A mock beverage container for disguising a hand held analyzer section of a breath alcohol ignition interlock system therein. The mock beverage container housing includes means for accommodating a mouthpiece therein for providing fluid communication of breaths from a user with an alcohol sensor associated with the hand held analyzer section. A vent or opening formed in the housing can be provided for exhausting breath from the mock beverage container. The mock beverage container housing can be disguised as a coffee cup, a fountain drink cup, a soda can, and a soft drink bottle. The mouthpiece can be disguised as a coffee cup lid, a fountain drink cup straw, a soda can opening, and a soft drink bottle top, or can be integrated with the hand held analyzer and protrude through an opening in a side or top of the mock beverage container.
FIG. 6

70

75

BLOW

WIRELESS MODULE

49

FIG. 6
BEVERAGE DISGUISE FOR HAND HELD BREATHALYZER INTERFACE OF IGNITION INTERLOCK DEVICE

CROSS-REFERENCE TO PROVISIONAL APPLICATION

FIELD OF THE INVENTION

[0002] Embodiments are related to alcohol breathalyzers and ignition interlock systems. More particularly, embodiments are related to a disguise in the form of a mock non-alcoholic beverage (e.g., coffee cup, soda can, bottle soft drink) designed to accept the hand held breath analyzer therein and thereby disguising the hand held breath analyzer.

BACKGROUND

[0003] An ignition interlock device or a breath alcohol ignition interlock device (IID and BIID) is a breathalyzer (breath analyzer) installed on or around the dashboard of a vehicle, often as required by law following a DUI conviction. The ignition interlock device prevents a vehicle from starting until the driver successfully passes a blood alcohol concentration test. Before the vehicle will start, the driver must blow into the BAC tester. If the breath test shows a driver’s BAC to be above a set limit, usually around 0.02-0.04%, the starter on the car vehicle will lock and the driver can’t use the vehicle. If a driver’s BAC is below that level, then the vehicle will start and operate normally.

[0004] IIDs are often issued as part of the mandatory punishment for a DUI/DWI conviction. A single DUI conviction could require that one of these systems be installed in the offender’s car. If required by the court of law as part of a conviction or plea bargain, the DUI offender will also be responsible for paying for the installation and monthly usage fees for the devices, which may cost hundreds of dollars. Alcohol detection devices can also include a camera to record the user of the system during its use and ensure that a driver is using the system. Wireless (cellular) reporting to remote monitoring stations is also being promoted and suggested for state adoption by breathalyzer system manufacturing companies.

[0005] Although breathalyzer systems can ensure public safety and deter future offenses by DUI offenders, their installation, albeit temporary, is unsightly and can be embarrassing to offenders. Many DUI offenders feel remorseful about the offense, willingly comply with terms of conviction or a plea that includes breathalyzer use and are otherwise law-abiding citizens. Compliance with breathalyzer usage to ensure sober vehicle operation is the only written purpose by states and municipality that legally require the installation of such systems in offender vehicles. Public embarrassment of offenders (especially first offenders), however, is not affirmatively written into legislation for jurisdictions mandating the use of breathalyzer systems.

[0006] For the foregoing reasons, the present inventor believes that DUI offenders that are required to pay for the installation and use of ignition interlock devices should also be able to disguise the user interface portion of such systems during a court-mandated period of use.

SUMMARY

[0007] The following summary is provided to facilitate an understanding of some of the innovative features unique to the disclosed embodiment and is not intended to be a full description. A full appreciation of the various aspects of the embodiments disclosed herein can be gained by taking the entire specification, claims, drawings, and abstract as a whole.

[0008] The present inventor proposes a disguise in the form of a mock non-alcoholic beverage (e.g., coffee cup, soda can, soft drink bottle) designed to hold at least one of integrated breath analyzer electronics or a hand held breath analyzer therein, thereby disguising the hand held breath analyzer as a beverage. The disguise can also be referred to herein as “breathalyzer disguise”.

[0009] In accordance with an aspect of the disclosed embodiments, the breathalyzer disguise is provided as a mock beverage container such as a disposable coffee cup, fountain beverage cup, soda can or soft drink bottle that can accept and hold a hand held interface of a breathalyzer ignition interlock system therein.

[0010] In accordance with another aspect of the disclosed embodiments, the breathalyzer disguise can include a mouthpiece in fluid connection with a breath capture/input of a handheld interface for a breathalyzer ignition interlock system to accept breath from a user for analysis by the breathalyzer ignition interlock system.

