发明名称
偶氮化合物的制备方法

摘要
本发明的偶氮化合物的制备方法包括对由芳香族胺重氮盐组成的重氮成分与由苯酚类和/或乙酸乙酰苯胺类构成的偶联剂成分进行偶联。在如下的搅拌装置内进行前述偶联，所述搅拌装置为在搅拌槽内具有安装了主搅拌翼和辅助搅拌翼的旋转轴的搅拌装置。根据需要，进一步在前述搅拌装置内进行熟化、色淀化。
1. 一种偶氮化合物的制备方法，该偶氮化合物的制备方法包括对由芳香族胺重氮盐构成的重氮胺与由构成所述重氮盐的芳香族胺以外的芳香族化合物构成的偶联剂成分进行偶联，其特征在于，

至少在搅拌装置内进行前述偶联，所述搅拌装置在搅拌槽内具有安装了主搅拌翼和辅助搅拌翼的旋转轴，

在前述搅拌装置中，

主搅拌翼位于旋转轴的最下段，而且具有端面，该端面与搅拌槽内壁侧面之间相分离，使得在搅拌时产生升液流。

另一方面，辅助搅拌翼在搅拌槽内壁侧具有垂直或向伴随其旋转而上扬的方向倾斜的刮板，而且，具有与该刮板连接并且垂直或向伴随旋转而下压的方向倾斜的桨；

另外，上下相邻的搅拌翼设置成下搅拌翼的上端相对于上搅拌翼的下端向与旋转轴的旋转方向相反的方向产生相位差，

所述搅拌翼设置成产生10～70度的相位差。

2. 根据权利要求1所述的偶氮化合物的制备方法，进一步，所得的偶氮化合物的熟化在偶联反应所用的同一个搅拌槽内进行。

3. 根据权利要求1所述的偶氮化合物的制备方法，重氮胺为具有羧基和 /或磺酸基的芳香族单胺的重氮盐，且偶联剂成分为β-萘酚和 /或 β-羟基萘甲酸。

4. 根据权利要求1所述的偶氮化合物的制备方法，用所需动力0.1～0.9kw/m³进行5～30分钟的搅拌。

5. 一种偶氮化合物的制备方法，按照权利要求1的偶氮化合物的制备方法，使具有羧基和 /或磺酸基的芳香族单胺的重氮盐与β-萘酚和 /或 β-羟基萘甲酸进行偶联，制备具有羧基和 /或磺酸基的偶氮化合物后，

接着，在与进行偶联的同一个搅拌装置中，在搅拌下使该具有羧基和 /或磺酸基的偶氮化合物与无机多价金属盐反应而进行色淀化。

6. 根据权利要求5所述的偶氮化合物的制备方法，进一步，所得的偶氮化合物的熟化在偶联反应以及色淀化反应所用的同一个搅拌槽内进行。
偶氯化合物的制备方法

技术领域
[0001] 本发明涉及比以往的能耗更少并且具有更优异的生产率的偶氯化合物的制备方法。

背景技术
[0002] 不溶性偶氯颜料如下来制备,在搅拌下,使不具有羧基、磺酸基的原料进行偶联反应。另一方面,溶性偶氮颜料如下来制备:在搅拌下,使具有羧基、磺酸基的原料进行偶联反应而获得偶氮染料,然后在进一步的搅拌下,用无机多价金属盐将该偶氮染料色沉淀。这些反应都在水系中进行,所以反应液通常成为颜料水悬浮液。根据需要,这样获得的颜料水悬浮液熟化后,进一步过滤在湿润的状态下,或者,再将该湿润状态的偶氮颜料干燥粉碎,在粉末、颗粒这样的干燥粉体的状态下,作为着色剂的用途来供给。
[0003] 作为在进行反应时所使用的搅拌装置上所设置的搅拌翼,目前例如有轴翼、涡轮翼、桨翼、Pfaudler翼、maxblend翼（住重機器システム株式会社）、泛能（fullzone）翼（株式会社神鋼環境ソリューション）等。
[0004] 在制备不溶性偶氮颜料、偶氮色淀颜料的前体即偶氮染料时的偶联反应中进行液体的搅拌混合,但该搅拌混合在设置怎样的搅拌翼的搅拌装置中进行,这基于试验法各个公司都不同,尚不清楚具体的公知文献。
[0005] 作为反应液的搅拌混合方法,有用低速长时间进行搅拌的方法,但也有用高速短时间进行搅拌的方法,一般存在下述的权衡关系:如果用更多的能耗来搅拌,生产率就会降低,另一方面,如果要确保优异的生产率,就不能削减能耗。
[0006] 最近,对于偶氮颜料,专利文献1中提出了将搅拌所需动力和搅拌翼前端的剪切速率设定在特定的范围而进行偶联反应来制备偶氮化合物的方法,但由搅拌导致的能耗仍然很大,少量的能耗且具有更优异的生产率的偶氮化合物的制备方法还未知。
[0007] 专利文献1:日本特开2006-28341号公报

