to FIG. 1C, network ’processor 1032 (for example a MOTOROLA C-
Port C-5 network processor) of the network interface processing engine 1030 may be
coupled directly to an interface converter circuit 1082 as shown. As mentioned above and
further shown in FIG. 1C, the network processor 1032 also may be coupled to the network
1020 by using a VITESSE GbE SERDES (serializer-deserializer) device (for example the
VSC7123) and an SFP (small form factor pluggable) optical transceiver for LC fibre

connection.

The processor modules 1003 include a fibre channel (FC) controller as mentioned
above and further shéwn in FIG. 1C. For example, the fibre channel controller may be the
LSI SYMFC929 dual 2GBaud fibre channel controller. The fibre channel controller enables
communication with the fibre channel 1092 when the processor module 1003 is utilized as a
storage processing engine 1040. Also illustrated in FIGS. 1C-1F is optional adjunct
processing unit 1300 that employs a POWER PC processor with SDRAM. The adjunct
processing unit is shown coupled to network prd;:essor 1032 of network interface processing
engine 1030 by a PCI interface. Adjunct processing unit 1300 may be employed for

monitoring system parameters such as temperature, fan operation, system health, etc.

As shown in FIGS. 1C-1F, each processor module of content delivery engines 1030,
1040, 1050, 1060, and 1070 is provided with its own synchronous dynamic random access
memory (“SDRAM?”) resources, enhancing the independent operating capabilities of each
module. The memory resources may be operated as ECC (error correcting code) memory.
Network interface processing engine 1030 is also provided with static random access memory
(“SRAM”). Additional memory circuits may also be utilized as will be recognized by those
skilled in the art. For example, additional memory resources (such as synchronous SRAM
and non-volatile FLASH and EEPROM) may be provided in conjunction with the fibre
channel controllers. In addition, boot FLASH memory may also be provided on the of the

processor modules.

The processor modules 1001 and 1003 of FIG. 1C may be configured in alternative

manners to implement the content delivery processing engines such as the network interface

10

15

20

25

30

WO 02/43320 PCT/US01/45722
38

processing engine 1030, storage processing engine 1040, transport processing engine 1050,
system management processing engine 1060, and application processing engine 1070.
Exemplary configurations are shown in FIGS. 1D-1F, however, it will be recognized that

other configurations may be utilized.

‘As shown in FIG. 1D, two Pentium III based processing modules may be utilized as
network application processing modules 1070a and 1070b of network application processing
engine 1070. The remaining two Pentium III-based processing modules are shown in FIG.
1D configured as network transport / protocol processing modules 1050a and 1050b of
network transport / protocol processing engine 1050. The embodiment of FIG. 1D also
includes two POWER PC-based processor modules, configured as storage management
processing modules 1040a and 1040b of storage management processing engine 1040. A
single MOTOROLA C-Port C-5 based network processor is shown employed as network
interface processing engine 1030, and a single Pentium III-based processing module is shown

employed as system management processing engine 1060.

In FIG. 1E, the same hardware embodiment of FIG. 1C is shown alternatively
configured so that three Pentium IiI-based processing modules function as network
application processing modules 1070a, 1070b and 1070c of network application processing
engine 1070, and so that the sole remaining Pentium IlI-based processing module is
configured as a network transport processing module 1050a of network transport processing

engine 1050. As shown, the remaining processing modules are configured as in FIG. 1D.

In FIG. 1F, the same hardware embodiment of FIG. 1C is shown in yet another
alternate configuration so that three Pentium III-based processing modules function as
application processing modules 1070a, 1070b and 1070c of network application processing
engine 1070. In addition, the network transport processing engine 1050 includes one
Pentium Ill-based processing module that is configured as network transport processing
module 1050a, and one POWER PC-based processing module that is configured as network
transport processing module 1050b. The remaining POWER PC-based processor module is
configured as storage management processing module 1040a of storage management

processing engine 1040.

It will be understood with benefit of this disclosure that the hardware embodiment and

10

15

20

25

30

WO 02/43320 PCT/US01/45722
39

multiple engine configurations thereof illustrated in FIGS. 1C-1F are exemplary only, and
that other hardware embodiments and engine configurations thereof are also possible. It will
further be understood that in addition to changing the assignments of individual processing
modules to particular processing engines, distributive interconnect 1080 enables the various
processing flow paths between individual modules employed in a particular engine
configuration in a manner as described in relation to FIG. 1B. Thus, for any given hardware
embodiment and processing engine configuration, a number of different processing flow
paths may be employed so as to optimize system performance to suit the needs of particular

system applications.

SINGLE CHASSIS DESIGN

As mentioned above, the content delivery system 1010 may be implemented within a

single chassis, such as for example, a 2U chassis. The system may be expanded further while
still remaining a single chassis system. In particular, utilizing a multiple processor module or
blade arrangement connected through a distributive interconnect (for example a switch
fabric) provides a system that is easily scalable. The chassis and interconnect may be
configured with expansion slots provided for adding additional processor modules.
Additional processor modules may be provided to implement additional applications within
the same chassis. Alternatively, additional processor modules may be provided to scale the
bandwidth of the nétwork connection. Thus, though describe with respect to a 1Gbps
Ethernet connection to the external network, a 10 Gbps, 40 Gbps or more connection may be
established by the system through the use of more network interface modules. Further,
additional processor modules may be added to address a system's particular bottlenecks
without having to expand all engines of the system. The additional modules may be added
during a systems initial configuration, as an upgrade during system maintenance or even hot

plugged during system operation.

ALTERNATIVE SYSTEMS CONFIGURATIONS

Further, the network endpoint system techniques disclosed herein may be

implemented in a variety of alternative configurations that incorporate some, but not
necessarily all, of the concepts disclosed herein. For example, FIGS. 2 and 2A disclose two
exemplary alternative configurations. It wili be recognized, however, that many other
alternative configurations may be utilized while still gaining the benefits of the inventions

disclosed herein.

10

15

20

25

30

WO 02/43320 PCT/US01/45722

40

FIG. 2 is a more generalized and functional representation of a content delivery
system showing how such a system may be alternately configured to have one or more of the
features of the content delivery system embodiments illustrated in FIGS. 1A-1F. FIG. 2
shows content delivery system 200 coupled to network 260 from which content requests are
received and to which content is delivered. Content sources 265 are shown coupled to
content delivery system 200 via a content delivery flow path 263 that may be, for example, a
storage area network that links multiple content sources 265. A flow path 203 may be
provided to network connection 272, for example, to couple content delivery system 200 with

other network appliaﬁces, in this case one or more servers 201 as illustrated in FIG. 2.

In FIG. 2 content delivery system 200 is configured with multiple processing and
memory modules that are distributively interconnected by inter-process communications path
230 and inter-process data movement path 235. Inter-process communications path 230 is
provided for receiving and distributing inter-processor command communications between
the modules and network 260, and interprocess data movement path 235 is provided for
receiving and distributing inter-processor data among the separate modules. As illustrated in
FIGS. 1A-1F, the functions of inter-process communications path 230 and inter-process data
movement path 235 may be together handled by a single distributive interconnect 1080 (such
as a switch fabric, for example), however, it is also possible to separate the communications

and data paths as illustrated in FIG. 2, for example using other interconnect technology.

FIG. 2 illustrates a single networking subsystem processor module 205 that is
provided to perform fhe combined functions of network interface processing engine 1030 and
transport processing engine 1050 of FIG. 1A. Communication and content delivery between
network 260 and networking subsystem processor module 205 are made through network
connection 270. For certain applications, the functions of network interface processing
engine 1030 and transport processing engine 1050 of FIG. 1A may be so combined into a
single module 205 of FIG. 2 in order to reduce the level of communication and data traffic
handled by communications path 230 and data movement path 235 (or single switch fabric),
without adversely impacting the resources of application processing engine or subsystem
module. If such a modification were made to the system of FIG. 1A, content requests may be
passed directly from the combined interface/transport engine to network application

processing engine 1070 via distributive interconnect 1080. Thus, as previously described the

10

15

20

25

30

WO 02/43320 PCT/US01/45722
41

functions of two or more separate content delivery system engines may be combined as
desired (e.g., in a single module or in multiple modules of a single processing blade), for

example, to achieve advantages in efficiency or cost.

