

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2017/040348 A1

(43) International Publication Date
9 March 2017 (09.03.2017)

WIPO | PCT

(51) International Patent Classification:
C12N 15/00 (2006.01) *C12N 9/22* (2006.01)
C12N 15/63 (2006.01) *G06F 19/16* (2011.01)
C12N 15/113 (2010.01)

62/258,280 20 November 2015 (20.11.2015) US
62/271,938 28 December 2015 (28.12.2015) US
15/015,947 4 February 2016 (04.02.2016) US

(21) International Application Number:
PCT/US2016/049147

(71) Applicant: THE GENERAL HOSPITAL CORPORATION [US/US]; 55 Fruit Street, Boston, Massachusetts 02114 (US).

(22) International Filing Date:
26 August 2016 (26.08.2016)

(72) Inventors: JOUNG, J. Keith; 1 Magnolia Way, Winchester, Massachusetts 01890 (US). KLEINSTIVER, Benjamin; 100 Rivers Edge Drive Unit 225, Medford, Massachusetts 02155 (US). PATTANAYAK, Vikram; 280 Linden Street, Wellesley, Massachusetts 02482 (US).

(25) Filing Language: English

(74) Agents: DEYOUNG, Janice Kugler et al.; Fish & Richardson P.C., P.O. Box 1022, Minneapolis, Minnesota 55440-1022 (US).

(26) Publication Language: English

(30) Priority Data:
62/211,553 28 August 2015 (28.08.2015) US
62/216,033 9 September 2015 (09.09.2015) US

[Continued on next page]

(54) Title: ENGINEERED CRISPR-CAS9 NUCLEASES

(57) Abstract: Engineered CRISPR-Cas9 nucleases with improved specificity and their use in genomic engineering, epigenomic engineering, genome targeting, and genome editing.

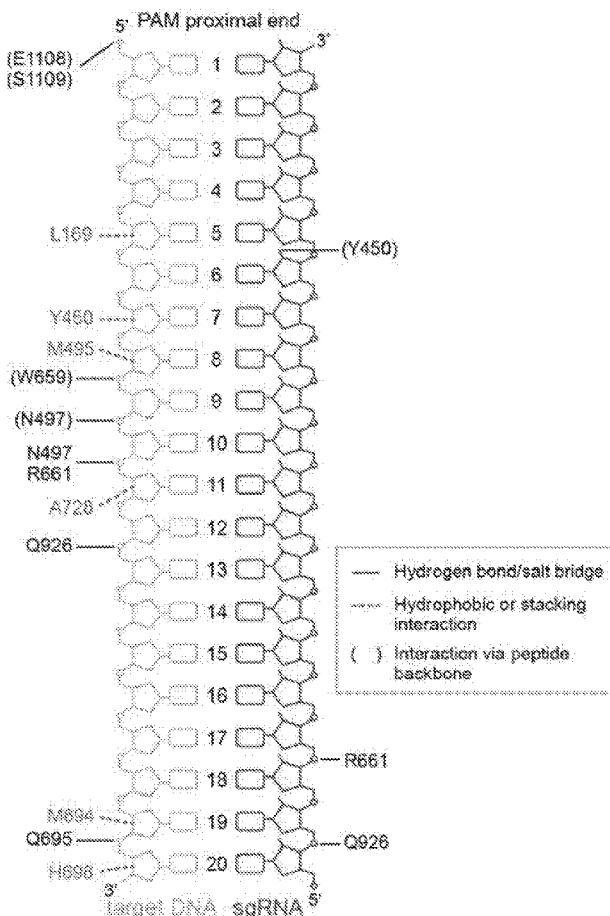


FIG. 1A

(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

Engineered CRISPR-Cas9 Nucleases

CLAIM OF PRIORITY

This application claims priority under 35 USC §119(e) to U.S. Patent Application Serial Nos. 62/211,553, filed on August 28, 2015; 62/216,033, filed on September 9, 2015; 62/258,280, filed on November 20, 2015; 62/271,938, filed on 5 December 28, 2015; and 15/015,947, filed on February 4, 2016. The entire contents of the foregoing are hereby incorporated by reference.

SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. 10 Said ASCII copy, created on August 26, 2016, is named SEQUENCE LISTING.txt and is 129,955 bytes in size.

FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under Grant Nos. DP1 GM105378 and R01 GM088040 awarded by the National Institutes of Health. The 15 Government has certain rights in the invention.

TECHNICAL FIELD

The invention relates, at least in part, to engineered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs)/CRISPR-associated protein 9 (Cas9) nucleases with altered and improved target specificity and their use in genomic engineering, epigenomic engineering, genome targeting, genome editing, and in vitro diagnostics. 20

BACKGROUND

CRISPR-Cas9 nucleases enable efficient genome editing in a wide variety of organisms and cell types (Sander & Joung, *Nat Biotechnol* 32, 347-355 (2014); Hsu et al., *Cell* 157, 1262-1278 (2014); Doudna & Charpentier, *Science* 346, 1258096 (2014); Barrangou & May, *Expert Opin Biol Ther* 15, 311-314 (2015)). Target site recognition by Cas9 is programmed by a chimeric single guide RNA (**sgRNA**) that encodes a sequence complementary to a target protospacer (Jinek et al., *Science* 337, 25

816-821 (2012)), but also requires recognition of a short neighboring PAM (Mojica et al., *Microbiology* 155, 733-740 (2009); Shah et al., *RNA Biol* 10, 891-899 (2013); Jiang et al., *Nat Biotechnol* 31, 233-239 (2013); Jinek et al., *Science* 337, 816-821 (2012); Sternberg et al., *Nature* 507, 62-67 (2014)).

5

SUMMARY

As described herein, Cas9 Proteins can be engineered to show increased specificity, theoretically by reducing the binding affinity of Cas9 for DNA. Thus, described herein are a number of Cas9 variants that have increased specificity (i.e., induce substantially fewer off target effects at imperfectly matched or mismatched DNA sites) as compared to the wild type protein, as well as methods of using them.

In a first aspect, the invention provides isolated *Streptococcus pyogenes* Cas9 (SpCas9) proteins with mutations at one, two, three, four, five, six or all seven of the following positions: L169A, Y450, N497, R661, Q695, Q926, and/or D1135E e.g., comprising a sequence that is at least 80% identical to the amino acid sequence of SEQ ID NO:1 with mutations at one, two, three, four, five, six, or seven of the following positions: L169, Y450, N497, R661, Q695, Q926, D1135E, and optionally one or more of a nuclear localization sequence, cell penetrating peptide sequence, and/or affinity tag. A mutation alters the amino acid to an amino acid other than the native amino acid (e.g., 497 is anything but N). In preferred embodiments the mutation changes the amino acid to any amino acid other than the native one, arginine or lysine; in some embodiments, the amino acid is alanine.

In some embodiments, the variant SpCas9 proteins comprise mutations at one, two, three, or all four of the following: N497, R661, Q695, and Q926, e.g., one, two, three, or all four of the following mutations: N497A, R661A, Q695A, and Q926A.

In some embodiments, the variant SpCas9 proteins comprise mutations at Q695 and/or Q926, and optionally one, two, three, four or all five of L169, Y450, N497, R661 and D1135E, e.g., including but not limited to Y450A/Q695A, L169A/Q695A, Q695A/Q926A, Q695A/D1135E, Q926A/D1135E, Y450A/D1135E, L169A/Y450A/Q695A, L169A/Q695A/Q926A, Y450A/Q695A/Q926A, R661A/Q695A/Q926A, N497A/Q695A/Q926A, Y450A/Q695A/D1135E, Y450A/Q926A/D1135E, Q695A/Q926A/D1135E, L169A/Y450A/Q695A/Q926A, L169A/R661A/Q695A/Q926A, Y450A/R661A/Q695A/Q926A,

N497A/Q695A/Q926A/D1135E, R661A/Q695A/Q926A/D1135E, and Y450A/Q695A/Q926A/D1135E.

In some embodiments, the variant SpCas9 proteins comprise mutations at N14; S15; S55; R63; R78; H160; K163; R165; L169; R403; N407; Y450; M495; 5 N497; K510; Y515; W659; R661; M694; Q695; H698; A728; S730; K775; S777; R778; R780; K782; R783; K789; K797; Q805; N808; K810; R832; Q844; S845; K848; S851; K855; R859; K862; K890; Q920; Q926; K961; S964; K968; K974; R976; N980; H982; K1003; K1014; S1040; N1041; N1044; K1047; K1059; R1060; K1107; E1108; S1109; K1113; R1114; S1116; K1118; D1135; S1136; K1153; K1155 10 ; K1158; K1200; Q1221; H1241; Q1254; Q1256; K1289; K1296; K1297; R1298; K1300; H1311; K1325; K1334; T1337 and/or S1216.

In some embodiments, the variant SpCas9 proteins also comprise one or more of the following mutations: N14A; S15A; S55A; R63A; R78A; R165A; R403A; N407A; N497A; Y450A; K510A; Y515A; R661A; Q695A; S730A; K775A; S777A; 15 R778A; R780A; K782A; R783A; K789A; K797A; Q805A; N808A; K810A; R832A; Q844A; S845A; K848A; S851A; K855A; R859A; K862A; K890A; Q920A; Q926A; K961A; S964A; K968A; K974A; R976A; N980A; H982A; K1003A; K1014A; S1040A; N1041A; N1044A; K1047A; K1059A; R1060A; K1107A; E1108A; S1109A; K1113A; R1114A; S1116A; K1118A; D1135A; S1136A; K1153A; 20 K1155A; K1158A; K1200A; Q1221A; H1241A; Q1254A; Q1256A; K1289A; K1296A; K1297A; R1298A; K1300A; H1311A; K1325A; K1334A; T1337A and/or S1216A. In some embodiments, the variant proteins include HF1(N497A/R661A/Q695A/Q926A)+K810A, HF1+K848A, HF1+K855A, HF1+H982A, HF1+K848A/K1003A, HF1+K848A/R1060A, HF1+K855A/K1003A, 25 HF1+K855A/R1060A, HF1+H982A/K1003A, HF1+H982A/R1060A, HF1+K1003A/R1060A, HF1+K810A/K1003A/R1060A, HF1+K848A/K1003A/R1060A. In some embodiments, the variant proteins include HF1+K848A/K1003A, HF1+K848A/R1060A, HF1+K855A/K1003A, HF1+K855A/R1060A, HF1+K1003A/R1060A, HF1+K848A/K1003A/R1060A. In 30 some embodiments, the variant proteins include Q695A/Q926A/R780A, Q695A/Q926A/R976A, Q695A/Q926A/H982A, Q695A/Q926A/K855A, Q695A/Q926A/K848A/K1003A, Q695A/Q926A/K848A/K855A, Q695A/Q926A/K848A/H982A, Q695A/Q926A/K1003A/R1060A,

Q695A/Q926A/K848A/R1060A, Q695A/Q926A/K855A/H982A,
Q695A/Q926A/K855A/K1003A, Q695A/Q926A/K855A/R1060A,
Q695A/Q926A/H982A/K1003A, Q695A/Q926A/H982A/R1060A,
Q695A/Q926A/K1003A/R1060A, Q695A/Q926A/K810A/K1003A/R1060A,
5 Q695A/Q926A/K848A/K1003A/R1060A. In some embodiments, the variants
include N497A/R661A/Q695A/Q926A/K810A,
N497A/R661A/Q695A/Q926A/K848A, N497A/R661A/Q695A/Q926A/K855A,
N497A/R661A/Q695A/Q926A/R780A, N497A/R661A/Q695A/Q926A/K968A,
N497A/R661A/Q695A/Q926A/H982A, N497A/R661A/Q695A/Q926A/K1003A,
10 N497A/R661A/Q695A/Q926A/K1014A, N497A/R661A/Q695A/Q926A/K1047A,
N497A/R661A/Q695A/Q926A/R1060A,
N497A/R661A/Q695A/Q926A/K810A/K968A,
N497A/R661A/Q695A/Q926A/K810A/K848A,
N497A/R661A/Q695A/Q926A/K810A/K1003A,
15 N497A/R661A/Q695A/Q926A/K810A/R1060A,
N497A/R661A/Q695A/Q926A/K848A/K1003A,
N497A/R661A/Q695A/Q926A/K848A/R1060A,
N497A/R661A/Q695A/Q926A/K855A/K1003A,
N497A/R661A/Q695A/Q926A/K855A/R1060A,
20 N497A/R661A/Q695A/Q926A/K968A/K1003A,
N497A/R661A/Q695A/Q926A/H982A/K1003A,
N497A/R661A/Q695A/Q926A/H982A/R1060A,
N497A/R661A/Q695A/Q926A/K1003A/R1060A,
N497A/R661A/Q695A/Q926A/K810A/K1003A/R1060A,
25 N497A/R661A/Q695A/Q926A/K848A/K1003A/R1060A, Q695A/Q926A/R780A,
Q695A/Q926A/K810A, Q695A/Q926A/R832A, Q695A/Q926A/K848A,
Q695A/Q926A/K855A, Q695A/Q926A/K968A, Q695A/Q926A/R976A,
Q695A/Q926A/H982A, Q695A/Q926A/K1003A, Q695A/Q926A/K1014A,
Q695A/Q926A/K1047A, Q695A/Q926A/R1060A, Q695A/Q926A/K848A/K968A,
30 Q695A/Q926A/R976A, Q695A/Q926A/H982A, Q695A/Q926A/K855A,
Q695A/Q926A/K848A/K1003A, Q695A/Q926A/K848A/K855A,
Q695A/Q926A/K848A/H982A, Q695A/Q926A/K1003A/R1060A,
Q695A/Q926A/R832A/R1060A, Q695A/Q926A/K968A/K1003A,

Q695A/Q926A/K968A/R1060A, Q695A/Q926A/K848A/R1060A,
Q695A/Q926A/K855A/H982A, Q695A/Q926A/K855A/K1003A,
Q695A/Q926A/K855A/R1060A, Q695A/Q926A/H982A/K1003A,
Q695A/Q926A/H982A/R1060A, Q695A/Q926A/K1003A/R1060A,
5 Q695A/Q926A/K810A/K1003A/R1060A,
Q695A/Q926A/K1003A/K1047A/R1060A,
Q695A/Q926A/K968A/K1003A/R1060A, Q695A/Q926A/R832A/K1003A/R1060A,
or Q695A/Q926A/K848A/K1003A/R1060A

10 Mutations to amino acids other than alanine are also included, and can be
made and used in the present methods and compositions.

15 In some embodiments, variant SpCas9 proteins comprise one or more of the
following additional mutations: R63A, R66A, R69A, R70A, R71A, Y72A, R74A,
R75A, K76A, N77A, R78A, R115A, H160A, K163A, R165A, L169A, R403A,
T404A, F405A, N407A, R447A, N497A, I448A, Y450A, S460A, M495A, K510A,
Y515A, R661A, M694A, Q695A, H698A, Y1013A, V1015A, R1122A, K1123A,
K1124A, K1158A, K1185A, K1200A, S1216A, Q1221A, K1289A, R1298A,
K1300A, K1325A, R1333A, K1334A, R1335A, and T1337A.

20 In some embodiments, the variant SpCas9 proteins comprise multiple
substitution mutations: N497/R661/Q695/Q926 (quadruple variant mutants);
Q695/Q926 (double mutant); R661/Q695/Q926 and N497/Q695/Q926 (triple
mutants). In some embodiments, additional substitution mutations at L169, Y450
and/or D1135 might be added to these double-, triple, and quadruple mutants or added
to single mutants bearing substitutions at Q695 or Q926. In some embodiments, the
25 mutants have alanine in place of the wild type amino acid. In some embodiments, the
mutants have any amino acid other than arginine or lysine (or the native amino acid).

30 In some embodiments, the variant SpCas9 proteins also comprise one or more
mutations that decrease nuclease activity selected from the group consisting of
mutations at D10, E762, D839, H983, or D986; and at H840 or N863. In some
embodiments, the mutations are: (i) D10A or D10N, and (ii) H840A, H840N, or
H840Y.

In some embodiments, the SpCas9 variants can also include one of the
following sets of mutations: D1135V/R1335Q/T1337R (VQR variant);

D1135E/R1335Q/T1337R (EQR variant); D1135V/G1218R/R1335Q/T1337R (VRQR variant); or D1135V/G1218R/R1335E/T1337R (VRER variant).

Also provided herein are isolated *Staphylococcus aureus* Cas9 (**SaCas9**) protein, with mutations at one, two, three, four, five, six, or more of the following 5 positions: Y211, Y212, W229, Y230, R245, T392, N419, Y651, or R654, e.g., comprising a sequence that is at least 80% identical to the amino acid sequence of SEQ ID NO:1 with mutations at one, two, three, four, or five, or six of the following 10 positions: Y211, Y212, W229, Y230, R245, T392, N419, Y651, or R654, and optionally one or more of a nuclear localization sequence, cell penetrating peptide 15 sequence, and/or affinity tag. In some embodiments, the SaCas9 variants described herein include the amino acid sequence of SEQ ID NO:2, with mutations at one, two, three, four, five, six, or more of the following positions: Y211, Y212, W229, Y230, R245, T392, N419, Y651 and/or R654. In some embodiments the variants include one or more of the following mutations: Y211A, Y212A, W229, Y230A, R245A, T392A, 20 N419A, Y651, and/or R654A.

In some embodiments, the variant SaCas9 proteins comprise mutations at 25 N419 and/or R654, and optionally one, two, three, four or more of the additional mutations Y211, Y212, W229, Y230, R245 and T392, preferably N419A/R654A, Y211A/R654A, Y211A/Y212A, Y211A/Y230A, Y211A/R245A, Y212A/Y230A, Y212A/R245A, Y230A/R245A, W229A/R654A, Y211A/Y212A/Y230A, Y211A/Y212A/R245A, Y211A/Y212A/Y651A, Y211A/Y230A/R245A, Y211A/Y230A/Y651A, Y211A/R245A/Y651A, Y211A/R245A/R654A, Y211A/R245A/N419A, Y211A/N419A/R654A, Y212A/Y230A/R245A, Y212A/Y230A/Y651A, Y212A/R245A/Y651A, Y230A/R245A/Y651A, R245A/N419A/R654A, T392A/N419A/R654A, R245A/T392A/N419A/R654A, Y211A/R245A/N419A/R654A, W229A/R245A/N419A/R654A, Y211A/R245A/T392A/N419A/R654A, or Y211A/W229A/R245A/N419A/R654A.

In some embodiments, the variant SaCas9 proteins comprise mutations at 30 Y211; Y212; W229; Y230; R245; T392; N419; L446; Q488; N492; Q495; R497; N498; R499; Q500; K518; K523; K525; H557; R561; K572; R634; Y651; R654; G655; N658; S662; N667; R686; K692; R694; H700; K751; D786; T787; Y789; T882; K886; N888; 889; L909; N985; N986; R991; R1015; N44; R45; R51; R55; R59; R60; R116; R165; N169; R208; R209; Y211; T238; Y239; K248; Y256; R314;

N394; Q414; K57; R61; H111; K114; V164; R165; L788; S790; R792; N804; Y868; K870; K878; K879; K881; Y897; R901; and/or K906.

In some embodiments, the variant SaCas9 proteins comprise one or more of the following mutations: Y211A; Y212A; W229A; Y230A; R245A; T392A; N419A; 5 L446A; Q488A; N492A; Q495A; R497A; N498A; R499A; Q500A; K518A; K523A; K525A; H557A; R561A; K572A; R634A; Y651A; R654A; G655A; N658A; S662A; N667A; R686A; K692A; R694A; H700A; K751A; D786A; T787A; Y789A; T882A; K886A; N888A; A889A; L909A; N985A; N986A; R991A; R1015A; N44A; R45A; R51A; R55A; R59A; R60A; R116A; R165A; N169A; R208A; R209A; T238A; 10 Y239A; K248A; Y256A; R314A; N394A; Q414A; K57A; R61A; H111A; K114A; V164A; R165A; L788A; S790A; R792A; N804A; Y868A; K870A; K878A; K879A; K881A; Y897A; R901A; K906A.

In some embodiments, variant SaCas9 proteins comprise one or more of the following additional mutations: Y211A, W229A, Y230A, R245A, T392A, N419A, 15 L446A, Y651A, R654A, D786A, T787A, Y789A, T882A, K886A, N888A, A889A, L909A, N985A, N986A, R991A, R1015A, N44A, R45A, R51A, R55A, R59A, R60A, R116A, R165A, N169A, R208A, R209A, T238A, Y239A, K248A, Y256A, R314A, N394A, Q414A, K57A, R61A, H111A, K114A, V164A, R165A, L788A, S790A, R792A, N804A, Y868A, K870A, K878A, K879A, K881A, Y897A, R901A, 20 K906A.

In some embodiments, the variant SaCas9 proteins comprise multiple substitution mutations: R245/T392/N419/R654 and Y221/R245/N419/R654 (quadruple variant mutants); N419/R654, R245/R654, Y221/R654, and Y221/N419 (double mutants); R245/N419/R654, Y211/N419/R654, and T392/N419/R654 (triple mutants). In some embodiments the mutants contain alanine in place of the wild type amino acid.

In some embodiments, the variant SaCas9 proteins also comprise one or more mutations that decrease nuclease activity selected from the group consisting of mutations at D10, E477, D556, H701, or D704; and at H557 or N580. In some 30 embodiments, the mutations are: (i) D10A or D10N, (ii) H557A, H557N, or H557Y, (iii) N580A, and/or (iv) D556A.

In some embodiments, the variant SaCas9 proteins comprise one or more of the following mutations: E782K, K929R, N968K, or R1015H. Specifically,

E782K/N968K/R1015H (KKH variant); E782K/K929R/R1015H (KRH variant); or E782K/K929R/N968K/R1015H (KRKH variant).

In some embodiments, the variant Cas9 proteins include mutations to one or more of the following regions to increase specificity:

Functional Region	SpCas9	SaCas9
Residues contacting the DNA of the spacer region	L169; Y450; M495; N497; W659; R661; M694; Q695; H698; A728; Q926; E1108; V1015	Y211; W229; Y230; R245; T392; N419; L446; Y651; R654
Residues that potentially contact the DNA of the non-target strand	N14; S15; S55; S730; K775; S777; R778; R780; K782; R783; K789; K797; Q805; N808; K810; R832; Q844; S845; K848; S851; K855; R859; K862; K890; Q920; K961; S964; K968; K974; R976; N980; H982; K1003; K1014; S1040; N1041; N1044; K1047; K1059; R1060; K1200; H1241; Q1254; Q1256; K1289; K1296; K1297; K1300; H1311; K1325	Q488A; N492A; Q495A; R497A; N498A; R499; Q500; K518; K523; K525; H557; R561; K572; R634; R654; G655; N658; S662; N667; R686; K692; R694; H700; K751
Residues contacting the DNA of the PAM region (including direct PAM contacts)	R71; Y72; R78; R165; R403; T404; F405; K1107; S1109; R1114; S1116; K1118; D1135; S1136; K1200; S1216; E1219; R1333; R1335; T1337	D786; T787; Y789; T882; K886; N888; A889; L909; N985; N986; R991; R1015
Residues contacting the RNA of the spacer region	Y72; R75; K76; L101; S104; F105; R115; H116; I135; H160; K163; Y325; H328; R340; F351; D364; Q402; R403; I1110; K1113; R1122; Y1131	N44; R45; R51; R55; R59; R60; R116; R165; N169; R208; R209; Y211; T238; Y239; K248; Y256; R314; N394; Q414
Residues contacting the RNA of the repeat/anti-repeat region	R63; R66; R70; R71; R74; R78; R403; T404; N407; R447; I448; Y450; K510; Y515; R661; V1009; Y1013	K57; R61; H111; K114; V164; R165; L788; S790; R792; N804; Y868; K870; K878; K879; K881; Y897; R901; K906
Residues contacting the RNA stem loops	K30; K33; N46; R40; K44; E57; T62; R69; N77; L455; S460; R467; T472; I473; H721; K742; K1097; V1100; T1102; F1105; K1123; K1124; E1225; Q1272; H1349; S1351; Y1356	R47; K50; R54; R58; H62; R209; E213; S219; R452; K459; R774; N780; R781; L783

Also provided herein are fusion proteins comprising the isolated variant Cas9 proteins described herein fused to a heterologous functional domain, with an optional intervening linker, wherein the linker does not interfere with activity of the fusion protein. In some embodiments, the heterologous functional domain acts on DNA or protein, e.g., on chromatin. In some embodiments, the heterologous functional domain is a transcriptional activation domain. In some embodiments, the transcriptional activation domain is from VP64 or NF- κ B p65. In some embodiments, the heterologous functional domain is a transcriptional silencer or transcriptional repression domain. In some embodiments, the transcriptional repression domain is a Kruppel-associated box (KRAB) domain, ERF repressor domain (ERD), or mSin3A interaction domain (SID). In some embodiments, the transcriptional silencer is Heterochromatin Protein 1 (HP1), e.g., HP1 α or HP1 β . In some embodiments, the heterologous functional domain is an enzyme that modifies the methylation state of DNA. In some embodiments, the enzyme that modifies the methylation state of DNA is a DNA methyltransferase (DNMT) or the entirety or the dioxygenase domain of a TET protein, e.g., a catalytic module comprising the cysteine-rich extension and the 2OGFeDO domain encoded by 7 highly conserved exons, e.g., the Tet1 catalytic domain comprising amino acids 1580-2052, Tet2 comprising amino acids 1290-1905 and Tet3 comprising amino acids 966-1678. In some embodiments, the TET protein or TET-derived dioxygenase domain is from TET1. In some embodiments, the heterologous functional domain is an enzyme that modifies a histone subunit. In some embodiments, the enzyme that modifies a histone subunit is a histone acetyltransferase (HAT), histone deacetylase (HDAC), histone methyltransferase (HMT), or histone demethylase. In some embodiments, the heterologous functional domain is a biological tether. In some embodiments, the biological tether is MS2, Csy4 or lambda N protein. In some embodiments, the heterologous functional domain is FokI.

Also provided herein are nucleic acids, isolated nucleic acids encoding the variant Cas9 proteins described herein, as well as vectors comprising the isolated nucleic acids, optionally operably linked to one or more regulatory domains for expressing the variant Cas9 proteins described herein. Also provided herein are host cells, e.g., bacterial, yeast, insect, or mammalian host cells or transgenic animals (e.g.,

mice), comprising the nucleic acids described herein, and optionally expressing the variant Cas9 proteins described herein.

Also provided herein are isolated nucleic acids encoding the Cas9variants, as well as vectors comprising the isolated nucleic acids, optionally operably linked to 5 one or more regulatory domains for expressing the variants, and host cells, e.g., mammalian host cells, comprising the nucleic acids, and optionally expressing the variant proteins.

Also provided herein are methods of altering the genome or epigenome of a cell, by expressing in the cell or contacting the cell with variant Cas9 proteins or 10 fusion proteins as described herein, and at least one guide RNA having a region complementary to a selected portion of the genome of the cell with optimal nucleotide spacing at the genomic target site. The methods can include contacting the cell with a nucleic acid encoding the Cas9 protein and the guide RNA, e.g., in a single vector; contacting the cell with a nucleic acid encoding the Cas9 protein and a nucleic acid 15 encoding the guide RNA, e.g., in multiple vectors; and contacting the cell with a complex of purified Cas9 protein and synthetic or purified gRNA, *inter alia*. In some embodiments, the cell stably expresses one or both of the gRNA or the variant protein/fusion protein, and the other element is transfected or introduced into the cell. For example, the cell may stably express a variant protein or fusion protein as 20 described herein, and the methods can include contacting the cell with a synthetic gRNA, a purified recombinantly produced gRNA, or a nucleic acid encoding the gRNA. In some embodiments, the variant protein or fusion protein comprises one or more of a nuclear localization sequence, cell penetrating peptide sequence, and/or affinity tag.

Also provided herein are methods for altering, e.g., selectively altering, an 25 isolated dsDNA molecule *in vitro* by contacting the dsDNA with a purified variant protein or fusion protein as described herein, and a guide RNA having a region complementary to a selected portion of the dsDNA molecule.

Unless otherwise defined, all technical and scientific terms used herein have 30 the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Methods and materials are described herein for use in the present invention; other, suitable methods and materials known in the art can also be used. The materials, methods, and examples are illustrative only and not intended

to be limiting. All publications, patent applications, patents, sequences, database entries, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.

5 Other features and advantages of the invention will be apparent from the following detailed description and figures, and from the claims.

DESCRIPTION OF DRAWINGS

FIGs. 1A-E | Identification and characterization of SpCas9 variants

bearing mutations in residues that form non-specific DNA contacts. A, Schematic depicting wild-type SpCas9 recognition of the target DNA:sgRNA duplex, based on PDB 4OOG and 4UN3 (adapted from refs. 31 and 32, respectively). B, Characterization of SpCas9 variants that contain alanine substitutions in positions that form hydrogen bonds to the DNA backbone. Wild-type SpCas9 and variants were assessed using the human cell EGFP disruption assay when programmed with a perfectly matched sgRNA or four other sgRNAs that encode mismatches to the target site. Error bars represent s.e.m. for n = 3; mean level of background EGFP loss represented by red dashed line (for this panel and panel C). C and D, On-target activities of wild-type SpCas9 and SpCas9-HF1 across 24 sites assessed by EGFP disruption assay (panel C) and 13 endogenous sites by T7E1 assay (panel D). Error bars represent s.e.m. for n = 3. E, Ratio of on-target activity of SpCas9-HF1 to wild-type SpCas9 (from panels C and D).

FIG. 2A-C | Genome-wide specificities of wild-type SpCas9 and SpCas9-HF1 with sgRNAs for standard target sites. A, Off-target sites of wild-type SpCas9 and SpCas9-HF1 with eight sgRNAs targeted to endogenous human genes, as determined by GUIDE-seq. Read counts represent a measure of cleavage frequency at a given site; mismatched positions within the spacer or PAM are highlighted in color. B, Summary of the total number of genome-wide off-target sites identified by GUIDE-seq for wild-type SpCas9 and SpCas9-HF1 from the eight sgRNAs used in panel A. C, Off-target sites identified for wild-type SpCas9 and SpCas9-HF1 for the eight sgRNAs, binned according to the total number of mismatches (within the protospacer and PAM) relative to the on-target site.

FIG. 3A-C | Validation of SpCas9-HF1 specificity improvements by targeted deep sequencing of off-target sites identified by GUIDE-seq. A, Mean

on-target percent modification determined by deep sequencing for wild-type SpCas9 and SpCas9-HF1 with six sgRNAs from Fig. 2. Error bars represent s.e.m. for $n = 3$. B, Percentage of deep sequenced on-target sites and GUIDE-seq detected off-target sites that contain indel mutations. Triplicate experiments are plotted for wild-type SpCas9, SpCas9-HF1, and control conditions. Filled circles below the x-axis represent replicates for which no insertion or deletion mutations were observed. Off-target sites that could not be amplified by PCR are shown in red text with an asterisk. Hypothesis testing using a one-sided Fisher exact test with pooled read counts found significant differences ($p < 0.05$ after adjusting for multiple comparisons using the Benjamini-Hochberg method) for comparisons between SpCas9-HF1 and the control condition only at EMX1-1 off-target 1 and FANCF-3 off-target 1. Significant differences were also found between wild-type SpCas9 and SpCas9-HF1 at all off-target sites, and between wild-type SpCas9 and the control condition at all off-target sites except RUNX1-1 off-target 2. C, Scatter plot of the correlation between GUIDE-seq read counts (from Fig. 2A) and mean percent modification determined by deep sequencing at on- and off-target cleavage sites with wild-type SpCas9.

FIG. 4A-C | Genome-wide specificities of wild-type SpCas9 and SpCas9-HF1 with sgRNAs for non-standard, repetitive sites. A, GUIDE-seq specificity profiles of wild-type SpCas9 and SpCas9-HF1 using two sgRNAs known to cleave large numbers of off-target sites (Fu et al., Nat Biotechnol 31, 822-826 (2013); Tsai et al., Nat Biotechnol 33, 187-197 (2015)). GUIDE-seq read counts represent a measure of cleavage efficiency at a given site; mismatched positions within the spacer or PAM are highlighted in color; red circles indicate sites likely to have the indicated bulge (Lin et al., Nucleic Acids Res 42, 7473-7485 (2014)) at the sgRNA-DNA interface; blue circles indicate sites that may have an alternative gapped alignment relative to the one shown (see Fig. 8). B, Summary of the total number of genome-wide off-target sites identified by GUIDE-seq for wild-type SpCas9 and SpCas9-HF1 from the two sgRNAs used in panel A. C, Off-target sites identified with wild-type SpCas9 or SpCas9-HF1 for VEGFA sites 2 and 3, binned according to the total number of mismatches (within the protospacer and PAM) relative to the on-target site. Off-target sites marked with red circles in panel A are not included in these counts; sites marked with blue circles in panel A are counted with the number of mismatches in the non-gapped alignment.

FIG. 5A-D | Activities of SpCas9-HF1 derivatives bearing additional substitutions. A, Human cell EGFP disruption activities of wild-type SpCas9, SpCas9-HF1, and SpCas9-HF1-derivative variants with eight sgRNAs. SpCas9-HF1 harbors N497A, R661A, Q695, and Q926A mutations; HF2 = HF1 + D1135E; HF3 = HF1 + L169A; HF4 = HF1 + Y450A. Error bars represent s.e.m. for n = 3; mean level of background EGFP loss represented by the red dashed line. B, Summary of the on-target activity when using SpCas9-HF variants compared to wild-type SpCas9 with the eight sgRNAs from panel a. The median and interquartile range are shown; the interval showing >70% of wild-type activity is highlighted in green. C, Mean percent modification by SpCas9 and HF variants at the FANCF site 2 and VEGFA site 3 on-target sites, as well as off-target sites from Figs. 2A and 4A resistant to the effects of SpCas9-HF1. Percent modification determined by T7E1 assay; background indel percentages were subtracted for all experiments. Error bars represent s.e.m. for n = 3. D, Specificity ratios of wild-type SpCas9 and HF variants with the FANCF site 2 or VEGFA site 3 sgRNAs, plotted as the ratio of on-target to off-target activity (from panel C).

FIGs. 5E-F | Genome-wide specificities of SpCas9-HF1, -HF2, and -HF4 with sgRNAs that have off-target sites resistant to the effects of SpCas9-HF1. E, Mean GUIDE-seq tag integration at the intended on-target site for GUIDE-seq experiments in panel F. SpCas9-HF1 = N497A/R661A/Q695A/Q926A; HF2 = HF1 + D1135E; HF4 = HF1 + Y450A. Error bars represent s.e.m. for n = 3. F, GUIDE-seq identified off-target sites of SpCas9-HF1, -HF2, or -HF4 with either the FANCF site 2 or VEGFA site 3 sgRNAs. Read counts represent a measure of cleavage frequency at a given site; mismatched positions within the spacer or PAM are highlighted in color. The fold-improvement in off-target discrimination was calculated by normalizing the off-target read counts for an SpCas9-HF variant to the read counts at the on-target site prior to comparison between SpCas9-HF variants.

FIG. 6A-B | SpCas9 interaction with the sgRNA and target DNA. A, Schematic illustrating the SpCas9:sgRNA complex, with base pairing between the sgRNA and target DNA. B, Structural representation of the SpCas9:sgRNA complex bound to the target DNA, from PDB: 4UN3 (ref. 32). The four residues that form hydrogen bond contacts to the target-strand DNA backbone are highlighted in blue; the HNH domain is hidden for visualization purposes.

FIG. 7A-D | On-target activity comparisons of wild-type and SpCas9-HF1 with various sgRNAs used for GUIDE-seq experiments. A and C, Mean GUIDE-seq tag integration at the intended on-target site for GUIDE-seq experiments shown in Figs. 2A and 4A (panels 7A and 7C, respectively), quantified by restriction fragment length polymorphism assay. Error bars represent s.e.m. for n = 3. b and d, Mean percent modification at the intended on-target site for GUIDE-seq experiments shown in Figs. 2A and 4A (panels 7B and 7D, respectively), detected by T7E1 assay. Error bars represent s.e.m. for n = 3.

FIG. 8 | Potential alternate alignments for VEGFA site 2 off-target sites.

10 Ten VEGFA site 2 off-target sites identified by GUIDE-seq (left) that may potentially be recognized as off-target sites that contain single nucleotide gaps (Lin et al., Nucleic Acids Res 42, 7473-7485 (2014))) (right), aligned using Geneious (Kearse et al., Bioinformatics 28, 1647-1649 (2012)) version 8.1.6.

15 **FIG. 9 | Activities of wild-type SpCas9 and SpCas9-HF1 with truncated sgRNAs14.** EGFP disruption activities of wild-type SpCas9 and SpCas9-HF1 using full-length or truncated sgRNAs targeted to four sites in EGFP. Error bars represent s.e.m. for n = 3; mean level of background EGFP loss in control experiments is represented by the red dashed line

20 **FIG. 10 | Wild-type SpCas9 and SpCas9-HF1 activities with sgRNAs bearing 5'-mismatched guanine bases.** EGFP disruption activities of wild-type SpCas9 and SpCas9-HF1 with sgRNAs targeted to four different sites. For each target site, sgRNAs either contain the matched non-guanine 5'-base or a 5'-guanine that is intentionally mismatched.

25 **FIG. 11 | Titrating the amount of wild-type SpCas9 and SpCas9-HF1 expression plasmids.** Human cell EGFP disruption activities from transfections with varying amounts of wild-type and SpCas9-HF1 expression plasmids. For all transfections, the amount of sgRNA-containing plasmid was fixed at 250 ng. Two sgRNAs targeting separate sites were used; Error bars represent s.e.m. for n = 3; mean level of background EGFP loss in negative controls is represented by the red dashed line.

30 **FIG. 12A-D | Altering the PAM recognition specificity of SpCas9-HF1.** A, Comparison of the mean percent modification of on-target endogenous human sites by SpCas9-VQR (ref. 15) and an improved SpCas9-VRQR using 8 sgRNAs,

quantified by T7E1 assay. Both variants are engineered to recognize an NGAN PAM. Error bars represent s.e.m. for n = 2 or 3. B, On-target EGFP disruption activities of SpCas9-VQR and SpCas9-VRQR compared to their -HF1 counterparts using eight sgRNAs. Error bars represent s.e.m. for n = 3; mean level of background EGFP loss in negative controls represented by the red dashed line. C, Comparison of the mean on-target percent modification by SpCas9-VQR and SpCas9-VRQR compared to their -HF1 variants at eight endogenous human gene sites, quantified by T7E1 assay. Error bars represent s.e.m. for n = 3; ND, not detectable. D, Summary of the fold-change in on-target activity when using SpCas9-VQR or SpCas9-VRQR compared to their corresponding -HF1 variants (from panels B and C). The median and interquartile range are shown; the interval showing >70% of wild-type activity is highlighted in green.

FIGs. 13A-B | Activities of wild-type SpCas9, SpCas9-HF1, and wild-type SpCas9 derivatives bearing one or more alanine substitutions at positions that can potentially contact the non-target DNA strand. A and B, Nucleases were assessed using the EGFP disruption assay, with an sgRNA that is perfectly matched to a site in the *EGFP* gene as well as an sgRNA that is intentionally mismatched at positions 11 and 12 (panel A) or positions 9 and 10 (panel B). Mismatched positions are numbered with position 20 being the most PAM-distal position; the red dashed line represents background levels of EGFP disruption; HF1 = SpCas9 with N497A/R661A/Q695A/Q926A substitutions.

FIGs. 14A-B | Activity of wild-type SpCas9, SpCas9-HF1, and SpCas9-HF1 derivatives bearing one or more alanine substitutions at positions that can potentially contact the non-target DNA strand. A and B, Nucleases were assessed using the EGFP disruption assay, with an sgRNA that is perfectly matched to a site in the *EGFP* gene as well as an sgRNA that is intentionally mismatched at positions 11 and 12 (panel A) or positions 9 and 10 (panel B). Mismatched positions are numbered with position 20 being the most PAM-distal position; the red dashed line represents background levels of EGFP disruption; HF1 = SpCas9 with N497A/R661A/Q695A/Q926A substitutions.

FIG. 15 | Activity of wild-type SpCas9, SpCas9-HF1, and SpCas9(Q695A/Q926A) derivatives bearing one or more alanine substitutions at positions that can potentially contact the non-target DNA strand. Nucleases were

assessed using the EGFP disruption assay, with an sgRNA that is perfectly matched to a site in the *EGFP* gene as well as an sgRNA that is intentionally mismatched at positions 11 and 12. Mismatched positions are numbered with position 20 being the most PAM-distal position; the red dashed line represents background levels of EGFP disruption; HF1 = SpCas9 with N497A/R661A/Q695A/Q926A substitutions; Db = SpCas9 with Q695A/Q926A substitutions.

FIG. 16 | Activities of wild-type SpCas9, SpCas9-HF1, and eSpCas9-1.1 using a matched sgRNA and sgRNAs with single mismatches at each position in the spacer. Nucleases were assessed using the EGFP disruption assay, with an sgRNA that is perfectly matched to a site in the *EGFP* gene (“matched”) as well as sgRNAs that are intentionally mismatched at the positions indicated. Mismatched positions are numbered with position 20 being the most PAM-distal position. SpCas9-HF1 = N497A/R661A/Q695A/Q926A, and eSP1.1 = K848A/K1003A/R1060A.

FIGs. 17A-B | Activities of wild-type SpCas9 and variants using a matched sgRNA and sgRNAs with single mismatches at various positions in the spacer. (A) The activities of SpCas9 nucleases containing combinations of alanine substitutions (directed to positions that may potentially contact the target or non-target DNA strands) were assessed using the EGFP disruption assay, with an sgRNA that is perfectly matched to a site in the *EGFP* gene (“matched”) as well as sgRNAs that are intentionally mismatched at the indicated spacer positions. (B) A subset of these nucleases from (a) were tested using the remainder of all possible singly mismatched sgRNAs for the matched on-target site. Mismatched positions are numbered with position 20 being the most PAM-distal position. mm = mismatch, WT = wild-type, Db = Q695A/Q926A, HF1 = N497A/R661A/Q695A/Q926A, 1.0 = K810A/K1003A/R1060A, and 1.1 = K848A/K1003A/R1060A.

FIG 18 | Activities of wild-type SpCas9 and variants using a matched sgRNA and sgRNAs with mismatches at various individual positions in the spacer. The activities of SpCas9 nucleases containing combinations of alanine substitutions (directed to positions that may potentially contact the target or non-target DNA strands), were assessed using the EGFP disruption assay with an sgRNA that is perfectly matched to a site in the *EGFP* gene (“matched”) as well as sgRNAs that are intentionally mismatched at the indicated positions. Db = Q695A/Q926A, HF1 = N497A/R661A/Q695A/Q926A.

FIGs. 19A-B | Activities of wild-type SpCas9 and variants using a matched sgRNA and sgRNAs with mismatches at various individual positions in the spacer. (A) The on-target activities of SpCas9 nucleases containing combinations of alanine substitutions (directed to positions that may potentially contact the target or non-target DNA strands), were assessed using the EGFP disruption assay with two sgRNAs that are perfectly matched to a site in the *EGFP* gene. **(B)** A subset of these nucleases from (a) were tested with sgRNAs containing mismatches at positions 12, 14, 16, or 18 (of sgRNA ‘site 1’) in their spacer sequence to determine whether intolerance to mismatches was imparted by these substitutions. Db = Q695A/Q926A, HF1 = N497A/R661A/Q695A/Q926A.

FIG. 20 | Structural comparison of SpCas9 (top) and SaCas9 (bottom) illustrating the similarity between the positions of the mutations in the quadruple mutant constructs (shown in yellow sphere representation). Also, shown in pink sphere representation are other residues that contact the DNA backbone.