发明内容
[0008] 发明要解决的问题
[0009] 本发明的目的在于提供比以往的能耗少且具有更优异生产率的偶氮化合物的制备方法。
[0010] 解决问题的方法
[0011] 本发明人等对在不导入微喷反应器等新的设备的情况下,尽量使用现有的设备,比以往的能耗少来进行偶联反应,并生产率高且大量生产偶氮化合物的方法进行了深入研究,发现通过使用具有特定形状的搅拌翼的搅拌装置进行偶联反应,可解决前述的现有技术的缺点,并完成了本发明。
[0012] 也就是说,本发明提供一种偶氮化合物的制备方法,该偶氮化合物的制备方法包括对由芳香族胺重氮盐构成的重氮成分与由聚酚类和/或乙酰乙酰苯胺类构成的偶联剂
成分进行偶联，其特征在于，
[0013] 至少在搅拌装置内进行前述偶联，所述搅拌装置在搅拌槽内具有安装了主搅拌翼
和辅助搅拌翼的旋转轴，
[0014] 在前述搅拌装置中，
[0015] 主搅拌翼位于中心轴的最下段，而具有末端，该末端与搅拌槽内壁侧面之间相
分离，使得在搅拌时产生上升液流，
[0016] 另一方面，辅助搅拌翼在搅拌槽内壁侧具有垂直或向伴随其旋转而上扬的方向倾
斜的刮板，而向具有与该刮板连接并且垂直或向伴随旋转而下压的方向倾斜的桨，
[0017] 另外，上下相邻的搅拌翼设置成下搅拌翼的上端相对于上搅拌翼的下端向与旋转
轴的旋转方向相反的方向产生相位差。
[0018] 此外，在本发明中，中心轴是指旋转轴，
[0019] 发明效果
[0020] 在本发明的制备方法中，因为使用具有特定形状的搅拌翼的搅拌装置来进行偶联
反应，所以可获得比以往的能耗少且具有更优异生产率的偶氮化合物，取得了特别显著的
效果。

附图说明
[0021] 图 1 是实施例 1 中使用的搅拌装置的侧视图。
[0022] 图 2 是比较例 1 中使用的具有特定形状的搅拌翼的搅拌装置的侧视图。
[0023] 图 3 是比较例 2 使用的具有以泛能（full zone）翼作为搅拌翼的搅拌装置的侧视
图。
[0024] 符号说明

具体实施方式
[0026] 以下将详细说明本发明。
[0027] 本发明的制备方法是包括对由芳香族胺重氮盐构成的重氮成分与由构成所述重
氮盐的芳香族胺以外的芳香族化合物构成的偶联剂成分进行偶联的偶氮化合物的制备方
法，其特征在于，至少在搅拌装置内进行前述偶联，所述搅拌装置在搅拌槽内具有安装了主
搅拌翼和辅助搅拌翼的旋转轴，其中，主搅拌翼的末端与搅拌槽内壁侧面之间相分离，使得
在搅拌时产生上升液流，且主搅拌翼位于中心轴的最下段；另一方面，辅助搅拌翼在搅拌槽
内壁侧具有垂直或向伴随旋转而上扬的方向倾斜的刮板，而向具有与该刮板连接并且垂直
或向伴随旋转而下压的方向倾斜的桨，另外，上下相邻的搅拌翼设置成下搅拌翼的上端
相对于上搅拌翼的下端向与旋转轴的旋转方向相反的方向产生相位差。
[0028] 本发明的偶氮化合物是指，在分子内至少具有 1 个 -N = N- 表示的偶氮键的化合
物的总称。在偶氮化合物中包含偶氮染料和偶氮颜料。
[0029] 本发明的制备方法可适用于公知常用的偶氮颜料等，例如由不溶性偶氮颜料、缩合偶
氮颜料以及溶性偶氮颜料（以下，溶性偶氮颜料有时称为偶氮染色颜料。）等的制备。偶氮颜料用包含如下的必须工序的制备方法来制备，其中所述必须工序为：对由芳香族胺重氮
盐构成的重氮成分与由构成前述重氮盐的芳香族胺以外的芳香族化合物构成的偶联剂成分（以下，有时将两者合在一起简称为原料）进行偶联反应的工序。
【0030】不溶性偶氮颜料，例如如下来制备：在搅拌下，对不具有羧基、磺酸基（以下称为水可溶性基）的原料进行偶联反应。缩合偶氮颜料，例如如下来制备：在搅拌下，对具有水可溶性基团的原料进行偶联反应，并用氯化亚砜等制成酯氯后，与伯胺等发生胺氯化氢反应。溶性偶氮颜料，例如如下来制备：在搅拌下，对具有水可溶性基团的原料进行偶联反应获得偶氮染料后，在进一步的搅拌下用无机多价金属盐将该偶氮染料盐溶化。
【0031】因为偶氮颜料必须经由在搅拌下对原料进行偶联反应的工序来制备，所以无论哪种偶氮颜料都适用使用后面详细叙述的使用特定搅拌装置的本发明的制备方法。
【0032】接着，在本发明的制备方法中，使用在搅拌槽内具有安装有主搅拌翼和辅助搅拌翼的旋转轴的特定的搅拌装置，使重氮成分和偶联剂成分进行偶联反应。
【0033】原料的重氮成分以及偶联剂成分可按照公知常用的方法很容易地配制出来。重氮成分所包含的芳香族胺重氮盐，例如可通过使芳香族胺和亚硝酸盐进行反应来获得。偶联剂成分所包含的芳香族化合物，可使用构成前述重氮盐的芳香族胺以外的芳香族化合物。
【0034】作为此次的芳香族胺，例如可列举出3,3′-二氯联苯胺、1,2-双（2-氨基苯氧基）乙烷等不具有水可溶性基团的芳香族胺二胺，苯胺、对甲基苯胺等不具有水可溶性基团的芳香族胺单胺，4-氨基甲苯-3-磺酸（4B酸；对甲基苯胺甲磺酸）、4-氨基-2-氯甲苯-5-磺酸（2B酸）、3-氨基-6-氯甲苯-4-磺酸（C酸）、1-氨基-4-甲基苯-3-磺酸、2-氨基苯-1-磺酸（吐氏酸（tobias acid）、1-氨基-3-甲基苯-4-磺酸等具有水可溶性基团的芳香族单胺。这些可将不同的2种以上组合使用。
【0035】另一方面，作为构成前述重氮盐的芳香族胺以外的芳香族化合物，可列举出苯酚类和／或乙酰乙酰苯胺类。作为苯酚类，例如可列举出β-萘酚、萘酚AS等具有水可溶性基团的苯酚类，3-羟基-2-萘甲酸（β-羟基萘甲酸；BON酸）这样的具有水可溶性基团的苯酚类。另一方面，作为乙酰乙酰苯胺类，例如可列举出乙酰乙酰苯胺这样的在苯环、萘环上没有取代基的乙酰乙酰苯胺类，乙酰乙酰氨基-苯并咪唑酮这样的具有杂环的乙酰乙酰苯胺类。不用说，该芳香族化合物不仅可为上述例示的芳香族化合物也可为其衍生物，例如可以为其苯环、萘环上的氯原子被低级烷基、烷氧基或卤素原子取代的化合物。这些可将不同的二种以上组合使用。
【0036】在水性介质中，用公知常用的方法使芳香族胺和亚硝酸盐进行反应，由此可获得由包含芳香族胺重氮盐的水溶液或水悬浮液构成的重氮成分。另一方面，在碱存在下，在水性介质中溶解芳香族化合物，由此可获得由芳香族化合物的水溶液构成的偶联剂成分。
【0037】作为经由本发明的制备方法制备的偶氮化合物，例如可列举出C.I. 颜料黄12、13,14等不溶性偶氮颜料、C.I. 颜料红48:1、48:2、48:3、52:1、57:1等溶性偶氮颜料等，但其中，溶性偶氮颜料在用本发明的制备方法时能溶的削减效果高，故优选。为了改善以往的混合性，而有必要使用性能高搅拌的C.I. 颜料红57:1在用本发明的制备方法时能溶的削减效果更为显著，故特别优选。
【0038】本发明的偶氮化合物的制备方法适用于使用重氮成分以及偶联剂成分经由偶联反应来制备偶氮化合物，其中，该重氮成分包含具有羧基和／或磺酸基（水可溶性基）的芳香族单胺的重氮盐，该偶联剂成分包含β-萘酚和／或β-羟基萘甲酸。
说明书

