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SYSTEM AND METHOD FOR 3D OBJECT RECOGNITION USING
" RANGE AND INTENSITY

CROSS-REFERENCE TO RELATED APPLICATIONS
[001] This application claims the benefit of U.S. Provisional Patent Application Serial
No. 60/582,461, filed June 23, 2004, entitled “A system for 3D Object Récognition Using

Range and Appearance,” which is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

Field of the Invention

- [002] The present invention relates generally to the field of computer vision and, in

particular, to recognizing objects and instances of visual classes.

Description of the Prior Art

[003] Generally speaking, the object recognition problem is to determine which, if any,
of a set of known objects is present in an image of a scene observed by a video camera
system. The first step in object recognition is to build a database of known objects.
Information used to build the database may come from controlled observation of known
objects, or it mﬁy come from an aggregation of objects observed in scenes withoﬁt formal
supervision. The second step in object recognition is to a match a new observation of a
previously viewed object with its rcprésentation in the database.

[00d4] The difficulties with object recognition are manifold, but generally relate to the

fact that objects may appear very differently when viewed from a different perspective, in
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a different context, or under different lighting. More specifically, three categories of
problems can be identified: (1) difficulties related to changes in object orientation and
i)osition relative to the observing camera (collectively referred to as “pose™); (2)
difficulties related to change in object appe'arance due to lighting (“photometfy”); and (3)
difficulties related to the fact that other objects may intercede and obscure f)onions of
“known objects (“occlusion”).
[005] = Class recognition is concerned with recognizing instances of a class, to determine
which, if any, of a set of known object classes is present in a scene. A general object
class may be defined in many ways. For example, if it is defined by function then the
general class of chairs contains both rocking chairs and club chéirs. When é general class
contains objects that are visually dissimilar, it is convenient to divide it into sub-classes
éo that the objects in each are visually similar. Such a subclass is called a “visual object
class.” General class recégnition is then done by visual class recognition of the sub-class,
followed by semaﬁtic association to find the general class qontaining the sub-class. In the
case of chairs, an instance of a rocking chair mi gﬁt be recognized based on its visual
characteristics, and then database lookup might find the hi gher—levél class of chair. A
key part of this activity is visual class recognition.
[006] The first step in visual class recognition is to build a database of known visual
classes. As with objects, information used to build the database may come from
controlled observation of designated objects or it may come from an aggregatién, over
time, of objects observed in scenes without formal supervision. The second step in visual
class recognition is to match new observations with their visual classes as represented in

the database. It is convenient to adopt the shorthand “object class” in place of the longer
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“visual object class.” Subsequent discussion will use “object class;’ with this specific
meaning.

[0071 Class recognition has the problems of object recognition, plus an additional
categdry: difficulties related to within-class or intra-class variation. The instances of a
class may vary in certain aspects of their shape or their visual appearance. A class
recognizer must be able to deal with this additional variability.

[008] Hithertofore, there have been no entirely satisfactory solution to these problems.
Substan;ial research has been devoted to object and class recognizers, but there are none
that can recognize a very wide variety of objects or classes from a wide Variety of

viewpoints and distances.

Prior Work in Object Recognition

.[009] It is convenient to discuss the work in object recognition first. This work can be
divided into two basic approaches: geometry-based approaches and appearance-based
approaches. Broadly speaking, geometry-based approaches rely on matching the

- geometric structure of an object; Appearance-based approaches rely on using the
intensity values of one or more spectral bémds in the camera image; this may be grey-
scale, color, or other image values.

[0010} Geometry-based approaches recognize objects by recording aspects of three-
dimensional geometry of the object in question. Grimson, Objeci Recogniﬁ'on by
Computer: The Role of Geometric Constraints, MIT Press 1990, describes one such
system: Another system of this type is described in Johnson and Hebert, “Using Spin
Images for Efficient Object Recognition in Cluttered 3D Scenes”, IEEE Transactions on

Pattern Analysis and machine Intelligence, Vol. 21, No5. pp 433-448. Another such
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system is described in Frome et al, “Recognizing Objects in Range Data Using Regional
Point Descriptors”, Proceedings of the European Conference on Computer Vision, May
2004, pp 224-237. These systems ;el y on the fact that certain aspects of object geometry
do not chahge with changes in object pose. Examples of these aspects include the
distance between vertices of the object, the angles betWeen faces of an object, or the
distribution of surface points about some distinguished point. Geometry-based
approaches are insensitive to pose by their choice of representation and they are
insensitive to photometry because they do not use intensity information.

[0011] The main limitation of these systems is due to the fact that they do not utilize
intensity information, i.e., they do not represent the difference bétween objects that have
similar shape, but differing appearance in the intensity image. For example, rﬁany
objects in a grocery store have similar size and shape (e.g., cahs of soup), and only differ
in the details of their outward appearance. Furthermore, many common objects that have
simple geometric form, such as cylinders, rectangular prisms or spheres, do not provide
sufficiently unique or, in some cases, well-defined geometric features to work from.
[0012] One group of appearance-based approaches uses the 2D intensity image of the
entire object to be recbgnized or a large portion thereof. There are many variations on
the approach. Some of the more important variations are described in the following
papers: Turk and Pentland, ‘Eigenfaces for Recognition’. Journal of Cognitive
Neuroscience, 1991, 3 (1), pp 71-86; Murase and Nayar, “Visual Learning and
Recognition of 3-D Objects from Appearance”, International Journal of Computer

Vision, 1995, 14, pp 5-'24; and Belhumeur, et al, “Eigenfaces vs. Fisherfaces: Recognition

PA2777US -4 -



WO 2006/002320 PCT/US2005/022294

Using Class Specific Linear Projection”, IEEE Transactions on Pattern Analysis and |
Machine Intelligence, 1997, 19(7); pp 711-720.

[0015] This group of approaches has several difficulties. Images of an object can change
greatly based on the pose of the object and the lighting of the scene, so many images are,
in principle, necessary. A-more fundamental limitation is that the approach assumes that
the objegt to be recognized has already been iso]ated‘ (“segmented”) from the video image
by other means, but segmentation is often difficult, if not impossible. Finally, a further
limitation arises from the fact that if a significant portion of the object becomes occluded,
the recorded images will no longer match.

[0014] Another'group of approaches uses local, rather than global, intensity image
features. These methods take advantage of the fact that small-areas of the object surface
are less prone to occlusion and are less sensitive to illumination changes. There are many
variations on the method. In general terms, the method consists of the following steps:
detecting significant local regions, constructing descriptors for these local regions, and
using these local regions in matching.

[0015] Most of these methods build a database of object models from 2D images and
recognize acquired scenes as 2D imaées. There are many papers using this approach.
Representative papers include the following: Schmid and Mohr “Local Grayvalue
Invariants for Image_Retrievé]”, IEEE Transactions on Pattern Recognition and Machine
Intelligence, 19, 5 (1997) pp 530-534; Mikolajczyk and Schmid, “An affine invariant
interest point detector”, European Conference on Compute Vision 2002 (ECCV), pp.
128-142; Lowe, “Object recognition from local scale-invariant features”, International

Conference on Computer Vision, 1999 (ICCV), pp. 1150-1157; and Lowe “Distinctive
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Image Features from Scale-Invariant Keyboints, accepted for publication in the
International Journal of Computer Vision, 2004. Patents in this afea include Lowe, U.S.
| Patent No. 6,711,293.
[0016] A vériant of this technique builds a 3D database of object models from 2D images
and récognizes acquired scenes as 2D images. This approach is described in Rothganger
et al, “3D Object Modeling and Recognition Using Local Affine-Invariant Patches and
Multi-View Spatial Constraints”, Conference on Computer Vision and Pattern
Recognition, (CVPR 2003), pp 272-277, and Rothganger, et al, “3D. Object Modeling
and Recognition Using LQcal Affine-Invariant Image Descriptors aﬁd Multi-View Spatial
Constraints”, International Journal of Computer Vision, 2005.
[0017]1 While local features are less sensitive to changes in illumination and occlusion,
théy are still sensitive to changes in the geometric relationship Betwéen the camera and
the viewed surface. That is, a small patch of a surface when viewed head-on looks very
different from when the same patch is viewed dbliquely. Likewise, a surface feature
viewed at a small distance looks different when viewed from a largé_distance. Thus, the
principle difficulty in feature-based object recognition is to find a representation of local
features that is insensitive to changes in distance and viewing direction so that objects
may be accurately detected from m.any points of view. Currently available methods do
not have a practical means for creating such feature representations. Several of the above
methods provide limited allowance for viewpoint change; however, the ambiguity
inherent in a 2D image means that in general it is not possible to achieve viewpoint

Invariance.
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[0(.)18]' A third approach to object recognition combines 3D and 2D images in the context
of face recognition. A survey of this work is given in Bowyer et al, “A Survey of
gpproaphes to Three-Dimensional Face Recognition”, Intemational Conference on
Pattern Recognition, (ICPR), 2004, pp 358-361. This group of techniques is generally
referred to as “multi-modal.” In the work surveyed, the multi-modal approach uses
variations of a common technique, which is that a 3D geometry recognition result and a
2D intensity recognition result are each produced without reference to the other modality,
and then the recognition results are combined by some voting mechanism. Hence, the
information about the 3D location of intensity data is not available for uée in recognition.
In particular, the 2D intensity image used in 2D recognition is not invariant'to change of

pose.

Prior Work in Class Recognition

[0019] Prior work in class recognitioh has been aiong lines similar to object recognition
-and suffers from related difficu\lties.

[0020] One line of research represents a class as an unordered set of parts. Each part is
represented by a model for the local appearance of that part, generalized over all
instances of the class. The spatial relationship of the parts is ignored. One paper taking
this approach is Dorko and Schmid, “Selection of Scale-Invariant Parts for Object Class
Recognition”, ICCV 2003, pp. 634-640. A later paper by the same authors, expanding on
this approach, is “Object Class Recognition Using Discriminative Local Features”
submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence. In this

work, training data is acquired from 2D images. The appearance of each part in a class is

represented by a Gaussian mixture model obtained from the intensity appearance of the
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part in the various training images. There are several difficulties with this general
approach. The moét important limitation is that since the geometric relationship of the
parts is not represented, considerable important information is lost. An object with its
parts jumbled into random locations will be recognized just as well as the object itself.
[0021] Another line of research_ represents a class as a constellation of parts with 2D
structure. Each part is represented by a model for the local intensity appearance of that
pért, generalized over all instances of the class, while the geometric relationship of the-
parts is represented by a model m which spatial location is generalized over all instances
of the class. Two papers applying this approach are Burl et al, “A probabilistic approach
éo object recognition using local photometry énd global geometry”, Proc. European
Conference on Computer‘Vision (ECCV) 1998, pp 628—641, and Fergus et al, “Object

4 .Class Recognition by Unsupervised Scale-Invariant Learning”, Computer Vision and
Pqtzern Recognition, 2003, pp 264-271. Another paper along these lines is Helmer and
Lowé, “Object Class Recognition with Many Local Featurés”, IEEE Computer Vision
and Pattern Recognition Workshops, 2004 (CVPRW’04), pp. 187 ff.

