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(54) 발명의 명칭 구분적 선형 뉴런 모델링

(57) 요 약

하나 이상의 선형화된 뉴런 모델들에 기초하여 인공 신경계에서 하나 이상의 인공 뉴런들을 모델링하여 구현하는

구분적 선형 뉴런에 대한 방법들 및 장치.     (신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합

을 구현하는) 하나의 예시적인 방법은 일반적으로 복수의 뉴런 모델들로부터 선택된 제 1 뉴런 모델에 대한 파라

미터들을 제 1 신경 프로세싱 유닛에 로드하는 단계, 제 1 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기

초하여 제 1 신경 프로세싱 유닛의 제 1 상태를 결정하는 단계, 및 제 1 뉴런 모델에 대한 파라미터들에 그리고

제 1 상태에 적어도 부분적으로 기초하여 제 1 신경 프로세싱 유닛의 제 2 상태를 결정하는 단계를 포함한다.

  이 방법은 또한 복수의 뉴런 모델들을 (예컨대, 제 1 뉴런 모델 또는 또 다른 뉴런 모델에 대한 파라미터들을

추가하거나, 삭제하거나, 또는 조정함으로써) 업데이트하는 단계를 포함할 수도 있다.

대 표 도 - 도15c
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명 세 서

청구범위

청구항 1 

신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 방법으로서, 

상기 복수의 뉴런 모델들로부터 선택된 제 1 뉴런 모델에 대한 파라미터들을 제 1 신경 프로세싱 유닛에 로드하

는 단계; 

상기 제 1 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여 상기 제 1 신경 프로세싱 유닛의 제 1

상태를 결정하는 단계; 및

상기 제 1 뉴런 모델에 대한 파라미터들에 그리고 상기 제 1 상태에 적어도 부분적으로 기초하여 상기 제 1 신

경 프로세싱 유닛의 제 2 상태를 결정하는 단계를 포함하는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런

모델들의 조합을 구현하는 방법.

청구항 2 

제 1 항에 있어서, 

상기 복수의 뉴런 모델들을 업데이트하는 단계를 더 포함하는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런

모델들의 조합을 구현하는 방법.

청구항 3 

제 1 항에 있어서, 

제 2 뉴런 모델에 대한 파라미터들을 상기 제 1 신경 프로세싱 유닛에 로드하는 단계; 및

상기 제 2 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여 상기 제 1 신경 프로세싱 유닛의 제 3

상태를 결정하는 단계를 더 포함하는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하

는 방법.

청구항 4 

제 3 항에 있어서, 

상기 제 2 뉴런 모델에 대한 파라미터들을 로드하는 단계는 구성 이벤트에 응답하는 것인, 신경 프로세싱 유닛

들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 방법.

청구항 5 

제 4 항에 있어서, 

상기 구성 이벤트는 상기 신경 프로세싱 유닛들의 시스템 또는 상기 제 1 신경 프로세싱 유닛 중 적어도 하나에

대한 전원공급을 포함하는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 방법.

청구항 6 

제 3 항에 있어서, 

상기 제 3 상태를 결정하는 단계는 상기 제 2 상태에 적어도 부분적으로 더 기초하는, 신경 프로세싱 유닛들의

시스템에서 복수의 뉴런 모델들의 조합을 구현하는 방법.

청구항 7 

제 6 항에 있어서, 

상기 제 2 뉴런 모델은 적어도 부분적으로 진동을 발생하도록 구성되는, 신경 프로세싱 유닛들의 시스템에서 복
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수의 뉴런 모델들의 조합을 구현하는 방법.

청구항 8 

제 6 항에 있어서, 

상기 제 2 뉴런 모델에 대한 파라미터들을 로드하는 단계는 상태 조건, 시간 조건, 또는 트리거 중 적어도 하나

에 적어도 부분적으로 기초하며, 상기 트리거는 상기 제 1 신경 프로세싱 유닛의 외부에 있는, 신경 프로세싱

유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 방법.

청구항 9 

제 1 항에 있어서, 

상기 복수의 뉴런 모델들로부터 선택된 제 2 뉴런 모델에 대한 파라미터들을 제 2 신경 프로세싱 유닛에 로드하

는 단계; 및 

상기 제 2 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여 상기 제 2 신경 프로세싱 유닛의 상태를

결정하는  단계를  더  포함하는,  신경  프로세싱  유닛들의  시스템에서  복수의  뉴런  모델들의  조합을  구현하는

방법.

청구항 10 

제 9 항에 있어서, 

상기 제 1 및 제 2 뉴런 모델들은 상이한 유형들의 뉴런들을 나타내는, 신경 프로세싱 유닛들의 시스템에서 복

수의 뉴런 모델들의 조합을 구현하는 방법.

청구항 11 

제 1 항에 있어서, 

상기 제 1 뉴런 모델에 대한 파라미터들을 로드하는 단계는 메모리로부터 상기 제 1 뉴런 모델에 대한 파라미터

들 중 적어도 일부분을 페치하는 단계를 포함하는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의

조합을 구현하는 방법.

청구항 12 

제 11 항에 있어서, 

상기 메모리 중 적어도 일부분은 상기 제 1 신경 프로세싱 유닛에 로컬인, 신경 프로세싱 유닛들의 시스템에서

복수의 뉴런 모델들의 조합을 구현하는 방법.

청구항 13 

제 11 항에 있어서, 

상기 메모리 중 적어도 일부분은 캐시 메모리인, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조

합을 구현하는 방법.

청구항 14 

제 11 항에 있어서, 

상기 제 1 뉴런 모델에 대한 파라미터들을 로드하는 단계는, 상기 메모리에서, 상기 제 1 뉴런 모델과 연관되는

메모리 블록에 액세스하는 단계를 더 포함하는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합

을 구현하는 방법.

청구항 15 

제 14 항에 있어서, 

상기 메모리 블록은 상기 메모리 블록에서의 메모리 어드레스로의 포인터에 의해 지정되는, 신경 프로세싱 유닛
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들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 방법.

청구항 16 

제 1 항에 있어서, 

상기 복수의 뉴런 모델들은 이즈히케비치 (Izhikevich) 단순 모델, 지수 적분 발화 (exponential-integrate-

and-fire; EIF) 모델, 피츠휴-나구모 (FitzHugh-Nagumo) 모델, 4차방정식 모델, 또는 고유 컨덕턴스 모델 중

적어도 하나를 포함하는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 방법.

청구항 17 

신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 장치로서, 

프로세싱 시스템; 및

상기 프로세싱 시스템에 커플링된 메모리를 포함하고,

상기 프로세싱 시스템은,

상기 복수의 뉴런 모델들로부터 선택된 제 1 뉴런 모델에 대한 파라미터들을 제 1 신경 프로세싱 유닛에 로드하

고; 

상기 제 1 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여 상기 제 1 신경 프로세싱 유닛의 제 1

상태를 결정하고; 그리고

상기 제 1 뉴런 모델에 대한 파라미터들에 그리고 상기 제 1 상태에 적어도 부분적으로 기초하여 상기 제 1 신

경 프로세싱 유닛의 제 2 상태를 결정하도록 구성되는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들

의 조합을 구현하는 장치.

청구항 18 

제 17 항에 있어서, 

상기 프로세싱 시스템은 또한 상기 복수의 뉴런 모델들을 업데이트하도록 구성되는, 신경 프로세싱 유닛들의 시

스템에서 복수의 뉴런 모델들의 조합을 구현하는 장치.

청구항 19 

제 17 항에 있어서, 

상기 프로세싱 시스템은 또한, 

제 2 뉴런 모델에 대한 파라미터들을 상기 제 1 신경 프로세싱 유닛에 로드하고; 그리고

상기 제 2 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여 상기 제 1 신경 프로세싱 유닛의 제 3

상태를 결정하도록 구성되는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 장치.

청구항 20 

제 19 항에 있어서, 

상기 프로세싱 시스템은 구성 이벤트에 응답하여 상기 제 2 뉴런 모델에 대한 파라미터들을 로드하도록 구성되

는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 장치.

청구항 21 

제 20 항에 있어서, 

상기 구성 이벤트는 상기 신경 프로세싱 유닛들의 시스템 또는 상기 제 1 신경 프로세싱 유닛 중 적어도 하나에

대한 전원공급을 포함하는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 장치.

청구항 22 
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제 19 항에 있어서, 

상기 프로세싱 시스템은 상기 제 2 상태에 또한 적어도 부분적으로 기초하여 상기 제 3 상태를 결정하도록 구성

되는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 장치.

청구항 23 

제 22 항에 있어서, 

상기 제 2 뉴런 모델은 적어도 부분적으로 진동을 발생하도록 구성되는, 신경 프로세싱 유닛들의 시스템에서 복

수의 뉴런 모델들의 조합을 구현하는 장치.

청구항 24 

제 22 항에 있어서, 

상기 프로세싱 시스템은 상태 조건, 시간 조건, 또는 트리거 중 적어도 하나에 적어도 부분적으로 기초하여 상

기 제 2 뉴런 모델에 대한 파라미터들을 로드하도록 구성되며, 상기 트리거는 상기 제 1 신경 프로세싱 유닛의

외부에 있는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 장치.

청구항 25 

제 17 항에 있어서, 

상기 프로세싱 시스템은 또한, 

상기 복수의 뉴런 모델들로부터 선택된 제 2 뉴런 모델에 대한 파라미터들을 제 2 신경 프로세싱 유닛에 로드하

고; 그리고 

상기 제 2 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여 상기 제 2 신경 프로세싱 유닛의 상태를

결정하도록 구성되는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 장치.

청구항 26 

제 25 항에 있어서, 

상기 제 1 및 제 2 뉴런 모델들은 상이한 유형들의 뉴런들을 나타내는, 신경 프로세싱 유닛들의 시스템에서 복

수의 뉴런 모델들의 조합을 구현하는 장치.

청구항 27 

제 17 항에 있어서, 

상기 프로세싱 시스템은 상기 메모리로부터 상기 제 1 뉴런 모델에 대한 파라미터들 중 적어도 일부분을 페치함

으로써 상기 제 1 뉴런 모델에 대한 파라미터들을 로드하도록 구성되는, 신경 프로세싱 유닛들의 시스템에서 복

수의 뉴런 모델들의 조합을 구현하는 장치.

청구항 28 

제 27 항에 있어서, 

상기 메모리 중 적어도 일부분은 상기 제 1 신경 프로세싱 유닛에 로컬인, 신경 프로세싱 유닛들의 시스템에서

복수의 뉴런 모델들의 조합을 구현하는 장치.

청구항 29 

제 27 항에 있어서, 

상기 메모리 중 적어도 일부분은 캐시 메모리인, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조

합을 구현하는 장치.

청구항 30 
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제 27 항에 있어서, 

상기 프로세싱 시스템은, 상기 메모리에서, 상기 제 1 뉴런 모델과 연관되는 메모리 블록에 액세스함으로써 상

기 제 1 뉴런 모델에 대한 파라미터들을 로드하도록 구성되는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런

모델들의 조합을 구현하는 장치.

청구항 31 

제 30 항에 있어서, 

상기 메모리 블록은 상기 메모리 블록에서의 메모리 어드레스로의 포인터에 의해 지정되는, 신경 프로세싱 유닛

들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 장치.

청구항 32 

제 17 항에 있어서, 

상기 복수의 뉴런 모델들은 이즈히케비치 (Izhikevich) 단순 모델, 지수 적분 발화 (EIF) 모델, 피츠휴-나구모

(FitzHugh-Nagumo) 모델, 4차방정식 모델, 또는 고유 컨덕턴스 모델 중 적어도 하나를 포함하는, 신경 프로세싱

유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 장치.

청구항 33 

신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 장치로서, 

상기 복수의 뉴런 모델들로부터 선택된 제 1 뉴런 모델에 대한 파라미터들을 제 1 신경 프로세싱 유닛에 로드하

는 수단; 

상기 제 1 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여 상기 제 1 신경 프로세싱 유닛의 제 1

상태를 결정하는 수단; 및 

상기 제 1 뉴런 모델에 대한 파라미터들에 그리고 상기 제 1 상태에 적어도 부분적으로 기초하여 상기 제 1 신

경 프로세싱 유닛의 제 2 상태를 결정하는 수단을 포함하는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런

모델들의 조합을 구현하는 장치.

청구항 34 

제 33 항에 있어서, 

제 2 뉴런 모델에 대한 파라미터들을 상기 제 1 신경 프로세싱 유닛에 로드하는 수단; 및

상기 제 2 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여 상기 제 1 신경 프로세싱 유닛의 제 3

상태를 결정하는 수단을 더 포함하는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하

는 장치.

청구항 35 

신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 컴퓨터 프로그램 제품으로서, 

상기 복수의 뉴런 모델들로부터 선택된 제 1 뉴런 모델에 대한 파라미터들을 제 1 신경 프로세싱 유닛에 로드하

고; 

상기 제 1 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여 상기 제 1 신경 프로세싱 유닛의 제 1

상태를 결정하고; 그리고

상기 제 1 뉴런 모델에 대한 파라미터들에 그리고 상기 제 1 상태에 적어도 부분적으로 기초하여 상기 제 1 신

경 프로세싱 유닛의 제 2 상태를 결정하도록 실행가능한 명령들을 갖는 컴퓨터-판독가능 저장 디바이스를 포함

하는, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 컴퓨터 프로그램 제품.

발명의 설명

기 술 분 야
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35 U.S.C. § 119 하의 우선권 주장[0001]

본 출원은 발명의 명칭이 "Piecewise Linear Neuron Modeling" 인, 2012년 11월 20일자에 출원된 미국 가특허[0002]

출원 번호 제 61/728,360호, 발명의 명칭이 "Piecewise Linear Neuron Modeling" 인, 2012년 12월 7일자에 출

원된 미국 가특허출원 번호 제 61/734,716호, 발명의 명칭이 "Piecewise Linear Neuron Modeling" 인, 2012년

12월 21일자에 출원된 미국 가특허출원 번호 제 61/740,633호, 및 발명의 명칭이 "Piecewise  Linear Neuron

Modeling" 인, 2013년 1월 25일자에 출원된 미국 가특허출원 번호 제 61/756,889호의 이점을 주장하며, 이 모두

는 본원에서 그들의 전체가 참조로 포함된다.

배 경 기 술

본 개시물의 어떤 양태들은 일반적으로 인공 신경계들에 관한 것으로, 그리고 좀더 자세하게는, 뉴런 모델의 비[0003]

선형 함수의 적어도 일부분을 구분적 선형 함수로서 근사화하는 것, 및 하나 이상의 인공 뉴런들에서의 최종 선

형화된 뉴런 모델을 이용하는 것에 관한 것이다.

인공 뉴런들 (즉, 뉴런 모델들) 의 상호접속된 그룹을 포함할 수도 있는, 인공 신경 네트워크는, 컴퓨터 디바이[0004]

스거나 또는 컴퓨터 디바이스에 의해 수행되는 방법을 나타낸다.     인공 신경 네트워크들은 생물학적 신경 네

트워크들에서 대응하는 구조 및/또는 기능을 가질 수도 있다.     그러나, 인공 신경 네트워크들은 전통적인 계

산 기법들이 번거롭거나, 비현실적이거나, 또는 불충분한 어떤 애플리케이션들에 대해 혁신적이고 유용한 계산

기법들을 제공할 수도 있다.     인공 신경 네트워크들은 관측들로부터 기능을 추론할 수 있기 때문에, 이러한

네트워크들은 태스크 또는 데이터의 복잡성이 종래의 기법들에 의한 기능의 설계를 부담스럽게 만드는 애플리케

이션들에서 특히 유용하다.

인공 신경 네트워크의 일 유형은, 시간의 컨셉을 그의 동작 모델 뿐만 아니라, 뉴런 및 시냅스 상태에 포함시킴[0005]

으로써 신경 네트워크에서 연산 기능이 나타날 수 있는 풍부한 거동들의 세트를 제공하는 스파이킹 신경 네트워

크이다.     스파이킹 신경 네트워크들은 뉴런들이 뉴런의 상태에 기초하여 특정의 시간 또는 시간들에서 발화

하거나 또는 "스파이크한다"는, 그리고 시간이 뉴런 기능에 중요하다는 컨셉에 기초한다.     뉴런이 발화할

때, 다른 뉴런들로 이동하는 스파이크를 발생하며, 이것은 결국, 이 스파이크들이 수신되는 시간에 기초하여 그

들의 상태들을 조정할 수도 있다.     즉, 정보가 신경 네트워크에서 스파이크들의 상대 또는 절대 타이밍으로

인코딩될 수도 있다.

발명의 내용

과제의 해결 수단

본 개시물의 어떤 양태들은 일반적으로 뉴런 모델의 비선형 함수의 적어도 일부분을 구분적 선형 함수로서 근사[0006]

화하는 것에 관한 것이다.     예를 들어, 하나 이상의 인공 뉴런들에서의 최종 선형화된 뉴런 모델을 구현하는

방법들 및 장치가 또한 제공된다.     본 개시물의 어떤 양태들은 일반적으로 뉴런 모델들의 동력학의 구현예에

대한 일반적이고 유연한 아키텍처에 관한 것이다.     설계 목표들은 낮은 복잡성, 동력학의 정확한 모델링, 및

(1개, 2개, 또는 그 이상의 차원들의) 임의의 뉴런 모델을 구현하는 능력을 포함한다.     구분적 선형 근사들

은 여러 뉴런 모델들과 연관되는 상이한 파라미터들을 간단히 대체하여 이러한 아키텍처 내에서 뉴런 모델들을

변경하는 간단한 방법을 제공한다.

본 개시물의 어떤 양태들은 인공 뉴런을 동작시키는 방법을 제공한다.     본 방법은 일반적으로, 인공 뉴런의[0007]

제 1 상태가 제 1 영역 내에 있다고 결정하는 단계; 선형 방정식들의 제 1 세트에 적어도 부분적으로 기초하여

인공 뉴런의 제 2 상태를 결정하는 단계로서, 선형 방정식들의 제 1 세트는 제 1 영역에 대응하는 파라미터들의

제 1 세트에 적어도 부분적으로 기초하는, 상기 제 2 상태를 결정하는 단계; 인공 뉴런의 제 2 상태가 제 2 영

역 내에 있다고 결정하는 단계; 및 선형 방정식들의 제 2 세트에 적어도 부분적으로 기초하여 인공 뉴런의 제 3

상태를 결정하는 단계로서, 선형 방정식들의 제 2 세트는 제 2 영역에 대응하는 파라미터들의 제 2 세트에 적어

도 부분적으로 기초하는, 상기 제 3 상태를 결정하는 단계를 포함한다.

본 개시물의 어떤 양태들은 인공 뉴런을 동작시키는 장치를 제공한다.     본 장치는 일반적으로 프로세싱 시스[0008]

템 및 프로세싱 시스템에 커플링된 메모리를 포함한다.     프로세싱 시스템은 일반적으로, 인공 뉴런의 제 1

상태가 제 1 영역 내에 있다고 결정하고; 선형 방정식들의 제 1 세트에 적어도 부분적으로 기초하여 인공 뉴런

의 제 2 상태를 결정하고; 인공 뉴런의 제 2 상태가 제 2 영역 내에 있다고 결정하고; 그리고 선형 방정식들의
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제 2 세트에 적어도 부분적으로 기초하여 인공 뉴런의 제 3 상태를 결정하도록 구성되며, 상기 선형 방정식들의

제 1 세트는 제 1 영역에 대응하는 파라미터들의 제 1 세트에 적어도 부분적으로 기초하며, 상기 선형 방정식들

의 제 2 세트는 제 2 영역에 대응하는 파라미터들의 제 2 세트에 적어도 부분적으로 기초한다.

본 개시물의 어떤 양태들은 인공 뉴런을 동작시키는 장치를 제공한다.     본 장치는 일반적으로, 인공 뉴런의[0009]

제 1 상태가 제 1 영역 내에 있다고 결정하는 수단; 선형 방정식들의 제 1 세트에 적어도 부분적으로 기초하여

인공 뉴런의 제 2 상태를 결정하는 수단으로서, 상기 선형 방정식들의 제 1 세트는 제 1 영역에 대응하는 파라

미터들의 제 1 세트에 적어도 부분적으로 기초하는, 상기 제 2 상태를 결정하는 수단; 인공 뉴런의 제 2 상태가

제 2 영역 내에 있다고 결정하는 수단; 및 선형 방정식들의 제 2 세트에 적어도 부분적으로 기초하여 인공 뉴런

의 제 3 상태를 결정하는 수단으로서, 상기 선형 방정식들의 제 2 세트는 제 2 영역에 대응하는 파라미터들의

제 2 세트에 적어도 부분적으로 기초하는, 상기 제 3 상태를 결정하는 수단을 포함한다.

본 개시물의 어떤 양태들은 인공 뉴런을 동작시키는 컴퓨터 프로그램 제품을 제공한다.     컴퓨터 프로그램 제[0010]

품은 일반적으로, 인공 뉴런의 제 1 상태가 제 1 영역 내에 있다고 결정하고; 선형 방정식들의 제 1 세트에 적

어도 부분적으로 기초하여 인공 뉴런의 제 2 상태를 결정하고; 인공 뉴런의 제 2 상태가 제 2 영역 내에 있다고

결정하고; 그리고 선형 방정식들의 제 2 세트에 적어도 부분적으로 기초하여 인공 뉴런의 제 3 상태를 결정하도

록 실행가능한 명령들을 가지며, 상기 선형 방정식들의 제 1 세트는 제 1 영역에 대응하는 파라미터들의 제 1

세트에 적어도 부분적으로 기초하며, 상기 선형 방정식들의 제 2 세트는 제 2 영역에 대응하는 파라미터들의 제

2 세트에 적어도 부분적으로 기초하는, 컴퓨터-판독가능 매체 (예컨대, 저장 디바이스) 를 포함한다.

본 개시물의 어떤 양태들은 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 방법을[0011]

제공한다.     본 방법은 일반적으로, 복수의 뉴런 모델들로부터 선택된 제 1 뉴런 모델에 대한 파라미터들을

제 1 신경 프로세싱 유닛에 로드하는 단계; 제 1 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여

제 1 신경 프로세싱 유닛의 제 1 상태를 결정하는 단계; 및 제 1 뉴런 모델에 대한 파라미터들에 그리고 제 1

상태에 적어도 부분적으로 기초하여 제 1 신경 프로세싱 유닛의 제 2 상태를 결정하는 단계를 포함한다.

본 개시물의 어떤 양태들은 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 장치를[0012]

제공한다.      본  장치는 일반적으로 프로세싱 시스템 및 프로세싱 시스템에 커플링된 메모리를 포함한다.

프로세싱 시스템은 일반적으로, 복수의 뉴런 모델들로부터 선택된 제 1 뉴런 모델에 대한 파라미터들을 제 1 신

경 프로세싱 유닛에 로드하고, 제 1 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여 제 1 신경 프

로세싱 유닛의 제 1 상태를 결정하고, 그리고 제 1 뉴런 모델에 대한 파라미터들에 그리고 제 1 상태에 적어도

부분적으로 기초하여 제 1 신경 프로세싱 유닛의 제 2 상태를 결정하도록 구성된다.

본 개시물의 어떤 양태들은 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 장치를[0013]

제공한다.     본 장치는 일반적으로, 복수의 뉴런 모델들로부터 선택된 제 1 뉴런 모델에 대한 파라미터들을

제 1 신경 프로세싱 유닛에 로드하는 수단; 제 1 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여

제 1 신경 프로세싱 유닛의 제 1 상태를 결정하는 수단; 및 제 1 뉴런 모델에 대한 파라미터들에 그리고 제 1

상태에 적어도 부분적으로 기초하여 제 1 신경 프로세싱 유닛의 제 2 상태를 결정하는 수단을 포함한다.

본 개시물의 어떤 양태들은 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을 구현하는 컴퓨터[0014]

프로그램 제품을 제공한다.     컴퓨터 프로그램 제품은 일반적으로 복수의 뉴런 모델들로부터 선택된 제 1 뉴

런 모델에 대한 파라미터들을 제 1 신경 프로세싱 유닛에 로드하고, 제 1 뉴런 모델에 대한 파라미터들에 적어

도 부분적으로 기초하여 제 1 신경 프로세싱 유닛의 제 1 상태를 결정하고, 그리고 제 1 뉴런 모델에 대한 파라

미터들에 그리고 제 1 상태에 적어도 부분적으로 기초하여 제 1 신경 프로세싱 유닛의 제 2 상태를 결정하도록

실행가능한 명령들을 갖는 (비일시성) 컴퓨터-판독가능 매체를 포함한다.

