094628 A2 |0V 00 000 OO

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 August 2008 (07.08.2008)

(10) International Publication Number

WO 2008/094628 A2

(51) International Patent Classification: Not classified
(21) International Application Number:
PCT/US2008/001265

(22) International Filing Date: 31 January 2008 (31.01.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/700,254 31 January 2007 (31.01.2007) US

(71) Applicant (for all designated States except US): EDGE

TECHNOLOGIES, INC. [US/US]; 3702 Pender Drive,
Fairfax, VA 22030 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): COOPER,
Nathaniel [US/US]; 7546 Kemper House Court, Man-
assas, VA 20111 (US). HODECKER, Steven [US/US];
4008 Rosemeade Drive, Fairfax, VA 22030 (US). YEA-
GER, Douglas [VA/US]; 12014 English Maple Lane,
Fairfax, VA 22030 (US).

(74)

(81)

(34)

Agents: MELSER, Allen et al.; Jacobson Holman, PLLC,
400 Seventh Street, N.W., Washington, District Of Colum-
bia 20004 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

(54) Title: CONTENT TRANSFORM PROXY

FIG.3

320

{ Request Processing

Modified
HTTP Respanse

Modgified
HTTP Response

Rosporsa e

300

\, 356a

Content Processing

CTP HOST 3¢

Griginal
HTTP Response
Server

\\/50

(57) Abstract: The Content Transform Proxy (CTP) service is an advanced Web proxy service for modifing incoming HTTP re-
quests having a server-side destination and/or outgoing HTTP responses. It is implemented by the CTP program, which resides on
@O ahost in a data communications network between an end user (the Web client) and a content server that the client is attempting to
& access. The HTTP request and/or an HTTP response is modified by making an HTTP request on the client side using a client web
browser, processing the HTTP request on the server side using outgoing proxy rules, passing the processed HI'TP transaction to the
server-side destination, returning the results of the processed HT'TP request from the server-side destination, processing the HTTP
response on the server side using incoming proxy rules, and returning the processed HT'TP response to the client web browser on

the client side.

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

CONTENT TRANSFORM PROXY

BACKGROUND OF THE INVENTION

1. Field of the Invention
The présent invention relates to Web proxy services. More specifically, the invention
relates to an advanced Web proxy service capable of modifying incoming and outgoing Web

transactions.

2. Related Art

Various Web proxy services are currently available commercially. Examples
include WebCleaner, Winproxy6, Webwasher, Portlet Bridge, and Squid Proxy. Webcleaner
is a “C”-based, open source filtering HTTP proxy-HTML parser and filter. Winproxy6 is an
Internet security proxy that provides anti-spyware protection, a firewall, antivirus protection,
and Web filtering. Webwasher is a secure content management suite proxy that offers
security solutions for individual threats (for example, worms and viruses in spam emails,
malware on active Web pages, spyware, and ransom-ware), and that is hardware or software
based. PortletBridge is a Web clipping proxy portlet for deployment within a Web portal. It
is used to rewrite content from a downstream Website. The PortletBridge portlet makes
downstream HTTP calls and uses CyberNeko and XSLT to do the Web clipping. It must
operate in a portal environment and cannot be deployed remotely. Squid Proxy is an open
source Web proxy cache server software used to proxy and cache HTTP, HTTPS, FTP, and
other URLs.

Although the commercially-available Web proxy services provide a variety of
features, none of the above-described Web proxy services employ an XML-based rules and
scenario scripting language, which would enable building and activating rules in real time.
They also do not enable operator role and user, privilege-based rule visibility selection or
provide a broad range of configurable scenario and/or rule-based activities, full bi-direction
content filtering and/or blocking, full bi-directional content insertion, native bi-directional
content routing and/or redirecting, full bi-directional content modification, or replacement

and rule-based substitution of multiple types of Internet objects.

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

Network Web applications tend to be complicated and do not easily fit into a
Web portal environment. None of the commercially-available Web proxy services is capable
of executing content modification so as to enable complicated network Web applications to
work through the portal.

The URLSs that are contained in proxied pages must be encoded or “wrapped.”
All references (anchor tags, images, JavaScript code references, etc.) need to be modiﬁed, SO
that when the client requests the specific content, the reference is translated on the proxy
server and the actual path is resolved. For traditional proxies, the reference on the proxy
server is supported as part- of the protocol specification. Other solutions have utilized
JavaScript to dynamically rewrite a page on the client side. Alternatively, the information is
embedded in the QUERY_STRING (the part of a URL that contains data to be passed to CGI
programs) or passed in cookies that contain the host and port for the content. All of these
solutions have significant limitations in accomplishing the desired function
(hiding/retrievihg/modifying HTTP responses without modifying the browser configuration).

It is to the solution of these and other problems that the present invention is

directed.

SUMMARY OF THE INVENTION

It is éccordingly a primary object of the present invention to provide an advanced
Web proxy service capable of modifying incoming and outgoing Web transactions.

It is another object of the present invention to provide a proxy server and router application
that can execute content modification to enable complex Web applications in addition to
simple Web content.

It is still another object of the present invention to provide a proxy server and router
application that transparently resides in the data communications network between the user
and source systems. |

It is another object of the present invention to provide a proxy server and router
application having a modular design path to ensure its security and to deliver specific
capabilities required by users.

It is another object of the present invention to provide a proxy server and router

application in which scenarios and/or rules can be cascaded as triggers or cascaded to develop

complex scenarios.

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

It is another object of the present invention to provide a proxy server and router
application that is designed to ensure stealthy operation, with no apparent signature to enable
the user to detect its operation.

It is another object of the present invention to provide a proxy server and router
application that is designed for minimal CPU usage and memory footprint.

It is another object of the present invention to provide a proxy server and router
application that is built for speed and scalability.

It is another object of the present invention to provide a proxy server and router

application having easily configured, repeatable rules.

It is another object of the present invention to provide a proxy server and router
application that can dynamically remove, replace, redirect and alter any targeted Web page or
partial Web page, with or without user knowledge.

It is another object of the present invention to provide a proxy server and router
application that can log all Web pages viewed by a user, with or without the user’s
knowledge. From this log, one can directly reproduce that user’s browsing experience.

