MINERAL-COATED TEXTILE SURFACES FOR WOOD MATERIALS

Correspondence Address:
JOHNS MANVILLE
10100 WEST UTE AVENUE, PO BOX 625005
LITTLETON, CO 80162-5005 (US)

Appl. No.: 12/685,709
Filed: Jan. 12, 2010

Foreign Application Priority Data
Jan. 14, 2009 (DE) 10 2009 004 970.3

ABSTRACT

The present invention relates to a composite material consisting of a wood material base support and a textile surface which is applied by means of adhesives and provided with a mineral coating.

The composite material according to the invention acts as a substitute for conventional wood material boards in the construction field, which are covered with plasterboard.
MINERAL-COATED TEXTILE SURFACES FOR WOOD MATERIALS

[0001] The present invention relates to a composite material consisting of a wood material base support and a textile surface which is applied by means of adhesives and provided with a mineral coating. The composite material acts as a substitute for conventional wood materials in the construction field, which are covered with plasterboard.

[0002] Previously, in construction/wood frame construction in residential buildings, properties close to residential areas and other buildings, plasterboards or similar mineral boards have been mounted on the wood base support boards (engineered wood boards such as chipboard, OSB, MDF/LDF, plywood, lightweight construction boards or the like) in a separate process step. The joins which arise in the process, in particular in the region of the abutting edges, can be covered later with a suitable fine filler. The same applies for the fastening points of the plasterboards on the wood base support (for example screws/nails and the like).

[0003] The function of the mineral or plasterboards is among other things to create a base for decorative finishes (for example wallpaper, paint) on the respective inner side and at the same time to fulfill certain fire protection requirements.

[0004] Mounting mineral or plasterboards on the wood elements on site at the construction site or in prefabricated construction results in increased work and considerable added costs.

[0005] Therefore the object is to provide a composite material which avoids the above-described disadvantages and can be produced in a cost-effective manner.

[0006] The present invention provides a remedy and solves this problem by laminating a mineral-coated nonwoven material mounted and adhesively bonded to a wood base support. The mounting and finishing of the composite materials produced according to the invention can be carried out in a simpler and more cost-effective manner, as the finished composite material according to the invention can be mounted in just one process step.

[0007] The subject matter of the present invention is a composite material which comprises at least one wood material base support and at least one textile fabric, with the textile fabric being arranged at least on one side of the wood material base support and having a mineral coating, and the wood material base support and the textile fabric being connected by means of an adhesive layer.

[0008] The textile fabric acts as a support for the mineral coating, which is applied to the textile surface by means of coating installations. The coated textile fabric is then laminated onto the wood material base support and adhesively bonded to the latter.

[0009] The mineral-coated textile fabric is connected to the surface of the wood material base support by means of a suitable adhesive. To this end, an adhesive layer is first applied to the surface of the wood material base support and then the coated textile fabric is compressed or laminated with the wood material base support, for example by means of rolling. After drying and any necessary finishing, the composite material according to the invention is ready for its end use.

[0010] Both the components—the textile fabric and the mineral coating—reduce the occurrence and spread of fire. At the same time, a homogeneous, stable and smooth surface is provided for further use. Multiple application of paint is no longer necessary owing to the surface quality.

[0011] The subject matter of the present invention is thus a composite material comprising:

[0012] a) at least one wood material support,

[0013] b) at least one textile fabric which is applied to at least one of the two sides of the wood material support, characterised in that the textile fabric has at least one mineral coating, and an adhesive layer is present between the wood material support and the textile fabric.

[0014] In a preferred embodiment of the invention, the mineral coating and/or the adhesive layer contains further functional materials.

[0015] The wood material base support used according to the invention is preferably wood materials such as boards, with it being possible for these to have additional wood material structures such as frames, grids or three-dimensional reinforcement structures, which are known as honeycombs, which further reinforce the wood materials.

[0016] The wood materials are plate- or thread-shaped wood materials which are produced by mixing the different wood particle shapes with natural and/or synthetic binders in the course of a hot pressing process. The wood materials which are used according to the invention preferably comprise plywood or laminated wood, woodchip material, in particular chipboards and OSB (oriented strand boards), wood fibre material, in particular porous wood fibreboards, vapour-permeable wood fibreboards, hard (high-density) wood fibreboards (HDF) and medium-density wood fibreboards (MDF), and Arboform. Arboform is a material consisting of lignin and other wood constituents, which can be processed thermostplastically.