FIGs. 21A-B | Activity of wild-type SaCas9 and SaCas9 derivatives bearing one or more alanine substitutions. A and B, SaCas9 substitutions were directed to positions that may potentially contact the target DNA strand (panel A) or have previously been shown to influence PAM specificity (panel B). Nucleases were assessed using the EGFP disruption assay, with an sgRNA that is perfectly matched to a site in the *EGFP* gene as well as an sgRNA that is intentionally mismatched at positions 11 and 12. Mismatched positions are numbered with position 20 being the most PAM-distal position; the red dashed line represents background levels of EGFP disruption.

FIGs. 22A-B | Activities of wild-type (WT) SaCas9 and SaCas9 derivatives bearing one or more alanine substitutions at residues that may potentially contact the target DNA strand. A and B, Nucleases were assessed using the EGFP disruption assay, with an sgRNA that is perfectly matched to a site in the *EGFP* gene (“matched”) and with an sgRNA that is intentionally mismatched at positions 19 and 20. Mismatched positions are numbered with position 20 being the most PAM-distal position.

FIG. 23 | Activities of wild-type (WT) SaCas9 and SaCas9 variants bearing triple combinations of alanine substitutions at residues that may potentially contact the target DNA strand. Nucleases were assessed using the

EGFP disruption assay. Four different sgRNAs were used (matched #1-4), with each of the four target sites also being tested with mismatched sgRNAs known to be efficiently used by wild-type SaCas9. Mismatched sgRNAs for each site are shown to the right of each matched sgRNA (for example, the only mismatched sgRNA for matched site 3 is mm 11&12). Mismatched positions are numbered with position 21 being the most PAM-distal position; mm, mismatch.

FIGs. 24A-B | Activities of wild-type (WT) SaCas9 and SaCas9 derivatives bearing one or more alanine substitutions at residues that may potentially contact the target DNA strand. A and B, SaCas9 variants bearing double (**A**) or triple (**B**) combinations substitutions were assessed against matched and singly mismatched endogenous human gene target sites using the T7E1 assay. Matched ‘on-target’ sites are named according to their gene target site sgRNA number from Kleinstiver et al., *Nature Biotechnology* 2015. Mismatched sgRNAs are numbered with the mismatch occurring at position 21, the most PAM-distal position; mismatched sgRNAs are derived from the matched on-target site that is listed to the left of the mismatched sgRNA.

DETAILED DESCRIPTION

A limitation of the CRISPR-Cas9 nucleases is their potential to induce undesired “off-target” mutations at imperfectly matched target sites (see, for example, Tsai et al., *Nat Biotechnol.* 2015), in some cases with frequencies rivaling those observed at the intended on-target site (Fu et al., *Nat Biotechnol.* 2013). Previous work with CRISPR-Cas9 nucleases has suggested that reducing the number of sequence-specific interactions between the guide RNA (gRNA) and the spacer region of a target site can reduce mutagenic effects at off-target sites of cleavage in human cells (Fu et al., *Nat Biotechnol.* 2014).

This was earlier accomplished by truncating gRNAs at their 5' ends by 2 or 3 nt and it was hypothesized that the mechanism of this increased specificity was a decrease in the interaction energy of the gRNA/Cas9 complex so that it was poised with just enough energy to cleave the on-target site, making it less likely to have enough energy to cleave off-target sites where there would presumably be an energetic penalty due to mismatches in the target DNA site (WO2015/099850).

It was hypothesized that off-target effects (at DNA sites that are imperfect matches or mismatches with the intended target site for the guide RNA) of SpCas9

might be minimized by decreasing non-specific interactions with its target DNA site. SpCas9-sgRNA complexes cleave target sites composed of an NGG PAM sequence (recognized by SpCas9) (Deltcheva, E. et al. *Nature* 471, 602-607 (2011); Jinek, M. et al. *Science* 337, 816-821 (2012); Jiang, W., et al., *Nat Biotechnol* 31, 233-239 (2013); 5 Sternberg, S.H., et al., *Nature* 507, 62-67 (2014)) and an adjacent 20 bp protospacer sequence (which is complementary to the 5' end of the sgRNA) (Jinek, M. et al. *Science* 337, 816-821 (2012); Jinek, M. et al. *Elife* 2, e00471 (2013); Mali, P. et al., *Science* 339, 823-826 (2013); Cong, L. et al., *Science* 339, 819-823 (2013)). It was previously theorized that the SpCas9-sgRNA complex may possess more energy than 10 is needed for recognizing its intended target DNA site, thereby enabling cleavage of mismatched off-target sites (Fu, Y., et al., *Nat Biotechnol* 32, 279-284 (2014)). One can envision that this property might be advantageous for the intended role of Cas9 in adaptive bacterial immunity, giving it the capability to cleave foreign sequences that may become mutated. This excess energy model is also supported by previous studies 15 demonstrating that off-target effects can be reduced (but not eliminated) by decreasing SpCas9 concentration (Hsu, P.D. et al. *Nat Biotechnol* 31, 827-832 (2013); Pattanayak, V. et al. *Nat Biotechnol* 31, 839-843 (2013)) or by reducing the complementarity length of the sgRNA (Fu, Y., et al., *Nat Biotechnol* 32, 279-284 (2014)), although other interpretations for this effect have also been proposed (Josephs, 20 E.A. et al. *Nucleic Acids Res* 43, 8924-8941 (2015); Sternberg, S.H., et al. *Nature* 527, 110-113 (2015); Kiani, S. et al. *Nat Methods* 12, 1051-1054 (2015))). Structural data suggests that the SpCas9-sgRNA-target DNA complex may be stabilized by 25 several SpCas9-mediated DNA contacts, including direct hydrogen bonds made by four SpCas9 residues (N497, R661, Q695, Q926) to the phosphate backbone of the target DNA strand (Nishimasu, H. et al. *Cell* 156, 935-949 (2014); Anders, C., et al. *Nature* 513, 569-573 (2014)) (**Fig. 1a** and **Figs. 6a and 6b**). The present inventors envisioned that disruption of one or more of these contacts might energetically poised the SpCas9-sgRNA complex at a level just sufficient to retain robust on-target activity but with a diminished ability to cleave mismatched off-target sites.

30 As described herein, Cas9 proteins can be engineered to show increased specificity, theoretically by reducing the binding affinity of Cas9 for DNA. Several variants of the widely used *Streptococcus pyogenes* Cas9 (SpCas9) were engineered by introducing individual alanine substitutions into various residues in SpCas9 that

might be expected to interact with phosphates on the DNA backbone using structural information, bacterial selection-based directed evolution, and combinatorial design. The variants were further tested for cellular activity using a robust *E.coli*-based screening assay to assess the cellular activities of these variants; in this bacterial system, cell survival depended on cleavage and subsequent destruction of a selection plasmid containing a gene for the toxic gyrase poison ccdB and a 23 base pair sequence targeted by a gRNA and SpCas9, and led to identification of residues that were associated with retained or lost activity. In addition, another SpCas9 variant was identified and characterized, which exhibited improved target specificity in human cells.

Furthermore, activities of single alanine substitution mutants of SpCas9 as assessed in the bacterial cell-based system indicated that survival percentages between 50-100% usually indicated robust cleavage, whereas 0% survival indicated that the enzyme had been functionally compromised. Additional mutations of SpCas9 were then assayed in bacteria to include: R63A, R66A, R69A, R70A, R71A, Y72A, R74A, R75A, K76A, N77A, R78A, R115A, H160A, K163A, R165A, L169A, R403A, T404A, F405A, N407A, R447A, N497A, I448A, Y450A, S460A, M495A, K510A, Y515A, R661A, M694A, Q695A, H698A, Y1013A, V1015A, R1122A, K1123A, K1124A, K1158A, K1185A, K1200A, S1216A, Q1221A, K1289A, R1298A, K1300A, K1325A, R1333A, K1334A, R1335A, and T1337A. With the exception of 2 mutants (R69A and F405A) that had < 5% survival in bacteria, all of these additional single mutations appeared to have little effect on the on-target activity of SpCas9 (>70% survival in the bacterial screen).

To further determine whether the variants of Cas9 identified in the bacterial screen functioned efficiently in human cells, various alanine substitution Cas9 mutants were tested using a human U2OS cell-based EGFP-disruption assay. In this assay, successful cleavage of a target site in the coding sequence of a single integrated, constitutively expressed EGFP gene led to the induction of indel mutations and disruption of EGFP activity, which was quantitatively assessed by flow cytometry (see, for example, Reyen et al., *Nat Biotechnol.* 2012 May;30(5):460-5).

These experiments show that the results obtained in the bacterial cell-based assay correlate well with nuclease activities in human cells, suggesting that these engineering strategies could be extended to Cas9s from other species and different

cells. Thus these findings provide support for SpCas9 and SaCas9 variants, referred to collectively herein as “variants” or “the variants”.

All of the variants described herein can be rapidly incorporated into existing and widely used vectors, e.g., by simple site-directed mutagenesis, and because they require only a small number of mutations, the variants should also work with other previously described improvements to the SpCas9 platform (e.g., truncated sgRNAs (Tsai et al., *Nat Biotechnol* 33, 187-197 (2015); Fu et al., *Nat Biotechnol* 32, 279-284 (2014)), nickase mutations (Mali et al., *Nat Biotechnol* 31, 833-838 (2013); Ran et al., *Cell* 154, 1380-1389 (2013)), FokI-dCas9 fusions (Guilinger et al., *Nat Biotechnol* 32, 577-582 (2014); Tsai et al., *Nat Biotechnol* 32, 569-576 (2014); WO2014144288); and engineered CRISPR-Cas9 nucleases with altered PAM specificities (Kleinsteiver et al., *Nature*. 2015 Jul 23;523(7561):481-5).

Thus, provided herein are Cas9 variants, including SpCas9 variants. The SpCas9 wild type sequence is as follows:

15	10	20	30	40	50	60
	MDKKYSIGLD	IGTNSVGWAV	ITDEYKVPSK	KFKVLGNTDR	HSIKKNLIGA	LLFDSGETAЕ
20	70	80	90	100	110	120
	ATRLKRTARR	RYTRRKKNRIC	YLQEIFSNEМ	AKVDDSFTHR	LEESFLVEED	KKHERHPIFG
25	130	140	150	160	170	180
	NIVDEVAYHE	KYPTIYHLRK	KLVDSTDKAD	LRLIYLALAH	MIKFRGHFLI	EGDLNPDNSD
30	190	200	210	220	230	240
	VDKLFIQQLVQ	TYNQLFEENP	INASGVDAKA	IILSARLSKSR	RLENLIAQLP	GEKKNGLFGN
35	250	260	270	280	290	300
	LIALSLGLTP	NFKSNFDLAE	DAKLQLSKDT	YDDDLDNLLA	QIGDQYADLF	LAAKNLSDAI
40	310	320	330	340	350	360
	LLSDILRVNT	EITKAPLSAS	MIKRYDEHHQ	DLTLLKALVR	QQLEPEKYKEI	FFDQSKNGYA
45	370	380	390	400	410	420
	GYIDGGASQE	EFYKFIKPIL	EKMDGTEELL	VKLNREDILR	KQRTFDNGSI	PHQIHLGELH
	430	440	450	460	470	480
	AILRROQEDFY	PFLKDNREKI	EKILTFRIPY	YVGPLARGNS	RFAMTRKSE	ETITPWNFEE
50	490	500	510	520	530	540
	VVDKGASAQS	FIERMTNFDK	NLPNEKVLPK	HSLLYEFITV	YNELTKVKYV	TEGMRKPAFL
55	550	560	570	580	590	600
	SGEQKKAIVD	LLFKTNRKVT	VKQLKEDYFK	KIECFDSVEI	SGVEDRFNAS	LGTYHDLKИ
60	610	620	630	640	650	660
	IKDKDFLDNE	ENEDILEDIV	LTLTLFEDRE	MIEERLKYA	HLFDDKVMKQ	LKRRRYTGWG
65	670	680	690	700	710	720
	RLSRKLINGI	RDHQSGKTIIL	DFLKSDGFGAN	RNFMQLIHDD	SLTFKEDIQK	AQVSGQGDSDL

	730	740	750	760	770	780
	HEHIANLAGS	PAIKKGILQ	VKVVDELVKV	MGRHKPENIV	IEMARENQTT	QKGQKNSRER
5	790	800	810	820	830	840
	MKRIEEGIKE	LGSQILKEHP	VENTQLQNEK	LYLYYLQNGR	DMYVDQELDI	NRLSDYDVDH
	850	860	870	880	890	900
10	IVPQSFLKDD	SIDNKVLTRS	DKNRGKSDNV	PSEEVVKMK	NYWRQLLNAK	LITQRKFDNL
	910	920	930	940	950	960
	TKAERGGLSE	LDKAGFIKRQ	LVETRQITKH	VAQILDLSRMN	TKYDENDKLI	REVKVITLKS
15	970	980	990	1000	1010	1020
	KLVSDFRKDF	QFYKVREINN	YHHAHDAYLN	AVVGTALIKK	YPKLESEFVY	GDYKVYDVRK
	1030	1040	1050	1060	1070	1080
	MIAKSEQEIG	KATAKYFFYS	NIMNFFKTEI	TLANGEIRKR	PLIETNGETG	EIVWDKGRDF
20	1090	1100	1110	1120	1130	1140
	ATVRKVLSMP	QVNIVKKTEV	QTGGFSKESI	LPKRNSDKLI	ARKKDWDPKK	YGGFDSPTVA
	1150	1160	1170	1180	1190	1200
25	YSVLVVAKVE	KGKSKKLKS	KELLGITIME	RSSFEKNEID	FLEAKGYKEV	KKDLIILKLPK
	1210	1220	1230	1240	1250	1260
	YSLFELENGR	KRMLASAGEL	QKGNELALPS	KYVNFLYLAS	HYEKLKGSPE	DNEQKQLFVE
	1270	1280	1290	1300	1310	1320
30	QHKHYLDEII	EQISEFSKRV	ILADANLDKV	LSAYNKHRDK	PIREQAENII	HLFTLTNLGA
	1330	1340	1350	1360		
	PAAFKYFDTT	IDRKRYTSTK	EVLDATLIHQ	SITGLYETRI	DLSQLGGD	(SEQ ID NO:1)

The SpCas9 variants described herein can include the amino acid sequence of SEQ ID NO:1, with mutations (i.e., replacement of the native amino acid with a different amino acid, e.g., alanine, glycine, or serine), at one or more of the following positions: N497, R661, Q695, Q926 (or at positions analogous thereto). In some embodiments, the SpCas9 variants are at least 80%, e.g., at least 85%, 90%, or 95% identical to the amino acid sequence of SEQ ID NO:1, e.g., have differences at up to 5%, 10%, 15%, or 20% of the residues of SEQ ID NO:1 replaced, e.g., with conservative mutations, in addition to the mutations described herein. In preferred embodiments, the variant retains desired activity of the parent, e.g., the nuclease activity (except where the parent is a nickase or a dead Cas9), and/or the ability to interact with a guide RNA and target DNA).

To determine the percent identity of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). The

length of a reference sequence aligned for comparison purposes is at least 80% of the length of the reference sequence, and in some embodiments is at least 90% or 100%. The nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same 5 nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein nucleic acid “identity” is equivalent to nucleic acid “homology”). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced 10 for optimal alignment of the two sequences. Percent identity between two polypeptides or nucleic acid sequences is determined in various ways that are within the skill in the art, for instance, using publicly available computer software such as Smith Waterman Alignment (Smith, T. F. and M. S. Waterman (1981) *J Mol Biol* 147:195-7); “BestFit” (Smith and Waterman, *Advances in Applied Mathematics*, 482-15 489 (1981)) as incorporated into GeneMatcher PlusTM, Schwarz and Dayhof (1979) *Atlas of Protein Sequence and Structure*, Dayhof, M.O., Ed, pp 353-358; BLAST program (Basic Local Alignment Search Tool; (Altschul, S. F., W. Gish, et al. (1990) *J Mol Biol* 215: 403-10), BLAST-2, BLAST-P, BLAST-N, BLAST-X, WU-BLAST-2, ALIGN, ALIGN-2, CLUSTAL, or Megalign (DNASTAR) software. In addition, 20 those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the length of the sequences being compared. In general, for proteins or nucleic acids, the length of comparison can be any length, up to and including full length (e.g., 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100%). For purposes of the present 25 compositions and methods, at least 80% of the full length of the sequence is aligned.

For purposes of the present invention, the comparison of sequences and determination of percent identity between two sequences can be accomplished using a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.

30 Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine.

In some embodiments, the SpCas9 variants include one of the following sets of mutations: N497A/R661A/Q695/Q926A (quadruple alanine mutant); Q695A/Q926A (double alanine mutant); R661A/Q695A/Q926A and N497A/Q695A/Q926A (triple alanine mutants). In some embodiments, the additional substitution mutations at L169 and/or Y450 might be added to these double-, triple, and quadruple mutants or added to single mutants bearing substitutions at Q695 or Q926. In some embodiments, the mutants have alanine in place of the wild type amino acid. In some embodiments, the mutants have any amino acid other than arginine or lysine (or the native amino acid).

In some embodiments, the SpCas9 variants also include one of the following mutations, which reduce or destroy the nuclease activity of the Cas9: D10, E762, D839, H983, or D986 and H840 or N863, e.g., D10A/D10N and H840A/H840N/H840Y, to render the nuclease portion of the protein catalytically inactive; substitutions at these positions could be alanine (as they are in Nishimasu al., Cell 156, 935–949 (2014)), or other residues, e.g., glutamine, asparagine, tyrosine, serine, or aspartate, e.g., E762Q, H983N, H983Y, D986N, N863D, N863S, or N863H (see WO 2014/152432). In some embodiments, the variant includes mutations at D10A or H840A (which creates a single-strand nickase), or mutations at D10A and H840A (which abrogates nuclease activity; this mutant is known as dead Cas9 or dCas9).

The SpCas9 N497A/R661A/Q695A/R926A mutations have analogous residues in *Staphylococcus aureus* Cas9 (SaCas9); see FIG. 20. Mutations to the residues contacting the DNA or RNA backbone are expected to increase the specificity of SaCas9 as we've observed for SpCas9. Thus, also provided herein are SaCas9 variants.

The SaCas9 wild type sequence is as follows:

	10	20	30	40	50
MKRNYILGLD	IGITSVGYGT	IDYETRDVID	AGVRLFKEAN	VENNEGRRSK	
60	70	80	90	100	
RGARRLKRRR	RHRIQRVKKL	LFDYNLLTDH	SELSGINPYE	ARVKGLSQKL	
110	120	130	140	150	
SEEEFSAALL	HLAKRRGVHN	VNEVEEDTGN	ELSTKEQISR	NSKALEEKYV	
160	170	180	190	200	
AELQLERLKK	DGEVRGSINR	FKTSVDYVKEA	KQLLKVKQKAY	HQLDQSFIDT	
210	220	230	240	250	
YIDLLETRRT	YYEGPGEGSP	FGWKDIKEWY	EMLMGHCTYF	PEELRSVKYA	
260	270	280	290	300	
YNADLYNALN	DLNNLVITRD	ENEKLEYYYEK	FQIIENVFKQ	KKKPTILKQIA	

	310	320	330	340	350
	KEILVNEEDI	KGYRVTSTGK	PEFTNLKVYH	DIKDITARKE	IIENAEELLDQ
	360	370	380	390	400
5	IAKILTIYQS	SEDIQEELTN	LNSELTQEEI	EQISNLKGYT	GTHNLSLKAI
	410	420	430	440	450
	NLILDELWHT	NDNQIAIFNR	LKLVPKKVDL	SQQKEIPTTL	VDDFILSPVV
	460	470	480	490	500
	KRSFIQSIKV	INAIKKYGL	PNDIIIIELAR	EKNSKDAQKM	INEMQKRNRQ
	510	520	530	540	550
10	TNERIEEIIR	TTGKENAKYL	IEKIKLHDMQ	EGKCLYSLEA	IPLEDLLNNP
	560	570	580	590	600
	FNYEVVDHIIP	RSVSDNSFN	NKVLVKQEEEN	SKKGNRTPFQ	YLSSSDSKIS
	610	620	630	640	650
15	YETFKKHILN	LAKGKGRISK	TKKEYLLEER	DINRFSVQKD	FINRNLVDTR
	660	670	680	690	700
	YATRGLMNLL	RSYFRVNINLD	VKVKSINGGF	TSFLRRWKWF	KKERNKGYKH
	710	720	730	740	750
	HAEDALIIAN	ADFIGKEWKK	LDKAKKVMEN	QMFEEKQAES	MPEIETEQEY
	760	770	780	790	800
20	KEIFITPHQI	KHIKDFKDYK	YSHRVDKKPN	RELINDTLYS	TRKDDKGNTL
	810	820	830	840	850
	IVNNNLNGLYD	KDNDKLKKLI	NKSPEKLLMY	HHDPQTYQKL	KLIMEQYGDE
	860	870	880	890	900
	KNPLYKYYEE	TGNYLTKYSK	KDNGPVIKKI	KYYGNKLNAAH	LDITDDYPNS
25	910	920	930	940	950
	RNKVVVKLSLK	PYRFDVYLDN	GVYKFVTVKN	LDVIKKENYY	EVNSKCYEEA
	960	970	980	990	1000
	KKLKKISNQA	EFIASFYNNND	LIKINGELYR	VIGVNNNDLLN	RIEVNMIDIT
	1010	1020	1030	1040	1050
30	YREYLENMND	KRPPRIIKTI	ASKTQSIKKY	STDILGNLYE	VKSKKHPQII

KKG (SEQ ID NO:2)

SaCas9 variants described herein include the amino acid sequence of SEQ ID NO:2, with mutations at one, two, three, four, five, or all six of the following 35 positions: Y211, W229, R245, T392, N419, and/or R654, e.g., comprising a sequence that is at least 80% identical to the amino acid sequence of SEQ ID NO:2 with mutations at one, two, three, four five or six of the following positions: Y211, W229, R245, T392, N419, and/or R654.

In some embodiments, the variant SaCas9 proteins also comprise one or more 40 of the following mutations: Y211A; W229A; Y230A; R245A; T392A; N419A; L446A; Y651A; R654A; D786A; T787A; Y789A; T882A; K886A; N888A; A889A; L909A; N985A; N986A; R991A; R1015A; N44A; R45A; R51A; R55A; R59A; R60A; R116A; R165A; N169A; R208A; R209A; Y211A; T238A; Y239A; K248A; Y256A; R314A; N394A; Q414A; K57A; R61A; H111A; K114A; V164A; R165A; 45 L788A; S790A; R792A; N804A; Y868A; K870A; K878A; K879A; K881A; Y897A; R901A; K906A.

In some embodiments, variant SaCas9 proteins comprise one or more of the following additional mutations: Y211A, W229A, Y230A, R245A, T392A, N419A, L446A, Y651A, R654A, D786A, T787A, Y789A, T882A, K886A, N888A, A889A, L909A, N985A, N986A, R991A, R1015A, N44A, R45A, R51A, R55A, R59A, 5 R60A, R116A, R165A, N169A, R208A, R209A, Y211A, T238A, Y239A, K248A, Y256A, R314A, N394A, Q414A, K57A, R61A, H111A, K114A, V164A, R165A, L788A, S790A, R792A, N804A, Y868A, K870A, K878A, K879A, K881A, Y897A, R901A, K906A.

10 In some embodiments, the variant SaCas9 proteins comprise multiple substitution mutations: R245/T392/N419/R654 and Y221/R245/N419/R654 (quadruple variant mutants); N419/R654, R245/R654, Y221/R654, and Y221/N419 (double mutants); R245/N419/R654, Y211/N419/R654, and T392/N419/R654 (triple mutants). In some embodiments the mutants contain alanine in place of the wild type amino acid.

15 In some embodiments, the variant SaCas9 proteins also comprise mutations at E782K, K929R, N968K, and/or R1015H. For example, the KKH variant (E782K/N968K/R1015H), the KRH variant (E782K/K929R/R1015H), or the KRKH variant (E782K/K929R/N968K/R1015H)]

20 In some embodiments, the variant SaCas9 proteins also comprise one or more mutations that decrease nuclease activity selected from the group consisting of mutations at D10, E477, D556, H701, or D704; and at H557 or N580.

In some embodiments, the mutations are: (i) D10A or D10N, (ii) H557A, H557N, or H557Y, (iii) N580A, and/or (iv) D556A.

25 Also provided herein are isolated nucleic acids encoding the Cas9 variants, vectors comprising the isolated nucleic acids, optionally operably linked to one or more regulatory domains for expressing the variant proteins, and host cells, e.g., mammalian host cells, comprising the nucleic acids, and optionally expressing the variant proteins.

30 The variants described herein can be used for altering the genome of a cell; the methods generally include expressing the variant proteins in the cells, along with a guide RNA having a region complementary to a selected portion of the genome of the cell. Methods for selectively altering the genome of a cell are known in the art, see, e.g., US 8,993,233; US 20140186958; US 9,023,649; WO/2014/099744; WO

2014/089290; WO2014/144592; WO144288; WO2014/204578; WO2014/152432;
WO2115/099850; US8,697,359; US20160024529; US20160024524;
US20160024523; US20160024510; US20160017366; US20160017301;
US20150376652; US20150356239; US20150315576; US20150291965;
5 US20150252358; US20150247150; US20150232883; US20150232882;
US20150203872; US20150191744; US20150184139; US20150176064;
US20150167000; US20150166969; US20150159175; US20150159174;
US20150093473; US20150079681; US20150067922; US20150056629;
US20150044772; US20150024500; US20150024499; US20150020223;;
10 US20140356867; US20140295557; US20140273235; US20140273226;
US20140273037; US20140189896; US20140113376; US20140093941;
US20130330778; US20130288251; US20120088676; US20110300538;
US20110236530; US20110217739; US20110002889; US20100076057;
US20110189776; US20110223638; US20130130248; US20150050699;
15 US20150071899; US20150050699; ; US20150045546; US20150031134;
US20150024500; US20140377868; US20140357530; US20140349400;
US20140335620; US20140335063; US20140315985; US20140310830;
US20140310828; US20140309487; US20140304853; US20140298547;
US20140295556; US20140294773; US20140287938; US20140273234;
20 US20140273232; US20140273231; US20140273230; US20140271987;
US20140256046; US20140248702; US20140242702; US20140242700;
US20140242699; US20140242664; US20140234972; US20140227787;
US20140212869; US20140201857; US20140199767; US20140189896;
US20140186958; US20140186919; US20140186843; US20140179770;
25 US20140179006; US20140170753; WO/2008/108989; WO/2010/054108;
WO/2012/164565; WO/2013/098244; WO/2013/176772; US 20150071899;
Makarova et al., "Evolution and classification of the CRISPR-Cas systems" 9(6)
Nature Reviews Microbiology 467-477 (1-23) (Jun. 2011); Wiedenheft et al., "RNA-
guided genetic silencing systems in bacteria and archaea" 482 Nature 331-338 (Feb.
30 16, 2012); Gasiunas et al., "Cas9-crRNA ribonucleoprotein complex mediates specific
DNA cleavage for adaptive immunity in bacteria" 109(39) Proceedings of the
National Academy of Sciences USA E2579-E2586 (Sep. 4, 2012); Jinek et al., "A
Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial

Immunity" 337 Science 816-821 (Aug. 17, 2012); Carroll, "A CRISPR Approach to Gene Targeting" 20(9) Molecular Therapy 1658-1660 (Sep. 2012); U.S. Appl. No. 61/652,086, filed May 25, 2012; Al-Attar et al., Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs): The Hallmark of an Ingenious Antiviral Defense Mechanism in Prokaryotes, *Biol Chem.* (2011) vol. 392, Issue 4, pp. 277-289; Hale et al., Essential Features and Rational Design of CRISPR RNAs That Function With the Cas RAMP Module Complex to Cleave RNAs, *Molecular Cell*, (2012) vol. 45, Issue 3, 292-302.

The variant proteins described herein can be used in place of or in addition to any of the Cas9 proteins described in the foregoing references, or in combination with mutations described therein. In addition, the variants described herein can be used in fusion proteins in place of the wild-type Cas9 or other Cas9 mutations (such as the dCas9 or Cas9 nickase described above) as known in the art, e.g., a fusion protein with a heterologous functional domains as described in US 8,993,233; US 10 20140186958; US 9,023,649; WO/2014/099744; WO 2014/089290; WO2014/144592; WO144288; WO2014/204578; WO2014/152432; WO2115/099850; US8,697,359; US2010/0076057; US2011/0189776; US2011/0223638; US2013/0130248; WO/2008/108989; WO/2010/054108; WO/2012/164565; WO/2013/098244; WO/2013/176772; US20150050699; US 15 20150071899 and WO 2014/124284. For example, the variants, preferably comprising one or more nuclease-reducing, -altering, or -killing mutation, can be fused on the N or C terminus of the Cas9 to a transcriptional activation domain or other heterologous functional domains (e.g., transcriptional repressors (e.g., KRAB, ERD, SID, and others, e.g., amino acids 473-530 of the ets2 repressor factor (ERF) 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 10000 10005 10010 10015 10020 10025 10030 10035 10040 10045 10050 10055 10060 10065 10070 10075 10080 10085 10090 10095 10100 10105 10110 10115 10120 10125 10130 10135 10140 10145 10150 10155 10160 10165 10170 10175 10180 10185 10190 10195 10200 10205 10210 10215 10220 10225 10230 10235 10240 10245 10250 10255 10260 10265 10270 10275 10280 10285 10290 10295 10300 10305 10310 10315 10320 10325 10330 10335 10340 10345 10350 10355 10360 10365 10370 10375 10380 10385 10390 10395 10400 10405 10410 1

(e.g., for methylation of lysine or arginine residues) or histone demethylases (e.g., for demethylation of lysine or arginine residues)) as are known in the art can also be used. A number of sequences for such domains are known in the art, e.g., a domain that catalyzes hydroxylation of methylated cytosines in DNA. Exemplary proteins include 5 the Ten-Eleven-Translocation (TET)1-3 family, enzymes that converts 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) in DNA.

Sequences for human TET1-3 are known in the art and are shown in the following table:

GenBank Accession Nos.		
Gene	Amino Acid	Nucleic Acid
TET1	NP_085128.2	NM_030625.2
TET2*	NP_001120680.1 (var 1)	NM_001127208.2
	NP_060098.3 (var 2)	NM_017628.4
TET3	NP_659430.1	NM_144993.1

* Variant (1) represents the longer transcript and encodes the longer isoform 10 (a). Variant (2) differs in the 5' UTR and in the 3' UTR and coding sequence compared to variant 1. The resulting isoform (b) is shorter and has a distinct C-terminus compared to isoform a.

In some embodiments, all or part of the full-length sequence of the catalytic 15 domain can be included, e.g., a catalytic module comprising the cysteine-rich extension and the 2OGFeDO domain encoded by 7 highly conserved exons, e.g., the Tet1 catalytic domain comprising amino acids 1580-2052, Tet2 comprising amino acids 1290-1905 and Tet3 comprising amino acids 966-1678. See, e.g., Fig. 1 of Iyer et al., *Cell Cycle* 2009 Jun 1;8(11):1698-710. Epub 2009 Jun 27, for an alignment 20 illustrating the key catalytic residues in all three Tet proteins, and the supplementary materials thereof (available at ftp site ftp.ncbi.nih.gov/pub/aravind/DONS/supplementary_material_DONS.html) for full length sequences (see, e.g., seq 2c); in some embodiments, the sequence includes amino acids 1418-2136 of Tet1 or the corresponding region in Tet2/3.

Other catalytic modules can be from the proteins identified in Iyer et al., 2009. 25 In some embodiments, the heterologous functional domain is a biological tether, and comprises all or part of (e.g., DNA binding domain from) the MS2 coat protein, endoribonuclease Csy4, or the lambda N protein. These proteins can be used to recruit RNA molecules containing a specific stem-loop structure to a locale

specified by the dCas9 gRNA targeting sequences. For example, a dCas9 variant fused to MS2 coat protein, endoribonuclease Csy4, or lambda N can be used to recruit a long non-coding RNA (lncRNA) such as XIST or HOTAIR; see, e.g., Keryer-Bibens et al., *Biol. Cell* 100:125–138 (2008), that is linked to the Csy4, MS2 or lambda N binding sequence. Alternatively, the Csy4, MS2 or lambda N protein binding sequence can be linked to another protein, e.g., as described in Keryer-Bibens et al., *supra*, and the protein can be targeted to the dCas9 variant binding site using the methods and compositions described herein. In some embodiments, the Csy4 is catalytically inactive. In some embodiments, the Cas9 variant, preferably a dCas9 variant, is fused to FokI as described in US 8,993,233; US 20140186958; US 9,023,649; WO/2014/099744; WO 2014/089290; WO2014/144592; WO144288; WO2014/204578; WO2014/152432; WO2115/099850; US8,697,359; US2010/0076057; US2011/0189776; US2011/0223638; US2013/0130248; WO/2008/108989; WO/2010/054108; WO/2012/164565; WO/2013/098244; WO/2013/176772; US20150050699; US 20150071899 and WO 2014/204578.

In some embodiments, the fusion proteins include a linker between the dCas9 variant and the heterologous functional domains. Linkers that can be used in these fusion proteins (or between fusion proteins in a concatenated structure) can include any sequence that does not interfere with the function of the fusion proteins. In preferred embodiments, the linkers are short, e.g., 2-20 amino acids, and are typically flexible (i.e., comprising amino acids with a high degree of freedom such as glycine, alanine, and serine). In some embodiments, the linker comprises one or more units consisting of GGGS (SEQ ID NO:3) or GGGGS (SEQ ID NO:4), e.g., two, three, four, or more repeats of the GGGS (SEQ ID NO:5) or GGGGS (SEQ ID NO:6) unit. Other linker sequences can also be used.

In some embodiments, the variant protein includes a cell-penetrating peptide sequence that facilitates delivery to the intracellular space, e.g., HIV-derived TAT peptide, penetratins, transportans, or hCT derived cell-penetrating peptides, see, e.g., Caron et al., (2001) *Mol Ther.* 3(3):310-8; Langel, *Cell-Penetrating Peptides: Processes and Applications* (CRC Press, Boca Raton FL 2002); El-Andaloussi et al., (2005) *Curr Pharm Des.* 11(28):3597-611; and Deshayes et al., (2005) *Cell Mol Life Sci.* 62(16):1839-49.

Cell penetrating peptides (CPPs) are short peptides that facilitate the movement of a wide range of biomolecules across the cell membrane into the cytoplasm or other organelles, e.g. the mitochondria and the nucleus. Examples of molecules that can be delivered by CPPs include therapeutic drugs, plasmid DNA, 5 oligonucleotides, siRNA, peptide-nucleic acid (PNA), proteins, peptides, nanoparticles, and liposomes. CPPs are generally 30 amino acids or less, are derived from naturally or non-naturally occurring protein or chimeric sequences, and contain either a high relative abundance of positively charged amino acids, e.g. lysine or arginine, or an alternating pattern of polar and non-polar amino acids. CPPs that are 10 commonly used in the art include Tat (Frankel et al., (1988) *Cell*. 55:1189-1193, Vives et al., (1997) *J. Biol. Chem.* 272:16010-16017), penetratin (Derossi et al., (1994) *J. Biol. Chem.* 269:10444-10450), polyarginine peptide sequences (Wender et al., (2000) *Proc. Natl. Acad. Sci. USA* 97:13003-13008, Futaki et al., (2001) *J. Biol. Chem.* 276:5836-5840), and transportan (Pooga et al., (1998) *Nat. Biotechnol.* 16:857-861).

CPPs can be linked with their cargo through covalent or non-covalent strategies. Methods for covalently joining a CPP and its cargo are known in the art, e.g. chemical cross-linking (Stetsenko et al., (2000) *J. Org. Chem.* 65:4900-4909, Gait et al. (2003) *Cell. Mol. Life. Sci.* 60:844-853) or cloning a fusion protein (Nagahara et 20 al., (1998) *Nat. Med.* 4:1449-1453). Non-covalent coupling between the cargo and short amphipathic CPPs comprising polar and non-polar domains is established through electrostatic and hydrophobic interactions.

CPPs have been utilized in the art to deliver potentially therapeutic biomolecules into cells. Examples include cyclosporine linked to polyarginine for 25 immunosuppression (Rothbard et al., (2000) *Nature Medicine* 6(11):1253-1257), siRNA against cyclin B1 linked to a CPP called MPG for inhibiting tumorigenesis (Crombez et al., (2007) *Biochem Soc. Trans.* 35:44-46), tumor suppressor p53 peptides linked to CPPs to reduce cancer cell growth (Takenobu et al., (2002) *Mol. Cancer Ther.* 1(12):1043-1049, Snyder et al., (2004) *PLoS Biol.* 2:E36), and dominant 30 negative forms of Ras or phosphoinositol 3 kinase (PI3K) fused to Tat to treat asthma (Myou et al., (2003) *J. Immunol.* 171:4399-4405).

CPPs have been utilized in the art to transport contrast agents into cells for imaging and biosensing applications. For example, green fluorescent protein (GFP)

attached to Tat has been used to label cancer cells (Shokolenko et al., (2005) DNA Repair 4(4):511-518). Tat conjugated to quantum dots have been used to successfully cross the blood-brain barrier for visualization of the rat brain (Santra et al., (2005) Chem. Commun. 3144-3146). CPPs have also been combined with magnetic resonance imaging techniques for cell imaging (Liu et al., (2006) Biochem. and Biophys. Res. Comm. 347(1):133-140). See also Ramsey and Flynn, Pharmacol Ther. 2015 Jul 22. pii: S0163-7258(15)00141-2.

5 Alternatively, or in addition, the variant proteins can include a nuclear localization sequence, e.g., SV40 large T antigen NLS (PKKKRRV (SEQ ID NO:7)) and nucleoplasmin NLS (KRPAATKKAGQAKKK (SEQ ID NO:8)). Other NLSs are known in the art; see, e.g., Cokol et al., EMBO Rep. 2000 Nov 15; 1(5): 411-415; Freitas and Cunha, Curr Genomics. 2009 Dec; 10(8): 550-557.

10 In some embodiments, the variants include a moiety that has a high affinity for a ligand, for example GST, FLAG or hexahistidine sequences. Such affinity tags can facilitate the purification of recombinant variant proteins.

15 For methods in which the variant proteins are delivered to cells, the proteins can be produced using any method known in the art, e.g., by in vitro translation, or expression in a suitable host cell from nucleic acid encoding the variant protein; a number of methods are known in the art for producing proteins. For example, the 20 proteins can be produced in and purified from yeast, *E. coli*, insect cell lines, plants, transgenic animals, or cultured mammalian cells; see, e.g., Palomares et al., "Production of Recombinant Proteins: Challenges and Solutions," Methods Mol Biol. 2004;267:15-52. In addition, the variant proteins can be linked to a moiety that facilitates transfer into a cell, e.g., a lipid nanoparticle, optionally with a linker that is 25 cleaved once the protein is inside the cell. See, e.g., LaFountaine et al., Int J Pharm. 2015 Aug 13;494(1):180-194.

Expression Systems

30 To use the Cas9 variants described herein, it may be desirable to express them from a nucleic acid that encodes them. This can be performed in a variety of ways. For example, the nucleic acid encoding the Cas9 variant can be cloned into an intermediate vector for transformation into prokaryotic or eukaryotic cells for replication and/or expression. Intermediate vectors are typically prokaryote vectors, e.g., plasmids, or shuttle vectors, or insect vectors, for storage or manipulation of the

nucleic acid encoding the Cas9 variant for production of the Cas9 variant. The nucleic acid encoding the Cas9 variant can also be cloned into an expression vector, for administration to a plant cell, animal cell, preferably a mammalian cell or a human cell, fungal cell, bacterial cell, or protozoan cell.

5 To obtain expression, a sequence encoding a Cas9 variant is typically subcloned into an expression vector that contains a promoter to direct transcription. Suitable bacterial and eukaryotic promoters are well known in the art and described, e.g., in Sambrook et al., *Molecular Cloning, A Laboratory Manual* (3d ed. 2001); Kriegler, *Gene Transfer and Expression: A Laboratory Manual* (1990); and *Current Protocols in Molecular Biology* (Ausubel et al., eds., 2010). Bacterial expression systems for expressing the engineered protein are available in, e.g., *E. coli*, *Bacillus* sp., and *Salmonella* (Palva et al., 1983, *Gene* 22:229-235). Kits for such expression systems are commercially available. Eukaryotic expression systems for mammalian cells, yeast, and insect cells are well known in the art and are also commercially available.

10

15

The promoter used to direct expression of a nucleic acid depends on the particular application. For example, a strong constitutive promoter is typically used for expression and purification of fusion proteins. In contrast, when the Cas9 variant is to be administered in vivo for gene regulation, either a constitutive or an inducible promoter can be used, depending on the particular use of the Cas9 variant. In addition, a preferred promoter for administration of the Cas9 variant can be a weak promoter, such as HSV TK or a promoter having similar activity. The promoter can also include elements that are responsive to transactivation, e.g., hypoxia response elements, Gal4 response elements, lac repressor response element, and small molecule control systems such as tetracycline-regulated systems and the RU-486 system (see, e.g., Gossen & Bujard, 1992, *Proc. Natl. Acad. Sci. USA*, 89:5547; Oligino et al., 1998, *Gene Ther.*, 5:491-496; Wang et al., 1997, *Gene Ther.*, 4:432-441; Neering et al., 1996, *Blood*, 88:1147-55; and Rendahl et al., 1998, *Nat. Biotechnol.*, 16:757-761).

20

25

In addition to the promoter, the expression vector typically contains a transcription unit or expression cassette that contains all the additional elements required for the expression of the nucleic acid in host cells, either prokaryotic or eukaryotic. A typical expression cassette thus contains a promoter operably linked, e.g., to the nucleic acid sequence encoding the Cas9 variant, and any signals required,

30

e.g., for efficient polyadenylation of the transcript, transcriptional termination, ribosome binding sites, or translation termination. Additional elements of the cassette may include, e.g., enhancers, and heterologous spliced intronic signals.

5 The particular expression vector used to transport the genetic information into the cell is selected with regard to the intended use of the Cas9 variant, e.g., expression in plants, animals, bacteria, fungus, protozoa, etc. Standard bacterial expression vectors include plasmids such as pBR322 based plasmids, pSKF, pET23D, and commercially available tag-fusion expression systems such as GST and LacZ.

10 Expression vectors containing regulatory elements from eukaryotic viruses are often used in eukaryotic expression vectors, e.g., SV40 vectors, papilloma virus vectors, and vectors derived from Epstein-Barr virus. Other exemplary eukaryotic vectors include pMSG, pAV009/A+, pMTO10/A+, pMAMneo-5, baculovirus pDSVE, and any other vector allowing expression of proteins under the direction of the SV40 early promoter, SV40 late promoter, metallothionein promoter, murine 15 mammary tumor virus promoter, Rous sarcoma virus promoter, polyhedrin promoter, or other promoters shown effective for expression in eukaryotic cells.

20 The vectors for expressing the Cas9 variants can include RNA Pol III promoters to drive expression of the guide RNAs, e.g., the H1, U6 or 7SK promoters. These human promoters allow for expression of Cas9 variants in mammalian cells following plasmid transfection.

25 Some expression systems have markers for selection of stably transfected cell lines such as thymidine kinase, hygromycin B phosphotransferase, and dihydrofolate reductase. High yield expression systems are also suitable, such as using a baculovirus vector in insect cells, with the gRNA encoding sequence under the direction of the polyhedrin promoter or other strong baculovirus promoters.

30 The elements that are typically included in expression vectors also include a replicon that functions in *E. coli*, a gene encoding antibiotic resistance to permit selection of bacteria that harbor recombinant plasmids, and unique restriction sites in nonessential regions of the plasmid to allow insertion of recombinant sequences.

35 Standard transfection methods are used to produce bacterial, mammalian, yeast or insect cell lines that express large quantities of protein, which are then purified using standard techniques (see, e.g., Colley et al., 1989, *J. Biol. Chem.*, 264:17619-22; Guide to Protein Purification, in *Methods in Enzymology*, vol. 182

(Deutscher, ed., 1990)). Transformation of eukaryotic and prokaryotic cells are performed according to standard techniques (see, e.g., Morrison, 1977, *J. Bacteriol.* 132:349-351; Clark-Curtiss & Curtiss, *Methods in Enzymology* 101:347-362 (Wu et al., eds, 1983)).