In the embodiment of FIG. 2, the function of network application processing engine
1070 of FIG. 1A is performed by application processing subsystem module 225 of FIG. 2 in
conjunction with application RAM subsystem module 220 of FIG. 2. System monitor
module 240 communicates with server/s 201 through flow path 203 and Gb Ethernet network
interface connection 272 as also shown in FIG. 2. The system monitor module 240 may
provide the function of the system management engine 1060 of FIG. 1A and/or other system
policy / filter functions such as may also be implemented in the network interface processing

engine 1030 as described above with reference to FIG. 1A.

Similarly, the function of network storage management engine 1040 is performed by
storage subsystem module 210 in conjunction with file system cache subsystem module 215.
Communication and content delivery between content sources 265 and storage subsystem
module 210 are shown made directly through content delivery flowpath 263 ﬂ;rough fibre
channel interface comnection 212. Shared resources subsystem module 255 is shown
provided for access by each of the other subsystem modules and may include, for example,

additional processing resources, additional memory resources such as RAM, ezc.

Additional processing engine capability (e.g., additional system management
processing capability, additional application processing capability, additional storage
processing capability, encryption / decryption processing capability, compression /
decompression processing capability, encoding / decoding capability, other processing
capability, efc.) may be provided as desired and is represented by other subsystem module
275. Thus, as previously described the functions of a single network processing engine may
be sub-divided between separate modules that are distributively interconnected. The sub-
division of network processing engine tasks may also be made for reasons of efficiency or
cost, and/or may be taken advantage of to allow resources (e.g., memory or processing) to be
shared among separate modules. Further, additional shared resources may be made available

to one or more separate modules as desired.

Also illustrated in FIG. 2 are optional monitoring agents 245 and resources 250. In

10

15

20

25

30

WO 02/43320 PCT/US01/45722
42

the embodiment of FIG. 2, each monitoring agent 245 may be provided to monitor the
resources 250 of its respective processing subsystem module, and may track utilization of
these resources both within the overall system 200 and within its respective processing
subsystem module. Examples of resources that may be so monitored and tracked include, but
are not limited to, processing engine bandwidth, Fibre Channel bandwidth, number of
available drives, IOPS (input/output operations per second) per drive and RAID (redundant
array of inexpensive discs) levels of storage devices, memory available for caching blocks of
data, table lookup engine bandwidth, availability of RAM for connection control structures
and outbound network bandwidth availability, shared resources (such as RAM) used by
streaming application on a per-stream basis as well as for use with connection control
structures and buffers, bandwidth available for message passing between subsystems,

bandwidth available for passing data between the various subsystems, etc.

Information gathered by monitoring agents 245 may be employed for a wide variety
of purposes including for billing of individual content suppliers and/or users for pro-rata use
of one or more resources, resource use analysis and optimization, resource health alarms, efc.
In addition, monitoring agents may be employed to enable the deterministic delivery of
content by system 200 as described in concurrently filed, co-pending United States patent
application number 09/797,200, entitled “Systems and Methods for the Deterministic

Management of Information,” which is incorporated herein by reference.

In operation, content delivery system 200 of FIG. 2 may be configured to wait for a
request for content or services prior to initiating contént delivery or performing a service. A
request for content, such as a request for access to data, may include, for example, a request
to start a video stream, a request for stored data, efc. A request for services may include, for
example, a request for to run an application, to store a file, efc. A request for content or
services may be received from a variety of sources. For example, if content delivery system
200 is employed as a stream server, a request for content may be received from a client
system attached to a computer network or communication network such as the Internet. Ina
larger system environment, e.g., a data center, a request for content or services may be
received from a separate subcomponent or a system management processing engine, that is
responsible for performance of the overall system or from a sub-component that is unable to
process the current request. Similarly, a request for content or services may be received by a

variety of components of the receiving system. For example, if the receiving system is a

10

15

20

25

30

WO 02/43320 PCT/US01/45722

43

stream server, networking subsystem processor module 205 might receive a content request.
Alternatively, if the receiving system is a component of a larger system, e.g., a data center,

system management processing engine may be employed to receive the request.

Upon receipt of a request for content or services, the request may be filtered by
system monitor 240. Such filtering may serve as a screening agent to filter out requests that
the receiving system is not capable of processing (e.g., requests for file writes from read-only
system embodiments, unsupported protocols, content/services unavailable on system 200,
etc.). Such requests may be rejected outright and the requestor notified, may be re-directed to
a server 201 or other content delivery system 200 capable of handling the request, or may be

disposed of any other desired manner.

Referring now in more detail to one embodiment of FIG. 2 as may be employed in a
stream server configuration, networking processing subsystem module 205 may include the
hardware and/or software used to run TCP/IP (Transmission Control Protocol/Internet
Protocol), UDP/IP (User Datagram Protocol/Internet Protocol), RTP (Real-Time Transport
Protocol), Internet Protocol (IP), Wireless Application Protocol (WAP) as well as other
networking protocols. Network interface connections 270 and 272 may be considered part of
networking subsystem processing module 205 or as separate components. Storage subsystem
module 210 may include hardware and/or software for running the Fibre Channel (FC)
protocol, the SCSI (Small Computer Systems Interface) protocol, iSCSI protocol as well as
other storage networking protocols. FC interface 212 to content delivery flowpath 263 may
be considered part of storage subsystem module 210 or as a separate component. File system
cache subsystem module 215 may include, in addition to cache hardware, one or more cache

management algorithms as well as other software routines.

Application RAM subsystem module 220 may function as a memory allocation
subsystem and application processing subsystem module 225 may function as a stream-
serving application processor bandwidth subsystem. Among other services, application RAM
subsystem module 220 and application processing subsystem module 225 may be used to
facilitate such services as the pulling of content from storage and/or cache, the formatting of
content into RTSP (Real-Time Streaming Protocol) or another streaming protocol as well the

passing of the formatted content to networking subsystem 205.

10

15

20

25

30

WO 02/43320 PCT/US01/45722
44

As previously described, system monitor module 240 may be included in content
delivery system 200 to manage one or more of the subsystem processing modules, and may

also be used to facilitate communication between the modules.

In part to allow communications between the various subsystem modules of content
delivery system 200, inter-process communication path 230 may be included in content
delivery system 200, and may be provided with its own monitoring agent 245. Inter-process
communications path 230 may be a reliable protocol path employing a reliable IPC (Inter-
process Communications) protocol. To allow data or information to be passed between the
various subsystem modules of content delivery system 200, inter-process data movement path
235 may also be included in content delivery system 200, and may be provided with its own
monitoring agent 245. As previously described, the functions of inter-process
communications path 230 and inter-process data movement path 235 may be together
handled by a single distributive interconnect 1080, that may be a switch fabric configured to

support the bandwidth of content being served.

In one embodiment, access to content source 265 may be provided via a content
delivery flow path 263 that is a fibre channel storage area network (SAN), a switched
technology. In addition, network connectivity may be provided at network connection 270
(e.g., to a front end network) and/or at network connection 272 (e.g., to a back end network)
via switched gigabit Ethernet in conjunction with the switch fabric internal communication
system of content delivery system 200. As such, that the architecture illustrated in FIGURE

2 may be generally characterized as equivalent to a networking system.

One or more shared resources subsystem modules 255 may also be{ included in a
stream server embodiment of content delivery system 200, for sharing by one or more of the
other subsystem modules. Shared resources subsystem module 255 may be monitored by the
monitoring agents 245 of each subsystem sharing the resources. The monitoring agents 245
of each subsystem module may also be capable of tracking usage of shared resources 255.
As previously described, shared resources may include RAM (Random Access Memory) as

well as other types of shared resources.