[0022] The appearance of the parts and their geometric relationship is the result of
generalizing from a set of 2D images of class instances. A generalized class instance is
represented by a set of Gaﬁssian functions for the appearance of parts and for their
relationship in a 2D generalized image. There are two difficulties wiih this approach.
First, the local appearance of parts is not pose invariant. Second, the relationship of the
parts is acquired and modeled only as the parts occur in 2D images; the underlying 3D
spatial relationship is not observed, computed, nor modeled. Consequently, the range of

viewpoints is limited.
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[0023] Hence, there is a need for a system and method able to perform object and class
recognition over wide changes in distance and viewing direction, and one that is able to

utilize the advantages and abilities of both the 2D and 3D methods of the prior art..
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SUMMARY
[0024] The present invention provides a system and method for performing object and
class recognition that allows for wide changes of viewpoint and distance of objects. This
is accomplished by combining various aspects of the 2D and 3D methods of the prior art
in a novel fashion. |
[0025] The present invention provides a system and method for chooéing pose-i-nvariant
interest points of a three-dimensional (3D) image, and for computing pose-invariant
_feature descriptors of the image. The system and method also allows for the construction
of three-dimensional (3D) object and class models from the pose-invariant interest points
and feature descﬁptors of previously obtained scenes. Interest points and feature
descriptors of a newly acquired scene may be compared to the object and/or class models
to identify the presence of an object or member of the class in the new scene.
[0026]) For example, in one embodiment the present invention discloses a method for
recognizing objects in an observed scene, comprising the steps of: acquiring a three-
dimensional (3D) image of the scene; choosing pose-invariant interest points in the |
image; computing po'se-invariant feature descriptors of the image at the interest points,
each feature descriptor comprising a function of the local intensity component of the 3D
imége as it would appear if it were viewed in a standard pose with respect to a camera;
constructing a database comprising 3D object models, each object model comprising a set
of pose-invariant feature descriptors of one or more images of an object; and comparing
the pose-invariant feature descriptors of the scene image to pose-invariant feature
descriptors of the object models. Embodiments of the system and the other methods, and

possible alternatives and variations, are also disclosed.
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[0027] The present invention also provides a computer-readable medium comprising

program instructions for performing the steps of the various methods.
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BRIEF DESCRIPTION OF DRAWINGS
In the attéﬁhed drawings:
[0028] FIG.lisa symbolic diagram showing the pﬁﬁcipal elements of a system for
acquiring a 3D description of a scene according to an embodiment of the invention; -
(00291 FIG. 2 is a symbolic diagram showing the principal 'stcps of constructing a pose-
invariant feéture descriptor according to an embodiment of this invention;
[0030] FIG. 3 is a symbolic diagram showing the principal elémcnts of a system for
database construction according to an embodiment of the invention;
[0031} FIG. 4 is a symbolic diagram showing the principal components of a system for
recognition according to an embodiment of the invention;
[0032] FIG. 5 is a symbolic diagram showing the primary steps of recognition according
to an embodifnent of the ﬁlethod of the invention; and
[0033] FIG. 6 illustrates the effects of frontal transformation according to an embodiment

of the invention.
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DETAILED DESCRIPTION
[0034] The present invention performs object and class recognition that is robust with
respect to changes in viewpoint and distance by using images containing both three-
dimensional (3D) and intensity appearance information. This is accomplished by.
obtaining both about range and intensity imﬁges of a scene, and combinihg the
information contained in those images in a novel fashion to describe the scéne so that it
may be used for recognition of objects in the scene and identification of those objects as
belonging to a class. Unless otherwise stated, “recognition” shall includejboth object
recogpition and class recognition.
[0035] FIG.lisa éymbolic diagram showing the principél physical components of a
sjrstem for acquiring a 3D description of a scene configured in accordance with an
embodiment of the invention. A set of two or more cameras 101 énd a projector of
patterned light 102 are used to acquire images of an object 103. A computer 104 is used
to compute the 3D position of points in the image using stereo correspondence. A
preferred embodiment of the stereo system is disclosed in U.S. Patent Application Serial
No. 10/703,831, filed 11/7/03, which is incorporated herein by reference.
[0036] The 3D description is referred to as a “range image”. This range image is placed
into correspondence with the intensity image to produce a “registered range and intensity
image”, sometimes referred to as the “registered image” and sometimes as a “3D image”.
In this registered image, each image location has one or more intensity values, and a
corresponding 3D coordinate giving its location in space relative to the observing stereo

ranging system. The set of intensity values are referred to as the “intensity component”
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~ of the 3D image. The set of 3D coordinates are referred to as the “range component” of

the 3D image.
[00371 To exf)lain the operation of the invention it is useful to consider how changes in
object pose affect the appearance of local features. There are six possible changes to the
pose of an object:

Two of these are changes parallel to the camera-imaging plane;

One is a rotation about the optical axis of the camera; |

One is a change in the distance between the camera and the object;

Two are changes in the slant and tilt of the surface relativé to observing camera.
[0038] Changes in the position of the object parallel to the camera imaging plane only
cause changes in the posjtion of a feature in an image and therefore do not affect its
appearance if a correction is made for the location of the feature in the image plane.
Rotation of the object about the optical axis of the camera leads to rotation of the feature
in the image. There are many methods for locating and representing features that are not
affected by rotation, so this motion is also easily accounted for.
[0039] The present invention alleviates the difficulties presented by the remaining three
changes -- in distance, slant, and tilt. It does so by combining the image intensity of the
observed object with sirﬁultaneously computed range information to compute pose-
invariant feature representations. In particular, by knowing the distance to the feature
point, it is possible to remove the effect of scale change. From the range information, the
local surface normal can be computed and, using this, it is possible to remove the effects

-of slant and tilt. As a result, it is p‘ossible to compute local features that are insensitive to

all possible changes in the pose of the object relative to the observing camera. Since the
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features are local, they can be made insensitive to photometric effects. Since there are
many local features, their aggregate is insensitive to occlusion so long as several are
visible.

[0040] FIG. 2 is a symbolic diagram showing the principal ste‘ps of a method of
constructing a pose-invariant feature descriptor according to an embodiment of this
invention. A registered range and intensity image is given'as input at step 201. The
image is locally transformed at step 202 to a standard pose with respect to the‘camera,
producing a set of transformed images. This transformation is possible because the
image contains both range and intensity information. _Interest points on the transformed
image are chosen at step 203. At each interest point, a feature descriptor is computed in
step 204. The feature descriptor includes a function of the local image infensity about the
interest point. Additionally, the feature descriptor may also include a function of the
local surface geometry about the interest point. The result is a set of pose-invariant
feature descriptors 205. This method is explained in detail below, as are various
embodiments and elaborations of these steps. Alternatively, it is pdssible to combine
steps; for example, one may inéorporatc the local transformation into interest point
detection, or into the computation of feature descriptors, or into both. This is entirely
equivalent to a transformation step followed by interest point detection or feature
descriptor computation.

{00411 In general terms, recognition using these pose-invariant features has two parts:
database cbnstrpction and recognition per se. FIG. 3 is a symbolic diagram showing the
principal' components of database construction according to an embédiment of the

invention. An imaging system 301 acquires registered images of objects 302 on a
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horizontal planar surface 306 at a known height. A computer 303 builds object models or
class models and stores them in a database 304.

[0042] FIG. 4 is a symbolic diagram showing the principal components of a récognition
system according to an embodiment of this invention. ‘An imaging system 401 acquires
registered images of a scene 402 and a computer 403 uses the database 404 to recognize
objects or instances of object classes in the scene. The database 404 of FIG. 4 is the
database 304 shown as being constructed in FIG. 3.

[0043] FIG. 5 is a symbolic diagram showing the primary steps of recognition according
to an embodiment of the invent_ion. At step 501, a database is constructed containing 3D
models, each model comprising a set of descriptors. In the case of object recognition, the
models are object models and the descriptors are pose-invariant feafure descriptors; in the
case of class recognition, the models are class models and the descriptors are class
descriptors. A registered range and intensity image is acquired at step 502. The image is
locally transformed in step 503 to a standard pose with respect to the camera, producing a
set of transformed images. Intérest points on the transformed images are chosen at step .
504. Pose-invariant feature descriptors are computed at the interest points in step 505.
Pose-invariant feature descriptors of tﬁe observed scene are compared to descriptors of
the object models at step 506. In step 507, a set of objects identified in the scene is
identified.

[0044] A system or method utilizing the present invention is able to detect and represent
features in a pose-invariant manner; this ability is conferred to both flat and curved
objects. An additional property is the use of both range and intensity information to

detect and represent said features.
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Background

[0045] In order to understand subsequent descriptions, it is useful to review a few basic
definitions and facts about digital range and intensity images. First, at every location in
an image, it is possible to cofnpute approximations to spatial derivatives of the image
intensity. This is commonly performed by computing the convblution of the image with
a convolﬁtion kernel that is a discrete sampling of the derivative of a Gaussian function
centered at the point in question. The derivatives can be computed along both the
columns and rows of the images (the “x” and “y” direcfions), in which case the combined
result is known as._the image gradient at that point.
[0046] These approximations can be computed with Gaussian functions (‘;Gaussians”)
that have a different spread, controlled by using the variance parameter of the Gaussian
function. The spread of a Gaussian function is referred to as the “scale” of the operator,
and roughly corresponds to choosing a level of detail at which the afore-mentioned image
- information is computed.
[0047] Given a neighborhood of pixels, it is possible to first compute the image gradient
for each pixel location, and then to compute a 2 by 2 matrix consisting of the sum of the
outer product of each gradient vector with"itself, divided by the number of pixels in the
region. Thisis a symmetric positive semidefinite matrix, which is rcferred to as the
“gradient covariance matrix.” Since it is 2 by 2 and symmetric, it has two real non-
negative eigenvalues with associated eigenvectors. The eigenvector associated with the -
largest eigenvalue is referred to as the “dominant gradient direction” for that

neighborhood. The ratio of the smallest eigenvalue to the largest eigenvalue is referred to
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as the “eigenvalue ratio.” The eigenvalue ratio ranges between O and 1, and is an
indicator of how much one gradient direction dominates the others in the region.'

[0048] The present invention also uses a range image that is registered to the intensity
image. As noted above, the fact that the range image is registered to the intensity image
means that each location in the intensity image has a corresponding 3D location. It is
important to realize that these 3D locations are relative to the camera viewing ]ocation, SO
.a change in viewing location -Will cause both the intensity image and the range image of ‘
an object to change. However, given two range images, the points that are visible in both
views can be related by a .single change of coordinates consisting of a translation vector
and a rotation matrix. In the case that the translation and rotation between views is
known, the points in the two images canlbe merged and/or compared with each other.
The précess of computing the translation and rotation between views, thus placing points
in those two views in a common coordinate system, is referred to as “aligning” the views.
[0049] All of the preceding concepts can be found in standard undergraduate textbooks

on digital signal processing or computer vision.

Locally Warping Images

[0050] The present invention makes use of range information to aid in the location and
description of regions of an image that are indicative of an object or class of objects.
Such regions are referred to as “features.” The algorithm that locates features in an
image is referred to as an “interest operator.” An interest operator is said to be “pose-
invariant” if the detection of features is insensitive to a large range of cﬁan ges in object

pose.
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-[0051] Once detected, a feature is represented in a manner that facilitates matching
against features detected in other range and intensity images. The representation of a
feature is referred to as a “feature descriptor.” A feature descriptor is said to be “pose--
invariant” if the descriptor is insensitive to a large fange of changes in object pose.
[0052] The present invention achieves this result in part by using information in the
range image to produce new images of surfaces as viewed from a standard pose with
respect to the caméra. In the first and second embodiments, the standard pose is chosen
so that the camera axis is aligned with the surface normal at each feature and the surface
appears as it would when imaged at a fixed nominal distance. Such an alignment is said
to be “fronfal normal”.