5 Any of the known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, nucleofection, liposomes, microinjection, naked DNA, plasmid vectors, viral vectors, both episomal and integrative, and any of the other well-known methods for introducing cloned genomic 10 DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook et al., *supra*). It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least one gene into the host cell capable of expressing the Cas9 variant.

15 The present methods can also include modifying gDNA by introducing purified Cas9 protein with a gRNA into cells as a ribonuclear protein (RNP) complex, as well as introducing a gRNA plus mRNA encoding the Cas9 protein. The gRNA can be synthetic gRNA or a nucleic acid (e.g., in an expression vector) encoding the 20 guide RNA.

The present invention also includes the vectors and cells comprising the 20 vectors.

EXAMPLES

The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.

Methods

25 **Bacterial-based positive selection assay for evolving SpCas9 variants**

Competent *E.coli* BW25141(λDE3)²³ containing a positive selection plasmid (with embedded target site) were transformed with Cas9/sgRNA-encoding plasmids. Following a 60 minute recovery in SOB media, transformations were plated on LB 30 plates containing either chloramphenicol (non-selective) or chloramphenicol + 10 mM arabinose (selective).

To identify additional positions that might be critical for genome wide target specificity, a bacterial selection system previously used to study properties of homing

endonucleases (hereafter referred to as the positive selection) (Chen & Zhao, Nucleic Acids Res 33, e154 (2005); Doyon et al., J Am Chem Soc 128, 2477-2484 (2006)) was adapted.

In the present adaptation of this system, Cas9-mediated cleavage of a positive selection plasmid encoding an inducible toxic gene enables cell survival, due to subsequent degradation and loss of the linearized plasmid. After establishing that SpCas9 can function in the positive selection system, both wild-type and the variants were tested for their ability to cleave a selection plasmid harboring a target site selected from the known human genome. These variants were introduced into bacteria with a positive selection plasmid containing a target site and plated on selective medium. Cleavage of the positive selection plasmid was estimated by calculating the survival frequency: colonies on selective plates / colonies on non-selective plates (see FIG. 1, 5-6).

15 A subset of plasmids used in this study (sequences shown below)

Name	Addgene ID	Description
JDS246	43861	CMV-T7-humanSpCas9-NLS-3xFLAG
VP12	pending	CMV-T7-humanSpCas9-HF1(N497A, R661A, Q695A, Q926A)-NLS-3xFLAG
MSP2135	pending	CMV-T7-humanSpCas9-HF2(N497A, R661A, Q695A, Q926A, D1135E)-NLS-3xFLAG
MSP2133	pending	CMV-T7-humanSpCas9-HF4(Y450A, N497A, R661A, Q695A, Q926A)-NLS-3xFLAG
MSP469	65771	CMV-T7-humanSpCas9-VQR(D1135V, R1335Q, T1337R)-NLS-3xFLAG
MSP2440	pending	CMV-T7-humanSpCas9-VQR-HF1(N497A, R661A, Q695A, Q926A, D1135V, R1335Q, T1337R)-NLS-3xFLAG
BPK2797	pending	CMV-T7-humanSpCas9-VRQR(D1135V, G1218R, R1335Q, T1337R)-NLS-3xFLAG
MSP2443	pending	CMV-T7-humanSpCas9-VRQR-HF1(N497A, R661A, Q695A, Q926A, D1135V, G1218R, R1335Q, T1337R)-NLS-3xFLAG
BPK1520	65777	U6-BsmBl cassette-Sp-sgRNA

Human cell culture and transfection

U2OS.EGFP cells harboring a single integrated copy of a constitutively expressed EGFP-PEST reporter gene¹⁵ were cultured in Advanced DMEM media (Life Technologies) supplemented with 10% FBS, 2 mM GlutaMax (Life Technologies), penicillin/streptomycin, and 400 µg/ml of G418 at 37 °C with 5% CO₂. Cells were co-transfected with 750 ng of Cas9 plasmid and 250 ng of sgRNA plasmid (unless otherwise noted) using the DN-100 program of a Lonza 4D-nucleofector according to the manufacturer's protocols. Cas9 plasmid transfected

together with an empty U6 promoter plasmid was used as a negative control for all human cell experiments. (see FIGs. 2, 7-10).

Human cell EGFP disruption assay

5 EGFP disruption experiments were performed as previously described¹⁶. Transfected cells were analyzed for EGFP expression ~52 hours post-transfection using a Fortessa flow cytometer (BD Biosciences). Background EGFP loss was gated at approximately 2.5% for all experiments (see FIGs. 2, 7).

10 **T7E1 assay, targeted deep-sequencing, and GUIDE-seq to quantify nuclease-induced mutation rates**

T7E1 assays were performed as previously described for human cells (Kleinstiver, B.P. et al., Nature 523, 481-485 (2015)). For U2OS EGFP human cells, genomic DNA was extracted from transfected cells ~72 hours post-transfection using 15 the Agencourt DNAAdvance Genomic DNA Isolation Kit (Beckman Coulter Genomics). Roughly 200 ng of purified PCR product was denatured, annealed, and digested with T7E1 (New England BioLabs). Mutagenesis frequencies were quantified using a Qiaxcel capillary electrophoresis instrument (QIagen), as previously described for human cells (Kleinstiver et al., Nature 523, 481-485 (2015); 20 Reyon et al., Nat Biotechnol 30, 460-465 (2012)).

GUIDE-seq experiments were performed as previously described (Tsai et al., Nat Biotechnol 33, 187-197 (2015)). Briefly, phosphorylated, phosphorothioate-modified double-stranded oligodeoxynucleotides (dsODNs) were transfected into U2OS cells with Cas9 nuclease along with Cas9 and sgRNA expression plasmids, as 25 described above. dsODN-specific amplification, high-throughput sequencing, and mapping were performed to identify genomic intervals containing DSB activity. For wild-type versus double or quadruple mutant variant experiments, off-target read counts were normalized to the on-target read counts to correct for sequencing depth differences between samples. The normalized ratios for wild-type and variant SpCas9 were then compared to calculate the fold-change in activity at off-target sites. To 30 determine whether wild-type and SpCas9 variant samples for GUIDE-seq had similar oligo tag integration rates at the intended target site, restriction fragment length polymorphism (RFLP) assays were performed by amplifying the intended target loci

with Phusion Hot-Start Flex from 100 ng of genomic DNA (isolated as described above). Roughly 150 ng of PCR product was digested with 20 U of NdeI (New England BioLabs) for 3 hours at 37 °C prior to clean-up using the Agencourt Ampure XP kit. RFLP results were quantified using a Qiaxcel capillary electrophoresis instrument (QIAGEN) to approximate oligo tag integration rates. T7E1 assays were performed for a similar purpose, as described above.

5 Example 1

One potential solution to address targeting specificity of CRISPR-Cas9 RNA guided gene editing would be to engineer Cas9 variants with novel mutations.

10 Based on these earlier results, it was hypothesized (without wishing to be bound by theory) that the specificity of CRISPR-Cas9 nucleases might be significantly increased by reducing the non-specific binding affinity of Cas9 for DNA, mediated by the binding to the phosphate groups on the DNA or hydrophobic or base stacking interactions with the DNA. This approach would have the advantage of not decreasing the length of the target site recognized by the gRNA/Cas9 complex, as in the previously described truncated gRNA approach. It was reasoned that non-specific binding affinity of Cas9 for DNA might be reduced by mutating amino acid residues that contact phosphate groups on the target DNA.

15 An analogous approach has been used to create variants of non-Cas9 nucleases such as TALENs (see, for example, Guilinger et al., *Nat. Methods.* 11: 429 (2014)).

20 In an initial test of the hypothesis, the present inventors attempted to engineer a reduced affinity variant of the widely used *S. pyogenes* Cas9 (SpCas9) by introducing individual alanine substitutions into various residues in SpCas9 that might be expected to interact with phosphates on the DNA backbone. An *E.coli*-based screening assay was used to assess the activities of these variants (Kleinstiver et al., *Nature*. 2015 Jul 23;523(7561):481-5). In this bacterial system, cell survival depended on cleavage (and subsequent destruction) of a selection plasmid containing a gene for the toxic gyrase poison ccdB and a 23 base pair sequence targeted by a gRNA and SpCas9. Results of this experiment identified residues that retained or lost activity

25 (Table 1).

Table 1: Activities of single alanine substitution mutants of Cas9 as assessed in the bacterial cell-based system shown in FIG. 1.

mutation	% survival	mutation	% survival	mutation	% survival
R63A	84.2	Q926A	53.3	K1158A	46.5
R66A	0	K1107A	47.4	K1185A	19.3
R70A	0	E1108A	40.0	K1200A	24.5
R74A	0	S1109A	96.6	S1216A	100.4
R78A	56.4	K1113A	51.8	Q1221A	98.8
R165A	68.9	R1114A	47.3	K1289A	55.2
R403A	85.2	S1116A	73.8	R1298A	28.6
N407A	97.2	K1118A	48.7	K1300A	59.8
N497A	72.6	D1135A	67.2	K1325A	52.3
K510A	79.0	S1136A	69.2	R1333A	0
Y515A	34.1	K1151A	0	K1334A	87.5
R661A	75.0	K1153A	76.6	R1335A	0
Q695A	69.8	K1155A	44.6	T1337A	64.6

Survival percentages between 50-100% usually indicated robust cleavage, whereas 0% survival indicated that the enzyme has been functionally compromised. Additional 5 mutations that were assayed in bacteria (but are not shown in the table above) include: R69A, R71A, Y72A, R75A, K76A, N77A, R115A, H160A, K163A, L169A, T404A, F405A, R447A, I448A, Y450A, S460A, M495A, M694A, H698A, Y1013A, V1015A, R1122A, K1123A, and K1124A. With the exception of R69A and F405A (which had < 5% survival in bacteria), all of these additional single mutations 10 appeared to have little effect on the on-target activity of SpCas9 (>70% survival in the bacterial screen).

15 different SpCas9 variants bearing all possible single, double, triple and quadruple combinations of the N497A, R661A, Q695A, and Q926A mutations were constructed to test whether contacts made by these residues might be dispensable for on-target activity (Fig. 1b). For these experiments, a previously described human cell-based assay was used in which cleavage and induction of insertion or deletion 15 mutations (**indels**) by non-homologous end-joining (NHEJ)-mediated repair within a single integrated EGFP reporter gene leads to loss of cell fluorescence (Reyon, D. et al., Nat Biotechnol. 30, 460-465, 2012). Using a EGFP-targeted sgRNA previously shown to efficiently disrupt EGFP expression in human cells when paired with wild-type SpCas9 (Fu, Y. et al., Nat Biotechnol 31, 822-826 (2013), all 15 SpCas9 variants 20 possessed EGFP disruption activities comparable to that of wild-type SpCas9 (Fig. 1b, grey bars). Thus, substitution of one or all of these residues did not reduce on-target cleavage efficiency of SpCas9 with this EGFP-targeted sgRNA.

Next, experiments were performed to assess the relative activities of all 15 SpCas9 variants at mismatched target sites. To do this, the EGFP disruption assay was repeated with derivatives of the EGFP-targeted sgRNA used in the previous experiment that contain pairs of substituted bases at positions 13 and 14, 15 and 16, 5 17 and 18, and 18 and 19 (numbering starting with 1 for the most PAM-proximal base and ending with 20 for the most PAM-distal base; **Fig. 1b**). This analysis revealed that one of the triple mutants (R661A/Q695A/Q926A) and the quadruple mutant (N497A/R661A/Q695A/Q926A) both showed levels of EGFP disruption equivalent to that of background with all four of the mismatched sgRNAs (**Fig. 1b**, colored bars). 10 Notably, among the 15 variants, those possessing the lowest activities with the mismatched sgRNAs all harbored the Q695A and Q926A mutations. Based on these results and similar data from an experiment using a sgRNA for another EGFP target site, the quadruple mutant (N497A/R661A/Q695A/Q926A) was chosen for additional analysis and designated it as **SpCas9-HF1** (for high-fidelity variant #1).

15 **On-target activities of SpCas9-HF1**

To determine how robustly SpCas9-HF1 functions at a larger number of on-target sites, direct comparisons were performed between this variant and wild-type SpCas9 using additional sgRNAs. In total, 37 different sgRNAs were tested: 24 targeted to EGFP (assayed with the EGFP disruption assay) and 13 targeted to 20 endogenous human gene targets (assayed using the T7 Endonuclease I (T7EI) mismatch assay). 20 of the 24 sgRNAs tested with the EGFP disruption assay (**Fig. 1c**) and 12 of the 13 sgRNAs tested on endogenous human gene sites (**Fig. 1d**) showed activities with SpCas9-HF1 that were at least 70% as active as wild-type SpCas9 with the same sgRNA (**Fig. 1e**). Indeed, SpCas9-HF1 showed highly 25 comparable activities (90-140%) to wild-type SpCas9 with the vast majority of sgRNAs (**Fig. 1e**). Three of the 37 sgRNAs tested showed essentially no activity with SpCas9-HF1 and examination of these target sites did not suggest any obvious 30 differences in the characteristics of these sequences compared to those for which high activities were seen (**Table 3**). Overall, SpCas9-HF1 possessed comparable activities (greater than 70% of wild-type SpCas9 activities) for 86% (32/37) of the sgRNAs tested.

Table 3: List of sgRNA targets

S. pyogenes sgRNAs

EGFP						
Prep Name	Name	Spacer length (nt)	Spacer Sequence	SEQ ID NO:	Sequence with extended PAM	SEQ ID NO:
FYF1 320	NGG site 1	20	GGGCACGGGC AGCTTGCCGG	9.	GGGCACGGGCAGCTTGC CGGTGGT	10.
FYF1 641	NGG site 1	18	GCACGGGCAG CTTGCCGG	11.	GCACGGGCAGCTTGC GGTGGT	12.
CK10 12	NGG site 1-13&14	20	GGGCACccGCA GCTTGCCGG	13.	GGGCACccGCAGCTTGC CGGTGGT	14.
FYF1 429	NGG site 1-15&16	20	GGGCtgGGGCA GCTTGCCGG	15.	GGGCtgGGGCA GGTGGT	16.
FYF1 430	NGG site 1-17&18	20	GGcgACGGGCA GCTTGCCGG	17.	GGcgACGGGCA GGTGGT	18.
FYF1 347	NGG site 1-18&19	20	GccCACGGGCA GCTTGCCGG	19.	GccCACGGGCA GGTGGT	20.
BPK1 345	NGG site 2	20	GTCGCCCTCG AACTTCACCT	21.	GTCGCCCTCG CCTCGGC	22.
BPK1 350	NGG site 3	20	GTAGGTCA GTGGTCACGA	23.	GTAGGTCA CGAGGGT	24.
BPK1 353	NGG site 4	20	GGCGAGGGCG ATGCCACCTA	25.	GGCGAGGGCG CCTACGGC	26.
MSP7 92	NGG site 5	20	GGTCGCCACC ATGGTGAGCA	27.	GGTCGCCACC GCAAGGG	28.
MSP7 95	NGG site 6	20	GGTCAGGGTG GTCACGAGGG	29.	GGTCAGGGTG GGGTGGG	30.
FYF1 328	NGG site 7	20	GGTGGTGCAG ATGAACCTCA	31.	GGTGGTGCAG TCAGGGT	32.
JAF1 001	NGG site 7	17	GGTGCAGATG AACTTCA	33.	GGTGCAGATG GGGT	34.
BPK1 365	NGG site 8	20	GTGGGGTCTT TGCTCAGGG	35.	GTGGGGTCTT GGCGGGA	36.
MSP7 94	NGG site 9	20	GGTGGTCACG AGGGTGGGCC	37.	GGTGGTCACG GCCAGGG	38.
FYF1 327	NGG site 10	20	GATGCCGTTCT TCTGCTTGT	39.	GATGCCGTTCT GTCGGC	40.
JAF9 97	NGG site 10	17	GCCGTTCTTCT GCTTGT	41.	GCCGTTCTTCT GGC	42.
BPK1 347	NGG site 11	20	GTCGCCACCA TGGTGAGCAA	43.	GTCGCCACCA CAAGGGC	44.
BPK1 369	NGG site 12	20	GCACTGCACG CCGTAGGTCA	45.	GCACTGCACGCC TCAGGGT	46.
MSP2 545	NGG site 13	20	GTGAACCGCA TCGAGCTGAA	47.	GTGAACCGCA GAAGGGC	48.

MSP2 546	NGG site 14	20	GAAGGGCATC GACTTCAAGG	49.	GAAGGGCATCGACTTCA AGGAGGA	50.
MSP2 547	NGG site 15	20	GCTTCATGTGG TCGGGGTAG	51.	GCTTCATGTGGTCGGGG TAGCGGC	52.
MSP2 548	NGG site 16	20	GCTGAAGCAC TGCACGCCGT	53.	GCTGAAGCACTGCACGC CGTAGGT	54.
MSP2 549	NGG site 17	20	GCCGTCGTCC TGAAGAAGA	55.	GCCGTCGTCCCTGAAGA AGATGGT	56.
MSP2 550	NGG site 18	20	GACCAGGATG GGCACCAACC	57.	GACCAGGATGGGCACC ACCCCCGGT	58.
MSP2 551	NGG site 19	20	GACGTAGCCT TCGGGCATGG	59.	GACGTAGCCTTCGGGCA TGGCGGA	60.
MSP2 553	NGG site 20	20	GAAGTTCGAG GGCGACACCC	61.	GAAGTTCGAGGGCGAC ACCCCTGGT	62.
MSP2 554	NGG site 21	20	GAGCTGGACG GCGACGTAAA	63.	GAGCTGGACGGCGACGT AACCGGC	64.
MSP2 555	NGG site 22	20	GGCATCGCCC TCGCCCTCGC	65.	GGCATGCCCTCGCCCT CGCCGGA	66.
MSP2 556	NGG site 23	20	GGCCACAAGT TCAGCGTGTG	67.	GGCCACAAGITCAGCGT GTCCGGC	68.
FYF1 331	NGG site 24	20	GGGCGAGGAG CTGTTCACCG	69.	GGGCGAGGAGCTGTTCA CCGGGGT	70.
FYF1 560	NGG site 24	18	GCGAGGAGCT GTTCACCG	71.	GCGAGGAGCTGTTCACCC GGGGT	72.
BPK1 348	NGG site 25- no 5' G	20	CCTCGAACTTC ACCTCGGCG	73.	CCTCGAACTTCACCTCG GCGCGGG	74.
BPK1 349	NGG site 25- mm 5' G	20	GCTCGAACTTC ACCTCGGCG	75.	GCTCGAACTTCACCTCG GCGCGGG	76.
BPK1 351	NGG site 26- no 5' G	20	CAACTACAAG ACCCGCGCCG	77.	CAACTACAAGACCCGCG CCGAGGT	78.
BPK1 352	NGG site 26- mm 5' G	20	GAACTACAAG ACCCGCGCCG	79.	GAACTACAAGACCCGCG CCGAGGT	80.
BPK1 373	NGG site 27- no 5' G	20	CGCTCCTGGA CGTAGCCTTC	81.	CGCTCCTGGACGTAGCC TTCGGGC	82.
BPK1 375	NGG site 27- mm 5' G	20	GGCTCCTGGA CGTAGCCTTC	83.	CGCTCCTGGACGTAGCC TTCGGGC	84.
BPK1 377	NGG site 28- no 5' G	20	AGGGCGAGGA GCTGTTCACCC	85.	AGGGCGAGGAGCTGTT ACCGGGG	86.
BPK1 361	NGG site 28- mm 5' G	20	GGGGCGAGGA GCTGTTCACCC	87.	GGGGCGAGGAGCTGTT ACCGGGG	88.
BPK1 468	NGAA site 1	20	GTTCGAGGGC GACACCCCTGG	89.	GTTCGAGGGCGACACCC TGGTGAA	90.

MSP8 07	NGAA site 2	20	GTTCACCAGG GTGTCGCCCT	91.	GTTCACCAGGGTGTGCGC CCTCGAA	92.
MSP1 70	NGAC site 1	20	GCCCACCCCTC GTGACCACCC	93.	GCCCACCCCTCGTGACCA CCCTGAC	94.
MSP7 90	NGAC site 2	20	GCCCTTGCTCA CCATGGTGG	95.	GCCCTTGCTCACCATGG TGGCGAC	96.
MSP1 71	NGAT site 1	20	GTCGCCGTCC AGCTCGACCA	97.	GTCGCCGTCCAGCTCGA CCAGGAT	98.
MSP1 69	NGAT site 2	20	GTGTCCGGCG AGGGCGAGGG	99.	GTGTCCGGCGAGGGCGA GGGCGAT	100.
MSP1 68	NGAG site 1	20	GGGGTGGTGC CCATCCTGGT	101.	GGGGTGGTGCCCATCCT GGTCGAG	102.
MSP3 66	NGAG site 2	20	GCCACCATGG TGAGCAAGGG	103.	GCCACCATGGTGAGCAA GGGCGAG	104.

Endogenous genes

EMX1

Prep Name	Name	Spacer length (nt)	Spacer Sequence	SEQ ID NO:	Sequence with extended PAM	SEQ ID NO:
FYF1 548	NGG site 1	20	GAGTCCGAGC AGAAGAAGA A	105.	GAGTCCGAGCAGAAGA AGAAGGGC	106.
MSP8 09	NGG site 2	20	GTCACCTCCA ATGACTAGGG	107.	GTCACCTCCAATGACTA GGGTGGG	108.
VC47 5	NGG site 3	20	GGGAAGACTG AGGCTACATA	109.	GGGAAGACTGAGGCTA CATAGGGT	110.
MSP8 14 *1	NGA site 1	20	GCCACGAAGC AGGCCAATGG	111.	GCCACGAAGCAGGCCA ATGGGGAG	112.

FANCF

Prep Name	Name	Spacer length (nt)	Spacer Sequence	SEQ ID NO:	Sequence with extended PAM	SEQ ID NO:
DR34 8	NGG site 1	20	GGAATCCCTT CTGCAGCACC	113.	GGAATCCCTTCTGCAGC ACCTGGA	114.
MSP8 15	NGG site 2	20	GCTGCAGAAG GGATTCCATG	115.	GCTGCAGAAGGGATTG CATGAGGT	116.
MSP8 16	NGG site 3	20	GGCGGCTGCA CAACCAGTGG	117.	GGCGGCTGCACAACCA GTGGAGGC	118.
MSP8 17	NGG site 4	20	GCTCCAGAGC CGTGCAGATG	119.	GCTCCAGAGCCGTGCG AATGGGGC	120.
MSP8 18 *2	NGA site 1	20	GAATCCCTTC TGCAGCACCT	121.	GAATCCCTTCTGCAGCA CCTGGAT	122.
MSP8 20 *3	NGA site 2	20	GCGGCGGCTG CACAACCAGT	123.	GCGGCGGCTGCACAAC CAGTGGAG	124.
MSP8 85 *4	NGA site 3	20	GGTTGTGCAG CCGCCGCTCC	125.	GGTTGTGCAGCCGCCGC TCCAGAG	126.

RUNXI

Prep Name	Name	Spacer length (nt)	Spacer Sequence	SEQ ID NO:	Sequence with extended PAM	SEQ ID NO:
MSP8 22	NGG site 1	20	GCATTTTCAG GAGGAAGCGA	127.	GCATTTCAAGGAGGAA GCGATGGC	128.
MSP8 25	NGG site 2	20	GGGAGAAGA AAGAGAGATG T	129.	GGGAGAAGAAAGAGAG ATGTAGGG	130.
MSP8 26 *5	NGA site 1	20	GGTGCATTTC CAGGAGGAAG	131.	GGTGCATTTCAGGAGG AAGCGAT	132.
MSP8 28 *6	NGA site 2	20	GAGATGTAGG GCTAGAGGGG	133.	GAGATGTAGGGCTAGA GGGGTGAG	134.
MSP1 725	NGAA site 1	20	GGTATCCAGC AGAGGGGAG A	135.	GGTATCCAGCAGAGGG GAGAAGAA	136.
MSP1 726	NGAA site 2	20	GAGGCATCTC TGCACCGAGG	137.	GAGGCATCTCTGCACCG AGGTGAA	138.
MSP1 728	NGAC site 1	20	GAGGGGTGAG GCTGAAACAG	139.	GAGGGGTGAGGCTGAA ACAGTGAC	140.
MSP1 730	NGAC site 2	20	GAGCAAAAGT AGATATTACA	141.	GAGCAAAAGTAGATAT TACAAGAC	142.
MSP1 732	NGAT site 1	20	GGAATTCAA CTGAGGCATA	143.	GGAATTCAAACGTGAGG CATATGAT	144.
MSP8 29	NGAT site 2	20	GCAGAGGGGA GAAGAAAGA G	145.	GCAGAGGGGAGAAGAA AGAGAGAT	146.
MSP1 734	NGAG site 1	20	GCACCGAGGC ATCTCTGCAC	147.	GCACCGAGGCATCTCTG CACCGAG	148.
MSP8 28	NGAG site 2	20	GAGATGTAGG GCTAGAGGGG	149.	GAGATGTAGGGCTAGA GGGGTGAG	150.

ZSCAN2

Prep Name	Name	Spacer length (nt)	Spacer Sequence	SEQ ID NO:	Sequence with extended PAM	SEQ ID NO:
NN67 5	NGG site	20	GTGCGGCAAG AGCTTCAGCC	151.	GTGCGGCAAGAGCTTC AGCCGGGG	152.

VEGFA

Prep Name	Name	Spacer length (nt)	Spacer Sequence	SEQ ID NO:	Sequence with extended PAM	SEQ ID NO:
VC29 7	NGG site 1	20	GGGTGGGGGG AGTTTGCTCC	153.	GGGTGGGGGGAGTTG CTCCTGGA	154.
VC29 9	NGG site 2	20	GACCCCTCC ACCCCGCCTC	155.	GACCCCTCCACCCGC CTCCGGG	156.
VC22 8	NGG site 3	20	GGTGAGTGAG TGTGTGCGTG	157.	GGTGAGTGAGTGAG CGTGTGGG	158.
BPK1 846 *7	NGA site 1	20	GCGAGCAGCG TCTTCGAGAG	159.	GCGAGCAGCGTCTTCG AGAGTGAG	160.

ZNF629

Prep Name	Name	Spacer length (nt)	Spacer Sequence	SEQ ID NO:	Sequence with extended PAM	SEQ ID NO:
NN67 5 * 8	NGA site	20	GTGCGGCAAG AGCTTCAGCC	161.	GTGCGGCAAGAGCTTC AGCCAGAG	162.

*1, NGA EMX1 site 4 from Kleinstiver et al., Nature 2015

*2, NGA FANCF site 1 from Kleinstiver et al., Nature 2015

*3, NGA FANCF site 3 from Kleinstiver et al., Nature 2015

*4, NGA FANCF site 4 from Kleinstiver et al., Nature 2015

5 *5, NGA RUNX1 site 1 from Kleinstiver et al., Nature 2015

*6, NGA RUNX1 site 3 from Kleinstiver et al., Nature 2015

*7, NGA VEGFA site 1 from Kleinstiver et al., Nature 2015

*8, NGA ZNF629 site from Kleinstiver et al., Nature 2015

Genome-wide specificity of SpCas9-HF1

10 To test whether SpCas9-HF1 exhibited reduced off-target effects in human cells, the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (**GUIDE-seq**) method was used. GUIDE-seq uses integration of a short double-stranded oligodeoxynucleotide (**dsODN**) tag into double-strand breaks to enable amplification and sequencing of adjacent genomic sequence, with the number of tag integrations at any given site providing a quantitative measure of cleavage efficiency (Tsai, S.Q. et al, Nat Biotechnol 33, 187-197 (2015)). GUIDE-seq was used to compare the spectrum of off-target effects induced by wild-type SpCas9 and SpCas9-HF1 using eight different sgRNAs targeted to various sites in the endogenous human *EMX1*, *FANCF*, *RUNX1*, and *ZSCAN2* genes. The sequences targeted by these 15 sgRNAs are unique and have variable numbers of predicted mismatched sites in the reference human genome (**Table 2**). Assessment of on-target dsODN tag integration (by restriction fragment length polymorphism (**RFLP**) assay) and indel formation (by T7EI assay) for the eight sgRNAs revealed comparable on-target activities with wild-type SpCas9 and SpCas9-HF1 (**Figs. 7a** and **7b**, respectively). GUIDE-seq 20 experiments showed that seven of the eight sgRNAs induced cleavage at multiple genome-wide off-target sites (ranging from 2 to 25 per sgRNA) with wild-type SpCas9, whereas the eighth sgRNA (for FANCF site 4) did not produce any 25 detectable off-target sites (**Figs. 2a** and **2b**). However, six of the seven sgRNAs that

induced indels with wild-type SpCas9 showed a strikingly complete absence of GUIDE-seq detectable off-target events with SpCas9-HF1 (Figs. 2a and 2b); and the remaining seventh sgRNA (for FANCF site 2) induced only a single detectable genome-wide off-target cleavage event, at a site harboring one mismatch within the 5 protospacer seed sequence (Fig. 2a). Collectively, the off-target sites that were not detected when using SpCas9-HF1 harbored one to six mismatches in the protospacer and/or PAM sequence (Fig. 2c). As with wild-type SpCas9, the eighth sgRNA (for FANCF site 4) did not yield any detectable off-target cleavage events when tested with SpCas9-HF1 (Fig. 2a).

10 To confirm the GUIDE-seq findings, targeted amplicon sequencing was used to more directly measure the frequencies of NHEJ-mediated indel mutations induced by wild-type SpCas9 and SpCas9-HF1. For these experiments, human cells were transfected only with sgRNA- and Cas9-encoding plasmids (i.e., without the GUIDE-seq tag). Next-generation sequencing was then used to examine 36 of the 40 off-target sites that had been identified with wild-type SpCas9 for six sgRNAs in the 15 GUIDE-seq experiments (four of the 40 sites could not be examined because they could not be specifically amplified from genomic DNA). These deep sequencing experiments showed that: (1) wild-type SpCas9 and SpCas9-HF1 induced comparable frequencies of indels at each of the six sgRNA on-target sites (Figs. 3a and 3b); (2) wild-type SpCas9, as expected showed statistically significant evidence of indel 20 mutations at 35 of the 36 off-target sites (Fig. 3b) at frequencies that correlated well with GUIDE-seq read counts for these same sites (Fig. 3c); and (3) the frequencies of indels induced by SpCas9-HF1 at 34 of the 36 off-target sites were indistinguishable from the background level of indels observed in samples from control transfections 25 (Fig. 3b). For the two off-target sites that appeared to have statistically significant mutation frequencies with SpCas9-HF1 relative to the negative control, the mean frequencies of indels were 0.049% and 0.037%, levels at which it is difficult to determine whether these are due to sequencing/PCR error or are *bona fide* nuclease-induced indels. Based on these results, it was concluded that SpCas9-HF1 can 30 completely or nearly completely reduce off-target mutations that occur across a range of different frequencies with wild-type SpCas9 to undetectable levels.

Next the capability of SpCas9-HF1 to reduce genome-wide off-target effects of sgRNAs that target atypical homopolymeric or repetitive sequences was assessed.

Although many now try to avoid on-target sites with these characteristics due to their relative lack of orthogonality to the genome, it was desirable to explore whether SpCas9-HF1 might reduce off-target indels even for these challenging targets. Therefore, previously characterized sgRNAs (Fu, Y. et al., Nat Biotechnol 31, Tsai, S.Q. et al., Nat Biotechnol 33, 187-197 (2015) were used that target either a cytosine-rich homopolymeric sequence or a sequence containing multiple TG repeats in the human *VEGFA* gene (*VEGFA* site 2 and *VEGFA* site 3, respectively) (Table 2). In control experiments, each of these sgRNAs induced comparable levels of GUIDE-seq ds ODN tag incorporation (Fig. 7c) and indel mutations (Fig. 7d) with both wild-type 10 SpCas9 and SpCas9-HF1, demonstrating that SpCas9-HF1 was not impaired in on-target activity with either of these sgRNAs. Importantly, GUIDE-seq experiments revealed that SpCas9-HF1 was highly effective at reducing off-target sites of these sgRNAs, with 123/144 sites for *VEGFA* site 2 and 31/32 sites for *VEGFA* site 3 not detected (Figs. 4a and 4b). Examination of these off-target sites not detected with 15 SpCas9-HF1 showed that they each possessed a range of total mismatches within their protospacer and PAM sequences: 2 to 7 mismatches for the *VEGFA* site 2 sgRNA and 1 to 4 mismatches for the *VEGFA* site 3 sgRNA (Fig. 4c); also, nine of these off-targets for *VEGFA* site 2 may have a potential bulged base (Lin, Y. et al., Nucleic Acids Res 42, 7473-7485 (2014).at the sgRNA-DNA interface (Fig. 4a and Fig. 8). 20 The sites that were not detected with SpCas9-HF1 possessed 2 to 6 mismatches for the *VEGFA* site 2 sgRNA and 2 mismatches in the single site for the *VEGFA* site 3 sgRNA (Fig. 4c), with three off-target sites for *VEGFA* site 2 sgRNA again having a potential bulge (Fig. 8). Collectively, these results demonstrated that SpCas9-HF1 can be highly effective at reducing off-target effects of sgRNAs targeted to simple repeat 25 sequences and can also have substantial impacts on sgRNAs targeted to homopolymeric sequences.

Table 2] Summary of potential mismatched sites in the reference human genome for the ten sgRNAs examined by GUIDE-seq

site	spacer with PAM	mismatches to on-target site*						
		1	2	3	4	5	6	total
EMX1-1	GAGTCGGAGCAGAAGAAGAAGGG (SEQ ID NO: 163)	0	1	18	273	2318	15831	18441
EMX1-2	GTCACCTCCAATGACTAGGGTGG (SEQ ID NO: 164)	0	0	3	68	780	6102	6953
FANCF-1	GGAATCCCTCTGCAGCACCTGG (SEQ ID NO: 165)	0	1	18	288	1475	9611	11393
FANCF-2	GCTGCAGAAGGGATTCCATGAGG (SEQ ID NO: 166)	1	1	29	235	2000	13047	15313
FANCF-3	GGCGGCTGCACAACCAGTGGAGG (SEQ ID NO: 167)	0	0	11	79	874	6651	7615
FANCF-4	GCTCCAGAGCCGTGCGAATGGGG (SEQ ID NO: 168)	0	0	6	59	639	5078	5782
RUNX1-1	GCATTTTCAGGAGGAAGCGATGG (SEQ ID NO: 169)	0	2	6	189	1644	11546	13387
ZSCAN2	GTGCGGCAAGAGCTTCAGCCGGG (SEQ ID NO: 170)	0	3	12	127	1146	10687	11975
VEGFA2	GACCCCCTCCACCCCGCCTCCGG (SEQ ID NO: 171)	0	2	35	456	3905	17576	21974
VEGFA3	GGTGAGTGAGTGTGTGCGTGTGG (SEQ ID NO: 172)	1	17	383	6089	13536	35901	55927

* determined using Cas-OFFinder (Bae et al., Bioinformatics 30, 1473-1475 (2014))

Table 4: Oligonucleotides used in the study

description of T7E1 primers	sequence	SEQ ID NO:
forward primer to amplify EMX1 in U2OS human cells	GGAGCAGCTGGTCAG AGGGG	173.
reverse primer to amplify EMX1 in U2OS human cells	CCATAGGGAAGGGGG ACACTGG	174.
forward primer to amplify FANCF in U2OS human cells	GGGCCGGAAAGAGT TGCTG	175.
reverse primer to amplify FANCF in U2OS human cells	GCCCTACATCTGCTCT CCCTCC	176.
forward primer to amplify RUNX1 in U2OS human cells	CCAGCACAACTTACTC GCACTTGAC	177.
reverse primer to amplify RUNX1 in U2OS human cells	CATCACCAACCCACAG CCAAGG	178.
forward primer to amplify VEGFA in U2OS human cells	TCCAGATGGCACATTG TCAG	179.
reverse primer to amplify VEGFA in U2OS human cells	AGGGAGCAGGAAAGT GAGGT	180.
forward primer to amplify VEGFA (NGG site 2) in U2OS human cells	CGAGGAAGAGAGAGA CGGGGTC	181.
reverse primer to amplify VEGFA (NGG site 2) in U2OS human cells	CTCCAATGCACCCAAG ACAGCAG	182.
forward primer to amplify ZSCAN2 in U2OS human cells	AGTGTGGGTGTGTGG GAAG	183.
reverse primer to amplify ZSCAN2 in U2OS human cells	GCAAGGGGAAGACTC TGGCA	184.

forward primer to amplify ZNF629 in U2OS human cells	TACGAGTGCCTAGAGT GCG	185.
reverse primer to amplify ZNF629 in U2OS human cells	GCAGATGTAGGTCTTG GAGGAC	186.
description of deep sequencing primers	sequence	SEQ ID NO:
forward primer to amplify EMX1-1 on-target	GGAGCAGCTGGTCAG AGGGG	187.
reverse primer to amplify EMX1-1 on-target	CGATGTCCTCCCCATT GGCCTG	188.
forward primer to amplify EMX1-1-GUIDE_seq-OT#1	GTGGGGAGATTGCAT CTGTGGAGG	189.
reverse primer to amplify EMX1-1-GUIDE_seq-OT#1	GCTTTATACCATCTT GGGGTTACAG	190.
forward primer to amplify EMX1-1-GUIDE_seq-OT#2	CAATGTGCTTCAACCC ATCACGGC	191.
reverse primer to amplify EMX1-1-GUIDE_seq-OT#2	CCATGAATTGTGATG GATGCAGTCTG	192.
forward primer to amplify EMX1-1-GUIDE_seq-OT#3	GAGAAGGAGGTGCAG GAGCTAGAC	193.
reverse primer to amplify EMX1-1-GUIDE_seq-OT#3	CATCCCGACCTTCATC CCTCCTGG	194.
forward primer to amplify EMX1-1-GUIDE_seq-OT#4	GTAGTTCTGACATTCC TCCTGAGGG	195.
reverse primer to amplify EMX1-1-GUIDE_seq-OT#4	TCAAACAAAGGTGCAG ATACAGCA	196.
forward primer to amplify EMX1-1-GUIDE_seq-OT#5	CAGGGTCGCTCAGTCT GTGTGG	197.
reverse primer to amplify EMX1-1-GUIDE_seq-OT#5	CCAGCGCACCATTCAC TCCACCTG	198.
forward primer to amplify EMX1-1-GUIDE_seq-OT#6	GGCTGAAGAGGAAGA CCAGACTCAG	199.
reverse primer to amplify EMX1-1-GUIDE_seq-OT#6	GGCCCTCTGAATTCA ATTCTCTGC	200.
forward primer to amplify EMX1-1-GUIDE_seq-OT#7	CCACAGCGAGGAGTG ACAGCC	201.
reverse primer to amplify EMX1-1-GUIDE_seq-OT#7	CCAAGTCTTCCTAAC TCGACCTTGG	202.
forward primer to amplify EMX1-1-GUIDE_seq-OT#8	CCCTAGGCCACACCA GCAATG	203.
reverse primer to amplify EMX1-1-GUIDE_seq-OT#8	GGGATGGGAATGGGA ATGTGAGGC	204.
forward primer to amplify EMX1-2 on-target	GCCCAGGTGAAGGTGT GGTTCC	205.
reverse primer to amplify EMX1-2 on-target	CCAAAGCCTGGCCAGG GAGTG	206.
forward primer to amplify EMX1-2-GUIDE_seq-OT#1	AGGCAAAGATCTAGG ACCTGGATGG	207.