Each monitoring agent 245 may be present to monitor one or more of the resources

250 of its subsystem processing module as well as the utilization of those resources both

10

15

20

25

30

WO 02/43320 PCT/US01/45722
45

within the overall system and within the respective subsystem processing module. For
example, monitoring agent 245 of storage subsystem module 210 may be configured to
monitor and track usage of such resources as processing engine bandwidth, Fibre Channel
bandwidth to content delivery flow path 263, number of storage drives attached, number of
input/output operations per second (IOPS) per drive and RAID levels of storége devices that
may be employed as content sources 265. Monitoring agent 245 of file system cache
subsystem module 215 may be employed monitor and track usage of such resources as
processing engine bandwidth and memory employed for caching blocks of data. Monitoring
agent 245 of networking subsystem processing module 205 may be employed to monitor and
track usage of such resources as processing engine bandwidth, table lookup engine
bandwidth, RAM employed for connection control structures and outbound network
bandwidth availability. Monitoring agent 245 of application processing subsystem module
225 may be employed to monitor and track usage of processing engine bandwidth.
Monitoring agent 245 of application RAM subsystem module 220 may be employed to
monitor and track usdge of shared resource 255, such as RAM, which may be employed by a
streaming application on a per-stream basis as well as for use with connection control
structures and buffers. Monitoring agent 245 of inter-process communication path 230 may
be employed to monitor and track usage of such resources as the bandwidth used for message
passing between subsystems while monitoring agent 245 of inter-process data movement path
235 may be employed to monitor and track usage of bandwidth employed for passing data

between the various subsystem modules.

The discussion concerning FIG. 2 above has generally been oriented towards a system
designed to deliver streaming content to a network such as the Internet using, for example,
Real Networks, Quick Time or Microsoft Windows Media streaming formats. However, the
disclosed systems and methods may be deployed in any other type of system operable to
deliver content, for example, in web serving or file serving system environments. In such
environments, the principles may generally remain the same. However for application
processing embodiments, some differences may exist in the protocols used to communicate
and the method by which data delivery is metered (via streaming protocol, versus TCP/IP

windowing).

FIG. 2A 1illustrates an even more generalized network endpoint computing system that

may incorporate at least some of the concepts disclosed herein. As shown in Figure 2A, a

10

15

20

25

30

WO 02/43320 PCT/US01/45722
46

network endpoint system 10 may be coupled to an external network 11. The external
network 11 may include a network switch or router coupled to the front end of the endpoint
system 10. The endpoint system 10 may be alternatively coupled to some other intermediate
network node of the external network. The system 10 may further include a network engine
9 coupled to an interconnect medium 14. The network engine 9 may include one or more
network processors. The interconnect medium 14 may be coupled to a plurality of processor
units 13 through interfaces 13a. Each processor unit 13 may optionally be couple to data
storage (in the exemplary embodiment shown each unit is couple to data storage). More or

less processor units 13 may be utilized than shown in FIG. 2A.

The network engine 9 may be a processor engine that performs all protocol stack
processing in a single processor module or alternatively may be two processor modules (such
as the network interface engine 1030 and transport engine 1050 described above) in which
split protocol stack processing techniques are utilized., Thus, the functionality and benefits of
the content delivery system 1010 described above may be obtained with the system 10. The
interconnect medium 14 may be a distributive interconnection (for example a switch fabric)
as described with reference to FIG. 1A. All of the various computing, processing,
communication, and control techniques described above with reference to FIGS. 1A-1F and 2
may be implemente(i within the system 10. It will therefore be recognized that these
techniques may be utilized with a wide variety of hardware and computing systems and the

techniques are not limited to the particular embodiments disclosed herein.

The system 10 may consist of a variety of hardware configurations. In one
configuration the network engine 9 may be a stand-alone device and each processing unit 13
may be a separate server. In another configuration the network engine 9 may be configured
within the same chassis as the processing units 13 and each processing unit 13 may be a
separate server card or other computing system. Thus, a network engine (for example an
engine containing a network processor) may provide transport acceleration and be combined
with multi-server functionality within the system 10. The system 10 may also include shared
management and interface components. Alternatively, each processing unit 13 may be a
processing engine such as the transport processing engine, application engine, storage engine,
or system management engine of FIG. 1A. In yet another alternative, each processing unit
may be a processor module (or processing blade) of the processor engines shown in the
system of FIG. 1A.

10

15

20

25

30

WO 02/43320 PCT/US01/45722

47

FIG. 2B illustrates yet another use of a network engine 9. As shown in FIG. 2B, a
network engine 9 may be added to a network interface card 35. The network interface card
35 may further include the interconnect medium 14 which may be similar to the distributed
interconnect 1080 described above. The network interface card may be part of a larger
computing system such as a server. The network interface card may couple to the larger
system through the interconnect medium 14. In addition to the functions described above, the

network engine 9 may perform all traditional functions of a network interface card.

It will be recognized that all the systems described above (FIGS. 1A, 2, 2A, and 2B)
utilize a network engine between the external network and the other processor units that are
appropriate for the function of the particular network node. The network engine may
therefore offload tasks from the other processors. The network engine also may perform
“look ahead processing” by performing processing on a request before the request reaches
whatever processor is to perform whatever processing is appropriate for the network node. In
this manner, the system operations may be accelerated and resources utilized more

efficiently.

TRANSPORT LAYER PROCESSING BY THE NETWORK PROCESSOR
FIGURE 5 illustrates how networking protocol processing may be offloaded to

network processor 12 from processing units 13. In the embodiment of FIGURE 5, all
networking protocol processing is performed by the network processor 12. The processing
units 13 receives packets at the transport layer interface, such as at the socket layer of a
TCP/IP system.

Various constraints, such as code memory limitations of network processor 12, may
limit the extent to which protocol processing can be offloaded to network processor 12.
Thus, as an alternate to offloading the entire stack, network processor 12 may be programmed

to process only part of the protocol stack.

FIGURE 6 illustrates a "split protocol stack" network protocol processing system 60.
Here, network processor 12 and processing unit 33a share protocol processing. A second

processing unit 33b performs server application tasks. The content delivery system 1010 of

10

15

20

25

30

WO 02/43320 PCT/US01/45722

48

FIGS. 1A-1F illustrates another example of a split protocol stack as described in more detail

above.

Regardless of whether all or only some of the protocol processing is offloaded to a
network processor, this offloading of protocol processing is not limited to the architectures of
either FIGS. 1A-1F, 2, 2A, 5 or 6. It can occur in an endpoint system having a network
processor and multiple other processing engines, modules or units. Alternatively, the
endpoint system might have a single network processor and a single other processor. Or,

more than one network processor 12 could be used.

In a system with "split protocol stack" processing, one or more processing units may
perform both network/transport protocol processing and other server tasks. These server
tasks may include transport interface processing as well as application processing. Or, a
processing unit that performs network/transport protocol processing may hand off all or some

of these server tasks to other processors, such as in the system of FIG. 6.

In the example of FIG. 6, network processor 12 processes all or some of the TCP/IP
protocol stack as well as all protocols lower on the network protocol stack. In other
embodiments, processing for analogous network/transport protocols, such as UDP/IP could
be similarly offloaded. Add-on protocols, such as RTP, are also capable of being similarly
offloaded. The same concepts apply to alternative network/transport protocols, such as
IPX/SPX. In general, any networking protocol may be all or partially processed by network
processor 12 in the manner described herein, and in a layer protocol, the processing may be

split between or within layers.

In a "split protocol stack” system such as that of FIGURE 6, network/transport
protocol tasks can be divided between network processor 12 and processing unit 33a in a
number of ways. In one embodiment, when system 60 receives packets, network processor
12 performs the MAC header verification, IP header verification, IP header checksum
validation, TCP or UDP header validation, and TCP or UDP checksum validation. It also
performs the lookup to determine the TCP connection or UDP socket to which a received
packet belongs. In other words, network processor 12 verifies packet lengths, checksums,
and validity. When system 60 transmits packets, network processor 12 performs TCP or
UDP checksum generation, IP header generation, and MAC header generation.

10

15

20

25

30

WO 02/43320 PCT/US01/45722

49

Tasks such as those described above can all be performed rapidly by the parallel and
pipeline processors within network processor 12. Its "fly by" processing style permits it to
look at each byte of a packet as it passes through, using registers and other alternative to
memory access. Its "stateless forwarding" operation is best for tasks not involving complex

calculations that require rapid updating of state information.

