发明名称
一种雷电告警设备及通信基站

摘要
本发明公开了一种雷电告警设备及通信基站，雷电告警设备包括：馈线天线，雷电次声波接收装置，雷电信号中心处理装置，声光告警指示装置。通过对雷电的电磁波信号和次声波信号综合处理及逻辑分析判断，准确对雷电进行预警并预测雷电距离通信基站的实际距离，确定雷电对通信基站的威胁等级并发出雷电声光告警信号，从而有效提醒警示监控人员（或中控设备）在雷电来临前主动切断配电设备与供电线路，改变了通信基站传统的防雷方式，变被动防御式防雷为主动防御式防雷，大大降低通信基站供电设备遭受雷击的损坏率。该设备可满足于通信基站的防雷安全需求，主动保护通信基站敏感的电子通信设备，有效提高通信基站雷电预测防护综合能力。
1. 一种雷电告警设备，设置在通信基站上，其特征在于，包括：
盘存天线，用于接收雷电产生的电磁波信号；
雷电击次波普接收装置，用于采集并放大雷电产生的次波信号；
雷电信号中心处理装置，分别和所述盘存天线、所述雷电击次波普接收装置连接，用于综合处理所述电磁波信号和所述次波信号，以判断雷电是否发生，并在雷电发生时估计所述雷电与所述通信基站的距离，并根据所述雷电与所述通信基站的距离获得所述雷电对所述通信基站的威胁程度；
声光告警指示装置，用于根据所述雷电对所述通信基站的威胁程度发出对应的声光报警信号和相应的光警报信号。

2. 如权利要求 1 所述的雷电告警设备，其特征在于，所述盘存天线的频带宽度为 25MHz—1500MHz。

3. 如权利要求 1 或 2 所述的雷电告警设备，其特征在于，所述盘存天线包括：天线振子、天线座、天线杆、同轴电缆以及安装夹；
其中，所述天线杆和所述天线座通过所述安装夹固定在一起，用于共同支撑并固定所述天线振子；
所述天线振子，安装在所述天线杆和所述天线座上用于采集所述电磁波信号；
所述同轴电缆的一端设置于所述天线座内部且和所述天线振子连接，用于传输所述电磁波信号。

4. 如权利要求 1 所述的雷电告警设备，其特征在于，所述雷电击次波普接收装置包括：自由场声传感器，前置放大器和连接线；
其中，所述自由场声传感器和所述前置放大器螺接；
所述自由场声传感器用于采集所述次波信号；
所述前置放大器用于对所述次波信号进行放大；
所述连接线，连接所述雷电击次波普接收装置和雷电信号中心处理装置。

5. 如权利要求 1 所述的雷电告警设备，其特征在于，所述雷电信号中心处理装置包括：
模拟信号处理模块、模数变换模块、数字信号处理模块、电源、接口模块，风扇和机箱；
所述模拟信号处理模块，用于对所述电磁波信号和所述次波信号进行处理后，获得电磁波模拟信号和次波模拟信号；
所述模数变换模块，和所述模拟信号处理模块连接，用于对所述电磁波模拟信号和所述次波模拟信号分别进行数字采样，得到电磁波数字信号和次波数字信号；
所述数字信号处理模块，用于对所述电磁波数字信号和所述次波数字信号进行综合处理，判断是否有雷电的发生，并估计所述雷电与所述通信基站的距离，以及根据所述雷电与所述通信基站的距离获得所述雷电对所述通信基站的威胁程度。

6. 如权利要求 5 所述的雷电告警设备，其特征在于，所述接口模块包括：雷电击信号输入接口，雷电击波信号输入接口，雷电告警信号输出接口，数字信号输出端接口，直流电源接口，交流电源接口，接地接口。