reverse primer to amplify EMX1-2-GUIDE_seq-OT#1	CCATCTGAGTCAGCCA	208.
forward primer to amplify EMX1-2-GUIDE_seq-OT#2	GCCTTGTC	
reverse primer to amplify EMX1-2-GUIDE_seq-OT#2	GGTCCCTCCCTCTG	209.
forward primer to amplify EMX1-2-GUIDE_seq-OT#3	AGCCC	
reverse primer to amplify EMX1-2-GUIDE_seq-OT#3	GGATAGGAATGAAGA	210.
forward primer to amplify EMX1-2-GUIDE_seq-OT#3	CCCCCTCTCC	
reverse primer to amplify EMX1-2-GUIDE_seq-OT#4	GGACTGGCTGGCTGTG	211.
forward primer to amplify EMX1-2-GUIDE_seq-OT#4	TGTTTGAG	
reverse primer to amplify EMX1-2-GUIDE_seq-OT#4	CTTATCCAGGGCTACC	212.
forward primer to amplify EMX1-2-GUIDE_seq-OT#5	TCATTGCC	
reverse primer to amplify EMX1-2-GUIDE_seq-OT#5	GCTGCTGCTGCTTGA	213.
forward primer to amplify EMX1-2-GUIDE_seq-OT#5	TCACTCCTG	
reverse primer to amplify EMX1-2-GUIDE_seq-OT#6	CTCCTTAAACCCTCAG	214.
forward primer to amplify EMX1-2-GUIDE_seq-OT#6	AAGCTGGC	
reverse primer to amplify EMX1-2-GUIDE_seq-OT#6	GCACTGTCAAGCTGATC	215.
forward primer to amplify EMX1-2-GUIDE_seq-OT#7	CTACAGG	
reverse primer to amplify EMX1-2-GUIDE_seq-OT#7	ACGTTGGAACAGTCGA	216.
forward primer to amplify EMX1-2-GUIDE_seq-OT#7	GCTGTAGC	
reverse primer to amplify EMX1-2-GUIDE_seq-OT#8	TGTGCATAACTCATGT	217.
forward primer to amplify EMX1-2-GUIDE_seq-OT#8	TGGCAAAC	
reverse primer to amplify EMX1-2-GUIDE_seq-OT#8	TCCACAACTACCCTCA	218.
forward primer to amplify EMX1-2-GUIDE_seq-OT#9	GCTGGAG	
reverse primer to amplify EMX1-2-GUIDE_seq-OT#9	CCACTGACAATTCACT	219.
forward primer to amplify FANCF-1 on-target	CAACCCCTGC	
reverse primer to amplify FANCF-1 on-target	AGGCAGACCAGTTATT	220.
forward primer to amplify FANCF-1-GUIDE_seq-OT#1	TGGCAGTC	
reverse primer to amplify FANCF-1-GUIDE_seq-OT#1	ACAGGCGCAGTTCACT	221.
forward primer to amplify FANCF-1-GUIDE_seq-OT#1	GAGAAG	
reverse primer to amplify FANCF-1-GUIDE_seq-OT#1	GGGTAGGCTGACTTTG	222.
forward primer to amplify FANCF-1-GUIDE_seq-OT#2	GGCTCC	
reverse primer to amplify FANCF-1-GUIDE_seq-OT#2	GCCCTCTTGCCTCCAC	223.
forward primer to amplify FANCF-1-GUIDE_seq-OT#2	TGGTTG	
reverse primer to amplify FANCF-1-GUIDE_seq-OT#2	CGCGGATGTTCCAATC	224.
forward primer to amplify FANCF-1-GUIDE_seq-OT#3	AGTACGC	
reverse primer to amplify FANCF-1-GUIDE_seq-OT#3	GCGGGCAGTGGCGTCT	225.
forward primer to amplify FANCF-1-GUIDE_seq-OT#3	TAGTCG	
reverse primer to amplify FANCF-1-GUIDE_seq-OT#3	CCCTGGGTTGGTTGG	226.
forward primer to amplify FANCF-1-GUIDE_seq-OT#4	CTGCTC	
reverse primer to amplify FANCF-1-GUIDE_seq-OT#4	CTCCTTGCCGCCAGC	227.
forward primer to amplify FANCF-1-GUIDE_seq-OT#4	CGGTC	
reverse primer to amplify FANCF-1-GUIDE_seq-OT#4	CACTGGGGAAGAGGGC	228.
forward primer to amplify FANCF-1-GUIDE_seq-OT#5	GAGGACAC	
reverse primer to amplify FANCF-1-GUIDE_seq-OT#5	CCAGTGTTCATCC	229.
forward primer to amplify FANCF-1-GUIDE_seq-OT#5	CCAACAC	
reverse primer to amplify FANCF-1-GUIDE_seq-OT#5	GAATGGATCCCCCCT	230.
forward primer to amplify FANCF-1-GUIDE_seq-OT#6	AGAGCTC	
reverse primer to amplify FANCF-1-GUIDE_seq-OT#6	CAGGCCACAGGTCT	231.
forward primer to amplify FANCF-1-GUIDE_seq-OT#6	TCTGGA	
reverse primer to amplify FANCF-1-GUIDE_seq-OT#6	CCACACGGAAGGCTG	232.
	ACCACG	

forward primer to amplify FANCF-3 on-target	GCGCAGAGAGAGCAG	233.
reverse primer to amplify FANCF-3 on-target	GACGTC	
forward primer to amplify FANCF-3-GUIDE_seq-OT#1	GCACCTCATGGAATCC	234.
reverse primer to amplify FANCF-3-GUIDE_seq-OT#1	CTTCTGC	
forward primer to amplify FANCF-3-GUIDE_seq-OT#2	CAAGTGATGCGACTTC	235.
reverse primer to amplify FANCF-3-GUIDE_seq-OT#2	CAACCTC	
forward primer to amplify FANCF-3-GUIDE_seq-OT#3	CCCTCAGAGTTCAGCT	236.
reverse primer to amplify FANCF-3-GUIDE_seq-OT#3	TAAAAAAGACC	
forward primer to amplify FANCF-3-GUIDE_seq-OT#4	TGCTTCTCATCCACTCT	237.
reverse primer to amplify FANCF-3-GUIDE_seq-OT#4	AGACTGCT	
forward primer to amplify FANCF-3-GUIDE_seq-OT#5	CACCAACCAGCCATGT	238.
reverse primer to amplify FANCF-3-GUIDE_seq-OT#5	GCCATG	
forward primer to amplify FANCF-3-GUIDE_seq-OT#6	CTGCCTGTGCTCCTCG	239.
reverse primer to amplify FANCF-3-GUIDE_seq-OT#6	ATGGTG	
forward primer to amplify FANCF-3-GUIDE_seq-OT#7	GGGTTCAAAGCTCATC	240.
reverse primer to amplify FANCF-3-GUIDE_seq-OT#7	TGCCCC	
forward primer to amplify FANCF-3-GUIDE_seq-OT#8	GCATGTGCCTTGAGAT	241.
reverse primer to amplify FANCF-3-GUIDE_seq-OT#8	TGCCTGG	
forward primer to amplify FANCF-3-GUIDE_seq-OT#9	GACATTAGAGAAGC	242.
reverse primer to amplify FANCF-3-GUIDE_seq-OT#9	GACCATGTGG	
forward primer to amplify FANCF-3-GUIDE_seq-OT#10	CCATCTTCCCCTTTGG	243.
reverse primer to amplify FANCF-3-GUIDE_seq-OT#10	CCCACAG	
forward primer to amplify FANCF-3-GUIDE_seq-OT#11	CCCCAAAAGTGGCCAA	244.
reverse primer to amplify FANCF-3-GUIDE_seq-OT#11	GAGCCTGAG	
forward primer to amplify FANCF-3-GUIDE_seq-OT#12	GTTCTCAAAGGAAGA	245.
reverse primer to amplify FANCF-3-GUIDE_seq-OT#12	GAGGGGAATG	
forward primer to amplify FANCF-3-GUIDE_seq-OT#13	GGTGCTGTGTCCTCAT	246.
reverse primer to amplify FANCF-3-GUIDE_seq-OT#13	GCATCC	
forward primer to amplify FANCF-3-GUIDE_seq-OT#14	CGGCTTGCCCTAGGGTC	247.
reverse primer to amplify FANCF-3-GUIDE_seq-OT#14	GTTGAG	
forward primer to amplify FANCF-3-GUIDE_seq-OT#15	CCTTCAGGGGCTCTTC	248.
reverse primer to amplify FANCF-3-GUIDE_seq-OT#15	CAGGTC	
forward primer to amplify RUNX1-1 on-target	GGGAAGTGGCAGGCA	249.
reverse primer to amplify RUNX1-1 on-target	CCGAGG	
forward primer to amplify RUNX1-1-GUIDE_seq-OT#1	GGGTGAGGCTGAAAC	250.
reverse primer to amplify RUNX1-1-GUIDE_seq-OT#1	AGTGACC	
forward primer to amplify RUNX1-1-GUIDE_seq-OT#2	GGGAGGATGTTGGTTT	251.
reverse primer to amplify RUNX1-1-GUIDE_seq-OT#2	TAGGGAACTG	
forward primer to amplify RUNX1-1-GUIDE_seq-OT#3	TCCAATCACTACATGC	252.
reverse primer to amplify RUNX1-1-GUIDE_seq-OT#3	CATTTGAAGA	
forward primer to amplify RUNX1-1-GUIDE_seq-OT#4	CCACCCCTTCCCTTTG	253.
reverse primer to amplify RUNX1-1-GUIDE_seq-OT#4	ATCCTCCC	
forward primer to amplify ZSCAN2 on-target	TCCTCCCTACTCCTTCA	254.
reverse primer to amplify ZSCAN2 on-target	CCCAGG	
forward primer to amplify ZSCAN2-GUIDE_seq-OT#1	GAGTGCCTGACATGTG	255.
reverse primer to amplify ZSCAN2-GUIDE_seq-OT#1	GGGAGAG	
forward primer to amplify ZSCAN2-GUIDE_seq-OT#2	TCCAGCTAAAGCCTTT	256.
reverse primer to amplify ZSCAN2-GUIDE_seq-OT#2	CCCACAC	
forward primer to amplify ZSCAN2-GUIDE_seq-OT#3	GAACTCTGTGATGCAC	257.
	CTGAAGGCTG	

reverse primer to amplify ZSCAN2-GUIDE_seq-OT#1	ACCGTATCAGTGTGAT	258.
forward primer to amplify ZSCAN2-GUIDE_seq-OT#2	GCATGTGGT	
reverse primer to amplify ZSCAN2-GUIDE_seq-OT#2	TGGGTTAACATCATGTG	259.
forward primer to amplify ZSCAN2-GUIDE_seq-OT#3	TTCTGCACTATG	
reverse primer to amplify ZSCAN2-GUIDE_seq-OT#3	CCCATCTTCCATTCTG	260.
forward primer to amplify ZSCAN2-GUIDE_seq-OT#4	CCCTCCAC	
reverse primer to amplify ZSCAN2-GUIDE_seq-OT#4	CAGCTAGTCCATTGT	261.
forward primer to amplify ZSCAN2-GUIDE_seq-OT#5	TCTCAGACTGTG	
reverse primer to amplify ZSCAN2-GUIDE_seq-OT#5	GGCCAACATTGTGAAA	262.
forward primer to amplify ZSCAN2-GUIDE_seq-OT#6	CCCTGTCTC	
reverse primer to amplify ZSCAN2-GUIDE_seq-OT#6	CCAGGGACCTGTGCTT	263.
forward primer to amplify ZSCAN2-GUIDE_seq-OT#7	GGGTTC	
reverse primer to amplify ZSCAN2-GUIDE_seq-OT#7	CACCCCCATGACCTGGC	264.
forward primer to amplify ZSCAN2-GUIDE_seq-OT#7	ACAAGTG	
reverse primer to amplify ZSCAN2-GUIDE_seq-OT#7	AAGTGTTCCTCAGAAT	265.
forward primer to amplify ZSCAN2-GUIDE_seq-OT#7	GCCAGCCC	
reverse primer to amplify ZSCAN2-GUIDE_seq-OT#7	CAGGAGTGCAGTTGTG	266.
forward primer to amplify ZSCAN2-GUIDE_seq-OT#7	TTGGGAG	
reverse primer to amplify ZSCAN2-GUIDE_seq-OT#7	CTGATGAAGCACCAGA	267.
forward primer to amplify ZSCAN2-GUIDE_seq-OT#7	GAACCCACC	
reverse primer to amplify ZSCAN2-GUIDE_seq-OT#7	CACACCTGGCACCCAT	268.
forward primer to amplify ZSCAN2-GUIDE_seq-OT#7	ATGGC	
reverse primer to amplify ZSCAN2-GUIDE_seq-OT#7	GATCCACACTGGTGAG	269.
forward primer to amplify ZSCAN2-GUIDE_seq-OT#7	AAGCCTTAC	
reverse primer to amplify ZSCAN2-GUIDE_seq-OT#7	CTTCCCACACTCACAG	270.
	CAGATGTAGG	

Refining the specificity of SpCas9-HF1

Previously described methods such as truncated gRNAs (Fu, Y. et al., *Nat Biotechnol* 32, 279-284 (2014)) and the SpCas9-D1135E variant (Kleinstiver, B.P. et al., *Nature* 523, 481-485 (2015)) can partially reduce SpCas9 off-target effects, and the present inventors wondered whether these might be combined with SpCas9-HF1 to further improve its genome-wide specificity. Testing of SpCas9-HF1 with matched full-length and truncated sgRNAs targeted to four sites in the human cell-based EGFP disruption assay revealed that shortening sgRNA complementarity length substantially impaired on-target activities (Fig. 9). By contrast, SpCas9-HF1 with an additional D1135E mutation (a variant referred to herein as SpCas9-HF2) retained 70% or more activity of wild-type SpCas9 with six of eight sgRNAs tested using a human cell-based EGFP disruption assay (Figs. 5a and 5b). SpCas9-HF3 and SpCas9-HF4 variants were also created harboring L169A or Y450A mutations, respectively, at positions whose side chains mediated hydrophobic non-specific interactions with the target DNA on its PAM proximal end (Nishimasu, H. et al., *Cell*

156, 935–949 (2014); Jiang, F., et al., Science 348, 1477-1481 (2015)). SpCas9-HF3 and SpCas9-HF4 retained 70% or more of the activities observed with wild-type SpCas9 with the same six out of eight EGFP-targeted sgRNAs (Figs. 5a and 5b).

To determine whether SpCas9-HF2, -HF3, and -HF4 could reduce indel frequencies at two off-target sites (for the FANCF site 2 and VEGFA site 3 sgRNAs) that were resistant to SpCas9-HF1, further experiments were performed. For the FANCF site 2 off-target, which bears a single mismatch in the seed sequence of the protospacer, SpCas9-HF4 reduced indel mutation frequencies to near background level as judged by T7EI assay while also beneficially increasing on-target activity (Fig. 5c), resulting in the greatest increase in specificity among the three variants (Fig. 5d). For the VEGFA site 3 off-target site, which bears two protospacer mismatches (one in the seed sequence and one at the nucleotide most distal from the PAM sequence), SpCas9-HF2 showed the greatest reduction in indel formation while showing only modest effects on on-target mutation efficiency (Fig. 5c), leading to the greatest increase in specificity among the three variants tested (Fig. 5d). Taken together, these results demonstrate the potential for reducing off-target effects that are resistant to SpCas9-HF1 by introducing additional mutations at other residues that mediate non-specific DNA contacts or that may alter PAM recognition.

To generalize the T7E1 assay findings described above that show SpCas9-HF4 and SpCas9-HF2 have improved discrimination relative to SpCas9-HF1 against off-targets of the FANCF site 2 and VEGFA site 3 sgRNAs, respectively, the genome-wide specificities of these variants were examined using GUIDE-seq. Using an RFLP assay, it was determined that SpCas9-HF4 and SpCas9-HF2 had similar on-target activities to SpCas9-HF1, as assayed by GUIDE-seq tag integration rates (FIG. 5E). When analyzing the GUIDE-seq data, no new off-target sites were identified for SpCas9-HF2 or SpCas9-HF4 (FIG. 5F). Compared to SpCas9-HF1, off-target activities at all sites were either rendered undetectable by GUIDE-seq or substantially decreased. Relative to SpCas9-HF1, SpCas9-HF4 had nearly 26-fold better specificity against the single FANCF site 2 off-target site that remained recalcitrant to the specificity improvements of SpCas9-HF1 (FIG. 5F). SpCas9-HF2 had nearly 4-fold improved specificity relative to SpCas9-HF1 for the high-frequency VEGFA site 3 off-target, while also dramatically reducing (>38-fold) or eliminating GUIDE-seq detectable events at other low-frequency off-target sites. Of note, the genomic

position of 3 of these low frequency sites identified for SpCas9-HF1 are adjacent to previously characterized background U2OS cell breakpoint hotspots. Collectively, these results suggest that the SpCas9-HF2 and SpCas9-HF4 variants can improve the genome-wide specificity of SpCas9-HF1.

5 SpCas9-HF1 robustly and consistently reduced off-target mutations when using sgRNAs designed against standard, non-repetitive target sequences. The two off-target sites that were most resistant to SpCas9-HF1 have only one and two mismatches in the protospacer. Together, these observations suggest that off-target mutations might be minimized to undetectable levels by using SpCas9-HF1 and targeting non-repetitive sequences that do not have closely related sites bearing one or 10 two mismatches elsewhere in the genome (something that can be easily accomplished using existing publicly available software programs (Bae, S., et al, Bioinformatics 30, 1473-1475 (2014)). One parameter that users should keep in mind is that SpCas9-HF1 may not be compatible with the common practice of using a G at the 5' end of the 15 gRNA that is mismatched to the protospacer sequence. Testing of four sgRNAs bearing a 5' G mismatched to its target site showed three of the four had diminished activities with SpCas9-HF1 compared to wild-type SpCas9 (Fig. 10), perhaps reflecting the ability of SpCas9-HF1 to better discriminate a partially matched site.

Further biochemical work can confirm or clarify the precise mechanism by 20 which SpCas9-HF1 achieves its high genome-wide specificity. It does not appear that the four mutations introduced alter the stability or steady-state expression level of SpCas9 in the cell, because titration experiments with decreasing concentrations of expression plasmids suggested that wild-type SpCas9 and SpCas9-HF1 behaved comparably as their concentrations are lowered (Fig. 11). Instead, the simplest 25 mechanistic explanation is that these mutations decreased the energetics of interaction between the Cas9-sgRNA and the target DNA, with the energy of the complex at a level just sufficient to retain on-target activity but lowered it enough to make off-target site cleavage inefficient or non-existent. This mechanism is consistent with the non-specific interactions observed between the residues mutated and the target DNA 30 phosphate backbone in structural data (Nishimasu, H. et al., Cell 156, 935-949 (2014); Anders, C et. Al., Nature 513, 569-573 (2014)). A somewhat similar mechanism has been proposed to explain the increased specificities of transcription

activator-like effector nucleases bearing substitutions at positively charged residues (Guilinger, J.P. et al., *Nat Methods* 11, 429-435 (2014)).

It was possible that SpCas9-HF1 might also be combined with other mutations that have been shown to alter Cas9 function. For example, an SpCas9 mutant bearing 5 three amino acid substitutions (D1135V/R1335Q/T1337R, also known as the SpCas9-VQR variant), recognizes sites with NGAN PAMs (with relative efficiencies for NGAG>NGAT=NGAA>NGAC) (Kleinstiver, B.P. et al, *Nature* 523, 481-485 (2015)) and a recently identified quadruple SpCas9 mutant (D1135V/G1218R/R1335Q/T1337R, referred to as the SpCas9-VRQR variant) has 10 improved activities relative to the VQR variant on sites with NGAH (H = A, C, or T) PAMs (Fig. 12a). Introduction of the four mutations (N497A/R661A/Q695A/Q926A) from SpCas9-HF1 into SpCas9-VQR and SpCas9-VRQR created SpCas9-VQR-HF1 and SpCas9-VRQR-HF1, respectively. Both HF versions of these nucleases showed 15 on-target activities comparable (i.e., 70% or more) to their non-HF counterparts with five of eight sgRNAs targeted to the EGFP reporter gene and with seven of eight sgRNAs targeted to endogenous human gene sites (Figs. 12b-12d).

More broadly, these results illuminate a general strategy for the engineering of 20 additional high-fidelity variants of CRISPR-associated nucleases. Adding additional mutations at non-specific DNA contacting residues further reduced some of the very small number of residual off-target sites that persist with SpCas9-HF1. Thus, variants such as SpCas9-HF2, SpCas9-HF3, SpCas9-HF4, and others can be utilized in a 25 customized fashion depending on the nature of the off-target sequences. Furthermore, success with engineering high-fidelity variants of SpCas9 suggests that the approach of mutating non-specific DNA contacts can be extended to other naturally occurring and engineered Cas9 orthologues (Ran, F.A. et al., *Nature* 520, 186-191 (2015), 30 Esvelt, K.M. et al., *Nat Methods* 10, 1116-1121 (2013); Hou, Z. et al., *Proc Natl Acad Sci U S A* (2013); Fonfara, I. et al., *Nucleic Acids Res* 42, 2577-2590 (2014); Kleinstiver, B.P. et al, *Nat Biotechnol* (2015) as well as newer CRISPR-associated nucleases (Zetsche, B. et al., *Cell* 163, 759-771 (2015); Shmakov, S. et al., *Molecular Cell* 60, 385-397) that are being discovered and characterized with increasing frequency.

Example 2

Described herein are SpCas9 variants with alanine substitutions in residues that contact the target strand DNA, including N497A, Q695A, R661A, and Q926A. Beyond these residues, the present inventors sought to determine whether the specificity of these variants, e.g., the SpCas9-HF1 variant (N497A/R661A/Q695A/Q926A), might be further improved by adding substitutions in positively-charged SpCas9 residues that appear to make contacts with the non-target DNA strand: R780, K810, R832, K848, K855, K968, R976, H982, K1003, K1014, K1047, and/or R1060 (see Slaymaker et al., *Science*. 2016 Jan 10;351(6268):84-8).

The activities of wild-type SpCas9 derivatives bearing single alanine substitutions at these positions and combinations thereof were initially tested using the EGFP disruption assay with a perfectly matched sgRNA designed to a site in the *EGFP* gene (to assess on-target activities) and the same sgRNA bearing intentional mismatches at positions 11 and 12 with position 1 being the most PAM-proximal base (to assess activities at mismatched sites, as would be found at off-target sites) (**Figure 13A**). (Note that the derivatives bearing the triple substitutions K810A/K1003A/R1060A or K848A/K1003A/R1060A are the same as recently described variants known as eSpCas9(1.0) and eSpCas9(1.1), respectively; see ref. 1). As expected, wild-type SpCas9 had robust on-target and mismatched-target activities. As a control, we also tested SpCas9-HF1 in this experiment and found that it maintained on-target activity while reducing mismatched-target activity as expected (**Figure 13A**). All of the wild-type SpCas9 derivatives bearing one or more alanine substitutions at positions that might potentially contact the non-target DNA strand showed on-target activities comparable to wild-type SpCas9 (**Figure 13A**). Interestingly, some of these derivatives also showed reduced cleavage with the mismatched 11/12 sgRNA relative to the activity observed with wild-type SpCas9, suggesting that a subset of the substitutions in these derivatives confer enhanced specificity against this mismatched site relative to wild-type SpCas9 (**Figure 13A**). However, none of these single substitutions or combinations of substitutions were sufficient to completely eliminate activities observed the 11/12 mismatched sgRNA. When we tested wild-type SpCas9, SpCas9-HF1, and these same wild-type SpCas9 derivatives using an additional sgRNA bearing mismatches at positions 9 and 10

(**Figure 13B**), only minimal changes in mismatched-target activities were observed for most derivatives. Again, this demonstrated that single, double, or even triple substitutions (equivalent to the previously described eSpCas9(1.0) and (1.1) variants) at these potential non-target strand contacting residues are insufficient to eliminate activities at imperfectly matched DNA sites. Collectively, these data demonstrate that the wild-type SpCas9 variants retain on-target activity with a matched sgRNA and that the substitutions contained in these derivatives on their own (in the context of wild-type SpCas9) are not sufficient to eliminate nuclease activities on two different mismatched DNA sites (**Figures 13A and 13B**).

Given these results, it was hypothesized that SpCas9-HF1 derivatives bearing one or more additional amino acid substitutions at residues that might contact the non-target DNA strand might further improve specificity relative to the parental SpCas9-HF1 protein. Therefore, various SpCas9-HF1-derivatives bearing combinations of single, double, or triple alanine substitutions were tested in the human cell-based EGFP disruption assay using a perfectly matched sgRNA (to test on-target activities) and the same sgRNA bearing mismatches at positions 11 and 12 (to assess activities at a mismatched target site, as would be found for off-target sites). These sgRNAs are the same ones that were used for **Figures 13A-B**. This experiment revealed most of the SpCas9-HF1-derivative variants we tested showed comparable on-target activities to those observed with both wild-type SpCas9 and SpCas9-HF1 (**Figure 14A**). With the 11/12 mismatched sgRNA, some of the SpCas9-HF1 derivatives tested (such as SpCas9-HF1 + R832A and SpCas9-HF1 + K1014A) did not show an appreciable change in cleavage with the mismatched sgRNA. However, importantly, most of the SpCas9-HF1 derivatives had substantially lower activity with the 11/12 mismatched sgRNA than what was observed with SpCas9-HF1, eSpCas9(1.0), or eSpCas9(1.1), suggesting that certain combinations of these new variants have reduced mismatched-target activities and thus improved specificities (**Figure 14A**). Of the 16 SpCas9-HF1 derivatives that reduced mismatched-target activities with the 11/12 mismatched sgRNA to near background levels, 9 appeared to have only minimal effects on on-target activity (assessed using the perfectly matched sgRNA; **Figure 14A**). Additional testing of a subset of these SpCas9-HF1 derivatives in the EGFP disruption assay using an sgRNA intentionally mismatched at positions 9 and 10 (**Figure 14B**) also revealed that these variants possessed lower activities with this mismatched sgRNA.

than what was observed either with SpCas9-HF1 (**Figure 14b**), with eSpCas9(1.1) (**Figure 13A**), or with the same substitutions added to wild-type SpCas9 nuclease (**Figure 13B**). Importantly, five variants showed background level off-target activity in this assay with the 9/10 mismatched sgRNA.

5 Next, whether these alanine substitutions of the non-target strand could be combined with the SpCas9 variant that contains only the Q695A and Q926A substitutions from our SpCas9-HF1 variant (here “double” variant) was tested. Because many of the HF1 derivatives tested above showed an observable (and undesirable) decrease in on-target activity, it was hypothesized that combining only 10 the two most important substitutions from SpCas9-HF1 (Q695A and Q926A; see **Figure 1B**) with one or more non-target strand contacting substitutions might rescue on-target activity but still maintain the gains in specificity observed when these substitutions were added to the SpCas9-HF1 variant. Therefore, various 15 SpCas9(Q695A/Q926A) derivatives bearing combinations of single, double, or triple alanine substitutions at potential non-target DNA strand interacting positions were tested in the human cell-based EGFP disruption assay using the same perfectly matched sgRNA targeted to EGFP described above (to test on-target activities) and the same sgRNA bearing mismatches at positions 11 and 12 (to assess activities at a mismatched target site, as would be found for off-target sites) that were used for 20 **Figures 13A-B**. This experiment revealed most of the SpCas9(Q695A/Q926A) derivative variants tested showed comparable on-target activities to those observed with both wild-type SpCas9 and SpCas9-HF1 (**Figure 15**). Importantly, many of the SpCas9-HF1 derivatives had substantially lower activity with the 11/12 mismatched sgRNA compared with what was observed with SpCas9-HF1, eSpCas9(1.0), or 25 eSpCas9(1.1) suggesting that certain combinations of these new variants have reduced mismatched-target activities and thus improved specificities (**Figure 15**). Of the 13 SpCas9(Q695A/Q926A) derivatives that reduced mismatched-target activities with the 11/12 mismatched sgRNA to near background levels, only 1 appeared to have a substantial effect on on-target activity (assessed using the perfectly matched sgRNA; 30 **Figure 15**).

Overall, these data demonstrate that the addition of one, two, or three alanine substitutions to SpCas9-HF1 or SpCas9(Q695A/Q926A) at positions that might contact the non-target DNA strand can lead to new variants with improved abilities to

discriminate against mismatched off-target sites (relative to to their parental clones or the recently described eSpCas9(1.0) or (1.1). Importantly, these same substitutions in the context of wild-type SpCas9 do not appear to provide any substantial specificity benefit.

5 To better define and compare the tolerances of SpCas9-HF1 and eSpCas9-1.1 to mismatches at the sgRNA-target DNA complementarity interface, their activities were examined using sgRNAs containing single mismatches at all possible positions in the spacer complementarity region. Both the SpCas9-HF1 and eSPCas9-1.1 variants had similar activities on most singly mismatched sgRNAs when compared to 10 wild-type SpCas9, with a few exceptions where SpCas9-HF1 outperformed eSpCas9-1.1 (**Figure 16**).

Next we tested the single nucleotide mismatch tolerance of some variants containing combinations of amino acid substitutions from either the double mutant (Db = Q695A/Q926A), SpCas9-HF1 (N497A/R661A/Q695A/Q926A), eSpCas9-1.0 (1.0 = K810A/K1003A/R1060A), or eSpCas9-1.1(1.1 = K848A/K1003A/R1060A) 15 with additional alanine substitutions in residues that contact the target strand DNA or that potentially contact the non-target strand DNA (**Figures 17A-B**). On-target activity was assessed using a perfectly matched sgRNA, while single nucleotide mismatch tolerance was assessed using sgRNAs bearing such mismatches at positions 20 4, 8, 12, or 16 in the spacer sequence (**Figure 17A**). A number of these variants maintained on-target activity with substantial reductions in activities observed with the mismatched sgRNAs. Three of these variants (Q695A/K848A/Q926A/K1003A/R1060A, N497A/R661A/Q695A/K855A/Q926A/R1060A, and 25 N497A/R661A/Q695A/Q926A/H982A/R1060A) were further tested with the remaining single mismatch sgRNAs (containing mismatches at positions 1-3, 5-7, 9-11, 13-15, and 17-20). These variants demonstrated a more robust intolerance to single nucleotide substitutions in the sgRNA compared with eSpCas9-1.1, demonstrating the improved specificity profile of these new variants (**Figure 17B**). 30 Additional variant nucleases containing alternative combinations of amino acid substitutions were tested using sgRNAs containing mismatches at positions 5, 7, and 9 in the spacer (these particular mismatched sgRNAs were used because earlier variants appeared to tolerate mismatches at these positions) (**Figure 18**). A number of these

nucleases had improved specificities against the mismatched sites, with only marginal reductions in on-target activities (**Figure 18**).

To further determine whether additional combinations of mutations could convey specificity improvements, a greatly expanded panel of nuclease variants with 5 two additional matched sgRNAs was tested to examine on-target activity in our EGFP disruption activity (**Figure 19A**). A number of these variants maintained robust on-target activities, suggesting that they may be useful for generating further improvements to specificity (**Figure 19B**). A number of these variants were tested with sgRNAs containing single substitutions at positions 12, 14, 16, or 18 to 10 determine whether specificity improvements were observed and were found to exhibit greater intolerance to single nucleotide mismatches at these positions (**Figure 19B**).

Example 3

Taking an analogous strategy with *Staphylococcus aureus* Cas9 (SaCas9) as we had done with SpCas9, experiments were performed to improve the specificity of 15 SaCas9 by introducing alanine substitutions in residues that are known to contact the target DNA strand (**Figure 20** and **Figure 21A**), residues that may contact the non-target DNA (ongoing experiments), and residues that we have previously shown can influence PAM specificity (**Figure 21B**). Residues that may contact the target strand DNA backbone include: Y211, Y212, W229, Y230, R245, T392, N419, L446, Y651, 20 and R654; residues that may contact the non-target strand DNA include: Q848, N492, Q495, R497, N498, R499, Q500, K518, K523, K525, H557, R561, K572, R634, R654, G655, N658, S662, N668, R686, K692, R694, H700, K751; and residues that 25 contact the PAM include: E782, D786, T787, Y789, T882, K886, N888, A889, L909, K929, N985, N986, R991, and R1015. In a preliminary experiment, single alanine substitutions (or some combinations thereof) in either target strand DNA contacting residues or PAM contacting residues (**Figures 21A and B**, respectively) had variable 30 effects on on-target EGFP disruption activity (using a perfectly matched sgRNA) and were unable to eliminate off-target cleavage (when using an sgRNA mismatched at positions 11 and 12). Interestingly, SpCas9 mutations in the HF1 were unable to completely abolish off-target activity with a similarly mismatched target/sgRNA pair, suggesting that variants containing combinations of target strand/non-target strand substitutions may be necessary to improve specificity at such sites (as we observed with SpCas9).

To further assess the strategy of mutating potential target strand DNA contacts to improve SaCas9 specificity, the potential of single, double, triple, and quadruple combinations of mutations to tolerate mismatches at positions 19 and 20 in an sgRNA was examined (**Figures 22A and B**). These combinations revealed that alanine substitutions at Y230 and R245, when combined with other substitutions, can increase specificity as judged by the capability to better discriminate against mismatched sites.

Next the on-target gene disruption activities of two of these triple alanine substitution variants (Y211A/Y230A/R245A and Y212A/Y230A/R245A) were examined at 4 on-target sites in EGFP (matched sites #1-4; **Figure 23**). These variants maintained robust on-target activities for matched sites 1 and 2 but showed approximately 60-70% loss of on-target activity with matched sites 3 and 4. Both of these triple alanine substitution variants dramatically improved specificity relative to wild-type SaCas9 as judged by using sgRNAs bearing double mismatches at various positions in the spacers of target sites 1-4 (**Figure 23**).

SaCas9 variants bearing double and triple combinations (**Figures 24A and B, respectively**) of these alanine substitutions were tested on six endogenous sites for on target activities and improvements in specificity assessed using an sgRNA containing a single mismatch at position 21 (the most PAM distal position expected to be a challenging mismatch to discriminate against). In some cases, on-target activities with the matched sgRNA were maintained with the variants while ‘off-target’ activities with the sgRNA mismatched at position 21 were eliminated (**Figures 24A and B**). In other cases, marginal to complete loss of activity was observed with the matched sgRNA.

25 References

1. Sander, J.D. & Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. *Nat Biotechnol* 32, 347-355 (2014).
2. Hsu, P.D., Lander, E.S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. *Cell* 157, 1262-1278 (2014).
- 30 3. Doudna, J.A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. *Science* 346, 1258096 (2014).
4. Barrangou, R. & May, A.P. Unraveling the potential of CRISPR-Cas9 for gene therapy. *Expert Opin Biol Ther* 15, 311-314 (2015).
5. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science* 337, 816-821 (2012).

6. Sternberg, S.H., Redding, S., Jinek, M., Greene, E.C. & Doudna, J.A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. *Nature* 507, 62-67 (2014).

5 7. Hsu, P.D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. *Nat Biotechnol* 31, 827-832 (2013).

8. Tsai, S.Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. *Nat Biotechnol* 33, 187-197 (2015).

9. Hou, Z. et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from *Neisseria meningitidis*. *Proc Natl Acad Sci U S A* (2013).

10 10. Fonfara, I. et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. *Nucleic Acids Res* 42, 2577-2590 (2014).

11. Esveld, K.M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. *Nat Methods* 10, 1116-1121 (2013).

15 12. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. *Science* 339, 819-823 (2013).

13. Horvath, P. et al. Diversity, activity, and evolution of CRISPR loci in *Streptococcus thermophilus*. *J Bacteriol* 190, 1401-1412 (2008).

14. Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. *Nature* 513, 569-573 (2014).

20 15. Reyon, D. et al. FLASH assembly of TALENs for high-throughput genome editing. *Nat Biotechnol* 30, 460-465 (2012).

16. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. *Nat Biotechnol* 31, 822-826 (2013).

25 17. Chen, Z. & Zhao, H. A highly sensitive selection method for directed evolution of homing endonucleases. *Nucleic Acids Res* 33, e154 (2005).

18. Doyon, J.B., Pattanayak, V., Meyer, C.B. & Liu, D.R. Directed evolution and substrate specificity profile of homing endonuclease I-SceI. *J Am Chem Soc* 128, 2477-2484 (2006).

30 19. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. *Nat Biotechnol* 31, 233-239 (2013).

20 20. Mali, P. et al. RNA-guided human genome engineering via Cas9. *Science* 339, 823-826 (2013).

35 21. Hwang, W.Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. *Nat Biotechnol* 31, 227-229 (2013).

22. Chylinski, K., Le Rhun, A. & Charpentier, E. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. *RNA Biol* 10, 726-737 (2013).

40 23. Kleinstiver, B.P., Fernandes, A.D., Gloor, G.B. & Edgell, D.R. A unified genetic, computational and experimental framework identifies functionally relevant residues of the homing endonuclease I-BmoI. *Nucleic Acids Res* 38, 2411-2427 (2010).

24. Gagnon, J.A. et al. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. *PLoS One* 9, e98186 (2014).

Sequences

Human codon optimized *S. pyogenes* Cas9 in normal font, NLS double underlined, 3xFLAG tag in **bold**:

5 ATGGATAAAAAGTATTCTATTGGTTAGACATGGCACTAATTCCGGATGGCTGTCTATAACCGAT
 GAATACAAAGTACCTCAAGAAAATTAAAGGTGTTGGGAAACACAGACCGTCATTGATTAAAAGAAT
 CTTATCGGTGCCCTCCTATTGATAGTGGCAGACGGCAGAGGCGACTCGCCTGAAACGAACCGCTCGG
 AGAAGGTATAACACGTCGAAGAACCGAATATGTTACTTACAAGAAATTAGCAATGAGATGGCCAA
 GTTGACGATTCTTCTTCAACGGTTGGAAGAGCTCCTGTCGAAGAGGACAAGAAACATGAACGG
 CACCCATCTTGGAAACATAGTAGATGAGGTGGCATATCATGAAAAGTACCCAAACGATTATCACCTC
 10 AGAAAAAAAGCTAGTTGACTCAACTGATAAAAGCGGACCTGAGGGTAATCTACTTGGCTCTGCCATATG
 ATAAAGTTCCGTGGGCACTTCTATTGAGGGTGTCTAAATCCGGACAACCTCGGATGTCGACAAACTG
 TTCATCCAGTTAGTACAAACCTATAATCAGTTGTTGAAGAGAACCCCTATAATGCAAGTGGCTGGAT
 GCGAAGGCTATTCTTAGGCCCGCCTCTCTAAATCCGACGGCTAGAAAACCTGATCGCACAATTACCC
 GGAGAGAAGAAAATGGGTGTTGGTAACCTTATAGCGCTCTCACTAGGCCTGACACCAAATTAAAG
 15 TCGAACTTCGACTTAGCTGAAGATGCCAAATTGCAAGCTTAGTAAGGACACGTACGATGACGATCTGAC
 AATCTACTGGCACAATTGGAGATCAGTATGCGGACTTATTGGCTGCCAAAACCTTAGCGATGCA
 ATCCTCCTATCTGACATACTGAGAGTTAATACTGAGATTACCAAGGGCCGTTATCCGCTCAATGATC
 AAAAGGTACGATGAACATCACCAAGACTTGACACTTCTCAAGGCCCTAGTCCGTCAGCAACTGCCTGAG
 AATATAAGGAAATTCTTGTGATCAGTCAGGTTACGGTATATTGACGGCGAGCGAGT
 20 CAAGAGGAATTCTACAAGTTATCAACCCATATTAGAGAAGATGGATGGACGGAAGAGTTGCTTGTA
 AAACTCAATCGCGAAGATCTACTGCGAAAGCAGCGGACTTTCGACAACGGTAGCATCCACATCAAATC
 CACTTAGGCAGATTGATGCTATACTTAGAAGGCAGGAGGTTTATCCGTTCTCAAAGACAATCGT
 GAAAAGATTGAGAAAATCCTAACCTTCCGATACCTTACTATGTTGGACCCCTGGCCGAGGGAACTCT
 CGGTTCGCATGGATGACAAGAAAGTCCGAAGAACGATTACTCCATGGAATTGGAGGAAGTTGTCGAT
 25 AAAGGTGCGTCAGCTCAATCGTTATCGAGAGGATGACCAACTTGACAAGAAATTACGAAACGAAAAA
 GTATTGCTAAGCACAGTTACTTACAGTATTACAGTGTACAATGAACTCACAAAGTTAAAGT
 GTCACTGAGGGCATGCGTAAACCGCCTTCTAAGCGGAGAACAGAAAGCAATAGTAGATCTGTTA
 TTCAAGACCAACCGCAAAGTGCAGTTAAGCAATTGAAAGAGGACTACTTTAAAGAAAATTGAATGCTTC
 GATTCTGTCGAGATCTCGGGGTAGAAGATCGATTTAATGCGTCACTGGTACGTATGACCTCTA
 30 AAGATAATTAAAGATAAGGACTCCTGGATAACGAAGAGAATGAAGATATCTTAGAAGATATAGTGTG
 ACTCTTACCCCTTTGAAGATCGGAAATGATTGAGGAAGACTAAAAACATACGCTCACCTGTTGAC
 GATAAGGTTATGAAACAGTTAAAGAGGCAGCTATACGGGCTGGGAGATTGTCGCGGAAACTTATC
 AACGGATAAGAGACAAGCAAAGTGGTAAACTATTCTCGATTTCCTAAAGAGGATATACAAAAGGCACAGGTT
 35 TCCGGACAAGGGGACTCATTGCACGAACATATTGCGAATCTGCTGGTCCGCCAGCCATAAAAAGGGC
 ATACTCCAGACAGTCAAAGTAGTGGATGAGCTAGTTAAGGTATGGGACGTCACAAACCGGAAACATT
 GTAATCGAGATGGCACCGCAAATCAAACGACTCAGAAGGGAAAAACAGTCGAGAGCGGATGAAG
 AGAATAGAAGAGGGTATTAAGAACTGGCAGCCAGATCTTAAAGGAGCATCCTGAGAAAATACCAA
 TTGCGAGAACGAGAAACTTACCTCTATTACCTACAAAATGGAAGGGACATGTATGTTGATCAGGAACCTG
 40 GACATAAACCGTTATCTGATTACGACGTCGATCACATTGTAACCTTCTTTGAAGGACGATTCA
 ATCGACAATAAAGTGCCTACACGCTCGGATAAGAACCGAGGGAAAGTGACAATGTTCCAAGCGAGGAA
 GTCGTAAGAAAATGAAGAACTATTGGCGGAGCTCCTAAATGCGAAACTGATAACGCAAAGAAAGTTC
 GATAACTTAAACTAAAGCTGAGAGGGGGCTGCTGTAACCTGACAAGGCCGATTATTAAACGTCAG
 CTCGTGGAAACCGCCAAATCACAAACGATGTTGCACAGATACTAGATTCCGAATGAATACGAAATAC
 45 GACGAGAACGATAAGCTGATTGGGAAGTCAGTAAAGTAACTTAAAGTCAAATTGGTGTGGACTTC
 AGAAAGGATTTCATATAAAGTTAGGGAGATAATAACTACCAACCATGCGACGCGTTATCTT
 AATGCCGTCGTAGGGACCGCACTCATTAAGAAATACCGAAGCTAGAAAGTGGATGTTGTATGGTGT
 TACAAAGTTATGACGTCGTAAGATGATCGCAAGCAGAGGAGATAGGCAAGGCTACAGCCAAA
 TACTCTTTATTCTAACATTGAATTCTTAAGACGGAATCACTCTGGCAAACGGAGAGATAACG
 50 AAACGACCTTAAATTGAAACCAATGGGGAGACAGGTGAAATCGTATGGATAAGGGCCGGACTTCGCG
 ACGGTGAGAAAAGTTTGTCCATGCCCAAGTCACATAGTAAAGAAAACGAGGTGCAAGACCGGAGGG
 TTTTCAAGGAATCGATTCTCCAAAAGGAATAGTGATAAGCTCATCGCTCGTAAAAGGACTGGAC
 CCGAAAAAGTACGGTGGCTCGATAGCCCTACAGTTGCTATTCTGCTTAGTGGCAAAGGTTGAG
 AAGGGAAAATCCAAGAAACTGAAGTCAGTCAGGAAATTATTGGGATAACGATTATGGAGCGCTCGTCT
 55 TTTGAAAAGAACCCATCGACTTCCTTGAGGCAGAGGTTACAAGGAAGTAAAAAAGGATCTCATAATT
 AAACTACCAAAGTATAGTCTGTTGAGTTAGAAAATGGCGAAAACGGATGTTGGCTAGGCCGGAGAG
 CTTCAAAAGGGAACGAACTCGCACTACCGTCTAAATACGTGAATTCTCTGTTAGCGTCCCATTAC
 GAGAAGTTGAAAGGTTACCTGAAGATAACGAAACAGCAACTTTGTTGAGCAGCACAACATTAT
 CTCGACGAAATCATAGAGCAAATTCCGAAATTCAAGAGAGTCATCCTAGCTGATGCCAATCTGGAC
 60 AAAGTATTAAAGCCATACAAACAGGATAAACCCATACGTGAGCAGGGGAAAATATTATCCAT

TTGTTTACTCTTACCAACCTCGCGCTCCAGCCGATTCAAGTATTTGACACAACGATAGATCGCAA
 CGATACACTTCTACCAAGGAGGTGCTAGACGCGACACTGATTACCAATCCATCACGGGATTATGAA
 ACTCGGATAGATTGTACAGCTGGGGTGACGGATCCCGCAAGAAGAAGGAAAGTCTCGAGC
GAC
TACAAAGACCATGACGGTGATTATAAAGATCATGACATCGATTACAAGGATGACGATGACAAGTGA

5

**SEQ ID NO:272 - VP12: CMV-T7-humanSpCas9-HF1 (N497A, R661A, Q695A,
 Q926A)-NLS-3xFLAG**

Human codon optimized *S. pyogenes* Cas9 in normal font, modified
 codons in lower case, NLS double underlined, 3xFLAG tag in **bold**:

10

ATGGATAAAAAGTATTCTATTGGTTAGACATCGGACTAATTCCGTTGGATGGGCTGTCTATAACCGAT
 GAATACAAAGTACCTTCAAAGAAATTAAAGGTGTTGGGAAACACAGACCGTCATTGATTAAGAAT
 CTTATCGGTGCCCTCCTATTGATAGTGGC~~AAACGGCAGAGGGC~~GACTCGCCTGAAACGAACCGCTCGG
 AGAAGGTATAACACGTCGCAAGAACCGAATATGTTACTTACAAGAAATTAGCAATGAGATGGCCAAA
 GTTGACGATTCTTCTTCAACCGTTGGAAAGAGTCCCTCTGTCGAAGAGGACAAGAACATGAACGG
 CACCCCATCTTGAAACATAGTAGATGAGGTGGCATATCATGAAAAGTACCAACGATTATCACCTC
 AGAAAAAGCTAGTTGACTCAACTGATAAAAGCGGACCTGAGGTTAATCTACTTGGCTCTGCCATATG
 ATAAAGTTCCGTGGCACTTCTCATTGAGGGT~~GATCTAA~~ATCCGACA~~ACTCGGATGTC~~GACAAACTG
 TTCATCCAGTTAGTACAACCTATAATCAGTTGTTGAAGAGAACCC~~TATA~~ATGCAAGTGGCTGGAT
 GCGAAGGCTATTCTTAGCGCCCGCCTCTCTAAATCCGACGGCTAGAAAACCTGATCGCACAATTACCC
 GGAGAGAAGAAAATGGGTTGTTGGTAACCTTATAGCGCTCTCACTAGGCCTGACACCAAATTAAAG
 TCGAACTTCGACTTAGCTGAAGATGCCAAATTGCAAGCTTAGAAGGACACGTACCGATGACGATCTGAC
 AATCTACTGGCACAAATTGGAGATCAGTATGCGGACTTATTGGCTGCCAAAACCTTAGCGATGCA
 ATCCTCTATCTGACATACTGAGGTTAATACTGAGATTACCAAGGCGCCGTTATCCGTTCAATGATC
 25 AAAAGGTACGATGAA~~CAT~~ACCAAGAC~~TT~~GACACTTCTCAAGGCC~~T~~AGTCCGTCAGCAACTGCCTGAG
 AAATATAAGGAAATATTCTTGATCAGTC~~AAA~~ACGGGTACCGAGGT~~TAT~~ATTGACGGCGAGCGAGT
 CAAGAGGAATTCTACAAGTTATCAAACCC~~AT~~ATTAGAGAAGATGGATGGACGGAAGAGTTGCTTGTA
 AA~~ACT~~CAATCGCGAAGATCTACTGCGAAAGCAGCGGACTT~~G~~ACAACGGTAGCATTCCACATCAAATC
 CACTTAGGCGAATG~~CAT~~GCTATACTTAGAAGGCAGGAGGATT~~TTT~~TATCCGTTCTCAAAGACAATCGT
 30 GAAAAGATTGAGAAAATCCTAACCTTCGCATACCTTACTATG~~TGG~~ACCCCTGGCCGAGGGAA~~CT~~
 CGGTT~~CG~~CATGGATGACAAGAAAGTCCGAAGAACGATTACTCC~~T~~GGAA~~TTT~~TGAGGAAGTTGCTGAT
 AAAGGTGCGTCAGCTCAATCGTTATCGAGAGGATGACCG~~cc~~TTTGACAAGAAATTACGAACGAAAAAA
 GTATTG~~CC~~TAAGCACAGTTACTTACAGT~~G~~TACAATGAA~~CT~~CACGAAAGTTAAGT~~T~~
 GTC~~ACT~~GAGGGCATGCGTAAACCCGCTTTCTAAGCGGAGAACAGAAGAACAGAATAGTAGATCTGTTA
 35 TTCAAGACCAACCGCAAAGT~~G~~ACAGTTAAGCAATTGAAAGAGGACTACTTTAAGAAAATTGAATGCTTC
 GATTCTGTCGAGATCTCGGGGTAGAAGATCGATT~~T~~AATGCGTCACTTGGTACGT~~T~~CATGACCTCTA
 AAGATAATTAAAGATAAGGACTTCTGGATAACGAAGAACATGAAGATATCTTAGAAGATATAGTGTG
 ACTCTTACCC~~T~~TTGAAGATCGGGAA~~AT~~GATTGAGGAAAGACTAAAACATACGCTCACCTGTTGAC
 GATAAGGTTATGAAACAGTTAAAGAGGC~~G~~CGCTATA~~C~~GGGCTGGGGAG~~cc~~TTGTCGCGGAA~~ACT~~TAC
 40 AACGGGATAAGAGACAAGCAAGTGGTAAA~~ACT~~ATTCTCGATT~~TTT~~TCTAAAGAGGCACGGCTTCG~~CC~~AA
 AGGAAC~~TTT~~TATG~~gg~~ccCTGATCC~~C~~ATGATGACTCTTAA~~C~~CTTCAAAGAGGAT~~T~~ACAAAGGCACAGGTT
 TCCGGACAAGGGGACTCATTG~~C~~ACGAACATATTGCGAATCTGCTGGT~~T~~CGCCAGCC~~C~~ATCAAAGGGC
 ATACTCCAGACAGTCAAAGTAGTGGATGAGCTAGTTAAGGT~~C~~ATGGGACGTCACAAACCGGAAACATT
 GTAATCGAGATGGCACGCGAAAATCAAACGACTCAGAAGGGCAAAAAACAGTCGAGAGCGGATGAAG
 45 AGAATAGAAGAGGGTATTAAGAAC~~T~~GGCAGCCAGATCTTAAAGGAGCATCCTG~~GG~~AAAATACCCAA
 TTG~~C~~AGAACGAGAAA~~CT~~TTACCTCTATTACCTACAAAATGGAGGGACATGT~~T~~ATGTTGATCAGGA~~ACT~~G
 GACATAAACCGTTATCTGATTACGACGTC~~G~~ATCACATTG~~T~~ACCC~~C~~ATT~~TTT~~GAAGGACGATTCA
 ATCGACAATAAGT~~G~~CTTACACGCTCGGATAAGAACCGAGGGAAAAGTGACAATGTT~~CC~~AAAGCGAGGAA
 GT~~CG~~TAAAGAAAATGAAGAAC~~T~~ATTGGCGG~~C~~AGCT~~C~~CTAAATGCGAA~~ACT~~GATAACGCAAGAAAGTTC
 50 GATAACTTAACTAAAGCTGAGAGGGTGGCTTGTGAA~~CT~~TGACAAGGCC~~G~~ATT~~T~~ATTAACGTCAG
 CTCG~~TG~~GAACCCG~~cc~~ATCACAAC~~C~~ATGTTGCGCAGAT~~T~~ACTAGATTCCGAA~~T~~GAATACGAA~~AT~~AC
 GACGAGAACGATAAGCTGATTGGGAAGTCAAAGTAATC~~ACT~~TTAAAGTCAAATTGGT~~T~~CGGACTTC
 AGAAAGGATT~~T~~CAATTCTATAAAGTTAGGGAGATAATAACTACCA~~C~~C~~C~~ATGCGCACGACGCTTATCTT
 AATGCC~~CG~~T~~G~~TAGGGACCGCACTCATTAAGAA~~AT~~ACCCGAAGCTAGAAAGTGAGTTGT~~T~~GTGATGGT~~G~~
 55 TACAAAGTTATGACGTC~~CG~~TAAAGATGATCGC~~AA~~AGCGAACAGGAGATAGGCAAGGCTACAGCC~~AA~~
 TACTTCTTTATTCTAACATTATGAATTCTTAAAGACGGAA~~AT~~CACTCTGGCAACCGGAGAGATAACG
 AAACGACCTTAAATTGAAACCAATGGGGAGACAGGTGAA~~AT~~CGT~~T~~ATGGGATAAGGGCGGGACTTCGCG
 ACGGTGAGAAAAGTTTGTCC~~AT~~GCCCCAAGTCAACATAGTAAAGAAA~~ACT~~GAGGTG~~C~~AGACCGGAGGG

TTTCAAAGGAATCGATTCTCAAAAAGGAATAGTGATAAGCTATCGCTCGTAAAAGGACTGGAC
 CCGAAAAAGTACGGTGGCTCGATAGCCCTACAGTGCCTATTCTGTCTAGTAGTGGCAAAGTTGAG
 AAGGGAAAATCCAAGAAACTGAAGTCAGTCAGAATTATTGGGGATAACGATTATGGAGCGCTCGTCT
 TTTGAAAAGAACCCCATCGACTCCTGAGGGCAAAGGTTACAAGGAAGTAAAAAAGGATCTCATAATT
 5 AAACTACCAAAGTATAGTCTGTTGAGTTAGAAAATGGCCAAAACGGATGTTGGCTAGGCCGGAGAG
 CTTCAAAAGGGAACGAACTCGCACTACCGTCTAAATACGTGAATTCTCTGTATTAGCGTCCCATTAC
 GAGAAGTTGAAAGGTCACCTGAAGATAACGAACAGAACCTTTGTTGAGCAGCACAAACATTAT
 CTCGACGAAATCATAGAGCAATTTCGGAATTCAAGTAAAGAGAGTCATCCTAGCTGATGCCAATCTGGAC
 10 AAAGTATTAAGCCATACAACAAGCACAGGGATAAAACCCATACGTGAGCAGGGAAAATATTATCCAT
 TTGTTTACTCTTACCAACCTCGGCCTCCAGCCGATTCAAGTATTGACACAACGATAGATCGCAA
 CGATACACTTCTACCAAGGAGGTGCTAGACGCGACACTGATTCAACATCCATCACGGGATTATATGAA
 ACTCGGATAGATTGTCACAGCTGGGGTGACGGATCCCCAAGAAGAAGAGGAAAGTCTCGAGC**GAC**
 TACAAAGACCATGACGGTATTAAAGATCATGACATCGATTACAAGGATGACGATGACAAGTGA

15 **SEQ ID NO:273 - MSP2135:** CMV-T7-humanSpCas9-HF2 (N497A, R661A, Q695A,
 Q926A, D1135E) -NLS-3xFLAG

Human codon optimized *S. pyogenes* Cas9 in normal font, modified codons in lower case, NLS double underlined, 3xFLAG tag in **bold**:

ATGGATAAAAAGTATTCTATTGGTTAGACATCGGACTAATTCCGTTGGATGGGCTGTCATAACCGAT
 20 GAATACAAAGTACCTTCAAAGAAATTAAAGGTGTTGGGAAACACAGACCGTCAATTGATTAAGAAT
 CTTATCGGTGCCCTCCTATTGATAGTGGCAGAACGGCAGAGGGCAGTCGCTGAAACGAACCGCTCGG
 AGAAGGTATAACACGTCGCAAGAACCGAATATGTTACTTACAAGAAATTGAGATGGCCAAA
 GTTGACGATTCTTCTTACCGTTGGAAAGAGTCCTCTGTGAGAGGACAAGAACATGAACGG
 25 CACCCCATCTTGAAACATAGTAGATGAGGTGGCATATCATGAAAAGTACCCAACGATTTCACCTC
 AGAAAAAGCTAGTTGACTCAACTGATAAAGCGGACCTGAGGTTAATCTACTTGCTCTGCCATATG
 ATAAAGTCCGTGGCACTTCTCATTGAGGGTGAATCTAAATCCGGAACACTCGGATGTCGACAAACTG
 30 TTCATCCAGTTAGTACAAACCTATAATCAGTTGTTGAAGAGAACCCCTATAATGCAAGTGGCGTGGAT
 GCGAAGGCTATTCTTAGCGCCCGCCTCTAAATCCGACGGCTAGAAAACCTGATCGCACAATTACCC
 GGAGAGAAGAAAATGGGTTGTTCGGTAACCTTATAGCGCTCTCACTAGGCCTGACACCAAATTAAAG
 35 TCGAACTTCGACTTAGCTGAAGATGCCAATTGCAAGCTTAGTAAGGACACGTACGATGACGATCTGAC
 AATCTACTGGCACAAATTGGAGATCAGTATCGGACTTATTGAGATGGCTGCCAAAACCTTAGCGATGCA
 ATCCTCCTATCTGACATACTGAGAGTTAATACTGAGATTACCAAGGCCGTTATCCGCTCAATGATC
 AAAAGGTACGATGAAACATCACCAAGACTTGACACTTCTCAAGGCCCTAGTCCGTAGCAACTGCCTGAG
 40 AAATATAAGGAAATTCTTGTGAGTCAGTCAGGAAACGGGTACGCAGGTTATATTGACGGCGGAGCGAGT
 CAAGAGGAATTCTACAAGTTATCAAACCCATATTAGAGAAAGATGGATGGACGGAAAGAGTTGCTTGTA
 AAACTCAATCGCAAGAGTCACTGCGAAAGCAGCGGACTTCGACAAACGGTAGCATCCACATCAAATC
 CACTTAGGCGAATTGCACTGACTTAACTTAGAAGGCAGGAGGATTTTATCCGTTCTCAAAGACAATCGT
 GAAAAGATTGAGAAAATCCTAACCTTTCGACACCTTACTATGTTGGGACCCCTGCCGAGGGAACTCT
 45 CGGTTCGCATGGATGACAAGAAAGTCCGAAGAACGATTACTCCCTGGAATTGGAGGAAGTTGTCGAT
 AAAGGTGCGTCAGCTCAATCGTCATCGAGAGGGATGACGccTTTGACAAAGAATTACCGAACGAAAAA
 GTATTGCTAAGCACAGTTACTTACGAGTATTTCACAGTGTACAATGAACTCACGAAAGTTAAGTAT
 GTCACTGAGGGCATCGTAAACCCGCTTCTAACGCGAGAACAGAACAGAAATAGTAGATCTGTTA
 TTCAAGACCAACCGCAAAGTGCACAGTTAACAGTAAAGCAATTGAAAGAGGACTACTTTAAGAAAATTGAATGCTTC
 GATTCTGTCGAGATCTCGGGGTAGAAGATCGATTAAATGCGTCACTTGGTACGTATCATGACCTCCTA
 50 AAGATAATTAAAGATAAGGACTTCCTGGATAACGAAGAGAAATGAAGATATCTTAGAAGATATAGTGTG
 ACTCTTACCCCTTTGAAAGATCGGGAAATGATTGAGGAAAGACTAAAACATACGCTCACCTGTTGAC
 GATAAGGTTATGAAACAGTTAAAGAGGCCTCGCTATACGGGCTGGGAGccTTGTCGCGAAACTTATC
 AACGGGATAAGAGACAAGCAAAGTGGTAAAACTATTCTGATTTCTAAAGAGGATATAACAAAGGCACAGGTT
 AGGAACCTTATGccCTGATCCATGATGACTCTTAAACCTTCAAAGAGGATATAACAAAGGCACAGGTT
 55 TCCGGACAAGGGGACTCATTGACGAAACATATTGCGAATCTGCTGGTTGCCAGCCATCAAAAGGGC
 ATACTCCAGACAGTCAAAGTAGTGGATGAGCTAGTTAAGGTCATGGACGTCACAAACCGGAAACATT
 GTAATCGAGATGGCACGCGAAAATCAAACGACTCAGAAGGGCAAAAAACAGTCGAGAGCGGATGAAG
 AGAATAGAAGAGGGTATTAAAGAACTGGGCAGCCAGATCTTAAAGGAGCATCCTGTTGAAACCTTAC
 TTGCGAGAACGAGAAAATTACCTCTATTACCTACAAAATGGAAGGGACATGTATGTTGATCAGGAACG
 GACATAAACCGTTATCTGATTACGACGTCGATCACATTGACCCCAATTCTTTGAAAGGACGATTCA
 ATCGACAATAAAAGTGCTTACACGCTCGATAAGAACCGAGGGAAAAGTGACAATGTTCCAAGCGAGGAA
 GTCGTAAGAAAATGAAGAACTATTGGCGGAGCCTCTAAATGCGAAACTGATAACGCAAAGAAAGTTC
 GATAACTTAACAAAGCTGAGAGGGTGGCTTGTGAACTTGACAAAGGCCGATTATTAAACGTCAG
 CTCGTTGAAACCCGccATCACAAACGATGTTGCCAGATACTAGATTCCCGAATGAATACGAAATAC

GACGAGAACGATAAGCTGATTGGGAAGTCAAAGTAATCACTTAAAGTCAAAATTGGTGTGGACTTC
 AGAAAGGATTTCAATTCTATAAAGTTAGGGAGATAAATAACTACCACCATGCGACGCGCTTATCTT
 5 AATGCCGTCGTAGGGACCGCACTCATTAAGAAATACCGAAGCTAGAAAGTGAAGTTGTGTATGGTGAT
 TACAAAGTTATGACGTCCCGTAAGATGATCGCAGAAAGCGAACAGGAGATAGGCAAGGCTACAGCCAA
 TACTTCCTTATTCTAACATTGAATTCTTAAGACGGAAATCACTCTGGCAAACGGAGAGATAACGC
 AAACGACCTTAAATTGAAACCAATGGGGAGACAGGTGAAATCGTATGGGATAAGGGCGGGACTTCGCG
 10 ACGGTGAGAAAAGTTGTCCATGCCCAAGTCACATAGTAAAGAAAAGTGAAGGTGAGACCGGAGGG
 TTTCAAGGAATCGATTCTCCAAAAGGAATAGTGATAAGCTCATCGCTCGTAAAAGGACTGGGAC
 CCGAAAAGTACGGTGGCTCgagAGCCCTACAGTGCCTATTCTGTCTAGTAGTGGCAAAGATTGAG
 15 AAGGGAAAATCCAAGAAAAGTGAAGTCAGTCAGTCAGTCAGTAAAGAATTATTGGGGATAACGATTATGGAGCGCTCGTCT
 TTTGAAAAGAACCCATCGACTTCCTTGAGGCAGAGGTTACAAGGAAGTAAAAAAGGATCTCATATT
 AACTACCAAAGTATAGTCTGTGAGTTAGAAAATGGCCGAAAACGGATGTTGGCTAGGCCGGAGAG
 CTTCAAAAGGGAACGAACTCGCACTACCGTCTAAACACGTGAATTTCCTGTATTAGCGTCCCATTAC
 20 GAGAAGTTGAAAGGTTACCTGAAGATAACGAACAGAACAGCAACTTTTGTTGAGCAGCACAACATTAT
 CTCGACGAAATCATAGAGCAAATTCCGAAATTCACTGAAGAGAGTCATCCTAGCTGATGCCAATCTGGAC
 AAAGTATTAAGCGCATAACAACAGCACAGGGATAAACCCATACGTGAGCAGCGAAAATATTATCCAT
 TTGTTTACTCTTACCAACCTCGCGCTCCAGCCGATTCAAGTATTTGACACAACGATAGATCGAAA
 CGATACACTCTACCAAGGAGGTGCTAGACGCGACACTGATTACCAATCCATCACGGGATTATATGAA
 ACTCGGGATAGATTGTCACAGCTGGGGTGAAGGATCCCCAAGAAGAAGAGGAAAGTCTCGAGC**GAC**
TACAAAGACCATGACGGTATTAAAGATCATGACATCGATTACAAGGATGACGATGACAAGTGA

SEQ ID NO:274 - MSP2133: CMV-T7-humanSpCas9-HF4 (Y450A, N497A, R661A,

Q695A, Q926A)-NLS-3xFLAG

Human codon optimized *S. pyogenes* Cas9 in normal font, modified

25 codons in lower case, NLS double underlined, 3xFLAG tag in **bold**:

ATGGATAAAAAGTATTCTATTGGTTAGACATCGGACTAATTCCGTTGGATGGGCTGTCATAACCGAT
 GAATACAAAGTACCTTCAAAGAAATTAAAGGTGTTGGGAACACAGACCGTCAATTGATTTAAAGAAT
 30 CTTATCGGTGCCCTCCTATTGATAGTGGCAGACGGCAGAGGGCAGTCGCTGAAACGAACCGCTCGG
 AGAAGGTATAACACGTCGCAAGAACCGAATATGTTACTTACAAGAAATTGGTAGCAATGAGATGGCCAAA
 GTTGACGATTCTTCTTACCGTTGGAAGAGTCCTCCTGTCGAAGAGGACAAGAACATGAACGG
 CACCCCATCTTGAAACATAGTAGATGAGGTGGCATATCATGAAAAGTACCAACGATTATCACCTC
 AGAAAAAAAGCTAGTTGACTCAACTGATAAAAGCGGACCTGAGGGTAATCTACTTGGCTCTGCCATATG
 ATAAAGTTCCGTGGGCACTTCTCATTGAGGGTGAATCTAAATCCGACAACGATGTCGACAAACTG
 35 TTCATCCAGTTAGTACAAACCTATAATCAGTTGTTGAAGAGAACCCATATAATGCAAGTGGCGTGGAT
 GCGAAGGCTATTCTTAGGCCCGCTCTCTAAATCCGACGGCTAGAAAACCTGATCGCACAATTACCC
 GGAGAGAAGAAAATGGGTTGTCGTAACCTTATAGCGCTCTCACTAGGCCTGACACCAAATTAAAG
 TCGAACCTCGACTTAGCTGAAGATGCCAAATTGCAAGCTAGTAAGGACACGTTGACGATCTGAC
 AATCTACTGGCACAAATTGGAGATCAGTATGCGGACTTATTGGCTGCCAAAACCTTAGCGATGCA
 40 ATCCTCTATCTGACATACTGAGAGTTAATACTGAGATTACCAAGGGCGGTATCCGCTTCAATGATC
 AAAAGGTACGATGAACATACCAAGACTTGCACACTTCTCAAGGCCCTAGTCCGTCAGCAACTGCCCTGAG
 AAATATAAGGAAATATTCTTGATCAGTCGAAAACGGGTACGCAGGTTATATTGACGGCGAGCGAGT
 CAAGAGGAATTCTACAAGTTATCAACCCATATTAGAGAAGATGGATGGACGGAAGAGTTGCTTGTA
 AACTCAATCGCAAGAGTCACTGCGAAAGCAGCGGACTTGCACACGGTAGCATCCACATCAAATC
 45 CACTTAGGCAGATTGCACTGCTATACTTAGAAGGCAGGAGGATTTTATCCGTTCTCAAAGACAATCGT
 GAAAAGATTGAGAAAATCCTAACCTTCCGACACCTGCCCTAGTCCGTCAGCAACTGCCCTGAG
 CGGTTCCGATGGATGACAAGAACGCTCAAGTCCGAAGAACGATTACTCCCTGGAATTGGAGGAAGTTGTCGAT
 AAAGGTGCGTCAGCTCAATCGTCATCGAGAGGGATGACGCCCTTGACAAAGAATTACCGAACGAAAAAA
 GTATTGCCCTAACGACAGTTACTTACAGTGTACAATGAACTCACGAAAGTTAAGTAT
 50 GTCACTGAGGGCATCGTAAACCCGCTTCTAACCGGAGAACAGAACAGAAAGCAATAGTAGATCTGTTA
 TTCAAGACCAACCCCAAAGTGAAGCTAACGAAATTGAAAGAGGACTACTTAAAGAAAATTGAATGCTTC
 GATTCTGTCGAGATCTCGGGGTTAGAAGATCGATTAAATGCGTCACGGTACGTTATCATGACCTCCTA
 AAGATAATTAAAGATAAGGACTTCTGGATAACGAAGAGAATGAAGATATCTTAGAGATATAGTGTG
 ACTCTTACCCCTTTGAAGATCGGGAAATGATTGAGGAAGACTAAAACATACGCTCACCTGTTGAC
 55 GATAAGGTTATGAAACAGTTAAAGAGGGCGTCGCTATACGGGCTGGGGAGCCCTTGTCGCGGAAACTTATC
 AACGGGATAAGAGACAAGCAAAGTGGTAAAAGTATTCTCGATTTCTAAAGAGCGACGGCTCGCCAAT
 AGGAACCTTATGAGGACTCATGACGTTACTCTTAAACCTCAAAAGAGGATATACAAAGGACAGGTT
 TCCGGACAAGGGGACTCATTGACGAAACATATTGCGAATCTGCTGGTTCGCCAGCCATCAAAAGGGC

ATACTCCAGACAGTCAAAGTAGTGGATGAGCTAGTTAAGGTATGGGACGTACAAACCGGAAACATT
 5 GTAATCGAGATGGCACCGCAGAAATCAAACGACTCAGAAGGGCAAAAAACAGTCGAGAGCGGATGAAG
 AGAATAGAAGAGGGTATTAAGAAGACTGGGCAGCCAGATCTTAAAGGAGCATCCTGTGGAAATACCCAA
 TTGCAGAACGAGAAACTTACCTCTATTACCTACAAAATGGAAGGGACATGTATGTTGATCAGGAACCTG
 GACATAAACCGTTATCTGATTACGACGTCGATCACATTGTAACCCAACTCTTTGAAGGAGCATTCA
 ATCGACAATAAAGTGCTTACACGCTCGGATAAGAACCGAGGGAAAAGTGACAATGTTCCAAGCGAGGAA
 10 GTCGTAAGAAAATGAAGAACTATTGGCGGCAGCTCTAAATGCGAAACTGATAACGCAAAGAAAAGTTC
 GATAACTTAACTAAAGCTGAGAGGGTGGCTGTGAACTTGACAAGGCCGATTATTAAACGTCAG
 CTCGTGAAACCCGcgccATCACAAACGATGTTGCCAGATACTAGATTCCGAATGAATAACGAAATAC
 GACGAGAACGATAAGCTGATTGGGAAGTCAAAGTAATCCTTAAAGTCAAAATTGGTGTGGACTTC
 AGAAAGGATTTCAATTCTATAAAGTTAGGGAGATAAATAACTACCACCATGCGCACGCGCTTATCTT
 15 AATGCCGTCGTAGGGACCGCACTCATTAAGAAATACCGGAAGCTAGAAAGTGTAGTTGTATGGTGAT
 TACAAAGTTATGACGTCCGTAAGATGATCGCAGAACAGGAGATAGGCAAGGCTACAGCCAA
 TACTCTTTATTCTAACATTATGAATTCTTAAGACGGAATCACTCTGGCAAACGGAGAGATAACGC
 AAACGACCTTTAATTGAAACCAATGGGGAGACAGGTGAAATCGTATGGATAAGGCCGGACTTCGCG
 20 ACGGTGAGAAAAGTTGTCCATGCCCAAGTCACACATAGTAAAGAAAACTGAGGTGCAGACCGGAGGG
 TTTCAAGGAATCGATTCTCCAAAAGGAATAGTGATAAGCTCATCGCTCGAAAAGGACTGGGAC
 CCGAAAAAGTACGGTGGCTCGATAGCCCTACAGTTGCCTATTCTGTCTAGTAGTGGCAAAGTTGAG
 AAGGGAAAATCCAAGAAACTGAAGTCAGTCAGAAAGAATTATTGGGGATAACGATTATGGAGCGCTCGTCT
 25 TTTGAAAAGAACCCATCGACTTCTTGAGGCAGAAGGTTACAAGGAAGTAAAAAGGATCTATAATT
 AACTACCAAAGTATAGTCTGTTGAGTTAGAAAATGCCGAAAACGGATGTTGGCTAGGCCGGAGAG
 CTTCAAAAGGGAACGAACTCGCACTACCGCTAAATACGTGAATTCTCTGTATTAGCGTCCCATTAC
 GAGAAGTTGAAAGGTTCACCTGAAGATAACGAACAGAAGCAACTTTTGTTGAGCAGCACAAACATTAT
 30 CTCGACGAAATCATAGAGCAAATTCTCGAATTCACTAGTAAGAGAGTCATCCTAGCTGATGCCAATCTGGAC
 AAAGTATTAAGCGCATACAACAAGCACAGGGATAAACCCATACGTGAGCAGCGGAAAATATTATCCAT
 TTGTTTACTCTTACCAACCTCGCGCTCCAGCCGATTCAAGTATTTGACACAACGATAGATCGCAA
 CGATACACTCTACCAAGGAGGTGCTAGACGCGACACTGATTACCAATCCATCACGGATTATATGAA
 ACTCGGATAGATTGTCACAGCTGGGGTACGGATCCCCAAGAAGAAGAGGAAAGTCTCGAGC**GAC**
 TACAAAGACCATGACGGTGATTATAAGATCATGACATCGATTACAAGGATGACGATGACAAGTGA
 35

SEQ ID NO: 275 - **MSP469**: CMV-T7-humanSpCas9-VQR (D1135V, R1335Q,

T1337R) -NLS-3xFLAG

Human codon optimized *S. pyogenes* Cas9 in normal font, modified codons in lower case, NLS double underlined, 3xFLAG tag in **bold**:

ATGGATAAAAAGTATTCTATTGGTTAGACATGGCACTAATTCCGTTGGATGGGCTGTCATAACCGAT
 40 GAATACAAAGTACCTTCAAAGAAATTAAAGGTGTTGGGAAACACAGACCGTATTGATTTAAAGAAT
 CTTATCGGTGCCCTCTATTGATAGTGGCAGAACGGCAGAGGGCAGCTCGCTGAAACGAAACCGCTCGG
 AGAAGGTATAACCGTCGCAAGAACCGAATATGTTACTTACAAGAAATTAGCAATGAGATGCCAAA
 GTTGACGATTCTTCTTCAACGTTGGAAGAGTCCTTGTGAGAAGAGGACAAGAAACATGAACGG
 CACCCCATCTTGGAAACATAGTAGATGAGGTGGCATATCATGAAAAGTACCAACGATTATCACCTC
 AGAAAAAAAGCTAGTTGACTCAACTGATAAAGCGGACCTGAGGGTAATCTACTTGGCTCTGCCATATG
 ATAAAGTTCCGTGGGCACTTCTCATTGAGGGTGTCTAAATCGGACAACCTCGGATGTCGACAAACTG
 45 TTCATCCAGTTAGTACAAACCTATAATCAGTTGTTGAAGAGAACCTATAATGCAAGTGGCTGGAT
 GCAGCAGCTATTCTTAGCGCCGCCTCTCTAAATCCGACGGCTAGAAAACCTGATCGCACAAATTACCC
 GGAGAGAAGAAAATGGGTGTTGGTACGTTAGGACACGCTAGAAGGACACGATGACGATCTCGAC
 TCGAACCTCGACTTAGCTGAAGATGCCAATTGAGCTTAGAAGGACACGATGACGATCTCGAC
 AATCTACTGGCACAAATTGGAGATCAGTATGCGGACTTATTTGGCTGCCAAAACCTTAGCGATGCA
 50 ATCCCTCTATCTGACATACTGAGAGTTAATACTGAGATTACCAAGGCGCCGTTATCCGCTCAATGATC
 AAAAGGTACGATGACATCACCAAGACTGACACTTCTCAAGGCCCTAGTCCGTCAGCAACTGCCTGAG
 AAATATAAGGAAATTCTTGTGATCAGTCGAAAACGGGTACGCAGCTTATATTGACGGCGAGCGAGT
 CAAGAGGAATTCTACAAGTTATCAAACCCATATTAGAGAAAGATGGATGGACGGAAGAGTTGCTTGTA
 AACTCAATCGCGAAGATCTACTGCGAAAGCAGCGGACTTTCGACAAACGGTAGCATTCCACATCAAATC
 CACTTAGGCAGATTGATGCTATACTTAGAAGGCAGGAGGATTTCATCCGTTCTCAAAGACAATCGT
 55 GAAAAGATTGAGAAAATCCTAACCTTCCGACATACCTTACTATGTTGGACCCCTGGCCCGAGGGAACTCT
 CGGTTCCGATGGATGACAAGAAAGTCCGAAGAACGATTACTCCATGGAATTGGAGGAAGTTGCTCGAT
 AAAGGTGGCTCAGCTCAATCGTTCATCGAGAGGATGACCAACTTGACAAGAATTACCGAACGAAAAA
 GTATTGCCCTAAGCACAGTTACTTACAGTGTACAATGAACTCACAGTGTACAATGAACTCACGAAAGTTAAGTAT

GTCACTGAGGGCATCGTAAACCCGCCCTTCTAACGGAGAACAGAAGAAAGCAATAGTAGATCTGTTA
 TTCAAGACCAACCGCAAAGTGCAGTTAACGAAATTGAAAGAGGACTACTTAAAGAAAATTGAATGCTTC
 GATTCTGTCGAGATCTCCGGGGTAGAAGATCGATTAAATCGTCACTTGGTACGTATCATGACCTCCTA
 AAGATAATTAAAGATAAGGACTTCCTGGATAACGAAGAGAACGAAAGATGAAGATATCTTAGAAGATATAGTGTG
 5 ACTCTTACCCCTTTGAAGATCGGGAAATGATTGAGGAAAGACTAAAAACATACGCTCACCTGTTGAC
 GATAAGGTTATGAAACAGTTAAAGAGGCCTCGCTATACGGGCTGGGGACGATTGTCGCGGAAACTTATC
 AACGGGATAAGAGACAAGCAAAAGTGGTAAAACATTCTCGATTTCCTAAAGAGCGACGGCTCGCCAAT
 AGGAACTTATGCAGCTGATCCATGATGACTCTTAAACCTCAAAGAGGATATACAAAAGGCACAGGTT
 TCCGGACAAGGGGACTCATTGCACGAACATATTGCGAATCTGCTGGTCCAGGCATCAAAAGGGC
 10 ATACTCCAGACAGTCAAAGTAGTGGATGAGCTAGTTAACGTCATGGGACGTCACAAACCGGAAACATT
 GTAATCGAGATGGCACCGCAAAATCAAACGACTCAGAAGGGCAAAAAACAGTCGAGAGCGGATGAAG
 AGAATAGAAGAGGGTATTAAGAACTGGGCAGCAGATCTTAAAGGAGCATCCTGTGGAAAATACCAA
 TTGCGAACGAGAAACTTACCTCTATTACCTACAAAATGGAAGGGACATGTATGTTGATCAGGAACG
 15 GACATAAACCGTTATCTGATTACGACGTCGATCACATTGTAACCCAACTCTTTGAAGGAGCATTC
 ATCGACAATAAAGTGTACACGCTCGGATAAGAACCGAGGGAAAGTGCACATGTTCCAAGCGAGGAA
 GTCGTAAGAAAATGAAGAACTATTGGCGGACGCTCTAAATGCGAAACTGATAACGCAAAGAAAGTTC
 GATAACTTAACTAAAGCTGAGAGGGTGGCTGTGAACTGACAAGGCCGATTATTAAACGTCAG
 CTCGTGGAAACCCGCCAAATCACAAGCATGTTGACAGATACTAGATTCCGAATGAATACGAAATAC
 GACGAGAACGATAAGCTGATTGGGAAGTCAGTAAAGTAACTTAAAGTCAAATGGTGTGGACTTC
 20 AGAAAGGATTTCAATTCTATAAAAGTTAGGGAGATAAAACTACCAACCATGCCACGACGCCATTCTT
 AATGCCGTGTTAGGGACCGCACTCTAAAGAAATACCGAAGCTAGAAAGTGGATTTGTGATGGTGT
 TACAAAGTTATGACGTCCGTAAGATGATCGCAGAACAGGAGATAGGCAAGGCTACAGCCAA
 TACTCTTTTATTCTAACATTATGAATTCTTAAAGCGGAAATCACTCTGGCAAACGGAGAGATACG
 AAACGACCTTAAATGAAACCAATGGGGAGACAGGTGAAATCGTATGGATAAGGGCCGGACTTCGCG
 25 ACGGTGAGAAAAGTTTGTCCATGCCCAAGTCACATAGTAAAGAAAACGTGAGGTGCAGACCGGAGGG
 TTTTCAAAGGAATCGATTCTCCAAAAGGAATAGTGTAAAGCTCATCGCTCGTAAAAGGACTGGAC
 CCGAAAAGTACGGTGGCTTCgtqAGCCCTACAGTTGCCTATTCTGCTTAGTAGTGGCAAAGTTGAG
 AAGGGAAAATCCAAGAAACTGAAGTCAGTCAGAACATTATGGGATAACGATTATGGAGCGCTCGTCT
 TTTGAAAAGAACCCATCGACTTCCTTGAGGCGAAAGGTTACAAGGAAGTAAAAGGATCTCATAATT
 30 AAACTACCAAAGTATAGTGTGTTGAGTTAGAAAATGCCGAAAACGGATGTTGGCTAGGCCGGAGAG
 CTTCAAAGGGAACGAACTCGCACTACCGCTCTAAACGTGAAATTCTGTGTTAGCGTCCCATTAC
 GAGAAGTTGAAAGGTTACCTGAAGATAACGAACAGAACGAAACTTTGTTGAGCAGCACAACATTAT
 CTCGACGAAATCATAGAGCAAATTCCGAATTCTGAGTCAAGAGAGTCATCTGATGCCATCTGGAC
 AAAGTATTAAGCGCATACAACAAGCACAGGGATAAACCCATACGTGAGCAGCGGAAAATATTATCCAT
 35 TTGTTTACTCTTACCAAACCTCGGCCTCCAGCCGATTCAAGTATTTGACACAACGATAGATCGCAA
 cagTACagaTCTACCAAGGAGGTGCTAGACGCGACACTGATTCCATCACGGGATTATATGAA
 ACTCGGATAGATTGTACAGCTGGGGTGACGGATCCCCAAGAAGAAGAGGAAAGTCTCGAGC**GAC**
 TACAAAGACCATGACGGTATTATAAGATCATGACATCGATTACAGGATGACGATGACAAGTGA
 40 **SEQ ID NO:276 - MSP2440: CMV-T7-humanSpCas9-VQR-HF1 (N497A, R661A,
 Q695A, Q926A, D1135V, R1335Q, T1337R)-NLS-3xFLAG**
 Human codon optimized *S. pyogenes* Cas9 in normal font, modified
 codons in lower case, NLS double underlined, 3xFLAG tag in **bold**:
 45 ATGGATAAAAAGTATTCTATTGGTTAGACATCGGACTAATTCCGTTGGATGGGCTGTCATAACCGAT
 GAATACAAAGTACCTTCAAAGAAATTAAAGGTGTTGGGAACACAGACCGTCTTCGATTAAGAAAAT
 CTTATCGGTGCCCTCTATTGATAGTGGCAGAACGGCAGAGGGCAGTCGCTGAAACGAAACCGCTCGG
 AGAAGGTATAACGTCGCAAGAACCGAATATGTTACTTACAAGAAAATTGAGTGGCCAAA
 GTTGACGATTCTTCTTCCACCGTTGGAAAGAGTCCTTCTGTGAGAAGAGGACAAGAACATGAACGG
 50 CACCCCATCTTGGAAACATAGTAGATGAGGTGGCATATCATGAAAAGTACCCAAACGATTATCACCTC
 AGAAAAAGCTAGTTGACTCAACTGATAAAAGCGGACCTGAGGTAAATCTACTTGCTCTGCCATATG
 ATAAAGTTCCGTGGCACTTCTCATTGAGGGTGTAAATCCGACAACGCGATGTCGACAAACTG
 TTCATCCAGTTAGTACAAACCTATAATCAGTTGTTGAAGAGAACCCATATAATGCAAGTGGCGTGGAT
 GCGAAGGCTATTCTAGCGCCGCCTCTAAATCCGACGGCTAGAAAACGATGTCGACAAATTACCC
 55 GGAGAGAAGAAAATGGGTTGTTGGTAACCTTATAGCGCTCTCACTAGGCCTGACACCAAATTAAAG
 TCGAACTTCGACTTAGCTGAAGATGCCAAATTGCAAGCTTAGTAAGGACACGTCAGGATGACGATCTGAC
 AATCTACTGGCACAAATTGGAGATCAGTATGCGGACTTATTGGCTGCCAAAACCTTAGCGATGCA
 ATCCTCTATCTGACATAGTGAAGATTAATACTGAGATTACCAAGGGCCGTTATCCGCTCAATGATC
 AAAAGGTACGATGAAACATCACCAAGACTTGACACTTCTCAAGGCCCTAGTCCGTCAGCAACTGCCGAG

AAATATAAGGAAATATTCTTGTCACTCGAAAAACGGGTACGCAGGTTATATTGACGGCGAGCGAGT
 CAAGAGGAATTCTACAAGTTATCAAACCCATATTAGAGAAGATGGATGGGACGGAAGAGTTGCTGT
 5 AACTCAATCGCGAAGATCTACTGCGAAAGCAGCGGACTTCGACAACGGTAGCATCCTCACATCAAATC
 CACTTAGGCAGATTGCATGCTATACTTAGAAGGAGGAGGTTATCCGTCCTCAAAGACAATCGT
 GAAAAGATTGAGAAAATCCTAACCTTCGCACACTTACTATGTTGGGACCCCTGGCCCGAGGGAAC
 10 CGGTTCGCATGGATGACAAGAAAGTCCGAAGAACGATTACTCCCTGGAATTGGAGGAAGTTGTCGAT
 AAAGGTGCGTCAGCTCAATCGTCATCGAGAGGATGACCGccTTTGACAAGAAATTACGAAACGAAAAA
 GTATTGCCCTAAAGCACAGTTACTTACGAGTATTACAGTGTACAATGAACTCACGAAAGTTAAGTAT
 GTCACTGAGGGCATGCGTAAACCCGCCCTTCTAACGGAGAACAGAACAGAAACTAGTAGATCTGTTA
 15 TTCAAGACCAACCGCAAAGTGACAGTTAAGCAATTGAAAGAGGACTACTTTAAGAAAATTGAATGCTTC
 GATTCTGCGAGATCTCCGGGTAGAAGATCGATTAAATGCGTCACTTGGTACGTATCATGACCTCCTA
 AAGATAATTAAAGATAAGGACTTCCTGGATAACGAAGAGAACAGAAGATAGAAGATATCTAGAAGATATAGTGT
 ACTCTTACCCCTCTTGAAAGATCGGGAAATGATTGAGGAAAGACTAAAACATACGCTCACCTGTTGAC
 GATAAGTTATGAACAGTTAAAGAGGCGTCGCTACACGGCTGGGAGccTTGTCGCGGAAACTTATC
 20 AACGGGATAAGAGAACAGCAAAGTGGTAAAACATTCTCGATTCTAAAGAGGATATAACAAAGGCACAGGTT
 AGGAACCTTATGccCTGATCCATGATGACTCTTAACCTTCAAAGAGGATATAACAAAGGCACAGGTT
 TCCGGACAAGGGGACTCATTGACGAAACATATTGCGAATCTGCTGGTCCGCCAGCCATCAAAAGGGC
 ATACTCCAGACAGTCAAAGTAGTGGATGAGCTAGTTAAGGTATGGGACGTCACAAACCGGAAACATT
 GTAATCGAGATGGCACGCGAAAATCAAACGACTCAGAAGGGGCAAAAAACAGTCGAGAGCGGATGAAG
 25 GATAACTTAACTAAAGCTGAGAGGGGTTGGCTTGCTGAACCTGACAAGGCCGATTATAACGTCAG
 CTCGTGAAACCCGccATCACAAAGCATGTTGCGCAGATACTAGATTCCGAATGAATACGAAATAC
 GACGAGAACGATAAGCTGATTCGGGAAGTCAAAGTAATCACTTAAAGTCAAATTGGTGTGACTTC
 AGAAAGGATTTCATAATTCTATAAAAGTTAGGGAGATAAAACTACCAACCATGCGCACGACGCTTATC
 30 TACAAAGTTATGACGTCGTAAGATGATCGCAGAACAGGAGATAAGGCAAGGCTACAGCCAA
 TACTCTTTATTCTAACATTATGAATTCTTAAGACGGAATCACTCTGGCAAACGGAGAGATAACGC
 AAACGACCTTAATTGAAACCAATGGGAGACAGGTGAAATCGTATGGATAAGGGCCGGACTTCGCG
 ACGGTGAGAAAAGTTTGTCCATGCCCAAGTCAACATAGTAAAGAAAAGTGGTGCAGACCGGAGGG
 TTTTCAAGGAATCGATTCTCCAAAAGGAATAGTGATAAGCTCATCGCTCGTAAAAGGACTGGGAC
 35 CCGAAAAAGTACGGTGGCTTcgtqAGCCCTACAGTTGCTATTCTGCTCTAGTAGTGGCAAAGTTGAG
 AAGGGAAAATCCAAGAAACTGAAGTCAGTCAAAGAATTATTGGGATAACGATTATGGAGCGCTCGTCT
 TTTGAAAAGAACCCATCGACTTCCATTGAGGCAGAGGTTACAAGGAATGAAAGGATCTCATATT
 AACTACCAAAGTATAGTCTGTTGAGTTAGAAAATGCCGAAAACGGATGTTGGCTAGGCCGGAGAG
 CTTCAAAGGGAACGAACTCGCACTACCGTCTAAATACGTGAATTCTGTATTAGCGTCCCATTAC
 40 GAGAAGTTGAAAGGTCACCTGAAGATAACGAACAGAACGAACTTTTGTGAGCAGCACAACATTAT
 CTCGACGAAATCATAGAGCAAATTCCGAATTCACTGAGAGACTCATCTAGCTGATGCCAACTGGAC
 AAAGTATTAAAGCGCATAACAACGACAGGGATAAACCCATACGTGAGCAGCGGAAATATTATCCAT
 TTGTTTACTCTACCAACCTCGCGCTCCAGCCGATTCAAGTATTGACACAACGATAGATCGCAA
 45 cagTACagaTCTACCAAGGAGGTGCTAGACGCGACACTGATTACCAATCCATCACGGGATTATATGAA
 ACTCGGATAGATTGTCACAGCTGGGGTACGGGATCCCCAAGAAGAAGAGGAAAGTCTCGAGC**GAC**
 TACAAAGACCATGACGGTATTATAAGATCATGACATCGATTACAAGGATGACCGATGACAAGTGA