With the above-described tasks being performed by network processor 12, processing
units 13 perform TCP sequence number processing, acknowledgement and retransmission,
segmentation and reassembly, and flow control tasks. These tasks generally call for storing
and modifying connection state information on each TCP connection and UDP socket, and
are therefore considered more appropriate for the processing capabilities of general purpose

processors, such as those in processing units 13.

In general, one approach to the division of tasks is to assign "higher" tasks in the
protocol stack to the processing unit(s) 13. Another approach could be to assign "state

modification-intensive" tasks to the processing unit(s) 13.

In other embodiments, a different division of tasks could be implemented. For
example, although network processor 12 may be more suited for checksum processing,
processing units 13 could be assigned these tasks. However, regardless of the particular
division of tasks, ingoing and outgoing packets flow in a single direction; packets are not

transported back and forth between network processor 12 and processing units 13.

As stated above, the above described division of network/transport protocol tasks can
be implemented on any endpoint system having one or more network processors 12 and one
or more processing units 13. However, it is assumed that an appropriate internal protocol
exists for exchanging information between the network processor(s) 12 and the processing
unit(s) 13 when setting up or terminating a TCP connection or UDP socket and to transfer
packets between the.two devices. For example, where the interconnection medium is a
switch fabric, the internal protocol is implemented as a set of messages exchanged across the
switch fabric. These messages indicate the arrival or new inbound or outbound connections
and contain inbound or outbound packets on existing connections, along with identifiers for

those connections. When different processing units 13 are used for transport layer processing

10

15

20

25

30

WO 02/43320 PCT/US01/45722
50

versus application layer processing, the internal protocol is also used to transfer data between
the processing units 13. When the interconnection medium is shared memory or a bus, a
similar internal protocol could be used to divide network/transport protocol tasks between the

network processor(s) 12 and the processing unit(s) 13.

NETWORK PROCESSOR-BASED TRANSPORT ACCELERATOR
FIG. 7A - 7E illustrate various embodiments of a transport accelerator 70A - 70E.

Any one of these embodiments may be substituted for the network processors provided in the

various systems described above.

In FIG. 7A, transport accelerator 70A has at least a network processor 12 and may
also have one or more transport processors 71. Transport processor 71 is not necessarily a
network processor and may be a general purpose CPU-type processor. In general, if network
processor 12 is not capable of handling the entire protocol stack at wire speed, an additional

transport processor 71 is used.

The transport interconnection medium 72 within transport accelerator 70A is
implemented in the same manner as the interconnection mediums described above and may
be a switch fabric. Various alternatives for the "system" interconnection medium are also
described below in connection with FIGS. 8 - 11. Bridge 73 provides the interface between
the two interconnection media. The transport interconnection medium and the system
interconnection may be a common distributed interconnection, such as for example,
distributed interconnect 1080 of FIGS. 1A-1F.

In FIG. 7B, transport accelerator 70B has a network processor 12 and transport
processor 71. These devices are connected to the system interconnection medium directly via

bridge 73.

In FIG. 7C, the transport accelerator 70C has a network processor 12, which is
connected directly to the system interconnection medium directly via bridge 73. In the
absence of a transport processor, all transport processing is performed by the network

processor 12.

In FIG. 7D, the system interconnection medium is a network. Transport accelerator

10

15

20

25

30

WO 02/43320 PCT/US01/45722

51

70D communicates with the external network and with the servers coupled to the system
interconnection medium through ports of the network processor 12. Transport accelerator

70D may be used where the transport accelerator and servers are physically separate.

In FIG. 7E, the system interconnection medium is a network, but there is no transport
processor and no internal interconnection medium. Transport accelerator 70E communicates

with the external network and with the servers through ports of its network processor 12.

ENDPOINT SYSTEMS USING TRANSPORT ACCELERATOR

FIGS. 8 - 11 illustrate various network processing systems, each of which use a

transport accelerator for offloading transport processing in accordance with the invention.

Transport accelerator may be any one of the various embodiments 70A - 70E.

For example, FIG. 8 illustrates a system in which the transport accelerator 70 is a
stand alone unit. Although the various systems differ in their overall architectures, in each

system, the security accelerator executes security tools of the type described above.

In the examples of FIG. 8 - 11, the network processing systems are endpoint server

systems. In other embodiments, the systems could be endpoint client systems.

A common characteristic of each system is that the transport accelerator resides
between the network and whatever processing unit(s) is appropriate for a network node. The
transport accelerator thereby offloads the transport processing from the processing unit.
Another common characteristic is that in each case, at the front end, the security accelerator
has an interface to the network. At the back end, it has an interface to an interconnection

medium that connects it to the processing unit(s).

Transport accelerator 70 performs "look ahead" processing on data as it is received.
This processing, specifically directed to executing transport processing, is performed on data
before the data reaches whatever device is to perform whatever basic processing is

appropriate for the network node, such as server processing by a server.

FIG. 8 illustrates a system 80 in which transport accelerator 70 and servers 81 are

separate physical entities connected by an interconnection medium 82. The transport

10

15

20

25

30

WO 02/43320 PCT/US01/45722
52

accelerator 70 terminates network connections; it is a "network endpoint". The
interconnection medium 82 could be any message passing medium, including those described
above, e.g., switch fabric, bus, or shared memory. Alternatively, a network connection such
as a LAN, could be used.

Servers 81 communicate with transport accelerator 70 at the session layer, or above.
The transport accelerator 70 transmits and receives Ethernet traffic to the wide area network.
It transmits and receives session - application-level traffic over interconnection medium 82 to
the servers 81. It provides offloading of the tasks of network transport processing from the
servers 81 in the manner described above. It provides a reliable, deterministic, high-speed
connection to the servers 81. FIG. 9 illustrates a multi-slot chassis or fixed configuration
chassis system 90. In system 90, the transport accelerator 70 and servers 91 are implemented
as cards within the same physical chassis, connected by an interconnection medium 92.
Interconnection medium 92 may be any of the various interconnection media described

above.

Transport accelerator 70 terminates network connections; it is a "network endpoint".
Servers 91 communicate with transport accelerator 70 at the session layer, or above.
Transport accelerator 70 transmits and receives Ethernet traffic to the wide area network. It
transmits and receives session - application-level traffic over the interconnection medium 92

to the servers 91.

FIG. 10 illustrates a system 100 that is the same as system 90, except that the
functionality of the server cards 101 - 103 has been split out; system 100 is an asymmetric
multi-processing model. Interconnection medium 104 is implemented in a manner similar to

interconnection medium described above.

In addition tc; the advantages of system 80, system 90 and system 100 integrate
network transport acceleration and server functionality within a common chassis. This
provides cost reduction in terms of shared power supplies and physical structural
components. A number of serving units may be placed in a rack, and may share the same
management and interface components. Higher interconnection speeds occur within a single

chassis as compared to connections between physically separate devices.

10

15

20

WO 02/43320 PCT/US01/45722
53

FIG. 11 illustrates a system 110 in which transport accelerator 70 is embedded on a
network interface card 111. Transport accelerator 70 terminates network connections; it is
the "network endpoint" for the server hosting the network interface card 111. Interconnect
medium 112 may be any of the various interconnection mediums described above in

connection with interconnection medium 14.

In system 110, transport accelerator 70 transmits and receives TCP/IP traffic as it
enters/leaves the network interface card 111. It communicates with a server (not shown) over
the iﬁterconnection medium 112. Like the other systems described above, it provides
offloading of the tasks of network transport processing from the host processor as well as off

the system and memory buses.

It will be understood with benefit of this disclosure that although specific exemplary
embodiments of hardware and software have been described herein, other combinations of
hardware and/or software may be employed to achieve one or more features of the disclosed
systems. and methods. Furthermore, it will be understood that operating environment and
application code may be modified as necessary to implement one or more aspects of the
disclosed technology, and that the disclosed systems and methods may be implemented using
other hardware models as well as in environments where the application and operating

system code may be controlled.

10

15

20

25

30

WO 02/43320 PCT/US01/45722

54

WHAT IS CLAIMED IS:
1. A network endpoint system for responding to requests delivered in packet form

having a networking protocol via a network, comprising:

a transport accelerator unit having at least a network processor programmed to receive

packets and to perform at least some processing of the network/transport protocol;

at least one processing unit programmed to receive the packets from the network

processor and to respond to the requests; and

an interconnection medium for directly connecting the network processor to the

processing unit.