It is another object of the present invention to provide a proxy server and router
application that can remove, block, or dynamically interrogate information in the data stream,
thereby altering the view and/or protecting the user.

It is another object of the present invention to provide a proxy server and router
application that can route user traffic to specific Websites, content, and é)ther sources with or
without knowledge of the user.

These and other objects are achieved by an advanced Web proxy service, referred to
herein as the Content Transform Proxy (CTP) service, the basic function of which is to
modify incoming and/or outgoing Web transactions, more specifically, HTTP requests and/or
HTTP responses. The CTP service is implemented by the CTP program, which resides on a
host on some location in the data communications network between the end user (the Web
client) and the content server that the client is attempting to access.

The method of modifying an HTTP request and/or an HTTP response includes the
steps of making an HTTP request on the client side using a client web browser, the HTTP
request having a server-side destination, processing the HTTP request on the server side
using outgoing proxy rules to determine whether to modify the HTTP request, and passing on

the processed HTTP transaction to the server-side destination, returning the results of the

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

processed HTTP request from the server-side destination, processing the HTTP response on
the server side using incoming proxy rules to determine whether to modify the HTTP
response, and returning the processed HTTP response to the client web browser on the client
side.

The method further includes the steps of setting up a sequence of filtering streams,
reading one of the filtering streams, building a window of operation containing possible text
of interest when one of the streams is read, wherein at least one regular expression is used to
define a corresponding at least one rule that in turn defines the text of interest and the actions
required on the text of interest; creating a buffer by comparing the possible text of interest
with text bounding the possible text of interest, determining whether the buffer matches a
predefined condition, and when the buffer matches the predefined condition, handing off the
buffer to another entity responsible for running the at least one regular expression.

A system for modifying the Web transactions includes a host on the server side and a
Web proxy transform means residing on the host for modifying a Web transaction before
and/or after the Web transaction passes through the host.

In one aspect of the invention, the system further includes content transform proxy
server means for containing data storage for the host, JSP server means for carrying out
primary transaction processing in the host, and content transform proxy Web server means
for initially receiving an incoming request from the client side.

The content transform proxy server means includes management means for managing
a user session with the Web transaction; and the JSP server means includes means for reading
and parsing XML formatted proxy rules, determining what rules should be run, and retrieving
and/or modifying HTTP content coming from the client side.

The JSP server means also includes transaction pfocessor means for managing the
processing stages in the transaction processing, wherein the transaction processor means
includes stream buffering means for processing multiple sequences of regular expressions in
the HTTP content, transaction processing means for prompting actions on the request in
response to triggers, for modifying the request based on rules, and for modifying the response
based on rules, authentication processing means for carrying out authentication processing
required as part of any aspect of a trahsaction processing request, content processing, and/or
output processing, as well as URL wrapping means for encoding URLs contained in the

proxied pages.

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

In another aspect of the invention, the Web proxy transform means has a plurality of
system components and including server means for containing the data storage of all system
components in the Web proxy server, servlet engine means for processing primary
transactions in the Web proxy server, and request-receiving means for initially receiving an
incoming HTTP request. The request-receiving means is a Web server separate from the
servlet engine means; and the servlet engine means includes an HTTP server component, and
the request-receiving means is the HTTP server component of the servlet engine means.

Other objects, features and advantages of the present invention will be apparent to
those skilled in the art upon a reading of this specification including the accompanying

drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is better understood by reading the following Detailed Description of
the Preferred Embodiments with reference to the accompanying drawing figures, in which
like reference numerals refer to like elements throughout, and in which:

FIGURE 1 is a functional diagram of the CTP service in accordance with the present
invention.

FIGURE 2 is a diagram of the detailed architecture of the different CTP components,
as well as the Web client and data store.

FIGURE 3 is a diagram showing the different stages or steps of HTTP transaction
processing carried out by the CTP program resident in the CTP server, and the different
HTTP components which are acted on.

FIGURE 3A is a diagram showing the generic structure of the HTTP data of the
components of the Web proxy transaction that is carried out in accordance with the present
invention.

FIGURE 4 is a flow diagram of the authentication process provided by the CTP.

FIGURE 5 is a diagram illustrating the relationship between the hardware and
program components and between the program components and the functionalities of CTP

service.

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In describing preferred embodiments of the present invention illustrated in the
drawings, specific terminology is employed for the sake of clarity. However, the invention is
not intended to be limited to the specific terminology so selected, and it is to-be understood
that each specific element includes all technical equivalents that operate in a similar manner
to accomplish a similar purpose.

The present invéntion'is described below with reference to flowchart illustrations of
methods, apparatus (systems), and computer program products according to an embodiment
of the invention. It will be understood that each block of the flowchart illustrations, and
combinations of blocks in the flowchart illustrations, can be implemented by computer
program instructions. These computer program instructions may be provided to a processor
of a general purpose computer, special purpose computer; or other programmable data
processing apparatus to produce a machine, such that the instructions, which execute via the
processor of the computer or other programmable data processing apparatus, create means for
implementing the functions specified in the flowchart block or blocks.

These computer program instructions may also be stored in a computer-readable
memory that can direct a computer or other programmable data processing apparatus to
function in a particular manner, such that the instructions stored in the computer-readable
memory produce an article of manufacture including instruction means which implement the
function specified in the flowchart block or blocks.

The computer prbgram instructions may also be loaded onto a computer or other
programmable data processing apparatus to cause a series of operational steps to be
performed on the computer or other programmable apparatus to produce a computer
implemented process such that the instructions which execute on the computer or other
programmable apparatus provide steps for implementing the functions specified in the
flowchart block or blocks. |

The present invention is pfeferably practiced within a Web client/server programming
environment that uses commonly used networking protocols (TCP/IP, HTTP). As is known
by those skilled in this art, client/server is a model for a relationship between two computer
programs in which one program, the client, makes a service request from another program,
the server, which fulfills the request. Although the client/server model can be used by

programs within a single computer, it is more commonly used in a network where computing

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

functions and data can more efficiently be distributed among many client and server
programs at different network locations.