**SEQ ID NO:277 - BPK2797: CMV-T7-humanSpCas9-VRQR (D1135V, G1218R,
 R1335Q, T1337R) -NLS-3xFLAG**

50 Human codon optimized *S. pyogenes* Cas9 in normal font, modified
 codons in lower case, NLS double underlined, 3xFLAG tag in **bold**:
 ATGGATAAAAAGTATTCTATTGGTTAGACATCGCACTAACTCCGTTGGATGGCTGTCAACCGAT
 GAATACAAAGTACCTTCAAAGAAATTAAAGGTGTTGGGAAACACAGACCGTCATTGATTAAAAGAAT
 55 CTTATCGGTGCCCTCTATTGATAGTGGCAGAACGGCAGAGGGCAGCTCGCCTGAAACGAAACCGCTCGG
 AGAAGGTATAACCGTGCAGAACCGAATATGTTACTTACAAGAAAATTAGCAATGAGATGGCCAAA
 GTTGACGATTCTTCTTTCAACCGTTGGAAGAGACTCCCTGTCGAAGAGGACAAGAAACATGAACGG
 CACCCCATCTTGAAACATAGTAGATGAGGTGGCATATCATGAAAAGTACCAACGATTATCACCTC
 AGAAAAAGCTAGTTGACTCAACTGATAAAAGCGGACCTGAGGTAAATCTACTTGGCTCTGGCCATATG
 ATAAAGTTCCGTGGCACTTCTCATTGAGGGTGTCTAAATCCGGACAACCTGGATGTCGACAAACTG

TTCATCCAGTTAGTACAAACCTATAATCAGTTGTTGAAGAGAACCCATAAAATGCAAGTGGCGTGGAT
 GCGAAGGCTATTCTTAGCGCCCCGCTCTCAAATCCGACGGCTAGAAAACCTGATCGCACAATTACCC
 GGAGAGAAGAAAATGGGTGTTGCGTAACCTTATAGCGCTCTCACTAGGCCTGACACCAAATTAAAG
 TCGAACTTCGACTTAGCTGAAGATGCCAATTGCAAGCTTAGTAAGGACACGTACCGATGACGATCTCGAC
 5 AATCTACTGGCACAATTGGAGATCAGTATGCGGACTTATTTGGCTGCCAAAACCTTAGCGATGCA
 ATCCTCCTATCTGACATACTGAGAGTTAATACTGAGATTACCAAGGGCCGTTATCCGCTTCAATGATC
 AAAAGGTACGATGAACATCACCAAGACTTGACACTTCTCAAGGCCCTAGTCCGTAGCAACTGCCTGAG
 10 AAATATAAGGAAATTCTTGTAGTCAGTCGAAAACGGGTACGCAGGTTATATTGACGGCGAGCGAGT
 CAAGAGGAATTCTACAAGTTATCAACCCATATTAGAGAAGATGGATGGGACGGAAGAGTTGCTTGTAA
 AACTCAATCGCGAAGATCTACTGCGAAAGCAGCGGACTTCGACAAACGGTAGCATTCCACATCAAATC
 CACTTAGGCGAATTGCATGCTATACTTAGAAGGAGGGAGTTTATCCGTTCTCAAAGACAATCGT
 15 GAAAAGATTGAGAAAATCCTAACCTTCGCACACCTTACTATGTTGGGACCCCTGGCCGAGGGAACTCT
 CGGTTCGCATGGATGACAAGAAAGTCCGAAAGAACGATTACTCCATGGAATTGGAGGAAGTTGTCGAT
 AAAGGTGCGTCAGCTCAATCGTCATCGAGAGGATGACCAACTTGACAGAAATTACGAAACGAAAAA
 20 GTATTGCTTAAGCACAGTTACTTACAGTGTACAGTGTACAATGAACTCACGAAAGTTAAGTAT
 GTCACTGAGGGCATGCGTAAACCGCCCTTCTAACCGGAGAACAGAAGAAAGCAATAGTAGATCTGTTA
 TTCAAGACCAACCGCAAAGTGCAGTTAAGCAATTGAAAGAGGACTACTTTAAGAAAATTGAATGCTTC
 GATTCTGTCGAGATCTCGGGGTAGAAGATCGATTTAATGCGTCACTTGGTACGTATCATGACCTCCTA
 25 AAGATAATTAAAGATAAGGACTTCTGGATAACCGAAGAGAATGAAGATATCTTAAAGATATAGTGTG
 ACTCTTACCCCTTTGAAGATCGGGAAATGATTGAGGAAAGACTAAAAACATACGCTCACCTGTTGAC
 GATAAGGTTATGAAACAGTTAAAGAGGCCTCGCTATACGGGCTGGGGACATTGTCGCGGAAACTTATC
 AACGGGATAAGAGACAAGCAAAGTGGTAAAACCTATTCTCGATTTCTAAAGAGCAGCGCTTGCCTAAT
 AGGAACCTTATGCAAGTGTGATCCATGACTCTTAAACCTTCAAAGAGGATATACAAAAGGCACAGGTT
 30 TCCGGACAAGGGGACTCATGGCACGAAACATATTGCAATCTGCTGGTCTGCCAGCCATAAAAAGGGC
 ATACTCCAGACAGTCAAAGTAGTGGATGAGCTAGTTAAGGTATGGGACGTCAAAACCGGAAACATT
 GTAATCGAGATGGCACGCGAAAATCAAACGACTCAGAAGGGGAAAAACAGTCGAGAGCAGGATGAAG
 AGAATAGAAGAGGGTATTAAGAACTGGCAGCCAGATCTTAAAGGAGCATCTGTGGAAAATACCCAA
 TTGCAAGACAGGAAACTTACCTCTATTACCTACAAAATGGAAGGGACATGTATGTTGATCAGGAACCTG
 GACATAAACCGTTATCTGATTACGACGTCGATCACATTGTAACCCAACTCTTTGAAGGAGCATTCA
 35 ATCGACAATAAAAGTGTACACGCTCGGATAAGAACCGAGGGAAAAGTGACAATGTTCCAAGCGAGGAA
 GTCGTAAAGAAAATGAAGAACTATTGGCGGAGCTCCTAAATGCGAAACTGATAACGCAAAGAAAGTTC
 GATAACTTAACTAAAGCTGAGAGGGGGCTGTGACTTGACAAGGCCGGATTATTAAACGTCAG
 CTCGTGAAACCCGCCAAATCACAAAGCATGTTGCACAGATACTAGATTCCGAATGAATACGAAATAC
 GACGAGAACGATAAGCTGATCGGGAACTCAAAGTAATCACTTAAAGTCAAATTGGTGTGGACTTC
 40 AGAAAAGGATTTCAATTCTATAAAAGTTAGGGAGATAAAATAACTACCAACCATGCCACGACGCCATTCTT
 AATGCCGTCGTAGGGACCGCACTCATTAAGAAATACCGAAGCTAGAAAGTGAGTTGTATGGTGAT
 TACAAAGTTATGACGTCCGTAAGATGATCGCAGGAAAGCGAACAGGAGATAGGCAAGGCTACGCCAA
 TACTTCTTTATTCTAACATTATGAATTCTTAAGACGGAAATCACTCTGGCAAACGGAGAGATAACG
 AAACGACCTTAATTGAAACCAATGGGAGACAGGTGAAATCGTATGGATAAGGGCCGGACTTCGCG
 45 ACGGTGAGAAAAGTTTGTCCATGCCCAAGTCACATAGTAAAGAAAACGAGGTGTCAGACCGGAGGG
 TTTTCAAGGAATCGATTCTCCAAAAGGAATAGTGATAAGCTCATCGCTCGTAAAGGACTGGGAC
 CCGAAAAAGTACGGTGGCTCTGtgAGCCCTACAGTTGCCTATTCTGTCTAGTAGTGGCAAAGTTGAG
 AAGGGAAAATCCAAGAAACTGAAGTCAGTCAGGAAATTGAGGATAACGATTATGGAGCGCTCGTCT
 TTTGAAAAGAACCCATCGACTTCCTTGAGGCGAAAGGTTACAAGGAAGTAAAAAAGGATCTCATAATT
 50 AAACTACCAAAGTATAGTCTGTTGAGTTAGAAAATGGCCAAAACGGATGTTGGCTAGCGCCagaGAG
 CTTCAAAAGGGAACGAACTCGCACTACCGTCTAAATACGTGAATTCTGTATTAGCGTCCCATTAC
 GAGAAGTTGAAAGGTCACCTGAAGATAACGAAACAGAACGAACTTTTGTTGAGCAGCACAACATTAT
 CTCGACGAAATCATAGAGCAAATTGCGAATTCTGAGAGATGATCGCTAGCTGATGCCAACTGGAC
 AAAGTATTAAGCGCATAACAACAAGCAGCAGGGATAAAACCCATACGTGAGCAGCGGAAAATATTATCCAT
 TTGTTTACTCTTACCAACCTCGGCCTCCAGGCCATTCAAGTATTGACACAACGATAGATCGAAA
 55 cagTACagaTCTACCAAGGAGGTGCTAGACGCGACACTGATTACCAATCCATCACGGGATTATATGAA
 ACTCGGATAGATTGTCACAGCTTGGGGTGACGGATCCCCAAGAAGAAGGAGGAAAGTCTCGAGC**GAC**
TACAAAGACCATGACGGTATTATAAGATCATGACATCGATTACAAGGATGACGATGACAAGTGA
SEQ ID NO:278 - MSP2443: CMV-T7-humanSpCas9-VRQR-HF1 (N497A, R661A,
Q695A, Q926A, D1135V, G1218R, R1335Q, T1337R)-NLS-3xFLAG
Human codon optimized *S. pyogenes* Cas9 in normal font, modified
codons in lower case, NLS double underlined, 3xFLAG tag in **bold:**

ATGGATAAAAAGTATTCTATTGGTTAGACATGGCACTAATTCCGTTGGATGGCTGTATAACCGAT
 5 GAATACAAAGTACCTCAAAGAAATTAAAGGTGTTGGGAAACACAGACCGTCATTGATTAAAAGAAT
 CTTATCGGTGCCCTCCTATTGATAGTGGCAGACGGCAGAGGGCAGTCGCTGAAACGAACCGCTCGG
 AGAAGGTATAACACGTCGCAAGAACCGAATATGTTACTTACAAGAAATTAGCAATGAGATGGCCAA
 GTTGACGATTCTTCTTACCGTTGGAAGAGTCCTCCTGTCGAAGAGGACAAGAACATGAACGG
 10 CACCCCATCTTGGAAACATAGTAGATGAGGTGGCATATCATGAAAAGTACCCAAACGATTATCACCTC
 AGAAAAAGCTAGTTGACTCAACTGATAAAAGCGGACCTGAGGTTAATCTACTTGGCTCTGCCATATG
 ATAAAGTTCGTTGGCACTTCTCATGGAGGTGATCTAAATCCGACAACCGTACGGATGTCGACAAACTG
 TTCATCCAGTTAGTACAAACCTATAATCAGTTGTTGAAGAGAACCCCTATAATGCAAGTGGCTGGAT
 15 GCGAAGGCTATTCTAGCGCCCGCTCTCTAAATCCGACGGCTAGAAAACCTGATCGCACAATTACCC
 GGAGAGAAGAAAATGGGTTGTTGCGTAACCTTATAGCGCTCTCACTAGGCCTGACACCAAATTAAAG
 TCGAACTTCGACTTAGCTGAAGATGCCAATTGCAAGCTTAGTAAGGACACGTACCGATGACGATCTGAC
 AATCTACTGGCACAAATTGGAGATCAGTATCGGACTTATTGGCTGCCAAAACCTTAGCGATGCA
 ATCCTCCTATCTGACACTGAGAGTTAAACTGAGATTACCAAGGCCGTTATCCGTTCAATGATC
 20 AAAAGGTACGATGAACATCACCAAGACTTGACACTTCTCAAGGCCCTAGTCCGTCAGCAACTGCCGAG
 AAATATAAGGAAATTCTTGTACTGAGTTAACTGAGATTACCAAGGCCGTTATCCGTTCAATGATC
 CAAGAGGAATTCTACAAGTTATCAAACCCATATTAGAGAAGATGGATGGACGGAAGAGTTGCTTGTA
 25 AAACTCAATCGCGAAGATCTACTGCGAAAGCAGCGGACTTCGACAAACGGTAGCATCCACATCAAATC
 CACTTAGGCCGAATTGCGATGCTATACTTAGAAGGCAGGAGGTTTATCCGTTCTCAAAGACAATCGT
 GAAAAGATTGAGAAAATTCTAACCTTTCGACACTTACTATGTTGGGACCCCTGCCGAGGGAACTCT
 CGGTTCGCATGGATGACAAGAAAGTCCGAAAGAACGATTACTCCCTGGAATTGGAGGAAAGTTGTCGAT
 30 AAAGGTGCGTCAGCTCAATCGTTATCGAGGAGTGCAGGccTTTGACAAGAAATTACGAAACGAAAAAA
 GTATTGCTAAGCACAGTTACTTACGAGTTATTCACAGTGTACAATGAACTCACGAAAGTTAAGTAT
 GTCACTGAGGGCATGCCAAACCCGCTTCTAACCGGAGAACAGAACAGCAATTAGTAGATCTGTTA
 TTCAAGACCAACCGCAAAGTGCAGTTAACAGCAATTGAAAGAGGACTACTTTAACGAAAGGAAATTGAAATGCTTC
 GATTCTGTCGAGATCTCGGGGTAGAAGATGATTAAATGCGTCACCTGGTACGTATCATGACCTCCTA
 AAGATAATTAAAGATAAGGACTTCTGGATAACGAAGAGAACAGATCTAACGAGATATAGTGTG
 35 ACTCTTACCTCTTGAAGATCGGGAAATGATTGAGGAAAGACTAAAACATACGCTCACCTGTTGAC
 GATAAGGTTATGAAACAGTTAAAGAGGCCGTCGCTATACGGGCTGGGGAGccTTGTCGCGGAAACTTATC
 AACGGGATAAGAGACAAGCAAAGTGGTAAAACATTCTCGATTCTAACGAAAGGAGTACAAAAGGCACAGGTT
 TCCGGACAAGGGACTCATTGCACGAACATATTGCGAATCTGCTGGTCGCCAGCCATCAAAAGGGC
 ATACTCCAGACAGCTAAAGTAGTGGATGAGCTAGTTAACGACTCAGAAGGGCAAAAAACAGTCGAGAGCGGATGAAG
 40 AGAATAGAAGAGGTATTAAGAAACTGGCAGCCAGATCTTAAAGGAGCATCCTGTTGGAAAAATTACCAA
 TTGCGAGAACGAGAAAATTACCTCTATTACCTACAAAATGGAAGGGACATGTATGTTGATCAGGAACCTG
 GACATAAACCGTTATCTGATTACGACGTCGATCACATTGTAACCCCAATTCTTTGAAGGACGATTCA
 ATCGACAATAAAGTGCCTACACGCTCGGATAAGAACCGAGGGAAAGTGCACATGTTCCAAGCGAGGAA
 GTCGTAAGAAAATGAAGAACTATTGGCGGAGCTCCTAAATGCGAAACTGATAACGCAAAGAAAGTTC
 45 GATAACTTAACTAAAGCTGAGAGGGTGGCTTGTGAACTTGACAGGCCGATTATTAAACGTCAG
 CTCGTTGAAACCGCAGccATCACAAAGCATGTTGCGCAGATACTAGATTCCGAAATGAAACGAAATAC
 GACGAGAACGATAAGCTGATTGGAAAGTCAAAGTAATCACTTAAAGTCAAATTGGTGTGACTTC
 AGAAAGGATTTCATAATTAAAGTTAGGGAGATAAAACTACCACCATGCGCACGACGCTTATCTT
 50 AATGCCGTCGTAGGGACCGCACTCTAACGAAATACCGAAGCTAGAAAGTGTAGTTGTTGATGGTGT
 TACAAAGTTATGACGTCCGTAAGATGATCGCAGAACAGGAGATAGGCAAGGCTACAGCCAA
 TACTCTTTATTCTAACATTGAAATTCTTAAAGACGAAATCACTCTGGCAACACGGAGAGATAACGC
 AAACGACCTTAAATTGAAACCAATGGGAGACAGGTGAAATCGTATGGATAAGGGCGGGACTTCGCG
 ACGGTGAGAAAAGTTTGTCCATGCCCAAGTCACATAGTAAAGAAAACAGGTGCAAGACCGGAGGG
 TTTTCAAAGGAATCGATTCTCAAAAAGGAATAGTGATAAGCTCATCGCTCGTAAAAGGACTGGGAC
 55 CCGAAAAAGTACGGTGGCTTGTGAGCCCTACAGTTGCTTATTCTGCTCTAGTAGTGGCAAAGTTGAG
 AAGGGAAAATCCAAGAAAAGTGAAGTCAGTCAGTCAAAGAATTATTGGGATAACGATTATGGAGCGCTCGTCT
 TTTGAAAAGAACCCATCGACTTCCCTGAGGCGAAAGGTTACAAGGAAGTAAAAAGGATCTCATAATT
 AAACTACCAAAGTATAGTCTGTTGAGTTAGAAAATGCCGAAACGGATGTTGGCTAGGCCAGaGAG
 CTTCAAAAGGGAAACGAACTCGCACTACCGTCTAAATACGTGAATTCTCTGTATTAGCGTCCATTAC
 60 GAGAAGTTGAAAGGTTCACCTGAAGATAACGAACAGCAACTTTTGTGAGCAGCAGCACAAACATTAT
 CTCGACGAAATCATAGAGCAAATTTCGGAATTCTAGTAAGAGAGTCATCCTAGCTGATGCCAATCTGGAC
 AAAGTATTAAGCGCATAACAACAAGCACAGGGATAAACCCATACGTGAGCAGCGGAAAATATTATCCAT
 TTGTTTACTCTTACCAACCTCGGCGCTCCAGCCGATTCAAGTATTGACACAAACGATAGATCGCAA
 cagTACAGaGAGTCTACCAAGGAGGTGCTAGACGCGACACTGATTACCAATCCATCACGGGATTATGAA
 ACTCGGATAGATTGTCACAGCTGGGGTGCAGGGATCCCCAAGAAGAAGGAAAGTCTCGAGC**GAC**
TACAAAGACCATGACGGTATTATAAGATCATGACATCGATTACAAGGATGACGATGACAAGTGA

SEQ ID NO:279 - BPK1520: U6-BsmBIcassette-Sp-sgRNA

U6 promoter in normal font, BsmBI sites *italicised*, *S. pyogenes* sgRNA in lower case, U6 terminator double underlined:

5 TGTACAAAAAGCAGGCTTAAAGGAACCAATTCAGTCACTGGATCCGGTACCAAGGT~~CGGG~~CAGGAA
GAGGGCCTATT~~CCC~~CATGATCCTCATATTGCATATACAGATACAAGGCTGTTAGAGAGATAATTAGA
ATTAATTGACTGTAAACACAAAGATATTAGTACAAAAATACGTGACGTAGAAAGTAATAATTCTTGGG
10 TAGTTGCAGTTAAAATTATGTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTC
GATTTCGGCTTATATATATCTTGTGGGAAAGGACGAAACACCGGAGACGATTAATGCGTCTCCgtttta
gagctagaaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtg
ctttttt

OTHER EMBODIMENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

WHAT IS CLAIMED IS:

1. An isolated *Streptococcus pyogenes* Cas9 (SpCas9) protein, with mutations at one, two, three, four, five, six, or all seven of the following positions: L169, Y450, N497, R661, Q695, Q926, and/or D1135, preferably comprising a sequence that is at least 80% identical to the amino acid sequence of SEQ ID NO:1 with mutations at one, two, three, four, five, six, or seven of the following positions: L169, Y450, N497, R661, Q695, Q926, D1135 and optionally one or more of a nuclear localization sequence, cell penetrating peptide sequence, and/or affinity tag.
2. The isolated protein of claim 1, comprising mutations at one, two, three, or all four of the following: N497, R661, Q695, and Q926, preferably one, two, three, or all four of the following mutations: N497A, R661A, Q695A, and Q926A.
3. The isolated protein of claim 1, comprising mutations at one or both of Q695 and/or Q926, and optionally one, two, three, four, or all five of L169, Y450, N497, R661, and D1135, preferably Y450A/Q695A, L169A/Q695A, Q695A/Q926A, Q695A/D1135E, Q926A/D1135E, Y450A/D1135E, L169A/Y450A/Q695A, L169A/Q695A/Q926A, Y450A/Q695A/Q926A, R661A/Q695A/Q926A, N497A/Q695A/Q926A, Y450A/Q695A/D1135E, Y450A/Q926A/D1135E, Q695A/Q926A/D1135E, L169A/Y450A/Q695A/Q926A, L169A/R661A/Q695A/Q926A, Y450A/R661A/Q695A/Q926A, N497A/Q695A/Q926A/D1135E, R661A/Q695A/Q926A/D1135E, or Y450A/Q695A/Q926A/D1135E.
4. The isolated proteins of claim 1 further comprising mutations at N14; S15; S55; R63; R78; H160; K163; R165; L169; R403; N407; Y450; M495; N497; K510; Y515; W659; R661; M694; Q695; H698; A728; S730; K775; S777; R778; R780; K782; R783; K789; K797; Q805; N808; K810; R832; Q844; S845; K848; S851; K855; R859; K862; K890; Q920; Q926; K961; S964; K968; K974; R976; N980; H982; K1003; Y1013; K1014; V1015; S1040; N1041; N1044; K1047; K1059; R1060; K1107; E1108; S1109; K1113; R1114; S1116; K1118; R1122; K1123; K1124; D1135; S1136; K1153; K1155; K1158; K1200; Q1221; H1241; Q1254; Q1256; K1289; K1296; K1297; R1298; K1300; H1311; K1325; K1334; T1337 and/or S1216, preferably N497A/R661A/Q695A/Q926A/K810A,

N497A/R661A/Q695A/Q926A/K848A, N497A/R661A/Q695A/Q926A/K855A,
N497A/R661A/Q695A/Q926A/R780A, N497A/R661A/Q695A/Q926A/K968A,
N497A/R661A/Q695A/Q926A/H982A, N497A/R661A/Q695A/Q926A/K1003A,
N497A/R661A/Q695A/Q926A/K1014A,
N497A/R661A/Q695A/Q926A/K1047A,
N497A/R661A/Q695A/Q926A/R1060A,
N497A/R661A/Q695A/Q926A/K810A/K968A,
N497A/R661A/Q695A/Q926A/K810A/K848A,
N497A/R661A/Q695A/Q926A/K810A/K1003A,
N497A/R661A/Q695A/Q926A/K810A/R1060A,
N497A/R661A/Q695A/Q926A/K848A/K1003A,
N497A/R661A/Q695A/Q926A/K855A/K1003A,
N497A/R661A/Q695A/Q926A/K855A/R1060A,
N497A/R661A/Q695A/Q926A/K968A/K1003A,
N497A/R661A/Q695A/Q926A/H982A/K1003A,
N497A/R661A/Q695A/Q926A/H982A/R1060A,
N497A/R661A/Q695A/Q926A/K1003A/R1060A,
N497A/R661A/Q695A/Q926A/K810A/K1003A/R1060A,
N497A/R661A/Q695A/Q926A/K848A/K1003A/R1060A,
Q695A/Q926A/R780A, Q695A/Q926A/K810A, Q695A/Q926A/R832A,
Q695A/Q926A/K848A, Q695A/Q926A/K855A, Q695A/Q926A/K968A,
Q695A/Q926A/R976A, Q695A/Q926A/H982A, Q695A/Q926A/K1003A,
Q695A/Q926A/K1014A, Q695A/Q926A/K1047A, Q695A/Q926A/R1060A,
Q695A/Q926A/K848A/K968A, Q695A/Q926A/K848A/K1003A,
Q695A/Q926A/K848A/K855A, Q695A/Q926A/K848A/H982A,
Q695A/Q926A/K1003A/R1060A, Q695A/Q926A/R832A/R1060A,
Q695A/Q926A/K968A/K1003A, Q695A/Q926A/K968A/R1060A,
Q695A/Q926A/K848A/R1060A, Q695A/Q926A/K855A/H982A,
Q695A/Q926A/K855A/K1003A, Q695A/Q926A/K855A/R1060A,
Q695A/Q926A/H982A/K1003A, Q695A/Q926A/H982A/R1060A,
Q695A/Q926A/K1003A/R1060A, Q695A/Q926A/K810A/K1003A/R1060A,
Q695A/Q926A/K1003A/K1047A/R1060A,

Q695A/Q926A/K968A/K1003A/R1060A,
Q695A/Q926A/R832A/K1003A/R1060A, or
Q695A/Q926A/K848A/K1003A/R1060A.

5. The isolated protein of claim 1, further comprising one or more of the following mutations: D1135E; D1135V; D1135V/R1335Q/T1337R (VQR variant); D1135E/R1335Q/T1337R (EQR variant); D1135V/G1218R/R1335Q/T1337R (VRQR variant); or D1135V/G1218R/R1335E/T1337R (VRER variant).
6. The isolated protein of claim 1, further comprising one or more mutations that decrease nuclease activity selected from the group consisting of mutations at D10, E762, D839, H983, or D986; and at H840 or N863.
7. The isolated protein of claim 6, wherein the mutations that decrease nuclease activity are:
 - (i) D10A or D10N, and
 - (ii) H840A, H840N, or H840Y.
8. An isolated *Staphylococcus aureus* Cas9 (SaCas9) protein, with mutations at one, two, three, four, five, six, or more of the following positions: Y211, Y212, W229, Y230, R245, T392, N419, Y651, R654, preferably comprising a sequence that is at least 80% identical to the amino acid sequence of SEQ ID NO:1 with mutations at one, two, three, four, or five, six or more of the following positions: Y211, Y212, W229, Y230, R245, T392, N419, Y651, R654, and optionally one or more of a nuclear localization sequence, cell penetrating peptide sequence, and/or affinity tag.
9. The isolated protein of claim 8, comprising one or more of the following mutations: Y211A, Y212A, W229, Y230A, R245A, T392A, N419A, Y651, and/or R654A.
10. The isolated protein of claim 8, comprising mutations at N419 and/or R654, and optionally one, two, three, four or more of the additional mutations Y211, Y212, W229, Y230, R245 and T392, preferably N419A/R654A, Y211A/R654A, Y211A/Y212A, Y211A/Y230A, Y211A/R245A, Y212A/Y230A, Y212A/R245A, Y230A/R245A, W229A/R654A, Y211A/Y212A/Y230A, Y211A/Y212A/R245A,

Y211A/Y212A/Y651A, Y211A/Y230A/R245A, Y211A/Y230A/Y651A, Y211A/R245A/Y651A, Y211A/R245A/R654A, Y211A/R245A/N419A, Y211A/N419A/R654A, Y212A/Y230A/R245A, Y212A/Y230A/Y651A, Y212A/R245A/Y651A, Y230A/R245A/Y651A, R245A/N419A/R654A, T392A/N419A/R654A, R245A/T392A/N419A/R654A, Y211A/R245A/N419A/R654A, W229A/R245A/N419A/R654A, Y211A/R245A/T392A/N419A/R654A, or Y211A/W229A/R245A/N419A/R654A.

11. The isolated proteins of claim 8, further comprising mutations at Y211; Y212; W229; Y230; R245; T392; N419; L446; Q488A; N492A; Q495A; R497A; N498A; R499; Q500; K518; K523; K525; H557; R561; K572; R634; Y651; R654; G655; N658; S662; N667; R686; K692; R694; H700; K751; D786; T787; Y789; T882; K886; N888; 889; L909; N985; N986; R991; R1015; N44; R45; R51; R55; R59; R60; R116; R165; N169; R208; R209; Y211; T238; Y239; K248; Y256; R314; N394; Q414; K57; R61; H111; K114; V164; R165; L788; S790; R792; N804; Y868; K870; K878; K879; K881; Y897; R901; and/or K906.
12. The isolated protein of claim 8, further comprising one or more of the following mutations: E782K, K929R, N968K, or R1015H. Specifically, E782K/N968K/R1015H (KKH variant); E782K/K929R/R1015H (KRH variant); or E782K/K929R/N968K/R1015H (KRKH variant).
13. The isolated protein of claim 8, further comprising one or more mutations that decrease nuclease activity selected from the group consisting of mutations at D10, E477, D556, H701, or D704; and at H557 or N580.
14. The isolated protein of claim 13, wherein the mutations are:
 - (i) D10A or D10N, and /or
 - (ii) H557A, H557N, or H557Y, and/or
 - (iii) N580A, and/or
 - (iv) D556A.
15. A fusion protein comprising the isolated protein of claims 1-14, fused to a heterologous functional domain, with an optional intervening linker, wherein the linker does not interfere with activity of the fusion protein.

16. The fusion protein of claim 15, wherein the heterologous functional domain is a transcriptional activation domain.
17. The fusion protein of claim 16, wherein the transcriptional activation domain is from VP64 or NF- κ B p65.
18. The fusion protein of claim 15, wherein the heterologous functional domain is a transcriptional silencer or transcriptional repression domain.
19. The fusion protein of claim 18, wherein the transcriptional repression domain is a Krueppel-associated box (KRAB) domain, ERF repressor domain (ERD), or mSin3A interaction domain (SID).
20. The fusion protein of claim 18, wherein the transcriptional silencer is Heterochromatin Protein 1 (HP1), preferably HP1 α or HP1 β .
21. The fusion protein of claim 15, wherein the heterologous functional domain is an enzyme that modifies the methylation state of DNA.
22. The fusion protein of claim 21, wherein the enzyme that modifies the methylation state of DNA is a DNA methyltransferase (DNMT) or a TET protein.
23. The fusion protein of claim 22, wherein the TET protein is TET1.
24. The fusion protein of claim 15, wherein the heterologous functional domain is an enzyme that modifies a histone subunit.
25. The fusion protein of claim 15, wherein the enzyme that modifies a histone subunit is a histone acetyltransferase (HAT), histone deacetylase (HDAC), histone methyltransferase (HMT), or histone demethylase.
26. The fusion protein of claim 15, wherein the heterologous functional domain is a biological tether.
27. The fusion protein of claim 26, wherein the biological tether is MS2, Csy4 or lambda N protein.

28. The fusion protein of claim 26, wherein the heterologous functional domain is FokI.
29. An isolated nucleic acid encoding the protein of claims 1-14.
30. A vector comprising the isolated nucleic acid of claim 29, optionally operably linked to one or more regulatory domains for expressing the protein of claims 1-24.
31. A host cell, preferably a mammalian host cell, comprising the nucleic acid of claim 29, and optionally expressing the protein of claims 1-14.
32. A method of altering the genome or epigenome of a cell, the method comprising expressing in the cell or contacting the cell with the isolated protein of claims 1-14, and a guide RNA having a region complementary to a selected portion of the genome of the cell.
33. An isolated nucleic acid encoding the protein of claim 15.
34. A vector comprising the isolated nucleic acid of claim 33, optionally operably linked to one or more regulatory domains for expressing the protein of claim 15.
35. A host cell, preferably a mammalian host cell, comprising the nucleic acid of claim 33, and optionally expressing the protein of claim 15.
36. A method of altering the genome or epigenome of a cell, the method comprising expressing in the cell or contacting the cell with the isolated protein of claims 1-14, and a guide RNA having a region complementary to a selected portion of the genome of the cell.
37. A method of altering the genome or epigenome of a cell, the method comprising expressing in the cell or contacting the cell with the isolated fusion protein of claims 15-28, and a guide RNA having a region complementary to a selected portion of the genome of the cell.
38. The method of claims 36 or 37, wherein the isolated protein or fusion protein comprises one or more of a nuclear localization sequence, cell penetrating peptide sequence, and/or affinity tag.

39. The method of claims 36 or 37, wherein the cell is a stem cell, preferably an embryonic stem cell, mesenchymal stem cell, or induced pluripotent stem cell; is in a living animal; or is in an embryo.
40. A method of altering a double stranded DNA D (dsDNA) molecule, the method comprising contacting the dsDNA molecule with the isolated protein of claims 1-14, and a guide RNA having a region complementary to a selected portion of the dsDNA molecule.
41. The method of claim 40, wherein the dsDNA molecule is *in vitro*.
42. A method of altering a double stranded DNA D (dsDNA) molecule, the method comprising contacting the dsDNA molecule with the fusion protein of claim 15, and a guide RNA having a region complementary to a selected portion of the dsDNA molecule.
43. The method of claim 42, wherein the dsDNA molecule is *in vitro*.