본 개시물의 어떤 양태들은 인공 뉴런을 동작시키는 방법을 제공한다.     본 방법은 일반적으로, 인공 뉴런의[0015]

제 1 상태가 제 1 영역 내에 있다고 결정하는 단계; 선형 방정식들의 제 1 세트에 적어도 부분적으로 기초하여

인공 뉴런의 제 2 상태를 결정하는 단계로서, 상기 선형 방정식들의 제 1 세트는 제 1 영역에 대응하는 파라미

터들의 제 1 세트에 적어도 부분적으로 기초하는, 상기 제 2 상태를 결정하는 단계; 인공 뉴런의 제 2 상태가

제 2 영역 내에 있다고 결정하는 단계로서, 상기 제 1 영역 또는 제 2 영역의 적어도 하나는 2개 이상의 차원들

에 의해 정의되는, 상기 결정하는 단계; 및 선형 방정식들의 제 2 세트에 적어도 부분적으로 기초하여 인공 뉴

런의 제 3 상태를 결정하는 단계로서, 상기 선형 방정식들의 제 2 세트는 제 2 영역에 대응하는 파라미터들의

제 2 세트에 적어도 부분적으로 기초하는, 상기 제 3 상태를 결정하는 단계를 포함한다.
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본 개시물의 어떤 양태들은 인공 뉴런을 동작시키는 장치를 제공한다.     본 장치는 일반적으로 프로세싱 시스[0016]

템 및 프로세싱 시스템에 커플링된 메모리를 포함한다.     프로세싱 시스템은 일반적으로, 인공 뉴런의 제 1

상태가 제 1 영역 내에 있다고 결정하고; 선형 방정식들의 제 1 세트에 적어도 부분적으로 기초하여 인공 뉴런

의 제 2 상태를 결정하고; 인공 뉴런의 제 2 상태가 제 2 영역 내에 있다고 결정하고; 그리고 선형 방정식들의

제 2 세트에 적어도 부분적으로 기초하여 인공 뉴런의 제 3 상태를 결정하도록 구성되며, 상기 선형 방정식들의

제 1 세트는 제 1 영역에 대응하는 파라미터들의 제 1 세트에 적어도 부분적으로 기초하며, 상기 제 1 영역 또

는 제 2 영역의 적어도 하나는 2개 이상의 차원들에 의해 정의되며, 상기 선형 방정식들의 제 2 세트는 제 2 영

역에 대응하는 파라미터들의 제 2 세트에 적어도 부분적으로 기초한다.

본 개시물의 어떤 양태들은 인공 뉴런을 동작시키는 장치를 제공한다.     본 장치는 일반적으로, 인공 뉴런의[0017]

제 1 상태가 제 1 영역 내에 있다고 결정하는 수단; 선형 방정식들의 제 1 세트에 적어도 부분적으로 기초하여

인공 뉴런의 제 2 상태를 결정하는 수단으로서, 상기 선형 방정식들의 제 1 세트는 제 1 영역에 대응하는 파라

미터들의 제 1 세트에 적어도 부분적으로 기초하는, 상기 제 2 상태를 결정하는 수단; 인공 뉴런의 제 2 상태가

제 2 영역 내에 있다고 결정하는 수단으로서, 상기 제 1 영역 또는 제 2 영역의 적어도 하나는 2개 이상의 차원

들에 의해 정의되는, 상기 결정하는 수단; 및 선형 방정식들의 제 2 세트에 적어도 부분적으로 기초하여 인공

뉴런의 제 3 상태를 결정하는 수단으로서, 상기 선형 방정식들의 제 2 세트는 제 2 영역에 대응하는 파라미터들

의 제 2 세트에 적어도 부분적으로 기초하는, 상기 제 3 상태를 결정하는 수단을 포함한다.

본 개시물의 어떤 양태들은 인공 뉴런을 동작시키는 컴퓨터 프로그램 제품을 제공한다.     컴퓨터 프로그램 제[0018]

품은 일반적으로, 인공 뉴런의 제 1 상태가 제 1 영역 내에 있다고 결정하고; 선형 방정식들의 제 1 세트에 적

어도 부분적으로 기초하여 인공 뉴런의 제 2 상태를 결정하고; 인공 뉴런의 제 2 상태가 제 2 영역 내에 있다고

결정하고; 그리고 선형 방정식들의 제 2 세트에 적어도 부분적으로 기초하여 인공 뉴런의 제 3 상태를 결정하도

록 실행가능한 명령들을 가지며, 상기 선형 방정식들의 제 1 세트는 제 1 영역에 대응하는 파라미터들의 제 1

세트에 적어도 부분적으로 기초하며, 상기 제 1 영역 또는 제 2 영역의 적어도 하나는 2개 이상의 차원들에 의

해 정의되며, 상기 선형 방정식들의 제 2 세트는 제 2 영역에 대응하는 파라미터들의 제 2 세트에 적어도 부분

적으로 기초하는, 컴퓨터-판독가능 매체 (예컨대, 저장 디바이스 또는 다른 비일시성 매체) 을 포함한다.

도면의 간단한 설명

위에서 간단히 요약된, 본 개시물의 상기 열거된 특징들이 자세히 이해될 수 있도록 하기 위해서, 일부가 첨부[0019]

도면들에 예시된 양태들을 참조하여 더 구체적인 설명이 이루어질 수도 있다.     그러나, 첨부된 도면들은 단

지 본 개시물의 어떤 전형적인 양태들을 예시하며, 따라서 그 설명이 다른 동등하게 효과적인 양태들에 허용될

수도 있으므로, 그의 범위의 한정으로 간주되지 않는다는 점에 유의해야 한다.

도 1 은 본 개시물의 어떤 양태들에 따른, 뉴런들의 예시적인 네트워크를 예시한다.

도 2 는 본 개시물의 어떤 양태들에 따른, 컴퓨터 네트워크 (신경 시스템 또는 신경 네트워크) 의 예시적인 프

로세싱 유닛 (뉴런) 을 예시한다.

도 3  은 본 개시물의 어떤 양태들에 따른,  예시적인 스파이크-타이밍 의존적인 가소성 (STDP;  spike-timing

dependent plasticity) 곡선을 예시한다.

도 4 는 본 개시물의 어떤 양태들에 따른, 뉴런의 거동을 정의하는 양의 체계 (positive regime) 및 음의 체계

(negative regime) 를 예시하는 인공 뉴런에 대한 상태의 예시적인 그래프이다.

도 5a 및 도 5b 는 본 개시물의 어떤 양태들에 따른, Taylor 전개 방식에 기초하여 비선형 시변 단순 모델을 예

시적인 선형화와 비교하기 위해, 시간에 대한 멤브레인 전압 v 및 복구 전류 u 각각의 예시적인 그래프들을 예

시한다.

도 6a 및 도 6b 는 본 개시물의 어떤 양태들에 따른, Hunzinger Cold 모델의 역치이하의 동력학에 대해, 시간에

대한 멤브레인 전압 v 및 복구 전류 u 각각의 예시적인 그래프들을 예시한다.

도 7 은 본 개시물의 어떤 양태들에 따른, 구분적 선형 뉴런 모델링에 대한 여러 접근법들의 요약을 예시한다.

도 8 은 본 개시물의 어떤 양태들에 따른, 단일 차원의 관점에서의 파티셔닝과 함께 구분적 선형 뉴런 모델링의

일 예를 예시한다.

도 9 는 본 개시물의 어떤 양태들에 따른, 2차원으로 정의된 3개의 직사각형의 영역들을 가진 일반화된 선형 뉴
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런 모델링의 일 예를 예시한다.

도 10 은 본 개시물의 어떤 양태들에 따른, 감쇠하고, 지속되는, 그리고 증가하는 역치이하의 진동 거동을 나타

내기 위해 사용될 수도 있는, 2차원으로 정의된 4개의 영역들을 가진 일반화된 선형 뉴런 모델링의 일 예를 예

시한다.

도 11 은 본 개시물의 어떤 양태들에 따른, 가변 형태들을 가지는 5개의 영역들을 갖는 일반화된 선형 뉴런 모

델링의 일 예를 예시한다.

도 12a 내지 도 12c 는 본 개시물의 어떤 양태들에 따른, 감쇠하고, 지속되는, 그리고 증가하는 역치이하의 진

동들의 예시적인 플롯들을 각각 예시한다.

도 13 은 본 개시물의 어떤 양태들에 따른, 점진적인 감쇠, 다수의 지속되는 진동들, 및/또는 역치이하의 진동

들의 점진적인 증가를 지원하기 위해 다단의 감쇠, 다단의 지속, 및/또는 다단의 증가 영역들에 대해 사용될 수

도 있는, 2차원에 의해 정의되는 6개의 영역들을 가진 일반화된 선형 뉴런 모델링의 일 예를 예시한다.

도 14 는 본 개시물의 어떤 양태들에 따른, 인공 뉴런을 동작시키는 예시적인 동작들의 흐름도이다.

도 14a 는 도 14 에 나타낸 동작들을 수행하는 것이 가능한 예시적인 수단을 예시한다.

도 15a 내지 도 15d 는 본 개시물의 어떤 양태들에 따른, 뉴런 모델들에 대한 파라미터들이 선택되거나, 로드되

거나, 액세스되거나, 추가되거나, 삭제되거나, 및/또는 업데이트될 수 있는, 단일 신경 프로세싱 유닛에 대한

일반적이고 유연한 신경 아키텍처의 구현예를 예시한다.

도 16 은 본 개시물의 어떤 양태들에 따른, 신경 프로세싱 유닛들의 시스템에서 복수의 뉴런 모델들의 조합을

구현하는 예시적인 동작들의 흐름도이다.

도 16a 는 도 16 에 도시된 동작들을 수행하는 것이 가능한 예시적인 수단을 예시한다.

도 17 은 본 개시물의 어떤 양태들에 따른, 범용 프로세서를 이용하여 인공 뉴런의 상태들을 결정하는 예시적인

구현예를 예시한다.

도 18 은 본 개시물의 어떤 양태들에 따른, 메모리가 개개의 분산된 프로세싱 유닛들과 인터페이스될 수도 있는

인공 뉴런의 상태들을 결정하는 예시적인 구현예를 예시한다.

도 19 는 본 개시물의 어떤 양태들에 따른, 분산된 메모리들 및 분산된 프로세싱 유닛들에 기초하여 인공 뉴런

의 상태들을 결정하는 예시적인 구현예를 예시한다.

도 20 은 본 개시물의 어떤 양태들에 따른, 신경 네트워크의 예시적인 구현예를 예시한다.

도 21 은 본 개시물의 어떤 양태들에 따른, 인공 뉴런의 상태들을 업데이트하는데 사용되는 파라미터들이 현재

상태의 양자화에 따라서 메모리로부터 페치되는 구분적 선형 뉴런 모델링의 예시적인 구현예의 블록도이다.

발명을 실시하기 위한 구체적인 내용

본 개시물의 여러 양태들은 이하에서 첨부 도면들을 참조하여 좀더 충분히 설명된다.     본 개시물은 그러나,[0020]

많은 상이한 형태들로 구현될 수도 있으며, 본 개시물을 통해서 제시되는 임의의 특정의 구조 또는 기능에 한정

되는 것으로 해석되어서는 안된다.     대신, 이들 양태들은 본 개시물이 철저하고 완전하게 되도록, 그리고 본

개시물의 범위를 당업자들에게 충분히 전달하기 위해서 제공된다.     본원에서의 교시들에 기초하여, 당업자는

본 개시물의 범위가 본 개시물의 임의의 다른 양태와 독립적으로 구현되든 그와 결합되든, 본원에서 개시된 본

개시물의 임의의 양태를 포괄하도록 의도되는 것으로 이해하여야 한다.     예를 들어, 본원에서 개시된 임의

개수의 양태들을 이용하여, 장치가 구현될 수도 있거나 또는 방법이 실시될 수도 있다.     게다가, 본 개시물

의 범위는 본원에서 개시된 본 개시물의 여러 양태들에 추가해서 또는 이 이외에, 다른 구조, 기능, 또는 구조

및 기능을 이용하여 실행되는 장치 또는 방법을 포괄하도록 의도된다.     본원에서 개시된 본 개시물의 임의의

양태는 청구항의 하나 이상의 엘리먼트들에 의해 구현될 수도 있는 것으로 이해되어야 한다.

단어 "예시적인" 은 "일 예, 사례, 또는 예시로서 기능하는 것" 을 의미하도록 본원에서 사용된다.     본원에[0021]

서 "예시적인" 으로 설명하는 임의의 양태는 다른 양태들에 보다 바람직하거나 또는 유리한 것으로 반드시 해석

되지는 않는다.

특정의 양태들이 본원에서 설명되지만, 이들 양태들의 많은 변형예들 및 치환들은 본 개시물의 범위 이내 이다.[0022]
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   바람직한 양태들의 일부 이익들 및 이점들이 언급되지만, 본 개시물의 범위는 특유의 이점들, 용도들 또는

목적들에 한정되는 것으로 의도되지 않는다.     대신, 본 개시물의 양태들은 상이한 기술들, 시스템 구성들,

네트워크들 및 프로토콜들에 넓게 적용가능한 것으로 의도되며, 이들 중 일부가 일 예로서 도면들에 그리고 바

람직한 양태들의 다음 설명에 예시된다.     상세한 설명 및 도면들은 한정하기 보다는 단지 본 개시물의 예시

이며, 본 개시물의 범위는 첨부된 청구범위 및 이의 균등물들에 의해 정의된다.

예시적인 신경 시스템[0023]

도 1 은 본 개시물의 어떤 양태들에 따른, 다수의 뉴런들의 레벨들을 가진 예시적인 신경 시스템 (100) 을 예시[0024]

한다.     신경 시스템 (100) 은 시냅스 접속들 (즉, 공급-순방향 접속들) 의 네트워크 (104) 를 통해서 또 다

른 뉴런들의 레벨 (106) 에 연결된 뉴런들의 레벨 (102) 을 포함할 수도 있다.     더 적거나 또는 더 많은 뉴

런들의 레벨들이 전형적인 신경 시스템에 존재할 수도 있지만, 간결성을 위해, 단지 2개의 뉴런들의 레벨들이

도 1 에 예시된다.     뉴런들의 일부가 측면 접속들을 통해서 동일한 계층의 다른 뉴런들에 접속할 수도 있다

는 점에 유의해야 한다.     더욱이, 뉴런들의 일부는 피드백 접속들을 통해서 이전 계층의 뉴런에 되접속할 수

도 있다.

도 1 에 예시된 바와 같이, 레벨 (102) 에서 각각의 뉴런은 이전 레벨의 복수의 뉴런들 (도 1 에 미도시) 에 의[0025]

해 발생될 수도 있는 입력 신호 (108) 를 수신할 수도 있다.     신호 (108) 는 레벨 (102) 뉴런에의 입력 (예

컨대, 입력 전류) 을 나타낼 수도 있다.     이러한 입력들은 멤브레인 전위를 충전시키기 위해 뉴런 멤브레인

상에 축적될 수도 있다.     멤브레인 전위가 그의 임계값에 도달할 때, 뉴런은 발화하여 뉴런들의 다음 레벨

(예컨대, 레벨 (106)) 로 전달될 출력 스파이크를 발생할 수도 있다.     이러한 거동은 아날로그 및 디지털 구

현예들을 포함한, 하드웨어 및/또는 소프트웨어로 에뮬레이트되거나 또는 시뮬레이션될 수 있다.

생물학적 뉴런들에서, 뉴런이 발화할 때 발생되는 출력 스파이크는 활동 전위 (action potential) 로서 지칭된[0026]

다.     이 전기 신호는 대략 100 mV 의 진폭 및 약 1 ms 의 지속시간을 갖는, 상대적으로 빠른, 일시적인, 양

단간 (all-or nothing) 신경 임펄스이다.     접속된 뉴런들의 시리즈를 갖는 신경 시스템의 특정의 양태 (예컨

대, 도 1 에서 뉴런들의 하나의 레벨로부터 또 다른 레벨로의 스파이크들의 전송) 에서, 모든 활동 전위는 기본

적으로 동일한 진폭 및 지속기간을 가지며, 따라서, 신호 내 정보는 진폭에 의해서가 아닌, 스파이크들의 주파

수 및 개수 (또는, 스파이크들의 시간) 에 의해서 단지 표현된다.     활동 전위에 의해 운반되는 정보는 스파

이크, 스파이크한 뉴런, 및 하나 이상의 다른 스파이크들에 상대적인 그 스파이크의 시간에 의해 결정된다.

뉴런들의 하나의 레벨로부터 또 다른 레벨로의 스파이크들의 전송은 도 1 에 예시된 바와 같이, 시냅스 접속들[0027]

의 네트워크 (또는, 간단히 "시냅스들") (104) 를 통해서 달성될 수도 있다.     시냅스들 (104) 은 레벨 (102)

뉴런들 (시냅스들 (104) 에 대한 시냅스전 뉴런들) 로부터 출력 신호들 (즉, 스파이크들) 을 수신할 수도 있다.

   어떤 양태들에 있어, 이들 신호들은 조정가능한 시냅스 가중치들  (여기서, P 는

레벨들 102 와 106 의 뉴런들 사이의 시냅스 접속들의 총 개수이다) 에 따라서 스케일링될 수도 있다.     다른

양태들에 대해, 시냅스들 (104) 은 임의의 시냅스 가중치들을 적용하지 않을 수도 있다.     또, (스케일링된)

신호들은 레벨 (106) (시냅스들 (104) 에 대한 시냅스후 뉴런들) 에서 각각의 뉴런의 입력 신호로서 결합될 수

도 있다.     레벨 (106) 에서의 모든 뉴런은 대응하는 결합된 입력 신호에 기초하여 출력 스파이크들 (110) 을

발생할 수도 있다.     출력 스파이크들 (110) 은 그후 시냅스 접속들의 또 다른 네트워크 (도 1 에 미도시) 를

이용하여 뉴런들의 또 다른 레벨로 전달될 수도 있다.

생물학적 시냅스들은 전기적 또는 화학적 시냅스로 분류될 수도 있다.     전기적 시냅스들이 흥분성 신호들을[0028]

전송하는데 주로 사용되는 반면, 화학적 시냅스들은 시냅스후 뉴런들에서의 흥분성 또는 억제성 (과분극하는)

활동들을 중재할 수 있으며, 또한 뉴런 신호들을 증폭하도록 기능할 수 있다.     흥분성 신호들은 일반적으로

멤브레인 전위를 탈분극시킨다 (즉, 휴지 전위에 대해 멤브레인 전위를 증가시킨다).     임계치 위 멤브레인

전위를 탈분극시키기 위해 충분한 흥분성 신호들이 어떤 기간 이내에 수신되면, 활동 전위가 시냅스후 뉴런에서

발생한다.      이에  반해,  억제성  신호들은  일반적으로  멤브레인  전위를  탈분극시킨다 (즉,  감소시킨다).

억제성 신호들은, 충분히 강하면, 흥분성 신호들의 총합을 상쇄시킬 수 있으며 멤브레인 전위가 임계치에 도달

하는 것을 방지할 수 있다.     시냅스 흥분을 중화시키는 것에 더해서, 시냅스 억제는 자발적 활성 뉴런들에

걸쳐서 강력한 제어를 행할 수 있다.     자발적 활성 뉴런은 추가적인 입력 없이, 예를 들어, 그의 동력학 또

는 피드백으로 인해 스파이크하는 뉴런을 지칭한다.     이들 뉴런들에서 활동 전위들의 자발적 발생을 억제함

으로써, 시냅스 억제는 요철모양 (sculpturing) 으로 일반적으로 지칭되는, 뉴런에서의 발화의 패턴을 형상화할
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수 있다.     여러 시냅스들 (104) 은 원하는 거동에 따라서, 흥분성 또는 억제성 시냅스들의 임의의 조합으로

서 작용할 수도 있다.

신경 시스템 (100) 은 범용 프로세서, 디지털 신호 프로세서 (DSP), 주문형 집적회로 (ASIC), 필드 프로그래밍[0029]

가능 게이트  어레이 (FPGA)  또는 다른 프로그래밍가능 로직 디바이스 (PLD),  이산 게이트 또는 트랜지스터

로직, 이산 하드웨어 구성요소들, 프로세서에 의해 실행되는 소프트웨어 모듈, 또는 이들의 임의의 조합에 의해

에뮬레이트될 수도 있다.     신경 시스템 (100) 은 넓은 범위의 애플리케이션들, 예컨대 이미지 및 패턴 인식,

기계 학습, 모터 제어 등에 활용될 수도 있다.     신경 시스템 (100) 에서 각각의 뉴런 (또는, 뉴런 모델) 은

뉴런 회로로서 구현될 수도 있다.     출력 스파이크를 개시하는 임계값까지 충전되는 뉴런 멤브레인은 예를 들

어, 그를 통과해서 흐르는 전류를 적분하는 커패시터로서 구현될 수도 있다.

일 양태에서, 커패시터는 뉴런 회로의 전류 적분 (integrating) 디바이스로서 제거될 수도 있으며, 더 작은 멤[0030]

리스터 엘리먼트가 그 대신에 사용될 수도 있다.     이 접근법은 뉴런 회로들에서 뿐만 아니라, 부피가 큰 커

패시터들이 전류 적분기들 (electrical current integrators) 로서 사용되는 여러 다른 애플리케이션들에서 제

공될 수도 있다.     게다가, 시냅스들 (104) 의 각각은 멤리스터 엘리먼트에 기초하여 구현될 수도 있으며, 여

기서  시냅스  가중치  변화들은  멤리스터  저항의  변화들에  관련될  수도  있다.      나노미터  최소  배선폭

(nanometer feature-sized) 멤리스터들에 의하면, 뉴런 회로 및 시냅스들의 영역이 실질적으로 감소될 수도 있

으며, 이것은 초대규모의 신경 시스템 하드웨어 구현예의 구현을 실현가능하게 할 수도 있다.

신경 시스템 (100) 을 에뮬레이트하는 신경 프로세서의 기능은 뉴런들 사이의 접속들의 강도들을 제어할 수도[0031]

있는 시냅스 접속들의 가중치들에 의존할 수도 있다.     시냅스 가중치들은 전원 차단되어진 후 프로세서의 기

능을 유지하기 위해 비-휘발성 메모리에 저장될 수도 있다.     일 양태에서, 시냅스 가중치 메모리는 메인 신

경 프로세서 칩과 별개인 외부 칩 상에 구현될 수도 있다.     시냅스 가중치 메모리는 교체가능한 메모리 카드

로서 신경 프로세서 칩과는 별개로 패키지될 수도 있다.     이것은 신경 프로세서에 다양한 기능들을 제공할

수도 있으며, 여기서 특정의 기능은 신경 프로세서에 부착된 메모리 카드에 저장되는 시냅스 가중치들에 기초할

수도 있다.

도 2 는 본 개시물의 어떤 양태들에 따른, 컴퓨터 네트워크 (computational network) (예컨대, 신경 시스템 또[0032]

는 신경 네트워크) 의 프로세싱 유닛 (예컨대, 인공 뉴런 (202)) 의 예 (200) 를 예시한다.     예를 들어, 뉴

런 (202) 은 도 1 로부터의 레벨들 (102) 및 (106) 의 뉴런들 중 임의의 뉴런에 대응할 수도 있다.     뉴런

(202) 은 신경 시스템의 외부에 있는 신호들, 또는 동일한 신경 시스템의 다른 뉴런들에 의해 발생되는 신호들,

또는 양쪽일 수도 있는, 다수의 입력 신호들  을 수신할 수도 있다.     입력 신호는

실수 값 또는 복소수 값인, 전류 또는 전압일 수도 있다.     입력 신호는 고정-소수점 또는 부동-소수점 표시

를  가진  수치  값을  포함할  수도  있다.      이들  입력  신호들은  조정가능한  시냅스  가중치들

 에 따라서 신호들을 스케일링하는 시냅스 접속들을 통해서 뉴런 (202) 으로 전달될

수도 있으며, 여기서 N 은 뉴런 (202) 의 입력 접속들의 총 개수일 수도 있다.

뉴런 (202) 은 스케일링된 입력 신호들을 결합하고 그 결합된 스케일링된 입력들을 이용하여, 출력 신호 (208)[0033]

(즉, 신호 y) 를 발생할 수도 있다.     출력 신호 (208) 는 실수 값 또는 복소수 값인, 전류, 또는 전압일 수

도 있다.     출력 신호는 고정-소수점 또는 부동-소수점 표시를 가진 수치 값을 포함할 수도 있다.     출력

신호 (208) 는 그후 동일한 신경 시스템의 다른 뉴런들에의 입력 신호로서, 또는 동일한 뉴런 (202) 에의 입력

신호로서, 또는 신경 시스템의 출력으로서 전달될 수도 있다.

프로세싱 유닛 (뉴런) (202) 은 전기 회로에 의해 에뮬레이트될 수도 있으며, 그의 입력 및 출력 접속들은 시냅[0034]

스 회로들을 가진 와이어들에 의해 에뮬레이트될 수도 있다.     프로세싱 유닛 (202), 그의 입력 및 출력 접속

들은 또한 소프트웨어 코드에 의해 에뮬레이트될 수도 있다.     프로세싱 유닛 (202) 은 또한 전기 회로에 의

해 에뮬레이트될 수도 있으며, 반면 그의 입력 및 출력 접속들은 소프트웨어 코드에 의해 에뮬레이트될 수도 있

다.     일 양태에서, 컴퓨터 네트워크에서 프로세싱 유닛 (202) 은 아날로그 전기 회로를 포함할 수도 있다.

   또 다른 양태에서, 프로세싱 유닛 (202) 은 디지털 전기 회로를 포함할 수도 있다.     여전히, 또 다른 양

태에서, 프로세싱 유닛 (202) 은 아날로그 및 디지털 구성요소들 양쪽과의 혼합된 신호 전기 회로를 포함할 수

도 있다.      컴퓨터 네트워크는 프로세싱 유닛들을 전술한 유형들 중 임의의 유형으로 포함할 수도 있다.