As is known to those with skill in this art, client/server environments may include
public networks, such as the Internet, and private networks often referred to as “Intranets”

"%

and “Extranets.” The term “Internet” shall incorporate the terms “Intranet” and “Extranet”
and any references to accessing the Internet shall be understood to mean accessing an Intranet
and/or and Extranet, as well. The term ‘“computer network™ shall incorporate publicly
accessible computer networks and private computer networks.
- The following acronyms and definitions are used herein:

HTTP: Hypertext Transfer Protocol — a specification of a protocol commonly used
today. This protocol was originally created to facilitate the transfer of HTML pages.

HTML: Hypertext Markup Language — a standard used for specifying the structure of a
visual page using text-based markup language. Most all of the pages viewed on the Internet

using a Web browser are written as HTML documents.

Proxy Server: A computer server or program which provides clients access to external

- resources in lieu of a direct connection to those resources.

Rules: XML file inputs which technically define an action for the proxy.

Scenarios: desired behaviors (for example, change all instances of the string ‘cat’ to ‘dog’
in Web traffic from a specific site), which are implemented by rules.

XML: ‘Extensible Markup Language — a generic markup language specification. This
standard provides a method of encoding structured information. '

The present invention is directed to an advanced Web proxy service, referred to herein
as the Content Transform Proxy (CTP) service, the basic function of which is to modify
incoming and outgoing Web transactions. The CTP service is implemented by the CTP
program, which resides on a host on some location in the data communications network
between the end user (the Web client) and the content server that the client is attempting to
access.

Although the basic function of the CTP service is to modify incoming and outgoing
Web transactions, the CTP service has a variety of features and capabilities. These features
and capabilities include: (1) a transparent proxy (does not require browser reconfiguration or
special software to be installed in the client machine); (2) an HTTP/HTTPS proxy (requires

browser configuration or modified network routing); (3) an external data Application

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

Program Interface (link to external applications); (4) a remote management API bi-directional
data sniffer (which includes (a) a browser-based graphical user interface (GUI), (b)
HTTP/HTTPS session and object data storage/persistence, (c) hierarchical breakout of all
HTTP/HTTPS session and message components, and (d) browser-based visualization of
session components to session objects (images, cookies etc.)); (5) a browser-based operator
console GUI; (6) a browser-based administration console; (7) system username and password
access control; (8) XML-based rule and scenario scripting language (no software developer
actions required — enables building and activating rules in real time); (9) operator role and
user, privilege-based rule visibility selection; (10) configurable scenario and/or rule-based
activities (including: (a) ability to create scenarios/activities from an XML rule base; (b)
ability to create parameterized scenarios; (c) ability to assign priority to scenarios; (d) ability
to trigger rules on TCP/IP; (¢) HTTP and out-of-band protocol header data and attributes; (f)
ability to trigger rules on HTTP message body data and attributes; (g) ability to trigger rules
on HTTP attachment data and attributes; (h) ability to trigger rules on external application
generated events via API; (i) ability to apply multilevel rule and scenario action triggers; (j)
ability to cascade rules; (k) ability to run parallel rules; (1) scenario scheduling (start time and
duration); (m) ability to save and export rules and scenarios; and (n) use of pre-built
operating rules and scenarios to trigger event notification)); (11) bi-directional content
filtering/blocking of bi-directional content insertion; (12) bi-directional content
routing/redirecting (ability‘ to route HTTP/HTTPS/out-of-band protocol traffic); (13) bi-
directional content modification; (14) bi-directional content mirroring (save to external file,
server, or repository); (14) multi-type internet object filtering (for objects including
HTTP/HTTPS, DHTML, text, JavaScript, object code, Web services, XML, audio and video,
images, links, flash, binary); (15) multi-type internet object substitution (for objects including
HTTP/HTTPS, DHTML, text, JavaScript, object code, Web sérvices, XML, audio and video,
images, links, flash, binary); (16) multi-type internet object modification (for objects
including HTTP/HTTPS, DHTML, text, JavaScript, object code, Web services, XML, audio
and video, images, links, flash, binary); (17) high speed, low transaction overhead; (18) a
Java-based software appliance; and (19) compatibility with all common operating systems

(including Windows XP and 2000, LINUX, Sun Solaris/Unix, VMWARE, HP-UX, IRIX).

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

FIGURE 1 illustrates a very simple Web transaction in which the CTP service is used
to modify content that is transferred to and from the Internet. The steps in the transaction are
as follows:

1) A user 10 opens up a Web browser 20 to a particular content site, and in a search box
22, enters the string “blu” (maybe a typo) for searching.

2) The HTTP transaction is processed through the CTP host 30 (shown also in FIGURE
3). The CTP program (which is resident in the CTP host 30) is loaded with proxy rules,
which dictate what changes (if any) the CTP service should make on transactions. In this
case, there is a rule that states for outgoing requests: “change any instances of the string ‘blu’
to the string ‘blue’.” The proxy rules exist in memory in the CTP host 30 (under Tomcat).
Typically, the rules are loaded into the CTP host 30 as XML files, as XML is the only
external format for the files. It is also possible to use a graphical user interface (“GUI”) to
create and/or edit the rules, but the rules can still be exported as XML Files.

3) The CTP service passes this modified request on to its original destination.

4) The search request for “blue” is passed on through the Internet 40 to the content
server 50 that the end user 10 has selected.

5) The content server 50 returns the results for the search of “blue.” In this case, the
results contain the string “sea.”

6) The resulting message containing the string “sea” is passed on through the Internet 40
back to the CTP host 30.

7 The resulting message again traverses the CTP host 30. Again, the CTP service
examines the transaction against its rule-set. In this case, the rule for incoming responses:
“change any instances of the string ‘sea’ to the string ‘see’ modifies the return transaction so
the result now has the string ‘see’.”

8) The response with the string “see” is then returned to the user’s browser ‘20.

While this example illustrates a trivial Web transaction, the CTP service can be
configured to modify any aspect of the Web content, either on the HTTP Request, or on the
HTTP Response, for some or all transactions. For example, the CTP service could be
configured to change “blu” to “blue” for just one specific client address. Typical CTP
transactions can thus affect the HTTP header, the HTTP content, session cookies, and POST

data. Additionally, the CTP service provides a robust set of syntax and rules that allows

10

WO 2008/094628 PCT/US2008/001265

administrators to create advanced proxy rules. This syntax and the CTP service’s novel four-
stage transaction process are described in greater detail hereinbelow.

