004/063850 A2 | 00001 0 0 00 R A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

AT Y0 O 0 R

(10) International Publication Number

29 July 2004 (29.07.2004) PCT WO 2004/063850 A2
(51) International Patent Classification’: GO6F MCMASTER, Shaun; Emulex Corporation, 3535 Har-
bor boulevard, Costa Mesa, CA 93636 (US). SPENCER,
(21) International Application Number: Thomas, V.; Emulex Corporation, 3535 Harbor Boulevard,

(22) International Filing Date:
19 December 2003 (19.12.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/340,078 9 January 2003 (09.01.2003) US

(71) Applicant: EMULEX CORPPORATION [US/US];
3535 Harbor Boulevard, Costa Mesa, CA 93636 (US).

(72) Inventors: CLAYTON, Shawn, Adam; Emulex Corpora-
tion, 3535 Harbor Boulevard, Costa Mesa, CA 93636 (US).

(74) Agents: KUBOTA, Glenn, M. et al.; Morrison & Foerster
LLP, 555 West Fifth Street, Los Angeles, CA 90013-1024
(US).

(81) Designated States (national): CA, JP, KR.

(84) Designated States (regional): European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: MEMORY MANAGEMENT

o (57) Abstract: A method includes receiving a first buffer allocation command from a first processor, the allocation command in-
cluding a register address associated with a pool of buffers in a shared memory, determining whether a buffer is available in the buffer
pool based upon a buffer index corresponding to a free buffer, and if a buffer is determined available allocating the buffer to the first

processor.

WO 2004/063850 PCT/US2003/040967

MEMORY MANAGEMENT

TECHNICAL FIELD

[0001] This application relates to managing memory.

BACKGROUND

[0002] A multi-processor system may include a shared memory,
i.e., the same memory may be accessed (read or written) by two
or more processors in the system. The shared memory may also

be logically partitioned into buffers.

DESCRIPTION OF THE DRAWINGS
[0003] Fig. 1 is a block diagram of a multi-processor system.

{0004] Fig. 2 is a flowchart of a process for managing

~.buffers.

DESCRIPTION

[0005] Fig.'l shows a multi—processor system 10 that includes
processors 20-29, a meméfy-Bé and a buffef manager &BMGR) 40
having a local memory 41. Each of the processors 21-29,
memory 30.and BMGR 40 are coupled to a system bus 50. In

operation, each of the processors 20-29 and BMGR 40 may access

WO 2004/063850 PCT/US2003/040967

memory 30, e.g., read data from and/or write data to memory
30. In an embodiment, memory 30 is logically partitioned into
buffer pools 60 and 70, each pool including a set of bufferé
of the same size. In this example, buffers 61-65 are included
in pool 60, and buffers 71-73 are included in pool 70. Memory
30 also stores at least one buffer information array 80 that
includes a buffer index array 90 holding buffer indices 91-95,
and an reference count (R_CNT) array 100 holding R_CNTs 101-
105. In this embodiment, buffer indices 91-95 and R_CNTs 101-
105 correspond to buffers 61-65, respeFtively, in buffer pool
60. Buffér index array 90 may be referred to as a “free list”
‘of buffer indices 91-95. The free list of buffer indices 91-
95 and R_CNTs 161—105 are used.by EMGR 40 to manage-tﬁe
allocation and de-allocation of buffer(s) within a pool, as
will be explained. BMGR 40 stores a subset of each free list
of buffer indices from buffer index array 90 in locél mémory
41, BMGR 40 includes a set of pool allocate/deallocate
registers 34, each allécate/deallocate reéistér correspénding

‘ to.a buffer pool in memary 30. During ;pération qf system 10,
a processor méy request a buffer allocation by sending a read
command to BMGR 40 Ehat specifies énvallocate/deallocate
register 34 corresponding to a buffer pool in memory 30. In

response, BMGR sends a buffer pointer address of a buffer to

WO 2004/063850 PCT/US2003/040967

-the requesting processocor, the buffer pointer address based
upon a buffer index on the free list of buffer indices stored-

in local memory 41.