[0053] To describe this process, it is useful to consider a point at location T on an
observed surface. If the surface is smooth at this point, there is an associated normal
vector n, and two values t, and t, with associated directions e, and e, so that the form of
the surface can be locally described as

z = (ty x> + ty yz)/2
Where the z coordinate is in the direction of n, and x and y lie along e, and €y,
respectively. A portion of a surface modeled in this form is referred to as a “surface
patch.” The values of t, and t, do not depend on the position or orientation of the
observed surface.
[0054) For a given image location, the valu€s of t, and t, with associated directions e, and
ey can be computed or approximated in a number of ways from range images. In one
embodiment, smooth connected surfaces are extracted from the range data by first

choosing a set of locations, known as seed locations, and subsequently fitting analytic
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surfaces to the range image in neighborhoods about these seed locations. For seed
locations where the surface fits well, the size of the neighborhood is increased, whereas
neighbofhoods where the surface fits poorly are reduced or removed entirely. 'This
process 1s iterated. until all areas of the range image are described by some analytic

- surface patch. Methéds for computing quadric surfaces from range data are well-
established in the computer vision literature and can be found in a variety of references,
e.g., Petitjeaﬁ, “A survey of méthods for recovering quadrics in triangle meshes”, ACM
Computing Surveys, Vol. 34, No. 2, June 2002, pp. 211-262. Methods for iterative
segméntation of range images are well established and can be found in a variety of
references, e.g., A. Leonardis et.al., “Segmentation of range images as the search for
geometn'é parametric models”, Intemationdl Journal of Computer Vision, 1995, 14, pp
253-277.
[0055] . The values ey, ey, and n together form a rotation matrix, R, that transforms points
from patch coordinates X, y, and z to the coordinate system of the ran ge image. The
center of the patch, T, specifies the spatial position. The pair X=(T, R) thus defines the
pose of the surface patch relative to the observing system.
[0056] Itis now possible to produce a new intensity image of the area of the surface as if
it were viewed along the surface normal at a nominal distance d. To do éo, consider a set
of sampling locations

Qi = (i, yir (X2 +ty yi)2)  fori=1,2 ... N

preferably arranged in a grid. Compute p; =R q; + T. The values p; are now locations on

the object surface in the coordinate system of original range and intensity images.
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[0057] The image locations corrvesponvding to the points p; can now be computed using
standard models of perspective projection, yielding image locations u;, i=1, 2...N. The
value of the intensity or range image at this image location can now be sampled,
preferably using bilinear interpolation of neighboring values. These samples now
‘constitute the intensity image and geometry of the surface for sample locations (xi, yi),
i=1, 2 ...N, corresponding to an orthographic camera looking directly along the surface
normal diréction.

[0058] By construction, the area of the surface represented in a patch is invariant to
changes in object pose, and thus the appearance of features on the object surface are
likewise invariant up to the sample spacing of the camera system. The sample spacing of
the locations (x;, y;) may be chosen to approximate the view of a camera with pixel
spacing s and focal length f at distance d by choosing épacing s* =s (d/f). In the first
and éecond embodiments, s=.0045mm/pixel, d = 1000 mm, and f = 12.5mm. Thus s*=
.36mm/pixel. |

[0059] FIG. 6 shows the result of frontal warping. 601 is a surface shown tilted away
from the camera axis by a significant angle, while 602 is the corresponding surface

transformed to be frontal normal.

Detecting Pose-Invariant Interest Points

[0060] A combined range and intensity image containing several objects may be
segmented into a collection of smaller areas that may be modeled as quadricvpatches,
each of which is transformed to appear in a canonical frontal pose. Additionally, the size
of each patch may be restricted to ensure a limited range of surface normal directions

within the patch.
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[0061] More specifically, patches are chosen such that no surface normal at any sample
point in the patch makes an angle larger than 0y, with n. This implies that the range of x
énd y values within the local coordinate system of the patch fall within an elliptical
region defined by a value A such that:

£, x> + t),2 y2 < sec(emax)2 —1=A%
Thus,' a patch wil.l have the desired range of surface normals if X| < Xmax = Mty and |y| <
Ymax = A /ty. An image patch with this property will be referred to as a “restricted viewing
angle patch.” The values X and ymax are used to determine the .number of sampling
locations needed to completely sample a restricted viewing angle patch. In the x
diregtion, the number will be 2*Xpm,y/s* and in y it will be 2*ymay/s*.
[0062] In the first and second embodiments described below, the value of O, 1S chosen
to be 20 degrees, although other embodiments may use other values of Opax.
[0063] Surface patches that do not satisfy the restricted viewing angle property are
subdivided into smaller patches until they are restricted viewing angle patches, or a
minimal patch size is reached. When dividing a patch, the new patches are chosen to
overlap at their boundaries to ensure that no image locations (and hence interest points)
fall directly on, or directly adjacent to, a patch boundary in all patches. Patches are
divided by choosing the coordinate direction (x or y) over which the range of normal
directions is the largest, and creating two patches equally divided in this coordinate
direction.
[0064] The restricted viewing angle patches are warped as described above, where the
warping is performed on the intensity image. Interest points are located on the warped

patches by executing the following steps:
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L. Compute the eigenvalues of the gradient image covariance matrix at every
pixel location and for several scales of the aforementioned gradient operator. Let minE
and maxE denote the minimum and maximum eigenvalues so computed, and let r denote
their eigenvalue ratio.

2. Compute a list L1 of potential interest points by finding all locations
where minE is maximal in the image at some scale.

3. Remove from L1 all locations where the ratio r is less than a specified
thresho]d. Iﬁ the first and second embodiments, the threshold is 0.2, although other
embodiments may use other values. 4. For each element of L1, cofnpute the tuple
<P,L,S,E, X >where Pis thé patch, L is the 2D location of the intérest point on the
patch, S is the scale, E is the eigenvalue ratio, and X is the 3D pose of the interest point.
The list of such tuples over all patches is a set of interest points in the intensity image.
These are locations in the image where the intensity appearance has distinctive structure.
[0065] The same process is applied to the range image: The range image is warped to be
frontal normal. In place of the intensity at a given (x, y) location, the range value z in
local patch coordinates is used to compute the gradient covariance matrix at each pixel.
The other steps are similar. The result is a list of interest points based on the range
image. These are locations in the image where. the surface geometry has distinctive
structure.

{00661 This process is repeated for other types of intgrest point detectors operating on
intensity and range images. Several interest point detectors are described in K.

Mikolajczyk et al., “A Comparison of Affine Region Detectors”, to appear in
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Intemaﬁonal Journal of Computer Vision. For each interest point, there is a label k
indicating the type of interest point detector used to locate it.

[0067] The techniques described abové ensure that the interest point detection process
locates very nearly the same set of interest points at the same locations when the object is

viewed over a large range of surface orientations and positions.

Representing Pose-Invariant Features

[0068] Next, the local appearance at each interest point is computed. Let <P, L, S, E, X>
be an interest point. As the surface normal of the interest point may deviate from that of
th¢ patch upon Which it 1s detected, a rotation matrix Ry is recomputed specifically for
the interest point location L.

[0069] When computing this rotation matrix, the ratio of surface curvatures, min(ty,
ty)/max(ty, ty) is compared to E. If E is larger than the surface curvature ratio, the rotation
matrix Ry is computed from ey, ey, and n as described previously. Otherwisp the rotation
matrix R is computed from the eigenvectors of E and the surface normal n as follows. A
zero is appended to-the end of both of the eigenvectors of E. These vectors are then
multiplied by the rotation matrix R originally computed when the patch was frontally
warped. This produces two orthogonal vectors iy and iy that represent the dominant
intensity gradient direction in the coordinate system of the original range image. The
final rotation matrix Ry is then created from iy, iy and n. In either case, X is now defined
as X = (T, Rp).

[0070] A fixed‘ size area about L in the restricted viewing angle patch P is now warped
using X, producing a new local area P’, so that P’ now appears to be viewed frontally

centered. The corresponding range information associated with the area about L in patch

v
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P is similarly warped, producing a canonical local range image D’. In the first and
second embodiments, a patch size of 1cm by lcm is used (creating an image patch of size
28 pixels by 28 pixels) although other embodiments may use other patch sizes.

[0071] P’ is normalized by subtracting its mean intensity, and dividing by the square root
of the sum of the squares of the resulting intensity values. Thus, changes in brightness
and contrast do not affect the appearance of P’. A feature descriptor is constructed that
includes a geometric descriptor X = (T, Ry), an appearance descriptor A = (P’,D’), and a
qqalitative descriptor Q = (x, S, ty, ty, E). The geometric descriptor specifies the location
of a feature; the appearance descriptor specifies‘the local appearance; and the qualitative
descriptor is a summary of the salient aspects of the local appearance.

[0072] Frontal warping ensures that the locations of the features and their appearance
have been corrected for distance, slant, and tilt. Hence, the features are pose invariant
and are referred to as “pose-invariant features”. Additionally, their construction makes

them invariant to changes in brightness and contrast.

Recognition Using Pose-Invariant Features — Background

[0073] An object model O is a collection of pose-invariant feature descriptors expressed

in a common geometric coordinate system. Let F be the collection of pose-invariant

feature descriptors observed in the scene. Define the “object likelihood ratio” as
L(F,0)=P(F|O)/P(F|~0O)

where P(F | O) is the probability of the feature descriptors F given that the object is

present in the scene and P(F | ~ O) is the probability of the feature descriptors F given

that the object is not present in the scene. The object O is considered to be present in the

scene if L(F, O) is greater than a threshold t. The threshold t is empirically determined
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for each object as follows. Several independent images of the object in normally
occurring scenes are acquired. For several values of 1, the number of times the object is
incorrectly recognized as present when it is not (false positives) and the number of times
the object is incorrectly stated as not present when it is (false negatives) is tabulated. The
value of 7 is taken as that for which the value at which the number of false positives
equals the number of false negatives. -

[0074] * In order to evaluate the numerator of this eXpression; it is useful to introduce a
mapping hypothesis h to describe a match between observed feafures and model features,
and a relative pose x between the model object coordinate system and the observed

feature coordinate system. The equation then becomes:
L(F, 0) = (Zh [y PE|0,h, 0 P(h |0, ) Pz | 0)) / P | ~0)

[0075] As the goal is to exceed the threshold 1, the system will attempt to maximize L
over all candidate model objects O. However, the number of hypotheses h over which to
evaluate this expréssion is enormous. In order to improve the computational aspects of
the method, the first and second embodiments rely on the fact that, in most cases, the
correct match h should be unique, and this match should completely determine the pose .
Under these assumptions, ah approximation to the above equation is given by:

L(F,0) = max, maxp P(F |O,h,x) P(h | O, ) P(x | O) P(F | ;O)
If the result of this expression exceeds 7, then the object O is deemed present. The value
of the pose y that maximizes this expression specifies the position and orientation of the
object in the scene.
[0076] Elements of the object likelihood ratio can be further refined. - Recall that each

feature is composed of an appearance descriptor, a qualitative descriptor, and a geometric
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descriptor. Let F4 denote the appearance descriptors of a set of observed features. Let
Oa denote the appearance descriptors of a model object O. Likewise, let Fx and Oy
denote the corresponding observed and model geometric descriptors, and let Fqand Oq
denote the corresponding observed and model qualitative descriptors. Given a mapping h
between a set of observed features and a set of model features, Fa(k) is the appearance |
descriptor of the kth feature in the set and O A(ﬁ(k)) is the appearance descriptor in the
corresponding feature of the model. Similarly, Fx(k) is the geometric descriptor of the
kth feature of the set and Ox(h(k), %) is the geometric descriptor of the corresponding
feature of the model when the model is in the pose .

[0077] Feature geometry descriptors are conditionally independent giveﬁ h and y. Alsb,

each feature’s appearance descriptor is approximately independent of other features.