[0017] The textile fabric used according to the invention is any fabric which is produced from fibres and from which a textile has been produced by means of a surface-forming technology.

[0018] The fibre-forming materials are preferably fibres consisting of synthetic polymers, ceramic fibres, mineral fibres or glass fibres, with it also being possible for these to be used in the form of mixtures. If fibre mixtures are present, they can also contain cellulose or natural fibres. Textiles mean wovens, scrimms, knitted fabrics, mesh and nonwoven fabrics, preferably nonwoven fabrics.

[0019] The textile fabric can also have a reinforcement consisting of fibres, threads or filaments. This is useful in particular if the textile fabric is subjected to high mechanical stresses. Multifilaments or rovings based on glass, polyester, carbon or metal are preferred as reinforcement threads. The reinforcement threads can be used as such or else in the form of a textile fabric, for example as a woven, scrim, knitted fabrics, mesh or nonwoven fabric. The reinforcements preferably consist of a parallel yarn sheet or a scrim.

[0020] The textile surfaces consisting of mineral and ceramic fibres are aluminoisicale, ceramic, dolomite, wollastonite fibres or fibres of vulcanites, preferably basalt, diabase and/or melaphyre fibres, in particular basalt fibres. Diabase and melaphyre are referred to together as paleobasalts, and diabase is also popularly known as greenstone.

[0021] The mineral fibre nonwoven can be formed from filaments, that is, long continuous fibres, or from staple fibres. The average length of the staple fibres in the nonwoven used according to the invention consisting of mineral fibres is between 5 and 120 mm, preferably 8 to 90 mm. In a further embodiment of the invention, the mineral fibre nonwoven
contains a mixture of continuous fibres and staple fibres. The average fibre diameter of the mineral fibres is between 5 and 30 μm, preferably between 8 and 24 μm, particularly preferably between 8 and 16 μm.

[0022] The weight per unit area of the textile fabric consisting of mineral fibres is between 15 and 500 g/m², preferably between 40 and 250 g/m², with this data referring to a surface fabric without a mineral coating.

[0023] Nonwovens are in particular preferred as textiles consisting of glass fibres. These are made up of filaments, that is, long continuous fibres or from staple fibres. The average length of the staple fibres is between 5 and 120 mm, preferably 8 to 90 mm. In a further embodiment of the invention, the glass fibre nonwoven contains a mixture of continuous fibres and staple fibres.

[0024] The average diameter of the glass fibres is between 5 and 30 μm, preferably between 8 and 24 μm, particularly preferably between 10 and 21 μm.

[0025] In addition to the above-mentioned diameters, what are known as glass microfibres can also be used. The preferred average diameter of the glass microfibres is between 0.1 and 5 μm. The microfibres which form the textile surface can also be present in mixtures with other fibres, preferably glass fibres. A layer-like structure consisting of microfibres and glass fibres is also possible, or else the setting of a gradient with which the content of microfibres increases towards the side of the textile fabric which faces away from the support.

[0026] The weight per unit area of the textile fabric consisting of glass fibres is between 15 and 500 g/m², preferably between 40 and 250 g/m², with this data referring to a surface fabric without a mineral coating.

[0027] Suitable glass fibres comprise those which have been produced from A-glass, E-glass, S-glass, C-glass, T-glass or R-glass.

[0028] The textile surface can be produced by any known method. In the case of glass nonwovens, this is preferably the dry or wet lay method.

[0029] Of the textile surfaces consisting of fibres consisting of synthetic polymers, nonwovens, in particular what are known as spunbons, that is, spunbonded nonwovens which are produced by randomly laying melt-spun filaments, are preferred. They consist of continuous synthetic fibres consisting of polymer materials which can be melt-spun. Suitable polymer materials are for example polyamides such as polyhexamethylene adipamide, polycaprolactam, aromatic or partially aromatic polyamides ("aramides"), aliphatic polyamides such as nylon, partially aromatic or fully aromatic polyesters, polyphenylene sulphide (PPS), polymers with ether and keto groups such as polyether ketones (PEK) and polyether ether ketone (PEEK), polyolefins such as polyethylene or polypropylene, cellulose or polyvinylcellulose. In addition to the above-mentioned synthetic polymers, polymers which are spun from solution are also suitable.