[0006] As described herein, in an embodiment, only a subset
of each free list of buffer indices from buffer index array 90
are stored in local memory 41. Iﬁ this way, the size of local
memory 41 on BMGR 40 may be reduced. The free list indices
stored in local memory 41 are stored in a so-called free list
circular queue. Circular queue refers to a queue where data
(or addresses) is stored in coﬁsecutive locations on the
queue, beginning at a first location and continuing until an
end location is reached, whenrthe queue wraps to allow datg
(or addresses).tg be over-written at the begiﬁning of the
queue. - In an embodiment of system 10, the free list circular
queue is referenced by two pointers, a “head” pointer and a
“tail” pointer; The head pointer is used to point to tﬁe next
buffer index in local memofy 41 available for allocation, and
the tail-pointer is used to point to the next buffer index in

local memory 41 that may be written back to memory 30.

[0007] Fig. 2 shows a process 100 that may be performed by
BMGR 40 to allocate buffers to a requesting processor 21-29.

During performance of process 100, BMGR 40 is idle (110)

WO 2004/063850 PCT/US2003/040967

awaiting a command from a processor 21-29. For a received
allocation command (112), process 100 determines (115) if a
buffer is available for allocation (e.g., a buffer index is
available on BMGR 40 free list queue). If a buffer index is
determined available, BMGR 40 sends (120) a buffer pointer
address corresponding to the allocated buffer to the first
processor, increments (122) the head poiﬁter to point to the
next buffer index onithe free list queue. If a buffer index
is not determined available, BMGR 40 returns (116) a Null
pointer (e.g., zero value) to the first processor. Process
100 includes determining (125) whether more buffer indi;es
need to be pre-fetched to maintain a sufficient number of
'bﬁffér indicés on the free list circular queue ih local memory
41, and pre—fetéhing (126) additional buffer inéices from
memory 30 if it is determined (125) that more buffe? indices

are needed.

A[0008].APerforming process 100 may also allow two or. more
processofs.21-29 to share access to a speécific buffer witﬂin a
buffer pool. 1In this‘eﬁbodiment, if a first processor has a
‘buffer allocated, the first processor may alldw a second
processor to access the allocated buffer. For example, the
first processor may send the address of.thé allocated buffer

to the second processor. At about the same time that the

WO 2004/063850 PCT/US2003/040967

second processor begins accessing the allocated buffer, the
second processor may send a buffer increment command to BMGR
40. Still referring to process 100 (see Fig. 2), for a
received (130) buffer increment command BMGR 40 determines
(135) the appropriate buffef pool. corresponding to the pointer
address, and reads, add ‘n’ to R CNT (e.g., increment R _CNT)
and writes back (140) the R_CNT corresponding to the allocated
buffer. First and second processors may continue accessing the
allocated buffer. When a processor no ldnger needs ;o access
the allocated buffer, that processor may send a de-allocation
command to BMGR 40. For a received (150) de-allocation
command, BMGR 40 determines (155) the buffer pool
4correspoﬁding‘to thé de—alloqation command, read (157) the
corresponding R_CNT from memory 30 and subtract (157) ‘n’.from
R_CNT (e.g., decrement R _CNT), and determinés (160) if the
corresponding.R_CNT equals zero, if the cbrresponding R_CNT is
’deﬁermined to be equal to zero process 100 determines (165) if
the corresponding R_CNT equaled oné in the prior déterminatién
(160) increments (175) the free list tail pointer, determines
ils) if the free list requires a write back of buffer indices
and writes back (185) buffer indices from the free list of
buffer indices in local memoiy 41 to shared memory 30, and

returns. to wait (110) for commands.

WO 2004/063850 PCT/US2003/040967

[0009] This way of managing buffers allows a processor to
request'a buffer allocation with a single allocation command
(e.g., a single read command), and request a buffer de-
allocation withva single de-allocation command (e.g., a single
write command). It also allows buffers to be shared between
multiple processors wiﬁhout requiring the processors to.manage
the overhead of shared buffer information. Moreover, this way
oﬁ managing buffers allows a processor to request an
allocation or de-allocation of a buffer without causing a
stall of the system bus and/or the processor while BMGR 40
processes the request. Furthermore, process 100 includes ﬁhe
‘pré—fetching of buffer indices from shared memory 30 to be
stored in local memory 40; Therefore, subsequent allocation
requests from a proéessor may be processed in less time than
would be required if buffer indices were only fetchea when
réquested_by a processof. Conversely, BMGR 40 may write back
buffer indices from the free list to buffer index array 90 as

buffers are de-allocated.