7. 如权利要求 5 所述的雷电告警设备，其特征在于，所述模拟信号处理模块包括：
限幅器，无源功率分器，第一 30dB 功率放大器，第二 30dB 功率放大器，290MHz 中心频率
10MHz 带宽带滤波器，25MHz 中心频率 4MHz 带宽带滤波器，下变频器，环形器；
其中，所述限幅器和所述同轴电缆连接，用于限制所述电磁波信号的幅度，避免所述雷电信号中心处理装置饱和，并且保护所述雷电信号中心处理装置中的各个器件；
所述无源功率分器，和所述限幅器连接，用于将所述电磁波信号分离为第一路信号和第二路信号；
所述第一 30dB 功率放大器和所述无源功率分器连接，用于放大所述第一路信号；
所述 290MHz 中心频率 10MHz 带宽带通滤波器，通过所述环形器和所述第一 30dB 功率放大器连接，用于对放大后的第一路信号进行滤波，获得 290MHz 中心频率 10MHz 带宽的电磁波模拟信号；
所述下变频器，通过所述环形器和所述 290MHz 中心频率 10MHz 带宽带通滤波器连接，用于将所述 290MHz 中心频率 10MHz 带宽的电磁波模拟信号降频至 15MHz 中心频率 6MHz 带宽的电磁波模拟信号；
所述第二 30dB 功率放大器和所述无源功率分器连接，用于放大所述第二路信号；
25MHz 中心频率 4MHz 带宽带通滤波器，通过所述环形器和所述第二 30dB 功率放大器连接，用于对放大之后的第二路信号进行滤波，获得 25MHz 中心频率 4MHz 带宽的电磁波信号；
所述环形器用于单向隔离前半个信号。
8. 如权利要求 7 所述的雷电告警设备，其特征在于，所述模数变换模块包含第一模数变换器，第二模数变换器和第三模数变换器；
其中，所述第一模数变换器通过所述环形器和所述雷电及声波接收装置连接，用于将所述被压滤波信号进行变换获得所述次声波数字信号，其中，所述次声波模拟信号是通过和所述次声波信号接收装置连接的环形器处理之后获得的；
所述第二模数变换器连接所述下变频器，用于对 15MHz 中心频率 6MHz 带宽的电磁波模拟信号进行变换，获得 15MHz 中心频率 6MHz 带宽的电磁波数字信号；
所述第三模数变换器通过所述环形器连接 25MHz 中心频率 4MHz 带宽带通滤波器，用于对所述 25MHz 中心频率 4MHz 带宽的电磁波模拟信号进行变换，获得 25MHz 中心频率 4MHz 带宽的电磁波数字信号。
9. 如权利要求 8 所述的雷电告警设备，其特征在于，所述数字信号处理模块包括：
20Hz 数字低通滤波器，峰值测量与过门限检测器，逻辑判断器，距离估计器，报警信号产生器，系统时钟；
其中，所述 20Hz 数字低通滤波器，连接所述第一模数变换器，用于将所述次声波数字信号进行滤波，获得 20Hz 以下的次声波数字信号；
所述峰值测量与过门限检测器有三个，分别用于提取所述 20Hz 以下的次声波数字信号，所述 15MHz 中心频率 6MHz 带宽的电磁波数字信号，所述 25MHz 中心频率 4MHz 带宽的电磁波数字信号各自的最大数值，并和各自设定的门限比较，若超过门限值即输出真，反之输出为假，还用于分别存储所述 20Hz 以下的次声波数字信号的数值，所述 15MHz 中心频率 6MHz 带宽的电磁波数字信号的数值，所述 25MHz 中心频率 4MHz 带宽的电磁波数字信号的数值；
所述逻辑判断器，与所述峰值测量与过门限检测器连接，用于按照设定的判决逻辑最终判断雷电是否发生；
所述系统时钟，用于统一控制所述数字信号处理模块的处理时序；
所述距离估计器，用于估计所述电电与所述通信基站的距离，并将所述电电与所述通信基站的距离传输给电电距离显示屏显示；
所述报警信号产生器分别和所述逻辑判断器和所述距离估计器连接，用于根据所述电电与所述通信基站的距离获知所述电电对所述通信基站的威胁程度，且产生报警信号，所述报警信号用于表征所述电电的威胁程度。

10. 一所通信基站，其特征在于，包括如权利要求 1-9 任意一项所述的电电告警设备。
一种雷电告警设备及通信基站

技术领域
[0001] 本申请涉及通信工程防雷技术领域，尤其涉及一种雷电告警设备及通信基站。

背景技术
[0002] 雷电是自然界最壮观的和重要的大气现象之一，伴随雷电有声、光、电等多种物理现象。据统计，全世界每年因雷击造成的经济损失达 10 亿美元以上。雷电灾害是联合国国际减灾十年委员会公布的对人类威胁最严重的自然灾害之一。
[0003] 随着通信行业的持续发展，通信网络规模不断扩大，通信基站的数量也日趋增多，分布也越来越广。目前，通信工程防雷技术领域普遍采用避雷针、避雷带，避雷线、避雷网、电涌防护器等防护装置，通过接闪、引下、接地、布线、屏蔽、等电位、分流等措施对通信基站进行被动防护。
[0004] 但因为通信基站的天线设置大多安装在铁塔和建筑物的高处，电源线路和传输线路大都采用架空线路。另外，由于自身电导构造结构、设置位置及电源、信号系统取线方式等原因，基站内的有源通信设备实施受雷电侵害的事故仍然不可多得，频频发生。部分通信基站的雷击导致，配电线、低压供电电缆及通信线路等频繁受到雷击破坏，导致设备损坏、屏蔽层击穿，系统终止等事故发生。通信设备损坏、修理，通信系统中断及抢修，使通信运营维护企业承受着巨大的维护成本和经济损失。