Because the CTP service can affect every component of a Web transaction, it is not
possible to enumerate all of its potential functions. Table 1 lists different Internet Objects on

which the CTP service can act (that is, that it can search, alter, and/or replace).

TABLE 1

Multi-type Internet Object Replacement/Substitution
HTTP/HTTPS (SSL) Streaming media (e.g., Audio and Video)
DHTML, HTML Images
Text Links
JavaScript Flash
Object Code Binary
Web Services Applets
XML (Transforms) , Web services (.net, SOAP)
ActiveX components ' Native TCP/IP

The CTP service can dynamically and seamlessly inject data of any type (including
streaming media, images; text, and links) into existing Web content in real time at any time.

Table 2 provides examples of how modification of the items in Table 1 would exist

~ operationally.

-10 -

10

WO 2008/094628

PCT/US2008/001265

TABLE 2

Action

Description

Swap image link

Using the CTP service's ab.i|ity to find/replace content, -
the CTP service can modify the content of an HTML
image link (the tag) and replace an identified

image with another image link

Redirect a link to another site

Again, using the content processing rules, the CTP
service can search for a specific link in a page (the <A
HREF> tag) and replace the content of the tag to
another site. Alternatively, the CTP service can just
redirect a request to a given site, to another completely

different site.

Submit session authentication cookie

Using its system of managing authentications, the CTP
system can keep track of a session cookie to a
particular site, and submit cookie to a site on behalf of a
client. This action involves many aspects of the CTP
service: modifying the HTTP header, using the

authentication resolving technology, editing content, etc.

Change JavaScript URL actions

The CTP service can, as part of the content
management, edit JavaScript before it is returned back

to the client.

Wrapping Links

in order for any URL reference to be successfully
resolved in a proxy environment, it must be modified or
“wrapped” to function correctly. The CTP service
provides a method of wrapbing and obfuscating these
wrapped links.

The CTP service can select and target Web content delivery to users based on IP
address, geography, credentials (credentials are stored for each user, for each application),
and any variable within the data stream.
(including statistics), regardless of browser, cookie, or security settings. Examples of user
statistics collectable by the CTP service include, but are not limited to, products viewed,

frequency of events, time spent by page or activity, IP address of the user’s machine, cookies

and server tags, and other relevant server data.

With reference to FIGURE 5, in terms of its architecture, the CTP program is a three-
tiered Web proxy server that modifies Web transactions that pass through the host 30 on

.11 -

It can also collect valuable user and usage data

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

which it resides. The three tiers, or processes, are a CTP Server 210, a JSP Server 220, and a
CTP Web Server 230. Within these three tiers, or processes, the CTP service also has four
functional components: a CTP Retrieval Service 222, a Transaction Processors 224, a User
Service 212, and a Session Service 214. . ,

FIGURE 2 illustrates the architecture of the different CTP program processes 210,
220, and 230, as well as the Web client 240 and the relational database 250.

The CTP Server 210 contains the data storage of all system components in the CTP
host 30. The User Service 212 and the Session Service 214 functional components are
contained in the CTP server 210, and are responsible for managing the user session within the
CTP transactions (“user session” being used herein to mean an encounter between a user and
an application or with the computer in general, one user session being the time between
starting the application and quitting).

The Servlet Engine '220‘(also referred to as a JSP server) is the jsp container for the
primary transaction processing in the CTP host 30. An example of a specific JSP Server that
can be used in implementing the invention is Tomcat, an open-source server developed by the
Apache Software Foundation. Server-side Java code is run by a Java Servlet API (for
example, Sun’s Java Servlet API). The communication between the HTTP Server and the
Servlet Engine is implemented by a protocol such as (in the case of Tomcat) the Apache
JServ Protocol (“AJP”).

The JSP Server container holds the CTP Retrieval Service 222, which is the primary
retrieval component of the CTP service. The CTP Retrieval Service is the “heart” of the CTP
service, in the sense that it is responsible for reading and parsing the XML formatted proxy
rules, determining what rules should be run, and retrieving and/or modifying the external
content (that is, the content from the destination).

The JSP Server container also holds the CTP Transactidn Processors 224, which
manage the processing stages in the transaction processing, as discussed in greater detail
hereinafter.

The Web Server (Apache) 230 is the front end of the CTP service, which initially
receives the incoming request. Apache is an example of an open source Web Server that can
be used in the CTP program with the Tomcat servlet engine. The Web Server is connected to

the Tomcat jsp container by the connector “mod_jk.” It is also possible to provide a setting

-12 -

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

in the CTP program to work without using the Web Server, and to use the HTTP server
component of the Servlet Engine instead.

The CTP service, and more specifically, the CTP Transaction Processors 224, have a
number of functionalities not provided by the commercially-available Web proxies, including
a stream buffering functionality 224a, a transaction processing functionality 224b, an

authentication processing functionality 224c, and a URL wrapping functionality 224d.

Stream Buffering 224a

The CTP service employs a novel data windowing method throughout the request
processing stage 320, the content processing stage 330, and the output processing stage 340
of the transaction processing component, to enable advanced processing of the Web stream
that passes through the proxy.

Regular expressions are filter patterns that are composed of text and punctuation, and
that define a pattern that one is looking for (“text of interest”). Regular expressions can use
wildcard characters, etc. As an example, the regular expression token ‘*’ is a wildcard
character, so the regular expression “S*day” would match “Saturday” and “Sunday”, but not
“Tuesday.” In the context of the present invention, regular expressions are an available tool
that can be used for specifying simple or complicated pattern matches; and “text of interest”
is the specific text that is found that matches a regular expression. Also in the context of the
present invention, the rules that define the behavior of the CTP program have many parts.
Often, these rules have a “findValue” component that specifies what pattern to look for. In
the “findValue” and other components, the regular expression syntax is used to define the
pattern. Thus, the regular expressions are used to define rules, which in turn define the text
of interest and the actions required on this text.