[0010] A.buffer allocaﬁion command may be implemenﬁed aé a
read to a buffer pool's alloéate/deallocate command registér
‘34l Buffer manager 40 réspénds to an allocation gommand by
sending a write command to the requesting processor that
includes a buffer pointer addfess. A buffer de-allocation

-6-

)

WO 2004/063850 PCT/US2003/040967

command may be implemented as a write command to a buffer

pool’s allocate/deallocate command register 34,

[0011] In an embodiment, a single allocate/deallocate
register may be designated for both ailocate and de-allocate
commands. In an embodiment,‘allocate/degllocate registers 34
are implemented as thirty-two (32) registers, each register
corresponding to a buffer pool in memory 30. However(there
could be ﬁore or'fewer buffer pools and é corresponding number

of allocate/deallocate registers.

[0012] In an embodiment, each buffef pool has a corresponding
base addfesses; in this e#ample, pool60_base .and pool70 base
.identify the location in memory 30 of the first buffer within
each p001460 and 70, respectively. Each buffer poolvmay élso
include corresponding variables to identify characteristics of
the pool. For example, a “buff sizeX” variable may be used to
indicaﬁe a size (e.é, a number of memory 1odations) of each
buffer in a pool, and a “#_buffX” variable is used to indicate
a number.of buffers includéd in a pool. During operation'of
systgm 10, buff;sizex and #_buffx variables are used by BMGR
40 to calculate buffer index valﬁes stored in array 90 and

- also used'b& BMGR 40’£o determine corresponding buffer pointer

‘values from a.buffer index value.

WO 2004/063850 PCT/US2003/040967

[0013] In more detail, buffers may be accessed (e.g., read
or writﬁen) by commands that include a buffer pointer address..
However, the free list circular queue on BMGR 40 is used to
store'buffer indices. Therefore, when a buffer is allocated’
to a processor the buffer index from the free list is
converted to a buffer pointer address that is returned to the
requesting processor. In an embodiment, the buffer index for
a buffer in a pool is determined by using its buffer pointer
address in memory 30 ana the associated’variables foé-the
buffer pool containing that buffer, e.g., buff sizeX and
#_buffX. As‘an‘example, the buffer index for a first buffer
may be set equal to a value detérmined by dividing the buffér
pointer address for the-buffer'by the buff sizeX variable for
the pool containing that buffer. Conversely, the buffer
pointer address for a buffer may be determined by multiplying
'its buffer:index value by the associated buff sizeX value of

the pool containing that buffer. -

.[0914] The number of buffer poois and characteriétics of each
buffer‘pégls are programmable, e.g., the characteristics of
eaqh buffer pool are set during a system initialization
sequence or during system operation. Buffer pools and their

characteristics are initialized before operation of system 10

and typically remain static during operation. In order to

-8-

WO 2004/063850 PCT/US2003/040967

change a buffer pool characteristic during operation of system
10, all activity to a pool must be stopped, and buffer pool
characteristic values re-set, and then operations dealing with

that buffer may be resumed.

[0015] In an embodiment of system lO, BMGR 40 includes a bus
interface 42 for receiving commands from and sending commands.
to processors 21-29 and for receiving data from and sending
data to memory 30. Buffer manager 40 alsc includes decode
logic 44 that decodes received commands from bus interface 42,

and determines buffer pointer addresses from-buffer indices.

t0016J In an embodiment, during operation of system 10, BMGR
40 stores, “pool context” information in locél‘memory 41, e.qg.,
information related to each buffer pool managed by BMGR 40.
For example, pool context information may include the poql
'base address, and variables buff sizeX and #buffx associated
with a buffer pool. The‘pool context information is.uséble by
dec&de lqgic 44 to convert a buffer index on the free list
into a bﬁffer pointer address‘uséble by a processor when

accessing a buffer in a buffer pool.