发明内容
[0005] 本发明提供了一种雷电告警设备及通信基站，以解决通信基站防雷效果差的技术问题。
[0006] 为解决上述技术问题，本发明提供了一种雷电告警设备，设置在通信基站上，包括：
[0007] 盘锥天线，用于接收雷电产生的电磁波信号；
[0008] 雷电次声波接收装置，用于采集并放大雷电产生的次声波信号；
[0009] 雷电信号中心处理装置，分别和前述盘锥天线、前述雷电次声波接收装置连接，用于综合处理所述电磁波信号和所述次声波信号，以判断雷电是否发生，并在雷电发生时估计雷电与所述通信基站的距离，并根据所述雷电与所述通信基站的距离获得所述雷电对所述通信基站的威胁程度；
[0010] 声光告警指示装置，用于根据所述雷电对所述通信基站的威胁程度发出对应的声音报警信号和对应的光报警信号。
[0011] 优选的，所述盘锥天线的频带宽度为 25MHz—1500MHz。
[0012] 优选的，所述盘锥天线包括：天线振子、天线座、天线杆、同轴电缆以及安装夹；
[0013] 其中，所述天线杆和所述天线座通过所述安装夹固定在一起，用于共同支撑并固定所述天线振子；
[0014] 所述天线振子，安装在所述天线杆和所述天线座上用于采集所述电磁波信号；
[0015] 所述同轴电缆的一端设置于所述天线座内部且和所述天线座子连接，用于传输所述电磁波信号。
[0016] 优选的，所述电磁波接收装置包括：自由场传感器，前置放大器和连接线；
[0017] 其中，所述自由场传感器和所述前置放大器连接；
[0018] 所述自由场传感器用于采集所述电磁波信号；
[0019] 所述前置放大器，用于对所述电磁波信号进行放大；
[0020] 所述连接线，连接所述电磁波接收装置和电磁信号中心处理装置。
[0021] 优选的，所述电磁信号中心处理装置包括：模拟信号处理模块，模数变换模块，数字信号处理模块，电源，接口模块，风扇和机箱；
[0022] 所述模拟信号处理模块，用于对所述电磁波信号和所述电磁波信号进行处理后，获得电磁波信号和模拟信号；
[0023] 所述模数变换模块，和所述模拟信号处理模块连接，用于对所述电磁波信号和所述电磁波信号进行模数变换，分别输入数字信号和模拟信号；
[0024] 所述数字信号处理模块，用于对所述电磁波信号和所述电磁波信号进行模数变换，分别输入数字信号和模拟信号，得到数字信号和模数信号，根据所述数字信号和所述电磁波信号进行综合处理，判断是否有雷电的发生并估计所述电磁波与所述通信基站的距离，并根据所述雷电与所述通信基站的距离获得所述电磁波对所述通信基站的威胁程度。
[0025] 优选的，所述接口模块包括：雷电信号输入接口，雷电模数信号输入接口，雷电告警信号输出接口，数字信号输出端接口，直流电源接口，交流电源接口，接地接口。
[0026] 优选的，所述模拟信号处理模块包括：
[0027] 限幅器，无源功率器，第一30dB功率放大器，第二30dB功率放大器，290MHz中心频率为10MHz带宽带通滤波器，25MHz中心频率为4MHz带宽带通滤波器，下变频器，环形器；
[0028] 其中，所述限幅器和所述同轴电缆连接，用于限制所述电磁波信号的幅度，避免所述雷电信号中心处理装置饱和，并且保护所述雷电信号中心处理装置中的各个器件；
[0029] 所述无源功率器，和所述限幅器连接，用于将所述电磁波信号分离为第一路信号和第二路信号；
[0030] 所述第一30dB功率放大器和所述无源功率器连接，用于放大所述第一路信号；
[0031] 所述290MHz中心频率为10MHz带宽带通滤波器，通过所述限幅器和所述第一30dB功率放大器连接，用于对放大后的第一路信号进行滤波，获得290MHz中心频率为10MHz带宽的电磁波信号；
[0032] 所述下变频器，通过所述限幅器和所述290MHz中心频率为10MHz带宽带通滤波器连接，用于将所述290MHz中心频率为10MHz带宽的电磁波信号降频至15MHz中心频率为6MHz带宽的电磁波信号；
[0033] 所述第二30dB功率放大器和所述无源功率器连接，用于放大所述第二路信号；
[0035] 所述环形器用于单相隔离前后级信号。
[0036] 优选的，所述模数变换模块包含第一模数变换器，第二模数变换器和第三模数变换器；
其中，所述第一模数变换器通过所述环形器和所述雷达次声波接收装置连接，用于将所述次声波模拟信号进行变换获得所述次声波数字信号；其中，所述次声波模拟信号是通过和所述雷达次声波接收装置连接的环形器处理之后获得的；

所述第二模数变换器连接所述下变频器，用于对所述15MHz 中心频率 6MHz 带宽的电磁波模拟信号进行变换，获得15MHz 中心频率 6MHz 带宽的电磁波数字信号；