[0039] 本发明中的偶联反应除使用前述特定的搅拌装置以外，可通过公知常用的方法例如将前述的各原料投入到搅拌槽内，用前述的搅拌装置搅拌来进行反应。

[0040] 作为偶联反应的方法，例如可例举出以下的方法。

[0041] (1) 分别配制包含偶联剂成分的水溶液，包含重氮成分的水溶液或水悬浮液，在已投入有机溶剂和偶联剂成分的水溶液的本发明使用的搅拌槽内，添加包含前述重氮成分的水溶液来进行偶联反应的方法。

[0042] (2) 在包含重氮成分的水溶液或包含水悬浮液的本发明使用的搅拌槽内，滴加包含偶联剂成分的水溶液来进行偶联反应的方法。

[0043] (3) 将包含偶联剂成分的水溶液全部与包含重氮成分的水溶液或水悬浮液全部分别分成数份，按照分成分的各自的两成分的表观注入摩尔比一定的方式，将分成的两液体“交替地”添加到本发明使用的搅拌槽内的水中，对两成分全部进行偶联反应的方法。

[0044] (4) 将包含偶联剂成分的水溶液全部与包含重氮成分的水溶液或水悬浮液全部，按照两成分的表观注入摩尔比一定的方式，缓慢地将两液“连续地”添加到本发明的搅拌槽内的水中，使两成分全部进行偶联反应的方法。

[0045] 可是，从更加提高偶氮化合物的每单位时间的生产率的观点来看，对投入了预先配制的重氮成分全部的搅拌槽，将偶联剂成分全部一起添加来进行搅拌的偶联反应是优选的。

[0046] 为了制备溶性偶氮颜料而使用本发明的制备方法的情况下，首先，使包含具有水可溶性基团的芳香族单胺的重氮盐而形成的重氮成分与包含β-萘酚类和/or β-羟基萘甲酸而形成的偶联剂成分进行偶联。

[0047] 用于偶联反应的原料即芳香族胺重氮盐与构成前述重氮盐的芳香族胺以外的芳香族化合物的前搅拌槽最终投入比例没有特别的限制，重氮盐为芳香族二胺的四重氮盐时，例如重氮盐；芳香族化合物（摩尔比）= 0.45:1.00 ～ 0.55:1.00，重氮盐为芳香族单胺的重氮盐时，例如重氮盐；芳香族化合物（摩尔比）= 0.95:1.00 ～ 1.00:1.05。