[0017] In an embodiment, a processor may request an
allocation of de-allocation of multiple buffers with a single

command. For example, a processor may send a command that

-9-

WO 2004/063850 PCT/US2003/040967

specifies a single'buffer, or a command that specifies four
buffers; As another example, a processor may send a buffer
allocation command that specifies an ‘n’ value, the n value
corresponding to a number of buffers requested by the
processor. In response, BMGR 40 may return multiple buffer
pointers to the requesting processér,~each pointer
corresponding to a location of an allocated buffer within a

pool.

[o018] Ip an embodimént, multiple buffer indices are
prefetched by BMGR 40 with a single bus 50 command (to re&uce A
the amounf of activity on bus 50). For example, anytime four
‘or.more buffer indices are allocated by BMGR @0, a prefetch
-command is‘piaced in mastef'FIFO 44c. Master interface
coritrol 44b may send a read command to memory 30 requesting
- four additional buffer inaiées from free list 90, and BMGR 40
will store ﬁhbse additional buffer indices when received from

memory 30 in the free list queue for a buffer pbol.‘

[0019] Process 100 may optionally include a MAX RCNT value
that_is used as an increment value and/or decrement value
applied'to R_CNT during performance of procéss*loo. For

example, performance of actions (127), (135) and (140) allow a

-10-

WO 2004/063850 PCT/US2003/040967

MAX RCNT value to be used by when de-allocating multiple

buffers.

[0020] In an embodiment of process 100, if BMGR 40 determines

" (115) that there are no buffers within a pool available to
allocate, a null pointer (i.e., a value of zero) is returned

. to the requesting brocessor. In this case, the requesting
processor may subsequently send another buffer allocation
command . Sstill réferring to Fig. 2} if process 100~
determines (115) that there is not an available buffer on the
free list, BMGR 40 sends (116) a null pointer to the
requesting processor, and determines (125) if additional
buffer indices are needed from memory 30, aﬁd fetches (126)
buffer:£ndices from memofy‘30 if addiéional buffer indices are.

determined needed by buffer manager 40.

. [0021] In an embodiment, R_CNT vélues stored in memory 30 are -
initially set to a value of‘one (1) before a buffer is
alloﬁated to a processor. Therefore, during an allocation of
a buffer‘theAcorresponding R_CNT is not incremented. This may

. reduce the nuﬁber of bus command cycles performed by system
10. To deallocate a buffer or increment an R_CNT value, a
processor’ does not ﬁged to know the buffer poocl from Which a

buffer was allocated. In more detail, a proceséor may send a

-11-

WO 2004/063850 PCT/US2003/040967

write command that includes a pointer address within an
address ranges of a buffer pool to BMGR 40, and BMGR 40 will

determine the pool corresponding to the buffer pool.

[0022] The following, Example 1, represents an example of the
operatiOn of system 10 that corresponds to the performance of

process 100.
[0023] Example 1:

1) Processor 21 reads pool_lo_alloc/déalloc
register (@ BMGR address = 0x0000_0540) and buffer index
#5 is where the freelist head pointer is pointing (and
therefore_bufferxindex #5 must be in the local memory 41

' prefetch buffer) ;

2) BMGR 40 determines a pointer address
corresponding to buffer index #5, for example:
ﬁointer(pool=10, indice=5) = pool_10_base +
(boél_lo_buffer;size * 5);

3) BMGR sends the determinéd pointer address (10,5)
to processor 21, and also increments the head pointér of
the circular dqueue free list to point to tﬁe ﬁext
location on the circular queue freelist in preparation

for another allocate command;

-12-

WO 2004/063850 PCT/US2003/040967

4) Processor 21 sends pointer(10,55 to processor 22
(in some case, processor 21 also sends a command, for
example, a command for processor 22 to process data
found in the buffer allocated to processor 21);

5) Processors 21 or 22 sends an increment command
to BMGR 40 to increment the R_CNT corresponding to
pointer(10,5), e.g., by sending a write command to an
4address in pointer(10,5); (Please realize that the
write command to increment a R_CNT may include any
address within an address range of a particular buffer
and BMGR 40 willudetermine the appropriate buffef from