[0030] The spunbonded nonwovens preferably consist of polymers which can be melt-spun. All known types which are suitable for fibre production can in principle be considered as the polyester material. Polymers which contain at least 95 mol % polyethylene terephthalate (PET), in particular those consisting of unmodified PET, are particularly preferred.

[0031] The individual linear densities of the polyester filaments in the spunbonded nonwoven are between 1 and 16 dtex, preferably 2 to 10 dtex.

[0032] In a further embodiment of the invention, the spunbonded nonwoven can also be a hot-melt binder-consolidated nonwoven material which contains support and hot-melt adhesive fibres. The support and hot-melt adhesive fibres can be derived from any desired thermoplastic, fibre-forming polymers. Such hot-melt binder-consolidated spunbonded nonwovens are described for example in EP-A-0.446.822 and EP-A-0.590,629.

[0033] In addition to continuous filaments (spunbonded method), the textile surfaces can also be made up of staple fibres or mixtures of staple fibres and continuous filaments. The individual linear densities of the staple fibres in the nonwoven are between 1 and 16 dtex, preferably 2 to 10 dtex. The staple length is 1 to 100 mm, preferably 2 to 50 mm, particularly preferably 2 to 30 mm. The textile fabric can also be built up of fibres of different materials in order to be able to achieve particular properties.

[0034] The filaments and/or staple fibres which make up the nonwoven materials can have a virtually round cross section or other shapes such as dumbbell-shaped, kidney-shaped, triangular or tri- or multi-lobed cross sections. Hollow fibres and bi- or multi-component fibres can also be used. Furthermore, the hot-melt adhesive fibre can also be used in the form of bi- or multi-component fibres.

[0035] The fibres which form the textile fabric can be modified by customary additives, for example anti-static agents such as carbon black.

[0036] The weight per unit area of the textile fabric consisting of synthetic polymer fibres is between 10 and 500 g/m², preferably between 20 and 250 g/m².

[0037] The textile fabric can be produced without chemical binders. In order to achieve the necessary strengths for further processing of the surface fabric, thermoplastic binder polymers can also be introduced and/or known needling methods can be used. In addition to the possibility of mechanical strengthening, for example by calendering or needling, hydrodynamic needling should also be in particular mentioned here.

[0038] The textile fabrics are however preferably pre-strengthened with a chemical binder. The binders used preferably come from the group of binder systems which are compatible with the coating material. The binder component is at most 30% by weight.

[0039] The methods for producing mineral-coated textile fabrics, in particular nonwovens, are known per se. Suitable materials are applied to a mostly strengthened textile fabric, preferably a binder-consolidated nonwoven, by means of customary methods. Standard coating methods such as foam coating, dip methods, doctor blades etc. are used. After the coating has been applied, the coated material is dried by known methods.

[0040] The mineral coatings consist of flowable, paste-like materials, which in addition to water consist essentially of plaster, lime, chalk or similar inorganic components such as aluminium hydroxide. The components mentioned are used alone or in mixtures and/or also in mixtures with other organic or inorganic components. Polymer dispersions are typically used as the organic constituents, as binders, thickeners and dispersants. Such mineral masses are known in principle.

[0041] In addition to these base materials, the mineral coating mass or adhesive layer can contain further functional materials as additives. The additives are preferably materials for increasing fire-resistance (flame retardants), materials for
conducting electrostatic charges, materials for screening electromagnetic radiation, organic or inorganic pigments, in particular coloured pigments.

[0042] The flame retardants are organic flame retardants, organophosphorus flame retardants, nitrogen-based flame retardants or intumescent flame retardants. Halogenated (brominated and chlorinated) flame retardants can likewise be used but are less preferred owing to their risk assessment. Examples of such halogenated flame retardants are polybrominated diphenyl ethers, for example DecabDE, tribromobisphenol A and HB1C1D (hexabromocyclododecane).

[0043] The nitrogen-based flame retardants are melamines and ureas.

[0044] The organophosphorus flame retardants are typically aromatic and alkyl esters of phosphoric acid, TCEP (trichloroethyl phosphate), TCPP (trichloroethyl phosphor), TDPP (tridichloroethyl phosphor) triphenyl phosphate, triethyl phosphate (tri(2-ethylhexyl)phosphate) are preferably used.

[0045] The inorganic flame retardants are typically hydroxides such as aluminium hydroxide and magnesium hydroxide, borates such as zinc borate, ammonium compounds such as ammonium sulphate, red phosphorus, antimony oxides such as antimony trioxide and antimony pentoxide or vermiculites.

[0046] Anti-static and electromagnetic screening effects can be achieved by using means for increasing electrical conductivity.

[0047] Anti-static agents are usually particles which are electrically conductive. Suitable materials are electrically conductive carbons such as carbon black, graphite and carbon nanotubes, conductive plastics or fibres consisting of metal or metal constituents.

[0048] Materials for screening electromagnetic radiation are usually electrically conductive materials. These can be made up of the above-mentioned materials in the form of particles or fibres.

[0049] The inorganic or organic pigments are particle-like materials, in particular pigments which are also used in dyes.

[0050] The necessary application quantity of the mineral coating depends on the desired use and the textile fabric or base nonwoven used. A homogenous and pore-free surface is to be aimed for.

[0051] The application quantity of the mineral coating material is at least 25% by weight, preferably 30-90% by weight, particularly preferably 40-80% by weight, in each case in relation to the total weight of the dried coated textile fabric, with the latter preferably being a nonwoven.

[0052] The mineral coating at least partially penetrates the textile fabric or the nonwoven. In a particularly preferred embodiment of the invention, the textile fabric which is provided with the mineral coating can still be rolled, that is, can be processed or stored in the form of rolls.

[0053] In a preferred embodiment, the mineral coating is configured in such a manner that the textile fabric is only coated on the side which faces away from the wood material support, that is, essentially on one side. The mineral coating penetrates the textile fabric at least partially, preferably completely, but does not form a complete, flat and completely covering coating, so that at least parts of the textile fabric are still in direct contact with the adhesive layer.

[0054] The mineral-coated textile fabric, in particular the mineral-coated textile nonwoven, is fixed or laminated onto the wood material support with the aid of an adhesive and adhesively bonded. To this end, suitable adhesives are first applied to the surface of the wood material support by known methods. Preferred methods are rolling, spraying or doctoring methods.

[0055] Suitable adhesives are materials which have a sufficient adhesive effect with respect to both the surface of the wood material support and the mineral-coated textile fabric. Construction adhesives, in particular tile adhesive, wall adhesive or similar materials are preferably suitable for this. These usually consist predominantly of mortar, plaster, cement, sand and/or chalk constituents. These adhesives can furthermore contain known additives for controlling the viscosity and binding behaviour.

[0056] The thickness of the adhesive layer applied in this manner in the composite material according to the invention is at least 0.5 mm, preferably 1-5 mm, particularly preferably 1.5-3 mm.

[0057] In addition to the application of an adhesive to the wood material support, adhesive films can also be used. Films which produce their adhesive effect directly when compressed can be used. Additionally, the use of hot-melt adhesive films is also possible. In this case the adhesive effect takes place thermoplastically on compression with the action of heat. When adhesive films are used, the thickness of the adhesive layer can be selected to be much smaller compared to the above-mentioned construction adhesives, with the thickness being no less than a minimum of 10 μm, preferably 20 μm. The maximum thickness of the adhesive films can be up to several millimetres. The use of very thick polymer films, what are known as polymer plates, is also possible.

[0058] The adhesive layer can also contain functional materials as additives, in particular those additives which result in an increase in fire-resistance or in improvement in electromagnetic screening. In order to increase electromagnetic screening, flat fabrics which can be applied together with the adhesive layer to the surface of the wood material support (for example aluminium foil), or as a part of the latter are also suitable.

[0059] In addition to the composite material, a further subject of the present invention is a method for producing the composite material, comprising the measures:

[0060] a) supplying a wood material support,
[0061] b) applying at least one adhesive layer to one of the surfaces of the wood material support,
[0062] c) applying the textile fabric to the adhesive layer formed according to b), with the textile fabric having at least one mineral coating,
[0063] d) laminating the structure obtained according to step c) with application of pressure and where necessary heat,
[0064] e) drying and finishing.

[0065] Insofar as the adhesive layer is to contain functional materials as additives, these can be mixed previously with the adhesive or else introduced during or after step b).

[0066] Instead of supplying a prefabricated wood material support, the wood material support can also be formed online.

[0067] If the adhesive is supplied as a film, it can be supplied separately, that is, the adhesive film does not necessarily have to be applied to the surface of the wood material support.

[0068] In a variant of the method, the adhesive layer can also be applied to the textile fabric which is provided with the mineral coating.

[0069] In addition to the composite material and the production method, the use of the composite material according
to the invention for interior finishing of buildings is also a further subject of the present invention.

[0070] The composite material according to the invention can be used in interior finishing in construction/wood frame construction for residential buildings, buildings close to residential areas and other buildings as a substitute for conventional wood/plasterboard systems.

[0071] The product according to the invention provides a surface for final decoration, improves fire-inhibiting properties, reduces weight and eliminates additional assembly costs compared to conventional mineral boards.

[0072] The seams of the individual board boundaries can be covered manually with suitable filler material as is customary with plasterboards. The mineral-coated textile surface can be dyed and can thus contribute to final decoration.

1. **A composite material, comprising:**
 a) at least one wood material support,
 b) at least one textile fabric which is applied to at least one of the two sides of the wood material support, characterised in that the textile fabric has at least one mineral coating, and an adhesive layer is present between the wood material support and the textile fabric.

2. **The composite material according to claim 1, characterised in that the coating and/or the adhesive layer contains further functional materials.**

3. **The composite material according to claim 1, characterised in that the wood material base support is wood materials, preferably boards, with it being possible for these to have additional wood material structures such as frames, grids or three-dimensional reinforcement structures.**

4. **The composite material according to claim 1, characterised in that the wood material base support is plate- or thread-shaped wood materials which are produced by mixing the different wood particle shapes with natural and/or synthetic binders in the course of a hot pressing process.**

5. **The composite material according to claim 4, characterised in that the wood material is plywood or laminated wood, woodchip material, in particular chipboards and OSB (oriented strand boards), wood fibre material, in particular porous wood fibreboards, vapour-permeable wood fibreboards, hard (high-density) wood fibreboards (HDF) and medium-density wood fibreboards (MDF), and a material consisting of lignin and other wood constituents, which can be processed thermostatically.**

6. **The composite material according to claim 1, characterised in that the textile fabric is a woven, scrim, knitted fabric, mesh and/or nonwoven fabric, preferably a nonwoven fabric.**

7. **The composite material according to claim 1, characterised in that the textile fabric is made up of fibres consisting of synthetic polymers, ceramic fibres, mineral fibres or glass fibres, with these also comprising mixtures of the aforementioned fibres.**

8. **The composite material according to claim 7, characterised in that the textile fabric additionally contains cellulose or natural fibres.**

9. **The composite material according to claim 1, characterised in that the textile fabric is formed from mineral and/or ceramic fibres, preferably from aluminosilicate, ceramic, dolomite, wollastonite fibres, or from fibres of volcanites, preferably basalt, diabase and/or mafyolithic fibres, in particular basalt fibres.**

10. **The composite material according to claim 1, characterised in that the textile fabric is a mineral fibre nonwoven, preferably a nonwoven in which the average length of the mineral fibres is between 5 and 120 mm.**

11. **The composite material according to claim 10, characterised in that the average fibre diameter of the mineral fibres is between 5 and 30 µm, preferably between 8 and 24 µm, particularly preferably between 8 and 16 µm.**

12. **The composite material according to claim 10, characterised in that the weight per unit area of the textile fabric consisting of mineral fibres is between 15 and 500 g/m², preferably between 40 and 250 g/m², with this data referring to a surface fabric without a mineral coating.**