[0048] 在本发明的制备方法中，将前述的原料投入到后述的搅拌装置内的搅拌槽中来进行偶联反应。

[0049] 在本发明的制备方法中，可使用这样设置的搅拌装置；该搅拌装置在搅拌槽内具有安装有主搅拌翼和辅助搅拌翼的旋转轴，其中，主搅拌翼的末端与搅拌槽内壁侧面之间相分离，使得在搅拌时产生上升液流，且主搅拌翼位于中心轴的最下段；另一方面，辅助搅拌翼在搅拌槽内壁侧具有垂直或向伴随旋转而向上扬的方向倾斜的刮板，而且，具有与该刮板连接并且垂直或向伴随旋转而下压的方向倾斜的桨；另外，上下相邻的搅拌翼设置成下搅拌翼的上端相对于上搅拌翼的下端向与旋转轴的旋转方向相反的方向产生相位差。

[0050] 在搅拌装置中，搅拌槽内的原料等由主搅拌翼产生的从槽底的喷出流沿着槽壁面上升，接着，在中心轴部分形成下降的流态，同时，在不相抵该循环的情况下，进行由辅助搅拌翼具有的刮板引起的剪切混合。

[0051] 首先，本发明使用的主搅拌翼为以下的物质，其末端与搅拌槽内壁侧面之间相分离，使得在搅拌时产生上升液流，产生成为全体循环流发生起点的强力的喷出力。

[0052] 在此，主搅拌翼末端和搅拌槽内壁侧面的间隔最好为分离至在搅拌时产生上升液流的程度，但尤其从获得强力的槽内循环流的方面考虑，经由中心轴的搅拌翼的长度与搅
拌槽内径之比优选为 0.5 ～ 0.9。

[0053] 从混合性的方面考虑，目前需要决定性的搅拌的 C.I. 颜料红 57:1 的溶性偶氮颜料，经由中心轴的搅拌翼的长度与搅拌槽内径之比优选为 0.7 ～ 0.9。

[0054] 另外，其形状没有特别的限定，但还是从喷出力优良的观点出发，优选为宽幅桨。此外，设置位置在中心轴的最下段，但从对产生上升液流贡献大的观点出发，优选沿着槽低壁面来设置。

[0055] 本发明中的辅助搅拌翼为下述的物质；在不相抵由主搅拌翼产生的上升液流的情况下，在有助于槽内的混合循环性的同时，使翼的外端与槽的侧隙变小来进行上扬、剪切混合，并进行防止对壁的附着等。也就是说，辅助搅拌翼在搅拌槽内壁侧具有垂直或向伴随旋转而上扬的方向倾斜的刮板，而且，具有与该刮板连接并且垂直或向伴随旋转而下压的方向倾斜的桨。

[0056] 另外，该辅助搅拌翼可以为 1 段，但从剪切混合性以及循环混合性优异的观点出发，优选为多数的，例如其数量优选为 2 ～ 5 段。

[0057] 辅助搅拌翼的形状可以为与外端的刮板部以及在内侧支撑这个的部部都垂直的，但更优选为在伴随其旋转而刮板部上扬的方向，并且桨部为向伴随旋转而下压的方向倾斜的。尤其在液粘度低、惯性流所支配的范围内倾斜形状的辅助搅拌翼显示出更优异的混合性。

[0058] 另外，由本发明的主搅拌翼以及辅助搅拌翼构成的多个搅拌翼中的上下相邻的搅拌翼设置成使下搅拌翼的上端相对于上搅拌翼的下端向与旋转轴的旋转方向相反的方向产生相位差，所以搅拌槽内的混合循环性非常优异。尤其，在液粘度高、惯性力的传导困难的范围内，对全体循环混合性显示出极大的贡献。

[0059] 也就是说，例如搅拌翼间的相位差为 0 度时，槽内的液体全体易发生如下现象：进行一个固体的旋转，混合性显著地降低。由本发明中的搅拌翼间的相位差带来的循环混合性的作用如后详细叙述时，即，旋转的搅拌翼通常在其前面产生正压，且在其后面产生负压。此时，相邻的下段的搅拌翼的上端在与旋转方向相反的方向产生相位差，即，如后述那样的存在时，在下段的搅拌翼的前面和上段的搅拌翼的后面之间产生压力梯度。在搅拌槽壁面附近，将液体更有效率地运送至下部。不用说，可以预想相对于在中心轴附近的下降流，此相位差具有相抵作用，但中心轴附近的桨～桨之间的间隔与刮板之间的间隔相比更宽，不会成为问题。

[0060] 另外，相位差没有特别的限定，相邻的上下的搅拌翼处于具有上段搅拌翼下端先运行・下段搅拌翼上端后运行的关系的位置即可，具体地优选为 10 度到 70 度、更优选为 10 度到 45 度的范围。这个是指，搅拌装置具有设置成产生 10 ～ 70 度更优选为 10 ～ 45 度的相位差的搅拌翼的搅拌装置。