Since the CTP service allows regular expressions to be used when creating the search
rules, an efficient method of examining the stream is necessary. It is not efficient to wait to
cache the entire HTTP response/request before sending the information out to the proper
destination. Thus, a buffer window is employed, which takes into account the search terms
for the task (if any search is required).

If regular expressions are employed to parse HTTP transactions, performance can be
an issue when processing large HTML/Text files. Regular expressions can be fairly complex

algorithmically, which significantly slows the transaction. Additionally, most of the target

-13 -

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

text constitutes a small subset of text within a larger file. These constraints drove the solution
to CTP’s novel approach to limiting the scope of the text processed — the use of a smart
buffer window.

In order to efficiently process multiple sequences of regular expressions in the HTTP
content, a sequence of filtering streams is set up. When each stream is read, a window of
operation is built containing possible text of interest (i.e., a single HTML tag). The buffer is
created by a byte-by-byte comparison of the possible text of interest with some bounding
text. More speciﬁcaily, a start tag and end tag are specified in most data manipulation rules.
The buffer is created by doing the comparison first on the ‘start’ tag, and then on the ‘end’
tag, which results in a temporary buffer. This buffer is then used for the transaction, which
makes the processing faster because the CTP service is working on a smaller window of data,
rather than the entire stream.

When the buffer matches a predefined condition, the buffer is then handed off to
another entity responsible for running the regular expression. This buffering method
significantly increases the performance of the CTP sefvice over other proxies, which
typically examine the entire stream as a whole, while still allowing for complex regular

expression use to accomplish find/replace tasks within the content stream.

CTP Transaction Processing 224))

The CTP service has a novel Web transaction processing model 224b in which, as
shown in FIGURE 3, a Web proxy transaction 300 is broken down in the CTP host 30 into
four processing stages 310, 320, 330, and 340, along with the four different states 350, 352,
354, and 356 through which the HTTP transaction passes.

The four states of the Web proxy transaction 300 are:

1) Initial request 350 from the Web client 10 to the CTP host 30.

2) Modified requests 352a, 352b, and 352c from the CTP host 30 to the Web server
(source) 50 (stage 310 produces a modified request 352a, which can be acted on by stage 320
to produce a further modified request 352b, which can be acted on by stage 330 to produce a
still further modified request 352c).

3) Response 354 from the Web server 50 to the CTP host 30.

-14 -

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

4) Modified responses 356a and 356b from the CTP host 30 to the client 10 (stage 330
produces a modified response 356a, which can be acted on by stage 340 to produce a further
modified response 356b).

FIGURE 3A is a diagram showing the generic structure of the HTTP data 360 of the
four components 350, 352, 354, and 356 of the Web proxy transaction 300. The HTTP data
360 includes an address line 362 (the TCP/IP address of the source and destination), an HTTP
Header 364 (which includes meta-data 364a about the HTTP transaction, including such
items as size of the data, type of the data, and any cookies that are present), and an HTTP
Body 366 (the actual payload of the HTTP transaction). In most Web transactions, the HTTP
body 366 contains the text of the request or the text of the HTML Web page that is requested.
In each of the four processing stages 310, 320, 330, and 340, any of the parts 362, 364, and
366 of the HTTP data 360 can be analyzed and modified.

The initial step in the transaction processing model 224b is the novel pre-processing
stage 31‘0, which occurs before any extensive analysis occurs. The pre-processing stage 310
is optimized for performance, so that the entire HTTP transaction does not have to be
examined (and thus slow down the transaction). Triggers are specified via XML to prompt
certain behavior. These triggers have certain criteria, which if met, will prompt an action on
the HTTP transaction. One important action that can take place during the pre-processing
stage 310 is the assignment of a CTP session to the HTTP transaction. CTP sessions are used
to mark the HTTP transaction for certain behavior.

After the pre-processing stage 310 is completed, fhe CTP software performs the
request processing stage 320. The XML rules that provide the logic for the CTP software are
divided into different rule types (i.e., Request rules, Content rules, and Output rules) that
correspond to these different phases. During the request processing stage 320, all request
rules are examined, and compared to the input HTTP transaction.

The request processing stage 320 occurs when the initial HTTP request 350 is
processed through the CTP service, and before the request is sent on to the destination.
During the request processing stage 320, any aspect of the HTTP request 350 (the address
line, the request header, and/or the request body) can be modified. Rules can be enacted
based on certain conditions specified in the XML. For example, a rule can be written to
change all requests to a certain destination. After the request processing stage 320, the

modified HTTP request 352 is sent out.

-15-

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

The content processing stage 330 operates both before and after the HTTP transaction
is sent out to the Web server 50. However, most of the “user” rules (that is, rules created by
users, which can be rules related to content, request, and/or output, and which are
differentiated from “system” rules, which are always in place), which are executed at the
content processing stage 330, occur after the original HTTP response 354 is received from
the Web server 50 into the CTP host 30. Any Content rules that are defined for this
transaction are evaluated and executed. Content processing can modify any part of the HTTP
response 354 as it first is received by the CTP host 30. Content processing includes
modifying the address line, modifying the response header (for example, changing cookie
values returned), and modifying the response body (for example, changing the content of the
HTML page that is returned).

The output processing stage 340 is the final stage of the transaction processing 224b,
and occurs just before the response is returned from the CTP to the Web client. The output
processing stage 340 is entered after any content processing occurs in the content processing
stage 330. As in the other stages of processing, any Output rules specified are evaluated and
executed during the content processing stage 330. Also, any aspect of the response can be
examined and modified during the content processing stage 330. One example, of response
modification is use of an Output Process to ‘catch’ response codes from the Web transaction,
and act appropriately. For example, in the HTTP protocol, there are numeric response codes
to a request. The numeric code 200 is a “normal” response. However, 500-level responses
are for errors. So, as an example, an Output Process can be used to look for 500 responses,

and proceed with an action.

CTP Authentication Processing 224c

FIGURE 4 illustrates the different components and stages of CTP authentication
processing 400 during a Single Sign On .(“SSO”) transaction. Authentication processing
occurs when a CTP component (that is, any aspect of the HTTP transaction processing —
including the request processing 320, content processing 330, or output processing 340) is
accessed via a Web-c’onnection, and an authentication is required as part of that application
(for example proxying an application that requires a form-based, user/password

authentication before retrieving the content). That is, if any of the rules that govern any

-16 -

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

aspect of the transaction processing request, content, or output processing refer to an
authentication variable, then the authentication processing occurs.