. the address and increments the corresponding buff
R_CNT(10,5) ;‘

6) Processofs 21 and 22 may continue to access the
allocated buffer(10,5), at about the same time BMGR
increments the corresponding buffer R CNT(10,5) by
reading R_CNT(10,5) frbm memory 39, incrementing R_CNT,
gnd Writing’the updated R_CNT‘vélue back to memory 30; -

'7) When processor 21 is done'accessingAbuffgr(lo;S)-
it sends a deallocation command to BMGR 40 by writing
any address within buffer(lo,S) to-any pool;x deallocatg

regisﬁér 34;

-13-

WO 2004/063850 PCT/US2003/040967

8) BMGR 40 receives the deallocation command,
detérmines the corresponding R _CNT value for
buffer (10,5), reads the R CNT(10,5) value from memory
30, decrements R_CNT(10,5), determines that decremented
R_CNT(10,5)= 1, and writes decremented R_CNT(10,5) value
back to memory 30; |

9) When processor 22 is done accessing
.buffér(lo,s), sends a deallocation command to BMGR 40 by
Writing any address within buffer(lo;S) to any pool x
deallocate registef 34;

10) BMGR 40 receives the deallocation command,
determines the corresponding R_CNT value for
buffer (10,5) , reads the R_CNT(10,5) value from memory
30, decremenﬁs'R_CNT(lO,S) =0, de&ermines that
decremented R_CNT(10,5)= 0, in this case instead of
wfifing.R_CNT(10,5)=0 back to memory, BMGR 40 leaves

| R_CNT(10,5)=1. Leaving R_CNT(pqol,indice): 1 is
significant since i; may save the execution of two bus
'éémmand tranéactions, e.g., a firs@ bus command for

reading, updating and writing back an R_CNT value
transitioning frém i.-> 0, and a seﬁond bus command for -

for transitioring from R_CNT from 0 ->1; and

-14-

WO 2004/063850 PCT/US2003/040967

11) BMGR 40 also increments the freelist tail
poiﬁter for this buffer pools circular queue in local

memory 41.

. [0024] In Example 1, please realize that in step 7) BMGR 40
increments R _CNT(10,5), and then in step 9) BMGR 40 decrements
R_CNT(10,5). In an embodiment, it may be poséible to
eliminate'the operations of steps 7) and 9). In more detail,
if a first processor (e.g., processor 21) was designated as an
"allocator" and a second prodessor (e.g., processor 22) was
designated as a “deallocator"i In this case, ihstead of
having a plqrality of processors each increment and
deallocate; only one only processor performs. a buffer
allocation command and the second processor pérforms the only
deallocation command of a particular buffer. This way of

: operation'system 10, and/or process 100, may reduce the number
qf bus comﬁand’cycles required to allocate,.de—allocate

buffer(s) and/or increment R_CNTs.

4[0025] In an embodiment, an allocation or de-allocation
éommand may include any address that is within the address
boundaries of a.buffer that is to be'allocated or de-
aliocatedw In more detail, BMGR 40 may perform an address

boundary check on the pointer address sent by the processor to

-15-

WO 2004/063850 PCT/US2003/040967

determine which buffer’s R_CNT requires updating (for example,
see actions (155) and (135) as depicted in Fig. 2). This way
of performing address boundary checking by BMGR 40 means that
processors 21-29 do not have to store a base pool address of a
buffer allocated in order to request a buffer allocation or
de~allocation.‘ Therefore, any pointer address of a locat}on
within a buffer may be used as part of an allocation or de-

allocation command sent from a processor to BMGR 40.

[0026] In an embodiment, in order to increment or decrement a
R_CNT correspoﬁding to a buffer being allocated (or previqusly
allocated), BMGR 40 sénds a read command.to memory 30 to read
the R_CNf value from R_CNT érray 100 corresponding to that.
buffer?‘ When:thé R_CNT is received from memory 30, BMGR 40
increments or decrements the R_CNT value, and may write the
“updated R_CNT value back to memory 30 (depending on the

updated value of R_CNT.