13. **The composite material according to claim 1, characterised in that the textile fabric is a glass fibre nonwoven, preferably a nonwoven in which the average length of the glass fibres is between 5 and 120 mm.**

14. **The composite material according to claim 13, characterised in that the average diameter of the glass fibres is between 5 and 30 µm, preferably between 8 and 24 µm, particularly preferably between 10 and 21 µm.**

15. **The composite material according to claim 13, characterised in that the average diameter of the glass fibres is between 0.1 and 5 µm.**

16. **The composite material according to claim 13, characterised in that the glass fibre nonwoven is built up in a multi-layer manner, and the different layers have different glass fibre diameters, defined in claim 14 or claims 14 and 15.**

17. **The composite material according to claim 14, characterised in that the textile fabric comprises glass fibres, preferably a glass fibre nonwoven, and the weight per unit area is between 15 and 500 g/m², preferably between 40 and 250 g/m², with this data referring to a surface fabric without a mineral coating.**

18. **The composite material according to claim 1, characterised in that the textile fabric comprises fibres consisting of synthetic polymers.**

19. **The composite material according to claim 18, characterised in that the textile fabric is a nonwoven, in particular a spunbonded nonwoven.**

20. **The composite material according to claim 19, characterised in that the nonwoven is a staple fibre nonwoven, the staple fibres of which have a length of from 1 to 100 mm, preferably from 2 to 50 mm, particularly preferably from 2 to 30 mm.**

21. **The composite material according to claim 1, characterised in that the mineral coating comprises plaster, lime, chalk and/or aluminium hydroxide.**

22. **The composite material according to claim 1, characterised in that the application quantity of the mineral coating is at least 25% by weight, preferably 30-90% by weight, particularly preferably 40-80% by weight, in each case in relation to the total weight of the dried coated textile fabric, with the latter preferably being a nonwoven.**

23. **The composite material according to claim 1, characterised in that the application quantity of the mineral coating is at least 25% by weight, preferably 30-90% by weight, particularly preferably 40-80% by weight, in each case in relation to the total weight of the dried coated textile fabric, with the latter preferably being a nonwoven.**

24. **The composite material according to claim 1, characterised in that the mineral coating at least partially penetrates the textile fabric.**

25. **The composite material according to claim 1, characterised in that the mineral coating is only applied to the side of the textile fabric which faces away from the wood material support.**
26. The composite material according to claim 25, characterised in that the mineral coating penetrates the textile fabric at least partially, preferably completely, but does not form a complete, flat and completely covering coating, so that at least parts of the textile fabric are still in direct contact with the adhesive layer.

27. The composite material according to claim 1, characterised in that the adhesive layer comprises construction adhesives, in particular tile adhesive or wall adhesive, which preferably contain mortar, plaster, cement, sand and/or chalk constituents.

28. The composite material according to claim 1 or 27, characterised in that the adhesive layer has a thickness of at least 0.5 mm, preferably 1-5 mm, particularly preferably 1.5-3 mm.

29. The composite material according to claim 1, characterised in that the adhesive layer comprises a film, preferably a hot-melt adhesive film.

30. A method for producing the composite material according to claim 1, comprising the measures:
 a) supplying a wood material support,
 b) applying at least one adhesive layer to one of the surfaces of the wood material support,
 c) applying the textile fabric to the adhesive layer formed according to b), with the textile fabric having at least one mineral coating,
 d) laminating the structure obtained according to step c) with application of pressure and where necessary heat,
 e) drying and finishing.

31. The method according to claim 30, characterised in that the adhesive layer contains functional materials as additives, with those having been mixed previously with the adhesive or else are introduced during or after step b).

32. The method according to claim 30, characterised in that the adhesive layer can also be applied to the textile fabric which is provided with the mineral coating, so that the application of the adhesive layer to one of the surfaces of the wood material support can be omitted entirely or at least in part.

33. The method according to claim 30, characterised in that, instead of supplying a prefabricated wood material support, the wood material support is formed online, preferably directly before applying the adhesive layer or the mineral-coated textile fabric which is provided with the adhesive layer.

34. Use of the composite material defined in claims 1 to 29 for interior finishing of buildings, preferably in construction or wood frame construction for residential buildings, buildings close to residential areas and other buildings.

* * * * *