이러한 프로세싱 유닛들을 이용하는 컴퓨터 네트워크 (신경 시스템 또는 신경 네트워크) 는 이미지 및 패턴 인

식, 기계 학습, 모터 제어 등과 같은, 큰 범위의 애플리케이션들에 활용될 수도 있다.
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신경  네트워크를  학습하는  과정  동안,  시냅스  가중치들  (예컨대,  도  1  로부터  가중치들[0035]

 및/또는 도 2 로부터 가중치들 2061-206N) 은 무작위 값들로 초기화되고, 그리고 학습

규칙에 따라서 증가되거나 또는 감소될 수도 있다.     학습 규칙의 일부 예들은 스파이크-타이밍-의존적인 가

소성 (STDP) 학습 규칙, Hebb 규칙, Oja 규칙, Bienenstock-Copper-Munro (BCM) 규칙, 등이다.     매우 자주,

가중치들은 2개의 값들 (즉, 가중치들의 이봉 분포) 중 하나로 정할 수도 있다.     이 효과는 시냅스 가중치

당  비트수를  감소시키고,  시냅스  가중치들를  저장하는  메모리로부터  판독하고  그에  기록하는  속도를

증가시키고, 그리고 시냅스 메모리의 소비 전력을 감소시키는데 이용될 수 있다.

시냅스 유형[0036]

신경 네트워크들의 하드웨어 및 소프트웨어 모델들에서, 시냅스 관련 기능들의 프로세싱은 시냅스 유형에 기초[0037]

할 수 있다.     시냅스 유형들은 비소성 (non-plastic) 시냅스들 (어떤 가중치 및 지연의 변화들이 없음), 소

성 시냅스들 (가중치가 변할 수도 있음), 구조적 지연 소성 시냅스들 (가중치 및 지연이 변할 수도 있음), 완전

소성 시냅스들 (가중치, 지연 및 연결성 (connectivity) 이 변할 수도 있음), 및 그의 변형예들 (예컨대, 지연

이 변할 수 있지만, 어떤 가중치 또는 연결성에서의 변화도 없음) 을 포함할 수도 있다.     이것의 이점은 프

로세싱이 세분될 수 있다는 점이다.     예를 들어, 비소성 시냅스들은 가소성 기능들이 실행되는 것을 (또는,

이러한 기능들이 완료하기를 대기하는 것을) 필요로 하지 않을 수도 있다.     이와 유사하게, 지연 및 가중치

가소성은 함께 또는 별개로, 차례차례로 또는 병렬로, 동작할 수도 있는 동작들로 세분될 수도 있다.     상이

한 유형들의 시냅스들은 적용하는 상이한 가소성 유형들의 각각에 대해 상이한 룩업 테이블들 또는 공식들 및

파라미터들을  가질  수도  있다.      따라서,  방법들은  시냅스의  유형에  대한  관련된  테이블들에  액세스할

것이다.

스파이크-타이밍 의존적인 구조적 가소성이 시냅스 가소성과는 독립적으로 실행될 수도 있다는 사실의 추가적인[0038]

암시들이 있다.     구조적 가소성은, 구조적 가소성 (즉, 지연 변화의 양) 이 직접 사전-사후 스파이크 시간

차이의 양의 (direct) 함수일 수도 있기 때문에, 설령 가중치 크기에 어떠한 변화도 없더라도 (예컨대, 가중치

가 최소 또는 최대 값에 도달하였거나, 또는 일부 다른 원인으로 인해 변화되지 않으면) 실행될 수도 있다.

 이의 대안으로, 이것은 가중치 변화 양의 함수로서, 또는 가중치들 또는 가중치 변화들의 범위들에 관련된 조

건들에 기초하여 설정될 수도 있다.     예를 들어, 시냅스 지연은 단지 가중치 변화가 일어날 때 또는 가중치

들이 제로에 도달하면 변할 수도 있으며, 그러나 가중치들이 최대에 도달되면, 변하지 않을 수도 있다.     그

러나, 이들 프로세스들을 병렬화하여 메모리 액세스들의 수 및 중첩을 감소시킬 수 있도록 독립적인 기능들을

갖는 것이 유리할 수 있다.

시냅스 가소성의 결정[0039]

신경가소성 (또는, 간단히 "가소성") 은 새로운 정보, 감각의 자극, 발달, 손상, 또는 기능장애에 응답하여, 그[0040]

들의 시냅스 접속들 및 거동을 변경하는, 뇌에서의 뉴런들 및 신경 네트워크들의 능력 (capacity) 이다.     가

소성은  생물학에서의  학습  및  기억,  뿐만  아니라  컴퓨터  신경과학  및  신경  네트워크들에  중요하다.

(예컨대, Hebbian 이론에 따른) 시냅스 가소성, 스파이크-타이밍-의존적인 가소성 (STDP), 비-시냅스 가소성,

활동-의존적 가소성, 구조적 가소성, 및 항상적 가소성 (homeostatic plasticity) 과 같은, 가소성의 여러 형태

들이 연구되었다.

STDP 는 뇌에서의 뉴런들과 같은, 뉴런들 사이의 시냅스 접속들의 강도를 조정하는 학습 프로세스이다.     접[0041]

속 강도들은 특정의 뉴런의 출력 및 수신된 입력 스파이크들 (즉, 활동 전위들) 의 상대적인 타이밍에 기초하여

조정된다.     STDP 프로세스 하에서, 장기 강화 (LTP) 는, 어떤 뉴런으로의 입력 스파이크가 평균적으로, 그

뉴런의 출력 스파이크 직전에 발생하는 경향이 있으면, 일어날 수도 있다.     그 후, 그 특정의 입력이 다소

더 강하게 이루어진다.     이에 반해, 장기 억압 (LTD) 은 입력 스파이크가 평균적으로, 출력 스파이크 직후에

발생하는 경향이 있으면, 일어날 수도 있다.     그 후, 그 특정의 입력이 다소 더 약하게 이루어지며, "스파이

크-타이밍-의존적 가소성" 으로 명명한다.     그 결과, 시냅스후 뉴런의 여기의 원인일지도 모르는 입력들은

미래에 심지어 더 많이 기여할 가능성이 있도록 이루어지며, 반면 시냅스후 스파이크의 원인이 아닌 입력들은

미래에 덜 기여할 가능성이 있도록 이루어진다.     프로세스는 접속들의 초기 세트의 서브세트가 유지되지만

모든 나머지의 영향이 제로 또는 거의 제로로 감소될 때까지 계속한다.

그의 입력들 중 많은 입력들이 (즉, 출력을 일으키는데 충분히 누적적인) 짧은 기간 내에 일어날 때 뉴런이 일[0042]
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반적으로 출력 스파이크를 발생하기 때문에, 일반적으로 남아 있는 입력들의 서브세트는 시간에 맞춰 상관되려

는 경향이 있는 입력들을 포함한다.     게다가, 출력 스파이크 전에 발생하는 입력들이 강화되기 때문에, 가장

빠른 충분히 누적적인 상관의 표시를 제공하는 입력들이 결국 뉴런에의 최종 입력이 될 것이다.

STDP 학습 규칙은 시냅스전 뉴런을 시냅스후 뉴런에 접속하는 시냅스의 시냅스 가중치를 시냅스전 뉴런의 스파[0043]

이크들 시간   과 시냅스후 뉴런의 스파이크 시간  사이의 시간 차이 (즉, ) 의 함

수로서 효과적으로 적응시킬 수도 있다.     STDP 의 전형적인 공식화 (formulation) 는, 시간 차이가 양이면

(시냅스전  뉴런이  시냅스후  뉴런  이전에  발화하면)  시냅스  가중치를  증가시키고  (즉,  시냅스를  강화시키고

(potentiate)), 그리고 시간 차이가 음이면 (시냅스후 뉴런이 시냅스전 뉴런 전에 발화하면) 시냅스 가중치를

감소시키는 (즉, 시냅스를 억압하는) 것이다.

STDP 프로세스에서, 시간에 걸친 시냅스 가중치의 변화는 다음으로 주어진 바와 같이, 지수 감쇠를 이용하여 달[0044]

성될 수도 있으며,

 ,   (1)[0045]

여기서,  및  는 각각 양 및 음의 시간 차이에 대한 시상수들이고, 그리고  및  는 대응하는 스[0046]

케일링 크기들이고, 그리고  는 양의 시간 차이 및/또는 음의 시간 차이에 적용될 수도 있는 오프셋이다.

도 3 은 STDP 에 따른 시냅스전 및 시냅스후 스파이크들의 상대적인 타이밍의 함수로서의 시냅스 가중치 변화의[0047]

예시적인 그래프 다이어그램 (300) 을 예시한다.     시냅스전 뉴런이 시냅스후 뉴런 이전에 발화하면, 대응하

는 시냅스 가중치가 그래프 (300) 의 부분 (302) 에 예시된 바와 같이, 증가될 수도 있다.     이 가중치 증가

는 시냅스의 LTP 로서 지칭될 수 있다.     LTP 의 양이 시냅스전 및 시냅스후 스파이크 시간들 사이의 차이의

함수로서 거의 기하급수적으로 감소할 수도 있다는 것이 그래프 부분 (302) 로부터 관찰될 수 있다.     발화의

역방향 순서는 시냅스 가중치를 감소시켜, 그래프 (300) 의 부분 (304) 에 예시된 바와 같이, 시냅스의 LTD 를

초래할 수도 있다.

도 3  에서 그래프 (300)  에 예시된 바와 같이,  음의 오프셋  는 STDP  그래프의 LTP  (인과관계의) 부분[0048]

(302) 에 적용될 수도 있다.     X-축 (y=0) 의 교차 지점 (306) 은 계층 i-1 로부터의 인과관계의 입력들에 대

한 상관을 고려하기 위해 최대 시간 지체와 일치하도록 구성될 수도 있다.     프레임-기반의 입력의 경우 (즉,

입력이 스파이크들 또는 펄스들을 포함하는 특정의 지속기간의 프레임의 유형인 경우) 에, 오프셋 값  는 프

레임 경계를 반영하도록 계산될 수 있다.     프레임에서 제 1 입력 스파이크 (펄스) 는 시냅스후 전위에 의해

직접적으로 모델링될 때와 같이 또는 신경 상태에 대한 효과의 관점에서 시간에 걸쳐서 감쇠하는 것으로 간주될

수도 있다.     프레임에서 제 2 입력 스파이크 (펄스) 가 특정의 시간 프레임과 상관되거나 또는 관련되는 것

으로 간주되면, 프레임 전후에 관련된 시간들은, 관련된 시간들에서의 값이 상이할 수 있도록 (예컨대, 하나의

프레임보다 큰 것에 대해 음 및 하나의 프레임보다 작은 것에 대해 양) STDP 곡선의 하나 이상의 부분들을 오프

셋함으로써, 그 시간 프레임 경계에서 분리될 수도 있으며, 가소성 항들 (terms) 에서 상이하게 취급될 수도 있

다.     예를 들어, 음의 오프셋  는, 곡선이 실제로 프레임 시간보다 큰 사전-사후 시간에서 제로 아래로

가며 따라서 LTP 대신 LTD 의 부분이도록, LTP 를 오프셋하도록 설정될 수도 있다.

뉴런 모델들 및 동작[0049]

유용한 스파이킹 뉴런 모델을 설계하기 위한 일부 일반적인 원리들이 존재한다.     우수한 뉴런 모델은 2개의[0050]

계산 체계들, 즉 일치 검출 및 함수적 계산의 관점에서, 풍부한 전위 거동을 가질 수도 있다.     더욱이, 우수

한 뉴런 모델은 시간 코딩을 가능하게 하기 위해 2개의 엘리먼트들을 가져야 한다: 입력들의 도달 시간은 출력

시간에 영향을 미치며 일치 검출은 좁은 시간 윈도우를 가질 수 있다.     마지막으로, 계산적으로 흥미를 끌기

위해서, 우수한 뉴런 모델은 연속적인 시간으로 닫힌 형태의 해 (closed-form solution) 를 가지며 가까운 어트

랙터들 (attractors) 및 새들 (saddle) 지점들을 포함한 안정한 거동을 가질 수도 있다.     즉, 유용한 뉴런

모델은 풍부하고 현실적이고 생물학적으로 일관된 거동들을 모델링하는데 뿐만 아니라, 신경 회로들 설계하고
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역설계하는데 모두 사용될 수 있으며, 그리고 실용적인 모델이다.

뉴런 모델은 입력 도달, 출력 스파이크 또는 내부든 또는 외부든 다른 이벤트와 같은 이벤트들에 의존할 수도[0051]

있다.     풍부한 행동 레파토리를 획득하기 위해, 복잡한 거동들을 나타낼 수도 있는 상태 머신이 요망될 수도

있다.     입력 기여 (있다면) 와는 별개인, 이벤트 자체의 발생이 상태 머신에 영향을 미치거나 그 이벤트에

후속하는 동력학을 구속할 수 있으면, 시스템의 미래 상태는 오직 상태 및 입력의 함수라기 보다는, 상태, 이벤

트, 및 입력의 함수이다.

일 양태에서, 뉴런 n 은 다음 동력학에 의해 지배되는 멤브레인 전압  을 가진 스파이킹 누설 적분 발화[0052]

(spiking leaky-integrate-and-fire) 뉴런으로서 모델링될 수도 있으며,

,  (2)[0053]

여기서, α 및 β 는 파라미터들이고,  는 시냅스전 뉴런 m 을 시냅스후 뉴런 n 에 접속하는 시냅스에 대[0054]

한 시냅스 가중치이고, 그리고  는 뉴런 n 의 세포체에서 도달까지  에 따른 수상 (dendritic)

또는 축삭 (axonal) 지연에 의해 지연될 수도 있는 뉴런 m 의 스파이킹 출력이다.

지연 시냅스후 뉴런으로의 충분한 입력이 확립될 때의 시간으로부터 시냅스후 뉴런이 실제로 발화할 때의 시간[0055]

까지 지연이 존재한다는 점에 유의해야 한다.     Izhikevich의 단순 모델과 같은, 역학적 스파이킹 뉴런 모델

에서, 시간 지연이 탈분극 임계치  와 피크 스파이크 전압  사이의 차이가 있으면 초래될 수도 있다.

   예를 들어, 단순 모델에서, 뉴런 세포체 동력학은 다음과 같은, 전압 및 복구에 대한 미분 방정식들의 쌍에

의해 지배될 수 있으며,

,   (3)[0056]

.     (4)[0057]

여기서, ν 는 멤브레인 전위이고, u 는 멤브레인 복구 변수이고, k 는 멤브레인 전위 ν 의 시간 척도를 기술[0058]

하는 파라미터이고, a 는 복구 변수 u 의 시간 척도를 기술하는 파라미터이고, b 는 멤브레인 전위 ν 의 역치

이하의 요동들에 대한 복구 변수 u 의 감도를 기술하는 파라미터이고,  는 멤브레인 휴지 전위이고, I 는 시

냅스 전류이고, 그리고 C 는 멤브레인의 커패시턴스이다.     이 모델에 따르면, 뉴런은  일 때 스

파이크하도록 정의된다.

Hunzinger Cold 모델[0059]

Hunzinger Cold 뉴런 모델은 신경 거동들의 풍부한 변종을 재현할 수 있는 최소 이중 체계 스파이킹 선형 동역[0060]

학적 모델이다.     모델의 1 또는 2차원 선형 동력학은 2개의 체계들을 가질 수 있으며, 여기서, 시상수 (및

커플링) 는 그 체계에 의존할 수 있다.     역치이하의 체계에서, 시상수, 즉, 규약에 의한 음수는, 생물학적으

로 일관된 선형 방식으로 셀을 휴지로 복귀시키려고 일반적으로 작용하는 누설 채널 동력학을 나타낸다.     역

치상 체계에서의 시상수, 즉, 규약에 의한 양수는, 스파이크하도록 셀을 일반적으로 구동하지만 스파이크 발생

에서 레이턴시를 초래하는 누설 방지 채널 동력학을 반영한다.

도 4 에 예시된 바와 같이, 모델의 동력학은 2개의 (또는, 더이상의) 체계들로 분할될 수도 있다.     이들 체[0061]

계들은 (LIF 뉴런 모델과 혼동되지 않도록, 누설 적분 발화 (LIF) 체계로서 상호교환가능하게 또한 지칭되는)

음의 체계 (402) 및 (ALIF 뉴런 모델과 혼동되지 않도록, 누설 방지 적분 발화 (ALIF) 체계로서 상호교환가능하

게 또한 지칭되는) 양의 체계 (404) 로 불릴 수도 있다.     음의 체계 (402) 에서, 그 상태는 미래 이벤트 시
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에 휴지 ( ) 에 빠지는 경향이 있다.     이 음의 체계에서, 모델은 일반적으로 시간 입력 검출 성질들 및

다른 역치이하의 거동을 나타낸다.     양의 체계 (404) 에서, 그 상태는 스파이킹 이벤트 ( ) 에 빠지는 경

향이 있다.     이 양의 체계에서, 모델은 후속 입력 이벤트들에 따라서 스파이크하기 위해 레이턴시를 초래하

는 것과 같은, 계산 성질들을 나타낸다.     이벤트들의 관점에서 동력학의 공식화 및 이들 2개의 체계들로의

동력학의 분리는 모델의 기본적인 특성들이다.

(상태들 ν 및 u 에 대해) 선형 이중 체계 2차원 동력학은 다음과 같이 규약에 의해 정의될 수도 있으며,[0062]

    (5)[0063]

    (6)[0064]

여기서,  및 γ 는 커플링을 위한 선형 변환 변수들이다.[0065]

심볼 ρ 는 본원에서, 특정의 체계에 대한 관계를 논의하거나 또는 표현할 때, 심볼 ρ 를 음의 및 양의 체계들[0066]

에 대해 부호 "-" 또는 "+" 로 각각 대체하는 규약를 가진 동력학 체계를 표시하기 위해 사용된다.

모델 상태는 멤브레인 전위 (전압) ν 및 복구 전류 u 에 의해 정의된다.     기본적인 유형에서, 체계는 모델[0067]

상태에 의해 본질적으로 결정된다.     정확하고 일반적인 정의의 미묘하지만 중요한 양태들이 존재하며, 그러

나 지금은, 전압 ν 이 임계치 ( ) 보다 크면 양의 체계 (404) 에, 그렇지 않으면 음의 체계 (402) 에 그 모

델이 있는 것으로 간주한다.

체계 의존적인 시상수들은 음의 체계 시상수인 , 및 양의 체계 시상수인  을 포함한다.     복구 전류[0068]

시상수는 일반적으로 체계와 무관하다.     편의를 위해, 음의 체계 시상수  는 감쇠를 반영하기 위해 음의

양으로서 일반적으로 규정되어,  인 바와 같이, 전압 발전 (voltage evolution) 에 대해 동일한 수식이 지

수 및  가 일반적으로 양수일 양의 체계에 대해 사용될 수 있도록 한다.

2개의 상태 엘리먼트들의 동력학은 이벤트들에서 그들의 널-클라인들로부터 그 상태들을 오프셋하는 변환들에[0069]

의해 커플링될 수도 있으며, 여기서, 변환 변수들은 다음과 같으며

    (7)[0070]

      (8)[0071]

여기서,  및  는 파라미터들이다.      에 대한 2개의 값들은 2개의 체계들에 있어[0072]

참조 전압들에 대한 베이스이다.     파라미터  는 음의 체계에 대한 베이스 전압이며, 멤브레인 전위는 일

반적으로 음의 체계에서  쪽으로 감쇠할 것이다.     파라미터  는 양의 체계에 대한 베이스 전압이며,

멤브레인 전위는 일반적으로 양의 체계에서  쪽으로부터 나아갈 것이다.

ν 및 u 에 대한 널-클라인들 (null-clines) 은 변환 변수들  및  의 음수로 각각 주어진다.     파라[0073]

미터  는 μ 널-클라인의 기울기를 제어하는 스케일 인자이다.     파라미터 ε 은 일반적으로  과 동

일하게 설정된다.     파라미터 β 는 양쪽의 체계들에서 ν 널-클라인들의 기울기를 제어하는 저항 값이다.
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   시간-일정한 파라미터들은 지수 감쇠들 뿐만 아니라, 널-클라인 기울기들을 각각의 체계에서 별개로 제

어한다.

모델은 전압 ν 이 값  에 도달할 때 스파이크하도록 정의된다.     그 후에, 그 상태는 일반적으로 (기술[0074]

적으로 하나이고 스파이크 이벤트와 동일할 수도 있는) 리셋 이벤트에서 리셋되며:

      (9)[0075]

     (10)[0076]

여기서,  및  는 파라미터들이다.     리셋 전압  은 일반적으로  으로 설정된다.[0077]

순간적인 커플링의 원리에 의해, 닫힌 형태의 해는 상태 (그리고 단일 지수 항을 가진 상태) 에 대해서 뿐만 아[0078]

니라, 특정의 상태에 도달하는데 요구되는 시간에 대해서 가능하다.     닫힌 형태의 상태 해들은 다음과 같다

    (11)[0079]

    (12)[0080]

따라서, 모델 상태는 입력 (시냅스전 스파이크) 또는 출력 (시냅스후 스파이크들) 시와 같은 이벤트들 시에 단[0081]

지 업데이트될 수도 있다.     동작들은 또한 (입력이든 또는 출력이든) 임의의 특정의 시간에 수행될 수도 있

다.

더욱이, 순간적인 커플링 원리에 의해, 시냅스후 스파이크의 시간은, 특정의 상태에 도달하는 시간이 반복 기법[0082]

들 또는 수치 방법들 (예컨대, Euler 수치 방법) 없이 미리 결정될 수도 있도록, 예상될 수도 있다.     이전

전압 상태  로 주어지면, 전압 상태  에 도달되기 전까지의 시간 지연은 다음과 같이 주어진다.

     (13)[0083]

전압 상태 ν 가  에 도달하는 시간에서 일어나는 것으로 스파이크가 정의되면, 전압이 주어진 상태 ν 에[0084]

있는 시간으로부터 측정될 때 스파이크들이 발생할 때까지, 시간의 양, 또는 상대적인 지연에 대한 닫힌 형태의

해는 다음과 같으며,

   (14)[0085]

여기서,  는 다른 변형예들이 가능할 수도 있지만 파라미터  로 일반적으로 설정된다.[0086]

상기 모델 동력학의 정의들은 모델이 양의 체계 또는 음의 체계인지 여부에 의존한다.     언급한 바와 같이,[0087]

커플링 및 체계 ρ 는 이벤트들 시에 계산될 수도 있다.     상태 전파의 목적들을 위해, 체계 및 커플링

(변환) 변수들은 최종 (prior) 이벤트 시의 그 상태에 기초하여 정의될 수도 있다.     스파이크 출력 시간을

이후에 예상하려는 목적을 위해, 체계 및 커플링 변수는 다음 (현재의) 이벤트 시의 상태에 기초하여 정의될 수
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도 있다.

Cold 모델의 여러 가능한 구현예들이 있으며, 그 시뮬레이션, 에뮬레이션 또는 모델을 시간에 맞춰 실행하고 있[0088]

다.     이것은 예를 들어,  이벤트-업데이트, 단계-이벤트 업데이트, 및 단계-업데이트 모드들을 포함한다.

 이벤트 업데이트는 (특정의 순간에서) 이벤트들 또는 "이벤트 업데이트" 에 기초하여 상태들이 업데이트되는

업데이트이다.     단계 업데이트는 모델이 간격들 (예컨대, 1ms) 로 업데이트되는 업데이트이다.     이것은

반복 방법들 또는 수치적 방법들을 반드시 필요로 하지는 않는다.     이벤트-기반의 구현예는 또한 단계들에서

또는 그들 사이에, 또는 "단계-이벤트" 업데이트에 의해 이벤트가 발생하면 모델을 단지 업데이트함으로써, 제

한된 시간 해상도에서, 단계-기반의 시뮬레이터에서, 가능하다.

신경 코딩[0089]

도  1  의  인공  뉴런들  (102,  106)  로  이루어진  모델과  같은,  유용한  신경  네트워크  모델은  일치  코딩[0090]

(coincidence coding), 시간 코딩 (temporal coding) 또는 레이트 코딩 (rate coding) 과 같은, 여러 적합한

신경 코딩 방식들 중 임의의 방식을 통해서 정보를 인코딩할 수도 있다.     일치 코딩에서, 정보는 뉴런 모집

단 (population) 의 활동 전위들 (스파이킹 활동) 의 일치 (또는, 시간 근접성) 로 인코딩된다.     시간 코딩

에서, 뉴런은 절대 시간으로든 또는 상대적인 시간으로든, 활동 전위들 (즉, 스파이크들) 의 정확한 타이밍을

통해서 정보를 인코딩한다.     정보는 따라서 뉴런들의 모집단 중 스파이크들의 상대적인 타이밍으로 인코딩될

수도 있다.     이에 반해, 레이트 코딩은 신경 정보를 발화 레이트 또는 모집단 발화 레이트로 코딩하는 것을

수반한다.

뉴런 모델이 시간 코딩을 수행할 수 있으면, 뉴런 모델은 또한 (레이트가 단지 타이밍 또는 스파이크간 간격들[0091]

의 함수이기 때문에) 레이트 코딩을 수행할 수 있다.     시간 코딩을 가능하게 하기 위해, 우수한 뉴런 모델은

다음의 2개의 요소들을 가져야 한다:  (1) 입력들의 도달 시간이 출력 시간에 영향을 미친다; 그리고 (2) 일치

검출이 좁은 시간 윈도우를 가질 수 있다.     접속 지연들은, 시간 패턴의 엘리먼트들을 적당히 지연시킴으로

써, 엘리먼트들이 타이밍 일치가 될 수도 있기 때문에, 일치 검출을 시간 패턴 디코딩으로 확장하는 하나의 수

단을 제공한다.