[0027] In an ehbodimént, decode logic block 44 is configured
t0~procesé buffer allocation commands before processing other
commands. In more detaii, decode logic 44 includes decode
logic 44a, master interface logic 44b, and pooi state control
logic 44d. Master interface 1o§ic blogk 44b iﬁcludes.a FIFO

queue 44c used to hold de-allocation and increment commands

-16-

WO 2004/063850 PCT/US2003/040967

from decode logic 44a. Buffer allocation commands received by
décodellogic 44a are processed when received, while buffer de-
allocation commands and/or increment commands are stored in
FIFO 44c for later processing.by master interface control
logic 44c. Therefore, a processor waitiﬁg for a buffer
allocation command to be processed by BMGR 40 will not have to
wait for processing of buffer de-allocation commands and/or

R_CNT updates.

[0028] In an embodiment, decode logic 44 includes pool state
control 44d to store pool context information and to access
-local memory 41. 1In this example, pool state control 44& is
7qoupled to receive access requests'from both command decode
'44a and master interface control 44b. Pool state cgntrol-44d
arbitrates access requests from command aecode 44a and master
interface logic 44d and performs reads and write$~of'data to

local ‘memory 41.

[0029] Each processor 21-29 and BMGR 40 may include an
.operating system, the operatihg system is software that
confrols the processor’s operation and the allocation of
resources. The term “procgss” or .“program” referé to
- software,. for example an applicétion program that may be

executed on a processor or computer system. The application.

-17-

WO 2004/063850 PCT/US2003/040967

program is the set of executable instructions that performs a
task desired by the user, using computer resources made

available through the operating system.

[0030] Processors 21-29 and BMGR 40 may be implemented in
hardware, software, or a combination of the two. They méy be
implemented in computer programs executing on.programmable
computers or other machines that each include a processor, a
storage medium readable by the processor (including volatile
and non-volatile memory and/or storage components), at least
one input device, and one or more oﬁtput devices. Program
code may be appliéd to data entered using an input device
(e.g., a mouse or keyboard) to perform applications and to

generate output information.

[00311 Each computer program may be stored on a storage
médium/ article (e.g., CD-ROM, hard disk, or magnéticA
diskette) that is readable by a general or special purpose
pfogrammgble computer for configuring aﬁd operating the
dombuter<when the storage medium or device is read by the
cémputer to perférm applications. They may also be
iﬁplemehtgd as a machine-readable storage medium, configured

with a computer program, where, upon execution, instructions

-18-

WO 2004/063850 PCT/US2003/040967

in the computer program cause a machine to operate in

accordance with those applications.

[0032] The invention is not limited to the,specific
embodiments described above. Fo; example, the above has
describéd using processors in a multi-processor system.
However, one or more processors may be implemented as
functional units that include the capability of accessing a
shared memory, for example, the functional units may be
implemented as application-specific-integrated-circuits
("ASICS”). For example, the above has described using a local
memory on BMGR 40. However, thg local memory may be
implemented, in part, as registers and used, for example, to
store buffer indices, énd pool contéxt information. As
another example, the above described a processor requesting a
~buffer allocation by sending a read coﬁmand to BMGR 40 that
specifies an allocate/deallocate registér. However, the
allocate/deallccate comménd could be implemented in another

way that does not require specifying a register.

[0033] . Other embodiments not described herein are also within

the scope of the following claims.

-19-

WO 2004/063850 PCT/US2003/040967

What is claimed is:

1. A method comprising:

receiving a first buffer allocation command from a first
précessor(the allocation command including a register address
associated with a pool of buffers in a shared memory;

determining whether a buffer is available in the buffer
pool based upon a buffe; index corfesponding to a frée bﬁffer{

and

if a buffer is determined available allocating the buffer

to the first processor.

2. The method of claim 1, wherein determining comprises:
storing a first free list of buffer indices in the shared
memory, each buffer index corresponding to an address of a
buffer in the shared memory, the free list haviﬁg a fi:st
number of entries; and |
| storing‘a second free list of buffer indices in a secondk
memory, the éecond féee list of buffer indices having a second
- number of entries that is lessnéhaﬁ the first number of

-entries in the buffer index array.

-20-

WO 2004/063850 PCT/US2003/040967

3. The method of claim 2, wherein storing a second free
list of buffer indices in the second memory éomprises storing.
the second free list of buffer indices in a circular queue

structure.