[0061] 尤其是刮板间的上段翼和下段翼相接近时，全体循环混合性的效果大，故优选。

[0062] 原料的投入方法可以在搅拌槽内投入原料后，在搅拌装置上安装搅拌翼，相反地，也可以在搅拌槽内安装搅拌翼的搅拌装置中投入原料。

[0063] 本发明的制备方法中，重氮成分、偶联剂成分为水溶液、水悬浮液时，体系内的粘度根据其原料浓度（有效成分含有率）、体系内的偶氮化合物的增加（原料的减少），随时间地进行变化。仅提高偶氮化合物的生产率时，可以不考虑能耗，但本发明为了可比以往能
耗少地进行生产，优选根据要求的偶氮化合物的最终到达浓度来控制体系内的粘度。[0064] 也就是说，为了使不溶性偶氮颜料、溶性偶氮颜料的前体即色淀化前的偶氮染料
通过偶联反应生成的偶氮化合物的获得的量多，同时兼备比以往的能耗少且具有优异生产
率，优选投入的重氮成分和偶联剂成分的各原料达到以下的效果：相对于搅拌槽中投入的
成分全部，由偶联反应生成的偶氮化合物以质量换算最终到达浓度为 2～10%。在此最终
到达浓度是指即使搅拌，偶氮化合物的获得量也不变化时的浓度。
[0065] 偶联反应的反应率主要根据重氮成分和偶联剂成分的混合物的粘度来变化。最终
到达浓度比 2%低时，粘度本来就为低水平，即使使用本发明的搅拌装置来进行偶联反应，
由搅拌引起的能耗的削减程度变小，故不优选。
[0066] 在本发明的制备方法中，该偶联反应例如优选设定温度为 0～50℃，搅拌 5 分钟～
2 小时。
[0067] 这样获得的不溶性偶氮颜料进行过滤、洗涤，根据需要来干燥、粉碎、分级，从而可
使用在被着色介质的着色上。
[0068] 另一方面，溶性偶氮颜料与上述不溶性偶氮颜料同样地进行偶联反应，制备具有
水可溶性基团的偶氮染料作为偶氮化合物后，接着，具有该水可溶性基团的偶氮染料与无
机多价金属盐在搅拌下发生反应进行色淀化制备出溶性偶氮颜料。
[0069] 在本发明中，在特定的搅拌装置内进行原料的偶联时，无论是不溶性偶氮颜料的
情况还是溶性偶氮颜料的情况都同样搅拌，使得在搅拌槽中投入的原料变均一，但本发明
使用的特定的搅拌装置的搅拌效率比以往的更优异，所以所需动力在 0.1 以上不足 1.0kw/
m³ 时反应 5～60 分钟，进一步溶性偶氮颜料的情况下，在 0.1～0.9kw/m³ 且 5～30 分钟
的范围内进行反应时，可制备色淀化前的偶氮化合物。在本发明的制备方法中，至少优选在
前述的条件下进行该偶联，但不仅该偶联，需要后述的熟化、色淀化的情况下，也可以将这
些工序的至少一个工序同样地在所需动力为 0.1 以上不足 1.0kw/m³ 下进行 5～60 分钟的
搅拌。
[0070] 偶氮化合物可用松香类、石蜡类的处理剂来包覆。本发明制备的偶氮化合物为
C.I. 颜料红 57:1 这样的溶性偶氮颜料时，例如用其制备的任意工序组合使用选自以松香
酸为主成分的松香、氯化松香、不均化松香、聚合松香、富马酸改性松香、马来酸改性松香的
至少一种的松香类。由这样获得的含有松香类的颜料，可获得透明性、着色力优异的平版印
刷用油墨，故优选。
[0071] 在本发明的制备方法的任意工序中，在体系内可包含松香类。松香类可预先包含
在偶联剂成分中，也可包含在本发明使用的搅拌槽内。进一步，也可相对于溶性偶氮颜料的
前体即偶氮染料的水溶液或水悬浮液添加。
[0072] 作为色淀化中可使用的无机多价类盐，例如可列举出氯化钙、氯化钡、氯化锶等。
具有水可溶性基团的偶氮染料的一分子中的水可溶性基团个数与无机多价金属盐的金属
离子的价数相对应，无机多价金属盐的使用量可适当调节。优选至少使用对于使得具有水
可溶性基团的偶氮染料的一分子中的水可溶性基成为盐来说是必要的量的无机多价金属
盐。
[0073] 例如优选设定温度为 0～50℃，在 10 分钟～3 小时搅拌下进行色淀化反应。
[0074] 按照本发明的制备方法，制备溶性偶氮颜料时，偶联反应和色淀化反应可在其他
的搅拌槽内进行，但无需准备多余的搅拌槽，由反应液的转换导致的量的减少，用于转移的工序时间。为无必要的，每单位时间的生产率进一步提高的观点出发，优选偶联反应和色旋化反应在同一个搅拌槽内进行（部分一锅合成法（partial one-pot method））。

[0075] 本发明中合适的溶性偶氮颜料的制备方法如下，对含有羧基和/或磺酸基（水可溶性基）的芳香族单胺的缩醛盐与β-萘酚和/或β-苯基萘甲酸进行前述的偶联，制备含有羧基和/或磺酸基（水可溶性基）的偶氮化合物后，接着，在与偶联时的同一个搅拌装置中，在搅拌下，使该含有羧基和/或磺酸基（水可溶性基）的偶氮化合物与无机酸及金属盐发生反应进行色旋化来制备溶性偶氮颜料。