도달 시간[0092]

우수한 뉴런 모델에서, 입력의 도달 시간은 출력의 시간에 영향을 미쳐야 한다.     시냅스 입력은 Dirac delta[0093]

함수든 또는 형상화된 시냅스후 전위 (PSP)든, 흥분성 (EPSP) 이든 또는 억제성 (IPSP) 이든, 입력 시간으로서

지칭될 수도 있는 도달 시간 (예컨대, delta 함수의 시간 또는 단계 또는 다른 입력 함수의 시작 또는 피크) 를

갖는다.     뉴런 출력 (즉, 스파이크) 은 (예컨대, 세포체에서, 축삭을 따른 지점에서, 또는 축삭의 말단에서

측정될 때는 언제나) 출력 시간으로 지칭될 수도 있는 발생의 시간을 갖는다.     그 출력 시간은 스파이크의

피크의 시간, 스파이크들의 시작, 또는 출력 파형과 관련된 임의의 다른 시간일 수도 있다.     아주 중요한 원

리는 출력 시간이 입력 시간에 의존한다는 것이다.

사람들은 언뜻 보기에는 모든 뉴런 모델들이 이 원리에 따른다고 생각할지 모르지만, 이것은 일반적으로 사실이[0094]

아니다.     예를 들어, 레이트-기반의 모델들은 이 특징을 갖지 않는다.     많은 스파이킹 모델들은 또한 일

반적으로 따르지 않는다.     누설 적분 발화 (leaky-integrate-and-fire; LIF) 모델은 (임계치를 넘은) 여분

의 입력들이 존재하면, 더 이상 빨리 발화하지 않는다.     더욱이, 아주 높은 타이밍 해상도에서 모델링되면

따를 지도 모르는 모델들은 종종 타이밍 해상도가 예컨대, 1 ms 단계들까지 제한될 때 따르지 않을 것이다.

입력들[0095]

뉴런 모델에의 입력은 전류들로서의 입력들, 또는 컨덕턴스-기반의 입력들과 같은, Dirac delta 함수들을 포함[0096]

할 수도 있다.     후자의 경우에, 뉴런 상태에의 기여는 연속적이거나 또는 상태-의존적일 수도 있다.

예시적인 구분적 선형 뉴런 모델링 [0097]

뉴런의 동력학에 대한 수학적 모델들은 수십년간 탐구되었으며 연구되었다.     모델들이 그들의 생물학적 대응[0098]

물들과 매칭하는 복잡도 및 정확도가 변하는, 다양한 뉴런 모델들이 제안되었다.     근본적으로, 모든 뉴런 모

델들은 많은 종류의 이온 채널들의 상호작용들로 인한 셀 멤브레인 전압의 비선형 거동을 캡쳐하고, 그리고, 공

통 시작 지점, 즉 1950년대 Hodgkin-Huxley 의 비약적 진전 노력 (1950년대 Hodgkin-Huxley 의 비약적 연구

(breakthrough work) 에 의해 제공되는 수학적 설명을 가지려고 시도한다.

수년 간, 신경 과학자들은, 큰 부분으로는, 그들이 모델링하려는 생물학적 셀들의 측정된 거동을 재현하는 능력[0099]
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과, 그들이 분석되어 시뮬레이션될 수 있는 용이성과 속도 사이에 좋은 트레이드오프를 제공하는 것처럼 나타나

는, 2차원 뉴런 모델들로 수렴되었다.     미분 방정식들의 쌍을 통해서 모두 공식화되는, 대부분의 일반적인 2

차원 모델들이 아래에 설명된다.

그러나, 종래의 뉴런 모델 구현예들은 유연성이 부족하다.     일반적으로, 인공 뉴런에 대한 뉴런 모델의 구현[0100]

예는, 예를 들어, 사전에 특정의 뉴런 모델을 선택하는 것에 기초가 두어진다.     이 접근법에 대한 불리한 면

은 완전히 상이하거나 또는 심지어 약간 수정된 뉴런 모델을 구현하는 것의 어려움이다.

본 개시물의 어떤 양태들은, 여러 동역학적 뉴런 모델들에 대한 미분 방정식들이 위에서 설명한 바와 같이, 셀[0101]

멤브레인 전압의 비선형 거동을 캡쳐하려고 노력하는 비선형 함수 F(v) 를 제외하고는, 동등한 것으로 간주될

수도 있다는 사실을 이용한다.     이 실현에 의하면, 하나의 접근법은 구분적 선형 근사를 제공하기 위해, 유

한한 양자화 간격들로, 뉴런들의 동력학을 모델링하는데 사용되는 미분 방정식들에서의 비선형 함수들을 선형화

하는 것을 포함한다.     이러한 접근법의 이점들은 동력학에 대한 해들을 연속적인 시간으로 또는 이산 시간으

로 비교적 쉽게 유도하는 능력, 및 임의의 뉴런 모델이 분석되어 시뮬레이트될 수 있는 일반적인 수학적 프레임

워크를 포함한다.     이들 해들은 본 개시물의 어떤 양태들에 대한 상이한 뉴런 모델의 구현예가 파라미터들의

간단한 치환물을 포함할 수 있도록, 주어진 뉴런 모델에 대해 각각의 양자화 간격에 대응하는 파라미터들을 제

공한다.

본 개시물의 어떤 양태들은 이 구분적 선형화 접근법을 시냅스 전류를 포함하는 함수에 적용한다.     이 좀더[0102]

일반화된 접근법은 다른 변수들 중에서도, 시변 시냅스 컨덕턴스의 함수인 시스템 행렬을 초래한다.     본 개

시물은 먼저 최종 구분적 선형 시변 시스템에 대한 일부 근사해들을 연구한다.     다음으로, 본 개시물은 시변

컨덕턴스를 상수 만큼 주어진 시간 간격에 걸쳐서 근사화함으로써 이전 시변 시스템으로부터 획득된 구분적 선

형 시불변 (LTI) 시스템을 연구한다.     시냅스 전류를 포함하는 함수에 의한, 이 더 정확한 접근법은, 양자화

프로세스에 의해 커버되도록 큰 동적 범위를 가진 시스템 행렬들을, 따라서 여러 사전-계산된 행렬들을 저장하

기 위해 상대적으로 큰 메모리 수요들을 초래한다.     이 접근법의 이익은 원래 비선형 시변 시스템의 진정한

동력학의 더 정확한 근사이다.     동적 범위의 부분에 걸쳐서, 그들을 저장하는 대신, 관련된 행렬들을 계산함

으로써 메모리 수요들을 경감하기 위한 접근법이 또한 제시된다.

본 개시물의 어떤 양태들은 임의의 1차원, 2차원, 또는 더 높은 차원의 뉴런 모델들을 지원하는 공통 아키텍처[0103]

를 실현하는 수단을 제공한다.     이 유연한 아키텍처에 의하면, 여러 적합한 뉴런 모델들 중 임의의 모델이

원하는 대로 실행되고 대체될 수도 있다.     예를 들어, 뉴런 모델은 이즈히케비치 (Izhikevich) 단순 모델,

지수 적분 발화 (exponential-integrate-and-fire; EIF) 모델, 피츠휴-나구모 (FitzHugh-Nagumo) 모델, 4차방

정식 모델,  또는 위에서 그리고 발명의 명칭이 "Dynamical  Event  Neuron  and  Synapse  Models  for  Learning

Spiking Neural Networks" 이고 2012년 5월 30일자로 출원되고 본원에서 참조로 포함된 미국 특허출원 번호 제

13/483,811호 [대리인 사건 번호 122024] 에서 설명한 바와 같은 Hunzinger Cold 모델 중 적어도 하나를 포함

할 수도 있다.     이러한 뉴런 모델들은 본원에서 설명된 구분적 선형 근사를 이용하여 구현될 수도 있다.

도입[0104]

시작할 한 위치는 뉴런 동력학을 모델링하는 미분 방정식들의 설명이다.     비록 설명은 2차원 뉴런 모델들에[0105]

집중하지만, 접근법은 더 높은 차원의 모델들로 확장되거나 또는 1차원 모델들에도 또한 적용될 수 있다.

    (15)[0106]

   (16)[0107]

상기 방정식들은 정성적으로 인공 뉴런의 동력학을 기술한다 (표기법의 단순성을 위해, 변수들에서의 시간 의존[0108]

성은 생략된다).     이들 방정식들은 변수들 v 및 u 로 표현되는, 2차원으로의 Hodgkin-Huxley 4 차원 모델의

단순화들의 결과이다.     변수 v 는 뉴런 멤브레인 전압 및 나트륨 활성화의 거동을 캡쳐하는 반면, u 는 칼륨

활성화 및 나트륨 비활성화의 더 느린 거동을 캡쳐하여 Hodgkin-Huxley 모델의 4개의 변수들을 2개로 감소시키

려고 시도하는 "적응 (accommodation)" 또는 "복구 (recovery)" 변수를 나타낸다.     방정식 (15) 에서의 변

수 I 는 입력 전류를 나타낸다     더 많은 일반적인 2차원 모델은 다음의 유형일 수도 있으며, 
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 [0109]

 [0110]

여기서, 양쪽의 미분 방정식들은 비선형 항들을 포함할 수도 있다.     여기서, 초점은 방정식들 (15) 및 (16)[0111]

에 의해 설명되는 모델들과 같은 모델들에 있으며, 그러나 처음부터 끝까지 개발되는 동일한 방법론은 상기 설

명에도 또한 적용될 수 있다.

근본적으로, 문헌에서 제안되어 있는 가장 인기 있는 뉴런 모델들은 다음 방정식 (15) 에서의 함수 F(v) 의 선[0112]

택에 따라 다르다.     일부 예들은 Izhikevich (또한, 단순 모델로서 지칭됨) 에 의해 제안된 바와 같은, 다음

의 2차 함수: 

    (17)[0113]

Brette 및 Gerstner 에 의한 선형-플러스-지수 함수:[0114]

   (18)[0115]

FitzHugh-Nagumo 모델을 나타내는 선형-플러스-3차 함수: [0116]

     (19)[0117]

Touboul 및 Gerstner 에 의한 선형-플러스-4차 항[0118]

     (20)[0119]

그리고, 마지막으로, 다음과 같이 정의되는, "고유 컨덕턴스" 모델들로서 지칭될 수도 있는 것을 포함한다:[0120]

    (21)[0121]

여기서, G(v) 는 구분적 상수 함수 (컨덕턴스의 단위) 이고, p(v) 는 또한 구분적 상수 함수 (전류의 단위) 이[0122]

다.      고유 컨덕턴스 모델의 가장 간단한 유형은,  F(v)  가  다음과 같은 유형을 취하는,  위에서 설명된

Hunzinger Cold 모델에서와 같이, G(v) 및 p(v) 가 단지 2개의 간격들에 걸쳐서 구분적 상수일 때, 획득된다:

(22)[0123]

FitzHugh-Nagumo 모델을 제외한, 상기 모든 모델들은, 방정식들 (15) 및 (16) 로 주어진 설명에 더해서, 리셋[0124]

조건들이 주어지기 때문에, 2차원 하이브리드 모델들로서 지칭된다.     예를 들어, 일단 전압 임계치가 교차되

면 변수 v 가 무한대까지 증가할 것이기 때문에, 이들이 이러한 모델들에 제공된다.     따라서, 다음 리셋 조

건들이 사용될 수도 있다:

만약   이면,  이고  이다   (23)[0125]

즉, 전압 v 이 스파이킹 임계치  를 교차할 때 (또는, 어떤 양태들에 대해, 전압이  를 교차할 것[0126]
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이라는 결정이 이루어질 때), 전압은 휴지 값  으로 리셋되며, 복구 변수 u 은 현재의 값 플러스 상수 d 와

동일한 값으로 리셋된다.     어떤 양태들에 있어, u 는  대신, 미리 결정된 일정한 값 ( ) 으로

리셋될 수도 있다.     어떤 양태들에 따르면, 리셋 조건은 제어 신호의 활성화 또는 수신에 응답하여 발생할

수도 있다.      하이브리드 모델들에서 리셋 조건은 2차원 동역학적 시스템들의 가능한 거동들을 풍부하게

한다.

가장  일반적으로는,  입력  전류  I(t)  는  시냅스  전류들  ISYN(t)  와  일반적인  전류  Iext(t)  조합에  의해[0127]

모델링된다.     시냅스 전류는 다음의 유형을 취한다.

    (24)[0128]

방정식 (24) 에서,  는 특정의 채널 (  채널) 에 대한 시간-의존적인 컨덕턴스를 나타내며, 그리고[0129]

 는 그 채널에 대한 반전 전위를 나타낸다.     상기 유형의 시냅스 전류가 실질적으로 선형 전류-전압 관

계들을 기술하는데 충분하지만, 일부 경우들에서 (예컨대, N-메틸-D-아스파르테이트 (NMDA) 채널), 컨덕턴스는

또한 시냅스후 멤브레인 전압의 함수이다.     이 경우, 방정식 (24) 는 다음과 같은 더 복잡한 유형을 취하며, 

  (25)[0130]

여기서, 함수 h(v) 는 시냅스후 전압에 대한 의존을 캡쳐한다.     함수 h(v) 는 다음과 같이 모델링되며 [0131]

      (26)[0132]

여기서, 파라미터들 α 및 β 는 예를 들어, 다음 값들을 취한다:  α = 0.062 및 β = 1/3.57.[0133]

따라서, 가장 일반적으로는, 최고 L 개의 상이한 시냅스 채널들이 다음과 같이 모델링될 수도 있다:[0134]

   (27)[0135]

여기서, [0136]

 (28)[0137]

게다가, 시간-의존적인 컨덕턴스  는 간단한 지수 함수, alpha 함수에 의해, 또는 지수들의 차이 함수[0138]

(difference-of-exponentials function) 에 의해 모델링될 수 있다.     시상수 τ 를 갖는 간단한 감쇠 지수

함수의 경우 (여기서, θ(t) 는 Heaviside 단계 함수이다), 다음을 갖는다

     (29)[0139]

alpha 함수의 경우에, 다음을 갖는다 [0140]

    (30)[0141]
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지수들의 차이 함수의 경우에, 지수들이 상이한 상승 및 감쇠 시상수들을 가지며, 다음을 갖는다. [0142]

  (31)[0143]

상수  는 다음과 같이  와 동일하도록 정규화 인자를 포함하며:[0144]

     (32)[0145]

여기서, 다음과 같다.[0146]

   (33)[0147]

다음 섹션들에서는, 동역학적 시스템의 근사해들이 연구된다.     시스템이 비선형이기 때문에, 엄밀해 (exact[0148]

solution) 들이 발견될 수 없다.     따라서, (예 1 에서와 같이) "엄밀" 해를 참조하거나 또는 비교할 때, 의

미하는 것은 수치적으로 (예컨대, Runge-Kutta) 획득되지만 높은 정밀도를 가진 해이다.

공식화 및 유도[0149]

유도로 진행하기에 앞서, 일부 정의들 및 표기 규약들이 소개된다.     이제부터, 볼드체 대문자들은 행렬들을[0150]

표시하며, 반면 볼드체 소문자들은 벡터들을 표시한다.     2차원 상태 벡터  는 다음과 같이 정의될 수도

있다

     (34)[0151]

제 1 상태 변수는 멤브레인 전압 v 이고, 제 2 상태 변수는 복구 변수 u 이다.     방정식들 (15) 및 (16) 는[0152]

이제 가장 일반적인 경우에 대해 다음과 같이 명시적으로 다시 쓰여진다:

(35)[0153]

    (36)[0154]

따라서, 가장 일반적인 경우에, 도 7 에서 702 에 예시된 바와 같이, 비선형 시변 (NLTV) 2차원 동역학적 시스[0155]

템을 다루고 있다.     이하에서, 이러한 시스템은 706 에서 구분적 선형 시변 (pLTV) 시스템에 의해 먼저 근사

화되며, 다음과 같이 연속적으로 추가로 근사화된다:  (1) 710 에서 시간-간격 의존적인 상수 계수들을 가진 구

분적 선형 시불변 시스템 (pLTI) 또는 (2) 714 에서 시간-간격 독립적인 상수 계수들을 가진 pLTI.

구분적 선형 시변 시스템 [0156]

먼저 시간 축  은 다음과 같은 임의의 비-중첩하는 시간 간격들로 분할된다.[0157]
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 (37)[0158]

각각의 시간 간격 (예컨대,  간격) 내에서, 뉴런 거동은 파라미터들이 간격의 시작에서 (예컨대, 시간 t =[0159]

Tn 에서) 인공 뉴런의 상태로부터 획득되는 선형 시변 (LTV) 시스템에 의해 근사화된다.     이러한 근사를 전

개하기 위해서, 먼저 다음을 정의하며, 

(38)[0160]

그리고 연립 방정식 (35) 및 (36) 은 다음이 된다[0161]

    (39)[0162]

   (40)[0163]

다음으로, 함수  가  간격  에 걸쳐서 근사, 아핀-선형 수식으로 근사화된다.     근[0164]

사에서의  계수들은  시간  Tn  에서  전압의  함수이다.      모호하지  않을  때  표기들을  단순화하기  위해,

 라 하면, 다음과 같다.

   (41)[0165]

이러한 근사들의 일부 예들은 Taylor 전개 방법, 평균 기울기 방법, 1차 선형 내삽 방법, 및 Lp 근사 오차를 최[0166]

소화하는 최적 선형 내삽 방법을 포함한다.     Taylor 전개 방법에 대해:

 [0167]

  그리고 [0168]

   (41a)[0169]

평균 기울기 방법에서 주어진 전압 단계  에 대해, 평균 기울기는 다음과 같이 계산된다: [0170]

 그리고 [0171]

   (41b)[0172]
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1차  선형  내삽  방법에서,  전압  축은  간격들   로  파티셔닝되며,  여기서,[0173]

 이다.     그러면, 다음과 같다.

 그리고 [0174]

   (41c)[0175]

Lp  근사  오차를  최소화하는  최적  선형  내삽  방법에서,  전압  축은  앞서와  같이,  간격들,[0176]

 로 파티셔닝된다.     그러나, 다음의 선형 근사는 

[0177]

Lp 놈에 기초하여 원 함수에 대해 선형 근사 오차를 최소화하도록 설계된다.     간격  에 걸친[0178]

근사 오차는 다음과 같이 정의될 수도 있으며,

[0179]

여기서, 다음과 같다.[0180]

[0181]

방정식 (41) 에 기초하여, 방정식들 (39) 및 (40) 에 의해 설명되는 LTV 시스템은 이제 다음과 같이 표현될 수[0182]

도 있다:

  (42)[0183]

   (43)[0184]

좀더 압축해서 말하면, 다음과 같은 행렬 방정식을 가지며 [0185]

     (44)[0186]

  (45)[0187]

여기서,  그리고  이다.[0188]
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 에 대해, 상기 LTV 시스템의 해는 다음과 같이 표현될 수도 있으며, [0189]

  (46)[0190]

여기서, 천이 행렬  는 다음과 같은 Peano-Baker 공식으로 주어진다.[0191]

[0192]

 (47)[0193]

방정식 (47) 로 주어진 시리즈는 예를 들어, 다음과 같은 일부 특정의 경우들에 대해 간단하게 된다:[0194]

(i)  는 상수이고  과 동일하다.     그러면,  는 다음과 같은 친숙한 유형의 행렬 지[0195]

수를 취하며, 

[0196]

여기서, 행렬  의 행렬 지수는 다음과 같이 정의된다.[0197]

[0198]

(ii) 더 일반적인 경우는  과  가 임의의 t 에 대해 교환가능할 때이다.     그러[0199]

면, 다음과 같다.

[0200]

다음 조건들 중 임의의 조건은 상기 가환 성질이 만족되는 것을 보증한다:  (a)  는 상수이고; (b)[0201]

 이고,  여기서,   는  스칼라  함수이고   는  상수  행렬이며;  또는  (c)

 이며, 여기서,  는 스칼라 함수이고  는 임의의 i,j 에

대해 교환가능한 상수 행렬들이다.

(iii) 다소 더 일반적인 경우는 모든  에 대해, 행렬  가 2개의 성분들의 총합으로서[0202]
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표현될 수 있을 때이다: 

일부  정수들  k  ≥  0  및  s  ≥  1,  일부  고정된  시간-인스턴트들  ,  및  일부  고정된  행렬들[0203]

 및  에 대해, 

.     시간-인스턴트들 및 행[0204]

렬들은 그들이 시간 파라미터  에 독립적인 점에서 볼 때 "고정된다".     아마 가장 유용한 예

는 k = 0 및 s = 1 또는 2 일 때이다.     어쨌든, 상기 수식에서의 제 2 항 (즉, 행렬  를

포함하는 항) 이 모든  에 대해 제 1 항보다 많이 더 작으면, 행렬  가 다음과 같은 무

한 급수로 근사화될 수도 있는 것으로 판명된다:

[0205]

[0206]

여기서,  복소 변수 z  및 실수 값의 파라미터들 t  및 τ 의 함수  가 정의된다.      함수[0207]

 는 z = 0 에서 분석적이며 다음으로 주어지며, 

[0208]

여기서, 표기 <f(z)> 는 f(z) 의 분석적인 구성요소를 표시한다.     상기 방정식에서, 분석적인 구성요소는 지[0209]

수 항을 그의 멱 급수 표현으로 치환하고, 곱 (product) 및 도함수를 계산하고, 그후 z 의 음의 거듭제곱들과

연관되는 항들을 제거함으로써 획득된다.

시변 행렬  의 모든 다른 경우들에 대해, 방정식 (47) 의 천이 행렬에 대한 근사들이 발견될 수 있으[0210]

며, 그러면 방정식 (46) 에 대한 근사해들이 획득될 수도 있다.

구분적 선형 시불변 시스템 [0211]

추가적인 단순화들은 방정식 (44) 에 의해 설명되는 선형 시변 (LTV) 시스템을 선형 시불변 (LTI) 시스템으로[0212]

변환함으로써 달성될 수도 있다.     그렇게 하기 위해서, 계수  는 간격  에 걸쳐서

일정하게 유지된다.     이 결과는 여러 방법들로 달성될 수도 있으며, 그 방법들 중 몇개가 아래에 설명된다.

   위에서 설명된 아핀-선형 근사들의 각각에 대해, 상수 계수는, 

임의의 간격  에 대해, 다음과 같이 정의될 수도 있다.[0213]

[0214]
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이의 대안으로, 다음 시간 단계  이 값이 시간  에서 알려져 있으면, 계수  의 평균[0215]

값은, 

임의의 간격  에 대해, 다음과 같이 계산될 수도 있다.[0216]

[0217]

Taylor 전개 방법에 대한 예를 이해하기 쉽게 하기 위해, LTI 시스템은 다음을 이용하여 획득된다.[0218]

[0219]

또는[0220]

[0221]

동일한 평균화 접근법이 위에서 설명한 방법들 중 임의의 방법에 적용될 수도 있다.     LTI 시스템은 이제 다[0222]

음 행렬 방정식으로 설명된다:

  (48)[0223]

해는 다음과 같이 표현될 수도 있으며, [0224]

 (49)[0225]

여기서, 천이 행렬  는 이제 다음과 같은 행렬 지수이다.[0226]

     (50)[0227]

 (즉,  길이 T 의 고정된 및 균일한 시간 간격들) 인 경우에 대해, 방정식 (49) 는 다음과 같이[0228]

된다.

(51)[0229]

요약하면, 초기 일반적인 모델은 비선형 시변 2차원 시스템이다.     이 비선형 시스템은 주어진 시간 간격에[0230]

걸쳐서 선형 근사들을 비선형 함수  에 적용함으로써 선형 시변 시스템으로 먼저 변환되었다.     시변

시스템은 시변 시스템 행렬  를 취하고 그것을 동일한 주어진 간격에 걸쳐서 상수 행렬  로 근사

화함으로써 선형 시불변 (LTI) 시스템으로 추가로 변환되었다.
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해들 (solutions)[0231]

문제가 공식화되었으며 비선형 함수에 대한 다수의 가능한 아핀 선형 근사들이 제안되었으므로, 이제 방정식들[0232]

(49) 및 (51) 에 걸쳐서 그리고 그들의 구현예에 의해 주어지는, 간격  에 걸친 LTI 시스템에 대

한 해에 대해 집중된다.     추가로, 방정식 (49) 에서의 표기들을 간단히 하고 그리고  로

표기하면, 다음과 같으며, 

  (52)[0233]

그리고, 행렬  및 벡터  는 다음과 같이 주어지며,[0234]

[0235]

여기서, 계수들  및  는 위에서 설명한 방법들 중 임의의 방법에 의해 계산된다.[0236]

다음으로, Taylor 전개 방법에 대한 해가 유도된다 (다른 방법들 중 임의의 방법에 대한 해들이 그에 따라서 뒤[0237]

따른다).     이 경우, 다음을 갖는다.

 및 (53)[0238]

및 [0239]

(54)[0240]

(55)[0241]

표기들을 간단히 하면, 다음과 같다.[0242]

(56)[0243]

벡터  를 다음과 같이 표현하는 것이 편리하다:[0244]

[0245]

여기서, 다음과 같다.[0246]
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 및 [0247]

방정식 (52) 는 그후 다음과 같이 표현될 수도 있다.[0248]

(57)[0249]

방정식 (57) 의 제 1 적분은 다음을 획득하도록 닫힌 형태로 풀어질 수도 있으며[0250]

  (58)[0251]

여기서,  는 2x2 항등 행렬 (identity matrix) 이다.[0252]

방정식 (52) 는 이제 다음과 같이 표현될 수도 있다:[0253]

(59)[0254]

외부 전류가 방정식 (59) 의 최종 적분에 대한 닫힌 형태의 수식이 획득되지 않는 경우이면, 그것은 근사화되어[0255]

야 될지도 모른다.     근사의 일 예는 다음과 같이, 제로-홀드 (zero-hold) 이다. 