2. The system of Claim 1, wherein the interconnection medium is a bus.

3. The system of Claim 1, wherein the interconnection medium is a switch fabric.

4, The system of Claim 1, wherein the network is the Internet.

5. The system of Claim 1, wherein the network is a private network.

6. The system of Claim 1, wherein the transport accelerator performs only some tasks of

network/transport protocol processing, and the processing unit performs the remaining tasks.

7. The system of Claim 6, wherein the processing unit performs all tasks requiring state
information.
8. The system of Claim 1, wherein the transport accelerator is programmed to perform

all protocol processing such that it passes data to the processing unit at the transport interface

level.

9. The system of Claim 1, wherein the network/transport protocol is the TCP/IP

protocol.

10

15

20

25

30

WO 02/43320 PCT/US01/45722
55

10. The system of Claim 1, wherein the network/iransport protocol is the UDP/IP

protocol.

11. The system of Claim 1, wherein the network/transport protocol is at or below the RTP

protocol.

12. The system of Claim 1, wherein the transport accelerator also has a transport

processor for sharing transport processing tasks with the network processor.

13. The system of Claim 1, wherein the transport accelerator and the processing unit are

physically separate devices.

14. The system of Claim 1, wherein the system is implemented as a single chassis system.
15. The system of Claim 1, wherein the endpoint system is a server system.

16. The system of Claim 1, wherein the endpoint system is a client system.

17. A method of processing network packets at a network enapoint system that responds
to requests delivered in packet form having a networking protocol via a network, comprising
the steps of:
directly connecting a transport accelerator, which has at least a network processor, to
one or more processing units;
receiving the packets at the transport accelerator;
using the tr;msport accelerator to perform at least some processing of the
network/transport protocol;
delivering the packets to at least one processing unit; and

using the processing unit to respond to the requests.
18. The method of Claim 17, wherein the network is the Internet.

19. The method of Claim 17, wherein the network is a private network.

10

15

20

25

30

WO 02/43320 PCT/US01/45722
56

20. The method of Claim 17, further comprising the step of dividing tasks of the
network/transport protocol, such that the transport accelerator performs only some tasks of

network/transport layer processing, and the processing unit performs the remaining tasks.

21. The method of Claim 20, wherein the processing unit performs all tasks requiring

state information.

22. The method of Claim 17, wherein the transport accelerator is programmed to perform
all protocol processing such that it passes data to the processing unit at the transport interface

level.

23. The method of Claim 17, wherein the network/transport protocol is the TCP/IP

protocol.

24. The method of Claim 17, wherein the network/transport protocol is the UDP/IP

protocol.

25. The method of Claim 17, wherein the network/transport protocol is the RTP protocol

and all lower protocols.
26. The method of Claim 17, wherein the transport accelerator performs checksum tasks.

27. The method of Claim 17, wherein the transport accelerator performs header

generation and verification tasks.

28. A transport accelerator device for use at a network endpoint, comprising:
a network processor programmed to receive packets and to perform at least some
processing of the network/transport protocol
a front end interface for connecting the transport accelerator to a network; and
a back end interface for connecting the transport accelerator to an interconnection

medium.

29. The device of Claim 28, wherein the interconnection medium is a bus.

10

15

20

25

30

WO 02/43320 PCT/US01/45722
57

30. The device of Claim 28, wherein the interconnection medium is a switch fabric.
31. The device of Claim 28, wherein the interconnection medium is shared memory.

32. The device of Claim 28, wherein the transport accelerator, the front end interface, and

the back end interface are fabricated as a single circuit component.

33. The device of Claim 28, wherein the transport accelerator performs only some tasks

of network/transport protocol processing, namely, tasks not requiring state information.

34. The device of Claim 28, wherein the transport accelerator is programmed to perform
all protocol processing such that it delivers data from the back end interface at the transport

interface level.

35. The device of Claim 28, wherein the network/transport protocol is the TCP/IP

protocol.

36. The device of Claim 28, wherein the network/transport protocol is the UDP/IP

protocol.

37. The device of Claim 28, wherein the network/transport protocol is at or below the
RTP protocol.

38. The device of Claim 28, wherein the transport accelerator also has a transport

processor for sharing transport processing tasks with the network processor.

39. The device of Claim 28, wherein the transport processor and network processor are

connected with an internal interconnection medium.

40. The device of Claim 28, wherein the transport acceleration further has a bridge as the

back end interface.

41. A network connectable computing system, the system being configured to be

connected on at least one end to a network, the system comprising:

10

15

20

25

30

WO 02/43320 PCT/US01/45722
58

at least one network connection configured to be coupled to the network;

a first system processor for performing system functionality;

a second system processor located in a data path between the network connection and
the at first system processor; and

an interconnection between the at least one processor and the second system
processor,

wherein the second system processor processes a portion of data packets provided to
the system from the network and then forwards the data packets data packets
to the remainder of the system so that the system functionality may be

performed upon the data packets
42. The system of claim 41, wherein the second processor comprises a network processor.

43. The system of claim 42, wherein the network processor performs at least some

protocol processing of the data packets.

44. The system of claim 42, further comprising a third system processor, the protocol
processing of data packets being split between the network processor and the third system

processor
45. The system of claim 44, wherein the first system processor, the network processor,
and the third system processor communicate in a peer to peer environment across a

distributed interconnect.

46. The system of claim 45, wherein the first system processor comprises an application

processor, the system further comprising a storage processor.
47. The system of claim 41, wherein the network connectable computing system is a
network endpoint system and the at least first system processor comprises an application
processor, the system further comprising a storage processor.

48. The system of claim 47, wherein the interconnection is a switch fabric.

49. A method of operating a network connected computing system, comprising:

10

15

20

. 25

30

WO 02/43320 PCT/US01/45722
59

receiving data from a network;

analyzing the data with a network interface engine to decode incoming data packet
headers;

removing at least a portion of the data packet headers of at least some data packets
and replacing the removed headers with contextually meaningful data based
upon the analysis of the data packet header; and

forwarding the data packet to at least a first system processor through a system

interconnection after replacing the removed headers.

50. The method of claim 49, wherein the removing step offloads processing steps from

the first system processor.

51. The method of claim 49, wherein the wherein the first system processor is a transport

processor which performs additional protocol processing.

52. The method of claim 51, wherein after processing by the transport processor the data

is forwarded to a second system processor.

53. The method of claim 49, wherein the first system processor is an application

processor or a storage processor.
54. The method of claim 49, wherein the contextually meaningful data is an identifier.

55. The method of claim 49, further comprising providing at least one data packet having
full header information to the first system processor and subsequently providing to the first
system processor a plurality of data packets having the at least a portion of the data packet

headers removed and replaced.

56. The method of claim 55, wherein the network connected computing system is a

network endpoint system.

57. The method of claim 56, wherein the removing step accelerates the delivery of

content from the network endpoint system.

10

15

20

25

30

WO 02/43320 PCT/US01/45722

60

58. A method accelerating the operation of a network connected computing system,
comprising:
receiving, in é. network interface engine, data packets from a network, the data packets
provided in a layered protocol;
analyzing a plurality of lower ordered layers of the data packets with the network
interface engine;
replacing the lowered order layers of the data packets with additional data;
transmitting the data packet containing the additional data to at least a first system
engine, the first system engine having accelerated operation due to processing
the additional data as compared to processing the plurality of lower ordered

layers.

59. The method of claim 58, wherein the first system engine is a transport engine, the

transport engine performing additional protocol processing.

60. The method of claim 58, wherein the network interface engine performs all protocol

processing.

61. The method of claim 58, wherein at least one initial data packet for a connection to
the network endpoint system does not have lowered order layers replaced prior to being

forwarded to the first system engine.

62. The method of claim 61, further comprising processing the lowered ordered layers
within the first system engine to obtain a processor result, the additional data being used to
identifier the processor result for use with subsequent data packets received after the at least

one initial data packet.

63. The method of claim 61, wherein the first system engine is a transport engine, the

transport engine performing additional protocol processing.

64. The method of claim 61, wherein the network interface engine performs all protocol

processing.

10

15

20

25

30

WO 02/43320 PCT/US01/45722
61

65. The method of claim 61, wherein the network connected computing system is a

content delivery system, the accelerated operation providing accelerated content delivery.

66. A network endpoint system for performing endpoint functionality, the endpoint
system comprising:
at least one system processor, the system processor performing endpoint processing
functionality;
a distributed interconnect coupled to the at least one system processor; and
a network interface engiﬁe coupled to the distributed interconnect,
wherein the system is configured such that a data packet from a network may be
processed by the network interface engine prior to being processed by the at
least one system pfocessor, the processing by the network interface engine
comprising replacing at least a portion of lower ordered protocol layers with

an identifier associated with the content of the removed lower ordered layers.

67. The network endpoint system of claim 66, the network endpoint system configured in
a asymmetric staged pipelined processing systems.

68. The network éndpoint system of claim 66, wherein the at least one system processor

comprises at least one storage processor and at least one application processor.

69. The network endpoint system of claim 68, wherein the network interface engine

comprises at least one network processor.

70. The network endpoint system of claim 69, wherein the network processor, the storage
processor and the application processor operate in a peer to peer environment across the

distributed interconnect.

71. The network endpoint system of claim 70, wherein the distributed interconnect is a

switch fabric.

72. The network endpoint system of claim 66, wherein the network endpoint system is a

content delivery system.

10

15

20

25

30

WO 02/43320 PCT/US01/45722
62

73. The network endpoint system of claim 72 wherein:
the network interface engine comprises at least one network processor;
the at least one system processor comprises at least one storage processor and at least
one application processor, the storage processor being configured to interface
with a storage system; and
the network processor, the storage processor and the application processor operate in

a peer to peer environment across the distributed interconnect.

74. The network endpoint system of claim 73 wherein the distributed interconnect is a

switch fabric.

75. The network endpoint system of claim 74, wherein the system is configured in a

single chassis.

76. A method of operating a network endpoint system, comprising:

providing a network processor within the network endpoint system, the network
processor being at an interface which couples the network endpoint system to
a network;

processing data packets passing through the interface with the network processor;

removing portions of the data packets layers as part of the processing of the network
processor; and

forwarding incoming network data from the network processor to a system processor

which 'performs at least some endpoint functionality upon the data.

77. The method of claim 76 wherein incoming network data is forwarded to the system

processor through a transport processor that performs at least some protocol processing.

78. The method of claim 76 wherein the network processor forwards at least some data

packets without removing the portions of the data packets removed from other data packets.

79. The method of claim 78 wherein the network processor replaces the removed portions
of the data packet layers with identifiers that identify the contents of the removed data packet

layers.

10

15

20

25

30

WO 02/43320 PCT/US01/45722
63

80. The method of claim 78, wherein the at least some data packets in which the portions
are not removed are one or more data packets that initialize a connection to the network

endpoint system.

81. The method of claim 80 wherein the system is configured in a staged pipelined
manner, a plurality of the stages of the system replacing layers of the data packets with

identifiers.

82. The method of claim 78 wherein, further comprising performing split protocol
processing in which the network processor performs only a portion of the protocol

processing.

83. The method of claim 78 wherein the network endpoint system is a content delivery

system.

84. The method of claim 78, wherein the content delivery system is configured in a peer

to peer environment.

85. The method of claim 84 wherein peer to peer communications are provided across a

switch fabric.

86. A network connectable computing system, comprising:

a first connection to receive data packets from a network;

a network interface engine comprising at least one network processor, the network
processor coupled to the interface connection; and

a second connection to transmit data processed by the network interface engine,

wherein the at least one network processor analyzes the data packets and removes at
least a portion of the headers of the data packets and replaces the removed
portions with identifiers which may be utilized to reduced subsequent

processor workloads.

87. The system of claim 86, wherein the network processor processes at least some data

packets of a network connection without removing the headers.

10

15

20

25

30

WO 02/43320 PCT/US01/45722
64

88. The system of claim 86, wherein the system is an intermediate network node system.
89. The system of claim 88, wherein the system is a network switch.
90. The system of claim 86, wherein the system is a network endpoint system.

91. The system of claim 86, wherein the system is a network endpoint system having at

least one server or at least one server card coupled to the second connection.

92. The system of claim 86, wherein the system is incorporated into a network interface

card.
93. The system of claim 91, wherein the second connmection is a distributed
interconnection.

94. The system of claim 93, wherein the distributed interconnection is a switch fabric.

95. The system of claim 86, wherein the second connection is coupled to an asymmetric

multi-processing system.

96. The system of claim 95, wherein the second connection is a distributed
interconnection and the asymmetric multi-processing system includes a plurality of task

specific processors.

97. The system of claim 96, wherein the distributed interconnection is a switch fabric and

the task specific processors include storage or application processors.

98. The system of claim 97, wherein the task specific processors include storage and

application processors.

PCT/US01/45722

WO 02/43320

1/23

Juajuo)

PCT/US01/45722

WO 02/43320

2/23

VOEOI~ 3OVAYILNI HHOM L3N

~
~7/N\ /N
Pad ///
l N
N
g050[— . Luodsnvul 1YOdSNYYL OS0!
i |
~ _
| |
_ _

\/ A\
90401—] °~ NOILYDI1ddY NOILYOITddY © ~Vv0.0l
~N P
~ -
~ o _

/b ~

YOO~ JOVHOLS
324N0S \ 304N0S
s FENETE / LNILNOD 060l

WO 02/43320 PCT/US01/45722

3/23

Flcic | FiG.1c' | Fie. 1c!

U v B .
1300~ Adjunct | _SDRAM | _} :
| Processor LT
; | Power PC |
I
1030 Eh Hbl -
e]
| Network [soram]| [srRaM | _]l }
| Interface Suf ' |
| ngf TLU | PCL IFabric H— U[')ESML~;—
I n! XP L]
e |
! 1032~ I"ep 14 cps-8 [cPe-12 cPI3- | | 1082
1022 { RX | TX |RX|TX|RX|TX [RX |TX } |
| SDP|SDP | SDP|SDP |SDP|SDP|SDP|SDP| |
GbE I |
eas, || ebE |
(ozghiitye | B .
S N S - |
["Storage/MNetwork = —— 1l
ge/Network
IOO3\: Transport Subsystem 1 POWER PC H 10(82
FC '
|| sFp || Dual PCI !
FC SDRAM [Taoe S| (| JBM ||
—r——‘ FC Controller 2832:4/ FRGA j; LoAst
| - I
1092 SFP l
L= T 1
o |
{_Sfomqe/Ne’rwork —: |
| Transport Subsystem 2 Power PC HIO|82
|| SFP e A
1092| [Fc | _|Controller SoRas/IT | FPGA| [TTjuDASL
| Lsrp 7 —;]
— iy e it e e —— —— — ey et e —— — — l
t1003 L

WO 02/43320 PCT/US01/45722
4/23
1010
060
~~~~~ g0 %
r . 7
Swifch Fabric | Hard Disk |
£ | RJ45
1081 | | 10/100 :
‘ | Pentium D89 -
UDlABSML Ly} |FPGA Bridge - Serial |
| | Chipset| Pcn'{llum I
1082 L SDRAM | Subsystem 1062
i e T T —— ]
1BM | ] Penfium| |pentium| |
upasL| 11| |FPGA Chipsqef il |
1082 : | Application/Network |SDRAM ~
 LTransport Subsystem 4 |
IBM | M —  — — |
PrizmaE iBM |1 ger'}t"”cm || Pentium| |
g?grg UDASL| |1 | |FPGA Chipgﬂ i ' 100
witc
Fabric ) y ‘ ]L\)
1082 || Application/Network |SPRAM i
' Transport Subsystem 2 |
QAL o B P A S
| T——— " _;— : ______ il
IBM || Bridue L{Pentium| | |OOI
UDASL[ 17| |FPGA Chipg” 111 {,\J
] I 1
1082 } |Application/Network |SDRAM :
 Jransport Subsystemd _
- IBM : !_ _______ ';:’.'g_i”; —P:n'k—i_;r;_ _} 100
UDASL| | : FPGA C;'ipg:f i ;.\__)
] l '
- losa | lApplsccmon/r\le’rwork SDRAM %
Transport Subsystem 4 |




WO 02/43320

PCT/US01/45722

5/23
Fi16.1D | FI16. 10" | F16.1D"
B ‘ |
1300~ Adjunct SIDRAM —l .
| Processor [T
: Power PC |
.
L ] - 1 l
IO301 |
f_N— """""""""" 1
‘ etwork lSDR&M_l ERAMJ l |
| Interface Bu; : o
| Unit XP | I ]
_/ I
{ 1032 CP1-4 |CP5-8 [CP9-I2 cplzslé | 1082
|
1022 ! RX | TX |RX|TX [RX[TX|RX [TX || |
| SDP|SDP|SDP|SDP {SDP|SDP|SDP|SDP |
| gibbs:'e || GbE — | 5
|| TCVR PHY b
oo _ |
Storage/Network  —————— B
'O4OA"= Transport Subsystem 1 | POWER PC il IO(82 !
FC l |
| SFP | Dual PCI | IBM
EC [ SDRAM [{pos N 1 |
T——JI FC |_[Controller grDllgR:A/ FPGA H UDASL
092, sk | —— = T —— -1l
_________________ I
{_Sforoqe/Ne’rwork _} | !
| Transport Subsystem 2 Power PC |||0\82 |
l FC - | ]
SFP || Dual PCI ~
—T T FC [ spram [HBudlPCl] | 1| | I1BM 1|
1092 FC Controller gggﬁ:{ FPGA| [T[T|UDASL
| | SFP [ __: |
L_T\"‘—“"“—"’“_“_—_"‘_ 1l_
1040B | N1040 T

FIG. 1D



WO 02/43320 PCT/US01/45722
6/23
{010
1060
_____ qfo80 ___[F
: e ]
Switch Fabric |l Hard Disk |
RJ45
q ~losl | | | 10/100 :
. | _
| Pentijum D89
~U023ML : L (FPeA Bridge | | : Seridl :
| Chipset Pcnmum
l | l Host { [
1082 a SDRAM | Subsystem 1062
| 4 L _ - 1
e = —— — 1070
| iBM |1 peA Berdaa™ Pent jum j, ~
082 : lAppllca’non/l\lew‘work SDRAM |
I Transport Subsystem 4 !
L S ey s e |
IBM e — 5 |
Prizmag| | 1BM |l Pentium| lpentium| ||I070B
8 Port [ |upasL| |[I| |FPGA F1dge I H/
Switch i1 Chlpse? |
Fabric 1 | [
1082 l}} Application/Network SDRAM l
| { Transport Subsystem 2 |
- - - = - T T T T T T .
—————————————— 1050
| IBM { lr_ Féer.'gi”m_Penﬂum _]I TC_)ISOA
UDASL | []] |FPGA C;;pg:f b L
|
L !
1082 !{|Application/Network |SDRAM }
} I Transport Subsystem 3 o
| ______________
- IBM l {— Pentium| |pentium _]l 10508
UDASL| [[| |FPGA g;;gng 1 N
! 11 [
o8z IAppllc:oflon/Ne’rwork SDRAM %
Transport Subsystem 4 _ _ _ |




WO 02/43320 PCT/US01/45722

7123

FIGIE | FIG.IE' | Fl6. IEN

T e ryvves B
1300~ Adjunct [ _SDRAM_] B r
| Processor T
: Power PC |
I
Lo ] [ —— —
IO301 O
etvork  [som ] T
etwor | SDRAM| [SRAM | L
l Interface Bulf — |
| Mq-f TLU PCl IFabric + I UI;ESMLH—
| Unit XP ] | )
/| |
{ 1032 CP1-4 | CP5-8 |CP9-I12|CPIZ~ || | 1082
1022 } RX | TX |RX | TX [RX [TX |RX [TX : |
| SDP|SDP |SDP|SDP |SDP|SDP|SDP|SDP) |
e || coE T |
Il TCVR H L
e - |
040A| I Storage Network  ——— B
\*’{ Transport Subsystem 1 POWER PC it IO(82 :
FC |
| SFP |_ DualPCI | IBM
Fc LSDRAM 5y Tge/|— 1 -
IOISZ: FC Controller SB'RE:‘ FPGA : l UDASL
R T/ T b ]|
__________________ |
:_S’roraqe/Nefwork . _1] | ,
| Transport Subsystem 2 Power PC 11'0182 ‘
|| £ ' |
SFP Dual PCI
— — k¢ | [spram |HRualPCli ' 1BM ||
1092 FC Controller ' gggg:{ FPGA| [TITUDASL
SFP [ _I'I
e e e T p— l
L0408 \o40 L — —

FIG. 1E'



WO 02/43320

IBM
PrizmgE
8 Port
Switch
Fabric

IBM
UDASL

l
1082

S

IBM
UDASL

|
1082

IBM
UDASL

!
1082

PCT/US01/45722
8/23
1010
060
10
e o
| Hard Disk —i
RJ45
| , 10/100 :
| Penti 89
| |FPGAL L] Berr:d:;uem . serial | |
l Chipsetf— Pentium |
i
I HOST I .
IL_ SDRAM | Subsystem 1062
M e 11 1070
| PeA g‘;’,{‘gégm | Penli{tium | I~
: Chipset |
| |
l l
| Application/Network [SDRAM F\QZOA
'TEGESP_O[T Subsystem § |
e e —
| Pentium| |pontiym }
| |FPGA Bridge 1—" "y ]
Chnpsef
i L~1070B
| Application/Network SDRAM {
:_TLGQ_SP_OQ‘ Subsystem2 |
[r— — 1
; Rentium| Ipentium| ||1070C
|| |FPGA Chipset i IL\J
1
|Application/Network [SDRAM :
lTronspor’r Subsystem 3 ]
Mool o] [oamn] | fioson
e L
: FPGA C;'ip?:ef 1l IL\_)
'Appllca’non/Ne’rwork SDRAM {
Transport Subsystem 4 |




WO 02/43320 PCT/US01/45722

9/23

FIGIF | FIG.IF' | FIG.IF!

r- T
300~ Adjunct  [_SDRAM | :
| Processor T
} Power PC |
]
Lo I . S
IOSOl l
SV ————— I
| Network [sprAM| [SRAM | o
| Interface Bulf : L
| Mgt | TLU | PCl |Fabric H IUSE;"L—:-
| Unit XPp ! l ]
] .
l 1032 CP1-4 |CP5-8 |cP9-I2 CPI3- 1| | 1082
IO22} RX | TX |RX| TX [RX|TX |RX |TX : |
| SDP|SDP |SDP[SDP |SDP SDP|SDP|SDP| l
|§Pb5 GbE |— P
ibre p—
|| TCVR PHY : ;
- . |
'O4% r_St?r?J—E]e7Ng—i'\IJBrk_ _________ _} :
IO40—{ Transport Subsystem 1 POWER PC i 10(82 !
FC -
| SFp || Dual PCI 1|
FC SDRAM [TBridqe/l— i} 1BM T
;8—;2—]1 s";:cp | _[Controller SD'RR& FPGA { | UDASL
[ — |l
_________________ |
I_S’romqe/Ne’rwork _]l | |
| Transport Subsystem 2 Power PC 11’0,82 :
|| £C ’ |
SFP | Dual PCI |
T FC SDRAM Bridae/|— [['| IBM il
1092) FC_|_[Controller S{DIRR:J/ FPGA| ITIT|UDASL
| | SFP H
L = —L ______________ 1 |
10508 L _|




WO 02/43320 PCT/US01/45722

10/23
010
60
_____ qloso %
: r . N
Switch Fabric || Hard Disk |
RJ45
4 losl | | | 10/100 {
' |
| IBM Pentium D89
’ uoast |—H |TFeAl Hbridge | —— Serial | !
L Chipset Pen‘ﬁum [
o8z 1 SDRAM| Subsystem 11062
1 == ——= 070
| oM | gf,?g'”m || Pentium _—i —~
upbAsL| 1]I'| |FPGA Chipse t |
!
‘ [11070A
! :
1082 : Application/Network [SDRAM —
| 'J ransport Subsystem 4 |
Prilz?nh:E IBM : {_ ______ P;“Im_ —F:e;u; _}
8 Port [ |ubAsL| ||| |FPeA ghri'dg; = |
Switch i P L| 10708
Fabric \ | l N
1082 1}, Application/Network | SDRAM ]
l } Transport Subsystem 2 |
el Agfiacis AL NN _
- i 7 == — = 7
| oiBM ! l;err'.‘;'uem_P:zni'ium || 1O70C
UDASL| []|| |FPGA Chipgef Hi },.\_)
I [
1082 !||Application/Network |SDRAM :
} ITransport Subsystem3 ]
IBM : {— ~~~~~~~ P:n:u:-n—____]
. {Pen Penti !
|UDASL[[[|] |FPGA g;:ggi,{ — r\'gSOA
] Il
o8z | lAppllcclhon/t\lei‘work SDRAM : 1050
Transport Subsystem 4 15




WO 02/43320 PCT/US01/45722

11/23

F1G. 16




WO 02/43320 PCT/US01/45722

12/23

1022~




WO 02/43320 PCT/US01/45722

13/23

010

R

N

022
ISOO—~J
FIG 11

&
%

ud

\



WO 02/43320 PCT/US01/45722

14/23

1022 ——

FIG 1J



PCT/US01/45722

WO 02/43320

15/23

¢ 9l

SEC~ S juaby buriogiuon $324n0S3aYy ~ocz L 10¢
Yyibdd }USaWSAOW DID(Q SS320.4d-Ia}U] _ _
gee 022 502 - 102
N N N :
$924N0SaYy $924N0S3Y S904N0S3 Y
Obe 7 7 4 cle
ove 0sZ m\vm 0cz mwi 0SZ m\vN N
A0} 1UOW Jusby juaby juaby 399 102
wayshs bujaojiuop bupiojluop. bujo}iuopy c02
wajishsqns wajsdsqn
w:_wmmuw& ' En<m wa}shsqns
uoi}poyddy uoiypaijddy buntiomyan 592 ez
$324N0S3Y S324N0SaY S224N0S3Yy
—_ J | I
562 osz | 5%° ose | °F¢ | | losz | *7¢ ||
$32.4n0SaYy Luaby 1uaby juaby ﬂ o4 T S92
pa4Dys butsojiuop bujaojjuop butioiuop | gs2
swa}shsqgng | | |{We}shsqns ayon) wajsdsqns cle
43440 wa}shs 3] aboJois
S < S - 00¢
0t | ¢lz Sle 0z |0s2
- U}Dd SUOI{DOIUNWUWOD SS23044-43}U] A
N 43499
G2 | juaby buiioliuon sad4nosay |-0G2




PCT/US01/45722

WO 02/43320

16/23

WNIa3N 92 914
L1D3INNODYILNI
b1 |
6| 3NIoN3 : S
NHOM L3N
GE~ adVvd 30V443LNI MYHOML3N
DEI ~
JOVHOLS | LINA| 471 LO3INNODL
vivaSs 9NISSID0Hd ~Y3ILNI
¢l DE 1~
39VHOLS LINNT 34/1 123NNOD 4 WNIGaW| | 3NI9ON3
vIva <1 9NISS3004d ~Y3LNI S| NOILO3INNOO[~ 7| MHOM L3N
o1 lwntz_ mu
J9VHOLS LINN| 4/1 LO3NNOD 14
VIVAS ] 9NISSI00Nd ~¥3LNI
I pgt- <0l




WO 02/43320

17/23

PCT/US01/45722

12
28 ya 27
N\ 4
FABRIC/BUS | GENERAL PURPOSE
INTERFACE CODE/BUS AND BOOT I
NETWORK TRAFFIC] [LOOKUP
PROCESSORS ENGINE CORE
5| PROCESSOR
— 20 (23
CHECKSUM
ENGINE CORE
PROCESSOR
(\24
BUFFER MGMT
CORE
PROCESSOR
25
6| PHYSICAL INTERFACE
TO NETWORK
TO ROUTER FIG. 3
|42 o4
4?b 4%0
32 PHYSICAL X Pci| | 64
/ -
T0 ~ TO
SWITCH : 43 , PROCESS-
FABRIC | 4 43 ING UNIT



WO 02/43320

18/23

PCT/US01/45722

12 13
8 )
NETWORK PROCESSING
INTERFACE UNIT
PROCESSOR
.| APPLICATION
“]  PROCESSING
NETWORK
TRANSPORT SOCKET
PROTOCOL LEVEL
PROCESSING PROCESSING
60\
31 34 PROCESSING
\ \ UNITTCPIIP  |~33a
(HIGHER) TASKS
NETWORK INTERCONNECT
PROCESSOR TOP/IP MEDIUM
(LOWER) TASKS -
PROCESSING
UNIT
APPLICATION  |—33b

FIG. 6




WO 02/43320

PCT/US01/45722

19/23

70A

TO SYSTEM
INTERCONNECTION
MEDIUM
‘ N
TRANSPORT
ACCELERATOR

BRIDGE ~73

(71 | (71

TA 72
TRANSPORT INTERCONNECTION TRANSPORT
PROCESSOR MEDIUM PROCESSOR
I
NETWORK

PROCESSOR 12

70B

Y y
TO PUBLIC OR PRIVATE
NETWORK
TO SYSTEM .
INTERCONNEC]’\ION MEDIUM
TRANSPORT
ACCELERATOR

BRIDGE ~ 73

TRANSPORT f~ 71
PROCESSOR

NETWORK
PROCESSOR 12

v Vo
TO PUBLIC OR PRIVATE
NETWORK

FIG. 7B




WO 02/43320 PCT/US01/45722

20/23

TO SYSTEM
INTERCONNECTION
MEDIUM
N (700

TRANSPORT
ACCELERATOR

BRIDGE

713~

NETWORK
12— PROCESSOR

/] /

Voo

TO PUBLIC OR PRIVATE
NETWORK

FIG. 7C
(‘7OD

TRANSPORT
ACCELERATOR

TA
TRANSPORT INTERCONNECTION
PROCESSOR MEDIUM ~—72

NETWORK
PROCESSOR  |~12

/

TP PUBLIC TO SYSTEM
OR PRIVATE : : INTERCONNECTION
NETWORK | MEDIUM

FIG. 7D




WO 02/43320

21/23

PCT/US01/45722

FI1G. 8

TRANSPORT
ACCELERATOR
&
g~12
NETWORK
PROCESSOR
R
TO PUBLIC TO SYSTEM
OR PRIVATE . 5 INTERCONNECTION
NETWORK MEDIUM
SERVER INTERACTS
WITH TAAT — 81
82 SOCKET LEVEL
(70 k/
TRANSPORT SERVER INTERACTS§~ 81
ACCELERATOR WITH TAAT
ETHERNET (TA) SOCKET LEVEL
j SERVER INTERACTS
80 WITH TA AT ~ 81
SOCKET LEVEL




WO 02/43320 PCT/US01/45722

22/23
90
[

SERVER CARD
INTERACTS WITH {— 91
TAat
92 SOCKET LEVEL

<7O

TRANSPORT SERVER CARD
ACCELERATOR INTERACTS WITH |~ 91

ETHERNET (TA) TAat
SOCKET LEVEL

SERVER CARD
INTERACTS WITH ~—91
TA at
SOCKET LEVEL

FIG. 9

100
[

WEB SERVER.
APPLICATION  |—101
104 CARD

§70

TRANSPORT STORAGE

ETHERNET ACCELERATOR PROCESSOR  j—~—102
CARD

VIDEO SERVER
APPLICATION ~ }~—103
CARD

FIG. 10



WO 02/43320

ETHERNET

PCT/US01/45722

23/23

111

NETWORK INTERFACE CARD

TRANSPORT
ACCELERATOR

~ 70

112
(

INTERCONNECTION
MEDIUM

FIG. 11



	Abstract
	Bibliographic
	Description
	Claims
	Drawings