4. The method of claim 3, further comprises:
pre-fetching a buffer index from the first free list of

buffer indices to be stored on the free list.

5. The method of claim 3, further comprises:
writing back a buffer index from the free list to the
buffer index array subsequent- to the de-allocation of a

buffer.

6. The method of claim 2, wherein determining comprises:
storing buffer context information in the second memory,'
the buffer context information including at least one of a

base pool address, a buffer size variable, and a number of

buffers variable. -

7. The method of claim 6, further comprises:
'detefmining a buffer index valué or a buffer pointer

- address based upon a size of a buffer in the buffer pool.

-21-

WO 2004/063850 PCT/US2003/040967

8. The method of claim 6, further comprises:
determining a buffer index value or a buffer pointer

address based up on a number of buffers in the buffer pool.

9. The method of claim 1, wherein allocating further
comprises:
sending a buffer pointer address corresponding to the

allocated buffer to the first processor.

10. The method of claim 9, wherein the address
associated with a bdffer pool compxisés an address within an

address range associated with' the buffer pool.

11. The meéthod of claim 2, further comprises:
storing a reference count value in the shared memory, the
reference count valued corresponding to a number of processors

accessing the buffer.

12. The method of claim 11, further comprises:
receiving a buffer increment command from a second
processor, the buffer increment command including an address

associated with the allocated buffer; and

-22-~

WO 2004/063850 PCT/US2003/040967

updating the reference count for the allocated buffer.

13. The method of claim 11, further comprises:
receiving an allocation command that specifies a request
for a plurality of buffers in the buffer pool; and

allocating at least two buffers in the buffer pool.

14. The method df claim 11, further comprises:_

receiving a de;allocation command from at least one of
the first and second processor; and

updating the reference count value for the allocated

buffer.

15. A system comprising:

a system bus; |

a plurality of processors coupled té the system bus;

a buffer manager couplea to the system bus to receive a
buffer allocation command ffom at least one of the pluraliﬁy '
'of'prgcessors, and to send a buffer:al;ocation résponse to the
processor; | | | |

a shared memory céupled to the system bus to send and
receive data from the plurality of processors'aﬁd tﬁe buffer

manager; and

-23-

WO 2004/063850 PCT/US2003/040967

a pool of buffers defined in the shared memory,
said buffer manager operative to allocate a buffer from
the buffer pool in response to a buffer allocation command

from a one of the plurality of processors.

16. The system of claim 15 further comprises:

a firét free list of buffer indices stored in the shared
memory, each buffer index in the array corresponding‘té a
buffer in the buffer pool, the array comprising a first number
of entries in the shared memory; and

wherein said buffer manager further comprises:’

a local memory for storiﬁg-a second free list of
buffer indices, the second free list comprising a second
numnber of entries in the local memory that is less than the

first number of entries in the first list of buffer indices.

.17. The system of claim 16 whérein the BMGR further
comprises:

a decode logic block operative to receive and decode
commands received from the plurality of processors, the
c§mmaﬁd’decode logic biock operative to access the second free

list of buffers stored in the local memory.

-24-

WO 2004/063850 PCT/US2003/040967

18. The system of claim 17 further comprises:
aﬁ array of reference count values stored in the shared
memory, each reference count value in the reference count
- array corresponding to a:buffer in the buffer pool,
the decode logic block operative to update a reference

count in the reference count array.

19. The system of claim 18 further comprises: _

pool context information~stored'in the local meﬁory, the
pool context information correspondiné to the buffer pool
defiﬁed in the shared memory,'the pool context information‘
including at least one of a pool base address, a size of the

buffer pool and a number of entries in the buffer pool.

-20. The system of claim 19 wherein the decode logic
-further comprises logic operative to determine the buffer
index and the buffer pointer address based on the pool context

information.

21. An article comprising a storage medium having stored
thereon instructions that when executed by a machine results

in the following:

-25-

WO 2004/063850 PCT/US2003/040967

receive a first buffer allocation command from a first
processbr, the allocation command including a register address
associated with a pool of buffers in a shared memory;

determine whether a buffer is available in the buffer
pool based upon a buffer index corresponding to a free buffer;
and | |

if a buffer is determined availabie, allocate é buffer in

the buffer pool to the first processor.