所述第三模数变换器通过所述环形器连接25MHz 中心频率 4MHz 带宽带通滤波器，用于对所述25MHz 中心频率 4MHz 带宽的电磁波模拟信号进行变换，获得25MHz 中心频率 4MHz 带宽的电磁波数字信号。

优选的，所述数字信号处理模块包括：

20Hz 数字低通滤波器，峰值测量与过门限检测器，逻辑判断器，距离估计器，报警信号产生器，系统时钟；

其中，所述 20Hz 数字低通滤波器，连接所述第一模数变换器，用于将所述次声波数字信号进行滤波，获得20Hz 以下的次声波数字信号。

所述峰值测量与过门限检测器由三个，分别用于提取所述 20Hz 以下的次声波数字信号，所述 15MHz 中心频率 6MHz 带宽的电磁波数字信号，所述 25MHz 中心频率 4MHz 带宽的电磁波数字信号各自的最大数值，并和各自设定的门限比较，若超过门限值即输出真，反之输出为假，用于分别存储所述20Hz 以下的次声波数字信号的数值，所述15MHz 中心频率 6MHz 带宽的电磁波数字信号的数值，所述25MHz 中心频率 4MHz 带宽的电磁波数字信号的数值。

所述逻辑判断器，与所述峰值测量与过门限检测器连接，用于按照设定好的判决逻辑最终判断雷达是否发生；

所述系统时钟，用于统一控制所述数字信号处理模块的处理时序；

所述距离估计器，用于估计所述雷达与所述通信基站的距离，并将所述雷达与所述通信基站的距离传输给雷达距离显示屏显示；

所述报警信号产生器分别和所述逻辑判断器和所述距离估计器连接，用于根据所述雷达与所述通信基站的距离获取所述雷达对所述通信基站的威胁程度，且产生报警信号，所述报警信号用于表征所述雷达的威胁程度。

本发明提供了一种通信基站，包括如上述技术方案所述的雷达告警设备。

本发明的一个或者多个技术方案，本发明具有以下有益效果，或者优点：

本发明通过对雷达的电磁波信号和次声波信号综合处理及逻辑分析判断，准确对雷达进行预警并预测雷达距离通信基站的实际距离，确定雷达对通信基站的威胁等级并发出雷达声光警告信号，从而有效提醒警示监控人员（或中控设备）在雷电来临前主动切断用电设备与供电线路，改变了通信基站传统的防雷方式，变被动泄放式防雷为主动防御式防雷，大大降低通信基站用电设备遭雷击时的损坏率。该设备可满足于通信基站的防雷安全需求，主动保护通信基站敏感的电子通信设备，有效提高通信基站雷电预测防护综合能力，大幅降低通信企业运营维护成本。

附图说明

图 1 为本发明实施例中防雷告警设备的实施原理图；
[0052] 图 2 为本发明实施例雷电告警设备的模块构成图；
[0053] 图 3 为本发明实施例雷电告警设备具体的内部结构示意图；
[0054] 图 4 为本发明实施例盘锥天线的结构示意图；
[0055] 图 5 为本发明实施例雷电次声波接收装置的结构示意图；
[0056] 图 6 为本发明实施例雷电信号中心处理装置的模块示意图；
[0057] 图 7 为本发明实施例接口的具体示意图；
[0058] 图 8 为本发明实施例判别的流程图。