Hence,

P(F|O,h, )/ P(F| ~ 0)=1I LA(F, 0, h, k) Lx(F, O, h, %, k)
where

LA(F, O, h, k) = P(Fa(k) | Oa(h(k))) / P(Fa(k) | ~O)
and

Lx(F, O, h, 1, k) = P(Fx(k) | Ox(h(K), x) / P(Fx(k) |~O)

[0078] Lj is subsequently referred to as the “appearance likelihood ratio” and Ly as the

“geometry likelihood ratio.” The numerators of these expressions are referred to as the
“appearance likelihood function” and the ““geometry likelihood function,” respectively.
[0079]1 The denominator of La can be approximated by observing that the set of detected

features in the object database provides an empirical model for the set of all features that
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might be detected in images. A feature is highly distinctive if it differs from all other
features on all other objects. For such features, L, is large. Conversely? a feature 1s not
distinctive if it occurs generically on several objects.. For such features, L, is close to 1.
As aresult, an effective approximation to P(Fa(k) | ~ O) is:

P(Fa(K) | ~ 0) * maxo: » 0 maxje o PEAK) | O°AG))
[0080] The denominator of Lx, P(Fx(k) | ~O), represents the probability of a feature
being detected at a given image location when the object O is not present. This value is
approximated as the ratio of the average number of features detected in an image to thé
number of places at which interest points can be detected. When interest point detection
is localized to.image pixels, the number of places is simply the number of pixels.
[0081] L(F,O) contains two additional terms, P(h | O, y) and P(y | O). The latter is the
probability of an object appearing in a specific pose. In the first and second
embodiments, this is téken to be a uniform distribution.
[0082)] P(h|O, ) is the probability of the hypothesis h given that thé object Oisin a
given pose ¥. It can be viewed as a “discount factor’” for missing matches. That is, for a
given pose y of object O, there is a set of featufes that are potentially visible. If every
expected (based 6n visibility) feature on the object were observed, P(h | O, ) would be
maximal; fewer matches should result in a lower value. After performing the visibility
computation, the first embodiment expects some number N of features to be visible. P(h |
O, %) is then approximated using a binomial distribution with parameters N and detection
probability p. The latter is determined empirically based on the properties of the interest

operator used to detect features.
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[0083] The first and second embodiments make use of the fact that the likelihoods
introduced above may be evaluated more efficiently by taking their natural logarithms.
[0084] The likelihood functions described above may take many forms. The first and
second embodiments assume additive noise in the measurements and thus the probability
value P(f | m) for an observed feature value f and matched model feature m is P(f-m). If
both f and m are normally distributed with covariances A and. Am, the logarithm of this
probability is -1/2 (f—m)T(Af + Am)'l(f—m), plus terms that do not depend on f or m. In the
first and second embodiments, Ay is empirically determined for several different feature
distances and slant and tilt angles. Features observed at a larger distance and at higher
angles have correspondingly larger values in As than those observed at a smaller distance
and frontally. The value of A, is determined as the object model is acquired.

[0085] Subsequently disclosed aspects of the invention apply and/or make further
refinements to the object likelihood ratio, the appearance likelihood ratio, the qualitative
ljkelihood ratio, the geometry likelihood ratio, and the methods of probability calculation
described above.

[0086) Two possible embodiments of this invention are now described. A first
embodiment deals with object recognition. A second embodiment déa]s with class
recognition. There are many possible variations on each of thése and some of these

variations are described in the section on Alternative Embodiments.

First Embodiment

[0087] The first embodiment is concerned with recognizing objects. This first

embodiment is described in two parts: (1) database construction and (2) recognition.

Database Construction
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[0088] FIG. 3 is a symbolic diagram showing the principal components of database
construction. For each object to be.recoghized, several views of the object are obtained
under controlled conditions. The scene contains a single foreground object 302 on a
horizontal planar surface 306 at a known height. The background is a simple collection
of planar surfaces of known pose with uniform color and texture. An imaging system
301 acquires registered range and intensity images.

- [0089) For each view of the object, registered range and intensity images are acquired,
frontally warped patches are computed, interest points are located, and a feature
descriptor is computed for each interest point. In this way, each view of an object has
associated with it a set of features of the form <X; Q, A> where X is the 3D posé of the '
feature, Q denotes the qualitative descriptor, and A is the appearance descriptor. The
views are taken under controlled conditions, so that each view also has a pose expressed
relative to a. fixed base coordinate system associated with it.

[0090] The process of placing points in two or more views into a common coordinate
system is referred to as “aligning” the views. During database construction, views are
aligned as follows. Since the pose of each view is known, an initial transformation
aligning the observed pose-invariant features in the two images is also known. Once
aligned, a match hypothesis h is easily generated by matching each pose-invariant feature
to its nearest neighbor, provided that neighbor is sufficiently close. Thus, initial
estimates for both h and the pose % needed to compute the object likelihood ratio L(F,0)
are easily computed.

[0091] Due to physical process errors, there may be some error in the pose so that the

alignment is not exact, merely very close. This may also lead to errors or ambiguities in
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h. In order to deal with these errors, only pose-invariant features with a large appearance
and geometry likelihood ratio are first considered in h. A final alignment step is
performed by computing the closed form solution to the least-squares problem of
absolute orientation using these pose-invariant features. This is used to refine the 3D
location of each feature and the process is repeated until convergence.

[0092] An object model is thus built up by starting the model as one view and processing

others with reference to it. In general, a model has one or more segments. For each new

view of the object, there are four possible results of alignment:

[0093] (1) The object likelihood ratio is large and there are no unmatched pose-invariant
features in the new view. In this case, the view adds no substantial new
information. This occurs when.the viewpoint is subsumed by viewpoints already
accounted for by the model. In this case, the information in corresponding pose-
invariant features descriptors is averaged to reduce noise. -

[0654] (2) The view aligns with a single segment and contains new information. This
occurs when the viewpoint is partly novel and partly shared with vie§vs already
accounted for in that segment. In this case, the new features are added to the
segment description. Matching pose-invariant feature descriptors are averaged to
reduce noise.

[0095] (3) The view aligns with two or more segments. This occurs when the viewpoint
is partly novel and partly shared with viewpoints already accounted for in the
database entry for that object. In this case, the segments are geometrically aligned
and merged into one unified representation. Matching pose-invariant feature

descriptors are averaged to reduce noise.
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[0096] (4) The view does not match. This occurs when the viewpoint is entirely novel
and shares nothing with viewpoints of the détabase entry for that object. In this
case, a new segment description is created and initialized with the observed
features.

[0097] In the typical case, sufficient views of an object are obtained that the several

segments are aligned and merged, resulting in a siﬁgle, integrated model of the object.

[0098] When database construction is compléte, information stored in the database

consists of a set of object models, where each object quél has associated with it a set of

features, each of the form <X, Q, A> where X is the 3D pose of the feature eXpres‘sed in
aﬁ objecf-centered geometric reference system, Q is the list of qualitative 'descn'ptors, aﬁd

A is the appearance descriptor. Each quantity also has an associated covariance matrix

that is estimated from the deviatioﬁ of the original measurements from the averaged

descriptor value.

Recognition

- [0099] FIG. 4 is a symbolic diagram showing the pdngipal components of a recognition
system. Unlike database creation, scenes are acquired under uncontrolled conditions. A
scene may contain none, one, or more than one known object. If an object is present, it
may be present once or more than once. An object may be partially occluded and may bé
in contact with other objects. The goal of recognition is to locate known objects in the
scene.

[00100] The first step of recognition is to find smooth connected surfaces as described
previously. The next step is to process each surface to identify interest points and extract

a set of scene features as described above. Each feature has the form F = <X, Q, A>
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where X is the 3D pose of the feature, Q is the quélitati ve descriptor, and A is the
appearance descriptor. |

[00101]- Object recognition is accomplished by matching scene features with model
features, and evaluating the resﬁlting match using the object likelihood ratio. The first
step in this process is to locate plausible matches in the model features for each scene
feature. For each scene feature, the qualitative descriptor is used to look up only those
model features with qqalitative descriptors closeiy matching the candidate scene feature.
The lookup is done as follows. An ordered list is cénstructed for each qualitative feature
component. Suppose there are N qualitative feature components, so there are N ordered
lists. The elements of each list are the coﬁesponding eleménts for all feature descriptors
in the model database. Given a feature descriptor from the scene, a binary search is used
to locate those values within a range of each qualitative feature component; from these,
the matching model features are identified. N sets of model feature identifiers are
formed, one for each of the N qualitative feature components. The N sets are then
merged to produce a set of candidate pairs, {<f, g>}, where f is a feature from the scene
and g is feature in the model database.

[00102] For each pair <f, g>, the appearanée likelihood is computed and stored in a table
M, in the position (f, g). In this table, the scene features form the rows, and the candidate
matching model features form the columns. Thus, M(f, g) denotes the appearance
likelihood value for matching scene feature f to a model object feature g.

[00103] An approximation to the appearance likelihood ratio is computed as:

L(f, g) = M(f, g) / max  M(f, k)
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where k comes from a different object than f. A table, L, is constructed holding the
appearance likelihood ratio for each pair <f, g> identified above.
[00104] An initial alignment of the model with a scene feature is obtained. To do this, the
pair <f*, g*> with the maximal value in table L is located. Let O be the object model
associate;i Qith the feature g*. Using the pose associated with f*, X, and the pose
associated with g*, Xg«, an aligning tranéf_ormation x 1s computed. The transformation y -
places the model into a position and orientation that is consistent with the scene feature;
hence, y is taken as the initial pose of the model.
-[00105] From the pose ¥, the set of potentially visible model features of object Og« is
computed. These potentially visible model features are now considered to see if they can
be matched against the scene. The method is as follows: If a visible model featufe k
appears in a row j of table M, the geometry likelihood ratio for matching j and k is
computed using the previously described approximation method. The appearance
likelihood ratio is taken from the table L. The product of the appearance and geometry
likelihood ratios of matching j and k is then computed. The product of the appearance

- and geometry likelihood ratios is then compared to an empirically determined threshold.
If this threshold is exceeded, the feature pair <j, k> is considered a match.
[00106] If new matches ére found, the ali gﬁing pose is recomputed including the new’
feéture matches and the process above repeated until no new matches are found. The
aligning pose is calculated a.s follows. Each feature match produces an estimate of the
aligning rotation Ra; and two three-dimensional feature locations Tg; and Tf; for the

model and observed feature respectively. The method seeks to find the rotation R” and

translation T such that Tf; = R™ Tg; + T". Let Tf’; and Tg’; be Tf; and Tg; after
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subtraction of the mean feature locations of the observed and model features,
respectively. Form the matrix M as M = & Ra;T + Tg’;*Tf’;". The matrix M is now

decomposed using SVD as described in Horn’s method to produce the rotation R* Given
R’ the optimal translation is computed using least squares. These values together form
the aligning pose .

[00107] Finally, the object likelihood ratio is computed using the final value of the pose ¥
and matched features h. If the object likelihood ratio exceeds T, the object O is declared
present in the image. All scene features (rows of the tables M and L) that are matched
are permanently removed from future consideration. If thc‘object likelihood ratio does
not exceed this threshold, the initial match between f* and g* is disallowed as an initial
match. The process then repeats using the next-best feature match from the table L.
[00108] This process continues until all matches between observed features and model
features with an appearance likelihood ratio above a match threshold have been

considered.

Second Embodiment

[00109] The secénd embodiment -'modifi_es the operation of the first embodiment to
perform class-based object recognition. There are other embodiments of this invention
that perform class-based recognition and several of these are discussed in the alternative
embodiments.

[00110] By convention, a class is a set of objects that are grouped together uﬁder a single
label. For example, several distinct chairs belong to the class of chairs, or many distinct
coffee mugs comprise the class of coffee mugs. Class-based recognition offers many

advantages over distinct object recognition. For example, a newly encountered coffee
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mug can be recognized as such even though it has not been seen previously. Likewise,
properties of the coffee mug class (€.g. the presence and use of the handle) can be
immediately transferred to every new instance of coffee mug.

[00111] The second embodiment is described in two parts: database construction and

object recognition.

Database Construction

[00112] The second embodiment builds on the database of object descriptors constrﬁcted
as described in the first embodiment. The second embodiment processes a set of model
object descriptors to produce a class descriptor comprising:

1) An appearance model consisting of a statistical description of the appearance elements
of the pose-invariant feature descriptors of objects belonging to the class;

2) A qualitative model summarizing appearance aspects of the features;

3) A geometry model consjsting of a statistical description of geometry elements of the
po_se—invariant features in a common object reference system, together with statistical
information indicating the‘van'ability of feature location; and

4) A model of the co-occurrence of appearance features and geometry features.

These are each dealt with separately and in turn.

Constructing a Class Model for Appearance

[00113] The second embodiment builds semi-parametric statistical models for the
appearance of the pose-invariant features of objects belonging to the class. This process
is performed independently on the intensity and range components of the appearance

element of a pose-invariant feature.
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[00114] The statistical model used by the second embodiment is a Gaussian Mixture
Model. Each of the Gaussian distributions is referred to as a “cluster”. In such a model,
the number of clusters K needs to be chosen. There are various possible methods for
making this choice. The second embodiment uses a simple one as described below.
Alternative embodiments may choose K according to other techniques.

[00115] Assume that there are n specific objects that are to be grouped into a class.
- Within these n models, consider all features of a given type (the component x of the

qualitative feature descriptor). Let Ny denote the number of features in the kth object.

Let Njyax be the max of Ni for k =1, ...n. The second embodiment chooses K to be

Nmax .

[00116] An appearance model with K components is computed to capture the commonly
appearing intensity and range properties of the class. it 1s computed using established
methods for statistical data modeling as described in Lu, Hager, and Younes, “A Three-
tiered approach to Articulated Object Action Modeling and Recognition”, Neural
Information Proccs‘sing and Systems, Vancouver, B.C. Canada, Dec. 2004. The method
operates as fo]lo@s.

[00117] A set of K cluster centers is chosen. This is done in a greedy, i.e. no look-ahead,
fashion by randomly choosing an initial featur¢ as a cluster center, and then iteratively
choosing additional points that are as far from already chosen points as possible. Once
the cluster centers are chosen, the k-means algorithm is applied to adjust the centers.
This procedure is repeated several times and the result with the tightest set of clusters in

the nearest neighbor sense is taken. That is, for each feature vector fj, the closest (in the
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sense of Euclidean distance) cluster center c; is chosen. Let d; = ||f; - ¢j||. The total
penalty for a clustering is the sum of all values d;.

[00118] If the number of clusters exceeds the dimension of the feature space, a Gaussian
mixture model (GMM) is computed using expectation maximization (EM) using the
initial clusters as a starting point. Methods for computing GMMs using EM are
described in several standard textbooks on machine learning.

[00119] If the number K of clusters is far sﬁaller than the dimensionality of the feature
vectofs, the modeling step is performed using a combination of linear discriminant
analysis (LDA) and modeling as a Gaussian mixture. Given the initial clustering, the
within-class and between-class variances are corﬂputed. This is processed using lineer
discriminant analysis to produce a projection. matrix ®. The feature descriptors are
projected into a new feature space by multiplying by the matrix @.

[00120] Given the resulting GMM, the likelihood of any data item i belonging to cluster j
can be computed. These weights replace the membership function in the linear
discriminant analysis algorithm, a new projection matrix @ is computed, and the steps
above repeated. This iteration is continued to convergence. The resultis a final
projectioﬁ matrix @ and a set of parameters (Gaussian mean, variance and weight) ;=
<pi, A, Wj> for each clusterj=1,2, ... K.

[00121] This modeling process is repeated for every type of featore that has been detected
in the class. The resulting set of model parameters, GMMa(k), summarizes all

appearance aspects of features of type « for this class.

Constructing a Class Model for the Qualitative Descriptor
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[00122] For every appearance feature A, it is now possible to compute the cluster k such
that P(A | ®’, ®,) is maximal. Let Fy denote the set of all features that are associated
with cluster k in this manner. Each of these features has a corresponding qualitative
feature descriptor Q. Let ¥y denote all qualitative descriptors for feature descriptors in
Fi.

[00123] For every component of the qualitative descriptor, it is now possible to compute
the minimum value that descriptor component takes on in ¥y as well as the maximum
value. Thus, the full range of descriptor values can be represented as a vector of intervals
Ix bounded by two extremal qualitative descriptors ¥ and Y.

[00124] Any feature that matches well with cluster k is likely to take values in this range.

Thus, Ii is stored with each cluster as an index.

Constructing a Class Model for Geometry

[00125] Finally, a geometric model is computed. Recall that the database in the first
embodiment produces a set of pose-invariant features for each model, together with a-
geometric registration of those features to a common reference frame. The second
embodiment preferably makes use of the fact that the model for each member of a class is
created starting from a consistent canonical pose. For example, every chair would be
facing forward in a canonical model pose, or every coffee mug would have the handle to
the side in a canonical model pose.

[00126) The first step in developing a class-based geometric model is to normalize for
differences in size and scale of the objects in the class. This is performed by the

following steps:
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1) For each object O of the class C, compute the centroid of the set of 3D feature
locations of O. For model features Fy, F,, ... F, of the form F; = <X;, Q;, Aj>, and

X; = <T;, Rj> the centroid is
po = (I/n) 2 Ti.
2) For each object O of the class C, compute the object scale as
o0 = sqrt((1/m) 2 ||T; - po) IP).

3) Average the scale values for all objects in the class yielding sc.
4) For each object O of the class, compute the class-relative scale value
"$o = 0o/Sc.

5) Compute the mean and standard deviation of $O-
[00127] The modeling process‘is carried out on the geometry component making use of -
the scale normalization computéd above. Consider the set of object features in all the
object models that are to be formed into a class C. For each such feature with three-
dimensional location T = (X, y, z), normal vector n and centroid po=(iXo, kYo, #Zo), a
new set of values T" = ((x-ixo)/s0, (Y-1LYo)/so, (z-1z0)/so) is computed. Also, the value -

o=n"*T/

T’|| is computed to represent the local orientation of the feature. A semi-
parametric model for these features is then computed as described above. The resulting
geometric model has two components: a Gaussian Mixture Model GMMgs(x) that models
the variation in the location and orientation of pose-invariant feature descriptors across
the class given a nominal pose and scale normalization, and a distribution Ps(so | C) on
the global scale variation within a class C. In this embodiment, the latter is taken to be a

Gaussian distribution with mean and variance as computed in step 5 above.
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[00128] After performing this computation for all feature types, the result is an empirical
distribution on the appearance, qualitative characteristics and geometric characteristics of

all types of features detected on the objects that are to be members of the class.

Computing the Co-Occurrence of Appearance and Geometry Features

[00129] Finally, for all N features detected in the class, the joint statistics on appearance
and geometr}; are computed as follows. Suppose there are u appearance clusters and v
geometry clusters. The appearance/geometry co-occurrence table, of size u by v is
created as folléws. First, the table is initialized with all its entries set to zero.

[00130] For each feature, the likelihood of the appearance compbnent is computed
separately for all clusters in the Gaussian mixture fnodel. Let i denote the index of an
appearance cluster with likelihood a;. Similarly, let j denote the index of a geometry
cluster (again making use of the scale normalization described above) with likelihood g;.
The entry (i,j) of the table is incremented by a; * g;. 4This process is repeated for all N
pose-invariant featureé, and the result is normalized by the total of all values in the table

to yield a co-occurrence probability P,

Recognition

[00131] Given a set of object class models, recognition pfdceeds as described in the first
embodiment with the following modifications.
[00132] Let F be the collection of pose-invariant feature descriptors observed in the scene.
Define the “class likelihood ratio” as |

Lc(F, C)=P(F |C)/PF|~C)
where P(F | C) is the probability of the feature descriptors F given that an instance of the

class is present in the scene and P(F | ~ C) is the probability of the feature descriptors F
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given that the object class is not present in the scene. The class C is considered to be
present in the scene if Lc(F, C) is greater than a threshold t. The threshold 1 is
empirically determined for each class as follows. Several independent images of the
class in normally occurring scenes are acquired. For several Qalucs of 7, the number of
times the class is incorrectly recognizedn as present when it is not (false positives) and the
number of times the class is incorrectly stated as not present when it is (false negatives) i‘s
tabulated. The value of 1 is taken as that for which the value at which the number of false
positives equals the number of false negatives.
[00133] Consider a posé—invariant feature descriptor fy = <X,Q,A> with X = <T,R>. Leta
denote an aligﬁing transformation consisting of a pose y augmented with the
dimensionless scale factor so. The calculation of the likelihood function between fy and a
model class C with appearance model CA and geometric model CG given an alignment a
is

P(fi | C, a) = Zi; P(A| CA; ) P(X | CG;, a) P(i,j | C, a)
[00134]_ P(A | CA)) represents the probability that the appearance component is sampled
from cluster i of. the GMM modeling appearance. The error in observing f is generally
far smaller than the variation within the class, so the second embodiment takes the
observed scene feature value as having zero variance, which is a reasonable
approximation. As a result, the probability .value comes dilrectly from the associated
Gaussian mixture component for the cluster CA;.
[00135) P(X | CG;, a) represents the probability that the feature pose is taken from cluster ]
of the GMM modeling geometry. It is computed by aligning the observed feature to the

model by first transforming the observed features using the pose component  followed
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by scaling using the value sp. The resulting scaled translation values correspond to T’
above. The observed value of the local orientation after ali gnment o is also éomputed.
As before, the second embodiment takes the observed feature value as having zero
variance. As a result, the probability value comes directly from the associated Gaussian
mixture component for the cluster CG;.

[00136] The final probability value P(i,j | C, a) can be computed from the
appearance/geometry co-occurrence table computed durin g the database construction and
the probability that the object would appear in the image given the class aligned with
>transform a, -as detailed below.

[00137] The cases of interest are those in whiéh an observed scene feature has a well-
defined correspondeﬁce with an appearance and geometry cluster. For classes, the
correspondence hypothesis vector h relates an observed scene feature to a pair of an
appearance cluster and a geometry cluster, so that h(k) is the pair [ha(k),hg(k)], where
ha(k) is a class appearance cluster and hg(k) is a class geometry 'élustér.

[00138] With this notation, the class likelihood function may be writtg:n as
Lo(F, C) = (24, JaPE|C,h, a)P(h|C, a)P(a| C)) / P(F|~C)

[00139] As before, an approximation is given by

Lc(F, C) =~ max, maxp P(F| C, h, a) P(h | C, a) P(a | C)/ P(F | ~C)
The hypothesis vector h is now an explicit correspondence between an observed feature
and a pair consisting of a geometry cluster and an appearance cluster. If the result of this
expression exceeds 1, then the object C is deemed present. The value of the aligning
transformation a that maximizes this expression specifies the position, orientation, and

overall scale of the class instance in the scene.
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[00140] P(h | C, a) is the probability of the hypothesis h given that the class C is in a given
alignment a. It consists of two components: P(h | C, a) = Pco(ha |AC, hg)*Ppp(hg | C,a)
[00141] The first teﬁn is computed from the geometry co-occurrence table as
Peo(ha | C, hg)= I Po(ha(k) | C, hg)

with  Pg(ha(k) | C, hg) = Peo(ha(k),hg(k) | C)/Zi Peo(i, hg(k) | C).
[00142] P, is an appearance model computed using a binomial distribution based on the
number of correspondences in h and the number of geometric clusters that should be
detectable in the scene under the alignment a. A geometric cluster is considered to be
detectable as follows. Let T represent the mean location of geometﬁc cluster ¢ when the
object class is geometrically aligned with the observing camera system (using a). Let yc
denote the location of the origin of the class coordinate system when the object class is
geometriéally aligned with the observing camera system. Let 6 dendte the angle the
vector T-pc makes with the optical axis of the camera system. Let o denote the center of
the values representing the orientation of the geometric cluster and define a; acos(0).
The total angle the geo‘metric cluster makes With the camera optical axis then falls in the
range 0 - a to 6 + a. Let Omax represent the maximum detection angle for a feature. Then
geometric cluster i is considered to be detectable if [6—a, 6+ a] C [-Omax, Omax])-
[00143] Applying these refinements yields
Lc(F, C) ~ max, maxp, P(F | C, h, a) Peo(ha | C, hg) Pypp(hg | C, a) P(a| Cj/ P(F | ~C)
[00144] Finally, let y be the pose component of a and let sp be the scale value. Then

P(a|C) =P(y | C) Ps(so | C)
As before, P(y | C) is taken to be constant, so this expression simplifies to

P(a| C) = Ps(so | C)
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Thus, object matching takes into account global scale, and local shape and local
appearance characteristics of the object class.

[00145] The class-based feature likelihood ratio is now

P(F|C, h,a)/P(F | ~C) =TI Ly(F, C, h, k) Lx(F, C, h, a, k)

where
LA, C, h, k) = P(Fa(k) | Ca(ha(k))) / P(Fa(k) | ~C)
and
Lx(F, C, h, a, k) = P(Fx(k) | Cx(hg(k), a)) Peo(ha(k)|C, hg) /_P(Fx(k) | ~C)

"The former is the class-based appearance likelihood ratio. The latter is the class-based geometry
likelihood ratio. The denominators are the class-based appearance likélihood function and
geometry likelihood function, respe;tive]y. The denominator of the appearance likelihood ratio
is approximated as described below. The denominator of the geometry likelihood ratio is taken
as a constant value as in the first embodiment. |
[00146] Class recognition is performed as follows. The first phase is to find smooth
connected surfaces, identify interest points and extract a set of scene features, as
previously described. The second phase is to match scene features with class mo'dels and
evaluate the resulting match using the class likelihood ratio. The second phase is
accomplished in the following steps.

[00147] First, for each observed scene feature, the qualitative feature descriptors are ﬁsed
to look up only those database appearance clusters with qualitative characteristics closely
matching the candidate observed feature. Specifically, if a feature descriptor has
qualitative descriptor Q, then all appearance clusters k with Qe I are returned from the

lookup. Let {<f, c>} be the set of feature pairs returned from the lookup on qualitative
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feature descriptors, where f is a feature observed in the scene and c is a potentially
matching model appearance cluster.

[00148] For each pair <f, c>, the appearance likelihood is computed and stored in a table . ‘
M, in position (f, ¢). In this tablg, vthe observed features form the rows, and the candidate
model appearance clusters form the columns. Thus M(f,. c) denotes the appearance |
likelihood value for matching observed feature f to a model appearance cluster c.

[00149] An approximation to the appearance likelihood ratio is computed as

L, g) ~ M(f, g) / max y M(f, k) where k comes from a different class than g.

A table, L, is constructed holding the appearance likelihood ratio for each pair <f, g>
identified above.

[00150] Next, four or' more feature/cluster matches are located that have maximal values
of L and belong to the same class model C. For each such matching appearance cluster g,
a model geometry cluster k is chosen for which Po(g | C, k) is large. Using the matches,
an alignment, a, is computed between the scene and the class model using the feature
locations Tr and corresponding cluéter centers f.. This alignment is computed by ihe

following steps for n feature/cluster matches:

1) The mean value of the feature locations Tt is subtracted from each feature
location:

2) The mean value of the cluster centers u. is subtracted from each cluster center.
3) Let y; represent the location of feature i after mean subtraction. Let x; denote the

corresponding cluster center after mean subtraction. Compute the dimensionless scale s

= (1/m) Zi llyill 7 Zi [Iill-
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4) The rotation is computed using Horn’s method. Define M = X x; * yi' and
compute the singular value decomposition U*D*VT = M. Define R = V*U".
5) Solve for the aligning translation T, as T, = Tr — s*R*p. for a corresponding
feature f and cluster c. This is done for all correspondences and the result averaged. Let
T be the average. |
6) Construct the aligning pose y from R and T which, together with the
dimeﬂsionless scale s, defines the aligning transformation a. -
[00151] For every additional scene feature in the table M and every cluster of the class C,
the geometry likelihood ratio is computed using this aligning traﬁsfonnation, The feature
likelihood ratio is computed as the product of the appearance likelihood ratio and the
geometry likelihood ratio. Let k be the index of a scene feature; let i be the index of an
appearance cluster, and j be the index of a geometry cluster such that the feature
likelihood ratio exceeds a threshold. Then h(k) = [i, j] is added to the vector h, thereby
associating scene featpre k with the appearance, geometry pair [i,}].
[00152]) If new matches are found, the aligning transformation is recomputed including the
new geometry feature/cluster matches and the process above repeated until no new
matches are found.
[00153] The process above is repeated for several choices of geometry clusters associated
with the original choice of four matching appearance clusters. The result with the largest
feature likelihood ratio is retained.
[00154] Finally, the class likelihood ratio is computed. If the class likelihood ratio
exceeds 1, the object class C is declared present in the image. All observed scene features

that were matched in this process are permanently removed from the tables M and L.
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[00155] If the object likelihood ratio does not exceed this threshold, a néw initial match is
- chosen by varying at least one of the chosen features. The process then repeats using the

new match. This process continues until all matches between observed features and

model clusters with an appearance likelihood ratio above a match threshold havg beeﬁ

considered.

Alternative Embodiments and Implementations

[00156] The invention has been described above with reference to certain embodiments
and implementations. Various alternative embodiments and implementations are set
forth below. It will be recognized that the following discussion is intended as illustrative

rather than limiting.

Acquiring Range and Intensitv Data

[00157] In the first and seéond embodiments, range and co-located image intensity
information is acquired by a stereo system, as described above. In alternative
embodiments, range and co-located image intensity information may be acquired in a
variety of ways. |

1001581 In some alternative embodiments, a stereo system may be used, but of different
implementation. Active lighting may or may not be used. If used, the active lighting
may project a 2-dimensional pattern, or a light stripe, or other structure li ghting. For the
purposes of this invention, it suffices that the stereo system acquires a range image with

acceptable density and accuracy.
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[00159] In other altemaﬁve embodiments, the multiple images used for the stereo
computation may be obtained by moving one or more cameras. This has the practical
advantage that it increases the effective baseline to the distance of camera motion.
[00160] In still other alternative embodiments, range and image intensity by be acquired
by different sensors and regiétered to provide co-located range and intensity. For
example, range might be acquired by a laser range finder and image intensity by a
camera.

[00161] The images may be in any part of the electro-magnetic spectrum or may be
obtained by combinations of other imaging modalitieé such as infra-red imaging or

ultraviolet imaging, ultra-sound, radar, or lidar.

Locally Transforming Images

[00162] In the first and second embodiments, images are locally transformed so they
appear as if they were viewed along the surface normal at a fixed distance. In alternative
embodiments, other étandard orientations or distances could be used. Multiple standard
orientations or distances could be used, or the standard orientation and distance may Be
adapted to the imaging sit_uation or the sampling limitations of the sensing device.

[00163] In the first and second embodiments, images are transformed using a second order
approximation, as described above. In alternative embodiments, local transformation
may be performed in other ways. For example, a first-order approximation could be
used, so that the local region is represented as a flat surface. Alternatively, a higher order
approximation could be used.

[00164] In still other alternatives, the local transformaﬁon may be incorporated into

interest point detection, or into the computation. of feature descriptors. For example, in
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the first and second embodiments, the image is locally transformed, and then interest
points are found by computing the eigenvalues of the gradient image covariance matrix.
An alternative embodiment may omit an explicit transformation step and instead compute
the eigenvalues of the gradient image covariance matrik as if the imagé were
transformed. One way to do so is to integrate transformation with the computation of the
gradient by using the chain rule applied to the composition of the image function and the
transformation function. Such techniques, in which the transformation step is
incorporated into iﬁterest point detection or into feature descriptor computation, are

' equivélent toa transformationi step followed by interest point detection or feature
descriptor computation. Hence, when tranvsformatiovn is described, it will be understood
that this may be accomplished by a separate step or may be incorporated into other

procedures.

Determining Interest Points

[00165] In th¢ first and second embodiments, interest points are found by computidg the
eigenvalues of the gradient image covariance matrix, as described above. In alternative
embodiments, interest points may be found by various alternative techniques. Several
interest point detectors are described in Mikolajczyk et al, “A Comparison of Affine
Region Detectors”, to appear in International Journal of Computer Vision. There are
other interest point detectors as well. For such a technique to be suitable, it suffices that
boints_ found by a technique be invariant or nearly invariant to substantial changes in
rotation about the optical axis and illumination.

[00166] In the first and second embodiments, a single technique was described to find

interest points. In alternative embodiments, multiple techniques may be applied
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simultaneously. For example, an alternative embodiment may use both a Harris-style

corner detector and a Harris-Laplace interest point detector.

[00167] In the first and second embodiments, interest points were computed solely from
intensity or from range. In alternative embodiments a combination of both may be used.
For example, intensity features located along occluding contours may be detected.
[00168) In other alternative embodiments, specialized feature detectors may be employed.
For example, feature detectors may be specifically designed to detect written text.
Likewise, feature detectors for specialized geometries may be employed, for example a
detector for handles.

[00165] Alternative embodiments may also employ specialized feature detectors that
locate edges. These edges may be located in the intensity compoﬁent of the 3D image,
the range component of the 3D image, or where the intensity and range components are

both consistent with an edge.

Locating Interest Points and Transforming the Intensity Image

[00170] In the first and second embodiments, the intensity image is transformed before

computing interest point locations. This carries a certain computational cost. Alternative

embodiments may initially locate interest points in the original image and subsequently

transform the neighborhood of the image patch to refine the interest point location and

compute the feature descriptor. This speeds up the computation, but may result in less
_repeatability in interest point detection.

[00171] In other alternative embodiments, several interest detectors implicitly constructed

to locate features at a specific slant or tilt angle may be constructed. For example,
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derivatives may be computed at different scal;es in the x and y directions to account for
the slant or tilt of the surface rather than explicitly transforming the surface. Surfaces
may be classified into several classes of slant and tilt, and the detector appropriate for that
class applied to the image in that region.
[00172] In other altemative embodiments, the first phase of interest point detection in the
untransformed image may be used as an initial filter. In this case, the neighborhood of
the image patch is transformed and the transformed nei ghborhood is retested for an
interest point, possibly with a more discriminative interest point detector. Only those
interest points that pass the retest step are accepted. In this way, it may be possible to

enhance the selectivity or stability of interest point's'.

Refining the Location of an Interest Point

[00173] In the first and second embodiments, the location of an interest point is computed
to the nearest pixel. In alternative embodiments, the location of an interest point may be
refined to sub-pixel accuracy. In the genéral case, interest points are associated with
image locations. Typically, this will improve matching because it establishes a

localization that is less sensitive to sampling effects and change of viewpoint.

Choosing Interest Points to Reduce the Effects of Clutter

[00174] In the first and second embodiments, interest points may be chosen anywhere on
an object. In particular, interest points may be chosen on the edge of an object. When
this occurs, the appearance about the interest point in an observed scene may not be
stable, because different backgrounds may cause the local appearance to change. In
alternative embodiments, such unstable interest points may be eliminated in many

situations, as follows. From the range data, it is possible to compute range
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discontinuities, which generally correspond to object discontinuities. Any interest point
that lies on a large range discontinuity is eliminated. An alternative embodiment
employing this refinement may have interest points that are more stable in cluttered

backgrounds.

Determining Local Orientation at an Interest Point

[00175] In the first and second embodiments, the local orientation at an interest point is
found as described above. In alternative embodiments, the local orientation may be
computed by alternative techniques. For example, a histogram may be computed of the

values of the gradient orientation and peaks of the histogram used for local orientations.

Standard Viewing Direction

[00176] In the first and second embodiments, the local image in the neighborhood of an
interest point is transformed so it appears as if it were viewed along the surface normal.
In alternative embodiments, the local neighborhood may be transformed so it appears as

if it were viewed along some other standard viewing direction.

Feature Descriptors

[00177] In the first and second embodiments, each feature descriptor includes a geometric
. descriptor, an appearance descriptor, and a quaﬁtative descriptor. Alternative
embodiments may have feature descriptors with fewer or more elements.

[00178] Some alternatives may have no qualitative descriptor; such alternatives omit the
initial filtering step during recognition and all the features in the model database are
considered as candidate matches. Other alternatives may omit some of the elements in
the qualitative features described in the first and second embodiments. Still other

alternatives may include additional elements in the qualitative descriptor. Various
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functions of the appearance descriptor may be advantageously used. For example, the
first K components of a principal component analysis may be included. Similarly, a
histogram of' appearance values in may be included.

[00179] Some alterpatives may have no geometric descriptor. In such cases, recognition. 18
based on appearance.

[00180] .Othe‘r alternatives may éxpand the model to include inter-feature relationships.
For example, each feature may have associated with it the K distances to the nearest K
features or the K angles bétween the feature normal and the vector to the nearest K
features. Thése relationships are pose-invariant; othcr pose-invariant relationships
be't.w'eeﬁ two or mofe féatﬁres may be also“inclu(.iéd in the dbject model. | Such inter-

feature relationships may be used in recognition, particularly in the filtering step.

Appearance Descriptors

.[00181] In the first and second embodiments, the appearance descriptor is the local

Intensity image and the local range image, each transformed so it appears to be viewed

frontally centered. In alternative embodiments, appearance descriptors may be various

functions of the local intensity image and local range image. Van’ou-s fuhctions may be
~ chosen for various purposes such as speed of computation, compactness of storage and

the like. |

[00182] One group of functions is distribution-based appearance descriptors, which use a

histogram or equivalent technique to represent appearance as a distribution of valﬁes.

Another group of functions is spatial-frequency descriptors, which use frequency

components. Another group of functions is differential feature descriptors, which use a

set of derivatives. Some specific appearance descriptors include steerable filters,
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differential invariants, complex filters, moment invariants, and SIFT features. Several
suitable descriptors are compared in Mikolajc;yk and Schmid, “A Performance
Evaluation of Local Descriptors”, to appear in IEEE Transactions on Pattern Analysis
and Machine Intelligence. Depending on circumstances and application, any of these
.may bc useful in alterﬁative embodiments.

[00183] Additionally, appeﬁrance descriptors may be explicitly constructed to have special
properties desirable for c particular application. For example, appearance descriptors
may be constructed to be invariant to rotation about the camera axis. ‘One way of doing
this is to use radial histograms. In this case, an appearance descriptor may consist of
histogrérns for eacﬁ circular ring about aﬁ interest point. Specifically, let R bc sucha’
ring. Compute two histograms of the valucs of points in the ring, one for the magnitude
of the gradients and one for the angle between the local radial direction and the gradient

direction. If each histogram has Ng buckets and there are Ny, rings, then the appearance
descriptor has length 2*Ng*Ng.

[00184] There is a very wide diversity of functions that may be used to compute

appearance descriptors.

Appearance Descriptors Based oh Color Informatiop

[00185] In the first and second embodiments, visual appearance is represented using
intensity, i.e. gray scale values. Alternative embodiments may use sensors that acquire
multiple color bands and use thcse color bands to represent the visual appearance when
computing interest points and/or appearance descriptors. This would be effective in

distinguishing objects whose appearance differs only in color.

Appearance Descriptors Based on Geometry '
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[00186) There are additional appearance descriptors based on local geometry information
that have the desired invariance properties. One class of such geometry-based
appearance descriptors is represented by SP]N images, as described in the paper by
Johnson and Hebert, “Using Spin Images for Efficient Object Recognition in Cluttered
3D Scenes” IEEE Transactions on Pattern Analyﬁis .and Machine Intelligence, Vol. 21,
No. 5, May 1999, pp 433 — 449. |
[00187] There are also additional appearance descriptors based on non-local geometry

_ information. An alternative embodiment using these may fit analytic surfaces patches to
the range data, growing each patch to be a large as poésible consistent with an acceptably
good fit to the data. It would dlassify each surface patch as to quadric type, e.g. plane,
elli.ptic cylindér, elliptic cone, elliptic paraboloid, ellipsoid,,étc. Each interest point én a
surface would have an appearance descriptor constructed from the surface on which it is

" found. The descriptor would consist of two levels, lexographically ordered: the quadric
type would serve as the first level descriptor, while the parameters of the surface quadric

would serve as the second-level descriptor.

Reducing the Dimensionality of the Appearance Descriptors

-[00188] In the first embodiment, and in several of the alternative embodiments described
above, the appearance descriptors have a high dimension. For daiabases consisting of a
very large number of objects, this may be undesirable, since the storage requifements and
the search are at least linear- in the dimension of the appearance descriptors. Alternative
embodiments may reduce the dimensionality of the data. One technique for so doing is

principal component analysis, sometimes referred to as the “Karhunen-Loeve
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trans;formation’. This and other methods for dimensionality reduction are described in
standard texts on pattern classification and machine learning.

[00189] In the s¢cond embodiment, linear discriminant analysis (LDA) is used to project
the appearance descriptors down to a smaller dimension. Alternative embodiments may

use other techniques to reduce the dimensionality of the data.

Computing the Object and Class Likelihood Ratios

[00190] In the first and second embodiments, the object and class likelihood ratios are
approximated by replacing a sum and integral by maximums, as described above. In
alternative emBodimcnts, these likelihood ratios may be approximated by considering
additional terms. For example, rather than the single maximum, the K elements resulting
in the higﬁest probabilities may be used. K may be chosen to mediate between accuracy
and computational speed.

[00191] The feature likelihood ratio was computed by replacing the denominator with a
single value. In alternative embodiments, the K largest likelihood values from an object
other than that under consideration may be used. In other altémative embodiments, an
approximation to P(f | ~O) may be precomputed from the object database and stoféd for
each feéture and object in question.

[00192) The first and second embodiments approximéte the pose distribution by taking it
to be uniform. Alternative embodiments may use models with priors on the distribution

of the pose of each object.

Object Database Construction

[00193] In the first and second embodiments, the database of object models is constructed

from views of the object obtained under controlled conditions. In alternative
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embodiments, the conditions may be less controlled. There may be other objects in the

view or the relative pose on the object in the various views may not be known. In these
cases, additional processing may be required to construct the object models. In the case
of views with high clutter, it may be necessary to build up the model database piecewise

by doing object recognition to locate the object in the view.

Using Discriminative Features in the Database

[00194] In the first and second embodiments, all feature descriptors in the database are
treated equally. In practice, some feature descriptors are more specific in their
discrimination than others. The discriminatory power of a feature descriptor in the
databasé may be computed a variety of ways. For example, it may be computed By
compariﬁg each appearancve descriptor in the database with every other appearance
descriptor; é discriminatory appearance descriptqr is éne that is dissimilar to the
appearance descriptors of all other objects. Alternatively, mutual infbrmation may be
used to select a set of features descriptors that are collectively selective. The measure of
the discriminatory power of a feature descriptor .may be used to impose a cut-off such
that all features below a threshold are discarded from the model. Alternatively, in somé

embodiments, the discriminatory power of a feature may be used as a weighting factor.

Models for Classe's

[00195] In the second embodiment, the database consists of a set of class models. Each
class model includes a geometric model, an appearanée model, a qualitative fnodel, and a
co-occurrence table. Alternative embodiments may have different class models. Some
embodiments may have no qualitative model. Other embodiments may have fewer or

additional components of the qualitative descriptors of the object models and hence have
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fewer or additional components in the qualitative class models. Still other embodiments
may include inter-feéture relationships in the object models and hence have
corresponding elements in the class models.

[00196] In the second embodiment, a fixed number of classes K were chosen. In
alternative embodiments, the number of classes K may be varied. In particular, it ié
désirable to choose classes that contain features coming from a majority of the objects in
aclass. To create such a model, it may be desirable to create a model with K clusters,
then to remove features that appear in clusters with littl¢ support. K can then be reduced
and the process repeated uﬁtil all clusters contain features from a majority of the objects
m the class.

[00157] In the second embodiment, Euclidean diStance was used in the nearest neighbor
algorithm. In alternative embodiments, a robust metric such as the L1 norm or an. alpha-
trimmed mean may be used.

[00198] The second émbodiment uses a set of largely decoupled models. In particular, a
Gaussian Mixture Model is computed for geometry, for the qualitative descriptor, for the
image intensity descriptor, and for the range descriptor, as described ébove. In
alternative embodiments some or all of these may be computed jointly. This may be
accomplished by concatenating the appearance descriptor and feature location and
clustering this joint vector. Alternatively, a decoupled model can be computed and
appearance-geometry pairs with high co-occurrence can be associated to each other.
[00199] The second embodiment répresents the geometry model as é set of distributions of
the variation in position of feature descriptors given nominal pose and global scale

normalization. Because of the global scale normalization in the class model and in
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recognition, an object and a scaled version of the object in a scene can be recognized
equally well, provided that the scaling is according to the global scale normalization of
the class. Alternative embodiments may not model the global scale variation within a
class, and in recognition there is no rescaling. Consequently, a scaled version of an
object will be penalized for its deviation from the nominal size of the class. Depending |
on the application, either the semantics of the second embodiment or the semantics of an
alternative embodiment may be appropriate.

[00200] In other embodiments, a wider range of local and global scale and shape models |
may be used. Instead of a single global scale, different scaling factors may be used along
different. axes,.resulting in a global shape model. For example, affiné.deformations might
be use.d as a global shape model. Also, the object may be segmented into parts, and a
separate shape model constructed for each part. For example, a human figure may be
segmented into the rigid limb structures, and a shape model for each structure developed
independéntly.

[00201] The second embodiment builds scale models uSing equal weighting of the
features. However, if some feature clusters contain more features ahd/_or have smaller
variance, alternative embodiments may weight those features more highly when
computing the local and global shape models.

[00202] The second embodiment performs recognition by computing the class likelihood
ratio based on probability models computed from the feature descriptors of objects
belonging to a class. Alternative embodiments may rAepre,‘sent a class by other means.
For example, a support vector machine may be used to learn the properties of a class

from the feature descriptors of objects belonging to a class. Alternatively, many other
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machine-learning techniques described in the literature may be used to learn the
properties of a class from the feature descriptors of objects belonging to a class and may

be used in this invention to recognize class instances.

Class Database Construction

[00203] The second embodiment computes class models by independently nérmali‘zing the
size of each object in the class, and then computing geometry clusters for all size-
normélized features. In alternative embodiments, object models may be matched to each
other, subject to a gfoup of global deformations, and clusteririg performed when all class
members have been registered to a common frame. This may bé accomplished by first
clustering on feature appearance. The features of each object that are associated with a
particular cluster may bé taken to be potential correspondences ‘among models. For any

| pair of obje:cts7 .these correspondences may be sampled using a procedure such as
RANSAC to produce an aligning transformation that provided maximal agreement

among the features of the models.

Sharing Features Among Classes

[00204] The second embodiment constructs a.separate model for each class; in particular,
the clusters of one class are not linked to the clusters of another. Alternative
embodiments may éonstruct class models that share features. This may speed up
database construction, since class models for previously encountered features may be re-
used when processing a new class. It may also speed-up recognition, sincé a shared

feature is represented once in the database, rather than multiple times.
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Filtering Matches in Recognition

[00205] In the first embodiment, the attempt to match an observed feature to the model
database is made faster by using the qualitative descriptor as a filter and by using
multiple binary searches to implement the lookup. Alternative embodiments may do the
lookup in a different way. Various data structures might be used in place of the ordered
lists described in the first embodiment. Various data structures that can efficiently locate

nearest neighbors in a multi-dimensional space may be used.

Recognition - Obtaining an Initial Alienment

- [00206] The filiSt embodiment bbtains an initial alignment of the modql with a portion of
the séene by:using asingle corrgspondence <f*, g*> as described above. Altémative
embodiments may obtain an initial alignmeﬁt is other ways.

[00207] One alternative is to réplace the single correspondence <f*, g*> with multiple

corresponding points <f1, g1>,..., <fy, gn> Where all the model features gy belong to the

same object. The latter approach may provide a better approximation to the correct

aligning pose if all the fy are associated with the same object in the scene. In particular,

if N is at least 3, then the alignment may be computed using only the position
components, which may be advantageous if the surface normals are more noisy than the
position.

[00208] Another alternative is to 'rep]acc the table L with a different mechanism for
choosing correspondences. Correspondences may be chosen at random or according to
some probability distribution. Alternatively, a probability distribution could be
constructed from M or L and the RANSAC method may be employed, sampling from

possible feature correspondences. Also, groups of correspondences <fy, g1>,..., <fj,
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gn> may be chosen so that the fy are in a nearby region of the observed scene, so as to
improve the chance than all the f) are associated with the same object in the scene.

Alternatively, distance in the scene may be used as a weighing function for choosing the

fx. There are many variations on these ideas.

[00209] Similar considerations apply to class recognition. There are many ways of
choosing correspondences to obtain an initial alignment of the class model with a portion
of the scene. An example will illustrate the diversity. of possible techniques. When

* choosing the correspondences <f], g1>,..., <f4, g4> described in the second embodiment,
it is desirable that all the fi are associated with the same object in the scene. One means

for insuring this is to extract smooth connected surfaces from the range data, as described
as one possible embodiment in the section “Locally Transforming Images;’. Each iﬁterest
pdint may then be assocjated with the surface on which it is found. In typical situations,
each surface so extracted lies on only one object of the scene, so that the collection of
interest points on a surface belong to the same object. This association may be used to

choose correspondences so that all the f) are associated with the same object.

Recognition When the Object Likelihood Ratio Does Not Exceed the Threshold

In the first embodiment, if the object likelihood ratio does not exceed the threshold, the
initial match between f* and g* is disallowed as an initial match. In alternative
embodiments, the initial match may be disallowed only temporarily and other matches
considered. If there are disallowed matches and an object is recognized subsequent to the
match being disallowed, the match is reallowed and the recognition pfoccss repeated.
This alternative embodiment may improve detection of objects that are partially

occluded. In particular, the computation of P(h | O, x) can take into account recognized
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objects that may occlude O. This may increase the likelihood ratio for the object O when

occluding objects are recognized.

Decision Criteria

[00210] The first and second embodiments compute probabilities and approximations to.
probabilities; they base the decision as to Whether an object or class instance is present in
an observed scene using an approximation to the likelihood ratio. In alternative
embodimepts, the computation may be pérformed without considering explicit
probabilities. For example, rather than compute the probability of an observéd scene
featpre f given an model object feature or model class feature g,an altf:mative
embodiment may simply compute a match score bétween f and g. Various match score
functions may be used. Similar consideratiéns apply to matches between groups of scene
features F and model or class features G. The decision as to whether an object or class
instance is present in an obéerved scene may be based on the value of a match score
compared to empirically obtained criteria and these criteria'may vary from object to

object and from class to class.

Hierarchical Recognition

| [00211] The first embodiment recognizes specific objects; the second embodiment
recognizes classbes of objects. In alternative embodiments, thesc_may be combined to
enhance recognition performance. That is, an object in the scene may first be classified
by class, and subsequent recognition may consider only objects within that class. In other
embodiments, there may be a hierarchy of classes, and recognition may proceed by

starting with the most general class structure and progressing to the most specific.

Implementation of Procedural Steps
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[00212] The procedural steps of the several embodiments have been described above.
These steps may be implemented in a variety of programming languages, such as C++, C,
Java, Ada, Fortran, or any other general-purpose programming language. These
implementations may be compiled into the machine langdage of a particular computer or
they may be interpreted. They may also be implemented in the assembly language or the
machine language of a particular computer. The method may be implemented on a
computer, and executing program instructions may be stored on a computer-readable
medium.
[00213] The pfocedural stepé may also be implemented in specialized programmable

- proceséors. Examples of sucH specialized hardware include digital signal prbcessofs

- (DSPs), graphics processors (GPUs), media processors, and streaming processors.

[00214] The procedural steps may also be implemented in electronic hardware designed

for this task. In particular, integrated circuits may be used. Examples of integrated

circuit technologies that may be used include Field Programmable Gate Arrays (FPGAs),

gate arrays, standard cells, and full éustom ICs.

[00215] Implementation using any of the methods described in this invention disclosure

may carry out some of the procedural steps in parallel rather than serially.

.+ Application to Robotics

a 't00216] .Arhéf.lg"'other épplicafidns, t.his invention may be applied to robotic manipulation.
‘Objeqfs may bé'recognized as described in‘ this inventiop. Once an object has been
recognized, properties relevant to robotic manipulation can be looked up in a database.
These properties include its surface(s), its wéi ght, and the coefficient of friction of its

surface(s).
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Application to Face Recognition

[00217] Among other applications, this invention may be applied to face recognition.
Prior techniques for face récognition have used either appearance models or 3D models,
or have combined their results only after separate recognition operations. By acquiring
registered range intensity images, by constructing models based on pose-invariant
features, and by using them for>recognition as described above, face recognition may be

performed advantageously.

Other Applications

{00218] The invention is not limited to the applications listed above. The present
invention can also be applied in many other fields such as inspection, assembly, and
logistics.. It will be recognized that this list is intended as illustrative rather than limiting

and the invention can be utilized for varied purposes.

Conclusion, Ramifications, and Scope

[00219] In summary, the invention disclosed herein provides a system and method for
performing 3D object recognition using range and appearance déta.

[00220] In the foregoing specification, the present invention is described with reference to
specific embodiments thereof, but those skilled in the art will recognize that the present
invention is not limited thereto. Various features and aspects of the,above-deécdbed
present invention may be used individually or jointly. F‘urthef, the present invention can
be utilized in any number of environments and applications beyond those described
herein without departing from the broader spirit and scope of the specification. The

specification and drawings are, accordingly, to be regarded as illustrative rather than
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restrictive. It will be recognized that the terms “comprising,” “including,” and *having,”

as used herein, are specifically intended to be read as open-ended terms of art.
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CLAIMS
What is claimed is:
1. A method of choosing pose-invariant interest points on a three-dimensional (3D) |
image, éomprising the steps of |
transforming the intensity image at a plurality of image locations so that
the loca]‘region about each image location appears approximately as it would
appear if it were viewed in a standard pose with respéét to a carhera; and

applying one or more interest point operators to the transformed image.

2 The method of claim 1 wherein the step of transforming the image is performed

by using the range data to compute the standard pose with respect to the camera.

3. The method of claim 2 wherein the standard pose is such that the image appears

as if it were viewed with the camera axis along the surface normal.

4. The method of claim 1 wherein the step of transforming the image further
comprises the steps of:
~ computing a secbndforder approximatioﬁ to the local sufface geometry
_ from the range data of the SD image; and |

warping the image according to the second-order approximation.

5. The method of claim 2, wherein the step of transforming the image further

comprises the steps of:
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using the range data to compute the surface normal at each image location;
and
using the surface normal and the range data to compute the standard pose

with respect to the camera.

6. A method of computing pose-invariant feature descriptors of a three-dimensional
(3D) image, comprising the steps of
choosing one or more interest points‘on- thé intenéity image;
trénsforming the intensity image s0 that the local region about each
interest point appeafs approximately as it would appear if it were viewed in a
standard pose With respect to a camera; and
computing a feature descriptor comprising a function of the intensity

image in the local region about each interest point in the transformed image.

7. The method of claim 6 wherein the step of transforming the image is performed

.by using the range data to compute the standard pose with respect to the camera.

8. The method of claim 7, wherein the step of transforming the image further
comprises the steps of:
_using the range data to compute the surface normal at each interest point;
and
using the surface normal and the range data to compute the standard pose

with respect to the camera.
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0. The method of claim 7 wherein the standard pose is such that the image appears

as if it were viewed with the camera axis along the surface normal.

10.  The method of claim 6 wherein the step of transforming the image further
comprises the steps of: |
computing a second-order approximation to the local surface geometry
from the range data of the 3D image; and

warping the image according to the second-order approximation.

11.  The method of 6 wherein the feature descriptor further comprises a function of the
local range image as it would appeaf if it were viewed in a standard pose with respect to

the camera.

12.  The method of 6 wherein the feature descriptor further comprises a function of the

3D pose of the interest point.

13.  The method of 6 wherein the feature descriptor further comprises a function of the

3D pose of one or more other interest points of the image.

14.  The method of 6 wherein the step of computing a feature descriptor further

comprises computing a dimensionality reduction in the function of the local region.
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15.

16.

A method for recognizing objects in an observed scene, comprising the steps of

acquiring a three-dimensional (3D) image of the scene;

choosing pose-invariant interest points by applying one or more interest
point operators to the intensity component of the image és it would appear 1f it
were viewed in a standard pose with respect to a cémera.

computing pose-invariant feature descriptors of the intensity image at the
interest points, |

constructing a database comprising 3D object models, each object model
comprising a set of pose-invariant feature descriptors of one or more images of an
object; and

compaﬁng the pose-invariant feature descriptors of the scene ifnage to

pose-invariant feature descriptors of the object models.

A method for recognizing objects in an observed scehe, comprising the steps of

acquiring a three-dimensional (3D) image of the scene;

choosing pose-invariant interest .points in the image;

computing pose-invariant feature descriptors of the image at the interest
points, each feature descriptor comprising a function of the local intensity
component of the 3D image as it would appear if it were viewed in a standard
posé with respect to a camera;

qonstructing a database comprising 3D object models, each object model
comprising a set of pose-invariant feature descriptors of one or more images of an

object; and
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comparing the pose-invariant feature descriptors of the scene image to

pose-invariant feature descriptors of the object models.

17. The method of claim 15 wherein the step of comparing the pose-invariant feature
descriptors is performed by evaluating the probability that feature descriptors of the scene

are the result of observing feature descriptors of the object models.

18. | The method of claim 17 wherein the step of evaluating the probability that
feature descriptors of the scene are the result of observing feature descriptors of the
object models further compﬁse; the steps of: |
combuting a correspondence of feature descﬁptors in the scene with
'featur'e descriptors of an object model and an alignment under that
correspondence,
evaluating an approximation to the likelihood ratio under the

correspondence and alignment.

19.  The method of claim 18 wherein the step of computing a correspondence and
alignment further comprises the steps of
computing a correspondence of a small number of feature descriptors;
computing an alignment based on the small number of feature descriptors;
and
iteratively performing the sub-steps of:

identifying potentially visible model features using the alignment;
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retaining those visible model features that match feature
descriptors in the scene;

updating the correspondence to include the retained model
features; and

updating the current alignment based on the retained model

features.

20. A method for computing three-dimensional (3D) class models, comprising the
steps of
acquiring 3D images of objects with c]ass labels;
choosing pose-invarigmt interest points in the images by applying one or
more interest point operafors to the intensity component of the irﬁages as they
would appear if viewed in a standard pose with respect to a camera;
computiné pose-invariant object feature descriptors at the interest points,
and
computing functions of the pose-invariémt object feature descriptors and

the class labels.

21. A method for computing three-dimensional (3D) class models, comprising the
steps of
acquiring 3D images of objects with class labels;

choosing pose-invariant interest points in the images;
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computing pose-invariant feature descriptors at the interest points, each
feature descriptor comprising a function of the local intensity component of the
3D imag¢ as it would appear if it were viewed in a standard pose with respect to a
camera; and

computing functions of the pose-invaﬁant feature descriptors and the class

labels.

22, The method of claim 20 wherein the step of computing functions further
comprises computing Gaussian Mixture Models over the feature descriptors, each

Gaussian Mixture Model comprising one or more clusters.

23.  The method of claim 22 wherein the step of computing functions further
comprises computing Gaussian Mixture Models of the global size variation within the

class.

24.  The method of claim 20 wherein the step of computing functions further

comprises computing one or more support vector machines.

25. A method for recognizing instances of classes in an observed scene, comprising
the steps of:

acquiring a three-dimensional (3D) image of a scene;
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choosing pose-invariant interest points in the image by applying one or
more interest point operators to the intensity component of the imagevas it would
appear if it were viewed in a standard pose with respect to a camera;

computing pose-invariant feature descriptors at the interest points;

constructing a database comprising 3D class models; and

comparing pose-invariant feature descriptors of the scene image to the 3D

class models.

26.  The method of claim 25 wherein the 3D cléss‘models comprise Gaussian Mixture

Models, each Gaussian Mixture Model comprising one or more clusters.

27.  The method of claim 25 wherein the step of comparing the pose-invariant feature
descriptors to the 3D class models further comprises evaluating the probability that

feature descriptors of the scene are the result of observing clusters of a class model.

28.  The method of claim 27 wherein the step of evaluating the probability that feature
descriptors of the scene are the result of observing clusters of a class model further
comprises the steps of:
computing a correspondence of feature descriptors in the scene with
clusters of a class model and an alignment under that correspondence; and
evaluating an approximation to the likelihood ratio under the

correspondence and alignment.

PA2777US -175-



WO 2006/002320 PCT/US2005/022294

29. A method for recognizing instances of classes in an observed scene, comprising
the steps of:
acquiring a three-dimensional (3D) image of a scene;
choosing pose-invariant interest points in the image;
computing pose-invariant feature descriptors at the interest points, each
feature descriptor comprising a function of the local intensity component of the
3D image as it would appear if it were viewed in a standard pose with respectto a
camera;
constructing a database comprising 3D class models; and
comparing pose-invariant feature descriptors of the scene image to the 3D

class models.
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