[0076] 按照本发明的制备方法获得的不溶性偶氮颜料、溶性偶氮颜料、缩合偶氮颜料等偶氮化合物通过进一步进行热化，使颜料颗粒的表面状态恒定，或者使颜料颗粒的长径比发生变化，使颜料颜料的颗粒分布变窄，可控制结晶型，可更加提高在所需用途上的适应性。

[0077] 例如可在表面活性剂、水溶性碱存在下，在规定温度下加热来进行该热化。具体来说，例如优选设定温度为 60 ～ 100℃，在 10 分钟～ 3 小时的搅拌下进行热化。

[0078] 对于包含溶性偶氮颜料的悬浮液的热化，可将悬浮液的液性配制至酸性～碱性来进行，但在液性为 pH11 ～ 14 下进行热化时，可更进一步提高调整颗粒形态的效果，故优选。

[0079] 另外，基于与色旋化反应情况同样的理由，优选在与色旋化反应所用的搅拌槽为同一个搅拌槽内进行热化（部分一锅合成法）。也就是说，优选在与偶联反应使用的同一个搅拌槽内进行热化偶氮化合物的热化。其中，从能耗降低以及提高生产率的观点出发，尤其是偶联反应、色旋化反应以及热化全部在同一个搅拌槽内行为在最合适（全部一锅合成法（full-one-pot method））。该最合适的制备方法为：在前述特定的搅拌装置内进行新偶联反应、色旋化反应以及热化等全部工序，可显著地削减能耗。

[0080] 这样获得的溶性偶氮颜料进行过滤、洗涤，根据需要干燥、粉碎、分级，由此可在被着色介质上使用。

[0081] 用本发明的制备方法获得的偶氮化合物可直接作为偶氮颜料使用，或者作为偶氮颜料的前体即偶氮染料使用，印刷油墨、涂料、成形品的各种着色的用途，喷墨记录用油墨、静电像显像用调色剂、液晶滤色器的配制等方面使用。

[0082] 图 1 为实施例中使用的搅拌装置，该搅拌装置在搅拌槽 5 内具有旋转轴 1，该旋转轴 1 安装有上段翼、中段翼和下段的宽幅的底桨 2。该图 1 中，宽幅的底桨 2 是主搅拌翼 20，中段翼和上段翼是辅助搅拌翼 30。该搅拌装置包括圆筒形的搅拌槽 5 以及在该槽内部的中心部按顺序配置了上段翼、中段翼、下段的底桨 2 的中心轴。这种翼配置的前提是试验上进行中旋转轴的旋转方向为顺时针旋转方向。

[0083] 在该配置中，上段和中段的搅拌翼分别具有与搅拌槽 5 的内壁斜面之间相分离的末端，由横着的字母 T 字形状的刮板 4 和与之相邻的桨 3 形成一片翼，形成有 2 片对置的这样的搅拌翼。搅拌翼均在搅拌槽 5 的内壁侧具有向适随旋转面上扬的方向倾斜的刮板 4，而且，具有与该刮板 4 连接并向前随旋转而下压的方向倾斜的桨 3。另外，在上下相邻的搅拌翼内这样进行设置，使下搅拌翼的上端相较于上搅拌翼的下端向与旋转轴 1 的旋转方向相反的方向产生 30° 的相位差。在图 1 中将中段翼画得比上段翼大，这是表示二者存在相位差。另外，中段翼和上段翼均采用设计成经由中心轴的搅拌翼的长度与搅拌槽 5 的内径之
比为 0.85 的翼。

[0084] 伴随着搅拌翼的旋转，刮板 4 促进向槽内上方上推重氯成分与偶联剂成分的混合物，形成上升液流。该上升液流在中心轴附近成为下降液流。另外，伴随着搅拌翼的旋转，桨 3 促进向槽内下方下压重氯成分和偶联剂成分的混合物。与桨 3 和刮板 4 均为垂直的情况相比，桨 3 和刮板 4 均为倾斜的情况的混合性更优异。另外，图 1 的装置中，由于上段翼和中段翼被配置成具有相位差，因此，与仅使用一个搅拌翼进行搅拌的情况相比，混合性得到提高。

[0085] 另外，下段的底桨 2 的靠近槽内壁侧面的两端部分均向与旋转方向相反的方向弯曲 45°，降低了伴随搅拌而产生的阻力。宽幅桨 2 例如用于防止重氯成分与偶联剂成分的混合物滞留于槽内下部。

[0086] 在槽内，描绘出了用中段翼的刮板 4 和上段翼的刮板 4 将由底桨 2 搅拌的槽底部的重氯成分与偶联剂成分的混合物上推到槽上方，另一方面，用上段翼的桨 3 和中段翼的桨 3 将槽上部的重氯成分与偶联剂成分的混合物下压到槽下方这样一种流体流动型式，由此，槽内的混合物的混合性提高，偶联反应变得更加顺利且均匀。

[0087] 实施例

[0088] 以下，通过实施例更加具体说明本发明。在文中，除非另有特殊规定，份或%均为质量基准。

[0089] （实施例 1）

[0090] 将 34.8 份的 4-氨基甲苯 -3- 硫酸分散在 50 份水中后，添加 22.2 份的 35% 盐酸，边添加冰和水以保持在 0°C，边一次性添加 32.5 份的 40% 亚硝酸钠水溶液。获得 650 份的含有重氯成分的悬浮液。接着，将 35.9 份的 3- 羟基 -2- 萘甲酸在 100 份 50°C 的水中分散后，添加 69 份的 25% 喷性钠水溶液并溶解，此后，添加冰和水，获得 980 份 10°C 的含有偶联剂成分的水溶液。

[0091] 将含有该偶联剂成分的水溶液全部加入到内容积 2 升的圆筒形搅拌槽 5，在搅拌槽 5 的中心装配如图 1 所示的安装了各搅拌翼的旋转轴 1，将该旋转轴 1 固定于动力装置，安装搅拌装置。接着，该旋转轴 1 以 100rpm 的转速旋转，边搅拌含有偶联剂成分的水溶液，边一次性加入全部的上述含有重氯成分的悬浮液。反应回温保持在 10°C 〜 15°C。10 分钟后，用下述 II 酸显色试验确定偶联反应结束。向其中添加 147 份 10% 的不均化松香钠盐的水溶液，进一步搅拌 60 分钟后，调节 ph 为 12.5，获得偶氮染料悬浮液。从含有该重氯成分的悬浮液的添加结束后到偶联反应结束前的偶联所需动力为 0.1 〜 0.9kw/m³ 的范围内。

[0092] 在引入了该偶氮染料悬浮液的搅拌槽 5 内，添加 80 份的 35% 氯化钠水溶液，搅拌 60 分钟，结束色化反应，获得含有 C.I. 颜料红 57:1 的悬浮液。该悬浮液在 80°C 下加热 90 分钟并搅拌，进行熟化。

[0093] 关于色化反应和熟化中的任何一个工序中，搅拌翼的旋转速度与偶联反应时的速度相同，偶联反应、色化反应和熟化全部在同一搅拌槽 5 内连续进行，不用更换槽。

[0094] 添加冰，将液温冷却到 60°C 之后，使用盐酸将 pH 调节至 8.5。此后，过滤，水洗，在 100°C 下干燥 10 小时，粉碎，获得 93 份 C.I. 颜料红 57:1 的干燥颜料粉末。

[0095] （II 酸显色试验）

[0096] 使用含有 1- 氯基 -8- 萘酚 -3,5- 二磺酸 (II 酸) 的氢氧化钠稀水溶液作为显色试
剂（显色剂）。而且，将与偶联反应液没有反应显色的时间点作为偶联反应的终点。

[0097] (实施例 2)

[0098] 仅将反应和易性化的工序与实施例 1 同样地进行，在后述的比较例 1 的图 2 的搅拌
装置内进行熟化，除此之外，与实施例 1 进行同样的操作。与实施例 1 相比，耗电稍微变高，
但没有像后述的各比较例那样消耗电力。

[0099] (实施例 3)

[0100] 仅将工序与实施例 1 同样地进行，在后述的比较例 1 的图 2 的搅拌装置内进行
色泽和熟化，除此之外，与实施例 1 进行同样的操作。与实施例 2 相比，耗电变高，但没有
像后述的各比较例那样消耗电力。

[0101] (比较例 1)

[0102] 与实施例 1 同样地获得含有重氮成分的悬浮液和含有偶联剂成分的水溶液。代
替实施例 1 的搅拌翼使用图 2 所示的带有现有型搅拌翼 20a 的反应装置，在此反应装置中
投入该偶联剂成分，边用上述搅拌翼在 300rpm 的转速下搅拌，边向其中添加含有前述重氮
成分的悬浮液。反应温度保持在 10 ～ 15℃。50 分钟后，用 H 酸显色试验确认偶联反应结
束，从包含该重氮成分的悬浮液的添加结束后到偶联反应结束前的偶联所需动力为 0.1 ～
3.0kw/m³ 的范围内。

[0103] 向其中添加 147 份的 10％不均化松香钠盐的水溶液，进一步搅拌 60 分钟后，调节
pH 为 12.5，获得偶氮染料悬浮液。

[0104] 使用该偶氮染料悬浮液，并使用带有图 2 所示的搅拌翼的反应装置，与实施例 1 同
样的操作进行色泽和熟化，获得 93 份 C.1 颜料红 57:1 的干燥颜料粉末。

[0105] (比较例 2)

[0106] 与实施例 1 同样地获得含有重氮成分的悬浮液和含有偶联剂成分的水溶液。代替
实施例 1 的搅拌翼使用图 3 所示的带有泛能 (fullzone) 翼 20b 的反应装置，在此反应装
置中投入该偶联剂成分，边用上述搅拌翼在 300rpm 的转速下搅拌，边向其中添加含有前述
重氮成分的悬浮液。反应温度保持在 10℃ ～ 15℃。40 分钟后，用 H 酸显色试验确认偶联
反应结束，从包含该重氮成分的悬浮液的添加结束后到偶联反应结束前的偶联所需动力为
0.1 ～ 1.5kw/m³ 的范围内。

[0107] 向其中添加 147 份的 10％不均化松香钠盐的水溶液，进一步搅拌 60 分钟后，调节
pH 为 12.5，获得偶氮染料悬浮液。

[0108] 使用该偶氮染料悬浮液，并使用带有图 3 所示的搅拌翼的反应装置，与实施例 1 同
样的操作进行色泽和熟化，获得 93 份 C.1 颜料红 57:1 的干燥颜料粉末。