具体实施方式
[0060] 为了使本申请所属技术领域中的技术人员更清楚地理解本申请，下面结合附图，通过具体实施例对本申请技术方案作详细描述。
[0061] 本发明的构造了一种防雷告警设备，包括：盘锥天线，雷电次声波接收装置，雷电信号中心处理装置以及声光告警指示装置。通过加装在通信基站的盘锥天线和雷电次声波接收装置，分别采用雷电刚形成时产生的电磁波信号和次声波信号（其中，电磁波信号先经过电信号中心处理装置的无源功率器分离）。接着将这些电信号特有的信号转换传送至电信号中心处理装置进行 HF (High Frequency, 高频) 电信号、VHF (Ultra High Frequency, 超高频) 电信号和次声波信号的处理与检测，经过联合逻辑分析判断雷电是否发生以及估计电至通信基站的距离，确定并预报雷电对通信基站的威胁等级，发出声光指示报警，警示监控人员（或中控设备）在电来临时及时切断用电设备与供电线路。
[0062] 为了更早地说明和解释本发明，本申请在根据上面的结构，简单描述下防雷告警设备的实施原理，如图 1 所示。
[0063] S1，盘锥天线采集电磁波信号。
[0064] S2，雷电次声波接收装置采集次声波信号。
[0065] S3，电磁波信号经过功率器分离。分离之后，会获得 HF 电磁信号，VHF 电磁信号。
[0066] S4，HF 电磁信号的处理和检测。
[0067] S5，VHF 电磁信号的处理和检测。
[0068] S6，次声波信号的处理和检测。
[0069] S7，逻辑判断雷电。
S8, 估计雷电至通信基站的距离。
S9, 声光指示告警。
下面请参看具体的实施方式，对雷电告警设备的结构、安装方法、原理等做具体描述。
实施例一：
本发明首先介绍雷电告警设备的具体结构。
下面请参见图 2、图 3，图 2 是本发明实施例中的雷电告警设备的模块构成图。图 3 是本发明实施例中的雷电告警设备具体的内部结构示意图。
在具体的实施过程中，雷电告警设备具体包括：盘锥天线 1，雷电次声波接收装置 2，雷电信号中心处理装置 3 以及声光告警指示装置 4。
其中，盘锥天线 1，雷电次声波接收装置 2，声光告警指示装置 4 三者分别连接于雷电信号中心处理装置 3。
下面介绍本发明实施例中各个装置的具体作用。
对于盘锥天线 1：
盘锥天线 1 用于接收雷电产生的电磁波信号。
具体来说，盘锥天线 1 的结构请参看图 4。
在图 4 中，盘锥天线 1 包括：天线振子 5、天线座 6、天线杆 7，同轴电缆 8 以及安装夹 9。
其中，天线杆 7 和天线座 6 通过安装夹 9 固定在一起，用于共同支撑并固定天线振子 5。
天线振子 5 安装在天线杆 7 和天线座 6 上，用于采集电磁波信号。
同轴电缆 8 的一端设置于天线座 6 内部且和天线振子 5 连接，同轴电缆 8 的另一段连接雷电信号中心处理装置 3。同轴电缆 8 具体用于传输电磁波信号。
盘锥天线 1 的顶部呈圆盘型，由同轴线的心线馈电，下部呈圆锥型，接同轴线的外导体，其特点是其具有超宽带接收特性，频带宽度为 25MHz—1500MHz。盘锥天线 1 可接收不同频段的电磁波信号。在盘锥天线 1 的安装时，盘锥天线 1 可通过支架（木质、塑钢等绝缘材料）安装在通信基站天线顶端，或直接将盘锥天线 1 的天线杆 7 固定在通信基站天线 10 米范围内的地面上。
对于雷电次声波接收装置 2：
雷电次声波接收装置 2，用于采集并放大雷电产生的次声波信号。
具体来说，雷电次声波接收装置 2 的结构请参看图 5。
雷电次声波接收装置 2 包括：自由场声传感器 10，前置放大器 11 和连接线 12。
其中，自由场声传感器 10 和前置放大器 11 螺接。自由场声传感器 10 用于采集次声波信号。前置放大器 11 用于对次声波信号进行放大。连接线 12 连接雷电次声波接收装置 2 和雷电信号中心处理装置 3。
进一步的，自由场声传感器 10 需选择高灵敏度的自由场声传感器 10。连接线 12 可选择七芯 LEOM 连接线。当然，在实际应用中，自由场声传感器 10 和连接线 12 的型号根据实际情况而定，本发明不做限制。
当雷电发生时，其最显著的特征之一是会产生低频次声波，其能量集中在
1. 3Hz~6Hz。而通常的环境干扰频率在20Hz以上，因此采集磁电次等波信号并以此作为判
决磁电产生的参数是合理的以及有效的。

【0004】 高灵敏度自由场声传感器10的特点是其可探测的声频波带宽，频率响应范围在
2.6Hz~18kHz，涵盖大部分磁电次等波频带，并能将次等波信号变为电信号。在采集到次等
波信号后，使用低通滤波器分离出次等波低频信号就能准确判断磁电发生。

【0005】 对于电弧信号中心处理装置3；
【0006】 电极信号中心处理装置3，分别和盘转北线1、电弧次等波接收装置2连接。
【0007】 电极信号中心处理装置3用于综合处理电磁波信号和次等波信号，以判断磁电是否
发生，并在磁电发生时估计磁电与通信基站的距离，并根据磁电与通信基站的距离获得
磁电对通信基站的威胁程度。

【0008】 具体来说，电极信号中心处理装置3的模块示意图请参看图6。
【0009】 电极信号中心处理装置3包括：模拟信号处理模块13，模数变换模块14，数字信号
处理模块15，电源模块16，接口模块17，风扇18和机箱19。
【0100】 模数信号处理模块13，用于对电磁波信号和次等波信号进行处理后，获得电磁波
模拟信号和次等波信号。
【0101】 模数变换模块14，和模数信号处理模块13连接，用于对电磁波模拟信号和次等波
模拟信号分别进行数字采样，得到电磁波数字信号和次等波数字信号。
【0102】 数字信号处理模块15用于对电磁波数字信号和次等波数字信号进行综合处理，
判断是否有磁电的发生并估计磁电与通信基站的距离，并根据磁电与通信基站的距离获得
磁电对通信基站的威胁程度。
【0103】 电源模块16由外供电源、电池、控制电路组成，为磁电信号中心处理装置3内部各
模块供电。
【0104】 在具体的实施过程中，请结合图2~图3，对磁电信号中心处理装置3中的各个部件
进行具体的描述。
【0105】 首先介绍接口。接口模块17的具体示意图请参看图7。
【0106】 图7描述的是磁电信号中心处理装置3的外观图。
【0107】 在图7中，磁电距离显示屏a设置在机箱19的外面，接口多设置在机箱19的背
面板b上。涉及的接口包括：磁电信号输入接口20，磁电电磁信号输入接口21，磁电报警
信号输出接口22，数字信号输出端①接口23，数字信号输出端②接口24，数字信号输出端
③接口25，直流电源接口26，交流电源接口27，接地接口28。
【0108】 其次介绍模拟信号处理模块13。
【0109】 模拟信号处理模块13具体包括：限幅器29，无源功率器30，第一30dB功率放大器
31和第二30dB功率放大器32，290MHz中心频率10MHz带宽宽带滤波器33，25MHz中心频率
4MHz带宽带滤波器34，下变频器35，环形器36。
【0110】 限幅器29和同轴电缆8连接，用于限制电磁波信号的幅度（能量），避免磁电信号
中心处理装置3饱和，并且保护磁电信号中心处理装置3中的各个器件。
【0111】 无源功率器30和限幅器29连接，用于将电磁波信号分离为第一路信号和第二路
信号。无源功率器30具体为无源1:2功率器。
【0112】 第一30dB功率放大器31和无源功率器30连接，用于放大第一路信号。
[0113] 290MHz 中心频率 10MHz 带宽宽带滤波器 33，通过环形器 36 和第一 30dB 功率放大器 31 连接，用于对放大后的第一路信号进行滤波，获得 290MHz 中心频率 10MHz 带宽的电磁波模拟信号。

[0114] 下变频器 35，通过环形器 36 和 290MHz 中心频率 10MHz 带宽宽带滤波器 33 连接，用于将送 290MHz 中心频率 10MHz 带宽的电磁波模拟信号降频至 15MHz 中心频率 6MHz 带宽的电磁波模拟信号，这样做的目的是为了减轻模数变换的采样负担。

[0115] 第二 30dB 功率放大器 32 和无源功分器 30 连接，用于放大第二路信号。

[0116] 25MHz 中心频率 4MHz 带宽宽带滤波器 34，通过环形器 36 和第二 30dB 功率放大器 32 连接，用于对放大之后的第二路信号进行滤波，获得 25MHz 中心频率 4MHz 带宽的电磁波信号。

[0117] 环形器 36 在模拟信号处理模块 13 设置了 5 个，具体用来单向隔离前后级信号。环形器 36 是一种使电磁波单向环形传输的器件，它是一个多端口器件，其中信号的传输只能沿单方向环行，反方向是隔离的。它起到前、后级隔离的作用，防止后级器件反射的能量影响前级器件的工作状态，或损害前级器件。

[0118] 另外，环形器 36 还用于处理次声波信号，以获得次声波信号。

[0119] 再次，介绍模数变换模块 14。

[0120] 模数变换模块 14 包含第一模数变换器 37，第二模数变换器 38 和第三模数变换器 39。

[0121] 其中，第一模数变换器 37 通过环形器 36 和雷电次声波接收装置 2 连接，用于将次声波模拟信号进行变换获得次声波数字信号。其中，所述次声波模拟信号是通过和所述雷电次声波接收装置连接的环形器 36 处理之后获得的。

[0122] 第二模数变换器 38 连接下变频器 35，用于对 15MHz 中心频率 6MHz 带宽的电磁波模拟信号进行变换，获得 15MHz 中心频率 6MHz 带宽的电磁波数字信号。

[0123] 第三模数变换器 39 通过环形器 36 连接 25MHz 中心频率 4MHz 带宽宽带滤波器 34，用于对 25MHz 中心频率 4MHz 带宽的电磁波模拟信号进行变换，获得 25MHz 中心频率 4MHz 带宽的电磁波数字信号。

[0124] 下面介绍数字信号处理模块 15。

[0125] 数字信号处理模块 15 可以使用 MCU (Micro Control Unit，微控制单元) 处理芯片。

[0126] 具体的，数字信号处理模块 15 包括：20Hz 数字低通滤波器 40，峰值测量与过门限检测器 41，逻辑判断器 42，距离估计器 43，报警信号产生器 44，系统时钟 45。

[0127] 其中，20Hz 数字低通滤波器 40，连接第一模数变换器 37，用于将次声波数字信号进行滤波，获得 20Hz 以下的次声波数字信号。

[0128] 峰值测量与过门限检测器 41 有三个，分别用于提取 20Hz 以下的次声波数字信号 (0Hz-20Hz)、15MHz 中心频率 6MHz 带宽的电磁波数字信号、25MHz 中心频率 4MHz 带宽的电磁波数字信号各自的最大数值，并和各自设定的门限比较，若超过门限值即输出真，反之输出为假，还用于分别存储 20Hz 以下的次声波数字信号的数值，15MHz 中心频率 6MHz 带宽的电磁波数字信号的数值、25MHz 中心频率 4MHz 带宽的电磁波数字信号的数值。

[0129] 逻辑判断器 42，与三个峰值测量与过门限检测器 41 都连接，用于按照设定的判决
逻辑最终判断雷电是否发生。在具体的实施过程中，判决的方式如图 8 所示。

[S130] S801, 15MHz 电磁信号门限判决。
[S131] 若门限判决有，转入 S802, 25MHz 电磁信号门限判决。若无，转入 S803, 25MHz 电磁信号门限判决。
[S132] 在 S802 中，若有，转入 S804, 0Hz-20Hz 次声波信号判断。若无，转入 S805, 0Hz-20Hz 次声波门限判决。
[S133] 在 S803 中，若有，转入 S806。若无，转入 S806，输出信号代码 00。
[S134] 在 S804 中，若有，转入 S807，输出信号代码 11。若无，转入 S808，输出信号代码 10。
[S135] 在 S805 中，若有，转入 S808，输出信号代码 01。若无，转入 S806。
[S136] 在图 8 中，两个 25MHz 电磁信号门限判决的步骤相同，两个 0Hz-20Hz 次声波信号门限判决的步骤也相同。是在判决逻辑链路进行的必要过程。
[S137] 当雷达发生时，在两路电磁信号（15MHz 和 25MHz）中至少出现一种才能估计雷电发生的距离，因此需要 25MHz 或 15MHz 的信号作为做全假设判决（即和和否的判决），因此会出现两个 25MHz 电磁信号门限判决的步骤。对于 0Hz-20Hz 的次声波信号的门限判决也是一样。
[S138] 系统时钟 45，用于统一控制数字信号处理模块 15 中各个器件的时序。
[S139] 距离估计器 43，用于估计雷电与通信基站的距离，并将雷电与通信基站的距离传输给雷电距离显示屏 a 显示。
[S140] 在具体的实施过程中：
[S141] 当判决逻辑输出代码为“11”时，距离估计方法为：距离 = 次声波传播速度 × (20Hz 次声波信号峰值出现时间 -25MHz 中心频率电磁信号峰值出现时间）；
[S142] 当判决逻辑输出代码为“01”时，距离估计方法为：距离 = 次声波传播速度 × (20Hz 次声波信号峰值出现时间 -15MHz 中心频率电磁信号峰值出现时间），其中次声波传播速度为 340m/s。
[S143] 当判决逻辑输出代码为“10”时，表示存在雷电，但距离超出距离估计量程（雷电最大可预警距离 18Km），此时并在机箱 19 前面板的雷电距离显示屏 a 显示 888.8。
[S144] 当判决逻辑输出代码为“00”时，表示无雷电，面板的雷电距离显示屏 a 无显示。
[S145] 报警信号产生器 44 和逻辑判断器 42 和距离估计器 43 连接，用于根据雷电与通信基站的距离获知雷电对通信基站的威胁程度，且产生报警信号，报警信号用于表征雷电的威胁程度。
[S146] 下面介绍声光告警指示装置 4。
[S147] 声光告警指示装置 4，用于根据雷电对通信基站的威胁程度发出对应的声音报警信号和对应的光警报信号。
[S148] 具体的，雷电声光告警指示装置 4 在接收到从报警信号产生器 44 处发过来的报警信号之后，发出声、光二种警报信号。光信号含红、黄、绿三种，分别代表危险、临近、安全。声光告警指示装置 4 由警警器与连接线组成。
[S149] 下面介绍防雷告警设备的安装方法（结合通信基站进行说明）。
[S150] 1. 盘锥天线 1 安装。将轻质铝制天线罩子 5 依次旋转入天线座 6 接口中。然后利用高强度镀锌安装夹 9，将天线固定至天线杆 7，再将同轴电缆 8 一端连接到天线座 6 下端
接口上。将盘锥天线 1 固定于通信基站天线顶端。

[0151] 2、雷电次声波接收装置 2 安装。将自由场声传感器 10 连接在前置放大器 11 上，再将前置放大器 11 与 7 芯 LEMO 线连接，雷电次声波接收装置 2 置于基站机房室内。

[0152] 3、雷电信号中心处理装置 3 安装。中心处理装置电源供电交流 220V、50HZ，直流电池 +12V，直流外接 +12V。将机箱 19 背面板 b 接地端口接地，7 芯 LEMO 线一端与雷电声信号输入接口 20 连接，盘锥天线 1 的同轴电缆 8 与雷电电磁信号输入接口 21 相连。