In typical Web-based applications, some form of authentication is required, typically
when the user first visits the application. Upon successful login, an authentication token is
created on the application server. The authentication token is also indexed by a session token
on the client. In most applications, this indexing is accomplished by one or more session
cookies, which are stored on the client browéer.

During subsequent Web transactions for this session, the CTP must continue to pass
the correct session tokens in the HTTP transaction; otherwise, individual page requests will
fail. The CTP must identify the user session, and manage the authentication tokens to the
request.

The CTP authentication processing 400 includes a Web browser 22, the CTP process
410, a login proxy service (“LPS”) 420, a resolver 430, resolver definitions 432, an
authentication service 440, an authentication token (“AuthToken”) 442, an authentication
definition (“AuthDef”) 444, and a database 250.

Authentication processing 400 is always initiated by a user connecting to a Web
application through the CTP server. The client is always a Web browser 22. The CTP
process 410 is begun when the client makes its first request to this application.

The CTP process 410 is a transient component that is created for a specific piece of
content. A unique request initiates a CTP process 410, which is governed by the XML-based
ruleset that controls the processing done on this transaction. If there are SSO rules associated
with the CTP process 410, then the CTP authentication processing 400 occurs.

The Login Proxy Service (LPS) 420 is a sub-component of the CTP. Its purpose is to
control the authentication process. ,

The resolver 430 handles obtaining the credentials for a specific authentication, as
well as submitting these credentials to the external authentication service (such as a spéciﬁc
URL of the application). Additionally, the resolver 430 handles both success and failure
conditions.

The resolver 430 is defined by a specific set of XML rules (referred to herein as the
resolver definitions 432). These resolver definitions 432 are loaded in on startup of the CTP
process (or by command line load), and cached in the CTP memory (which is contained in

the CTP program ruhning on the JSP Server 220, which resides on the CTP host machine).

-17-

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

These resolver definitions 432 are uniquely named, and contain all of the information needed
by the resolver 430 to determine a successful or unsuccessful login.

The authentication service component 440 handles authentication within the CTP, as
it relates the user to the individual component that is proxied. The CTP must manage the
multiple authentication tokens each user may have active during any given CTP session. The
authentication service is the system API that allows other CTP components to access
authentication information.

The Authentication Token 442 is created when a CTP process recognizes that an SSO
is required. Since each Web application has unique requirements and naming, unique
authentication tokens 442 are required. Applications vary in the number and name of
variables needed in the session for authentication. The CTP therefore creates unique
AuthTokens 442 for each proxied Web application.

The Authentication Definition (AuthDef) 444 is required for each application SSO.
The AuthDef 444 specifies the variables needed for the authentication transactions, as well as
the information about each variable, such as lifetime, default values, etc.

The database 250 represents the datastore in the CTP application. The database 250
can either be an in-memory database, or a traditional relational database system (depending
upon how the CTP is setup). For authentication processing, the database 250 stores the
authentication credentials, and is accessed via the CTP Authentication Service 440.

A typical CTP authentication transaction 400 includes the following steps:

1) The Web client 10 requests content from a Web application, which is proxied through
the CTP service. The Web application must match a set of definitions in the CTP program;
otherwise it will simply be forwarded on, unmanaged.

2) A CTP process 410 is created for this request, and if the request matches a specific
Web application SSO, the authentication processing will continue. '

3) The CTP process 410 then requests an AuthToken 442 for this application from the
LPS 420.

4) The LPS 420 then starts the process of obtaining an AuthToken 442. First, the LPS
420 checks with the Authentication Service 440 to determine if there is already an
AuthToken 442 created for this particular user/application. If yes, then this AuthToken 442
is returned. If not, a new resolver 430 is run. The resolver 430 is responsible for obtaining

the initial authentication from the external service

-18 -

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

5) Before the resolver 430 is run, the resolver definitions 432 are read in. The resolver
definitions 432 are loaded and cached in the running CTP.

6) Once the resolver definitions 432 are read in, the resolver 430 determines the specific
authentication definitions (AuthDef) 444 that are required for this application (for example
‘username’, ‘password’, ‘sessiontoken’).

7 The resolver 430 checks the database 250 to determine whether the authentication
credentials are stored for this user, for this application (as explained above, credentials are
stored for each user, for each application). If no (that is, if the resolver 430 identifies that no
credentials are stored for this user, for this application), then the resolver 430 queries the user
for input of the credentials, after which the credentials are stored in the database 250 for re-
use. If yes, the resolver 430 simply re-submits these credentials from the database 250.

8) If there is an authentication error during this process, the resolver 430 must return this
error to the user, and allow credentials to be re-entered

9) Upon successful authentication, the resolver 430 stores the active AuthToken 442 in
the database 250. |

10) The database 250 then returns this active AuthToken 442 to the LPS 420, which is
used in the request to the proxied Web application.

The authentication procéss for typical web sites and applications typically involves
the use of a session cookie, which is set after a user successfully logs in to the site. The CTP
service duplicates this authentication process, providing the user’s credentials to the
appropriate back-end server, and preserving any authentication cookie on the CTP server 230.
This server-side method of tracking cookies is unique among web transaction proxy
technology.

Due to a combination of the four-stage transaction processing 224b, the ability to
store/insert cookies, and the variable -processing syntax, one can create rules to instruct the

CTP program how to handle authentication through the proxy to destination servers 50.

URL Wrapping 224d
Another novel component of the CTP service is the method it uses for encoding or
“wrapping” the URLs that are contained in the proxied pages. All references (anchor tags,

images, JavaScript code references, etc) need to be modified, so that when the client 10

-19-

10

15

WO 2008/094628 PCT/US2008/001265

requests the specific content, the reference is translated on the proxy server and the actual
path is resolved.

The novel aspect of the CTP service’s solution to this problem is that it embeds the
host/port/protocol information within the URL line itself. When the CTP service retrieves
any HTTP (HTML/JS/CSS/XML etc.) page, all references to external content are rewritten in
this format. Content modification is thus performed on the proxy, not on the client 10.