[0109] 实施例 1、比较例 1 以及 2 的从含有重氮成分的悬浮液的添加结束后到偶联反应结
束前的偶联反应时间如表 1 所示。

[0110] 表 1

<table>
<thead>
<tr>
<th></th>
<th>偶联时间（分钟）</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>10</td>
</tr>
<tr>
<td>比较例 1</td>
<td>50</td>
</tr>
<tr>
<td>比较例 2</td>
<td>40</td>
</tr>
</tbody>
</table>
与比较例 1 及 2 的反应时间相比，用本发明的制备方法的实施例 1 的偶联反应结束时间显著地短，且混合性优异。另外，如前述，与比较例 1 及 2 的所需动力相比较，实施例 1 的搅拌所需动力显著地小，所以用实施例 1 的制备方法，总耗电也可大幅度地削减。

比较例 1 从偶联反应开始到结束时的耗电为 100 时，实施例 1 以及比较例 2 的耗电如表 2 所示。

表 2（偶联反应工序的耗电）

<table>
<thead>
<tr>
<th></th>
<th>耗电（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>14</td>
</tr>
<tr>
<td>比较例 1</td>
<td>100</td>
</tr>
<tr>
<td>比较例 2</td>
<td>67</td>
</tr>
</tbody>
</table>

与比较例 1 及 2 的偶联反应工序的耗电相比较，可知实施例 1 的偶联反应工序的耗电显著地小，是一种节能的制备方法。

根据本发明的制备方法，可很好地兼备通常存在权衡比关系的低能耗和高生产率，可制备出不溶性偶氮颜料，溶性偶氮颜料的前体即偶氮染料这样的偶氮化合物。

在实施例 1 中，用全部一锅合成法制备 C.I. 颜料红 57:1 时，色淀化以及熟化与偶联用同样的搅拌装置来进行。仅在该色淀化中单工序中，添加比较例 1 的氯化钙水溶液后 60 分钟的耗电为 100 时，实施例 1 以及比较例 2 的耗电如表 3 所示。

表 3（色淀化反应工序的耗电）

<table>
<thead>
<tr>
<th></th>
<th>耗电（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>16</td>
</tr>
<tr>
<td>比较例 1</td>
<td>100</td>
</tr>
<tr>
<td>比较例 2</td>
<td>43</td>
</tr>
</tbody>
</table>

可知实施例 1 的色淀反应工序的耗电，即使仅单工序，与比较例 1 及 2 的相比，显著地小，是一种节能的工序。

从这些可知，与不溶性偶氮颜料相比，包含在不溶性偶氮颜料中没有的色淀化工序的制备工序漫长的溶性偶氮颜料适于使用由合适的部分一锅合成法、最适合的全部一锅合成法的本发明的制备方法时，不仅由反应槽的生成物的转移导致的获得量的减少，还可削减转移本身所需的能耗，更加提高到最终的颜料制备的总生产率且可更加抑制能耗。

（实施例 1）

将 6 份实施例 1、比较例 1 以及比较例 2 中获得的 C.I. 颜料红 57:1 的干燥颜料粉末（以下简称颜料）、39 份含有松香改性酚醛树脂的平版印刷油墨用羧色剂和 5 份轻油用ビュラー公司的三辊锟磨机在 0℃.5 巴压缩压力下，首先用二辊锟磨机分散 5 分钟，然后在三辊锟磨机中经过 3 次进行分散，由此配制了模拟平版印刷油墨（含有干燥剂之前的平版印刷油墨）。

（着色力）

将 0.2 份的各模拟平版印刷油墨与 2.0 份的白色油墨（二氧化钛）混合，制备浅色油墨。各油墨的着色力通过 GRETAG（GRETAG 有限公司制造）判定。在表 4 中用数字示出以
比较例 1 的模拟平版印刷油墨的着色力为 100 时的实施例 1、2 和比较例 2 的油墨着色力。

[0130] 接着，使用各模拟平版印刷油墨，评价油墨中的颜料分散性和油墨着色图像的透明性。该结果在表 4 中示出。分散性和透明性的评价方法和评价基准如以下所述。

[0131] （分散性）
[0132] 用磨削计 (grind gauge) 评价各模拟平版印刷油墨的分散性。
[0133] ● ：特别良好 ○ ：良好 △ ：一般 × ：差
[0134] （透明性）
[0135] 将各模拟平版印刷油墨展色，目测判断着色图像的透明性。
[0136] ● ：特别良好 ○ ：良好 △ ：一般 × ：差
[0137] 表 4

<table>
<thead>
<tr>
<th></th>
<th>着色力</th>
<th>透明性</th>
<th>分散性</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>101</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>比较例 1</td>
<td>100</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>比较例 2</td>
<td>99</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

[0139] 从以上表 4 可以看出，使用本发明获得的偶氮化合物可配制具有与以往同等的着色力、透明性和分散性的印刷油墨。

[0140] 工业实用性

[0141] 根据本发明的制备方法，用具有与以往不同的特定形状的搅拌翼的搅拌装置，至少进行偶联反应来制备偶氮化合物。所以，可很好地兼备以往的想法被认为是相反的低能耗和高生产率的同时，制备出可配制具有与以往同等的着色力、透明性和分散性的印刷油墨的溶性偶氮颜料这样的偶氮化合物。因此，本发明在工业上有用。
图 1