[0153] 4、声光警告指示装置 4 安装。声光警告指示装置 4 通过连接线 12 和背面板 b 的雷电警告信号输出接口 22 相连。

[0154] 5、完成各部件安装连接后，雷电信号中心处理装置 3 前面板复位按键的背光灯亮，声光报警指示装置 4 警告灯显示绿色。

[0155] 6、当通信基站无雷电威胁时，面板的雷电距离显示屏 a 无显示。声光报警装置 4 警告灯显示绿色，提醒通信基站的雷电威胁等级处在“安全”状态，无需后续处理。

[0156] 7、当雷电距离超过距离估计量程，机箱 19 前面板的雷电距离显示屏 a 显示 888.88。声光报警指示装置 4 警告灯显示绿色。提醒通信基站的雷电威胁等级处在“安全”状态，无需后续处理。

[0157] 8、当通信基站有雷电威胁时，面板的雷电距离显示屏 a 显示出雷电的具体“临近”距离。声光警告指示装置 4 警告灯显示黄色，提醒通信基站的雷电威胁等级处在“临近”状态，需提高警惕但暂无需后续处理。

[0158] 9、当通信基站有雷电威胁时，面板的雷电距离显示屏 a 显示出雷电的具体“危险”距离。声光警告指示装置 4 警告灯显示红色，提醒通信基站的雷电威胁等级处在“危险”状态，立即采取通信设备断开电源等后续处理。

[0159] 雷电警告系统具体工作原理；

[0160] 雷电警告器开机工作状态期间，空中的电磁波信号会被盘锥天线 1 接收到，并经过同轴电缆 8 送入雷电信号中心处理装置 3。

[0161] 电磁波信号经过雷电信号中心处理装置 3 的功率放大器分离为两路信号。

[0162] 被分离的其中一路信号经过 30dB 功率放大器，功率得到放大。然后经过 290MHz 中心频率 10Mhz 带宽带通滤波器 33 进行滤波得到中心频率为 290MHz 的信号，再经过下变频器 35 变为 15MHz，随后经数字采样得到 15MHz 的数字信号送入峰值检测与过门限检测。

[0163] 另一路经过 30dB 功率放大器，功率得到放大。然后经过 25MHz 中心频率 4Mhz 带宽带通滤波器 34 进行滤波得到中心频率为 25MHz 的信号，随后经数字采样得到 25MHz 的数字信号送入峰值检测与过门限检测。

[0164] 雷电产生的自由空间中的声信号会被自由场声传感器 10 侦测到，并经过前置放大后以电信号形式通过 7 芯 LEMO 线送至雷电信号中心处理装置 3。

[0165] 随后经数字采样得数字信号，再经过数字低通滤波器滤除 20Hz 以上频率分量的其它声信号，保留 20Hz 以下的次声波成分。

[0166] 当雷电发生时会产生时间短促的高能电磁辐射和次声波。此时告警器中的三路信号的强度可能会高于没有发生雷电时的强度，峰值将超过预设门限，实现雷电的判断，并根据雷电电磁信号峰值与次声波信号峰值间的时间差估计雷电到此的距离。

[0167] 当存在环境干扰时，告警器中的三路信号的强度可能会出现一定的波动，但极少
有干扰源同时辐射大带宽电磁信号又产生低频次声波信号，因此采用多雷电效应联合处理的雷电告警器出现虚警或误报的情况很少。

【0168】实施例二：

【0169】本发明实施例公开了一种通信基站，包括上述实施例描述的雷电告警设备。

【0170】通过本发明的一个或者多个实施例，本发明具有以下有益效果或优点：

【0171】本发明通过对雷电的电磁波信号和次声波信号综合处理及逻辑分析判断，准确对雷电进行预警并预测雷电距离通信基站的实际距离，确定雷电对通信基站的威胁等级并输出雷电声光告警信号，从而有效提醒警示监控人员（或中控设备）在雷电来临前主动切断用电设备与供电线路，改变了通信基站传统的防雷方式，变被动泄放式防雷为主动防御式防雷，大大降低通信基站用电设备遭雷击时的损坏率。该设备可满足于通信基站的防雷安全需求，主动保护通信基站敏感的电子通信设备，有效提高通信基站雷电预测防护综合能力，大幅降低通信企业运营维护成本。

【0172】尽管已描述了本申请的优选实施例，但本领域内的普通技术人员一旦得知了基本创造性概念，则可对这些实施例作出另外的变更和修改。所以，所附权利要求意图解释为包括优选实施例以及落入本申请范围的所有变更和修改。

【0173】显然，本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样，倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内，则本申请也意图包含这些改动和变型在内。
雷电信号中心处理装置

模拟信号处理模块 → 模数变换模块 → 数字信号处理模块

电源模块 → 接口模块 → 风扇 → 机箱

图6