The CTP program can be embedded as a module in a portal, for example in the
enPortal™ portal, which is a secure, single sign on network management integration portal
marketed by Edge Technologies, Inc., and which is the subject of U.S. Patent Application No.
09/812,136, filed March 19, 2001.

It is to be understood that the present invention is not limited to the illustrated user

interfaces or to the order of the user interfaces described herein. Various types and styles of

-user interfaces may be used in accordance with the present invention without limitation.

Modifications and variations of the above-described embodiments of the present
invention are possible, as appreciated by those skilled in the art in'light of the above
teachings. It is therefore to be understood that, within the scope of the appended claims and

their equivalents, the invention may be practiced otherwise than as specifically described.

220 -

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

WHAT IS CLAIMED IS:

1. A method of modifying content transferred to and from the Internet
during a web transaction having a client side and a server side, comprising the steps
of:

initiating a Web transaction on the client side, wherein the Web transaction
includes a plurality of components; and

acting on at least one component of the Web transaction on the server side by

at least one of searching, altering, and replacing the at least one component.

2. The method of claim 1, wherein the Web transaction is one of an

HTTP request or an HTTP response.

3. The method of claim 1, further comprising the step of breaking down
the Web transaction into a plurality of processing stages, wherein the acting step can

be carried out during any of the processing stages.

4. The method of claim 1, wherein each component of the Web
transaction includes HTTP data having a plurality of parts, and wherein during the

acting step, any of the parts of the HTTP data can be acted on.

5. The method of claim 3, wherein the processing stages comprise a pre-
processing stage, a request processing stage, a content processing stage, and an output

processing stage.

6. The method of claim 3, wherein each of the components of the Web
transaction includes HTTP data having a plurality of parts, and wherein in the acting
step, in each of the processing stages, any of the parts of the HTTP data can be acted

on.

-21-

WO 2008/094628 PCT/US2008/001265

10

15

20

25

7. The method of claim 1, wherein the plurality of components include an
initial request from a Web client to a content transform proxy host, a modified request
from the content transform proxy host to a Web server, a response from the Web
server to the content transform proxy host, and a modified response from the content

transform proxy host to the Web client.

8. The method of claim 7, wherein each of the components of the Web
transaction includes HTTP data having a plurality of parts, and wherein during the

acting step, any of the parts of the HTTP data can be acted on.

9. The method of claim 1, wherein the acting step comprises dynamically

and seamlessly injecting data into existing Web content in real time at any time.

10. A method of modifying at least one of an HTTP request and an HTTP
response during a web transaction having a client side and a server side, comprising
the steps of:

making an HTTP request on the client side using a client Web browser, the
HTTP request having a server-side destination;

processing the HTTP request on the server side using outgoing proxy rules to
determine whether to modify the HTTP request;

passing on the processed HTTP transaction to the server-side destination;

returning the results of the processed HTTP request from the server-side
destination,;

processing the HTTP response on the server side using incoming proxy rules
to determine whether‘to modify the HTTP response; and

returning the processed HTTP response to the client web browser on the client

side.

-22.-

WO 2008/094628 PCT/US2008/001265

10

15

20

25

30

11. The method of claim 10, further comprising the steps of:

setting up a sequence of filtering streams;

reading one of the filtering streams;

building a window of operation containing possible text of interest when one
of the streams is read, wherein at least one regular expression is used to define a
corresponding at least one rule that in turn defines the text of interest and the actions
required on the text of interest;

creating a buffer by comparing the possible text of interest with text bounding
the possible text of interest;

determining whether the buffer matches a predefined condition; and

when the buffer matches the predefined condition, handing off the buffer to

another entity responsible for running the at least one regular expression.

12. A system for modifying Web transactions having a client side and a
server side, comprising:

a host on the server side; and

Web proxy transform means residing on the host for modifying a Web
transaction at least one of before and after the Web transaction passes through the

host.

13. The system of claim 12, wherein the Web transaction includes a
request coming from the client side and a response to the request coming from the
server side, the request and the response each having HTTP content, and wherein the
Web proxy transform means includes:

content transform proxy server means for containing data storage for the host,

JSP server means for carrying out primary transaction processing in the host,
and _

content transform proxy Web server means for initially receiving an incoming

request from the client side.

223 -

10

15 -

20

25

WO 2008/094628 PCT/US2008/001265

14. The system of claim 13, wherein the content transform proxy server
means includes management means for managing a user session with the Web

transaction.

15. The system of claim 13, wherein the JSP server means includes means
for reading and parsing XML formatted proxy rules, determining what rules should be
run, and at least one of retrieving and modifying HTTP content coming from the

client side.

16. The system of claim 13, wherein the JSP server means includes
transaction processor means for managing the processing stages in the transaction

processing.

17.. The systém of claim 16, wherein the transaction processor means
includes: ' .

stream buffering means for processing inultiplé' -sequences of regular
expressions in the HTTP content;

transaction processing means for prompting actions on the request in response
to triggers, for modifying the request based on rules, and for modifying the response
based on rules; ‘

authentication processing means for carrying out authentication processing
required as part of any aspect of at least one of a transaction processing request,
content processing, and output processing; and

URL wrapping means for encoding URLs contained in the proxied pages.

-24 -

WO 2008/094628 PCT/US2008/001265

10

15

18. The system of claim 12, wherein the WebA proxy transform means has a
plurality of system components and including:
server means for containing the data storage of all system components
in the Web proxy server; |
servlet engine means for processing primary transactions in the Web
proxy server; and |
request-receivinvg means for initially réceiving an incoming HTTP

request.

19. The system of claim 12, wherein the request-receiving means is a Web

server separate from the servlet engine means.

20. The system of claim 12, wherein the servlet engine means includes an

HTTP server component, and the request-receiving means is the HTTP server

component of the servlet engine means.