(60)[0256]

이 경우, 임의의 간격  에 대한 닫힌 형태의 해는 다음 유형을 취한다:[0257]

(61)[0258]

방정식 (61) 에서의 주요 성분은 행렬 지수  이며, 이것은 다음과 같이 표현될 수 있다.      및[0259]

 이 2x2 행렬  의 고유치들이라 하자.     그러면, 다음과 같다:

여기서,  실수 (62)[0260]

     여기서,  실수 (63)[0261]

여기서, (64)[0262]

여기서,  및  는 특성 방정식  의 해들이다.[0263]

방정식들 (62)-(64) 는 행렬 지수에 대해 명시적인 수식들을 제공한다.     이의 대안으로, 다수의 효율적인 수[0264]

치적인 알고리즘들은 행렬 지수를 계산하는데 이용가능하다.     따라서, 어느 한 쪽의 방법을 통해서 시간

공개특허 10-2015-0087266

- 30 -



 에서 시스템의 상태를 결정하는 것이 실현가능하다.     그러나, 하드웨어 구현에서, 다음에 설명되

는 바와 같이, 상이한 접근법을 이용하는 것이 유익할 수도 있다.

첫째, 행렬  에서, 오직 하나의 계수  가 시스템이 전개함에 따라 변하며; 나머지 3개의 계수[0265]

들은  전체에  걸쳐서  일정하게  유지한다는  점에  유의한다.      계수는  예를  들어,  방정식  (56)  에  의해

주어진다.     예시적인 효율적인 절차는 다음과 같다:  (1) 유한한 개수의 값들로 단계화하기 위해 각각의 시

간에서의  제  1  상태  변수  (즉,  멤브레인  전압  )  를  양자화하고,  그리고  (2)  룩업  테이블들을  함수들

, 및  의 사전-계산된 값들로 인덱스한다.     이와 유사하게, 시간 인스턴트들 (time

instants) 은 역시 양자화될 수도 있으며,  의 사전-계산된 값들은 룩업 테이블들에 저장될 수도 있다.

   취출된  값들은  방정식  (56)  을  통해서   을  평가하기  위해  그리고  유한한  개수의  값들

 에 대한 결과를 양자화하기 위해 이제 사용될 수도 있다.

이와 유사하게, ΔTn 에 대한 다수의 선택들이 사전-선택될 수도 있으며, 방정식 (62) 에 나타나는 행렬의 행렬[0266]

지수 및 역 행렬 (matrix inverse) 이   및 ΔTn 에 의해 사전-계산되어 해결될 수도 있다.

적응적 및 고정된 시간 단계들[0267]

이전 섹션에서, LTI 시스템의 상태에 대한 수식들이 임의의 시간 인스턴트들에서 유도되었다.     다음은, 시간[0268]

단계들이 적응적으로 선택되는 경우 및 시간 인스턴트들이 고정되고 미리 결정된 단계 사이즈  로 균

일한 동기적 시스템의 더 간단한 경우를 좀더 자세히 설명한다.

적응적 전략은 복잡성 및 정밀도 양쪽에 유익할 수도 있다.     예를 들어, 시간 단계들은 상태가 느리게 전개[0269]

하고 있을 때 더 멀리 떨어져서 선택될 수도 있으며 (즉, 더 큰 ΔTn), 이렇게 하여 계산들의 속도를 증가시킬

수도 있다.     이에 반해, 시간 단계들은 예를 들어, 뉴런 모델이 스파이킹 이벤트 근처에 있을 때 작아질 수

도 있으며, 이에 의해 스파이크 시간이 계산되는 정밀도를 증가시킬 수 있다.     다음으로, 시간 단계들의 선

택에 대한 가능한 알고리즘이 설명된다.

방정식 (63) 이 나타내는 바와 같이, 시스템 전개의 시상수들은 행렬들  의 고유치들에 반비례한다.     특[0270]

히, 고유치들이 제로에 가까우면, 시상수들은 크며, 시스템은 느리게 전개한다.     그와는 반대로, 고유치들

중 적어도 하나가 커지며 (그리고, 가능한 한 양수), 시스템은 아주 빨리 전개한다.     상기 태스크를 달성하

는 시간 단계들의 선택을 위한 하나의 예시적인 알고리즘은 다음과 같다:

   (65)[0271]

방정식 (65) 에서,  는 행렬  의 최대 고유치 (크기에서) 를 표시하며, 한편  및  는[0272]

구성가능한 파라미터들이다.     이것은 다음 관계들이 유효하다는 것을 보장하며:

(66)[0273]

그리고, 임의의 간격  에 대해, 다음과 같다:[0274]
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     (67)[0275]

다음으로, 이전 섹션의 일반해들이 사이즈 T 의 고정되고 균일한 시간 단계들의 중요한 경우에 대해 상세히 설[0276]

명된다.     방정식 (61) 에서 시작하여, 다음을 획득한다

(68)[0277]

예 1:  Izhikevich (단순) 모델에 대한 Taylor 전개[0278]

이 예에서, 방정식 (68) 이 Taylor 전개 방법에 기초하여 단순 모델 및 선형화에 대해 평가된다.     공식들을[0279]

다소 단순화하기 위해, 외부 전류가 존재하지 않는다고 가정된다.

첫째, 단순 모델, 즉,  에 대한 Taylor 전개의 계수들이 방정식 (56) 로부터 시작[0280]

하여 유도된다.     만약 다음과 같으면, 

   (69)[0281]

다음을 얻는다:[0282]

(70)[0283]

[0284]

(71)

비-NMDA 시냅스 채널들에 대해, 방정식들 (70) 및 (71) 은 다음과 같이 간단하게 된다[0285]

    (72)[0286]

(73)[0287]

다음으로 취하면,  [0288]

[0289]

방정식 (68) 은 이제 다음과 같이 되며, [0290]

(74)[0291]
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여기서, 다음과 같다:[0292]

[0293]

[0294]

또 다시, 비-NMDA 시냅스 전류들에 대해, 방정식 (74) 는 다음과 같이 간단하게 되며, [0295]

(75)[0296]

여기서, 다음과 같다:[0297]

[0298]

[0299]

더욱이, 방정식들 (74) 및 (75) 에서의 적분들은 닫힌 형태로 풀어질 수 있다.     예를 들어, 만약 [0300]

[0301]

이면, [0302]

(76)[0303]

이 예를 완료하기 위해, 방정식 (75) 의 정확도는, 파라미터들 k = 0.7, C = 100, a = 0.03, b = -2, vr = -60[0304]

mV, 및 vt = -40 mV 을 가진 느린 흥분성 뉴런 모델 및 파라미터들 τAMPA = 5 ms, EAMPA = 0 mV, 및 gAMPA = 5 를

가진 단일 지수 AMPA 채널에 대해서, T = 1 ms 로 테스트된다.     도 5a 및 도 5b 의 멤브레인 전위 플롯

(500) 및 복구 전류 플롯 (520) 에 각각 예시된 바와 같이, 방정식 (75) 에 기초한 선형화는 비선형 시변 모델

에 기초하여 플롯들을 정확히 추적한다.

예 2:  Hunzinger Cold 모델의 역치이하의 동력학[0305]

또 다른 예는 Hunzinger Cold 모델로서 알려져 있는 간단한 고유 컨덕턴스 모델의 역치이하의 동력학을 검사하[0306]

고자 하는 노력으로 개발된다.     이 예에서, 어떤 시냅스 전류들 및 간단하지만 흥미로운 충격 (impulsive)

외부 전류의 경우도 가정되지 않는다.

Hunzinger Cold 모델 (상기 방정식 (22) 참조) 에서, 멤브레인 전압이 임계치 아래일 때, 행렬  는 일정하[0307]

며  와 동일하다: 

[0308]
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유도는 제 1 상태 변수가 멤브레인 전압 마이너스 참조 전압으로서 정의되면 추가로 간단히 될 수 있다.     이[0309]

러한 정의에 의하면, 모든 상수 항들은 제로와 동일하며, 방정식 (61) 는 다음과 같이 간단히 된다.

 (77)[0310]

더욱이, 외부 전류가 진폭 I, 즉,  를 가진 시간 Tn 에서의 Dirac delta 함수인 것으로[0311]

가정되면, 다음과 같다:

   (78)[0312]

충격 입력들 (impulsive inputs) 이 초기 조건과 동일한 효과를 시스템에 미친다는 점에 유의한다.     고유치[0313]

들이 실수 및  이면, 방정식 (62) 는 방정식 (78) 에서 치환되어  에 대해 다음의 연속적인

시간 해를 획득할 수 있다:

(79)[0314]

다음과 같은 새로운 행렬 [0315]

[0316]

를 정의하고, 다음과 같이 표기함으로써, [0317]

[0318]

방정식 (72) 은 다음과 같이 적을 수도 있다. [0319]

  (80)[0320]

특히, Tn = 0 에 대해, 다음을 얻는다.[0321]

  (81)[0322]

도 6a 및 도 6b 의 멤브레인 전위 플롯 (600) 및 복구 전류 플롯 (620) 은 각각 다음의 파라미터들의 값들에 대[0323]

해 방정식 (81) 의 시간 전개를 나타낸다:   = 14 ms, C = 100, a = 0.03, b = -2, Iext(t) = 100δ(t), 및

v0 = u0 = 0.     멤브레인 전압 및 복구 전류은 다음 함수들로 주어진다:

 (82)[0324]

 (83)[0325]
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방정식 (80) 의 계산에 수반되는 행렬들 및 고유치들이 선험적으로 알려져 있으므로, 시스템의 시간 경과는 (예[0326]

컨대, 룩업 테이블에서) 주어진 시간 해상도를 가진 2개의 지수 함수들을 사전-계산하여 저장함으로써 매우 용

이하게 그리고 원하는 정밀도로 계산될 수도 있다.     이의 대안으로, 지수 함수의 계산 (근사) 에 대한 빠른

알고리즘들이 채용될 수도 있으며, 그리고 방정식 (80) 이 실시간으로 계산될 수도 있다.

상기 공식화는 이벤트 시에 상태 벡터를 연산하는 것에 관심을 있는 이벤트-기반의 구현예에 특히 적절하다.[0327]

  예를 들어, 방정식 (80) 및 시간 Tn+1  에서의 이벤트의 발생이 주어지면,  를 연산하기를 원할 수도

있다.      에 의하면, 다음을 갖는다.

 (84)[0328]

하나의 중요한 이벤트는 스파이크 시간 (즉, 위에서 설명한 바와 같이, 인공 뉴런의 멤브레인 전압이 피크 임계[0329]

치를 교차하는 시간) 이다.     인공 뉴런에 대한 모델이 스파이크 시간에 가까울 때, 고유치들 중 적어도 하나

는 양이고 지배적이다.     따라서, 우수한 근사는 전압의 수식에서 단지 지배적인 항을 보유함으로써 얻어질

수도 있다.     즉, 함수 v(t) 가 다음과 같은 방정식 (82) 에 나타낸 유형의 함수이기 때문에, 

    (85)[0330]

v(t) 는 다음과 같은 그의 지배적인 항에 의해 근사화될 수도 있다 [0331]

     (86)[0332]

스파이킹 시간은 다음으로부터 용이하게 얻어질 수도 있다 [0333]

   (87)[0334]

추가적인 단순화들[0335]

"해들" 이란 제목으로 된 하위 섹션의 끝은, 행렬 지수 및 역 행렬을 사전-계산하기 위해, 행렬  의 제 1[0336]

엘리먼트  는 동적 범위를 포괄하는 유한한 개수의 값들로 양자화되어야 한다고 언급한다.     이

전 하위 섹션의 유도로부터, 구체적으로 말하면, 예 1 로부터 볼 수 있는 바와 같이, 계수  는

 의  함수이고  시간   에서  컨덕턴스의  함수이다.      멤브레인  전압의  동적  범위가  알맞게

제한되더라도, 컨덕턴스의 동적 범위가 아주 클 수 있다.     따라서, 다수의 사전-계산된 행렬들이 이 경우에

가장 저장되어야 할 가능성이 있을지도 모른다.     다음으로, 추가적인 단순화들이 메모리 수요들을 감축하기

위해 조사된다.     하나의 접근법은 원하는 행렬들을 제한된 범위에 걸쳐서 사전-연산하여 저장하고 계산들을

수행하여 그 범위를 넘어서는 값들에 대해 원하는 행렬들을 근사화하는 접근법이다.

예를 들어, 계수  가 행렬  의 다른 3개의 고정된 계수들보다 (크기에서) 더 커질 때, [0337]

 및  과 같은, 임의의 복소수 값의 함수  에 대해, 다음 근사가 사용될 수도[0338]

있다:
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 [0339]

 그리고  (88)[0340]

이 접근법에 의하면, 메모리 수요들과 계산 복잡성이 트레이드 오프될 수 있다.[0341]

메모리 수요들의 추가적인 감소는 어떤 근사들을 통해서 달성될 수도 있다.     예를 들어, 아핀 선형 근사가[0342]

방정식  (38)  로  정의된  함수가  아닌,  수정된  함수   에  적용될  수도  있다.

게다가, 시냅스 전류는 외부 전류로서 취급될 수도 있으며, 최종 적분은 역방향 직사각형 규칙에 의해 근사화될

수도 있다.     이 경우, 행렬 지수 및 역 행렬을 사전-계산하여 저장하는데 수반되는 동적 범위는 멤브레인 전

압 단독의 동적 범위이며, 따라서, 아주 작다.     트레이드오프는 해들의 정확대에 대한 메모리 수요들 중 하

나이다.

다음으로, 상기 단락은 이 추가적인 단순화 하에서 해를 재유도함으로써 좀더 자세하게 설명된다.     앞에서와[0343]

같이 방정식들 (35) 및 (36) 에서 시작할 수도 있으며, 여기서는 편의성을 위해 반복된다:

  (89)[0344]

    (90)[0345]

이제, 그러나, 방정식 (38) 에서의 함수는 다음과 같이 수정된다:[0346]

     (91)[0347]

그리고, 연립 방정식이 다음과 같이 다시 공식화된다. [0348]

 (92)[0349]

    (93)[0350]

시스템 행렬  는 이제 다음과 같이 간단히 되며, [0351]

      (94)[0352]

여기서, 벡터  는 이제 다음과 같이 정의된다. [0353]

(95)[0354]
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상기 근사에 의하면, 컨덕턴스 값들에 대한 시스템 행렬 (계수 ) 의존이 회피되며, 따라서 행렬 지수를 연[0355]

산할 때에 커버되는 동적 범위를 상당히 감소시킨다.     시냅스 전류는 멤브레인 전압을 시간 기간에 대해 일

정한 값로 유지함으로써 외부 전류로서 취급될 수도 있다.     고정된-시간-단계 구현예에서, 해는 그러면 다음

과 같이 될 것이다.

   (96)[0356]

방정식 (96) 에서 벡터 적분의 제 1 성분는 다음과 같으며, [0357]

   (97)[0358]

이것은 관심있는 대부분의 경우들에 풀어질 수 있다.     상기 근사에 대한 최상의 결과들은 역방향 직사각형[0359]

규칙을 이용하여, 즉 방정식 (97) 에서의 값  을 이용하여 획득되었다.

예 3:  역방향 직사각형 규칙에 의한 근사화[0360]

설명 (exposition) 및 표기들을 간단히 하기 위해서, 이 예는 시냅스 전류가 전압-의존적인 컨덕턴스 채널들[0361]

(예컨대, NMDA 채널들) 을 포함하지 않고 어떤 외부 전류  도 존재하지 않는다고 가정한다.     유도는

길이 T 의 고정된 단계 사이즈들에 대해 획득된다.     시작하기 위해, 방정식 (68) 는 다음과 같이 간단하게

될 수도 있다:

(98)[0362]

여기서, 벡터  는 다음과 같은, 상수 항들을 포함한다. [0363]

     (99)[0364]

표기의 편의성을 위해, 다음 벡터 및 행렬은 또한 다음과 같이 정의될 수도 있으며:[0365]

    (100)[0366]

따라서, 방정식 (98) 은 다음과 같이 다시 쓸 수도 있다.[0367]

[0368]

 (101)[0369]

이제, 해는 방정식 (29) 에 대해 간단한 지수들로서 모델링된  에 대해 유도된다.     이 경우, 다음을[0370]

갖는다.

 [0371]

공개특허 10-2015-0087266

- 37 -



(102)[0372]

적분들이 쉽게 풀어질 수 있으며, 추가로 다음과 같이 정의하면, [0373]

(103)[0374]

방정식 (102) 는 다음과 같이 쓸 수도 있다. [0375]

(104)[0376]

좌변 상에서 시간 nT+T 에서의 상태를 포함하는 항들을 모으면 다음이 되며,[0377]

 (105)[0378]

그리고 최종적으로 다음이 된다. [0379]

(106)[0380]

역변환될 행렬이 다음과 같고, [0381]

(107)[0382]

그리고, 그의 역이 다음과 같다는 점에 주의한다. [0383]

 여기서, (108)[0384]

상태 업데이트의 계산은 다음과 같이 진행될 수도 있다 (여기서, ):[0385]

I. 원하는 양자화를 사전-계산하고 모든 계수들 (  및 )을 저장한다.[0386]

II. 각각의 채널에 대해,  및  를 계산한다.[0387]

III. 그 합계들 및 Ei 으로 스케일링된 (scaled-by-Ej) 합계들을 계산한다.[0388]

[0389]

IV. 방정식 (105) 의 우변측을 구하고 다음과 같은 보조 변수들로 저장한다.[0390]

[0391]
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[0392]

[0393]

V. 다음의 역 행렬에 의해 곱셈을 수행한다: [0394]

[0395]

[0396]

이중 지수를 가진 NMDA 경우에 대해, 각각의 지수가 개별적으로 취급될 가능성 가장 클 수도 있다는 점에 유의[0397]

한다.     이것은 2개의 벡터들, 즉, 감쇠 지수함수 항에 대해 하나 및 상승 지수 항에 대해 하나를 사전-계산

하여 저장하는 것을 초래한다.

도 21 은 방정식 (106) 의 실현을 예시하는 블록도 (2100) 이다.     간결성을 위해, 방정식 (106) 의 첫번째[0398]

부분을 나타내는 행렬 역변환 블록 (2102) 은 확장되지 않는다.     현재 상태 벡터  로부터, 상태 벡

터로부터의 멤브레인 전위  이 메모리 인덱스를 결정하기 위해 양자화 블록 (2104)  에서 양자화된다.

 메모리 인덱스는 멤브레인 전위의 양자화 간격에 대응하는 뉴런 모델의 구분적 선형 근사에 대해 미리 결정된

파라미터들 (예컨대, 계수들) 을 선택하기 위해 사용되며, 메모리 룩업 테이블(들) (2106) 에 저장된다.     메

모리 인덱스에 기초하여, 지수 행렬  (2108) 및 상기 방정식 (99) 으로부터의 정의된 벡터  (2110) 에 대

한 계수들을 포함하여, 양자화 간격과 연관되는 파라미터들이 로드된다.     파라미터들은 또한 입력 전류 벡터

 (2112) 및 N 개의 시냅스 전류 입력 벡터들  (2114) 에 대한 계수들을 포함한다.     합계 블록 (2116)

은 벡터  (2112) 에 적용된 입력 전류 I(nT)/C 와 N 개의 시냅스 전류 입력 벡터들   (2114) 에 적용된

역방향 전위들  에 의해 스케일링된 컨덕턴스 값들을 합산한다.     이 결과는 업데이트된 상태

벡터  를  발생하기 위해 행렬 역변환 블록 (2102)  으로 방정식 (106)  에  따라서 프로세싱된다.

지연 블록 (2118) 은 상태들이 연속적으로 보다는, 시간에서 각각의 단계 사이즈 T 로 업데이트되도록, 추가될

수도 있다.

방정식 (101) 에서의 적분들에 대해 다른 근사들이 사용될 수 있다.     예를 들어, 정확한 값들을 계산하여 그[0399]

것들을 벡터들에 저장하기 보다는,  에 적용되는 사다리꼴 규칙이 사용될 수도 있으며, 따라서 벡터들의 저장을

회피하고 추가로 약간 더 나쁜 근사를 대가로 메모리 수요들을 감소시킬 수 있다.

요약[0400]

상기 하위섹션에서는, 뉴런 모델들의 구분적 선형화에 대한 일반적인 접근법이 설명되었다.     도 7 은 여러[0401]

단계들 및 선형화 방법들을 요약한다.     702 에서 비선형 시변 시스템에서 시작하여, 구분적 선형화가 706 에

서의 행렬  의 관점에서 구분적 선형 시변 시스템을 발생하기 위해 704 에서 간격  에

걸쳐서 수행될 수도 있다.     상수 계수들 (즉, 구분적 상수 함수) 이 708 에서 각각의 간격 

에 대해 사용되면, 구분적 LTI 시스템이 710 에서 행렬  의 관점에서 형성된다.     이 선형화가
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712  에서  시간  간격과  독립적으로  수행되면,  구분적  LTI  시스템이  714  에서  행렬   의  관점에서

생성된다.

예시적인 상태-공간 영역-의존적인 선형 뉴런 모델링[0402]

위에서 설명된 본 개시물의 어떤 양태들은 주로 상태 변수들 중 하나 (예컨대, 멤브레인 전위 v) 에 제한되는 2[0403]

차원 상태-공간의 파티셔닝을 포괄한다.     위에서 설명한 바와 같이, (v,u) 상태-공간은 단일 상태를 이용하

여 수직 블록들로 파티셔닝되며, 전압 간격을 나타내는, 각각의 블록은 별개의 선형 미분 방정식들의 세트와 연

관된다.

아래에서 설명되는 바와 같은 본 개시물의 어떤 양태들은 이 컨셉을 확장한다.     상태 공간은 상이한 영역들[0404]

로 파티셔닝될 수도 있으며 (수직 블록들에 제한되지 않을 수도 있으며), 여기서, 각각의 영역은 별개의 선형

미분 방정식들의 세트와 연관된다.     영역들은 비-중첩할 수도 있다.     하기 설명은 2-상태 모델이 파티션

들이 용적들 및 다차원 영역들일 수도 있는 3개 이상의 상태들로 각각 용이하게 확장될 수도 있다는 점을 포함

해서, 2-상태 (또는, 동등하게, 2차원) 모델에 주로 집중된다.

v 의 함수로서의 구분적 선형 공식화의 검토[0405]

2차원 구분적 선형 미분 방정식들은 미분 방정식들의 K 개의 쌍들의 세트로서 표현될 수도 있으며, 여기서 N번[0406]

째 쌍은 다음과 같이 정의되며, 

 (109)[0407]

    (110) [0408]

여기서,  및  이다.     이 접근법에서, 전압 공간은 K 개의 별개의 영역들로[0409]

파티셔닝되며, k번째 영역은 미분 방정식들의 k번째 쌍과 연관된다.     K 개의 영역들의 합집합은 (v,u) 값들

의 공간을 포괄한다.     도 8 은 K = 4 로 주어진 파티셔닝을 예시하며, 여기서 전압 공간은 다음의 4개의 영

역들로  분할된다:    및  .      K  =  2  에  대해,  이것은

Hunzinger Cold 뉴런 모델 (여기서, 닫힌 및 열린 간격들이  가 되도록 스위칭됨) 까지 감소된

다.

일반화된 공식화[0410]

기본적인 아이디어는 v 의 관점에서 단독으로 정의된 영역들을 넘어서 구분적 선형 컨셉을 확장하는 것 (즉, 방[0411]

정식 (110)  뿐만 아니라, 방정식 (109)  가 각각의 간격에 따라서 변하도록 허용하는 것) 이다.     이것은

(v,u) 공간에서 K 개의 2차원 영역들  을 정의함으로써 달성될 수도 있으며, 여기서  이고 K

개의 영역들의 합집합은 (v,u) 값들의 전체 공간을 포괄한다.     더욱이,   및  에 더해서, 파라미터

들 a 및 b 은 이들 파라미터들이 k 의 함수가 되도록 각각의 영역에 대해 별개인 것이 허용된다.     파라미터

C 는 또한  로서 영역에 대해 별개가 될 수도 있으며, 그러나 이제부터는, C 가 영역-특정적이 될 수 있다

는 점을 포함해서, 영역에 대해 고정된 것처럼 남겨진다.     이들 확장판들은 생물학적 등가물들을 반드시 가

질 필요는 없다.     그러나, 엔지니어링 및 계산 관점으로부터, 이러한 확장판들은 뉴런 모델들을 개발하기 위

해 더 풍부한 뉴런 모델들 및 더 간단한 플랫폼의 설계를 가능하게 한다.

2개의 전술한 확장판들은 다음과 같이 된다: [0412]
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 (111)[0413]

 (112) [0414]

상기 수식들은 위에서 설명된 상태-공간 표기를 이용하여, 다음과 같이 좀더 간결하게 표현될 수도 있으며, [0415]

  (113)[0416]

여기서, 다음과 같다.[0417]

      (114)[0418]

     (115)[0419]

    (116)[0420]

      (117)[0421]

다음으로, M-차원 상태-공간 영역-의존적인 경우 및 상태-공간 해가 설명된다.[0422]

M-차원 상태-공간 경우[0423]

M 개의 상태 변수들이 존재하는 M-차원 경우에, 상태-공간 방정식들은 다음과 같이 되며, [0424]

  (118)[0425]

여기서, 다음과 같다.[0426]

      (119)[0427]

   (120)[0428]
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     (121)[0429]

      (122)[0430]

영역-의존적인 상태-공간 해들[0431]

연속-시간 도메인 및 불연속-시간 도메인에서 방정식 (113) 의 상태-공간 해들이 제시된다.     그들의 유도들[0432]

이 위에서 설명된 접근법과 동일한 접근법을 이용하여 자연적으로 뒤따른다.     연속적인-시간 해는 다음과 같

이 표현될 수도 있으며, 

(123) [0433]

여기서,  는  의 초기 값을 나타내며, [0434]

    (124)[0435]

그리고,  는 행렬  의 행렬 지수를 나타낸다.[0436]

T 의 샘플링 기간을 가진, 대응하는 불연속-시간 해는, 다음과 같이 표현될 수도 있으며:  [0437]

(125)[0438]

여기서, 다음과 같다.[0439]

 (126a) [0440]

  (126b) [0441]

현재 상태-공간 벡터  는 영역  및 어느  행렬 및 벡터들의 세트를 방정식 (120)[0442]

에 따라서  를 계산하는데 사용할지를 식별한다.

더욱이, 위에서 설명된 비-시냅스 및 시냅스 전류 유형들에 대한 동일한 해들이 용이하게 적용된다.     이것은[0443]

선형-시변 (LTV) 해들을 포함한다.     이것은 전압-의존적인 영역들 (수직 파티션들) 을 이들 더 일반적인 상

태-공간 영역들로 대체하는 것을 수반할 것이다.

예시적인 예들  [0444]

도 9 는 3개의 영역들 (즉,  여기서, ) 을 가진 예를 예시한다.     도 9 에서 모든 3개의 영역[0445]

들은 직사각형의 영역들이다.
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도 10  은  어떻게 그 영역들이 직사각형일 필요가 없는지를 예시하는,  4개의 영역들을 가진 예를 예시한다.[0446]

이 특정의 설계는 역치이하의 진동 뉴런을 생성하는데 사용될 수도 있으며, 여기서,  및 

는 영역들을 나타내며, 여기서, (v,u) 는 각각, 증가하는 반경으로 바깥으로 나선회전되며, (어떤 감쇠도 없이

또는 어떤 증가도 없이)  원형의 방식으로 나선회전되며,  감쇠하는 반경으로 안쪽으로 나선회전되며,  그리고

(Hunzinger Cold 모델의 ALIF 영역과 동등하게) 스파이킹하는 경향이 있다.     이 설계는 이하에서 좀더 자세

하게 설명된다.

도 11 은 임의의 형태를 가진 영역 (예컨대, 6각형, 삼각형, 또는 별-형상의 영역) 이 이론적으로 생성될 수 있[0447]

다는 것을 예시하기 위해, 5개의 영역들을 가진 더 학문적인 예를 예시한다.

상태-공간 영역-의존적인 선형 뉴런 모델링의 실현[0448]

현재, 영역들이 다음과 같이 정의되며, [0449]

[0450]

여기서,   및  는 전압에 대한 좌측 및 우측 경계들을 나타낸다.     따라서, 각각의 시간 단계에서,[0451]

인덱스 k 는 현재 상태  를 취하여 K 개의 영역들:  의 각각에 대해서 체크

함으로써 결정된다.      로 표현되는 인덱스 k 는 단지 v 의 함수 뿐만 아니라, 양자화 간격, 최소 가능한

전압, 및 간격들의 개수를 통해서 다음과 같이 직접 계산될 수도 있다:

[0452]

어떤 양태들에 있어, 그 영역들 (또는, 적어도 그의 일부분) 은 약간 중첩하고 있을 수도 있다.     이 경우,[0453]

히스테리시스는 K 개의 영역들  중 어느 것이 현재 상태  를 포함하는지

를 식별할 때에 사용될 수도 있다.

2개의 일반화된 영역들의 예들이 아래에 제공된다.     다른 영역들이 또한 개발될 수도 있다.[0454]

v 및 u 양쪽에 의존하는 직사각형의 영역들[0455]

일반화된 직사각형의 영역들에 있어, k번째 영역은 다음과 같이 정의될 수도 있으며, [0456]

[0457]

여기서,  및  는 각각 전압에 대한 좌측 및 우측 경계들을 나타내며, 여기서  및  는 각각[0458]

복구 변수에 대한 하부 및 상부 경계들을 나타낸다.     따라서, 각각의 시간-단계에서, 인덱스 k 는 K 개의 영

역들  중 어느 것이 현재 상태  를 포함하는지를 결정할 때에 결정될 수도

있다.

타원형의 영역들에 대해[0459]

설명의 용이성을 위해, 휴지 상태  에 각각 중심이 있는 단지 타원형의 영역들을 가정한다.     그러면,[0460]

k번째 영역은 다음과 같이 정의될 수도 있으며, 

[0461]

공개특허 10-2015-0087266

- 43 -



여기서,  는 v-축을 따라서 내측 타원형의 경계까지의 "방사상 거리" 이고,  는 v-축을 따라서 외부 타[0462]

원형의 경계까지의 "방사상 거리" 이고, "방사상 거리" 는 다음과 같이 정의될 수도 있으며 

[0463]

그리고,  는 타원과 연관되는 파라미터이다 (  는 동심 영역들을 초래한다).     앞서와 같이, 각각의[0464]

시간-단계에서, 인덱스 k 는 현재 상태  를 취하여 그를 K 개의 영역들, 즉 

의 각각에 대해 체킹함으로써 결정된다.

상태-공간 영역-의존적인 선형 뉴런 모델링의 이점들[0465]

뉴런 모델링에 대한 상태-공간의 이러한 일반화된 파티셔닝은 뉴런들의 합성을 지원하고 체계적인 방법으로 그[0466]

렇게 하는 것을 도울 수 있다.     이것의 2 개의 예들은 (1) 발현 검출 (onset detection) 및 이벤트 카운팅

및 (2) 역치이하의 진동 거동을 구현할 때이며, 이의 후자가 다음 섹션에서 설명된다.

(2개의 파티션들을 갖는) Hunzinger Cold 모델에 기초한 인공 뉴런은 발현 검출 및 이벤트 카운팅을 위해 개발[0467]

될 수도 있다.     처음에 휴지에서, 이 인공 뉴런은, 발현 검출을 위해 스파이크를 수신하면 즉시 발화하도록

설계된다.     그 때부터, 뉴런은 인입하는 스파이크들을 카운트하기 시작하여 어떤 개수의 스파이크들 이후 발

화하도록 설계된다.     이것은 스파이크들이 도달함에 따라서 자신을 계속해서 반복한다.     이 설계의 잠재

적인 단점은, 뉴런이 평형 휴지 상태에 도달하기 전에 약 500 ms 을 소요할 수 있으므로, 스파이크 도달들이 더

이상 존재하지 않은 이후에 발생한다.     이것은 뉴런이 발현 검출을 수행할 수 있기 전에 너무 긴 시간일 수

도 있다.     이 설계에서 제약의 부분은, 그 시간을 휴지 상태까지 단축하는 것이 LIF 뉴런보다 더 많이 거동

하도록 함으로써 스파이크-카운팅 능력에 어떻게 영향을 미치는지이다.

본 개시물의 어떤 양태들에 따르면, 이 제약은 Izhikevich 뉴런 모델의 LIF 및 ALIF 거동이 Hunzinger Cold 모[0468]

델에 따라 2개의 영역들을 파티셔닝함으로써 분할될 수도 있는 방법과 유사하게, 파티셔닝을 통해서 2개의 거동

들을 분리함으로써 제거될 수 있다.     발현 검출 (onset detection) 을 수행하기 위해 뉴런을 리셋하는 시간

은 u 상태 변수가 LIF 영역에서 거의 0.3 의 임계치 위와 아래에서 어떻게 거동하는지를 알게 됨으로써 감소될

수도 있다.     그 값 아래에서는, 그 시스템이 휴지 상태에 도달하는데 긴 시간을 소요한다.     이것은 향상

된 발현 및 이벤트 카운팅 뉴런을 실현하기 위해, 도 9 의 3개-영역 상태-공간에 예시된 바와 같이 u 뿐만 아니

라 v 의 관점에서 상태-공간을 파티셔닝함으로써 촉진될 수 있다.      인 LIF 영역에서, 인공 뉴런은

이제  (즉, 영역 ) 이면 이벤트 카운팅을 위한 적분 발화 (IF) 뉴런으로서 거동하고, 그렇지 않으

면 (즉, 영역 ) 로 이동하는 LIF 뉴런으로서 거동한다.     일단 그 상태가 영역  에 진입하면, 시

스템은 더 짧은 시상수들로 원하는대로 빨리 휴지 상태로 이동하도록 설계될 수도 있다.     u 의 함수인 LIF

영역을 영역 당 2개의 미분 방정식들의 쌍들을 가진 2개의 원하는 영역들 (IF 에 대해  및 LIF 에 대해

) 로 파티셔닝함으로써, 큰 지연이 제거될 수도 있다.

예시적인 역치이하의 진동 뉴런 설계 기반의 ON 상태-공간 영역-의존적인 선형 뉴런 모델들[0469]

역치이하의 진동들은 인공 신경계에서, 휴지 전위로부터의 멤브레인 전위의 호전에서 스파이킹할 (즉, 스파이킹[0470]

할 인공 뉴런을 "프라이밍 (priming) 할") 우도를 증가시키고 그리고 위축에서의 우도를 감소시키기 위해 사용

될 수도 있다.     이전 섹션은 상태 변수들 중 하나 (예컨대, 전압) 뿐만 아니라, 상태 변수들의 조합 및 영역

들 (또는, 함수들) 에 기초하여 2차원 (또는, 다차원) 상태-공간의 파티셔닝을 가능하게 함으로써 구분적 선형

뉴런 모델링으로의 확장을 기술한다.     이 섹션은 기존 역치이하의 진동 뉴런 설계들의 단점들을 해결한다.

   예를 들어, 기존 뉴런 모델들은 3개의 진동 유형들 (예컨대, 도 12a 의 그래프 (1200) 에 예시된 바와 같은

감쇠하는 진동들 (decaying oscillations), 도 12b 의 그래프 (1210) 에 예시된 바와 같은 지속되는 진동들

(sustained  oscillations),  또는 도 12c  의 그래프 (1220)  에 예시된 바와 같은 증가하는 진동들 (growing

oscillations)) 중 많아 봐야 하나를 나타내는 역치이하의 진동 뉴런의 설계를 지원할 수 있으며, 그러나 이들
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모델들은 3개의 유형들 중 2개 이상을 나타내는 인공 뉴런의 설계를 가능하게 할 수 없다.     더욱이, 기존 뉴

런  모델들은  특정의  진동  주파수,  감쇠하는  진동에  대한  감쇠의  레이트,  증가하는  진동들에  대한  증가의

레이트, 및/또는 지속되는 진동들에 대한 크기를 가진 역치이하의 진동 뉴런들의 체계적인 설계를 지원할 수 없

다.

따라서, 요구되는 것은 진동들의 모든 3개의 유형들을 나타내고 원하는 진동 거동들의 체계적인 실현을 지원하[0471]

는 것이 가능한 향상된 뉴런 모델을 가진 인공 뉴런들이다.

역치이하의-진동-가능한 뉴런 모델들 간 비교[0472]

역치이하의 진동들을 발생할 수 있는 4개의 기존 뉴런 모델들, 즉, Izhikevich (단순) 모델, (위에서 설명된[0473]

Brette  및  Gerstner  의  선형-플러스-지수  함수인)  적응적  지수  (AdEx)  뉴런  모델,  4차방정식  모델,  및

Hunzinger Cold 모델이 존재한다.     이들 뉴런 모델들은 4개의 방법들로 특징화될 수도 있다:  (1) 3개의 가

능한 역치이하의 진동 거동들 (감쇠되는 (damped) 진동, 지속되는 진동, 또는 증가하는 진동들) 중 어느 것을

그들이 발생할 수 있는지; (2) 3개의 거동들 중 얼마나 많은 거동들이 단일 뉴런에 의해 나타내어질 수 있는지;

(3) 원하는 진동 주파수를 가진 뉴런을 설계하는 것이 얼마나 용이한지; 및 (4) 진동 설계를 미세 튜닝하는 것

(예컨대, 지속되는 진동의 크기를 정의하는 것 또는 다수의 감쇠들 또는 증가들의 레이트를 정의하는 것) 이 얼

마나 용이한지.     다음 테이블은 각각의 뉴런 모델이 제 1 대책에 대해 어떻게 진행되어 나가는지를 요약한다

(여기서, 이들 뉴런 모델들은 어쩌면 3개의 진동 유형들 중 하나로부터 3개의 진동 유형들 모두까지 지원할 수

있다): 

[0474]

다음 테이블은 각각의 뉴런 모델이 나머지 특성화 대책들에 대해 어떻게 진행되어 나가는지를 요약한다: [0475]

[0476]

각각의 뉴런 모델 (아래에서 설명되는 상태-공간 영역-의존적인 접근법에 더해서) 은 단지 단일 진동 유형을 나[0477]

타내는 것이 가능한 뉴런을 재현할 수 있다.     그리고, 단지 Hunzinger Cold 모델은, 그의 선형 설계로 인해,

목표를 설계하는 체계적인 방법을 제공하는 것이 가능하다.     그러나, (아래에서 설명되는 상태-공간 영역-의

존적인 접근법에 더해서), 그들 중 어느 것도 미세 튜닝의 능력을 제공하지 않는다.

상태-공간 영역-의존적인 선형 뉴런 모델링에 기초한 역치이하의 진동[0478]

본 개시물의 어떤 양태들은, 상기 테이블들에 나타낸 바와 같이 그리고 기존 뉴런 모델들과는 대조적으로, (1)[0479]

역치이하의 체계에서 3개의 진동 유형들의 모든 또는 임의의 서브세트를 나타낼 수도 있는 인공 뉴런을 발생할

수 있으며, 그리고 (2) Hunzinger Cold 모델과 체계적으로 유사하게 설계될 수 있을 뿐만 아니라, 또한 설계의

미세 튜닝을 지원할 수 있다.

설계[0480]

모든 3개의 진동 유형들의 표시 (exhibition) 는 위에서 설명된 상태-공간 영역 의존적인 접근법을 이용하여 생[0481]

성될 수도 있다.     예를 들어, 4-영역, 2차원 뉴런 모델은 도 10 에 예시된 바와 같이 정의될 수도 있다.
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각각의 상태-공간 영역  은 선형 미분 방정식들의 세트와 연관되므로, 다음과 같으며[0482]

  (127)[0483]

  (128) [0484]

또는, 상태-공간 벡터 표기로는, 다음과 같다 [0485]

   (129)[0486]

및[0487]

     (130)[0488]

      (131)[0489]

(원형으로 나타나지만, 일반적으로 타원형인) 영역들 , (또한, 일반적으로 타원형인) , , 및 [0490]

는 증가하는 진동들, 지속되는 진동들, 감쇠하는 진동들, 및 ALIF 거동을 각각 재현하도록 설계될 수도 있다.

어떤 양태들에 따르면, 상태-공간은 3차원 이상에 의해 정의될 수도 있다.     이 경우, 다음의 대안 유형들이[0491]

대신 사용될 수도 있다:  

   (132)[0492]

     (133)[0493]

지속되는 진동들이 소망되면, 일부 두께는 시간-단계적 접근법들의 경우에,  가 지속되는 진동 영[0494]

역을 부주의로 우회할 수 있는 시나리오를 처리하도록 보증될 수도 있다.

리셋 변경 (Reset Modification)  [0495]

위에서 설명한 바와 같이, 리셋 메카니즘은 u 를, 예를 들어, 스파이크 이벤트 이후 또는 제어 신호가 활성화된[0496]

후 u 를 증분하는 것과 마찬가지인  로 리셋하는 것을 포함할 수도 있다.     어떤 양태들에 있어, 뉴런

이 즉시 스파이킹하도록 하거나 또는 시작으로부터 바로, 지속되는 진동에 진입할 수 있도록  값이 너무

크지 않게 보장하기 위해서, u 를 목표 상수로 (즉,  이외의 다른 무언가로) 리셋하는 옵션을 갖는 것이

바람직할 수도 있다.     이렇게, 설계자는 상태-공간에서 뉴런이 리셋하는 경우의 제어를 갖는다.
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상태-공간 영역들을 정의하기[0497]

일반적으로, 지속되는 진동들에서 (v,u) 트레이스 (trace) 는 장축 및 단축이 v, u 직교좌표 축들과 정렬되지[0498]

않을 수도 있는 (즉, 타원은 기울기를 가질 수도 있는) 타원의 유형을 취할 수도 있다.     해들은 다음 유형을

취할 수도 있다:

  (134a)[0499]

  (134b)[0500]

여기서, 4개의 계수들은  (여기서, 인덱스 k 는 빠졌음) 및 초기 조건들, 즉,  에서 행렬 엘리[0501]

먼트들의 함수들이다.

설명 및 설계에서의 용이성을 위해, 여기서 설명은 장축과 단축이 동일한 원형의 트레이스들에 대해 집중한다.[0502]

   이것들은 행렬 엘리먼트들이 다음 제약들을 만족할 것을 필요로 한다:

    (135)[0503]

    (136)[0504]

여기서,  및  는 복소 고유치들:  의 실수 및 허수 부분들을 각각 나타내며,  는[0505]

(감쇠 또는 상승) 시상수를 나타내며,  는 진동 주파수를 나타내고, 그리고 인덱스 k 는 빠졌다.     이것

은 원형의 영역들 및 다음과 같은 간단한 행렬의 유형을 초래한다:  

    (137)[0506]

원형의 영역들을 가진 이 더 간단한 유형을 이용하여, 평형 지점  에 중심을 둔 원의 반경은 다음과 같[0507]

으며, 

   (138)[0508]

(v,u) 로부터 평형 지점까지의 거리를 나타낸다.     예를 들어,  이다.     따라서, k[0509]

번째 영역은 다음과 같이 정의될 수도 있으며 

  (139)[0510]

여기서,  는  의 내측 원형의 경계의 반경을 나타내고,  는  의 외부 원형의 경계을 나타[0511]

낸다.

도 10 에서의 K = 4 예에 대해, 지속되는 진동 영역  은 다음과 같이 정의될 것이며,  [0512]

  (140)[0513]
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여기서,  는  과  을 분리하는 원형의 경계의 반경을 나타내며, 여기서  는  과  사[0514]

이의 원형의 경계의 반경을 나타낸다.

증가하는 진동 영역  에 대해, 다음과 같다.  [0515]

(141)[0516]

감쇠하는 진동 영역  에 대해, 다음과 같다.  [0517]

(142)[0518]

도 10 에서의 ALIF 영역  은 다음과 같이 정의된다 [0519]

    (143)[0520]

다단의 감쇠 및 증가 영역들에 대한 추가적인 영역들 [0521]

상기 아이디어는 진동들의 좀더 점진적인 감쇠 또는 점진적인 증가를 지원하도록 확장될 수도 있다.     예를[0522]

들어, 감쇠하는 궤도들의 변화 레이트들 및 증가하는 궤도들의 변화 레이트들을 갖기 위해, 다수의 링들이 도

13 에 나타낸 바와 같이 6개의 영역들과 함께 사용될 수도 있다.     이 예에서,  는 지속되는 진동 영역으

로서 간주될 수도 있다.     영역  는 더 빨리 감쇠하는 궤도를 가질 수도 있으며,  는 더 느리게 감쇠

하는 궤도를 가질 수도 있다.     이것은 지속되는 진동 영역  으로의 등급화되고 좀더 완만한 감쇠를 가능

하게 할 것이다.     이와 유사하게,  은 더 빠른 증가하는 궤도를 가질 수도 있으며,  는 더 느린 증

가하는 궤도를 가질 수도 있다.     이 컨셉은 더욱 더 점진적인 변화들을 위해 더 많은 링들로 확장될 수도 있

다.     더욱이, 상이한 지속되는 진동 파라미터들 (예컨대, 상이한 주파수들) 이 소망되면 다단의 지속되는 진

동 영역들이 사용될 수도 있다.

인공 뉴런을 구현하는 예시적인 동작들[0523]

도 14 는 본 개시물의 어떤 양태들에 따른, 인공 신경계에서 인공 뉴런의 상태를 업데이트하는 예시적인 동작들[0524]

(1400) 의 흐름도이다.     동작들 (1400) 은 하드웨어로 (예컨대, 신경모방 프로세서와 같은, 하나 이상의 신

경 프로세싱 유닛들 (예컨대, 인공 뉴런들) 에 의해), 소프트웨어로, 또는 펌웨어로 수행될 수도 있다.     인

공 신경계는 시각 신경계, 청각 신경계, 해마, 등과 같은, 여러 생물학적 또는 가상적 신경계들 중 임의의 신경

계 상에서 모델링될 수도 있다.

동작들 (1400) 은 (1402) 에서, 인공 뉴런의 제 1 상태가 제 1 영역 내에 있다고 결정함으로써 시작할 수도 있[0525]

다.     1404 에서, 인공 뉴런의 제 2 상태는 선형 동역학적 방정식들의 제 1 세트에 적어도 부분적으로 기초하

여  결정되며,  여기서  선형  동역학적  방정식들의  제  1  세트는  제  1  영역에  대응하는  파라미터들  (예컨대,

계수들) 의 제 1 세트에 적어도 부분적으로 기초한다.     1406 에서, 인공 뉴런의 제 2 상태가 제 2 영역 내에

있다고 결정된다.     1408 에서, 인공 뉴런의 제 3 상태는 선형 동역학적 방정식들의 제 2 세트에 적어도 부분

적으로 기초하여 결정된다.     선형 동역학적 방정식들의 제 2 세트는 제 2 영역에 대응하는 파라미터들의 제

2 세트에 적어도 부분적으로 기초할 수도 있다.

어떤 양태들에 따르면, 선형 방정식들의 제 1 및 제 2 세트들 선형 시불변 (LTI) 상태-공간 방정식들의 이산 시[0526]

간 해들을 포함한다.     다른 양태들에 대해, 이산 시간 (discrete time) 해들은 연속적인-시간 상태-공간 방

정식들에 대한 닫힌 형태의 해들에 적어도 부분적으로 기초할 수도 있다.

어떤 양태들에 따르면, 동작들 (1400) 은 메모리로부터 파라미터들의 제 1 또는 제 2 세트 중 적어도 하나를 페[0527]
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치하는 것을 더 포함한다.     본원에서 사용될 때, 메모리는 랜덤 액세스 메모리 (RAM), 캐시 메모리, 레지스

터들, 래치들, 플립-플롭들 등을 포함한, 데이터를, 영구적으로든 또는 일시적으로든, 로컬로든 또는 원격으로

든, 프로세싱 유닛, 온칩 또는 오프-칩 상에 저장하기 위한 여러 적합한 수단 중 임의의 수단을 지칭할 수도 있

다.     이러한 페칭은 인공 뉴런에 로컬인 메모리로부터 파라미터들의 제 1 또는 제 2 세트 중 적어도 하나를

페치하는 것을 포함할 수도 있다.     어떤 양태들에 있어, 동작들 (1400) 은 파라미터들의 제 1 또는 제 2 세

트 중 적어도 하나의 적어도 일부분을 계산하는 것을 더 포함한다.     파라미터들의 제 1 또는 제 2 세트 중

적어도 하나의 적어도 일부분은 메모리로부터 페치되는 하나 이상의 값들을 이용하여 계산될 수도 있다.

어떤 양태들에 따르면, 파라미터들의 제 1 또는 제 2 세트 중 적어도 하나는 구분적 선형 함수로, 인공 뉴런과[0528]

연관되는 뉴런 모델에서 비선형 함수 중 적어도 일부분을 근사화함으로써 획득될 수도 있다.     어떤 양태들에

있어, 비선형 함수는 전압-의존적인 컨덕턴스 (g(v)) 와 곱해진 멤브레인 전위 (v) 를 포함한다.     전압-의존

적인 컨덕턴스는 구분적 상수 함수로 근사화될 수도 있다.     다른 양태들에 대해, 비선형 함수는 전압-의존적

인 함수 (F(v)) 를 포함하며, 여기서 v 은 인공 뉴런의 멤브레인 전위이다.     구분적 선형 함수는 제 1 및 제

2 영역들의 각각에 대한 기울기 (m) 및 절편 (d) 을 가질 수도 있다.     어떤 양태들에 있어, 제 1 영역은 구

분적 선형 함수에서 제 2 영역과는 상이한 폭을 갖는다.     구분적 선형 함수에서 제 1 또는 제 2 영역의 폭은

비선형 함수에 의존할 수도 있다.     어떤 양태들에 있어, 구분적 선형 근사는 Taylor 전개 방법, 1차 선형 내

삽 방법, 최적 선형 내삽 방법, 또는 평균 기울기 방법 중 적어도 하나에 적어도 부분적으로 기초한다.

어떤 양태들에 따르면, 파라미터들의 제 1 또는 제 2 세트 중 적어도 하나는 인공 뉴런에서 특정의 거동을 달성[0529]

하도록 적어도 부분적으로 설계될 수도 있다.     예를 들어, 파라미터들의 제 1 및/또는 제 2 세트는 원하는

거동을 근사화하는 특정의 함수 (예컨대, 조정가능한 곡선) 를 효과적으로 생성하기 위해, 발생될 (예컨대, 뉴

런 모델 설계자에 의해 수동으로 선택될) 수도 있다.     이러한 방법으로, 인공 뉴런은 전체적으로 새로운 뉴

런 모델 또는 기존 뉴런 모델에 변형에 기초하여 동작할 수도 있다.

인공 뉴런의 제 1, 제 2, 및 제 3 상태들은 멤브레인 전위 (v) 및 복구 전류 (u) 에 의해 정의될 수도 있다.[0530]

  이들은 인공 뉴런 상태 변수들의 2개의 예들이다.     어떤 양태들에 따르면, 동작들 (1400) 은 스파이크 이

벤트가 일어났다 또는 일어날 것이다라는 결정에 적어도 부분적으로 기초하여, 인공 뉴런의 멤브레인 전위 또는

복구 전류 중 적어도 하나를 리셋하는 것을 더 포함할 수 있다.     멤브레인 전위는 휴지 전위 

로 리셋될 수도 있다.     복구 전류는 복구 전류의 현재 값과 오프셋  의 총합으로 리셋

될 수도 있다.

어떤 양태들에 따르면, 선형 방정식들의 제 1 세트 또는 제 2 세트 중 적어도 하나는 인공 뉴런에 대한 뉴런 모[0531]

델에 적어도 부분적으로 기초한다.     어떤 양태들에 있어, 뉴런 모델은 Izhikevich 단순 모델, 지수 적분 발

화 (EIF) 모델, FitzHugh-Nagumo 모델, 4차방정식 모델, 또는 고유 컨덕턴스 모델 (예컨대, 전압-의존적인 컨덕

턴스  g(v)  로  곱해진  멤브레인  전위  v  로서  표현되는  뉴런  모델)  중  적어도  하나에  적어도  부분적으로

기초한다.     어떤 양태들에 있어, 뉴런 모델은 적어도 2개의 차원 (즉, 적어도 2개의 상태 변수들) 을 포함한

다.     뉴런 모델은 선형일 수도 있는 하나 이상의 1차 상미분 방정식들 (ODEs) 에 적어도 부분적으로 기초할

수도 있다.

어떤 양태들에 따르면, 뉴런 모델의 시간에서 단계 사이즈는 모델링되는 인공 뉴런의 유형에 적어도 부분적으로[0532]

기초한다.     뉴런 모델의 시간에서 단계 사이즈는 불균일할 수도 있다.     어떤 양태들에 있어, 특정의 시간

단계의 시간에서 단계 사이즈는 인공 뉴런의 현재 또는 과거 상태 중 적어도 하나에 적어도 부분적으로 또는

(현재 또는 과거 상태와 연관될 수도 있는) 파라미터들의 특정의 세트에 기초하여, 결정된다.     어떤 양태들

에 있어, 제 1 상태와 제 2 상태를 결정하는 것 사이에서 시간에서의 제 1 단계 사이즈는 제 2 상태와 제 3 상

태를 결정하는 것 사이에서 시간에서의 제 2 단계 사이즈와는 상이하다.     어떤 양태들에 따르면, 1404 에서

인공 뉴런의 제 2 상태의 결정은 제 1 시간 단계 동안 수행될 수도 있으며, 1408 에서 인공 뉴런의 제 3 상태의

결정은 제 1 시간 단계에 뒤이은 제 2 시간 단계 동안 수행될 수도 있다.

어떤 양태들에 따르면, 인공 뉴런의 제 2 또는 제 3 상태 중 적어도 하나를 결정하는 것은 인공 뉴런에 입력되[0533]

는 전류들에 적어도 부분적으로 기초한다.     어떤 양태들에 있어, 입력 전류들은 시냅스 전류 또는 일반적인,

외부 전류 중 적어도 하나를 포함한다.     시냅스 전류는 하나 이상의 채널들의 각각에 대한 시간-의존적인 컨

덕턴스 및 하나 이상의 채널들의 각각에 대한 반전 전위에 적어도 부분적으로 기초할 수도 있다.     어떤 양태
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들에 있어, 시냅스 전류는 N-메틸-D-아스파르테이트 (NMDA) 채널에 대한 인공 뉴런의 시냅스후 멤브레인 전위에

적어도 부분적으로 기초한다.     시간-의존적인 컨덕턴스는 지수 함수, alpha 함수, 또는 지수들의 차이 함수

에 의해 모델링될 수도 있다.

어떤 양태들에 있어, 제 1 및 제 2 영역들은 동일한 영역이다.[0534]

어떤 양태들에 따르면, 동작들 (1400) 은 제 1 상태, 제 2 상태, 또는 제 3 상태 중 적어도 하나의 표시를 디스[0535]

플레이로 출력하는 것을 더 포함할 수 있다.

어떤 양태들에 따르면,  제 1  영역 또는 제 2  영역 중 적어도 하나는 2개 이상의 차원들에 의해 정의된다.[0536]

제 1 영역 또는 제 2 영역 중 적어도 하나는 M-차원 부분 공간이며, 여기서 M ≥ 2 이다.     M-차원 부분 공간

은 임의의 형태를 갖거나 또는 임의의 경계 (예컨대, v > 10 mV) 에 의해 정의될 수도 있다.     어떤 양태들에

있어,  2개  이상의 차원들은  2차원이며,  M-차원 부분 공간은 타원,  원,  다각형,  직사각형,  또는 정사각형과

같은, 2차원 형태를 갖는다.     다른 양태들에 있어, 2개 이상의 차원들은 3차원이며, M-차원 부분 공간은 구,

타원체,  다각형 프리즘,  직사각형 프리즘,  또는 입방체와 같은 3차원의 형태를 갖는다.      어떤 양태들에

있어, 제 1 영역은 제 2 영역과는 상이한 선형 방정식들의 세트와 연관된다.     제 1 및 제 2 영역들은 부분적

으로 중첩하거나 또는 비-중첩하는 영역들일 수도 있다.     제 1 및 제 2 영역들은 상이한 형태들 또는 상이한

사이즈들 중 적어도 하나를 가질 수도 있다.     어떤 양태들에 있어, 제 1 영역은 인공 뉴런의 제 1 거동과 연

관되며, 제 2 영역은 제 1 거동과는 상이한, 인공 뉴런의 제 2 거동과 연관된다.     어떤 양태들에 있어, 제 1

및 제 2 영역들은 동심 링들, 튜브들, 직사각형 프레임들 등과 같은, 계층 (layered) 형태들을 갖는다.

어떤 양태들에 따르면, 2개 이상의 차원들은 멤브레인 전위 (v) 및 복구 전류 (u) 로 정의되는 2개의 차원으로[0537]

이루어진다.     어떤 양태들에 있어, 동작들 (1400) 은 제어 신호의 수신 또는 스파이크 이벤트가 일어났거나

또는 일어날 것이라는 결정 중 적어도 하나에 적어도 부분적으로 기초하여, 인공 뉴런의 멤브레인 전위 또는 복

구 전류 중 적어도 하나를 리셋하는 것을 더 포함할 수 있다.     이 경우, 멤브레인 전위는 휴지 전위로 리셋

될 수도 있으며, 및 복구 전류는 상수로 리셋될 수도 있다.

어떤 양태들에 따르면, 제 2 영역의 적어도 일부분이 제 1 영역과 중첩한다.     이 경우, 1406 에서 인공 뉴런[0538]

의 제 2 상태가 제 2 영역 내에 있다고 결정하는 것은 히스테리시스에 적어도 부분적으로 기초할 수도 있다.

어떤 양태들에 따르면, 인공 뉴런은 발현 검출 및 이벤트 카운팅을 위해 구성된다.     이 경우, 제 1 영역은[0539]

이벤트 카운팅을 위해 적분 발화 (IF) 거동과 연관될 수도 있으며, 제 2 영역은 누설 적분 발화 (LIF) 거동과

연관될 수도 있다.

어떤 양태들에 따르면, 인공 뉴런은 역치이하의 진동 거동을 위해 구성된다.     역치이하의 진동 거동은 감쇠[0540]

되는 진동 거동, 지속되는 진동 거동, 또는 증가하는 진동 거동 중 적어도 하나를 포함할 수도 있다.     어떤

양태들에 있어, 제 1 영역은 증가하는 진동 거동과 연관될 수도 있으며, 제 2 영역은 지속되는 진동 거동과 연

관될 수도 있으며, 제 3 영역은 감쇠하는 진동 거동과 연관될 수도 있다.     더욱이, 제 4 영역은 ALIF 거동과

연관된다.     어떤 양태들에 있어, 제 1 영역은 타원형의 형태를 가질 수도 있으며, 반면 제 2 영역은 링 형태

를 가질 수도 있다.

예시적인 일반적이고 유연한 신경 아키텍처[0541]

본 개시물의 어떤 양태들은 일반적으로 동역학적 뉴런 모델들을 지원하는 일반적이고 유연한 아키텍처를 개발하[0542]

는 것에 관한 것이다.     설계 목표들은 낮은 복잡성, 뉴런 동력학의 정확한 모델링, 및 임의의 뉴런 모델을

구현하는 능력을 포함한다.     이 유연한 아키텍처에 의하면, 여러 적합한 뉴런 모델들 중 임의의 모델은 원하

는대로 실행되고 대체될 수도 있다.     예를 들어, 뉴런 모델은 Izhikevich 단순 모델, 지수 적분 발화 (EIF)

모델, FitzHugh-Nagumo 모델, 4차방정식 모델, 또는 Hunzinger Cold 모델 중 적어도 하나를 포함할 수도 있다.

   이러한 뉴런 모델들은 위에서 설명한 바와 같이, 구분적 선형 근사들 및 그와 연관되는 파라미터들 (예컨대,

계수들) 을 이용하여 구현될 수도 있다.     더욱이, 이 유연한 아키텍처는 인공 신경계에서 상이한 인공 뉴런

들이 상이한 뉴런 모델들과 동시에 동작가능하게 한다.

도 15a 는 본 개시물의 어떤 양태들에 따른, 뉴런 모델들에 대한 파라미터들이 선택되거나, 로드되거나, 액세스[0543]

되거나, 추가되거나, 삭제되거나, 조정되거나, 및/또는 업데이트될 수 있는, 단일 신경 프로세싱 유닛 (1502)

에 대한 이러한 일반적이고 유연한 신경 아키텍처의 구현예를 예시한다.     본원에서 설명되는 컨셉들은 신경

프로세싱 유닛들 (1502) 의 시스템 (예컨대, 인공 신경계) 으로 용이하게 확장될 수도 있으며, 그러나 설명의

용이성을 위해서, 단지 단일 신경 프로세싱 유닛이 도 15a 에 도시된다.     신경 프로세싱 유닛 (1502) 은 뉴
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런 모델에 대한 하나 이상의 입력들 및 파라미터들의 세트를 수신하고 나타낸 바와 같은 하나 이상의 상태를 출

력하는 상태 머신 (1506) 을 구현할 수도 있다.     상태 머신 (1506) 은 인공 뉴런에 대한 임의의 적합한 프로

세싱 알고리즘을 구현할 수도 있다.

주어진 뉴런 모델에 대한 파라미터들은 복수의 뉴런 모델들에 대한 파라미터들 (1504) 의 세트로부터 선택될 수[0544]

도 있다.     어떤 양태들에 있어, 예를 들어, 조작자는 주어진 신경 프로세싱 유닛에서 어떤 뉴런 모델을 이용

하고 그리고 가용 뉴런 모델들의 리스트로부터 이 모델을 선택하기를 원할 수도 있다.     다른 양태들에 있어,

어떤 뉴런 모델은 학습 또는 훈련 동작들에 기초하여 신경 프로세싱 유닛들의 시스템에 의해 선택될 수도 있다.

   주어진 뉴런 모델에 대한 파라미터들은 위에서 설명된 구분적 선형 근사들에 기초한 파라미터들일 수도

있다.     파라미터들 (1504) 의 세트는 어떤 양태들에 대해 신경 프로세싱 유닛 (1502) 와 연관되거나 및/또는

그에 로컬인 메모리에 저장될 수도 있다.     다른 양태들에 있어, 파라미터들 (1504) 의 세트는 다수의 신경

프로세싱 유닛들에 의해 전역적으로 액세스가능한 메모리 또는 신경 프로세싱 유닛 (1502) 의 내부에 있는 캐시

메모리에 저장될 수도 있다.     뉴런 모델 A 에 대한 파라미터들은 제 1 메모리 로케이션 (1508) (예컨대, 어

드레스가능한 메모리 블록) 에 저장될 수도 있으며, 한편 뉴런 모델 B 에 대한 파라미터들은 제 2 메모리 로케

이션 (1510) 에 저장될 수도 있다.

도 15a 에서, 뉴런 모델 A 에 대한 파라미터들은 신경 프로세싱 유닛 (1502) 으로 로드되었다.     본원에서 사[0545]

용될 때, 용어 "로드하는 (loading)" 은 넓게 정의될 수도 있으며 주어진 뉴런 모델에 대한 파라미터들을 신경

프로세싱 유닛에 의해 (또는, 신경 프로세싱 유닛들의 시스템에 의해) 액세스가능한 메모리로부터 페치하는 것;

프로세싱 유닛에 로컬인 메모리에 파라미터들을 저장하는 것; 또는 메모리에서, 신경 프로세싱 유닛과 연관되는

(예컨대, 지정된) 하나 이상의 메모리 영역들에 액세스하는 것을 포함할 수도 있다.     어떤 양태들에 따르면,

어떤 뉴런 모델에 대한 파라미터들을 특정의 신경 프로세싱 유닛에 로드하는 것은 구성 이벤트에 응답하여 발생

할 수도 있다.     예를 들어, 구성 이벤트는 특정의 신경 프로세싱 유닛에 전원공급하는 것, (특정의 프로세싱

유닛을 포함하거나 포함하지 않을 수도 있는) 신경 프로세싱 유닛들의 하나 이상의 영역들에 전원공급하는 것,

또는 신경 프로세싱 유닛들의 전체 시스템에 전원공급하는 것을 포함할 수도 있다.

도 15b 에서, 뉴런 모델 B 에 대한 파라미터들이 신경 프로세싱 유닛 (1502) 으로 로드되었다.     그때부터 계[0546]

속,  상태 머신 (1506)  은  이들 가장 최근에 로드된 파라미터들에 적어도 부분적으로 기초하여 동작할 수도

있다.     이러한 방법으로, 신경 프로세싱 유닛 (1502) 은 간단히 상이한 파라미터들을 로드함으로써, 상이한

뉴런 모델에 따라서 기능할 수도 있다.     더욱이, 특정의 뉴런 모델에 대한 파라미터들은 언제라도 업데이트

되거나 삭제될 수도 있다.

도 15c  에서, 뉴런 모델 C 에 대한파라미터들은 파라미터들 (1504)  의 세트에 추가될 수도 있다.     예를[0547]

들어,  뉴런  모델  C  는  신경  프로세싱  유닛  (1502)  이  동작가능하게  될  때  이용불가능하였던,  최근에

개발되거나, 구입되거나, 또는 허가된 뉴런 모델일 수도 있다.     다른 예시적인 시나리오들에서, 아키텍트 또

는 시스템 설계자는 뉴런 모델 C 을 고려하지 않았을 수도 있거나 또는 이 모델이 원하는 애플리케이션에 맞지

않다고 처음에는 생각했지만, 이제는 이 모델에 추가하기를 원할 수도 있다.

도 15d 에서, 뉴런 모델 C 에 대한 파라미터들은 제 3 메모리 로케이션 (1512) 에 저장될 수도 있다.     뉴런[0548]

모델 C 에 대한 파라미터들은 상태 머신 (1506) 이 적어도 부분적으로 이들 가장 최근에 로드된 파라미터들에

적어도 부분적으로 기초하여 동작할 수도 있도록, 신경 프로세싱 유닛 (1502) 으로 로드될 수도 있다.     간단

히 상이한 파라미터들을 그안에 로드함으로써 신경 프로세싱 유닛에 대한 뉴런 모델들을 효과적으로 변경하는

능력은 원하는 대로 업데이트되어 변경될 수 있는 매우 유연한 아키텍처를 제공한다.

도 16 은 본 개시물의 어떤 양태들에 따른, 신경 프로세싱 유닛들의 시스템 (예컨대, 인공 신경계) 에서 복수의[0549]

뉴런 모델들의 조합을 구현하는 예시적인 동작들 (1600) 의 흐름도이다.     동작들 (1600) 은 하드웨어로 (예

컨대, 신경모방 프로세서와 같은 하나 이상의 프로세싱 유닛들에 의해), 소프트웨어로, 또는 펌웨어로 수행될

수도 있다.     인공 신경계는 시각 신경계, 청각 신경계, 해마, 등과 같은, 여러 생물학적 또는 가상적 신경계

들 중 임의의 신경계 상에서 모델링될 수도 있다.

복수의 뉴런 모델들은 위에서 설명된 뉴런 모델들 뿐만 아니라, 현존하거나 또는 아직 개발되지 않거나 또는 아[0550]

직 발표되지 않은 임의의 적합한 뉴런 모델들의 임의의 조합을 포함할 수도 있다.     예를 들어, 복수의 뉴런

모델들은  Izhikevich  단순  모델,  지수  적분  발화  (EIF)  모델,  FitzHugh-Nagumo  모델,  4차방정식  모델,

Hunzinger Cold 모델, 또는 고유 컨덕턴스 모델 중 적어도 하나를 포함할 수도 있다.     본원에서 사용될 때,

어구 "뉴런 모델들의 조합" 은 일반적으로 복수의 뉴런 모델들의 세트를 지칭하며, 여기서 세트는 단일 멤버를
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포함할 수도 있다.     즉, 복수의 뉴런 모델들의 조합은 복수 중 하나 및 복수의 임의의 서브세트의 임의의 조

합을 포함한다.

동작들 (1600) 은, 1602 에서, 복수의 뉴런 모델들로부터 선택된 제 1 뉴런 모델에 대한 파라미터들을 제 1 신[0551]

경 프로세싱 유닛 (예컨대, 인공 뉴런) 에 로드함으로써, 시작할 수도 있다.     주어진 뉴런 모델에 대한 파라

미터들은 위에서 설명한 바와 같이 뉴런 모델들의 구분적 선형 근사들로부터 유도되는 파라미터들일 수도 있다.

   1604 에서, 제 1 신경 프로세싱 유닛의 제 1 상태는 로드된 제 1 뉴런 모델에 대한 파라미터들에 적어도 부

분적으로 기초하여 결정될 수도 있다.     1606 에서, 제 1 신경 프로세싱 유닛의 제 2 상태는 제 1 뉴런 모델

에 대한 파라미터들에 그리고 제 1 상태에 적어도 부분적으로 기초하여 결정될 수도 있다.

어떤 양태들에 따르면, 복수의 뉴런 모델들은 1608 에서 업데이트될 수도 있다.     위에서 설명한 바와 같이,[0552]

복수의 뉴런 모델들을 업데이트하는 것은 기존 뉴런 모델들에 대한 어떤 파라미터들을 삭제하거나 또는 적응시

키는 것, 또는 또 다른 뉴런 모델 (예컨대, 복수의 뉴런 모델들이 그 시스템에 이용불가능하게 되었던 때에 이

용불가능하였던 새로운 뉴런 모델, 또는 새로운 뉴런 모델을 효과적으로 생성하기 위한 기존 뉴런 모델에 대한

원하는 변형) 에 대한 파라미터들을 추가하는 것을 포함할 수도 있다.     어떤 양태들에 있어, 복수의 뉴런 모

델들을 업데이트하는 것은 제 1 뉴런 모델에 대한 파라미터들을 로드하고 (또는, 재로드하고) 그리고 제 1 신경

프로세싱 유닛의 다음 상태를 결정하기 전에 일어날 수도 있다.

1610 에서, 제 2 뉴런 모델에 대한 파라미터들은 옵션적으로, 제 1 신경 프로세싱 유닛으로 로드될 수도 있다.[0553]

   이들 제 2 뉴런 모델에 대한 파라미터들은 제 1 뉴런 모델에 대한, 1602 에서 로드된 파라미터들을 대체할

수도 있다.     복수의 뉴런 모델들은, 제 2 뉴런 모델에 대한 파라미터들이 1610 에서 로드되기 전에, 1608 에

서 업데이트될 필요가 없다.     1612 에서, (예컨대, 제 2 상태에 뒤이은) 제 1 신경 프로세싱 유닛의 제 3 상

태는 제 2 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여 결정될 수도 있다.

어떤 양태들에 따르면, 1602 에서의 제 1 모델에 대한 (또는, 1610 에서의 제 2 뉴런 모델에 대한) 파라미터들[0554]

을 로드하는 것은 구성 이벤트에 대한 응답이다.     어떤 양태들에 있어, 구성 이벤트는 신경 프로세싱 유닛들

또는 제 1 신경 프로세싱 유닛의 시스템 중 적어도 하나에 대한 전원공급이다.

어떤 양태들에 따르면, 1612 에서 제 3 상태를 결정하는 것은 제 2 상태에 적어도 부분적으로 추가로 기초한다.[0555]

   후속 뉴런 모델에 대한 파라미터들에 기초한 후속 상태의 결정이 (후속 뉴런 모델과는 상이한) 이전 뉴런 모

델에 대한 파라미터들 하에서 결정된 이전 상태에 기초하면, 이것은 "핫 스왑 (hot swap)" 으로서 지칭될 수도

있다.     어떤 양태들에 있어, 제 2 뉴런 모델은 이 "핫 스왑" 조건 하에서 역치이하의 진동을 발생하도록 적

어도 부분적으로 구성된다.     이 진동은 제 2 상태에서 또는 또 다른 시간에서 시작할 수도 있다.     어떤

양태들에 있어, 1610 에서 제 2 뉴런 모델에 대한 파라미터들의 로딩은 상태 조건 (예컨대, 특정의 영역에 진입

하거나 또는 변화율, 등과 같은 어떤 거동을 나타내는 상태), (예컨대, 타이머에 기초한) 시간 조건, 또는 트리

거 중 적어도 하나에 적어도 부분적으로 기초한다.     트리거는 예를 들어, 제 1 신경 프로세싱 유닛의 외부에

있을 수도 있다.

어떤 양태들에 따르면, 동작들 (1600) 은 복수의 뉴런 모델들로부터 선택된 제 2 뉴런 모델에 대한 파라미터들[0556]

을 제 2 신경 프로세싱 유닛에 로드하는 것을 더 포함할 수도 있다.     그 후, 제 2 신경 프로세싱 유닛의 상

태는 제 2 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여 결정될 수도 있다.     어떤 양태들에

있어, 제 1 및 제 2 신경 프로세싱 유닛들은 시스템의 상이한 영역들에 로케이트된다.     어떤 양태들에 있어,

제 1 및 제 2 뉴런 모델들은 상이한 유형들의 뉴런들을 나타낸다.     즉, 신경 프로세싱 유닛들의 시스템에서

상이한  뉴런  모델들은  신경  시스템의  상이한  영역들에  있는  뉴런들을  에뮬레이트하는데 사용될  수도  있다.

예를 들어,  시각,  청각,  또는 모터 제어 시스템에서 뉴런들은 상이한 뉴런 모델들에 의해 나타내어질 수도

있다.

제 1, 제 2, 또는 임의의 다른 뉴런 모델에 대한 파라미터들을 로드하는 것은 여러 적합한 동작들 중 임의의 동[0557]

작을 수반할 수도 있다.     하기의 설명은 설명의 용이성을 위해 제 1 뉴런 모델에 대한 파라미터들을 로드하

는 것을 포함하지만, 이러한 로딩은 임의의 다른 뉴런 모델에 대한 파라미터들에도 또한 적용된다.     어떤 양

태들에 따르면, 제 1 뉴런 모델에 대한 파라미터들을 로드하는 것은 제 1 뉴런 모델에 대한 파라미터들을 제 1

신경 프로세싱 유닛을 포함하는 복수의 신경 프로세싱 유닛들으로 로드하는 것을 포함한다.     어떤 양태들에

있어, 제 1 뉴런 모델에 대한 파라미터들을 로드하는 것은 메모리로부터 제 1 뉴런 모델에 대한 파라미터들 중

적어도 일부분을 페치하는 것을 포함한다.     이 메모리는 어떤 양태들에 대한 신경 프로세싱 유닛들의 시스템

에 의해 액세스가능할 수도 있다.     어떤 양태들에 있어, 메모리의 적어도 일부분은 제 1 신경 프로세싱 유닛
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에 로컬일 수도 있다.     메모리의 적어도 일부분은 캐시 메모리일 수도 있다.     어떤 양태들에 있어, 제 1

뉴런 모델에 대한 파라미터들을 로드하는 것은, 메모리에서, 제 1 뉴런 모델과 연관된 메모리 블록에 액세스하

는 것을 더 포함한다.     이 경우, 메모리 블록은 메모리 블록에서의 메모리 어드레스로의 포인터에 의해 지정

될 수도 있다.

도 17 은 본 개시물의 어떤 양태들에 따른, 범용 프로세서 (1702) 를 이용하여 인공 뉴런을 동작시키는 전술한[0558]

방법들을 구현하는 구성요소들의 예시적인 블록도 (1700) 를 예시한다.     컴퓨터 네트워크 (신경 네트워크)

와 연관되는 변수들 (신경 신호들), 시냅스 가중치들, 및/또는 시스템 파라미터들은 메모리 블록 (1704) 에서

저장될 수도 있으며, 반면 범용 프로세서 (1702) 에서 실행되는 관련 명령들은 프로그램 메모리 (1706) 로부터

로드될 수도 있다.     본 개시물의 양태에서, 범용 프로세서 (1702) 에 로드되는 명령들은, 인공 뉴런의 제 1

상태가 제 1 영역 내에 있다고 결정하는 코드; 선형 방정식들의 제 1 세트에 적어도 부분적으로 기초하여 인공

뉴런의 제 2 상태를 결정하는 코드로서, 상기 선형 방정식들의 제 1 세트는 제 1 영역에 대응하는 파라미터들의

제 1 세트에 적어도 부분적으로 기초하는, 상기 제 2 상태를 결정하는 코드; 인공 뉴런의 제 2 상태가 제 2 영

역 내에 있다고 결정하는 코드; 및 선형 방정식들의 제 2 세트에 적어도 부분적으로 기초하여 인공 뉴런의 제 3

상태를 결정하는 코드로서, 상기 선형 방정식들의 제 2 세트는 제 2 영역에 대응하는 파라미터들의 제 2 세트에

적어도 부분적으로 기초하는, 상기 제 3 상태를 결정하는 코드를 포함할 수도 있다.     어떤 양태들에 있어,

제 1 또는 제 2 영역 중 적어도 하나는 2개 이상의 차원들에 의해 정의된다.

본 개시물의 또 다른 양태에서, 범용 프로세서 (1702) 에 로드되는 명령들은, 복수의 뉴런 모델들로부터 선택된[0559]

제 1 뉴런 모델에 대한 파라미터들을 (신경 프로세싱 유닛들의 시스템에서의) 제 1 신경 프로세싱 유닛에 로드

하는 코드; 및 제 1 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여 제 1 신경 프로세싱 유닛의 제

1 상태를 결정하는 코드를 포함할 수도 있다.

도 18 은 본 개시물의 어떤 양태들에 따른, 메모리 (1802) 가 상호접속 네트워크 (1804) 를 통해서 컴퓨터 네트[0560]

워크 (신경 네트워크) 의 개개의 (분산된) 프로세싱 유닛들 (신경 프로세서들) (1806) 와 인터페이스될 수 있는

인공 뉴런을 동작시키는 전술한 방법을 구현하는 구성요소들의 예시적인 블록도 (1800) 를 예시한다.     컴퓨

터 네트워크 (신경 네트워크) 와 연관되는 변수들 (신경 신호들), 시냅스 가중치들, 및/또는 시스템 파라미터들

은 메모리 (1802) 에 저장될 수도 있으며, 메모리 (1802) 로부터 상호접속 네트워크 (1804) 의 접속(들) 을 통

해서 각각의 프로세싱 유닛 (신경 프로세서) (1806) 으로 로드될 수도 있다.     본 개시물의 양태에서, 프로세

싱 유닛 (1806) 은, 인공 뉴런의 제 1 상태가 제 1 영역 내에 있다고 결정하고; 선형 방정식들의 제 1 세트에

적어도 부분적으로 기초하여 인공 뉴런의 제 2 상태를 결정하고; 인공 뉴런의 제 2 상태가 제 2 영역 내에 있다

고 결정하고; 그리고 선형 방정식들의 제 2 세트에 적어도 부분적으로 기초하여 인공 뉴런의 제 3 상태를 결정

하도록 구성될 수도 있으며, 상기 선형 방정식들의 제 1 세트는 제 1 영역에 대응하는 파라미터들의 제 1 세트

에 적어도 부분적으로 기초하며, 상기 선형 방정식들의 제 2 세트는 제 2 영역에 대응하는 파라미터들의 제 2

세트에 적어도 부분적으로 기초한다.     어떤 양태들에 있어, 제 1 또는 제 2 영역 중 적어도 하나는 2개 이상

의 차원들에 의해 정의된다.

본 개시물의 또 다른 양태에서, 프로세싱 유닛 (1806) 은 복수의 뉴런 모델들로부터 선택된 제 1 뉴런 모델에[0561]

대한 파라미터들을 (신경 프로세싱 유닛들의 시스템에서의) 제 1 신경 프로세싱 유닛에 로드하고; 그리고 제 1

뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여 제 1 신경 프로세싱 유닛의 제 1 상태를 결정하도

록 구성될 수도 있다.

도 19 는 본 개시물의 어떤 양태들에 따른, 분산된 가중치 메모리들 (1902) 및 분산된 프로세싱 유닛들 (신경[0562]

프로세서들) (1904) 에 기초하여 인공 뉴런을 동작시키는 전술한 방법을 구현하는 구성요소들의 예시적인 블록

도 (1900) 를 예시한다.     도 19 에 예시된 바와 같이, 하나의 메모리 뱅크 (1902) 는 컴퓨터 네트워크 (신경

네트워크) 의 하나의 프로세싱 유닛 (1904) 과 직접 인터페이스될 수도 있으며, 여기서, 그 메모리 뱅크 (1902)

는 변수들 (신경 신호들), 시냅스 가중치들, 및/또는 그 프로세싱 유닛 (신경 프로세서) (1904) 과 연관되는 시

스템 파라미터들을 저장할 수도 있다.     본 개시물의 양태에서, 프로세싱 유닛(들) (1904) 은, 인공 뉴런의

제 1 상태가 제 1 영역 내에 있다고 결정하고; 선형 방정식들의 제 1 세트에 적어도 부분적으로 기초하여 인공

뉴런의 제 2 상태를 결정하고; 인공 뉴런의 제 2 상태가 제 2 영역 내에 있다고 결정하고; 그리고 선형 방정식

들의 제 2 세트에 적어도 부분적으로 기초하여 인공 뉴런의 제 3 상태를 결정하도록 구성될 수도 있으며, 상기

선형 방정식들의 제 1 세트는 제 1 영역에 대응하는 파라미터들의 제 1 세트에 적어도 부분적으로 기초하며, 상

기 선형 방정식들의 제 2 세트는 제 2 영역에 대응하는 파라미터들의 제 2 세트에 적어도 부분적으로 기초한다.
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   어떤 양태들에 있어, 제 1 또는 제 2 영역 중 적어도 하나는 2개 이상의 차원들에 의해 정의된다.

본 개시물의 또 다른 양태에서, 프로세싱 유닛(들) (1904) 은, 복수의 뉴런 모델들로부터 선택된 제 1 뉴런 모[0563]

델에 대한 파라미터들을 (신경 프로세싱 유닛들의 시스템에서의) 제 1 신경 프로세싱 유닛에 로드하고; 그리고

제 1 뉴런 모델에 대한 파라미터들에 적어도 부분적으로 기초하여 제 1 신경 프로세싱 유닛의 제 1 상태를 결정

하도록 구성될 수도 있다.

도 20 은 본 개시물의 어떤 양태들에 따른, 신경 네트워크 (2000) 의 예시적인 구현예를 예시한다.     도 20[0564]

에 예시된 바와 같이, 신경 네트워크 (2000) 는 위에서 설명한 방법들의 여러 동작들을 수행할 수도 있는 복수

의 로컬 프로세싱 유닛들 (2002) 을 포함할 수도 있다.     각각의 프로세싱 유닛 (2002) 은 로컬 상태 메모리

(2004) 및 신경 네트워크의 파라미터들을 저장하는 로컬 파라미터 메모리 (2006) 를 포함할 수도 있다.     게

다가, 프로세싱 유닛 (2002) 은 로컬 (뉴런) 모델 프로그램을 가진 메모리 (2008), 로컬 학습 프로그램을 가진

메모리 (2010), 및 로컬 접속 메모리 (2012) 를 포함할 수도 있다.     더욱이, 도 20 에 예시된 바와 같이, 각

각의 로컬 프로세싱 유닛 (2002) 은 로컬 프로세싱 유닛의 로컬 메모리들에 대한 구성을 제공할 수도 있는 구성

프로세싱을 위한 유닛 (2014) 과, 그리고 로컬 프로세싱 유닛들 (2002) 사이에 라우팅을 제공하는 라우팅 접속

프로세싱 엘리먼트들 (2016) 과 인터페이스될 수도 있다.

본 개시물의 어떤 양태들에 따르면, 각각의 로컬 프로세싱 유닛 (2002) 은 신경 네트워크의 원하는 하나 이상의[0565]

기능적 특징들에 기초하여 신경 네트워크의 파라미터들을 결정하고, 그리고 결정된 파라미터들이 추가로 적응되

고, 튜닝되고 그리고 업데이트됨에 따라서, 원하는 기능적 특징들로 하나 이상의 기능적 특징들을 개발하도록

구성될 수도 있다.

위에서 설명한 방법들의 여러 동작들은 대응하는 기능들을 수행하는 것이 가능한 임의의 적합한 수단에 의해 수[0566]

행될 수도 있다.     수단은 회로, 주문형 집적회로 (ASIC), 또는 프로세서를 포함하지만 이에 한정되지 않는,

여러 하드웨어 및/또는 소프트웨어 구성요소(들) 및/또는 모듈(들) 을 포함할 수도 있다.     예를 들어, 여러

동작들은  도  17  내지  도  20  에  도시된  여러  프로세서들  중  하나  이상에  의해  수행될  수도  있다.

일반적으로, 도면들에 예시된 동작들이 존재하는 경우, 그들 동작들은 유사한 넘버링 (numbering) 을 가진 대응

하는 대응물 수단-플러스-기능 구성요소들을 가질 수도 있다.     예를 들어, 도 14 에 예시된 동작들 (1400)

은 도 14a 에 예시된 수단 (1400A) 에 대응한다.

예를 들어, 디스플레이하는 수단은 디스플레이 (예컨대, 모니터, 편평한 스크린, 터치 스크린, 및 기타 등등),[0567]

프린터, 또는 시각적 표현 (예컨대, 테이블, 차트, 또는 그래프) 을 위한 데이터를 출력하는 임의의 다른 적합

한 수단들을 포함할 수도 있다.     프로세싱하는 수단, 발생하는 수단, 로드하는 수단, 재설정하는 수단, 페치

하는 수단, 업데이트하는 수단, 계산하는 수단, 컴퓨팅하는 수단, 출력하는 수단, 또는 결정하는 수단은, 하나

이상의 프로세서들 또는 프로세싱 유닛들을 포함할 수도 있는 프로세싱 시스템을 포함할 수도 있다.     저장하

는  수단은  메모리  또는  프로세싱  시스템에  의해  액세스될  수도  있는  임의의  다른  적합한  저장  디바이스

(예컨대, RAM) 을 포함할 수도 있다.

본원에서 사용될 때, 용어 "결정하는 것" 은 매우 다양한 액션들을 포괄한다.     예를 들어, "결정하는 것" 은[0568]

계산하는 것, 컴퓨팅하는 것, 프로세싱하는 것, 유도하는 것, 연구하는 것, 탐색하는 것 (예컨대, 테이블, 데이

터베이스 또는 또 다른 데이터 구조에서 탐색하는 것), 확인하는 것 (ascertaining) 등을 포함할 수도 있다.

  또한, "결정하는 것" 은 수신하는 것 (예컨대, 정보를 수신하는 것), 액세스하는 것 (예컨대, 메모리 내 데이

터에 액세스하는 것) 등을 포함할 수도 있다.     또한, "결정하는 것" 은 결심하는 것 (resolving), 선택하는

것 (selecting), 선정하는 것 (choosing), 확립하는 것 (establishing) 등을 포함할 수도 있다.

본원에서 사용될 때, 아이템들의 리스트 "중 적어도 하나" 를 인용하는 어구는 단일 멤버들을 포함한, 그들 아[0569]

이템들의 임의의 조합을 지칭한다.     일 예로서, "a, b, 또는 c 중 적어도 하나" 는 a, b, c, a-b, a-c, b-

c, 및 a-b-c 를 포괄하도록 의도된다.

본 개시물과 관련하여 설명된 여러가지 예시적인 로직 블록들, 모듈들, 및 회로들은, 범용 프로세서, 디지털 신[0570]

호 프로세서 (DSP), 주문형 집적회로 (ASIC), 필드 프로그래밍가능 게이트 어레이 신호 (FPGA) 또는 다른 프로

그래밍가능 로직 디바이스 (PLD), 이산 게이트 또는 트랜지스터 로직, 이산 하드웨어 구성요소들 또는 본원에서

설명한 기능들을 수행하도록 설계된 이들의 임의의 조합으로, 구현되거나 또는 수행될 수도 있다.     범용 프

로세서는 마이크로프로세서일 수도 있으며, 그러나 대안적으로는, 프로세서는 임의의 시중에서 입수가능한 프로

세서, 제어기, 마이크로제어기, 또는 상태 머신일 수도 있다.     프로세서는 또한 컴퓨팅 디바이스들의 조합,
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예컨대, DSP 와 마이크로프로세서의 조합, 복수의 마이크로프로세서들, DSP 코어와 결합된 하나 이상의 마이크

로프로세서들, 또는 임의의 다른 이러한 구성으로서 구현될 수도 있다.

본 개시물과 관련하여 설명된 방법 또는 알고리즘의 단계들은 하드웨어로 직접, 프로세서에 의해 실행되는 소프[0571]

트웨어 모듈로, 또는 이 둘의 조합으로 구현될 수도 있다.     소프트웨어 모듈은 당업계에 알려져 있는 임의

유형의 저장 매체에 상주할 수도 있다.     사용될 수도 있는 저장 매체들의 일부 예들은 랜덤 액세스 메모리

(RAM), 판독전용 메모리 (ROM), 플래시 메모리, EPROM 메모리, EEPROM 메모리, 레지스터들, 하드 디스크, 착탈

식 디스크, CD-ROM 및 기타 등등을 포함한다.     소프트웨어 모듈은 단일 명령, 또는 많은 명령들을 포함할 수

도 있으며, 여러 상이한 코드 세그먼트들을 통해서, 상이한 프로그램들 사이에, 그리고 다수의 저장 매체들을

가로질러 분포될 수도 있다.     저장 매체는 프로세서가 저장 매체로부터 정보를 판독하고 저장 매체에 정보를

기록할 수 있도록 프로세서에 커플링될 수도 있다.     대안적으로는, 저장 매체는 프로세서에 통합될 수도 있

다.

본원에서 설명한 방법들은 설명한 방법을 달성하기 위한 하나 이상의 단계들 또는 액션들을 포함한다.     방법[0572]

단계들 및/또는 액션들은 청구의 범위로부터 일탈함이 없이 서로 상호 교환될 수도 있다.     즉, 단계들 또는

액션들의 특정의 순서가 규정되지 않는 한, 특정의 단계들 및/또는 액션들의 순서 및/또는 사용은 청구항들의

범위로부터 일탈함이 없이 수정될 수도 있다.

설명된 기능들은 하드웨어, 소프트웨어, 펌웨어, 또는 이들의 임의의 조합으로 구현될 수도 있다.     하드웨어[0573]

로 구현되는 경우, 예시적인 하드웨어 구성은 디바이스 내 프로세싱 시스템을 포함할 수도 있다.     프로세싱

시스템은 버스 아키텍처로 구현될 수도 있다.     버스는 프로세싱 시스템의 특정의 애플리케이션 및 전체 설계

제약들에 따라서, 임의 개수의 상호접속하는 버스들 및 브릿지들을 포함할 수도 있다.     버스는 프로세서, 머

신-판독가능 매체들, 및 버스 인터페이스를 포함한 여러 회로들을 함께 링크할 수도 있다.     버스 인터페이스

는 네트워크 어댑터를, 특히, 프로세싱 시스템에 버스를 통해서 접속하는데 사용될 수도 있다.     네트워크 어

댑터는 신호 프로세싱 기능들을 구현하는데 사용될 수도 있다.     어떤 양태들에 있어, 사용자 인터페이스 (예

컨대, 키패드, 디스플레이, 마우스, 조이스틱, 등) 는 또한 버스에 접속될 수도 있다.     버스는 또한 타이밍

소스들, 주변장치들, 전압 조정기들, 전력 관리 회로들, 및 기타 등등과 같은 여러 다른 회로들에 링크될 수도

있으며, 이들은 당업계에 널리 알려져 있으므로, 더이상 추가로 설명되지 않는다.

프로세서는 버스를 관리하는 것, 및 머신-판독가능 매체들 상에 저장된 소프트웨어의 실행을 포함한 일반적인[0574]

프로세싱을 담당할 수도 있다.     프로세서는 하나 이상의 범용 및/또는 특수-목적 프로세서들로 구현될 수도

있다.     예들은 마이크로프로세서들, 마이크로제어기들, DSP 프로세서들, 및 소프트웨어를 실행할 수도 있는

다른 회로를 포함한다.     소프트웨어는 소프트웨어, 펌웨어, 미들웨어, 마이크로코드, 하드웨어 기술 언어,

또는 기타로 지칭되든, 명령들, 데이터, 또는 이들의 임의의 조합을 의미하는 것으로 넓게 해석되어야 할 것이

다.     머신-판독가능 매체들은 일 예로서, RAM (Random Access Memory), 플래시 메모리, ROM (Read Only

Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable Programmable Read-Only Memory), EEPROM

(Electrically Erasable Programmable Read-Only Memory), 레지스터들, 자기 디스크들, 광 디스크들, 하드 드

라이브들, 또는 임의의 다른 적합한 저장 매체, 또는 이들의 임의의 조합을 포함할 수도 있다.     머신-판독가

능 매체들은 컴퓨터-프로그램 제품에 통합될 수도 있다.     컴퓨터-프로그램 제품은 패키징 재료들을 포함할

수도 있다.

하드웨어 구현예에서, 머신-판독가능 매체들은 프로세서와 분리된 프로세싱 시스템의 부분일 수도 있다.     그[0575]

러나, 당업자들이 용이하게 알 수 있는 바와 같이, 머신-판독가능 매체들, 또는 그의 임의의 부분은 프로세싱

시스템의 외부에 있을 수도 있다.     일 예로서, 머신-판독가능 매체들은 송신 라인, 데이터에 의해 변조된 반

송파, 및/또는 디바이스로부터 분리된 컴퓨터 제품을 포함할 수도 있으며, 이 모든 것은 버스 인터페이스를 통

해서 프로세서에 의해 액세스될 수도 있다.     대안적으로, 또는 추가적으로, 머신-판독가능 매체들, 또는 그

의 임의의 부분은, 캐시 및/또는 일반 레지스터 파일들에서의 경우와 같이, 프로세서에 통합될 수도 있다.

프로세싱 시스템은 외부 버스 아키텍처를 통해서 다른 지원 회로와 함께 모두 링크된, 프로세서 기능을 제공하[0576]

는 하나 이상의 마이크로프로세서들 및 머신-판독가능 매체들의 적어도 일부분을 제공하는 외부 메모리를 가진

범용 프로세싱 시스템으로서 구성될 수도 있다.     이의 대안으로, 프로세싱 시스템은, 프로세서를 가진 ASIC

(Application Specific Integrated Circuit), 버스 인터페이스, 사용자 인터페이스, 지원 회로, 및 단일 칩으

로  통합된  머신-판독가능  매체들  중  적어도  일부로,  또는  하나  이상의  FPGAs  (Field  Programmable  Gate

Arrays), PLDs (Programmable Logic Devices), 제어기들, 상태 머신들, 게이트 로직, 이산 하드웨어 구성요소
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들, 또는 임의의 다른 적합한 회로, 또는 본 개시물 전반에 걸쳐서 설명되는 여러 기능을 수행할 수 있는 회로

들의 임의의 조합으로 구현될 수도 있다.     당업자들은 특정의 애플리케이션에 의존하는 프로세싱 시스템에

대한 설명된 기능 및 전체 시스템에 가해지는 전체 설계 제약들을 얼마나 최적으로 구현하는지를 알 수 있을 것

이다.

머신-판독가능 매체들은 다수의 소프트웨어 모듈들을 포함할 수도 있다.     소프트웨어 모듈들은 프로세서에[0577]

의해 실행될 때, 프로세싱 시스템으로 하여금 여러 기능들을 수행하도록 하는 명령들을 포함한다.     소프트웨

어 모듈들은 송신 모듈 및 수신 모듈을 포함할 수도 있다.     각각의 소프트웨어 모듈은 단일 저장 디바이스에

상주할 수도 있거나 또는 다수의 저장 디바이스들에 걸쳐서 분산될 수도 있다.     일 예로서, 소프트웨어 모듈

은 트리거링 이벤트가 발생할 때 하드 드라이브로부터 RAM 으로 로드될 수도 있다.     소프트웨어 모듈의 실행

동안, 프로세서는 액세스 속도를 증가시키기 위해 명령들의 일부를 캐시에 로드할 수도 있다.     하나 이상의

캐시 라인들은 그후 프로세서에 의한 실행을 위해 일반적인 레지스터 파일에 로드될 수도 있다.     이하에서

소프트웨어 모듈의 기능을 참조할 때, 그 소프트웨어 모듈로부터 명령들을 실행할 때 이러한 기능이 프로세서에

의해 구현되는 것으로 이해되어야 할 것이다.

소프트웨어로 구현되는 경우, 이 기능들은 컴퓨터-판독가능 매체 상에 하나 이상의 명령들 또는 코드로서 저장[0578]

되거나 또는 전달될 수도 있다.     컴퓨터-판독가능 매체들은 한 장소로부터 또 다른 장소로 컴퓨터 프로그램

의 전송을 용이하게 하는 임의의 매체를 포함한, 컴퓨터 저장 매체들 및 통신 매체들 양쪽을 포함한다.     저

장 매체는 컴퓨터에 의해 액세스될 수도 있는 임의의 가용 매체일 수도 있다.     비한정적인 예로서, 이런 컴

퓨터-판독가능 매체들은 RAM, ROM, EEPROM, CD-ROM 또는 다른 광디스크 스토리지, 자기디스크 스토리지 또는 다

른 자기 저장 디바이스들, 또는 원하는 프로그램 코드를 명령들 또는 데이터 구조들의 형태로 전달하거나 또는

저장하는데 사용될 수 있고 컴퓨터에 의해 액세스될 수 있는 임의의 다른 매체를 포함할 수 있다.     또한, 임

의의 접속이 컴퓨터-판독가능 매체로 적절히 지칭된다.     예를 들어, 소프트웨어가 웹사이트, 서버, 또는 다

른 원격 소스로부터 동축 케이블, 광섬유 케이블, 연선, 디지털 가입자 회선 (DSL), 또는 무선 기술들, 예컨대

적외선 (IR), 라디오, 및 마이크로파를 이용하여 송신되면, 동축 케이블, 광섬유 케이블, 연선, DSL, 또는 무선

기술들 예컨대 적외선, 라디오, 및 마이크로파가 그 매체의 정의에 포함된다.     디스크 (disk) 및 디스크

(disc) 는, 본원에서 사용할 때, 컴팩트 디스크 (CD), 레이저 디스크, 광 디스크, 디지털 다기능 디스크 (DVD),

플로피 디스크 및 Blu-ray 디스크를 포함하며, 디스크들 (disks) 은 데이터를 자기적으로 보통 재생하지만, 디

스크들 (discs) 은 레이저로 데이터를 광학적으로 재생한다.     따라서, 일부 양태들에서 컴퓨터-판독가능 매

체들은 비일시성 컴퓨터-판독가능 매체들 (예컨대, 유형의 매체들) 을 포함할 수도 있다.     게다가, 다른 양

태들에 대해 컴퓨터-판독가능 매체들은 일시성 컴퓨터-판독가능 매체들 (예컨대, 신호) 를 포함할 수도 있다.

   앞에서 언급한 것들의 조합들이 또한 컴퓨터-판독가능 매체들의 범위 내에 포함되어야 한다.

따라서,  어떤  양태들은  본원에서  제시되는  동작들을  수행하는  컴퓨터  프로그램  제품을  포함할  수도  있다.[0579]

예를 들어, 이러한 컴퓨터 프로그램 제품은 본원에서 설명되는 동작들을 수행하기 위해 하나 이상의 프로세서들

에 의해 실행가능한 명령들을 안에 저장하고 (및/또는 인코딩하고) 있는 컴퓨터 판독가능 매체를 포함할 수도

있다.     어떤 양태들에 있어, 컴퓨터 프로그램 제품은 패키징 재료를 포함할 수도 있다.

또, 본원에서 설명하는 방법들 및 기법들을 수행하는 모듈들 및/또는 다른 적합한 수단은 적용가능한 경우, 디[0580]

바이스에 의해 다운로드되거나 및/또는 아니면 획득될 수 있는 것으로 이해되어야 한다.     예를 들어, 이러한

디바이스는 본원에서 설명하는 방법들을 수행하기 위한 수단의 전달을 용이하게 하기 위해서 서버에 커플링될

수 있다.     이의 대안으로, 본원에서 설명하는 여러 방법들은, 디바이스가 저장 수단을 디바이스에 커플링하

거나 제공하자마자 여러 방법들을 획득할 수 있도록, 저장 수단 (예컨대, RAM, ROM, 컴팩트 디스크 (CD) 또는

플로피 디스크와 같은 물리적인 저장 매체 등) 을 통해 제공될 수 있다.     더욱이, 본원에서 설명하는 방법들

및 기법들을 디바이스에 제공하기 위한 임의의 다른 적합한 기법이 이용될 수 있다.

청구항들은 위에서 예시한 엄밀한 구성 및 구성요소들에 한정되지 않는 것으로 이해되어야 한다.     청구의 범[0581]

위로부터 일탈함이 없이, 여러 변경들, 위에서 설명되는 방법들 및 장치의 배열, 동작 및 세부 사항들에서, 변

화들 및 변형들이 이루어질 수도 있다.
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