22. The article of claim 21, further comprises
instfuctions that when executed by a machine results‘in the
following:

store an a first free lisﬁ of buffer indices in the

" shared memory, each buffer indéx corrésponding to an address
.of a bufférAin the shared memory, the array having a first
number of -entries; and

store a second free list of buffer indices in a second
mémory, the second free list having a second number of entries

that is less than the first number of entries in the buffer

index érray.

-26-

WO 2004/063850 PCT/US2003/040967

23. The article of claim 22, further cémprises
instrucﬁions that when executed by a machine results inythe
following:‘

pre-fetch a buffer index from the first free list of

buffer indices to be stored on the second free list.

24. The articie'of claim 22, further comprises
instructions that when executed by a machine results‘in the
following:

write back a buffer index from the second free list to
the buffer index array subsequent to the de-allocation of a

buffer.

25. The article of claim 22, further comprises
instructions that when executed by a machine.resultS‘iﬁ the
'foiloWing:

detérmine a buffer index value or a buffer pointer

address based upon a size of a buffer in the buffer pool.

-27-

WO 2004/063850

PCT/US2003/040967

N\ ? 10
o 4 W
21 | / /
:’"'/““""n {[“ """""""")
|
2 | Tacer ‘ | 1| CMD/DECODE (44a) . E
™| INTERFACE ! | | ALLIDE-ALL REG (34) |
l (42a) \ : | :
s i]t v
3 ! 1| |FiFo 44e) |
i | MASTER |1 | POOL | | LOCAL
MASTER STATE
c
4—41» lNT(Eg;I)\ E#iNTERFACEQ CTRL MEI::JRY
24 <] | . | | CONTROL (44d) | | 41)
| I : (44b) |
2 B T !
BUFFER MANAGER (40)
25 - p oL (O BrsE -
62
26 63 > 60
64
65 Y,
1\ P OOL70-BASE
27 <> 7
72 > 70
28 «>
| 73
' J
2™ =T [ez)
<:\ 93 | 94 ®
| ~. | 95 _J
' 101)
| P 80
| - MEMORY k"/ 192 ™
V \/ (30) \\\ 103 ,r-‘,w
- _ N 104 '
\\
AR 105 o

FIGURE 1

1/2

PCT/US2003/040967

WO 2004/063850

LN

T —1

4 4

Z U914

(ov})
) ot Alowap o)
anjeA Juo Ty polepdn S
™y 0} (u) ppy '(s)i00d
W jayng paujuuep
0} Bupuodsesnod
WO Y peey

+

(sey)
-sajuiod o) Bujpuodsanco
food Sujuuseq

(ss1)
o¢ Aousaw
0}. 1y Asowia
1830} wioy
(sa)oipu) 13yng
¥eq UM
(s24)
sejuod ey (x)sye9y) juswau)
o lm PR
. owon Qoussyes soud
‘Do o™ SHM junocd 344 s0ud pig
(z21)
‘ot Aiowsapy
oy D3 JUN0O U3 SIO(]
T

{ocy)
(4owa o} Aum e “6°a)
. puBUILIOD .
(u*saurod)judiuasou]
aneoay

|

(251)

Jua "y woyy (u) BAGNS ‘0F Alowayy woy (x)jood
uj 1aynq paujuueep o} Bupuodsancd Juo Y pesy

(ost)
(4ong 01 djum e “6°a)
puewiwoo (u'1ajuiod) djeoojieaq aN0BY

!

| saa

P 171} B
d ——I. iP3pIdN
{ON ::.%wEEu:_.Q:(..n.

(9z1)
1y Asowisus {820) U) whwwwwz
eoﬁwaomhmﬂ W YoI3j1d 1519314
iayng yojad
{zz1) sopui0d
peay (x)isi|aasy Juawanu|
4
{ozt) (s)hauiod
ssaippy (z-4)
pusg
{at1) (511)

| awiod

; S|qE|leAY 19Ung
TINN winey &

1)
(4owg oi peas e “6°3)
puBWLICD
(x2) 3jed0))y BMBI3Y

I

(0} 1) GNVWWOD HO4 LivM / 3101

D

2/2

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