=25 -

10

15

20

25

30

WO 2008/094628 PCT/US2008/001265

21. A method of authentication processing during a Single Sign On
transaction when any aspect of at least one of a transaction processing request, content
processing, and output processing is accessed via a Web connection, and an
authentication is required as part of that application, the method comprising the steps
of:

using a Web client to request content from a Web application, wherein the
Web application is proxied through a content transform proxy service;

using the Web application to match a set of definitions in the content
transform proxy program;

creating a content transform proxy process for the content request;

determining whether the content request matches a specific Web application
single sign on;

if the content request matches the specific Web application single sign on,
continuing the authentication processing; '

using the content transform proxy process to request an AuthToken for the
Web application from a login proxy service;

using the login proxy service to obtain an AuthToken;

reading in pre-determined Resolver definitions;

after reading in the resolver definitions, using the resolver to determine
specific authentication definitions that are required for the Web applicaﬁon;

using the resolver to check the database to determine whether the
authentication credentials are stored for the user/application;

if the authentication credentials are stored for the user/application, using the
resolver to re-submit the credentials from the database;

if the authentication credentials are not stored for the user/application, using
the resolver to query the user for input for the credentials;

upon successful authentication, using the resolver to store the active
AuthToken in the database; and

using the database to return the active AuthToken to the login proxy service

used in the request to the proxied Web application.

=26 -

WO 2008/094628 PCT/US2008/001265

22. The method of claim 21, wherein the step of using the login proxy
service to obtain an AuthToken comprises the further steps of:

using the logiri proxy service to check with thé Authentication Service to
determine if there is already an AuthToken created for this particular user/application;t N

5 if an AuthToken has already been created, then returning the AuthToken;) :

if an. AuthToken has not already been created, fthen running a new resolver;
and ' S

using the new Resolver to obtain initial aut_hentication' from the external
service. R |

10

- 27 -

PCT/US2008/001265
1/6 /US /

WO 2008/094628

SI9AIDS JUBJUOD)

0s

v g
RG:—DG :mwm:
yosess el

jouiaju|

oy

Bas

) "

uinyas

:m:—n-—
:yoJess

s8sn pug

NG,
:yoJess

l Ol

WO 2008/094628 2/6 PCT/US2008/001265

. ERCiliRAWeblRresentation 3 J 240
HTML ! Javascript x .Applets §

F,' » :) > 230

P R e T R e T R S T CaMssscsrsssssesassnsasananand

“proxy

rules \

RExtennal

—{ @ﬁ@@@mﬁ@@

vemeet o (o @‘iﬁ?’ »
(. ’ ~"Java Communication ChemServlces ‘ L)
(wosc Y o Y RMI X Ter)
. JSP SERVER (\ 220

config

210

I

logs

CTP SERVER

250

- Reldtional -
i....Database....

FIG. 2

PCT/US2008/001265
3/6 CT/US /

WO 2008/094628

o 1SOH 410 ove
SMwuw. M%mm poe 0¢ \

jeuondo /
Eoou. Buissaooiy indinp qose
SJOpBAH asuOdsSsy e O m mw T
m oul asuodsey _ Omm - :
mmco%o% dl1H
lewbuo
(LK) Apog (WLH) 4pog
A asuodsay asuodsay
ﬁmﬂﬂMt - leuondo jeuondo
teuondo
% oo o slapeajp| asuodsey sJapesy asuodsey
siepeoH Isenbey _ aur] esuodsay _ U esuodsay _
[eunssappy | 0ZG¢E asuodsay di1H asuodsay diIH 00¢
1sanbay 41 1H 1\ P3ylpoN payipon
pauIpoyy

t
]
]
[}
[}
]
]
]
[}
]
]
]
[}
]
I
!
]
]
[}
[}
]
1
] |
Buissaooid wewod | | [“sewo00 son00D | :
-]
[}
]
1
)
I
1
1
]
]
1
]
[}
i
]
]
!
[}
[}
1
i
]
1
[}
1

]

]

1

1

" Apog kpog Apog

' 1senbey 1senbay 1senbey

] jeuondQ leuondo jeuondo

1

]

_] [sapio0y] om0]

" S1apesH 1senbay SJ9pEOH 1Senbey O m m” s1epeay 1sanbay

]

' | euyssappy | | eunsseppoy | | eurjssasppy H

' _ Vil | mmmmmmecc e

] 1sanbay di1H 1sanbay d1iH 1senbay d1IH

: PaYIpOp payipop [ewbuo

1

1

1

1 .

“ o , uoReIossY Juauodwo?

h qz2Gg¢ Buissa00.d 1senbay UOHBINOSSY LOISSBS

“ i ; sse86is1 I\\)
Buissanoig-0id

1 . i

" 0ce S 0l€

]

1

1

WO 2008/094628 PCT/US2008/001265

4/6
360—\
HTTP data
362 —
|| Address Line
e Headers

\\\\\\\ ‘ 364a
. Meta data \\’_J

® | Optional
\\\ | Body

FIG. 3A

WO 2008/094628 5/6 PCT/US2008/001265

300

N ol

Makes Request | ~1p process
Receives Response

Browser —

Sends Response (Exception)

Requests AuthToken
422 W Receives AuthToken 420

410\/ l (’>

4¢————Reads——— > LPS 4¢——Runs—P| Resolver

Resolver Definition

Requests AuthDefinition
Receives AuthDefinition
Requests AuthToken

Receives AuthToken - Modifies

400 / 432 j
430\/ Authentication

Service
AuthToken

Requests AuthDefinition
Receives AuthDefinition

Requests AuthToken Stores

Receives AuthToken Reads

434 j
250 ‘ <t AuthDefinition
DataBase ores____’
Reads

FIG. 4

6/6 PCT/US2008/001265

WO 2008/094628

G Ol

0€1SOH 410

weuboid 419

0lZ MBS d1D

{71 ¢ B8OIAIBG UOISSBS

¢ 12 BOIAIRS JosN

0¢¢ JonI8gS dSr

pZZ SI0SS8201d uoioesuel] 4190

pvce
Buiddeipn

14N

qpzz Buissaosolg uoloesues |

ovE Buisseooid.indinQ

ovee 0£€ buissadold Jusjuo) eyec
Buissaosoiy Buuayng
uoneonuayiny weans

0zZ¢ Buissadold Jsanbay

01 ¢ Buissaooid-aid

cce
CRTIVETS
leAsuiay
dl0

0gZ 1BAI3S qaMA

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings

