PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5

GO6K 9/68 Al

(11) International Publication Number:

(43) International Publication Date:

WO 91/17521

14 November 1991 (14.11.91)

(21) International Application Number: PCT/US91/03002

(22) International Filing Date: 1 May 1991 (01.05.91)

(30) Priority data:

20,310 Us

7 May 1990 (07.05.90)
(71) Applicant: EASTMAN KODAK COMPANY [US/US];
343 State Street, Rochester, NY 14650 (US).

(72) Inventor: TAN, Hin-Leong ; 40 Maywood Circle, Roches-
ter, NY 14618 (US).

(74) Agent: ARNDT, Dennis, R.; 343 State Street, Rochester,
NY 14650-2201 (US).

(81) Designated States: AT (European patent), BE (European
patent), CH (European patent), DE (European patent),
DK (European patent), ES (European patent), FR (Eu-
ropean patent), GB (European patent), GR (European
patent), IT (European patent), JP, LU (European pa-
tent), NL (European patent), SE (European patent).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished. in the event of the receipt of
amendments.

(54) Title: A HYBRID FEATURE-BASED AND TEMPLATE MATCHING OPTICAL CHARACTER RECOGNITION

SYSTEM

NAME OF DEPOSITOR
STREET ADDRESS 101
CITY, STATE
19
PAY TOTHE
ORDER OF $
DOLLARS
NAME OF YOUR BANK
STREET ADDRESS
CITY, STATE
FOR
0246090331 837L 304539465 0.76
| A

N 0—

(57) Abstract

(PRIOR ART)

N~/2

A feature-based character recognition identification and confidence level are determined for an unknown symbol. If the
confidence level is within an intermediate range, the feature-based identification is confirmed by matching the unknown charac-
ter with a reference template corresponding to the feature-based identification. If the confidence level is below the intermediate
range, template matching character recognition is substituted in place of the feature-based identification. If the template match-
ing recognition identifies more than one symbol, corresponding templates from a second set of templates having thicker character

strokes are employed to resolve the ambiguity.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

applications under the PCT.

AT Austria
AU Australia
BB Barbados
BE Belgium
. BF Burkina Faso
BG Bulgaria
BJ Benin
BR Brazil
CA Canada
CF Central African Republic
CcG Congo

CH Switzerland

Cl Cote d’lvoire
CcM Cameroon

cs Czechoslovakia
DE Germany

DK Denmark

Spain

Finland

France

Gabon

United Kingdom
Guinea

Greece

Hungary

Italy

Japan

Democratic Pcople’s Republic
of Korea
Republic of Korca
Liechtenstein

Sri Lanka
Luxembourg
Monaco

Madagascar
Mali
Mongolia
Mauritania
Malawi
Netherlands
Norway
Poland
Romania
Sudan
Sweden
Sencgal
Sovict Union
Chad

Togo

United States of America

WO 91/17521

10

15

20

25

30

PCT/US91/03002

A HYBRID FEATURE-BASED AND TEMPLATE MATCHING
OPTICAL CHARACTER RECOGNITION SYSTEM
BACKGROUND OF THE INVENTION

Technical Field:

The invention is related to high-speed optical
character recognition systems and particularly to optical
character recognition systems useful for reading magnetic
image character recognifion (MICR) symbols on a personal

bank check.

Background Art:

Identifying the image of an unknown pattern by
matching it with a set of known reference patterns is a
well-known technique, as disclosed in U.S. Patent No.
3,165,718 (to Fleisher), for example. This type of
technique is used in optical character recognition (OCR)
systems. In one version, commonly referred to as
feature-based optical character recognition, the unknown
image is treated as a vector and the known reference
patterns are likewise treated as reference vectors.
Recognition is performed by associating the unknown
vector with the one reference vector having the shortest
absolute distance to the unknown vector. This technique
is disclosed in U.S. Patent No. 4,783,830 (to Johnson et
al.) and similar techniques are disclosed in U.S. Patent
No. 3,522,586 (to Kiji et al.) and U.S. Patent No. '
3,382,482 (to Greenly). The use of multi-dimensional
vector spaces in OCR systems is disclosed in U.S. Patent

No. 4,733,099 (to Bokser) .

Another optical character recognition technique,
commonly referred to as template matching, associates the
unknown image with one of a set of known reference

templates having the greatest similarity. Similarity is -

10

15

20

25

30

WO 91/17521

2

determined, for example, by the number of matching "on"
and "off" pixels in the unknown image and the reference
template. Template matching is disclosed in U.S. Patent
No. 4,288,781 (to Sellner et al.) and similar techniques
are disclosed in U.S. Patent No. 4,545,070 (to Miyagawa
et al.), U.S. Patent No. 4,454,610 (to Sziklai) and U.s.
Patent No. 4, 837,842 (to Holt).

The computation of a confidence level to determine
the validity of the character identification provided by
such techniques is disclosed in U.S. Patent No. 4,288,781
(to Sellner et al.) discussed above. The confidence
level defined in the latter patent is the ratio of the
Scores of the two highest scoring symbol identifications.
Computation of confidence levels or values is also
suggested in U.S. Patgnt No. 4,733,099 (to Bokser)
referred to above and U.S. Patent No. 4,523,330 (to
Cain). The latter patent suggests substituting an
alternative manual character identification method if the

confidence level is below a predetermined threshold.

U.S. Patent No. 4,710822 (to Matsunawa) discloses an
image discrimination method based upon histogramming the
pattern of the density of image elements in blocks into
which the image has been divided. U.S. Patent No.
4,833,722 (to Roger Morton et al.) discloses how to

detect edges or boundaries in document images.

The feature-based OCR technique is superior to the
template matching OCR technique because it is much
faster. However, the feature-based OCR technique can be
somewhat less reliable by failing to identify unknown

character images more frequently than the template

PCT/US91/03002

WO 91/17521

10

15

20

25

30

PCT/US91/03002
S

matching technique. Thus, the template matching
technique is more reliable because it can identify
unknown character images which the -feature-based
technique cannot. Accordingly, it has seemed that an OCR
system could not enjoy the benefits of both speed and
reliability because the system designer had to choose
between a feature-based OCR system or a template matching

OCR system.

One problem with template matching OCR systems is
that the character stroke thickness of the reference
templates affects the system performance. For example, a
reference template with a thin character stroke is easier
to match if pixels outside of the template character
strokes are disregarded. This can lead to more than one
symbol identification of an unknown character, or
"aliasing". This problem is solved by considering the
pixels outside of the reference template character
strokes during the matching process, and demanding that
these pixels be "off" in the unknown image. However,
counting the outside pixels reduces the reliability of
the template matching process, excluding unknown images
which do not match simply because of the presence of

noise in the image.

This problem is particularly severe if such an OCR
system is employed to automatically read the machine-
readable or MICR characters on a personal bank check.
Such systems must perform flawlessly and must work at
high speeds to keep pace with daily volume demands
typical of most banking systems. In such systens,
handwritten strokes through the MICR characters are not

uncommon and constitute sufficient noise to render the

10

15

20

25

30

WO 91/17521 4 PCT/US91/03002

MICR characters unreadable using most conventional OCR

techniques.

DISCLOSURE OF THE IMMION

The invention is an OCR system particularly
efficient at reading MICR characters on a personal bank
check and which is immune to noise in the character image
caused for example by handwritten strokes through the
MICR characters. The OCR system of the invention enjoys
the high speed of a feature-based OCR system with the
reliability of a template matching OCR system, thus
realizing the combined advantages of both types of
systems in 2 single OCR system. The OCR system cf the
invention is useful for reading other documents, in

addition to bank checks and MICR characters.

The OCR system of the invention employs the
published ANSI specifications giving the location and
identity of the first (leftmost) character of the MICR
characters to find the leftmost character. The OCR
system of the invention first finds the boundaries of the
check and from the boundaries defines a general location
of the leftmost MICR character. It then finds the exact
location within the general location using the template
of the leftmost MICR character. From this exact
location, the locations of the next characters to the
right are defined in succession based upon the location
of the previous character. For this purpose, once each
character has been successfully identified, its exact
location is noted and used as a dead reckoning basis from
which to estimate the location of the next character.
This feature of the invention provides the fastest

possible character location for most characters. These

WO 91/17521 5

10

15

20

25

30

PCT/US91/03002

characters are read using a reading process of the

invention.

The OCR system of the invention includes a reliable
high speed hybrid character reading process combining the
advantages of both template matching OCR techniques and
feature-based OCR techniques. A feature-based
recognition step is first performed to associate the
unknown character with a symbol and a confidence score is
computed for the symbol thus identified. This confidence
score is the ratio of the absolute distances between the
unknown image vector and the two closest reference
vectors in a set of reference vectors representing the
set of known symbols. If the confidence score is
sufficiently high, the symbol identification is complete
and the next symbol is read. Otherwise, if the
confidence score is in an intermediate range, a template
matching step is performed. In order to reduce the time
required to perform template matching, the area in the
unknown image in which template matching is performed is
minimized. In order to increase the probability of
matching an unknown image with the correct reference
template, the character strokes of the reference
templates are thinned with respect to the character
strokes of the normal MICR characters. In order to
render the system performance immune to noise such as
handwritten strokes through the MICR characters, only
pixels within the character strokes of the reference
templates are considered during the template matching
step. Pixels outside of the reference template character
strokes are excluded from consideration. A match is
declared if no more than a certain fraction of the pixels

within the reference template character strokes are

10

15

20

25

30

WO 91/17521 PCT/US91/03002

6

mismatched with the corresponding pixels in the unknown

image.

If this step fails or if the confidence score
previously computed was in the lowest range, the location
of the unknown character is re-estimated based upon the
khown spacing of the MICR characters and the foregoing
steps are repeated as necessary. If this fails, then the
region in the unknown character image in which template
matching is performed is increased and the foregoing

steps are again repeated as necessary.

If any of the foregoing template matching attempts
results in more than one reference template being matched
with the unknown image, then corresponding candidate
templates from a set of thicker (and therefore more
stringent) reference templates are compared with the
unknown image to reduce the aliasing. The thicker
reference templates are more nearly the thickness of the
normal MICR characters, but not quite as thick. Even
though pixels mismatches outside of the reference
template character strokes are excluded from
consideration, the thicker set of reference templates
will suppress aliasing to a greater extent because there
are more pixels within the reference template character

strokes which must match the pixels of the unknown image.

The system of the invention performs at maximum
speed with maximum reliability because the progressively
slower steps are performed only in specific instances of
certain types of failures of the faster steps. Thus, a
hierarchy of recognition steps is employed, the faster

steps being performed more often than the slower steps

10

15

20

25

30

WO 91/17521 7 PCT/US91/03002

and the slowest steps (repetitive template matching and
re-estimation of character boundaries) are performed the
least frequent of all and only in the ultimate cases of

failure.

BRIEF DESCRIPTION OF THE DRAWINGS
Preferred embodiments of the invention are described
in detail with reference to the accompanying drawings, of

which:

Fig. 1 is a pictorial diagram of the format of a
typical personal bank check and of the MICR characters

imprinted on it;

Fig. 2 is a block diagram of a preferred embodiment

of the system of the invention;

Fig. 3 is a pictorial diagram illustrating how edge
detection and corner location is performed in the

invention;

Fig. 4 is a block diagram of the process of the
invention for locating the boundary and corner locations

of Fig. 3;

Fig. 5 is a pictorial diagram illustrating the
leftmost MICR character with progressively larger dashed-

line imaginary bounding boxes in the bank check of Fig.

1;

Fig. 6 is_a block diagram of the process of the

invention of locating the leftmost character of Fig. 5;

WO 91/17521 8 PCT/US91/03002

Fig. 7 is a block diagram of the template matching

process of the invention;

Fig. 8 is a block diagram of the character reading
5 process of the invention;

Fig. 9 is a diagram of a feature-based recognition

classification process of the invention;

10 Fig.'s 10a, 10b, 10c, 10d and 10e are pictorial
diagrams illustrating different aspects of the feature-

based recognition process of Fig. 9;

Fig. 11 is a pictorial diagram illustrating the
15 generation of thinned reference templates from normal

MICR characters in accordance with the invention;

Fig.'s 12a, 12b and 12c illustrate the set of MICR
symbols, a thin reference template set based thereon and
20 a thicker reference template set based thereon, used in

the invention; and

Fig. 13 is a pictorial diagram illustrating the
matching of a reference template with, respectively, a
25 normal character image, a néisy character image, a broken
character image and an offset character image, in

accordance with the invention.

MODES FOR CARRYING OUT THE INVENTION
30 Structure of the Invention:
While the invention is useful for performing optical
character recognition with one of many different kinds of

documents, it will now be described with specific

WO 91/17521 g

10

15

20

25

30

PCT/US91/03002

reference to the recognition of preprinted magnetic ink
character recognition (MICR) symbols 10 on a personal

bank check 12 illustrated in Fig. 1.

The system of the invention illustrated in Fig. 2
includes a digitizer or document scanner 14 whose output
is connected to a character location processor 16. The
character location processor 14 locates each MICR
character 10 on the document of Fig. 1. The output of the
character location processor 16 is connected to a

feature-based recognition processor 18.

The feature-based recognition'processor 18 extracts
the features of each character located by the character
location processor 16 and computes the absolute distance
measure between an n-dimensional vector representing the
extracted features and a set of n-dimensional reference
vectors representing a set of known symbols. A memory 20
connected to the feature-based recognition processor 18
stores the reference vectors. The feature-based
recognition processor 18 enters the location of each
character which it successfully recognizes into a
character location memory 22 connected to the character
location processor 16. The‘character location processor
16 uses the location of the previous character to

estimate the location of the next character.

If the feature-based recognition processor 18 fails
to identify a character with sufficient confidence, it
passes the information to a template matching recognition
processor 24, thus activating the template matching
processor 24. The template matching processor 24

compares the image of the unknown character with each one

10

15

20

25

30

WO 91/17521 7 10 PCT/US91/03002

of a set of thin reference templates stored in a template
memory 26. In order to minimize the time required to
perform template matching with a given character, the
template matching processor 24 restricts to a minimum
size the region in the image surrounding the character in
which template matching is performed. If no match is
found with sufficient confidence, then the template
matching processor 24 enlarges the region surrounding the
character in which template matching is performed. If
more than one thin reference template matches the
character, then the template matching processor 24
fetches the corresponding'templates from a set of thicker
=-and therefore more demanding-- reference templates
stored in another template memory 28 and attempts to
eliminate all but one of the possible choices using the
thicker reference templates.

Locating the First MICR Character

The scanner 14 Produces a digitized image of the
Check 12 consisting of an array of horizontal rows ang
vertical columns of binary pixels. The first step in the
optical character recognition operation performed by the
system of Fig. 2 is for the character location processor
16 to locate the left-most MICR character 30 in the row
of preprinted MICR characters 10 in the image of the
personal check 12 of Fig. 1. To do this, the character
location processor 16 locates the lower right-hand corner
32 of the check 12 in the manner illustrated in Fig. 3 by
locating the bottom edge 34 and the right edge 36. The
character location pbrocessor 16 then locates the leftmost
MICR character 30 with respect to the lower right hang
corner 32 in accordance with ANSI Specification aNsI

X9.13-1983, "Specifications for the Placement ang

WO 91/17521 11

10

15

20

25

30

PCT/US91/03002

Location of MICR Printing". As illustrated in Fig. 3,
the bottom edge 34 is located quickly by moving a one-
dimensional'horizontal edge detection mask 38 along each
one of four predetermined pixel columns in the image
(indicated in Fig. 3 by the X's intersecting the bottom
edge 34) and noting the location in each column at which
the maximum correlation between the image and the mask 38
is found. A similar process is performed to locate the
right edge 36 at four predetermined pixel rows Xindicated
in Fig. 3 by the X's intersecting the right edge 36) by
moving a vertical edge detection mask 39 along the
predetermined rows and noting the location in each row at
which maximum correlation between the mask and the image

is found.

The process for locating each one of the edges 34,
36 is illustrated in the flow diagram of Fig. 4. First,
at the four predetermined columns and rows, the character
location processor 16 moves the horizontal one-
dimensional edge detection mask 38 along each of the four
designated pixel rows and the vertical edge detection
mask 39 along each of the four designated pixel columns
to locate the four points along the bottom edge 34 and
the four points along the right edge 36 at the points of
greatest correlation betweeh each mask and the image.
Then, using linear regression, the character location
processor 16 finds the best fit for a straight line
through each set of four points (block 42 of Fig. 4). It
discard: :he farthest point from each line and repeats
the linear regression step using only three lines (block
44). Finally, it solves the equations of the horizontal
and vertical lines 34, 36 for the location of the corner

32 at their intersection (block 46).

10

15

20

25

30

WO 91/17521 PCT/US91/03002

12

The above-referenced ANSI specifications require
that the left-most MICR character be the symbol
illustrated in Fig. 5 inside the dashed lines. Referring
to Fig. 5, the character location processor 16 uses the
above-referenced ANSI specification to .define an
imaginary bounding box 48 (dashed line) defining the
location in the image of the check 12 of the leftmost
MICR character 30. Within the bounding box 48, the exact
location of the leftmost MICR character 30 is precisely
determined by a process illustrated in Fig. 6. The
character location processor 16 begins at the left edge
50 of the bounding box 48 (block 52 of Fig. 6) and finds
the left edge 54 of the leftmost MICR character 30 by
looking for a sudden increase in the number of "ON"
pixels in a column as the columns are examined from left
to right (block 56 of Fig. 6). If this step succeeds in
finding the left edge 54 ("YES" branch of block 58 of
Fig. 6), a similar step is performed to find the top edge
60 of the leftmost MICR character 30 (block 62 of Fig.
6). If this step succeeds in finding the top edge 56
("YES" branch of block 64), the left-most MICR character
30 has been precisely located. The feature-based
recognition processor 18 computes the Euclidean distance
measure between the image of the leftmost MICR character
30 and the reference vectors stored in the memory 20
(block 66 of Fig. 6). The feature-based recognition
processor 18 computes the ratio of the absolute distances
between the vector representing the image of the leftmost
character 30 and the two closest reference vectors. (The
operation of the feature-based recognition processor 18
will be described below in greater detail.) If the

closest reference vector corresponds to the symbol

WO 91/17521
13

10

15

20

25

30

PCT/US91/03002

illustrated in Fig. 5 and if this ratio --referred to as
a confidence value-- indicates a sufficient difference
between the two distances ("YES" b;anch of block 68 of
Fig. 6), then the locations of the left and top edges 54
and 56 of the leftmost character 30 are confirmed to be

correct and are stored in the character location memory

22.

If the confidence value computed by the feature-
based recognition processor 18 is insufficient ("NO"
branch of block 68), the slower process of template
matching is employed to verify that the leftmost
character 30 in the image is indeed the MICR symbol of

Fig. 5 (block 70 of Fig. 6), as will be described below.

Returning to the step of block 62, if the top edge
60 cannot be found ("NO" branch of block 64), then the
location of the top edge 60 is estimated as being
displaced below the top edge of the bounding box 48 by
half the difference between the height of the bounding
box 48 and the specified height of the left-most MICR
character illustrated in Fig. 5 (block 72 of Fig. 6).
The step of block 66 is then repeated using the modified
location of the top edge 60.

Returning to the step of block 56, if the left edge
54 cannot be found ("NO" branch of block 58), then the
slower process of template matching is immediately
employed to find the location of the left-most MICR
character (block 70). If the template matching step of
block 70 succeeds in identifying the image of the
leftmost character 30 as the MICR symbol of Fig. 5 ("YES"
branch of block 74), then the location in the image of

WO 91/17521

10

15

20

25

30

14 PCT/US91/03002

the reference template at the point of maximum
correlation with the image is stored in the character
location memory 22. As will be explained below, the
reference template employed in the step of block 70 is
the reference template representing the MICR symbol of
Fig. 5.

The template matching step of block 70 is
illustrated in detail in the flow diagram of Fig. 7. The
template matching recognition processor 24 fetches from
the thin reference template memory 26 the reference
template corresponding to the MICR symbol illustrated in
Fig. 5 {block 74 of Fig. 7). fThe bounding box 48 is then
used to define the area over which the reference template
is moved to find a match with the image (block 76). The

search for a match is then conducted (block 78).

The step of block 78 is performed by moving the
reference template horizontally and vertically one pixel
at a time row by row and column by column over the region
of the image within the bounding box 48 until the
template has been moved to all possible locations within
the box 48. At each location, the number of mismatching
"OFF" pixels in the image falling within the character
strokes of the reference template is compared to the
total number of pixels within those character strokes.
If the count falls below a threshold number or
percentage, a "match" is declared. Preferably, the
threshold percentage is 3% of the total number of pixels
in the character strokes of the template.

If a match is declared ("YES" branch of block 80),

the location of the reference mask at the point at which

WO 91/17521

10

15

20

25

30

PCT/US91/03002
15
a match was declared is noted and stored in the character
location memory. Otherwise ("NO" branch of block 80),
the bounding box 48 is discarded in favor of a larger
bounding box 82 shown in Fig. 5 in dashed line (block 84
of Fig. 7). The reference template is now moved
throughout the larger region to search for a match in the
image (block 86) in the manner discussed above in
connection with block 78. This second attempt would fail
in all likelihood only if the printing of the personal
check 12 of Fig. 1 was so poor that the location of the
leftmost character 30 was in significant violation of the
ANSI specifications. Thus, the process of Fig. 7 is
nearly certain to find the precise location of the left-

most MICR character 30.

Reading the MICR Characters
Fig. 8 illustrates the process of the invention for

reading the MICR characters 10 after the leftmost MICR
character 30 has been precisely located. 1In the first
step of the reading process, starting from left to right
the character location processor 16 uses the location
(stored in the character location memory 22) of the
previous character 30 to find the next character. 1In the
first instance, the previous character is the leftmost
MICR character 30. The location of the next character is
simply the location of the previous character shifted to
the right by the pitch between characters (specified in
the ANSI specifications ANSI X9.13-1983, "Specificétions
for the Placement and Location of MICR Printing" and ANSI
X3.2-1970 (R1976), "Print Specifications for MICR"). The

character location processor 16 performs this shift

(block 88 of Fig. 8).

10

15

20

25

30

WO 91/17521

PCT/US91/03002
16
Once the next character has been precisely located,
the feature-based recognition processor 18 computes the
absolute distance measure between the vector representing
the character image and each one of a set of reference
vectors stored in the reference vector memory 20 (block

90) to produce a symbol identification and a confidence
value. '

The step of block 90 is illustrated in detail in the
flow diagram of Fig. 9. The flow diagram of Fig. 9 is
best understood by reference to the diagrams of Fig.'s
10a through 10e which illustrate one method for
transforming the image of a character into a vector. 1In
the example of Fig. 10, it is assumed that each character
fits within an area of 18 columns and 24 rows of binary
pixels. This area is divided into a square array of
thirty-six squares, illustrated in Fig. 10a, each square
containing 12 pixels. The image of a character such the
symbol "2" of Fig. 10b is aligned with the array of Fig.
10a by aligning the corresponding top and right
boundaries, as shown in Fig. 10c. The number of pixels
in each one of the thirty-six squares which are within a
character stroke of the character are counted. For
example, Fig. 10d illustrates a number "1" aligned with
the array of thirty-six squares and Fig. 10e illustrates
the count in each square of pixels falling within a
character stroke of the "1". The numbers illustrated in
Fig. 1l0e are arranged in serial order row by row from

left right to form the following 36-dimensional vector:

000126 000066 0000660000 12 12 12
00012 12 12 0 0 0 6 6 6.

WO 91/17521

10

15

20

25

30

PCT/US91/03002
17

In this manner, a vector is formed for each of
the reference symbols in the character set and stored in
the reference vector memory 20. Similarly, each
character image is transformed to a vector. The feature-
based recognition processor 18 computes the absolute
distance between the vector of the character image and
each one of the reference vectors. The absolute distance
between two 36-dimensional vectors (a,, a,;, as, ...,ay) and
(b;, by, b3, ...,b3) is:

|a;=b; | +|a,=b, | +|az=bs|+...+|ax-bsy] .

Returning now to Fig. 9, the first step performed by
the feature-based recognition processor 18 is to convert
the character image into a vector, in the manner
illustrated in Fig.'s 104 and 10e (block 92 of Fig. 9).
The processor 18 then fetches the first reference vector
from the memory 20 (block 94), computes the absolute
distance between the two vectors (block 96) and
temporarily stores the difference in the memory 20 (block
98). The processor 18 then fetches the next reference
vector (block 100) and repeats the process until it has
been performed with all reference vectors ("YES" branch

of block 102).

The processor 18 then reviews all of the absolute
distances temporarily stored in the memory 20 and
identifies the current character as the symbol associated
with the reference vector having the shortest absolute
distance from the character image vector (block 104).

The processor 18 also computes the ratio between the
smallest and second smallest absolute distances
temporarily stored in the memory 20 (block 106) and

outputs this ratio as the confidence value (block 108).

10

15

20

25

30

WO 91/17521 PCT/US91/03002

18

Returning now to Fig. 8, if the confidence value is
above a highrpredetermined threshold (“"YESY branch of
block 110), then the symbol identification of the current
character by the feature-based recognition processor 18
is deemed to be correct and the location of the current
character is stored in the character location memory 22
(block 111). oOtherwise ("NO" branch of block 110), if
the confidence value is above a lower predetermined
threshold ("YES" branch of block 112), the template
matching recognition processor 24 confirms the symbol
identification made by the feature-based recognition
processor 18 by selecting the reference template stored
in the thin template memory 26 corresponding to the
identified symbol and attempting to match it with the
character image (block 114). If a match is found ("YES"
branch of block 116), the step of block 111 is performed.
Otherwise if a match is not found ("NO" branch of block
116), or if the confidence value is not above the lower
threshold ("NO" branch of block 112), the results
generated by the feature-based recognition processor for

the current character image are discarded.

A "PASS" flag is set to one (block 118) and the
template matching processor 24 begins the slow process of
comparing the character image with all of the reference
templates stored in the memory 26. This process is much
slower because each one of the reference templates must
be compared with the character image by moving it to all
possible positions in the image and the matching pixels
must be counted each time each one of the reference
templates is moved by one pixel in the character image.

The template matching process performed here is the same

10

i5

20

25

30

WO 91/17521

PCT/US91/03002

19

as the template matching process described previously.
However, this slower process is employed only as a last
resort and therefore its effects are minimized in the

system.

The effects of the slower template matching process
are further minimized by performing the process in a
small area of restricted size surrounding the character
image. This small area corresponds to the bounding box
48 of Fig. 5. By so reducing the area in which template
matching is performed, the number of computations
performed by the template matching processor 24 is

reduced.

The template matching process is performed using the
thin reference template set stored in the memory 26
(block 120 of Fig. 8). This process is the same as
described above in connection with block 78 of Fig. 7,
except that it is performed for all of the reference
templates stored in the memory 26. If a match is found
("FALSE" branch of block 122 and "TRUE" branch of block
124), the step of block 111 is performed.

If no match is found ("TRUE" branch of block 122)
and if the value of the "PASS" flag is one ("TRUE"-branch
of block 126), the boundaries of the character --location
of the bounding box surrounding the character image-- are
re-estimated based upon the location of the left-most
character 30, the required pitch between characters and
the number of characters between the lzft-most character
30 and the present character (block 128). The value of
the PASS flag is incremented to two (block 129) and the
step of block 120 is repeated.

WO 91/17521 PCT/US91/03002

10

15

20

25

30

20

However, if the value of the PASS flag is greater
than one ("FALSE" branch of block 126) but not greater
than two ("TRUE" branch of block'130), then the size of
the region in which template matching is performed is
increased from the size of the bounding box 48 of Fig. 5
to the size of the larger bounding box 82 of Fig. 5
(block 131). The steps of blocks 129 and 120 are then

repeated in a second attempt to find a matching reference
template.

Returning to the step of block 120, if more than one
matching reference template is found ("FALSE" branch of
block 122 and "FALSE" branch of block 124), the template
matching processor 24 attempts to resolve the dilemma by
noting which ones of the reference templates were found
to match the character image and fetching the
corresponding thicker reference templates from the other
reference template memory 28. The template matching
brocessor 24 then attempts to match each of the thicker
reference template candidates with the character image
(block 132). Since the thicker reference templétes
require more matching pixels, typically all but one of
the candidates will be eliminated by this step. If more
than one match is found in the step of block 132 (FALSE
branch of block 134), the candidates thus identified are
transmitted (block 136) to the step of block 111 to be
resolved by downstream processing not a part of the
present invention. If no matches were found in the step
of block 132, the candidates identified in the step of -
block 120 are transmitted (block 138) to the step of

block 111 to be resolved by downstream processing.

WO 91/17521 PCT/US91/03002

10

15

20

25

30

21

The reference templates stored in the memoriés 26
and 28 are formed in the manner illustrated in Fig. 11 by
thinning a normal symbol. The set of MICR symbols is
illustrated in Fig. 12a. The thin reference templates
generated from the symbols of Fig. 12a and stored in the
thin reference template memory 26 are illustrated in Fig.
12b. The templates of Fig. 12b are formed by scanning
the symbols of Fig. 1l2a with the scanner 14 and deleting
one pixel along all boundaries of all charactef strokes
in the symbols of Fig. 12a. The set of thicker reference
templates stored in the other reference template memory
28 are illustrated in Fig. 12c. The thicker templates
are formed by scanning the symbols of Fig. 12a and using
the same thinning procedure but requiring a lower
threshold at the scanner 14 for the binary transition
between black and white. For example, the templates of
Fig. 12b were generated by the scanner 14 using a
threshold of 20 followed by thinning, while the templates
of Fig. 12c were generated by the scanner 14 using a

threshold of 2 without thinning.

The template matching process of the invention is
impervious to noise in the character image. Such noise
may be caused by handwritten over-strikes across the MICR
characters. This advantage is gained in accordance with
the invention by excluding from consideration in the
template matching process any pixels outside of the
character strokes of the reference template. Thus, even
though the character image may have "ON" pixels outside
of the character strokes of the reference template -- -
which are therefore erroneous-- these pixels are simply

excluded from consideration.

WO 91/17521 PCT/US91/03002

10

15

20

25

30

22
The effect of this feature of the invention is
illustrated by way of comparison in Fig. 13. The
reference template 140 of a "2" matches the image 142 of
a "2" centered in the bounding box 48. A match is also
found with the noisy image 144 of a "2, However, no

match is found between the template 140 and the broken

image 146 of a "2" nor with the offset image 148 of a

llzll.

Computer Program Listing

The invention as embodied in the system of Fig. 2
was implemented in a computer by the C-language program
whose listing is given in Appendix A of this
specification. Notice is hereby made that Eastman Kodak
Company owns the copyright in the program listed in
Appendix A.

Industrial Utilities and Advantages
The invention is particularly useful for reading the

MICR characters on bank checks in an automatic banking
system and provides the highest speed and reliability and
is impervious to superimposed noise in the MICR
characters, such as that caused by hand-written

overstrikes.

While the invention has been described in detail by
specific reference to preferred embodiments thereof, it
is understood that variations and modifications may be
made without departing from the true spirit and scope of

the invention.

WO 91/17521 PCT/US91/03002

23

APPENDIX A

WO 91/17521 PCT/US91/03002

24

/**
This prog OPTICALLY reads the MICR numbers on checks.

It does so by first performing an edge detection for the bottom
edge of the check and then extracting and each char according to
ANSIT

specifictions of the micr chars.

The algorithm first performs a char classification using the
block_vector feature classification method. If the confidence
score is unsatidfactory, a template matching approach is used
for classification. ’
dkkkkhkkkhhhhkhhkhhhhhkkhkhhkhk Rk khhhkkkhkkhkhkkhhdhkrkhkhhkkkkkk
k% /

#include <stdio.h>
#include <math.h>

#define MSIZE 400 /* max number of rows */

#define NSIZE 1600 /* max number of columns */

#define CHAR_VAL 0 /* binary value of pixel belonging to
Char */

#define MAXLIST 300 /* max number of pixels in each char
template */

#define DEBUG1 0 /* enable/disable (1/0) general
debugging outputs */

#define DEBUG2 0 /* output error matrix for each
possible index */

#define DEBUG3 0 /* output table of char locations &
conf values #*/

#define DEBUG4 0 /* output min dist values #*/
#define PX 250 50 /* number of pixels in 0.25 in #*/
fdefine PX_125 25 /* number of pixels in 0.125 in */
#define PX_91 18 /* number of pixels in 0.091 in */
#define N_START 300 /* 1st column position for hori edge
detection */

#define N_SPACE 300 /* spacing between columns for hori
edge det */

#define M_START 10 /* 1st row position for vert edge
detection */

#define M_SPACE 30 /* spacing between rows for vert edge
det */

#define X _DIST TOLER 1.0 /* tolerance for best fit vertical
edge */

#define Y _DIST TOLER 1.0 /* tolerance for best fit horiz edge
*/

#define MAX_COL 800 /* max dist of vertical edge from
right of image*/
$define DISTO 1143 /* # of pixels between right edge of

check to left

of bounding box for transit
character:

this is nominally 5.6875 in (+/-
0.0625).

set to
[5.6875+0.0625-(0.125-0.091)]=5.716 */

#define DIST1 88 /* # of pixels between bottom edge of
check to

top of band region for char box :

WO 91/17521 PCT/US91/03002

25

0.4375 in %/
#define DIST2 1113 /* # of pixels between right edge of

check to right
of bounding box for transit

character:

this is nominally 5.5625. */
#define DIST3 74 /* # of pixels between bottom edge of
check to

top of char bounding box : 0.371
in */ . .
#$define F_SZ1 3 /* size of neighborhood for template
fit */
#define F_SZ2 5 /* size of neighborhood for template
fit for

first on_us char #*/
#define TH_TRANS_LEFT 8 /* char pixels threshold in dectecting

left of
transit character */

/***x**** These 3 should be the same as those in features.c
************/
#define TH_TRANS_TOP 4 /* char pixels threshold in dectecting

top of
transit character */

#define TH_CHAR TOP 4 /*threshold in detection of top of

character */
#define TH_CHAR_RIGHT 5 /*threshold in detection of right of

character */

/***
*********/

#define TH_CONFID1 0.5 /*below this value, no need for

template fit */
#define TH_CONFID2 0.75 /*below this value, template fit for

most likely
char only */

#define TH_FIT1 2 /*max # of error pixels in template
#1 fitting */

#define TH_FIT2 4 /*max # of error pixels in template
#2 fitting */

#define TH_CHAR 60 /*min # of pixels to be considered
a char */

unsigned char im[MSIZE][NSIZE];
int corner[2], mask[100], templatel[2] [MAXLIST][14],

template2([2] [MAXLIST][14];

int m_size, n_size, char_refs[14][37}, blk[36], blk_ref[24][18];
double a_hor, b_hor, top_bnd[100], sight_bnd[100];

double confid[100], dist[14];

int num_preceeding_blanks;

main()

{
int time = 0, processing = 2;
int sys_status;

init_block_ref():

WO 91/17521 : PCT/US91/03002
26

read_char_refs():

read_templatel():;
read_template2();

read_image() ;

/*
* Start timing
*/
printf("\nTiming begins ...\n"):;
sys_status = 1ib$init_timer(&time);
if (sys_status != 1)
lib$stop(sys_status):

edge():
read_transit():
read_on_us();

/*
* display the processing time
*/
sys_status = lib$show_timer(&time, &processing);
if (sys_status != 1)
lib$stop(sys_status);

)

read_transit()
/***
%k Jd %k kkk

Locate the left transit symbol and

read the 9 transit characters

VARIABLES:
(1)ambig_char[x1][x2]

0 <= x1 < number of ambiguous chars

x2=0 specifies the position in the sequence of the given
ambig char

x2=1 specifies the number of possible indicies for the
given ambig char

x2=2...(ambig_char[x1][1]+1) is the list of possible
indicies

**
*******/

{ -
int i,j,m,n,index, £d4;
char tr_code[11};
int num_indicies,poss_indx[14];
int num_ambig, ambig_char[10][15],num_check,check_sum,sequence;
double estimate_top(), estimate_right():

WO 91/17521 2 7 PCT/US91/03002

/* locate the left transit symbol */

fd = loc_left_transit():

if (£4 != 1)({ .
printf("\nleft transit char not found; fd = %4d",fd):;
exit(0): '

}

/* initialize variables */
num_ambig = num preceeding_blanks = check_sum

0:

/* loop for each of the 9 transit characters*/
for (i=1; i < 10; ++i){

if(DEBUG1) printf("\ntransit character # &av,i);
num_indicies =

read_next_char(top_bnd[i-l],right_bnd[i-l],i,poss_indx,B,z,F_s
21,1);

if (num_indicies == 0C)
/*i.e. suitable index not found */
tr_code[i] = 'X';

else if(num_indicies == 1){
/* store the index */
tr_code[i] = '0'+ poss_indx[0];

/* error check: mod 10 of straight summation with weights
3,7,1 */
++num_check ;
sequence = i % 3;
switch (sequence) {
case 1 : check_sum += 3 * poss_indx[0];

break;
case 2 : check_sum += 7 * poss_indx[0];
break:;
case 0 : check_sum += poss_indx[0];
break:;
}
}
else{
/* more than 1 possible indicies found */
tr_code[i] = '?';

/* store sequence position*/
ambig_char[num ambig][0] = i;

/* store number of ambiguous indicies */
ambig_char[num_ambig][1] = num_indicies;

/* store each possible index */
for (j=2; j <= num_indicies+l; ++J)
ambig_char[num_ambig][j] = poss_indx[j-2];

/* increment counter for number of ambig chars */
++num_ambig;

WO 91/17521 7 PCT/US91/03002

28
}
/* add initial blank and terminating char */
tr_code[0] = ' ';
tr_code[10] = '\0';

/* estimate and set location of right transit char */
right_bnd[10] = estimate_right(10);
top_bnd[10] = estimate_top(10):;

/* output transit code #*/
prlntf("\n**"),
printf ("\nTRANSIT CODE : %s",tr_code):;
if(num_ambig != 0){
prlntf(“\nNumber of ambiguous characters : %d",num_ambig);
for(i=0; i < num_ambig; ++i){
printf("\ncharacter # %4, possibilities are
" ambig_ char[1][0]),
for(j=0; j< ambig_char[i][1]; ++])
printf("%54",ambig_char[i][j+2]):
}

ﬁrintf("\n");

if (num_check == 9)({
if((check_sum % 10) == 0){
printf ("\nTransit code VERIFIED");

}
else{

printf ("\nERROR in transit code");
} .

printf(“\n**\n“);

/%* print debugging output if required */
if (DEBUG3) {
for (i=0;i<10;++1i)
prlntf(“\n[%Zd] $c conf=%5.2f top=%6.1f right=%6.1f",
i,tr_code[i],confid[i],top_bnd[i], right_ bnd[lj),

read_on_us()
/**

Read the on_us field.

Assumes that read _transit() has been performed
_**/
{

int i,3j,m,n,index,prev_char_known;

char on_us code[ZO].

int num_ . indicies,poss_indx[14]:

int num amblg, amblg char([19][15]};

double estimate_top(), estimate_right():

/* initialize variables */
prev_char known = num_preceeding_blanks = num_ambig =

WO 91/17521 29

/* loop for each of the 19 on_us chars */

for

(i=11; i <= 29; ++i){

PCT/US91/03002

if(DEBUG1l) printf("\non_us character # $a",i-11);

if(prev_char_known == 1){

/* use smaller search region for next char */

num_indicies =

read_next_char (top_bnd[i-1],right_bnd[i-1],i,poss_indx,3,2,F_S

21,0);
)

else {

/* use larger search region for next char */

num_indicies =

read_next_char (top_bnd[i-1],right_bnd[i-1],i,poss_indx,5,3,F_S

22,0);
)

if (num_indicies == 0){

)

/* no suitable index found #*/

on_us_code[i-11] = 'X';
prev_char_known = 0;

else if(num_indicies == 1){
/* single index; store the corresponding ascii char */

}

prev_char_known = 1;

if (poss_indx[0] < 10){
/* i.e. a digit */

on_us_code[i-11] = '0'+ poss_indx[0];

/* reset the counter for preceeding blanks to zero */

num_preceeding_blanks = 0;

}

else if(poss_indx[0] == 10){
/* i.e. an on_us symbol */
on_us_code[i-11] = 'U';
num_preceeding_blanks = 0;

} .
else if(poss_indx[0] == 11)({
/* i.e. a dash symbol */
on_us_code[i~11] = '-';

num_preceeding_blanks = 0;

}

else if(poss_indx[0] == 99){
/* i.e. a blank #*/
on_us_code[i-11] = ' ';

/* increment counter for preceeding blanks */

++num_preceeding_blanks;
prev_char_known = 0;

}

else(

/* several possible indicies found */

prev_char_known = 1;
on_us_code[i-11] = '?';

WO 91/17521 3 PCT/US91/03002

ambig_char[num_ambig][0] = i-10;
ambig_char[num _ambig][1] = num indicies;
for (j=2; j <= num_indicies+1; ++3j)
ambig_char[num_ amblg][j] = posSsS_ 1ndx[j—2],
++num_ambig;
num_preceeding_blanks = 0;
}
}

o

/* add terminating char */
on_us_code[19] = '\0';

/* output on_us code */
printf ("\N**kkkkkkkkkdkhkkkdhkhhhdhhddhkhhkkdhkkkdkkrxl);
printf("\nON_US CODE : %s",on_us_code);
if(num_ambig != 0){
prlntf("\nNumber of ambiguous characters : %d",num_ambig);
for(i=0; i < num_ambig; ++i)(
printf ("\ncharacter # %d, possibilities are
",ambig_char[i][0]):
for(i=0; j< ambig_char[i][1]; ++3)
printf("%5d",ambig_char[i][j+2]):
}

printf("\n");
printf("\n**\n");

/*output debug info if required */
if (DEBUG3) {
for (i=0;i<19;++i)
printf("\n[%2d] %c conf=%5.2f top=%6.1f right=%6.1f",

i+1,on_us_code[i],confid[i+11],top_bnd[i+11],right_bnd[i+ll]);
}
}

read_next_char(toprow,rightcol,i,poss_indx,v_range,h _range, fit
_sz dlglt _only)

int i,poss_indx[],v_range,h_range,fit_sz (digit_only;

double toprow, rightcol;

/**-k
khkkkkkkhkkkkix

Reads the next char. Returns the number of possible indicies
for the char.

Skeleton algorithm:

1) locate right boundary by searching; if not found, estimate
At.

2) locate top boundary by searching; if not found, estimate
it.

3) perform block counting to set up 36-element vector.

4) if number of char pixels < TH_CHAR then it is a blank
char;

store variables and return.

5) perform min_dist match

6) if confidence 1level is insufficient, perform matching
algorithm

7) if more than 1 index was found, perform matching with 2nd

WO 91/17521 PCT/US91/03002

St

set
of templates.
8) store variables and return the number of indicies found.

Variables
toprow: top row of previous char
rightcol: right col of previous char
i: sequence index (0 - 10 for transit chars, 11 - 29 -for
on_us chars)
poss_indx: array in which possible indicies for the char will
be placed
v_range: pixel range (+/- v_range) for location of char top
boundary
h_range: pixel range (+/- h_range) for location of char right
boundary]
fit_sz: pixel range (+/~ fit_sz) centered at
[top_row,rightcol]
for template fitting
digit_only - the char is/is not constrained to be a digit
hhkdkkkdkkkhkdkdkbkdkhhkhkhhkhhkhkhhkhkhhdhdhhdbhkhhdhhddhhkrhkhhkbddhhrdtdthdhsd
**************/
{
int m,n,ml,n1,best_m,best_n;
int index,numfit,numfit2,count;
double top, right, estimate_top(), estimate_right():

/* set variables for previous toprow & rightcol */
m = toprow + 0.5;
n = rightcol + 0.5;

/* locate right boundary - approx 0.125 inches right of last
boundary */

n 1 =
locate_right(m,n+PX_125+h_range,n+PX 125-h_range,TH_CHAR_RIGHT
,PX_125);

if (n1==0) {

/* estimate right boundary #*/

nl = estimate_right(i) + 0.5;

if(DEBUG1l) printf("\nestimating right boundary");
) ;

ml = locate_top(m+v_range,m-v_range,nl,TH_CHAR_TOP,PX 91);
if(ml==0) {

if(DEBUGl) printf("\nestimating top boundary"):;

ml = estimate_top(i) + 0.5;

}
if (DEBUG1) printf("\nboundary: top=%d right=%d",ml,nl);

/* compute vector for classification #*/
count = blk_count(ml,nl):;
if(count < TH_CHAR) {
/* less than min #pixels classified as a blank space */
right_bnd[i] = estimate_right(i):
top_bnd[i] = estimate_top(i):
numfit = 1;
/* 99 is the code for blank space */
poss_indx[0] = 99;

WO 91/17521 PCT/US91/03002

32

return(numfit) ;
}

/* compute nearest distance to each reference vector */
if(digit_only == 1){
compute_dist(0,9):
index = min_dist(0,9,&confid[i]):
}
else{
compute_dist(0,11):;)
index = min_dist (0,11, &confid[i]);
}

/* store index obtained by block vector classification */
numnfit =1;
poss_indx[0] = index;

if(DEBUG1l) printf("\nconfidence value = %f",confid[i]):

/* perform template #1 fitting if necessary */
if(confid[i] >= TH_CONFID1 && confid[i] <= TH_CONFID2){

/* verify that the index from vector classification is
correct */

n u m f i t =
fit_templatel(ml,nl, index,index,fit_sz,poss_indx, &best_m, &best
_n)i

if (DEBUG1) {

printf("\nverify numfit=%d index=%d m=%d =%d", numfit,
poss_indx[0],best_m,best_n);

}

if (numfit ==0){
/* above verification failed - classify char using
template #1 fitting */
if(digit_only ==1)
n u m f£f i ¢t
fit_templatel(ml,nl,0,9,fit sz,poss_indx,&best_m, &best n);
else

'n u m f i ¢t =
fit_templatel(ml,nl,0,11,fit_sz,poss_indx, &best_m,&best_n);
}
}
else if(confid[i] > TH_CONFID2)({

/* classify char using template #1 fit #*/
if(digit_only ==1)
n u m f i t =
fit_templatel(ml,nl,0,9,fit_sz,poss_indx,&best_m,&best_n);
else
n u mn f i t =
fit_templatel(ml,nl,0,11,fit_sz,poss_indx, &best_m,&best_n);
}

if (numfit ==0) {
/* unsuccessful template fit; estimate top & right
boundaries & retry */

WO 91/17521 PCT/US91/03002
33

if (DEBUG1) {
printf(
"\nunsuccessful templatel f£fit; estimate top & bottom
boundaries & retry"):

}
nl = 0.5 + estimate_right(i);

ml = 0.5 + estimate_top(i):
if (DEBUG1) prlntf(“\nboundary top=%d right=%d",ml,nl);

if(digit_only == 1) ‘
' n u m £ i t =
fit_templatel(ml,nl,0,9,fit_sz,poss_indx, &best_m,&best_n);
else
n u m £ i t =
fit_templatel(ml,ni1,0,11,fit_sz,poss_indx, &best_m, &best_n);

)

if(numfit ==0) {
/* unsuccessful templatel fit; retry with extended
tolerances */
if{DEBUG1) {
printf(
"\nunsuccessful templatel fit; retry with extended
tolerances") ;

}

/* compute extended tolerances; range between 6-10 */
fit sz = 3 * num_preceeding_blanks ;

if(fit_sz <= 3) fit sz = 6;

if(fit_sz > 10) fit_sz = 10;

if(digit_only == 1)
n u m £ i t =
fit templatel(mi,nl,0,9,fit_sz,poss_indx,&best_m,&best_n);
else
n u m £ i t =
fit_templatel(ml,nl,0,11,fit_sz,poss_indx, &best_m, &best_n);
)

if (numfit >= 2)({
/* more than 1 possible index found; perform template #2 fit
*/
n u m £ i t 2 =

fit_template2(mil,nl,fit_sz,poss_ indx, &best_m, &best_n,numfit);
nunfit = (numf1t2 T=0)? numf1t2 : numflt,

)

if(confid[i] >= TH_CONFID1) {

/* set boundary to best fit position if single template
match was found #*/

if(numfit == 1)({

if (DEBUG1 && (ml != best_m || nl != best_n))
printf ("\nboundary adjusted: [%d %d) to [%d
%d]",ml,nl,best_m,best_n);
ml = best_m;
nl = best_n;
)

}

WO 91/17521 PCT/US91/03002
34

/* store boundary parameters */
top_bnd[i] = ml;

right_bnd[i] = n1;

return (numfit):;

}

fit_templatel (toprow,rightcol, indexl, index2,range,poss_indx,p_
best_m,p_best_n)
i n) t
toprow,rightcol, index1, index2, range,poss_indx[], *p_best m, *p b
est _nj;
/***
khkhkhkkkkkhkkkkk

Perform template fitting. Returns the number of number of
indicies that

fits the given region.

Variables:

indexl & index2: specifies the range of indicies for the f£it.

range: region of fit is defined by [toprow +/- range, rightcol
+/- range].

p_best_m: if there is a unique index, *p_best m (or n) will
contain the

location of the fit that is spatially closest to

[toprow, rightcol].

poss_indx: if number of fits >= 1, poss_indx will contain the
llst of all

possible indicies.
dkhkkhkhhkhkhhdhhhkhdhhhkhkhkhhhkhhhhhhhhhhdhhhhkhhkhhhkhdhhhkdhhkhhkhhdcx
**************/

{ .

i n t
m,n,i,num_unfit,least_num_unfit, index,least _num_unfit loc[2][1
4] least _num unflt arr[14],

int num_unfit _array[20][20], distl m, distl n, dist2_nm,
dist2_n, numfit;

if (DEBUG1)printf ("\nperforming fit templatel");

/* do for each index between indexl and index2 #*/
for (index = indexl; index <= index2; ++index){

/*initialize vars */
least_num_unfit_loc[0][index] = 0;
least _num_unfit loc[l1][index] = 0;
least_num_unfit = MAXLIST;

/* for each location in the specified fit region */
for(m = toprow-range; m <= toprow+range; ++m)
for(n = rightcol-range; n <= rightcol+range; ++n){

/* count the number of points that do not fit the given
template */

i = num_unfit =
do {

WO 91/17521 35 PCT/US91/03002

if(imf[m + templatel[0][i][index]][n +
templatel[l][l][lndex]] != CHAR_VAL)
_++num_unfit;
++i;
} while(templatel[0][i][index] != 9999);

/* store location of current CLOSEST best fit for the
given index */
if(num_unfit < least_num_ unfit){
1east num_unfit = num_ unfit;
1east num_ _unfit 10c[0][1ndex]-= m;
least num_ _unfit _loc[1l][index] = n;
least num_ _unfit arr[lndex] = num_unfit;

}

else if(num_unfit == least num_unfit) (
/* case of the same number "of unfitted points; compare

spatial dist */

/* compute spatial (city block) distance from
[toprow,rightcol] */

distl_m = least_num_unfit_loc[0][index] - toprow;
distl_n = least_num_ _unfit_loc[1][index] - rightcol;
dist2_ m = m - toprow;

dist2_n = n - rightcol;

/* take absolute values */

distl m = (distl_m < 0)? ~-distl m : distl_m;
distl_n = (distl_n < 0)? -distl n : distl_n:
dist2_ m = (dist2_m < 0)? -dist2_m : dist2_m;
dist2_ n = (dist2_n < 0)? -dist2_n : dist2_n;

/* compare distances #*/

if((dist2_m+dist2_n) < (distl_m+distl_n)){
least_num_unfit_loc[0][index] = m;
least num_ _unfit _loc[1l][index]) = n;

)
}

if(DEBUG2 == 1) '
num_unfit_array[m-toprow+range] [n-rightcol+range]

num_unfit;

}/* end for each location */

if (DEBUG2 ==1) {
printf("\n\nnum_unfit matrix for index = %d:",index);

for(m = 0; m <= 2*range; ++m) {
printf("\n"):
for(n = 0; n <= 2*range; ++n)
printf(" %34", num_unfit_array[m][n]);
}
}

) /* end for each index*/

'n u m f i t =
check_fit(least_num_unfit_arr,indexl,indexz,poss_indx,TH_FITl);

WO 91/17521 PCT/US91/03002

36

/* if single index found, store best fit location */
if(numfit ==1){
*p_best m = least num unfit_loc[0][poss_indx[0]];
*p_best_n = least_num_unfit_loc[1][poss_indx[0]];

)

return(numfit) ;

check_fit(least_num_unfit_arr,indexl,indexz,poss_indx,threshold)

int least_num_unfit_arr([],indexl,index2,poss_indx[],threshold;
/***
kkkkk

Searches for the entries in least num_unfit_arr[] that are less
than threshold. Returns the number of entries found. Found

entries are sequentially placed in poss_indx array.
**
*kdkkk /

{

int count,m;

if (DEBUG1 == 1)({
printf("\nleast num_unfits for all indicies HUD
for(m=indexl; m <=index2; ++m){
if(m%5 == 0)
printf("\n");
printf("[%2d] %3d ",m,least num_unfit_arr([m]);
}
}

/* count & store the number of entries below threshold */
count =0;
for(m=indexl; m <=index2; ++m)
if(least_num unfit arr[m] <= threshold){
++count;
poss_indx[count-1] = m;

}

/* more than 1 char & the last is an 8; probably an 8
if((count >= 1) && (poss_indx[count-1] == 8)){

count = 1;

poss_indx[0] = 8;
} */

return(count):;

}

fit_template2 (toprow,rightcol,range,poss_indx,p best m,p best
temp — — R, P -

n,num_items)

i n t

toprcw,rightcol,range,poss_indx[],*p_best_m,*p_best_n,num_items;

/***

kkkkkkkhkkkkk

Perform template fitting. Returns the number of fitted

WO 91/17521 PCT/US91/03002

37
indicies.

Notes: '
(1) The templates in this case has much tighter fit "specs"

than
those in templatel matching.
(2) The indicies to use for fitting are the first "num_items"

elements in
array poss_indx[], i.e., poss_indx[0]...
poss_indx[num_items-1]. :

The indicies that fit are again placed sequentially in

poss_indx[].
The best spatial location of the LAST fitted char (below
threshold)

is stored in *p_best m/n.
hkkkkdkkdedkhdkkddkdkdhdkdkdekddkdddkdkdhdkdedkkodkdhddkskdeodkdkodkdrddd ok deokod ok gk ok ok ok ok ok ok

************/

{
int m,n,i,num _unfit,least_num _unfit, index;
int alstl _m, dist1 _n, dist2 _m, dlst2 _n, numfit;
int count, loc _m,loc_n;

if (DEBUG1)printf ("\nperforming fit_template2");

nunfit = 0;
/* for each index in poss_indx array */
for (count = 0; count < num_items; ++count)

index = poss_indx[count];

/* find best fit over spatial region #*/
least_num_unfit = MAXLIST;
for(m = toprow-range, m <= toprow+range; ++m)

for(n = rightcol-range; n <= rightcol+range; ++n) {

/* count number of unfitted char points #*/
i = num_unfit = 0;
do {

1f(1m[m+template2[0][1][1ndex]][n+temp1ate2[1][1][1ndex]]
{= CHAR_VAL)({
++num_unfit;
}
++i;
) while(template2[0][i][index] != 9999);

/* store best case & location */
if(num_unfit < least_num _unfit){
least_num_unfit = num _unfit;
loc_m m
loc_n =n
)
/* same number of unfitted char points;
check city block dist to [toprow, rightcol] and store
if better */
else if(num_unfit == least_num_unfit)
distl_m = loc_m - toprow;
distl_n = loc_n - rightcol;

.
[
.
[

WO 91/17521 38 PCT/US91/03002

dist2_m
dist2_n

wn

m - toprow;
n - rightcol;

/* convert to absolute values */

distl m = (distl_m < 0)? ~-distl m : distl m;
distl n = (distl_n < 0)? ~-distl_n : distl_n;
dist2_ m = (dist2_m < 0)? -dist2_m : dist2 m;
dist2_n = (dist2_n < 0)? =-dist2_n : dist2_n;
if((dist2_m+dist2_n) < (distl_mt+distl n))¢
loc_m = m;
loc_n = n;
}
) }
if (DEBUG1) printf ("\nindex= %d num_unfit=

%d",index,least_num_unfit);
if(least_num unfit <= TH_FIT2)(
poss_indx[numfit] = index;

*p_best_m = loc_m;
*p_best n = loc_n;
++numfit:

}
}
return(numfit);
}

read_templatel()
-/**
Read in the template lists for templatel fitting.
Each template is in the form of a list terminated by 9999.

The list specify the (m,n) displacements from [toprow,rightcol])
where char pixels should be present.

Note the change in order of the lists between 10 to 13.
Fkkkkkkkkhhdhdhhhdhhhdkhhkhhkhkhhhdkdhhkhdkhdkhhkhhkhhhhkhkhdkhdkhkdkkdhkhst
*kkkkk

{
int i,Jj,index;
char £1[(80], buffer[100];
FILE *fp, *fopen():

/*
printf("\nenter template #1 file for the 14 thinned characters
H "I i);
scanf ("%s", £fl1):;
. printf("gs",f1);
fp = fopen(fl, "r%);

*/
fp = fopen("c_ideal_t.lis","rv);
if (fp ==0){
printf("\ninput file error");
exit(0);

}

/* Read info from the ref file #*/
for(i=0; i < 14; ++i){

WO 91/17521 PCT/US91/03002

39

index = i;

if(i == 10) index = 12;
if(i == 11) index = 13;
if(i == 12) index = 10;
if(i == 13) index = 11;

/* look for XX text seperator */

do
fscanf (fp,"%s" ,buffer);
while ((buffer[0] != 'X') || (buffer[l] != 'X'))i
j o= -1
dof{
++3;

if(§ == MAXLIST){
printf("\nmax list for char template exceeded"):

exit(0);

}
fscanf (fp,"%d %a", &templatel[0][j][index],
&templatel[1][j][index]):
ywhile{ templatei{0][j][index] != 9999);
)
)

read_template2()
/***

Read in template lists for template2 fitting
**/

{
int i,3j,index;
char £1[{80], buffer[100];
FILE *fp, *fopen():

/*
printf("\nenter template #2 file for the 14 thinned characters
H "' i);
scanf("%s", f1):
printf("%s",fl);
fp = fopen(fl, "r");

*/
fp = fopen("c_ideal_th3.lis","r");
if (fp ==0){
printf("\ninput file error");
exit(0):
}

/* Read info from the ref file */
- for(i=0; i < 14; ++i){
index = i;

if(i == 10) index = 12;
if(i == 11) index = 13;
if(i == 12) index = 10;
if(i == 13) index = 11;

/* look for XX text seperator */
do
fscanf (fp,"%¥s" ,buffer):;
while ((buffer[0] != 'X') || (buffer[l] != 'X'"));

WO 91/17521 PCT/US91/03002
' 40

Jj=-L
do({
++3:
if(j == MAXLIST){
printf("\nmax list for char template exceeded");
exit(0):

}
fscanf (fp, "%d %4av, &template2[0][j][index],
&templatez[l][jj[lndex]), .
}while(template2[0][j][index] != 9999);
}
}

min_dist(indexl, index2, p _confid)
int indexl, index2;

double *p_confld,
/***
% Je % % % & % % % %k

Find the minumum value in dist[] between indicies indexl &
-index2.

Returns the min dist index.

Confidence value is placed in *p_confid.
**/

{
int ni,n2,i;

/* find min and min-1 dist */
nl=n2=indexl;
/* set nl to min & n2 to max values */
for (i=indexl; i <= index2 ; ++1)(
nl (dlSt[l] <= dist[nl1])? i: ni;
n2 (dist[i] >= dist[n2])? i: n2;
}

/* set n2 to min-1 value */
for (i=indexl; i <= index2; ++1)
n2 = ((dist[ij] <= dlst[n2]) & (i != nl1))? i: n2;

if(DEBUG4)
for (i=indexl; i <= index2 ; ++i){
prlntf("\n(%Zd) %fv, i,dist[i]):
if(i == ni1) prlntf(" === 1%);
if(i == n2) printf(" === 21);
}

*p_confid = dist[nl]/dist[n2];

return(nl);

compute _dist(index1, index2)

int index1,index2;
/***

%o dede gk Kk %k k
Compute the absolute distance between blk[] and each of the

WO 91/17521 41 PCT/US91/03002

reference
vectors between char_refs[][indexl] to char_refs[][indexZ].

output placed in dist[]
**

kkkkkkkkk/
C. .

int 1;

double abs_dist():

/* do for each reference vector */

for (i=indexl; i <= index2; ++1) :

dist[i] = abs_dist(blk, &char_refs[i][0])7

}

double abs_dist(blk,ref)
int blk[], ref[]:

double t, sum;
int j;

sum =0;
/* compute absolute distance */
for(j=0; j < 36; ++j){

t = blk[j] - ref[]]}

if (£ > 0)
sum += t;
else
sum -= t;

return (sum/36.0) 7
}

read_char_refs()
/**

Read in the block pixel count for each of the 14

reference characters.
**/

{

int 1,37
char £1[80], buffer[100];
FILE *fp, *fopen():

*
printf ("\nenter reference file for the 14 characters : ", i)
scanf("%s", f1):;
printf("%s",f1);
. fp = fopen(f1l, wrv);
*/
fp = fopen("c_ideal.ref","r");
if(fp ==
printf ("\nreference file not found\n"):
/* Read info from the ref file */
for(i=0; i < 14; ++1) {

/* look for XX text seperator */

do
fscanf (fp,"%s" ,buffer);

WO 91/17521 42 PCT/US91/03002

while ((buffer[o] != 'X') || (buffer[1l] != 'X'))

for (j=0; j < 36; ++j)
fscanf (fp,"%d", &char_refs[i][j]):
}

fclose (fp);
}

loc_left_transit()
/**

Locate the left transit char. ’ ’

DISTO : # of pixels between right edge of check to left
of bounding box for transit character:
this is nominally 5.6875 in (+/- 0.0625).
set to [5.6875+0.0625—(0.125-0.091)]=5.716.

DIST1 : # of pixels between bottom edge of check to
top of band region for char box : 0.4375 in.

DIST2 : Nominal # of pixels between right edge of check to right

of bounding box for transit character: nominally 5.5625
in.

DIST3 : Nominal # of pixels between bottom edge of check to

top of char bounding box : nominally 0.371 in.
**
kkkkdkkk /

{ ,
double sqgrt(), 4, t:
int n_disp, m, n, ml, n1, poss_indx[14], num_indicies, best_m,
best n;

int found_left;

/* set n to extreme left of bounding box of transit char */
= 1 + b_hor#*b_hor ;

n_disp = 0.5 + (DISTO / sqrt(t)) ¢

n = corner[l] - n_disp;

/* set m to bottom edge of check #*/
m = a_hor + b_hor * (double) n;

]

/* shift m to top of band region for box #*/

t = 1.0 + b_hor * b_hor;
d = sgrt(t) * DIST1 ;
m =-= d;

/* locate left boundary of transit character */
nl = locate_left(m, n + PX_125, n, TH_TRANS_LEFT, PX_250);
if(n1 == 0){
found_left = 0;
if (DEBUGl)printf("\nleft boundary of transit char not
found") ;
}
else
found_left = 1;

WO 91/17521 . PCT/US91/03002

43

/* perform this block only if left boundary is found; otherwise
unpredictable things may happen during blk_count(). */

if(found_left == 1){

/* set nl to right boundary of transit char */
nl += PX 91 - 1 ;

/* set mi to top boundary of transit char */
m1 = locate_top(m+#PX_125, m, nl, TH TRANS_TOP, PX 91);

if (ml == 0){
if (DEBUG1)printf ("\ntop boundary of transit char not found:;

estimating”);
ml = m + PX_125/2;

)
blk_count(ml,nl);
compute_dist(10,13);

min_dist (10,13, &confid[0])};
num_indicies = 1;

if(DEBUG1)
printf("\nconfidence value for 1left transit char :

$f",confid[0]):
}

/* Perform template matching when left boundary not found or

when
the confidence value is too poor */

if(found_left == 0 || confid[0] > 0.7){

/* set toprow, rightcol (m,n) to nominal positions */
t = 1 + b_hor*b_hor ;

n_disp = 0.5 + (DIST2 / sqre(t))

= corner[l] - n_disp;

= a_hor + b_hor * (double) n;

n
m
t = 1.0 + b_hor * b_hor;
d =sqgrt(t) * DIST3 ;
m -= d;

/* perform template matching over 15x15 region */
n u mn i n d i c i e s | =

fit;templatel(m,n,12,12,57poss_indx,&best_m,&best_n);

if (num_indicies == 0)
/* perform template matching over 27x27 region */
n u m i nd ic i e s =

fit_templatel(m,n,lz,lz,13,péés_indx,&best_m,&best_n);

ml = best_m;
nl = best_n;

if (DEBUGL) {
printf ("\nnum_indicies = %d best_index=%d m=%d n=%d",

WO 91/17521 44 PCT/US91/03002

num_indicies,poss_indx[0],best_m,best_n);
}
},

/* left transit char is found */
if(num_indicies == 1){
top_bnd[0] = ml;
right_bnd{0] = nl:;
if (DEBUG1l) printf("\n[top right] coord of transit char : [%d
%d]",ml,nl);
return(num_indicies):
}
else(
/*left transit not found#*/
return(0) ;
}
}

double estimate_right(index)

int index;
/**
Estimate current right boundary based on positions of
previous right boundaries.
***/

{
double t;

switch (index){
case 0: /*never occurs#*/

case 1l: return (right bnd[0] + PX_125);
break;

default: t right_bnd[index-1]-right bnd[0];
t (t / (index-1.0)) :

t += right_bnd[index-1] ;

return(t):

)
)

double estimate_top(index)

int index:
/**
Estimate current top boundary based on position of
previous top boundary. The direction of the bottom edge

of the check is used as reference for the estimation.
.***/

double t;

t = top_bnd[index-1] + b_hor * PX_125 ;
return (t):; -

)

blk_count(top_row, right_col)
int top_row, right_col;

WO 91/17521 PCT/US91/03002

45

kkkkkdhhkdkkhkdkhkkkhkhkkhkhhkhkhkhkhhkhhkhkdhkhhkhkhkhkhhhhhkhkrhhhkhkhkkkhkkk
Counts the number of char pixels in each 4x3 block of
“a 24x18 region. The top and right boundaries of

the region are defined by top_row & right_col.

Returns the total number of char pixels.
**/

{
int i,j,t,count;

for(i=0; i<36; ++i)
blk[i] =

/* adjust for left boundary */
t = right _col - 17;

count = 0;
for (i=0; i < 24; ++i)
for(j=0; j < 18; ++3j)
if(im[i+top_row][t+j] == CHAR_VAL)({
++count;
++blk [blk _ref[il[j] 1:

return(count) ;

row_pixel_count(m,n,length)

int m,n,length;

/**
Counts the number of character pixels in row m,
beginning from column (n-length+l) and extending to
column n. '

Returns the nunber of char pixels.
L Ty

{

int count, i;

count = 0;
for (i=0; i<length; ++i)

count += (im[m][n-i] == CHAR_VAL)? 1 : 0;
return(count) ;

locate_top(upp_m, low_m, n, threshold, length)

-int upp_m, low_m, n, threshold, 1ength,

/***
Locate the top row of char pixels between upp_m and low_m-
Begin by scanning from the top(low_m). The first row that
has threshold number of char pixels within length n to
the left of column n is the top row.

Returns the top_row or 0 if not found.
**/

{
int row = low_m;

WO 91/17521 46 PCT/US91/03002

while ((row_pixel_count(row,n,length) < threshold) && (row <=

upp_m))
++row;

/* allowable row positions are from low_m to upp_m, inclusive
*/
if(row > upp_m)
return (0):;
else
return(row) ;

column_pixel_count(m,n,length)
int m,n,length;
/**
Counts the number of character pixels in column n,
beginning from row m, and extending to
row (m+length-1).
Returns the number of char pixels.
**********t**/

{

int count, i;

count = 0;
for (i=0; i<length; ++i)

count += (im[m+i][n] == CHAR_VAL)? 1 : 0;
return(count) ;

locate_right(m, upp_n, low_n, threshold, length)

int m, upp_n, low_n, threshold, length;

/***
Locate the right boundary of char between columns
low_n and upp_n. Scanning from right (upp_n),
boundary is found by finding the first increment
in the number of char pixels exceeding threshold.

Row m is assumed to be the top row.
**/

{
int col, c1, c¢2;

col = upp_n+l;
cl = column_pixel_count(m, col, length):;
c2 =cl ;

while ((cl1 = c2) < threshold && col >= low_n){
--col;
c2 = cl;

cl = column_pixel_count(m, col, length);

}

/* allowable column positions are from low_n to upp_n*/
if(col < low_n)

return(0) ;
else

WO 91/17521 _ PCT/US91/03002

47

return(col);

locate_left(m, upp_n, low_n, threshold, length)

int m, upp_n, low_n, threshold, length;
kkkkhkkkkkrhkhhkhkkkhhkkhhkhhkhhhkhhhhhhhkhhhhrhddhk

Locate the left boundary of char between columns
low_n and upp_n. Scanning from left (low_n),

boundary is found by finding the first increment
in the number of char pixels exceeding threshold.

Row m is assumed to be the top row.
dkkkkkkhkkhhkhhkkhhkkhhkhhhhhhhhkkhhkhkhkhkkhkhdkdhddkhdk/

{
int col, cl, c2;

col = low_n - 1;
cl = column_pixel_count(m, col, length);
c2 =cl ;

while ((cl1 - c2) < threshold && col <= upp_n){
++col;
c2 = cl;
cl = column_pixel_count(m, col, length) ;

)

/* allowable column positions are from low_n to upp_n*/
if(col > upp_n)
return(0) ;
else
return(col);
}

edge()

dkkkkkkkkkkkhkhkhhhhkhkhhdkhhkhkhkhhkhhkhkhkkhhhkhdkkddhkdhdhkdhhkkhkik

Finds the equation of the bottom edge and the corner

point of the document.
dkkkkhkdkdkhdkkkhdkkhhkhkhhhkhhdkhkhkhkkkkhdhhhhhdhhkhhhkdhhhdkkhdd/

{ ' B}
double a_ver, b_ver;
float hor_edge(), ver_edge(), maxdist;

init_mask():

maxdist = hor_edge(N_START , 8, &a_hor, &b_hor) ;

- if (maxdist > Y_DIST_ TOLER)
printf("\nhorizontal edge tolerance exceeded ; maxdist

$£",maxdist);

]

maxdist = ver_edge(M_START , 8, &a_ver, &b_ver);
if (maxdist > X_DIST TOLER)
printf("\nvert edge tolerance exceeded ; maxdist

%$£",maxdist) ;

/* compute intersection point of edges */
corner[l] = ((a_ver - a_hor) / (b_hor - b_ver)) + 0.5:

WO 91/17521 48 PCT/US91/03002

corner[0] = (a_hor + b_hor #* corner[l]) + 0.5 ;

if (DEBUG1) {
printf ("\nedge corner = [%d %d]",corner[0],corner[l]);
printf("\nhorizontal edge : a_hor = &f b_hor =
%f",a_hor,b_hor):;
}

}

init mask()
/* initialize convolution mask*/

{ [.
int i;

for(i=0; i < 50 ; ++i)
mask[i] = O:

for(i= 50; i < 100 ; ++i)
mask([i] = 1;

)

float hor_edge(h_off,mask_length, p_a, p_b)
double *p_a, *p_b;
int h_off, mask_length;
/**
Compute the equation of the horizontal edge.
Based on 4 sample points; first sample point
is at column h_off.
Equation in the form: Y =a + bX ,
where a = *p_a and b = *p_b.
Returns 1 if satisfactory line through points

is found.
**/

{
int i, n;
float x[5], y[5], maxdist, best_line();

/* Find 4 sample points */
for(n = h_off ; n < h_off + 4*N SPACE, n += N_SPACE) {
if(n >=n _size){
prlntf("\nerror in column spacing for edge detection");
exit(0):

}

i = (n - h_off) / N_SPACE;

x[i] = n;

y[i] = v_conv(n,mask_length);
"}

maxdist = best_line(x,y,4,p_a,p_b)7
return(maxdist) ;

}

float ver_edge(v_off,mask_length,p_a,p_b)

double *p_a, *p_b:;

int v_off,mask_length;
/**

compute the equation of the edge.

WO 91/17521 PCT/US91/03002

49

Based on 4 sample points; first sample point
is at row v_off.
Equation in the form: Y =
where a = *p_.a and b = *p_b. _

Returns 1 if satisfactory line through points

is found.

Note : in order to use the regress function, the

%,y axes have to be switched.

**/

{

)

int i,j, m,n ;
float x[5],Y[5],maxdist,best_line();
double a, b:

/* find 4 sample points */
for(m = v_off; m < v_off + (4*M_SPACE); m += M_SPACE) {

if(m >= m_size)
printf ("\nerror in row spacing for edge detection"):

exit(0);

/* Regression of X on Y */
maxdist = best_line(y,x,4,&a,&b);

/* switch axes back to original notation
i.e. y=a2a + bx
implies x = -(a/b) + (1/b) ¥y

*/

b= (b < 0.0000000001)? 0.0000000001 : b;
*p_a = -a/b;

*p b = 1.0/b;

return(maxdist) ;

h_conv(m,mask_length)
int m,mask_length;

**

Finds the first occurrence of the max value of a horizontal
convolution between image and mask of length mask_length at

row m.
Returns the column position of the max value

***/

{

int max_val, val, max_val_col, n, i;
int t1,t2;

t1 = mask_length/2;

max_val = 0;

for(n= n_size -1 = t1 ;i n > n_size - MAX_COL ; =-n){
val= 0;
for(i=0; i< mask_length ; ++1){(

WO 91/17521

}

50 PCT/US91/03002

t2 = (im[m][n-tl+i] == CHAR VAL)? 1 :
val += (mask[50-t1+i] ==0)? -t2 : t2
}

/* store current max_value #*/
if(val > max_val)({

max_val = val;

max_val_col = n;

}
/* stop if current max value is the largest attainable */

if(max_val == tl) break:

}

return(max_val_col);

v_conv(n,mask_length)

int n, mask_length:
Jhkkkkkkkkhkhkkhkdhhhhkkkhhhhdkhkhkhhhkhkhkhhhkhkhhhhhhkhhhhhhkhk

Finds the first occurrence of the max value of a vertical
convolution between image and mask of length mask_length at

column n.
Returns the row position of the max value

***/

{

}

int m, max_val, val, max val_row, i;
int t1,t2;

t1l = mask_length/2;
max_val = 0;
for(m= m_size-1-t1l; m > t1 ; =-m){
val= 0;
for(i=0; i < mask 1ength 7 ++i)(
t2 = (im[m-ti1+i][n] == CHAR_VAL)?
val += (mask[50-tl+i] == 0)? -t2 :

}

/*store current max value*/
if(val > max_val){
max_val = val;
max_val_row = m;

1 : 0;
t2 ;

)

/* stop if current max is largest attainable */
if(max_val == tl) break:
}

return(max_val_row) ;

float best_line(x,y,n,p_a,p_b)
int n;

double *p_a, *p_bi

float x(], y[]:

/**********************************‘k************************

Finds best line through n sample points by first performing

a linear regression of y on X.
The max distance sample is then discarded and regression

is repeated using n-1 samples.
Returns the max dist of the n-1 samples.

WO 91/17521 51 PCT/US91/03002

**/

{
int worst_n,i;
double t,max_y,sqrt():

/* f£ind best line through n points#*/
regress (x,y,n,p_a,p_b):

/* find farthest point */
max_y = -1;
for (i=0; i < n; ++i){
t = (*p_a + (*p_b * x[i])) - y[i);
if (max_y < (t*t)){
max_y = (t*t):
worst_n = i;
}
)

/* discard farthest point */
x[worst nl = x(n-1]?
y[worst_n] = y[n-1};

/* find best fit line through (n-1) points #*/
regress(x,y,n-1,p_a,p_b):

/* find farthest point and return distance #*/
max_y = -1;
for (i=0; i < n=1; ++i){
(*p_a + (*p_b * x[i])) - y[i]:
if (max_y < (t*t)){
max_y = (t*t);
worst_n = i;
}
}
max_y = sqrt(max_y):
return ((float) max_y):
}

regress(x,y,n,p_a,p_b)

int n;

float x[], y[1:

double *p_a, *p_b;

/**
Linear regression of y on x. (dependence of y on Xx)

Finds the best fit line
Y=a+bX.

Arrays x and y are n sample points, and p_a and p_b
are pointers to a and b respectively

(for details see text: Adv Engr Math - Kreyszig
**/

{
float sxy, sl2, x_bar, y_bar;

int i;

X_bar = 0;

WO 91/17521 52 PCT/US91/03002

for (i = 0; i < n; ++i)
x_bar += x[i]:
x_bar /= (float) n;

y_bar = 0;

for (i = 0; 1 < n; ++i)
y_bar += y[i]:;

y_bar /= (float) n;

sl2 = 0 ;
for (i=0; i < n; ++i) ’

s12 += ((x[i] - x_bar) * (x[i] - x_bar)):
s12 /= ((float) n - 1.0):

sxy = 0;
for (i=0; i < n; ++i)

sxy += ((x[i] - x bar) * (y[i] - y bar));
sxy /= ((float) n - 1.0);

* p_b

sxy/sl2;
; bar - {*p_b * x bar):

W

a

}
read_image()

FILE *fpl, *fopen():;
char £1[80];
unsigned int u:;

int i,3j,thres;

fpl = 0;

while (fpl == 0){
printf("\nenter infile : ");
scanf ("%s",£f1);
printf("%s",£f1);

/*
printf ("\nenter image size - #rows #cols : ");
scanf ("%d %d", &m_size, &n_size);
printf("%d %d", m_size, n_size);
*/
m_size = 400;
n_size = 1456;
if(m_size > MSIZE || n_size > NSIZE){
printf ("\nerror max image dimensions [%ad %$d]
exceeded" ,MSIZE,NSIZE);
exit(0):
}
fpl =fopen(f1,"r"):;
if (fp1==0)
printf("\nfile error");
}
/*

printf ("\nenter threshold : ");
scanf ("%¥d", &thres);
printf("%d4",thres):

*/
thres = 20;

WO 91/17521 PCT/US91/03002

printf ("\nReading in image "):
for (i=0; i < m_size ; ++1)

for (j=0; j < n_size ; ++J){

u = getc(fpl):

im[i][j] = (u > thres)? 1 : O;

}
printf("\nRead complete \n")
} .

init_block_ref()

Assign the block labels to each pixel on a 24x18

lattice.
**/

{

int i,3;

for(i=0; i<24; ++1i)
for(j=0; j<18: ++j){
if(Ci<4){
if(3<3)
blk_ref[i][j] = O;
else if (j<6)
blk_ref[i][j] = 1;
else if (j<9)
blk_ref[i][j] = 2i
else if (j<12)
blk_ref[i][]j] = 3:
else if (j<15)
blk_ref[i][j] = 4:
else if (j<18)
blk_ref[il[j] = 5;

)
else if(i<8){
if(3<3)
blk ref[i][]j] = 6:
else if (j<6)
blk_ref(i](j] = 7:
else if (j<9)
blk_ref[i)[j] = 8
else if (j<12)
blk _ref[i][]j] = 97
else if (j<15)
blk _ref([i][j] = 10:
else if (j<18)
blk_r '[11[j] = 11;

}
else if(i<12)({
if(§<3)
blk_ref[i] (31 = 12;
else if (j<6)
blk_ref[i][]] = 13;
else if (3<9)
blk_ref[i][]]) = 14;
else if (j<12)
blk_ref[i][]] = 15i

WO 91/17521 PCT/US91/03002

54

else if (j<15)
blk ref[il[j] = 16;
else if (j<18)
blk_ref[i}[j] = 17:

}
else if(i<1e6){
if(§<3)
blk_ref[i][]j] = 18;
else if (j<6)
) blk_ref[i][j] = 19;
else if (j<9)
blk ref[i][j] = 20;
else if (j<12)
blk_ref[i][]] = 21;
else if (j<15)
blk ref[i][j] = 22;
else if (j<18)
blk_ref[i][j] = 23;

}
else if(i<20){
if(j<3)
blk_ref[i][j] = 24:
else if (j<6)
blk_ref[i][j] = 25;
else if (j<9)
blk_ref[i][j] = 26;
else if (j<12)
blk_ref[i][j] = 27;
else if (j<15)
blk_ref[i}[j] = 28:
else if (j<18)
blk_ref[i][j] = 29;

}
else if(1<24){
if(3<3)
blk_ref[i][j] = 30;
else 1f (j<6)
blk_ref[il([j] = 31;
else if (j<9)
blk_ref[i][j] = 32:
else if (j<12)
blk ref[i][j] = 33:
else if (j<15)
blk_ref[i)[j] = 34:
else if (j<18)
blk ref[i][j] = 35;

10

15

20

25

30

WO 91/17521 PCT/US91/03002

55

What is claimed is:

1. An optical character recognition systenm,
comprising: .
character location means for locating a first
region around an individual character image in a document
image;
feature-based character recognition means for
computing a corresponding confidence value associated
with identification of a particular symbol for said
individual character image based upon a predetermined set
of features corresponding to a set of symbols; and
template matching character recognition means
responsive whenever said confidence value is below a
first predetermined threshold for searching within said
first region in said image around said one individual
character image for a pattern of "ON" pixels matching to
within at least a threshold number "ON" pixels of one of
a first set of reference templates corresponding to said

set of symbols.

2. The system of Claim 1 wherein said template
matching character recognition means comprises means
responsive upon failing to find said matching pattern of
"ON" pixels within said first region for searching within
a second region larger than said first region surrounding

said character image for said pattern of "ON" pixels.

3. The system of Claim 1 wherein said template
matching character recognition means comprises means
responsive whenever said confidence value is above said
first threshold but less than a second predetermined

threshold for searching in said first region around said

10

15

20

25

30

WO 91/17521 56 PCT/US91/03002

character image for a pattern of "ON" pixels matching to
within at least a threshold number "ON" pixels of a
particular one of said reference templates corresponding
to the symbol identified by said feéture-based character
recognition means.

4. The system of Claim 1 wherein said template
matching character recognition means comprises means
responsive whenever said character image matches more
than one of said reference templates, for searching for a
pattern of "ON" pixels in said first region matching to
within at least a threshold number "ON" pixels of a
second set of reference templates characterized by
character strokes thicker than those of said first set of
reference templates and corresponding only to those
reference templates of said first set for which a match

was found with said character image.

5. The system of Claim 1 wherein said document
image is characterized by a set of character images whose
locations are established with reference to an image of a
predetermined fiducial symbol in said set of symbols,
said fiducial symbol image being located nearest one
predetermined boundary of said document image, wherein:

said character location means comprises means
for locating a third region in said document image around
said fiducial symbol image;

said feature based character recognition means
comprises means responsive upon said character location
means locating said third region for computing a
confidence value associated with said fiducial symbol
image and one set of reference features corresponding to
said fiducial symbol; and

[

WO 91/17521 57 PCT/US91/03002

10

15

20

25

30

said template matching character recognition
means comprises means responsive whenever said confidence
value associéted with said fiducial symbol image is below
said first threshold for searching in said third region
for a pattern of "ON" pixels matching to within at least
a threshold number "ON" pixels of one reference template
of said first set of reference templates corresponding to

said fiducial symbol.

6. The system of Claim 5 wherein said template
matching character recognition means is further
responsive whenever said matching pattern of "ON" pixels
is not found in said third region for searching in a
fourth region around said fiducial symbol image larger

than said third region for said pattern of "ON" pixels.

7. The system of Claim 5 wherein said set of
characters are MICR characters and said document image

represents a bank check.

8. The system of Claim 1 wherein said
predetermined set of features comprises a set of N-
dimensional reference vectors representing said set of
symbols and corresponding to locations of "ON" pixels in
the images of said set of symbols, and wherein said
feature based character recognition means comprises:

means for measuring the vector distances
between an N-dimensional vector corresponding to said
character image and each one of said set of N-dimensional
reference vectors; and

means for computing the ratio between the two
shortest ones of said vector distances associated with

said character image.

WO 91/17521 PCT/US91/03002

10

15

20

25

30

58

9. Aan optical character recognition method,

comprising: - _ v

locating a first region around an individual
character image in a document image;

computing a corresponding confidence value
associated with identification of a-particular symbol for
said individual character image based upon a
predetermined set of features corresponding to a set of
symbols; and

whenever said confidence value is below a first
predetermined threshold, first searching within said
first region in said image around said one individual
character image for a pattern of "ON" pixels matching to
within at least a threshold number "ON" pixels of one of
a first set of reference templates corresponding to said
set of symbols.

10. The method of Claim 9 further comprising
searching within a second region larger than said first
region surrounding said character image for said pattern
of "ON" pixels upon said first searching step failing to
find said matching pattern of "ON" pixels within saig

first region.

1l1. The method of Claim 9 further comprising the
step of searching in said first region around said
Character image for a pattern of "ON" pixels matching to
within at least a threshold number "ON" pixels of a
particular one of said reference templatgs representing
the symbol corresponding to said confidence value
whenever said confidence value is above said first

threshold but less than a second predetermined threshold.

10

15

20

25

30

WO 91/17521

59

12. The method of Claim 9 further comprising
searching for a pattern of "ON" pixels in said first
region matching to within at least a threshold number
"ON" pixels of a second set of reference templates
characterized by character strokes thicker than those of
said first set of reference templates and corresponding
only to those reference templates of said first set for
which a match was found with said character image
whenever said character image matches more than one of

said first set of reference templates.

13. The method of Claim 9 wherein said document
image is characterized by a set of character images whose
locations are established with reference to an image of a
predetermined fiducial symbol in said set of symbols,
said fiducial symbol image being located nearest one
predetermined boundary of said document image, wherein
said character locating step comprises:

locating a third region in said document image
around said fiducial symbol image;

computing a confidence value associated with
said fiducial symbol image and one set of reference
features corresponding to said fiducial symbol; and

whenever said confidence value associated with
said fiducial symbol image is below said first threshold,
searching in said third region for a pattern of "ON"
pixels matching to within at least a threshold number
"ON" pixels of one reference template of said first set

of reference templates corresponding to said fiducial

symbol.

14. The method of Claim 13 for searching in a

PCT/US91/03002

10

15

20

WO 91/17521 PCT/US91/03002

60

fourth region around said fiducial symbol image larger
than said third region for said pattern of "ON" pixels
whenever said matching patter of "ON" pixels is not found

in said third region.

15. The method of Claim 13 wherein said set of
characters are MICR characters and said document image

represents a bank check.

16. The method of Claim 9 wherein said
predetermined set of features comprises a set of N-
dimensional reference vectors representing said set of
symbels and corresponding to locations of "ON" pixels in
the images of said set of symbols, and wherein said
computing step comprises:

measuring the vector distances between an N-
dimensional vector corresponding to said character image
and each one of said set of N-dimensional reference
vectors; and

computing the ratio between the shortest and
second shortest vector distances associated with said

character image.

WO 91/17521 PCT/US91/03002
1/11

NAME OF DEPOSITOR 104
STREETADDRESS

CITY, STATE
19

PAY TO THE
ORDER OF $

DOLLARS

NAME OF YOUR BANK
STREET ADDRESS
CITY, STATE

FOR
3023L0S033i 43 7LAO0L53[AES" 075
[N

» A
\'30 /0/ (PRIOR ART) N—/2

FIG. |

THIN
REFERENCE
TEMPLATE

REFERENCE
SYMBOL
20| VECTOR
MEMORY

| [Feature | [TEMPLATE
et oo o MG Pt el
PROCESSOR | | BROCESSOR
THICKER
ZZ\ RO REFEREncE | /%8
MEMORY TEMPLATE

FIG.2

SUBSTITUTE SHEET

WO 91/17521 / PCT/US91/03002
2/11

IMAGE BOUNDARY — ~_— CHECK BOUNDARY

1111000

/'32

34 LOWER RIGHT
CORNER REFERENCE
38 { POINT
\ (') EDGE DETECTION MARK
0
0
PIXEL ROWS ——»
PIXEL cowunsl FIG.3

/40

AT 4 PREDETERMINED POINTS DETECT THE EDGE USING
1 DIMENSIONAL EDGE DETECTION MASK

FIT BEST STRAIGHT LINE THROUGH THE 4 POINTS USING
LINEAR REGRESSION

DISCARD FARTHEST POINT FROM THE STRAIGHT LINE ,AND
REPEAT THE LINEAR REGRESSION USING THE REMAINING
3 POINTS

SUBSTITUTE SHEET

WO 91/17521

PCT/US91/03002
3/11

30 "l-48 INITIALLY SET | /52
o™ POINTER TO
‘ o |_+ 60 LEFT OF BB
| |
- — _J r°
52 62 SWEEP RIGHT TO %6
L Y _ J LOCATE LEFT EDGE
FIG.5 OF TRANSIT CHARACTER
—atl}
Y
LOCATE TOP OF 6z
TRANSIT CHARACTER
BY SWEEPING DOWN
le——— FROM TOP OF BB
70 Y
USE TEMPLATE
MATCHING TO FOUND
FIND TRANSIT ? 72
CHARACTER
YES ESTIMATE
TOP
RETURN 66

FIG.6

USE FEATURE
BASED CLASSIFIER

FOUND LEFT TRANSIT

SUBSTITUTE SHEET

WO 91/17521

4/1

USE TEMPLATE SET % |
SELECT TEMPLATE OF TRANSIT

74 CHARACTER (i.e."§3")

76~ | SET SMALLER DIMENSIONS

FOR SEARCH SPACE IN BB

7 SEARCH FOR TRANSIT

CHARACTER

SET LARGER DIMENSIONS

64 FOR SEARCH REGION

86— | SEARCH FOR TRANSIT
CHARACTER

A

_ RETURN
NOT FOUND

FIG. 7

SUBSTITUTE SHEET

PCT/US91/03002

—= RETURN'FOUND"

WO 91/17521

LOCATE /ESTIMATE BOUNDARY

Y

FEATURE BASED CLASSIFIER

CONFIDENCE
=

P
600D POOR

PCT/US91/03002

VERIFY SYMBOL
USING TEMPLATE

#1

5/11
/'88
90
e FIG.8
/0
//29
INCREMENT
iz — | PASS
—1 PASS=1 /20 '
T— /3/
Y * L18 cn?as{
IN
TEMPLATE ESTIMATE ATCHING
* MATCH %1 BOUNDRIES "RE%ION

TEMPLATE #2 MATCH
OVER THE POSSIBLE MATCHES

FOUND IN TEMPLATE #1 MATCH
o
/!
Y
RETURN Fo/usuo i 13
SYMBOL TURN T2 RETURN T!
R’EA‘?CHES / 156~ MATCHES
l — -
1

SUBSTITUTE SHEET

WO 91/17521

FIG.S

PCT/US91/03002

6/11

CONVERT CHARACTER
IMAGE INTO VECTOR

FETCH 1ST 4
REFERENCE VECTOR

92

B |

COMPUTE
ABSOLUTE DISTANCE

STORE
DISTANCE

100

FETCH NEXT
REFERENCE VECTOR

104

SELECT REFERENCE VECTOR WITH
SMALLEST DISTANCE TO UNKNOWN
VECTOR

——

COMPUTE THE RATIO OF IST AND 2NDi o
SMALLEST DISTANCE

S

Y 108

OUTPUT REFERENCE SYMBOL AND
RATIO * CONFIDENCE SCORE"

SUBSTITUTE SHEET

WO 91/17521 PCT/US91/03002

7/11

..........

* FIG. 10 FIG. 10B

ofofolizfe |0
olojoje({sfo
ofofol6]6]0
i olojofi2|r]r
olo|o]fi2]r
T olojo]6|6]6

SUBSTITUTE SHEET

WO 91/17521

PCT/US91/03002

g

N

*-

o)
T
A—

- SUBSTITUTE SHEET

WO 91/17521 PCT/US91/03002

FIG. 12B

s

SUBSTITUTE SHEET

WO 91/17521 PCT/US91/03002

10/1°

e
Tow
A
L e,

FiG. 12C

SUBSTITUTE SHEET

WO 91/17521 PCT/US91/03002

11/11

IMAGE ~48

/'/42

MATCHED

Vi

HATCHED

r_\ TEMPLATE
/' 146

NO MATCH

Ve 148

NO MATCH

FIG. I3

SUBSTITUTE SHEET

|NTERNATIONAL SEARCH REPORT

International Application No

PCT/US 91/03002

1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate aliyé

According to International Patent Classification (JPC) or to both National Classification and IPC

Int.C1. 5 G06K9/68
II. FIELDS SEARCHED
Minimum Documentation Searched’
Classification System Classification Symbols
Int.Cl. G06K9/00

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched®

11I. DOCUMENTS CONSIDERED TO BE RELEVANT?

Category © Citation of Document, 11 with indication, where appropriate, of the relevant passages 12 Relevant to Claim No.I?
A PATENT ABSTRACTS OF JAPAN 1, b, 8,
vol. 8, no. 144 (P-284)(1582) 5 July 1984, 9, 13,
& JP-A-59 43480 (RICOH K.K.) 10 March 1984, 16
see the whole document
A IEEE TRANSACTIONS ON SYSTEMS, MAN AND 1, 3, 5,
CYBERNETICS. 9, 11,
vol. SMC-7, no. 2, February 1977, NEW YORK US 13
pages 104 - 107; A. Rosenfeld et al.:
"Coarse~Fine Template Matching"
see page 104, right-hand column, Tine 22 - page
105, left-hand column, Tine 13
A EP,A,113556 (TEXAS INSTRUMENTS INCORPORATED) 2, 6,
see abstract 10, 14
A US,A, 3829831 (YAMAMOTO ET AL.) 1, 9
see abstract; figure 10

© Special categories of cited documents : 10

T later document published after the international filing date
or priority date and not in confiict with the application but

~A” document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

*L” document which may throw doubts on priority claim(s) or

. which is cited to establish the publication date of another

citation or other special reason (as specified)

*0” document referring to an oral disclosure, use, exhibition or
other means

#P* document published prior to the international filing date but
later than the priority date claimed

-y

L7244

cited to understand the principle or theory underlying the
invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step

document of particular relevance; the claimed invention

cannot be considered to involve an inventive step when the

document is combined with one or more other such docu-
:nents, such combination being obvious to 2 person skilled
n the art.

document member of the same patent family

IV. CERTIFICATION

Date of the Actual Compietion of the International Search

28 AUGUST 1991

Date of Mailing of this International Search Report

13.09 9

International Searching Authority

EUROPEAN PATENT OFFICE

Signature of Authorized Omce/ y)
SONIUS M.E.

Form PCT/ISA/210 (second sheel) (Jammary 1985)

EPO FORM P49

ANNEX TO THE INTERNATIONAL SEARCH REPORT

ON INTERNATIONAL PATENT APPLICATION NO.
US 9103002
SA 47893

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on :

The European Patent Office is in no way liahle for these particulars which are merely given for the purpose of information.

28/08/91
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A-113556 18-07-84 Us-A- 4566125 21-01-86

JP-A- 2001072 05-01-90
JP-A- 59144918 20-08-84

US~-A-3829831 13-08-74 JP-C- 862215 30-05-77
JP-A- 48054839 01-08-73
JP-B- 51036141 06-10-76

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

”

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