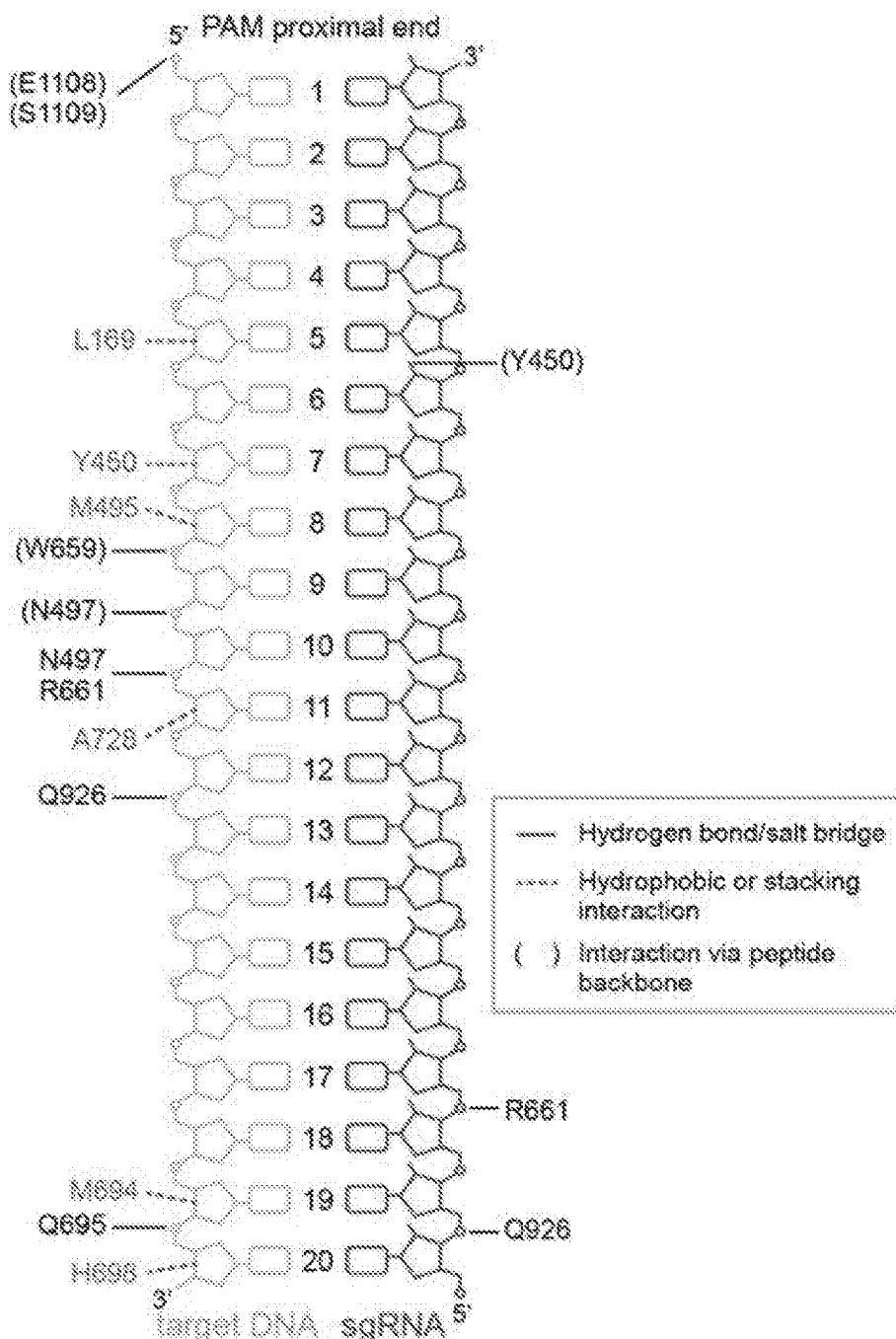


FIG. 1A

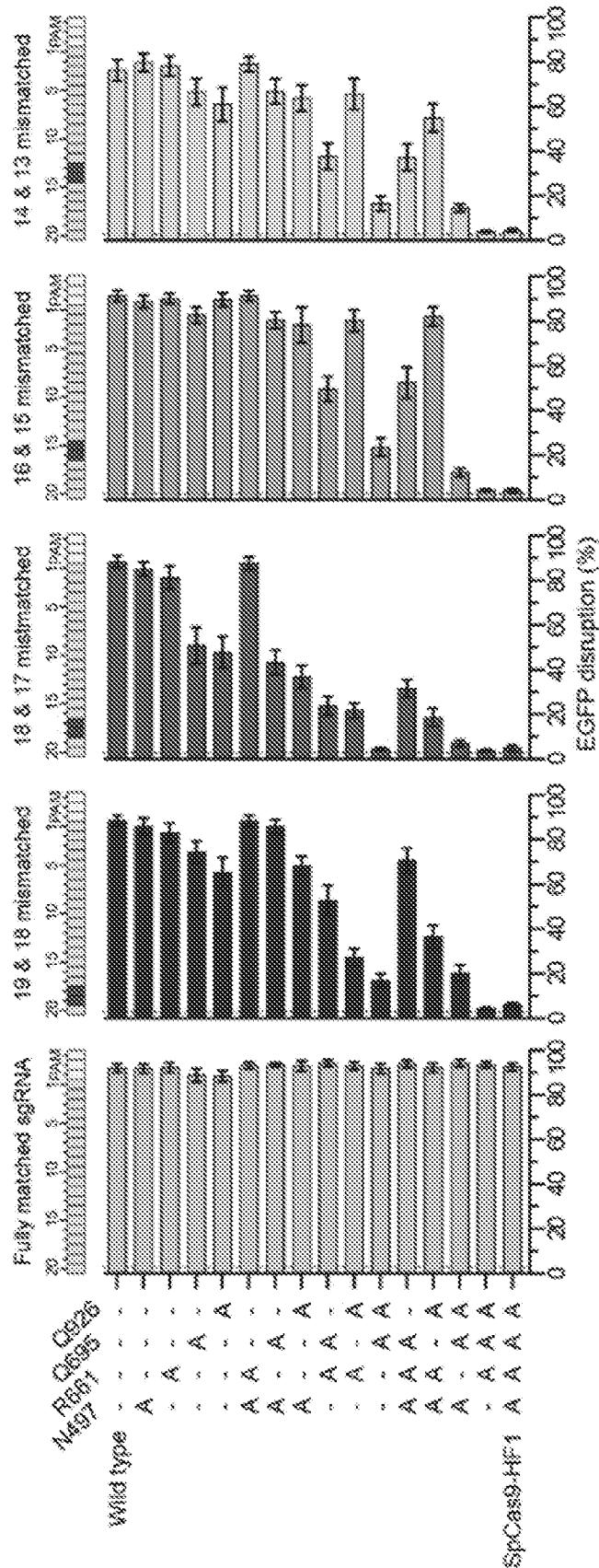


FIG. 1B

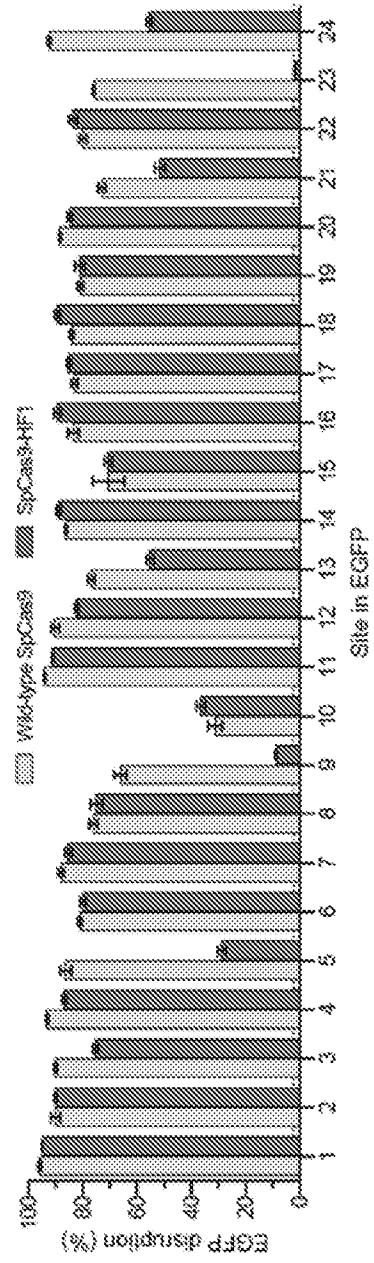


FIG. 1C

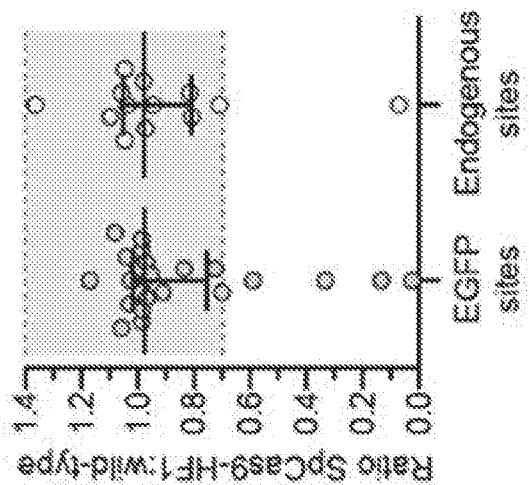


FIG. 1E

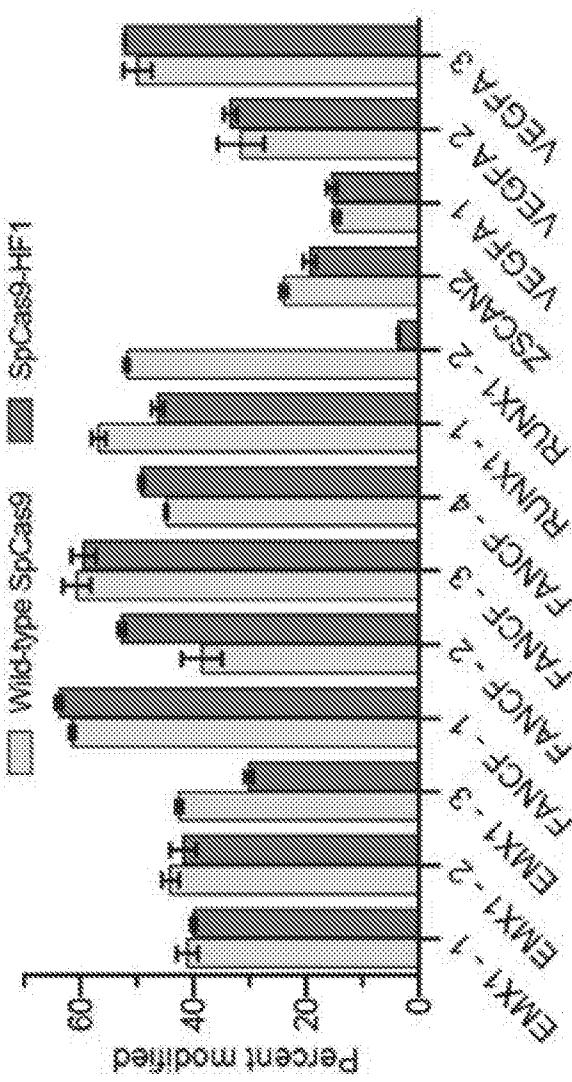
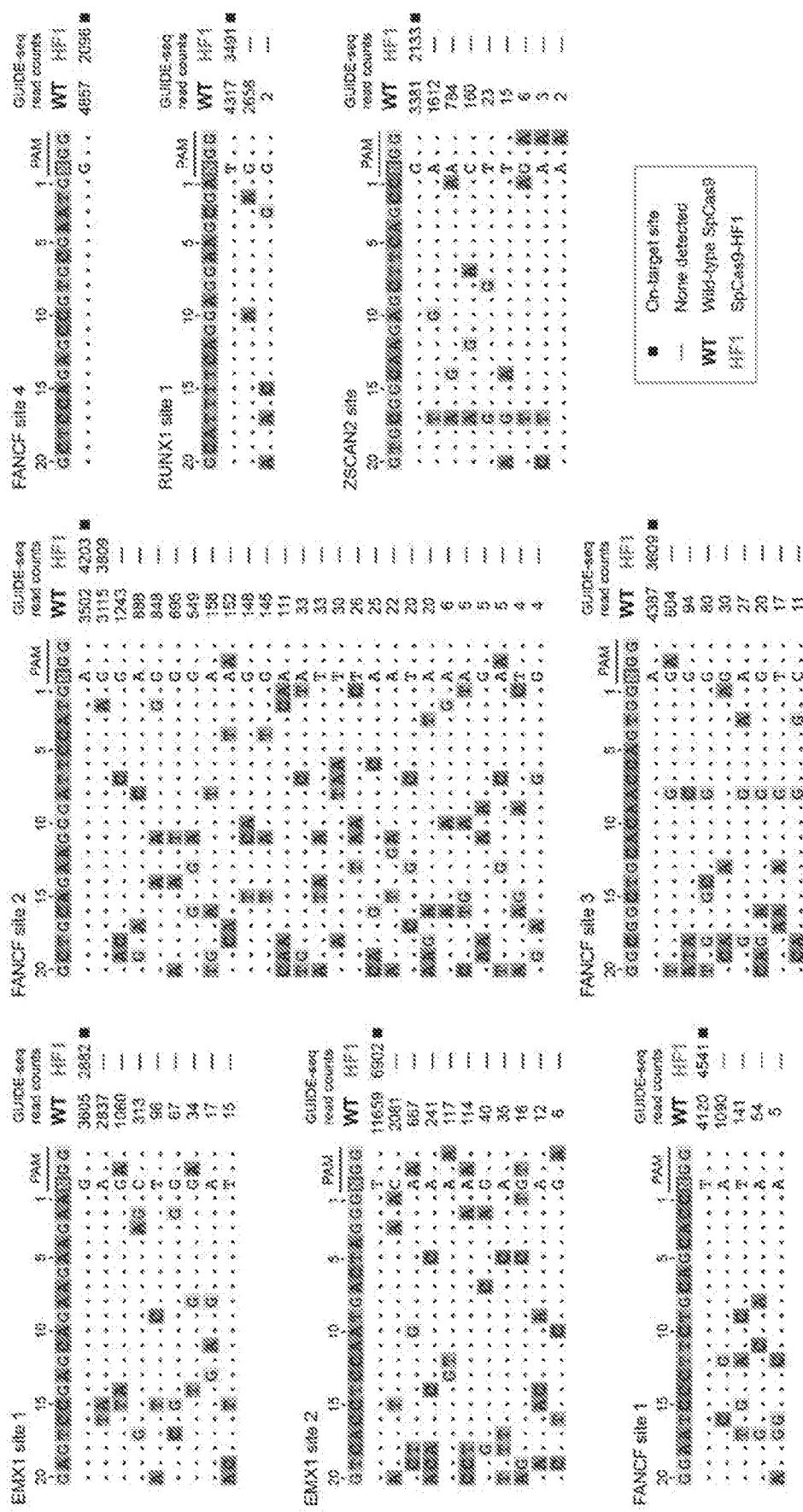
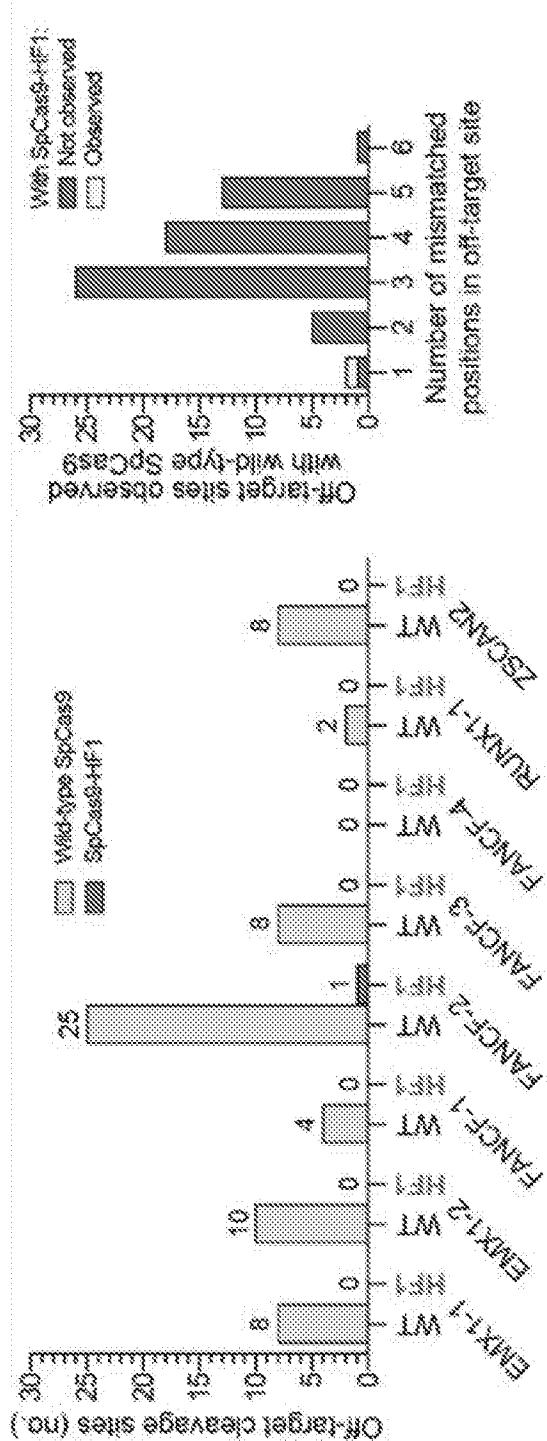
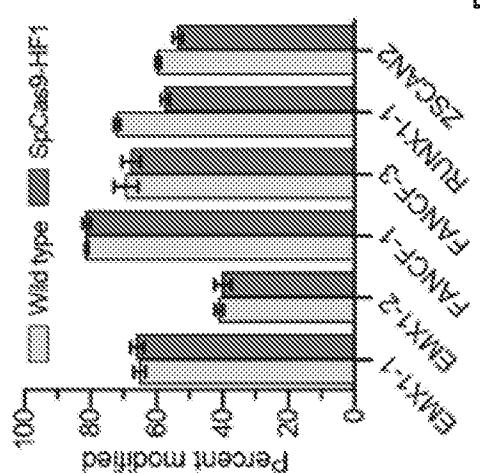
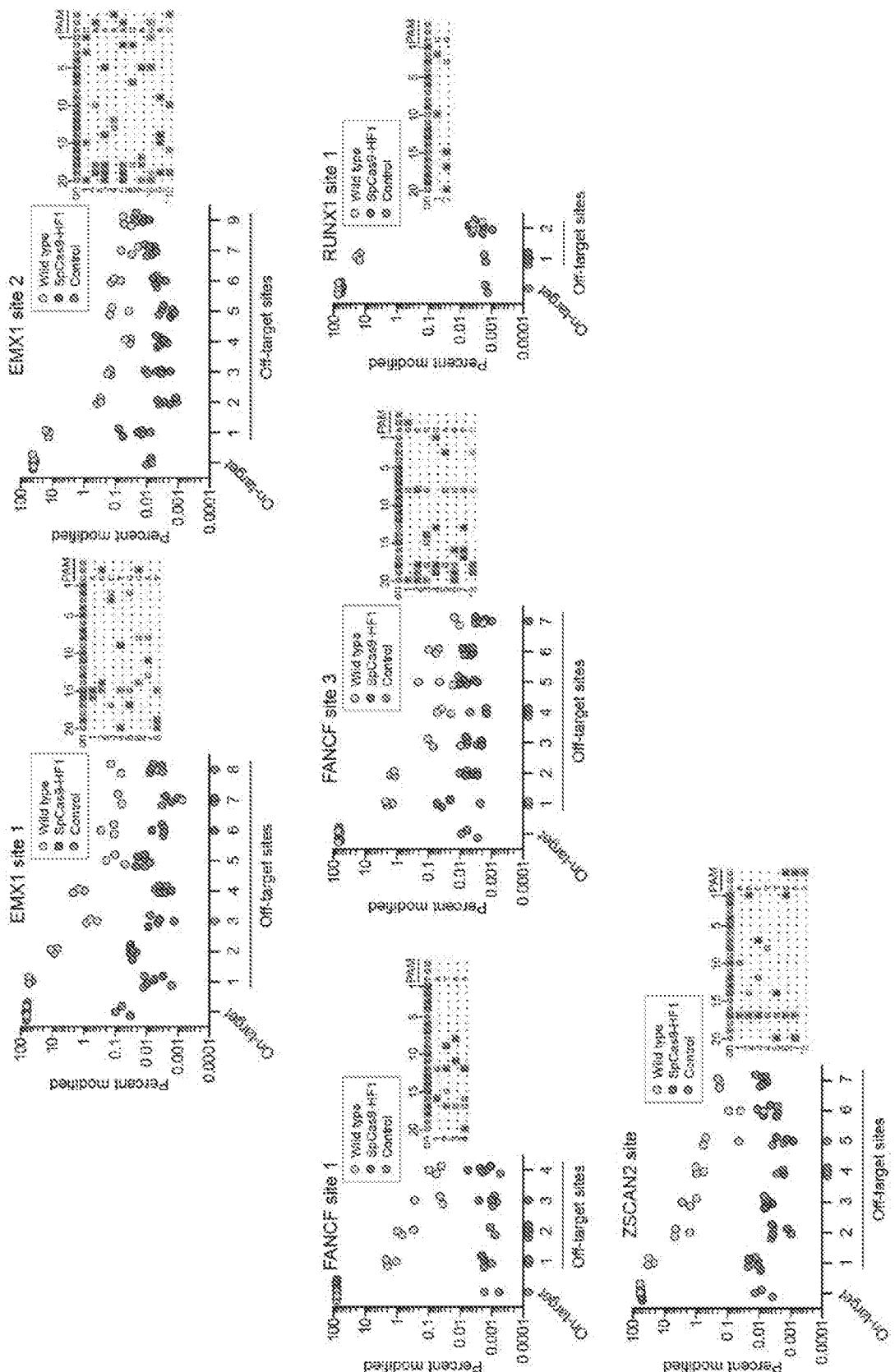


FIG. 1D


FIG. 2A

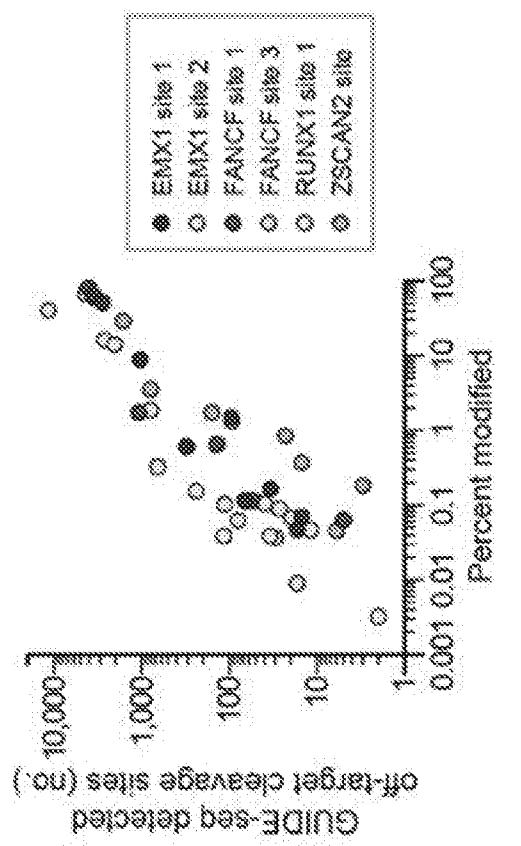
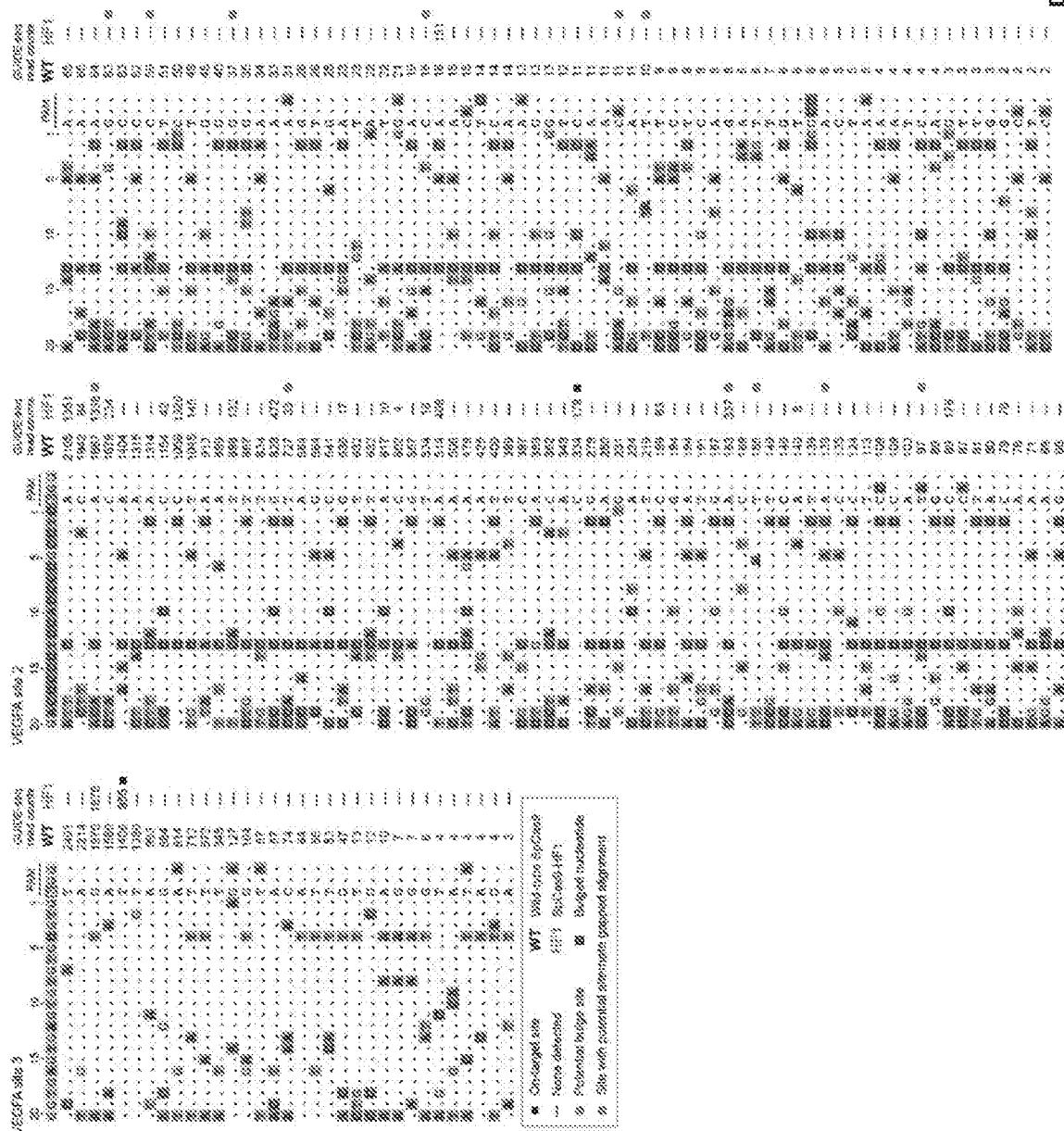

16.2C

FIG. 3A



三
三
三

三〇

FIG. 4A

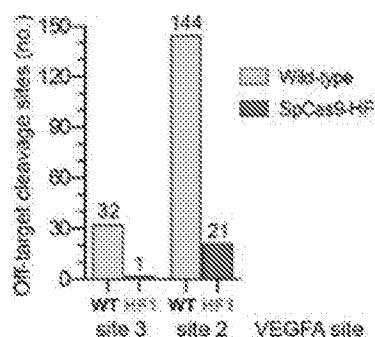


FIG. 4B

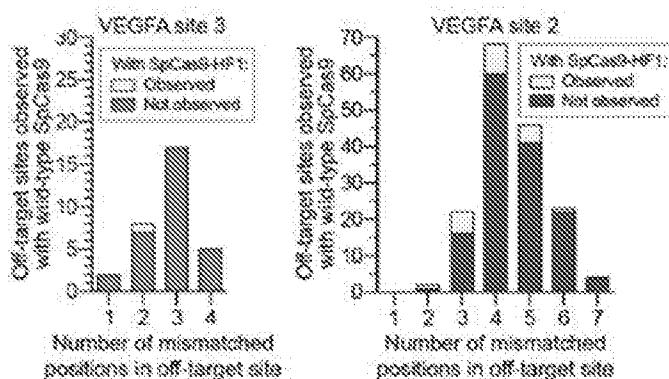


FIG. 4C

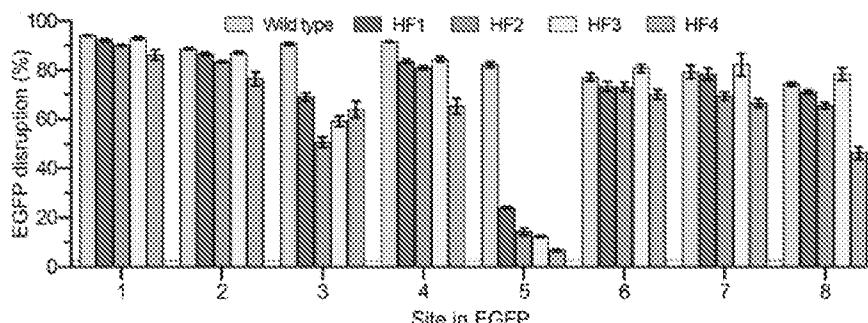


FIG. 5A

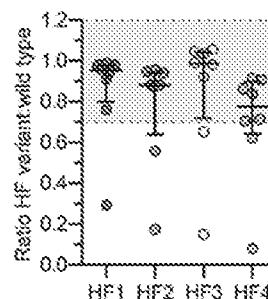


FIG. 5B

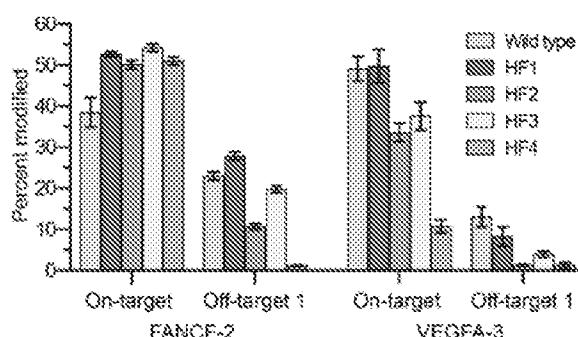


FIG. 5C

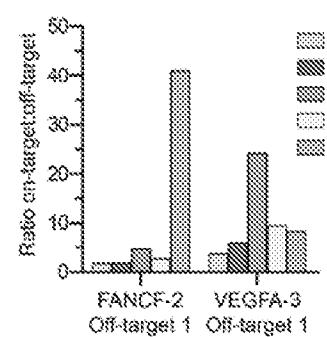


FIG. 5D

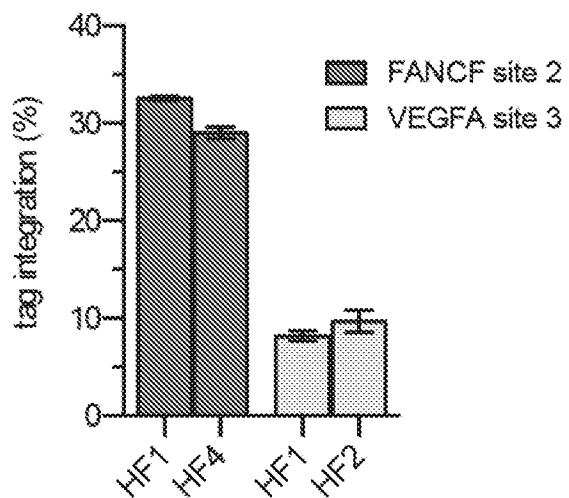


FIG. 5E

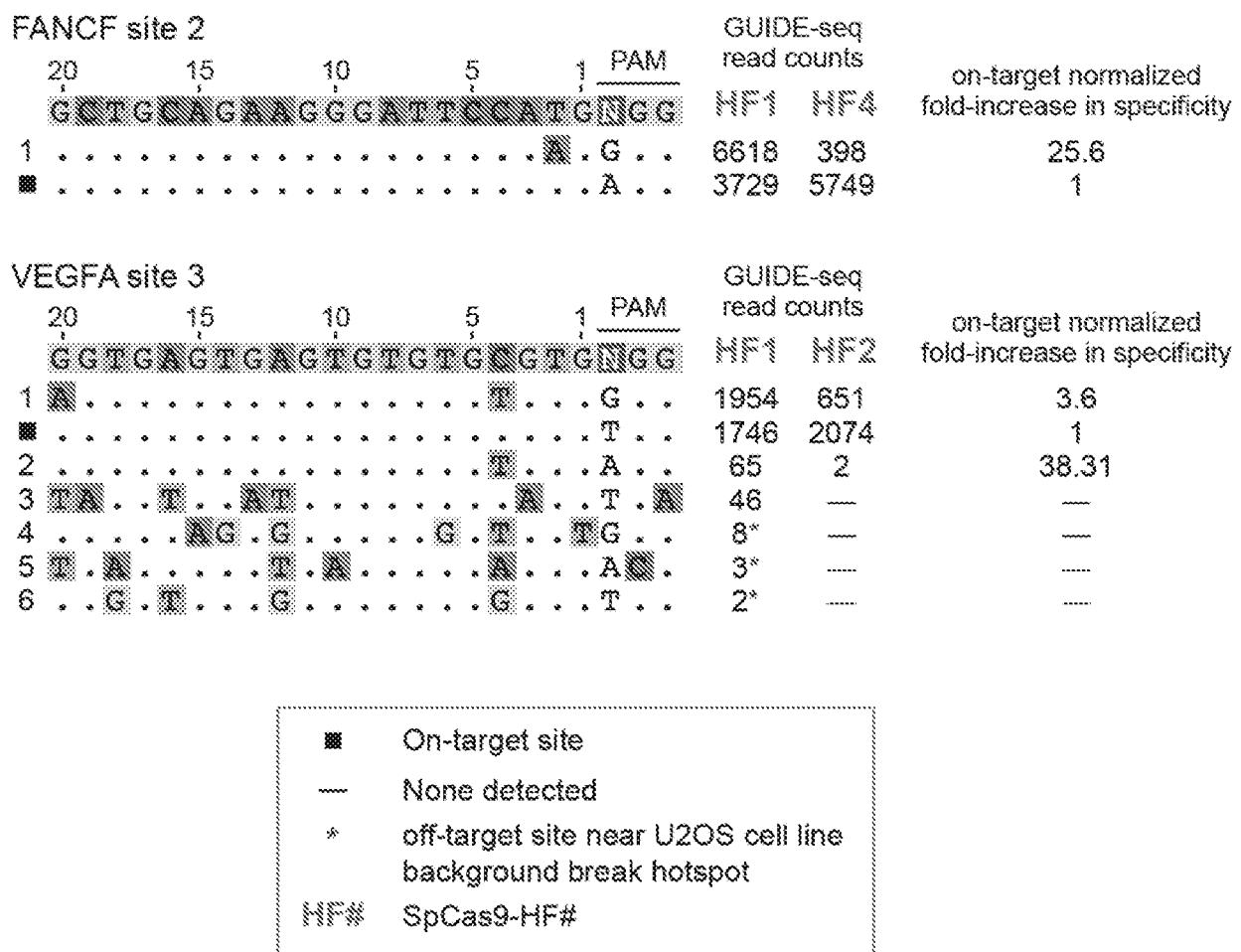


FIG. 5F

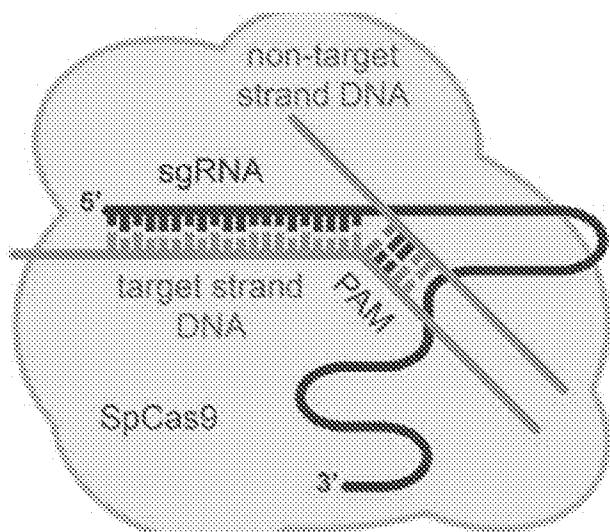


FIG. 6A

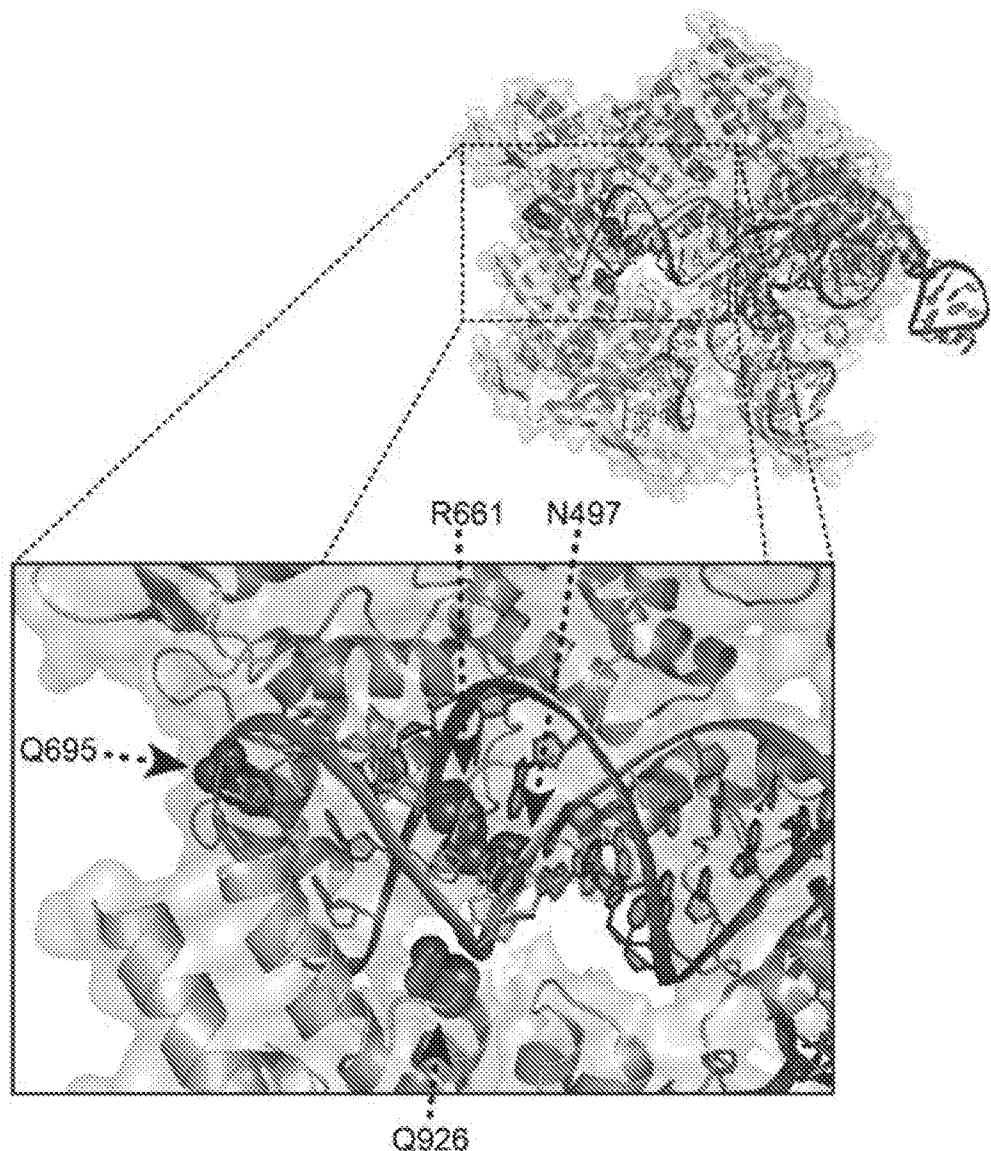


FIG. 6B

FIG. 7D

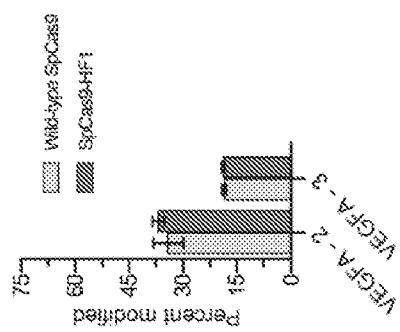


FIG. 7C

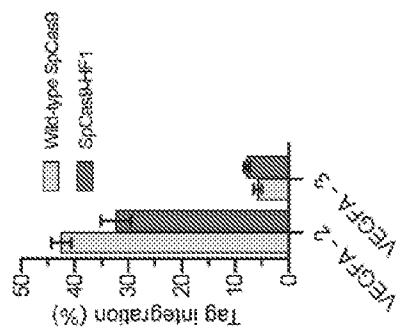


FIG. 7B

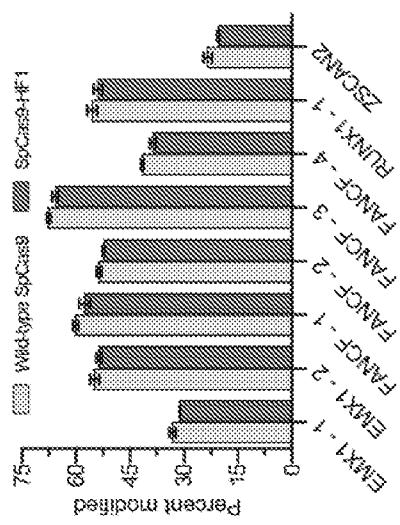


FIG. 7A

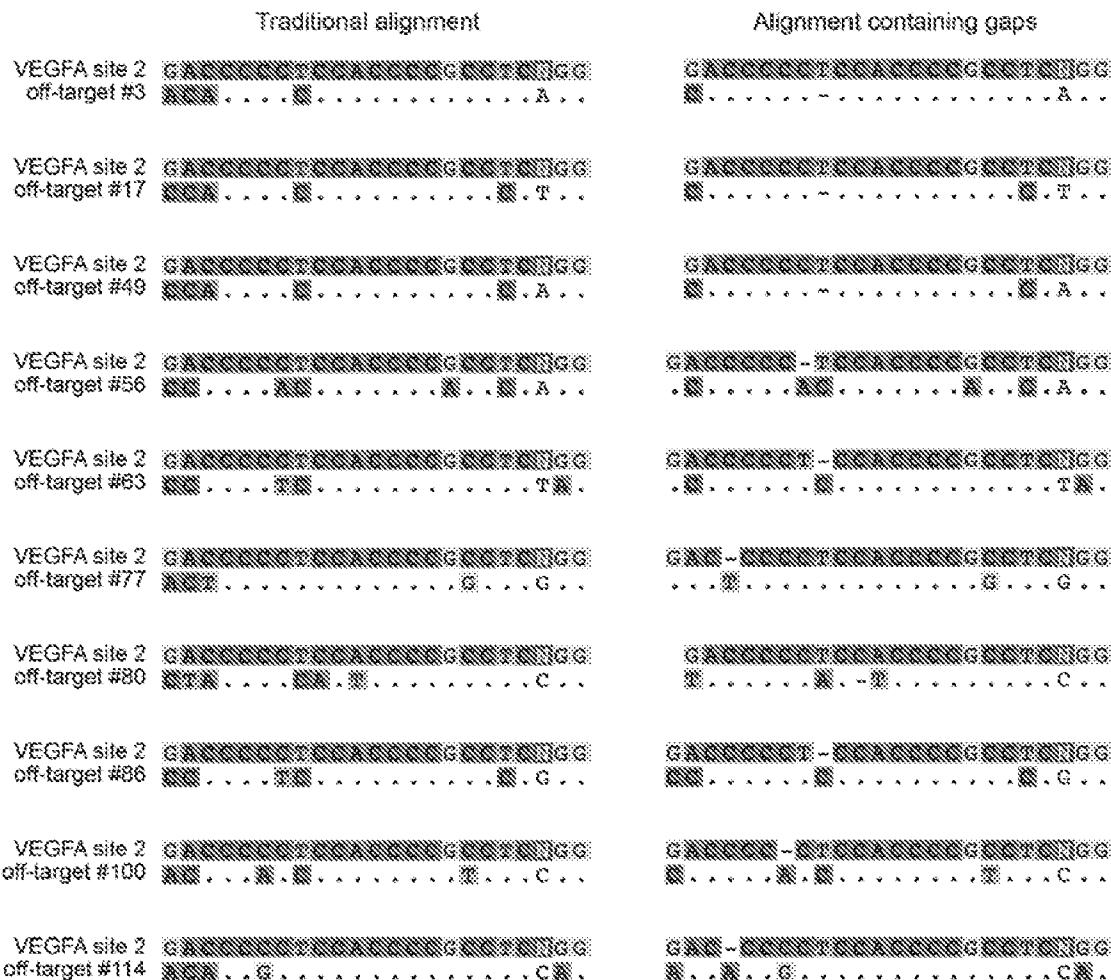


FIG. 8

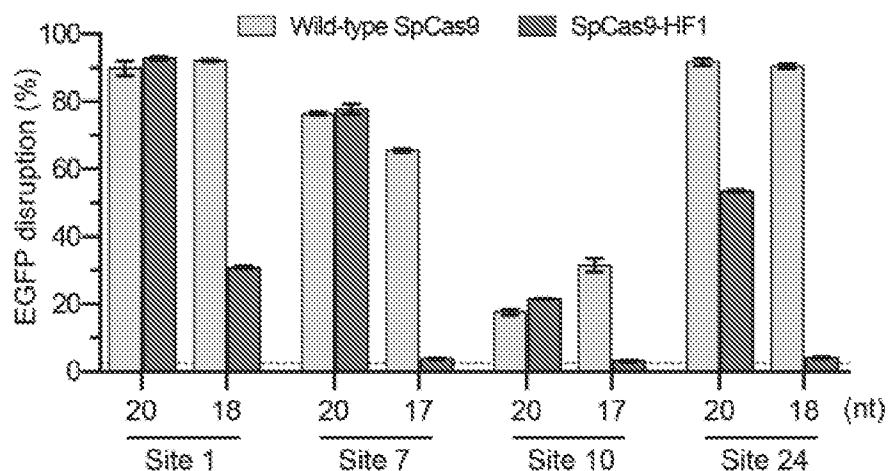


FIG. 9

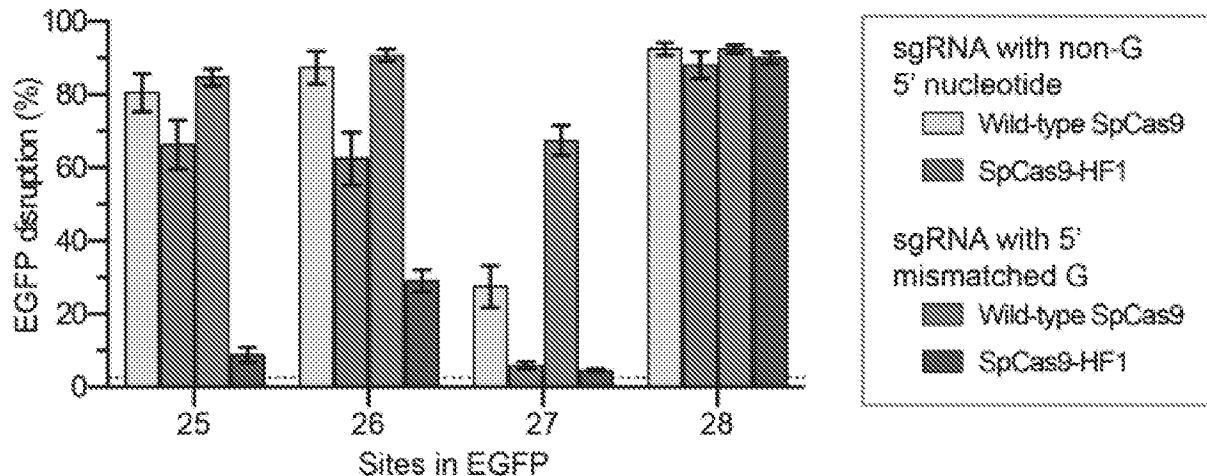


FIG. 10

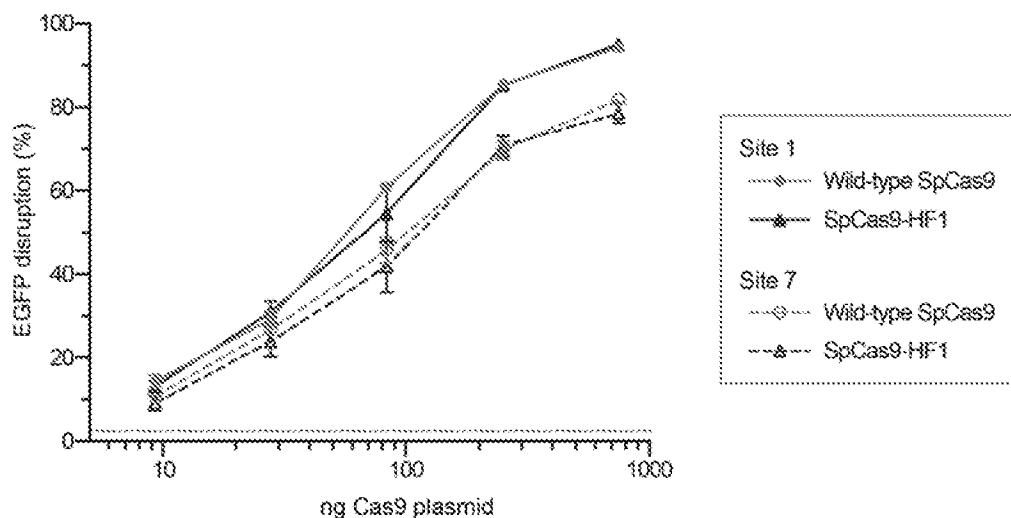


FIG. 11

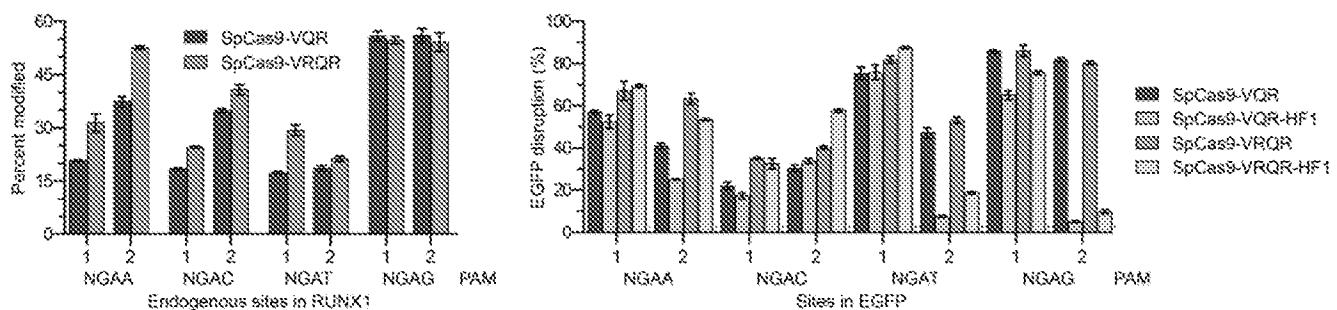


FIG. 12A

FIG. 12B

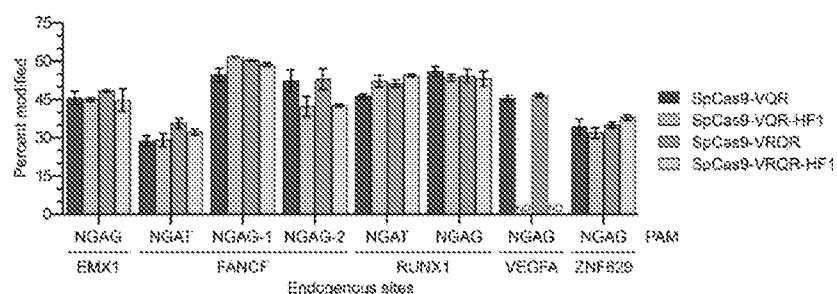


FIG. 12C

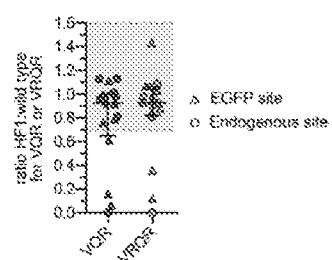
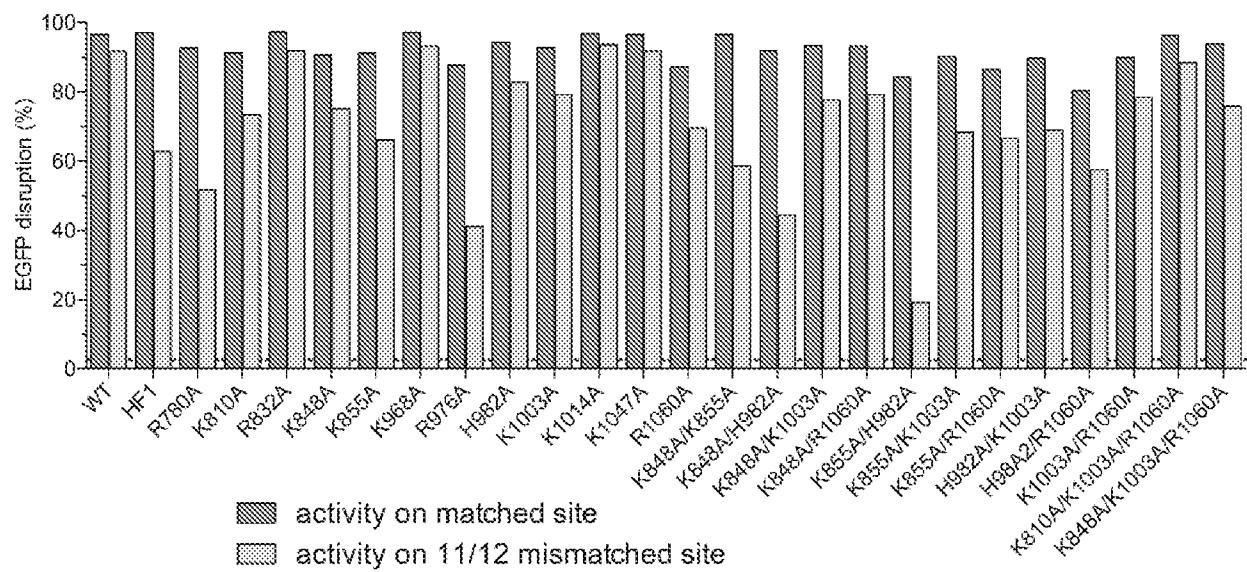



FIG. 12D

FIG. 13A

- activity on matched site
- activity on 11/12 mismatched site

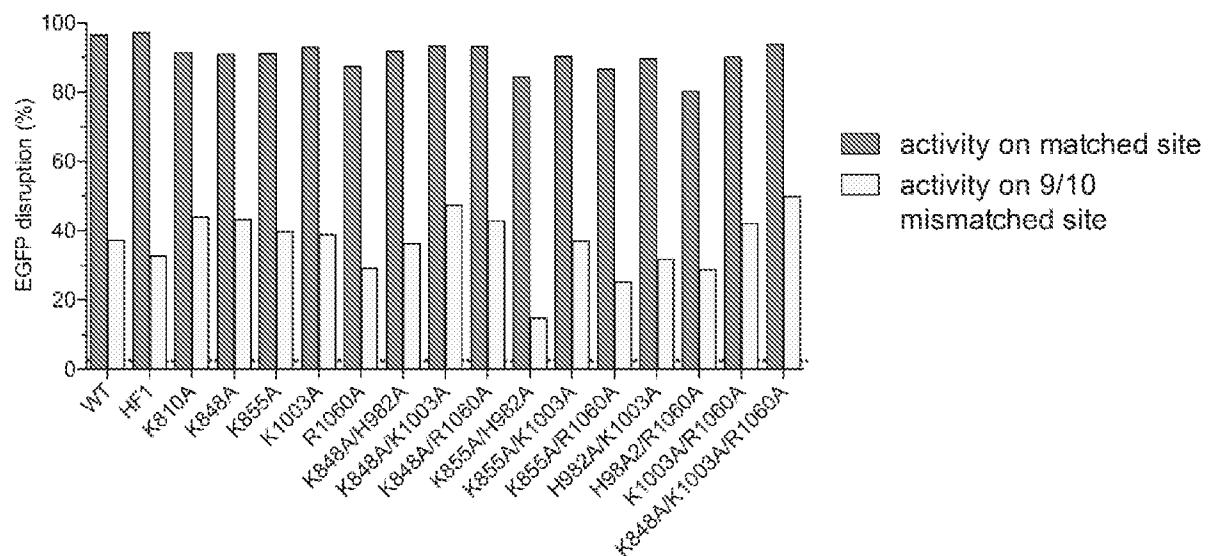


FIG. 13B

FIG. 14A

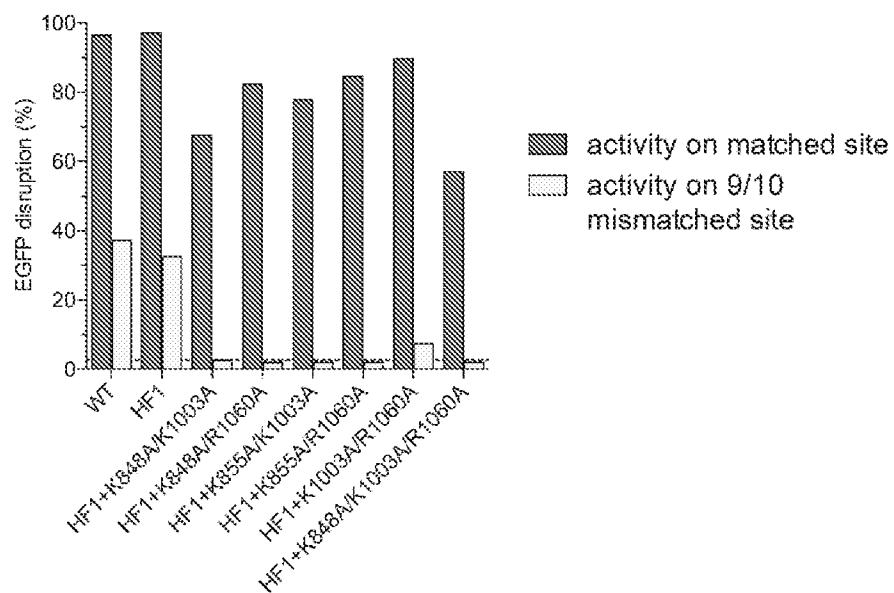
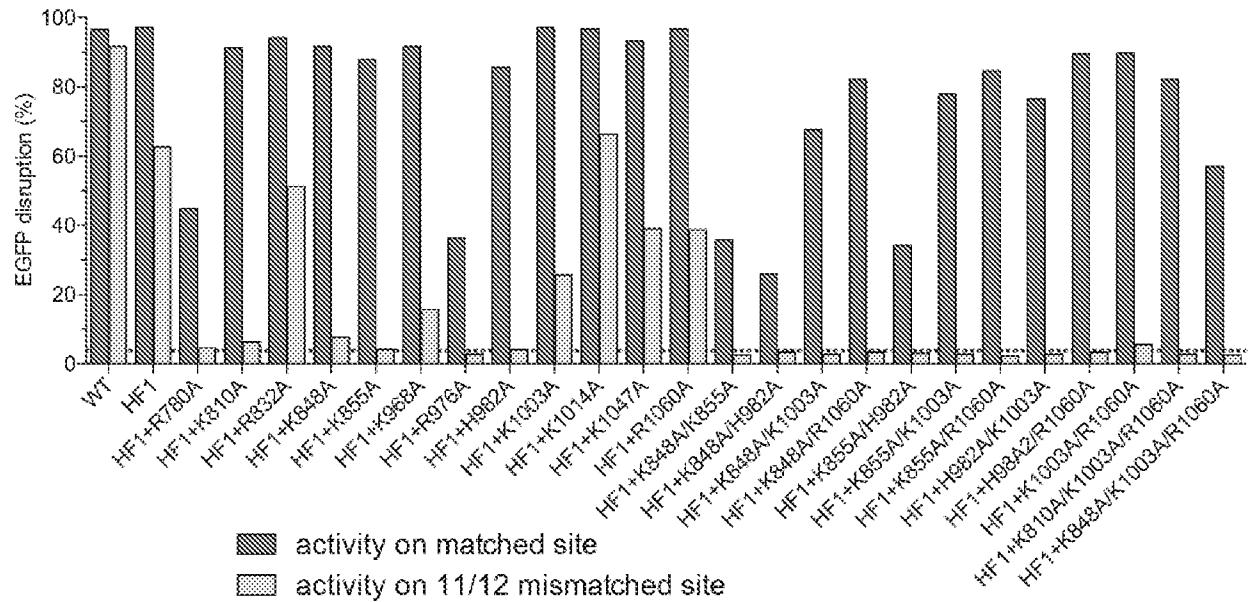



FIG. 14B

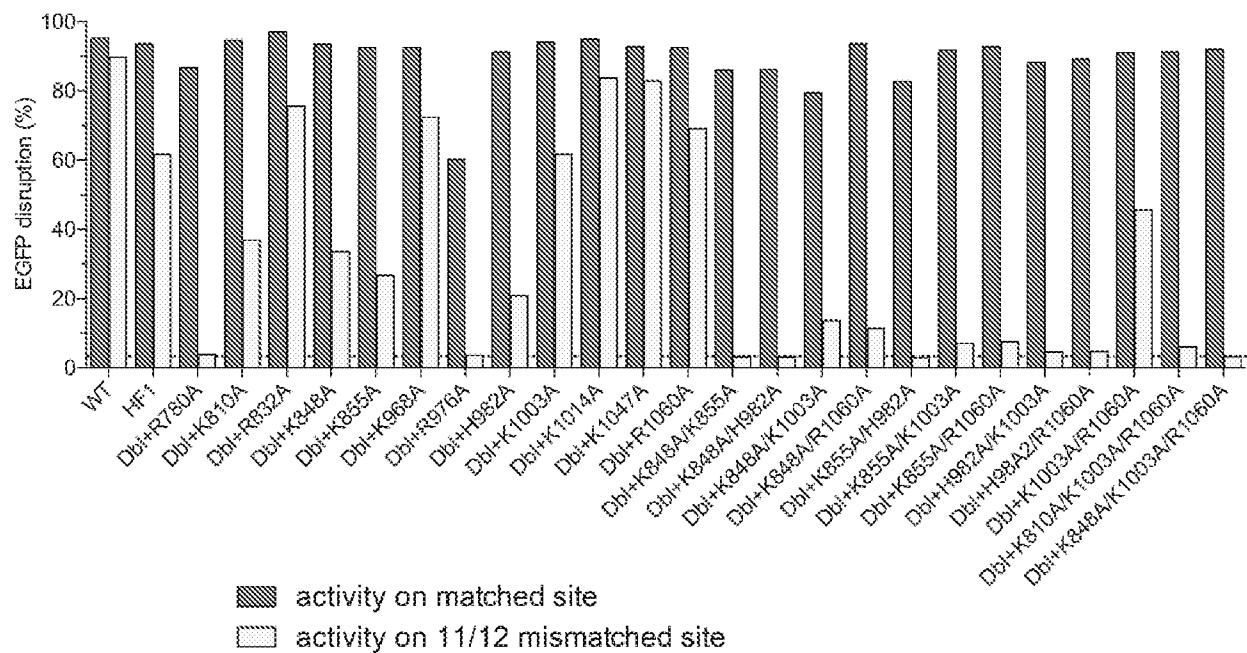


FIG. 15

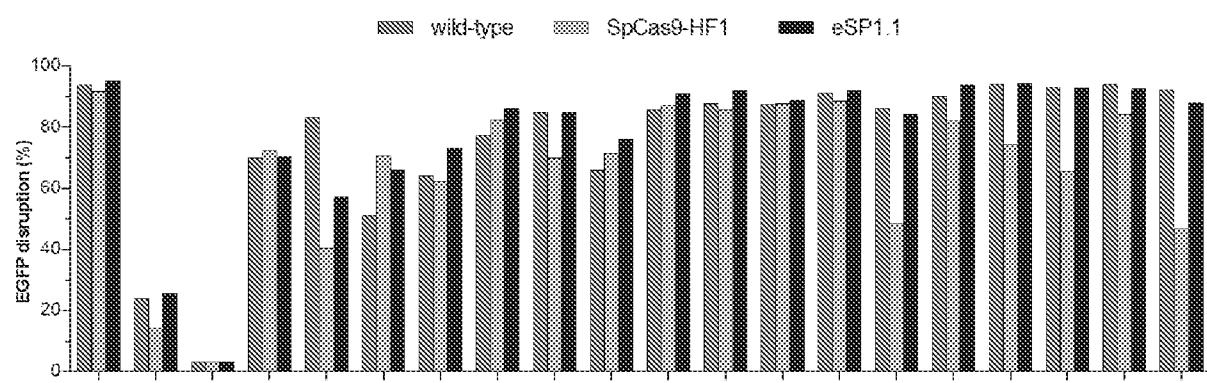


FIG. 16

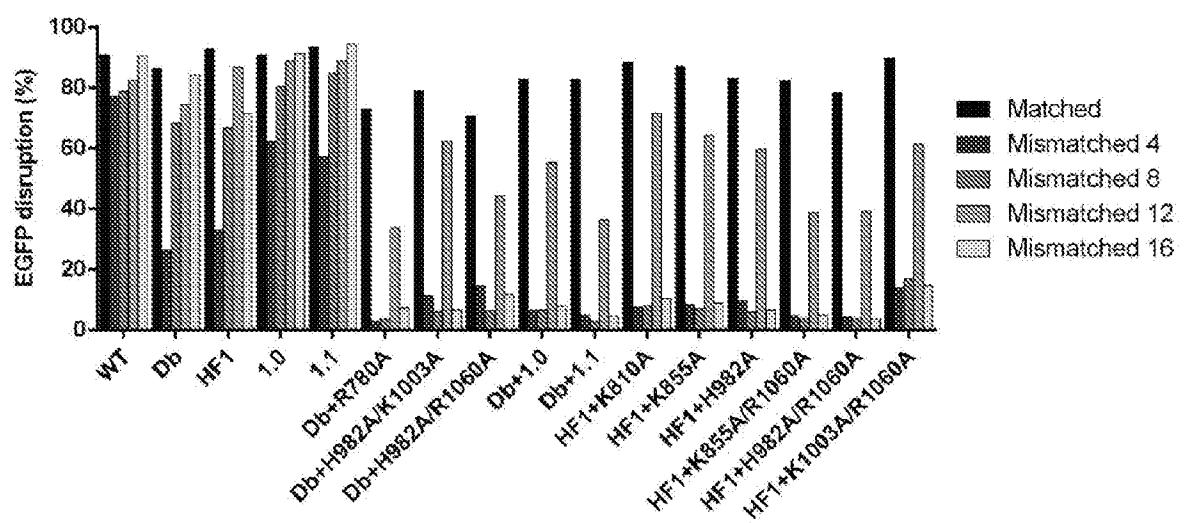


FIG. 17A

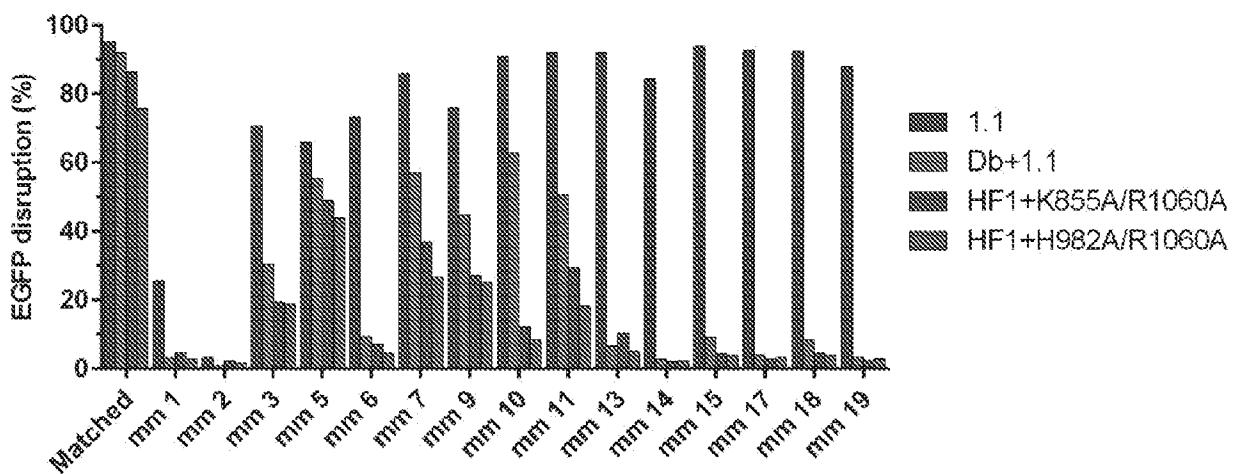


FIG. 17B

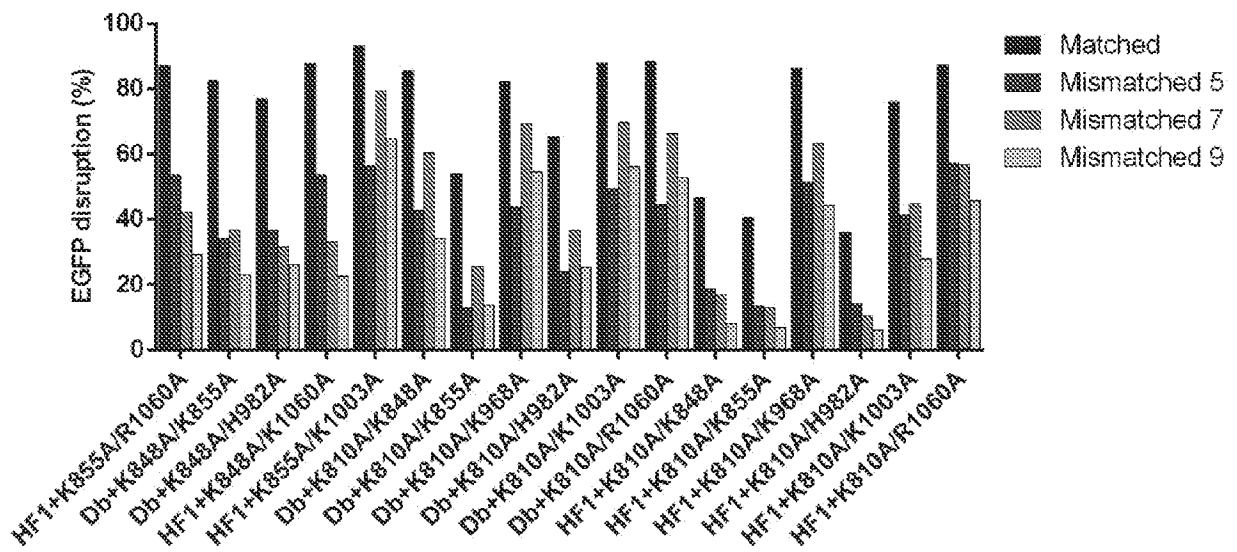


FIG. 18

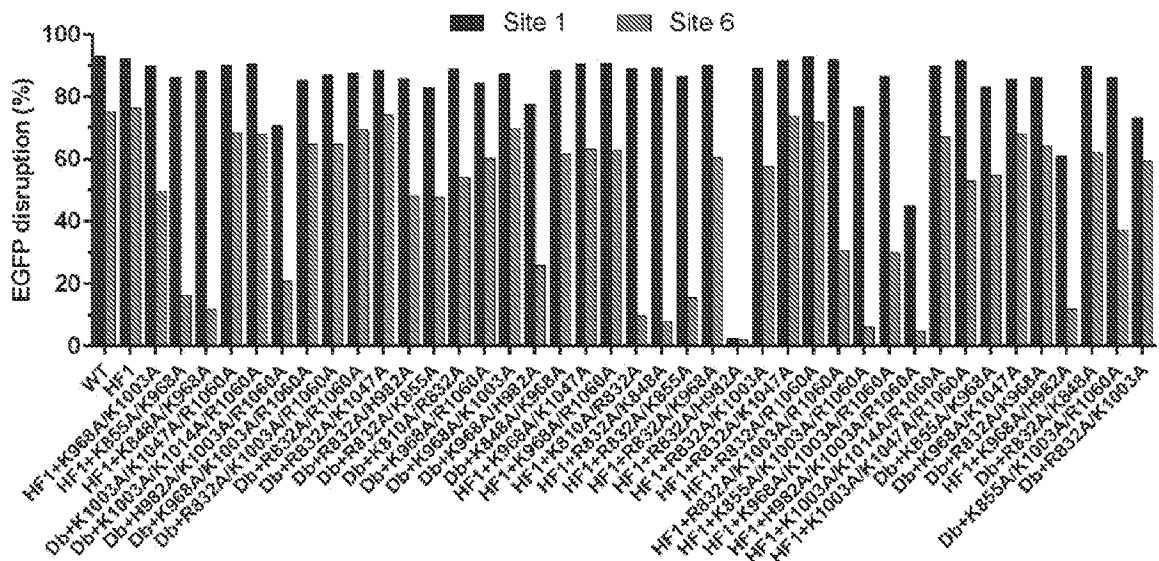


FIG. 19A

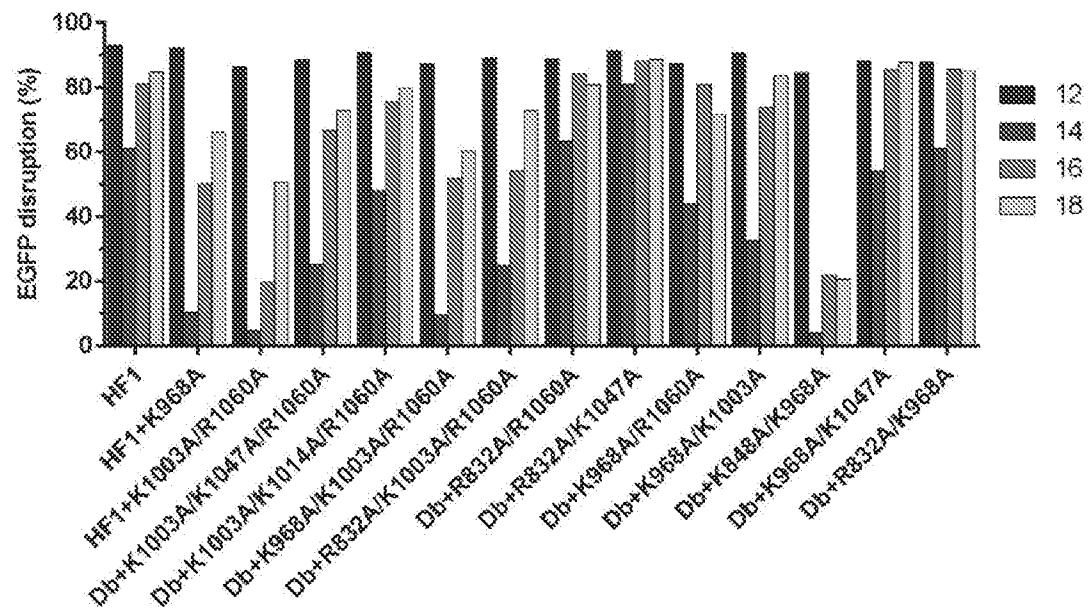


FIG. 19B

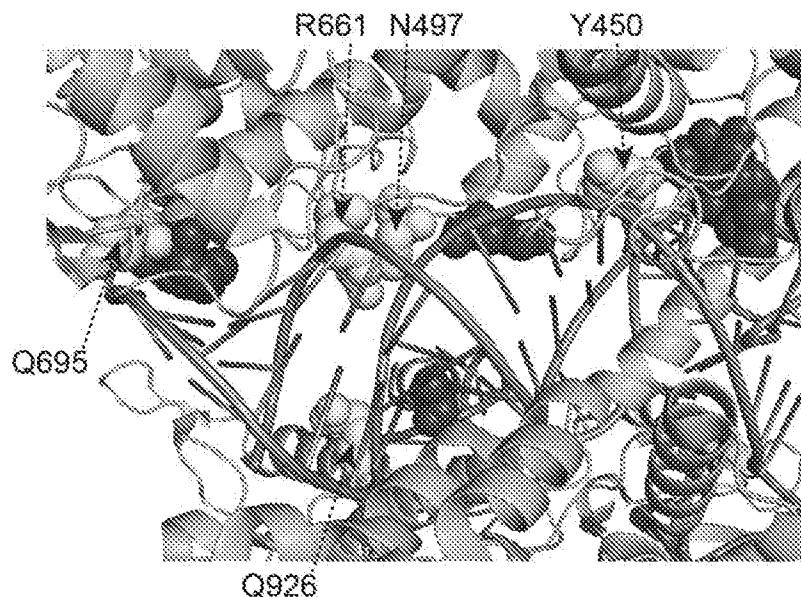
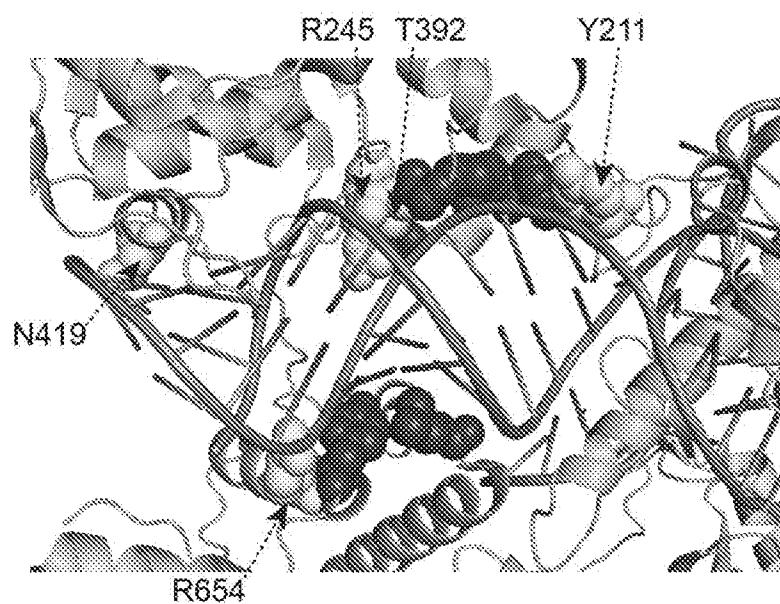


S. pyogenes Cas9*S. aureus* Cas9

FIG. 20

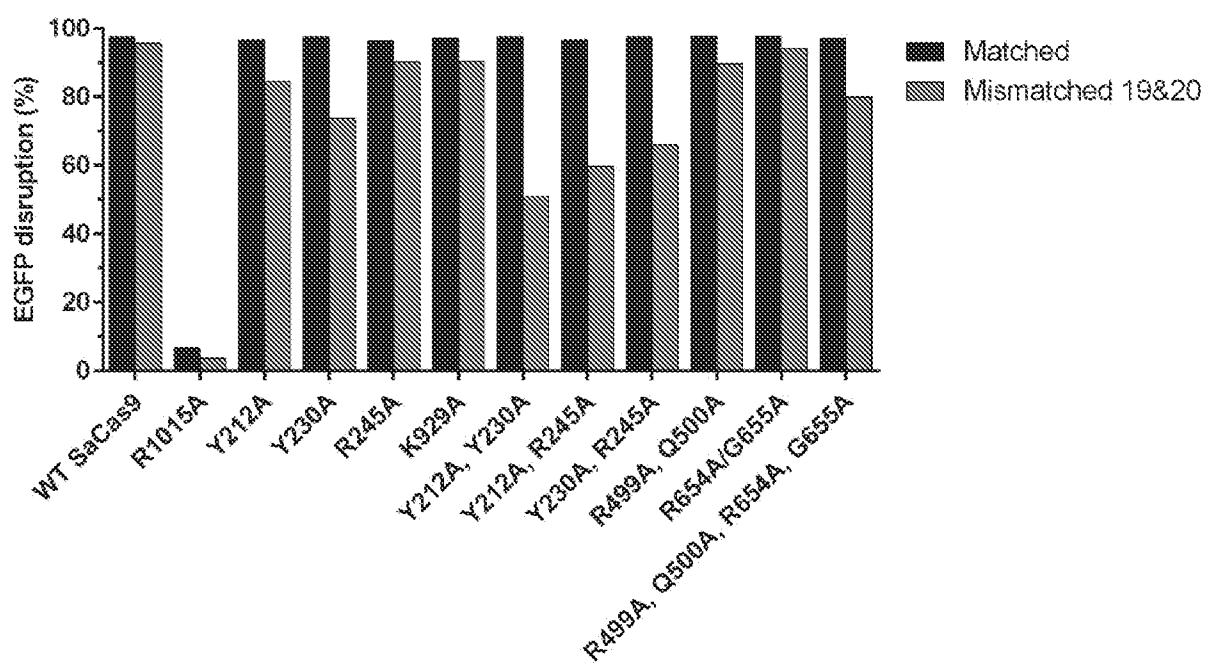
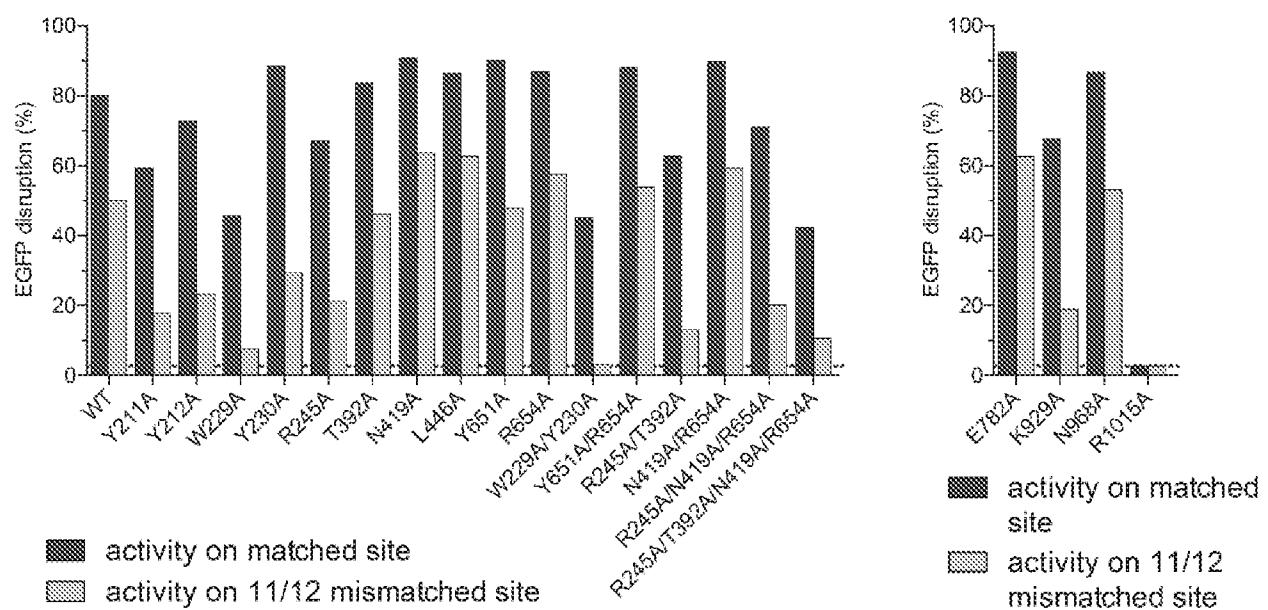



FIG. 22A

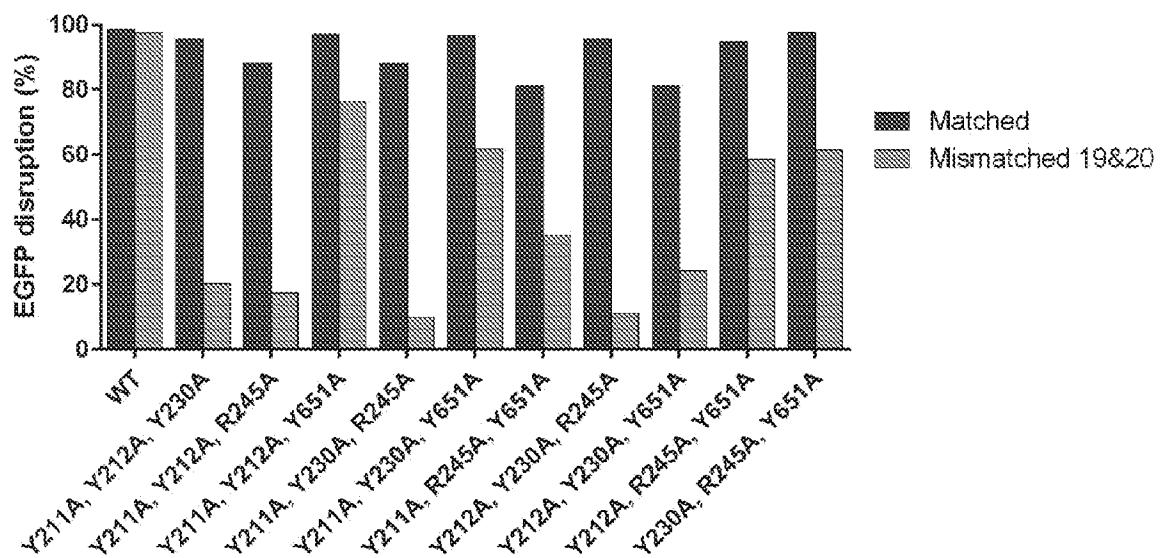


FIG. 22B

FIG. 23

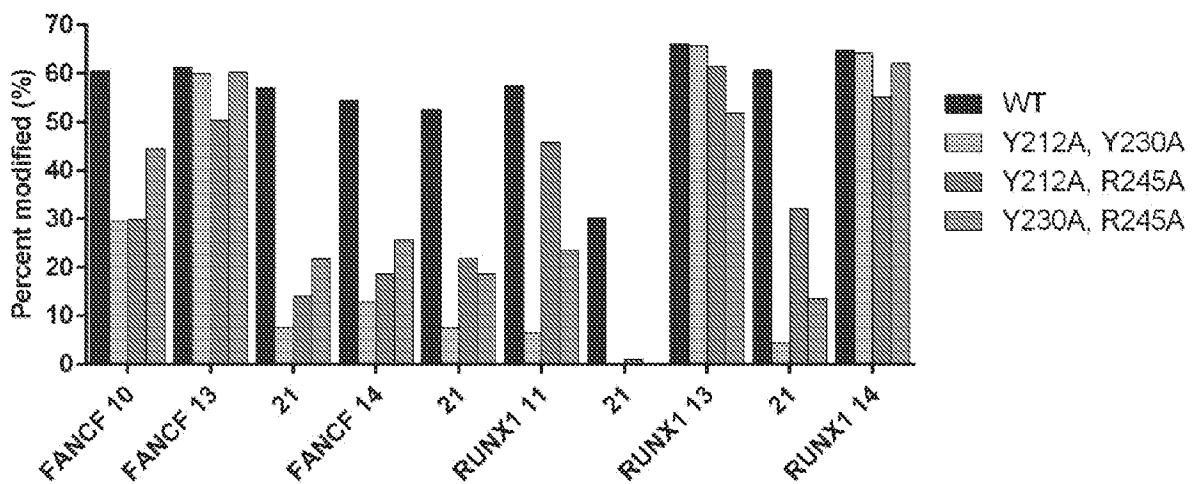


FIG. 24A

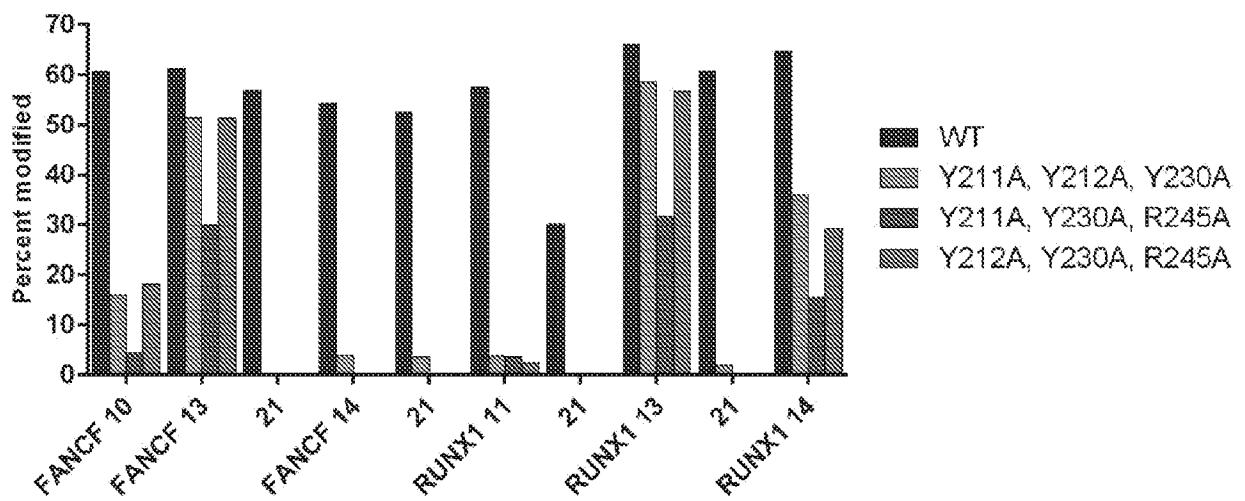


FIG. 24B

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 16/49147

<p>A. CLASSIFICATION OF SUBJECT MATTER IPC(8) - C12N 15/00, 15/63, 15/113, 9/22; G06F 19/16 (2016.01) CPC - C12N 15/63, 15/113, 9/22; G06F 19/16 According to International Patent Classification (IPC) or to both national classification and IPC</p>																			
<p>B. FIELDS SEARCHED</p> <p>Minimum documentation searched (classification system followed by classification symbols) IPC(8): C12N 15/87, 15/63, 15/113, 9/22; G06F 19/16 (2016.01) CPC: C12N 15/63, 15/113, 9/22; G06F 19/16</p>																			
<p>Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched CPC: C12N 15/63, 15/113, 9/22; G06F 19/16 USPC: 435/455, 375, 320.1, 195; 536/23.2, 23.7</p>																			
<p>Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Electronic data bases: PatBase; Google Patents; Google Scholar Search terms: <i>Streptococcus pyogenes Cas9 (SpCas9)</i>, protein engineering, mutation or substitution or variant (e.g., L169*, Y450*, N497*, R661*, Q695*, Q926*, D1135*), genome engineering, genome targeting or editing, <i>Staphylococcus aureus Cas9 (SaCas9)</i></p>																			
<p>C. DOCUMENTS CONSIDERED TO BE RELEVANT</p> <table border="1"> <thead> <tr> <th>Category*</th> <th>Citation of document, with indication, where appropriate, of the relevant passages</th> <th>Relevant to claim No.</th> </tr> </thead> <tbody> <tr> <td>A</td> <td>US 2014/0068797 A1 (DOUDNA et al.) 06 March 2014 (06.03.2014) Especially SEQ ID NO: 2</td> <td>1</td> </tr> <tr> <td>A</td> <td>KLEINSTIVER et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. NATURE 23 July 2015 Vol 523 No 7561 Pages 481-485. Available as NCBI PMC Author Manuscript. Especially pg 2 paras 2,3 ; pg 4 paras 1, 4</td> <td>1</td> </tr> <tr> <td>A</td> <td>WO 2015/089364 A1 (The Broad Institute, Inc.) 18 June 2015 (18.06.2015). Especially para [0069].</td> <td>1</td> </tr> <tr> <td>X,P</td> <td>Kleinstiver et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 28 January 2016 Vol 529 No 7587 Pages 490-495. Available as NCBI PMC Author Manuscript. Especially pg 5 para 2, pg 24 fig 5.</td> <td>1</td> </tr> <tr> <td>X,P</td> <td>WO 2016/115355 A1 (Temple University of the Commonwealth System of Higher Education) 21 June 2016 (21.06.2016). Especially pg 3 ln 15-20, claim 3.</td> <td>1</td> </tr> </tbody> </table>		Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	A	US 2014/0068797 A1 (DOUDNA et al.) 06 March 2014 (06.03.2014) Especially SEQ ID NO: 2	1	A	KLEINSTIVER et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. NATURE 23 July 2015 Vol 523 No 7561 Pages 481-485. Available as NCBI PMC Author Manuscript. Especially pg 2 paras 2,3 ; pg 4 paras 1, 4	1	A	WO 2015/089364 A1 (The Broad Institute, Inc.) 18 June 2015 (18.06.2015). Especially para [0069].	1	X,P	Kleinstiver et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 28 January 2016 Vol 529 No 7587 Pages 490-495. Available as NCBI PMC Author Manuscript. Especially pg 5 para 2, pg 24 fig 5.	1	X,P	WO 2016/115355 A1 (Temple University of the Commonwealth System of Higher Education) 21 June 2016 (21.06.2016). Especially pg 3 ln 15-20, claim 3.	1
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.																	
A	US 2014/0068797 A1 (DOUDNA et al.) 06 March 2014 (06.03.2014) Especially SEQ ID NO: 2	1																	
A	KLEINSTIVER et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. NATURE 23 July 2015 Vol 523 No 7561 Pages 481-485. Available as NCBI PMC Author Manuscript. Especially pg 2 paras 2,3 ; pg 4 paras 1, 4	1																	
A	WO 2015/089364 A1 (The Broad Institute, Inc.) 18 June 2015 (18.06.2015). Especially para [0069].	1																	
X,P	Kleinstiver et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 28 January 2016 Vol 529 No 7587 Pages 490-495. Available as NCBI PMC Author Manuscript. Especially pg 5 para 2, pg 24 fig 5.	1																	
X,P	WO 2016/115355 A1 (Temple University of the Commonwealth System of Higher Education) 21 June 2016 (21.06.2016). Especially pg 3 ln 15-20, claim 3.	1																	
<p><input type="checkbox"/> Further documents are listed in the continuation of Box C. <input type="checkbox"/></p>																			
<p>* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed</p>																			
<p>"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family</p>																			
Date of the actual completion of the international search 27 October 2016	Date of mailing of the international search report 23 DEC 2016																		
Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 Facsimile No. 571-273-8300	Authorized officer: Lee W. Young PCT Helpdesk: 571-272-4300 PCT OSP: 571-272-7774																		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 16/49147

Box No. I Nucleotide and/or amino acid sequence(s) (Continuation of item 1.c of the first sheet)

1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of a sequence listing:
 - a. forming part of the international application as filed:
 in the form of an Annex C/ST.25 text file.
 on paper or in the form of an image file.
 - b. furnished together with the international application under PCT Rule 13*ter*.1(a) for the purposes of international search only in the form of an Annex C/ST.25 text file.
 - c. furnished subsequent to the international filing date for the purposes of international search only:
 in the form of an Annex C/ST.25 text file (Rule 13*ter*.1(a)).
 on paper or in the form of an image file (Rule 13*ter*.1(b) and Administrative Instructions, Section 713).
2. In addition, in the case that more than one version or copy of a sequence listing has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that forming part of the application as filed or does not go beyond the application as filed, as appropriate, were furnished.
3. Additional comments:
GenCore ver 6.4.1 SEQ ID NO: 1

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 16/49147

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: 15-43
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

-----Go to Extra Sheet for continuation-----

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Claim 1 limited to SpCas9 with mutated L169.

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 16/49147

-----continuation of Box III (Lack of Unity of Invention)-----

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I+: Claims 1-14, drawn to an isolated Cas9 protein having at least one amino acid substitution/mutation.

The Cas9 protein will be searched to the extent that it encompasses the first named species, *Streptococcus pyogenes* (claim 1) (SpCas9) comprising the first named mutation at L169 (claim 1). It is believed that claim 1 reads on this first named invention and thus this claim will be searched without fee to the extent that it encompass SpCas9 with mutated L169. Additional Cas9 proteins comprising one or more mutations will be searched upon payment of additional fees. Applicant must specify the claims that encompass any additional elected Cas9 proteins and mutations. Applicants must further indicate, if applicable, the claims which read on the first named invention if different than what was indicated above for this group. Failure to clearly identify how any paid additional invention fees are to be applied to the "+" group(s) will result in only the first claimed invention to be searched/examined. An exemplary election would be: *Staphylococcus aureus* Cas9 (SaCas9) with mutation at W229 (claims 8, 9).

The inventions listed as Group I+ do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Special Technical Features:

The inventions of Group I+ each include the special technical feature of a Cas9 protein comprising amino acid substitutions or mutations, recited therein. Each amino acid substitution is considered a distinct technical feature, because the changes in the structure-activity relationship induced by said amino acid substitution cannot readily be ascertained among these amino acid substitutions

Common Technical Feature:

Group I+: claims share the common technical feature of claims 1 and 8.

However, said common technical features do not represent a contribution over the prior art, and is obvious over the publication titled "Engineered CRISPR-Cas9 nucleases with altered PAM specificities" by KLEINSTIVER et al. (hereinafter "Kleinstiver") [published 23 July 2015 in *Nature* Vol 523 No 7561 Pages 481-485], in view of WO 2015/089364 A1 to The Broad Institute, Inc. (hereinafter "Broad Institute") [published 18 June 2015], and US 2014/0068797 A1 to DOUDNA et al. (hereinafter "Doudna").

As to claim 1, Kleinstiver teaches an isolated *Streptococcus pyogenes* Cas9 (SpCas9) protein, with mutations at one, two, three, four, five, six, or all seven of the following positions: L169, Y450, N497, R661, Q695, Q926, and/or D1135 (abstract; "Here we show that the commonly used *Streptococcus pyogenes* Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design"; pg 2 para 4; To identify such mutations, we adapted a bacterial selection system (hereafter referred to as the positive selection) previously used to study properties of homing endonucleases. In our adaptation of this system, survival is enabled by Cas9-mediated cleavage of a selection plasmid encoding an inducible toxic gene.....Sequences of surviving clones from both libraries revealed the most frequent substitutions were D1135V/Y/N/E".

As to claim 8, Broad Institute teaches isolated *Staphylococcus aureus* Cas9 (SaCas9) protein, with mutations at one, two, three, four, five, six, or more positions (para [0069];" In an aspect the invention provides as to any or each or all embodiments herein-discussed wherein the CRISPR enzyme comprises at least one or more, or at least two or more mutations, wherein the at least one or more mutation.....N580 according to SaCas9 [i.e. *Staphylococcus aureus* Cas9], e.g., N580A as to SaCas9".

As to SEQ ID NO: 1, the sequence was well-known in the art to be the commonly isolated *Streptococcus pyogenes* Cas9 (SpCas9), as taught by Doudna (SEQ ID NO: 2; 1368 AA 100% sequence identity).

As the common technical features were known in the art at the time of the invention, they cannot be considered common special technical features that would otherwise unify the groups. The inventions lack unity with one another.

Therefore, Group I+ lack unity of invention under PCT Rule 13 because they do not share a same or corresponding special technical feature.

Note concerning item 4: Claims 15-43 are multiple dependent claims and are not drafted according to the second and third sentences of PCT Rule 6.4(a).