[0011] In accordance with yet another aspect of the disclosed embodiments, the breathalyzer disguise can include exhaust vents (or what is otherwise an opening) therein allowing analyzed breath exiting the hand held interface of a breathalyzer ignition interlock interface to exit the container that is being held and disguised in.

[0012] In accordance with another aspect of the disclosed embodiments, the breathalyzer disguise can be provided in a clamshell format to accept a hand held interface of a breathalyzer ignition interlock system.

[0013] In accordance with another aspect of the disclosed embodiments, a breathalyzer ignition interlock system can be provided with wireless communication capability and be provided in the form of a mock beverage container disguise.

[0014] In accordance with another aspect of the disclosed embodiments, a wireless breathalyzer ignition interlock system disguised as a beverage container can communicate with a base station installed within a motor vehicle.

[0015] In accordance with another aspect of the disclosed embodiments, a wireless breathalyzer ignition interlock system disguised as a beverage container can communicate with a base station installed within a motor vehicle using Bluetooth wireless communications.

[0016] In accordance with another aspect of the disclosed embodiments, a wireless breathalyzer ignition interlock system disguised as a beverage container can be synchronized with and can communicate with an assigned base station installed within a motor vehicle.
In accordance with another aspect of the disclosed embodiments, a wireless breathalyzer ignition interlock system disguised as a beverage container can be synchronized with and communicate with an assigned base station installed within a motor vehicle using Bluetooth wireless communications.

The aforementioned aspects and other objectives and advantages can now be achieved as described herein. A breath alcohol ignition interlock device can comprise a mock beverage housing including at least one of breath alcohol electronics and a handheld breath alcohol analyzer therein, a mouthpiece in fluid communication with an alcohol sensor associated with the at least one of breath alcohol electronics and a handheld breath alcohol analyzer, and a vent exhausting breath from the mock beverage housing.

In another embodiment, the mock beverage container housing can be provided in the guise of at least one of, for example, a coffee cup, a fountain drink cup, a soda can, a soft drink bottle, and so forth, thereby disguising the handheld breath analyzer as a beverage container.

In yet another embodiment, the mock beverage container housing accepts and holds therein a handheld interface of a breathalyzer ignition interlock device. In still another embodiment, the mock beverage container housing can be provided in the guise of at least one of, for example, a coffee cup, a fountain drink cup, a soda can, a soft drink bottle, thereby disguising the handheld breath analyzer as a beverage container.

In another embodiment, the mouthpiece can be provided in the guise of at least one of, for example, a coffee cup, a fountain drink cup straw, a soda can opening, a soft drink bottle top.

In other embodiments, the mouthpiece can be in fluid connection with a second mouthpiece associated with said handheld interface of a breathalyzer ignition interlock device.

In still other embodiments, the exhaust allows analyzed breath exiting the handheld interface of a breathalyzer ignition interlock interface to exit.

In still other embodiments, the mouthpiece can be in fluid connection with a second mouthpiece associated with said handheld interface of a breathalyzer ignition interlock device.

In another embodiment, the exhaust (e.g., hole, vent or opening) allows analyzed breath exiting the handheld interface of a breathalyzer ignition interlock interface to exit. In another embodiment, a wireless communication module can support communication with a base station installed within a motor vehicle.

In still another embodiment, the wireless communication module can comprise a Bluetooth wireless communications module.

In still further embodiments, the Bluetooth wireless communications module can support data synchronization and communications with said base station.

BRIEF DESCRIPTION OF THE FIGURES

The accompanying figures, in which like reference numerals refer to identical or functionally similar elements throughout the separate views and which are incorporated in and form a part of the specification, further illustrate the disclosed embodiments and, together with the detailed description herein, serve to explain the principles of the disclosed embodiments.

FIG. 1 labeled as “prior art” illustrates a hand held interface of a typical IID;

FIG. 2 illustrates an IID housing disguise in the form of a beverage container, in accordance with an embodiment;

FIG. 3 illustrates an IID housing disguise in the shape of a soda can holding/containing the handheld user interface of an IID therein and that can include a window cut into the side of IID housing disguise to allow users to see the display screen and status indicator lights disposed on the enclosed hand held user interface, in accordance with an embodiment;

FIG. 4 illustrates an IID housing disguise holding/containing breath analyzing functionality of an IID therein and including a display screen and status indicator lights integrated into the side of an IID housing disguise to allow users to see the commands on the display screen and of status indicator lights disposed on the IID housing, in accordance with an embodiment;

FIG. 5 illustrates an IID housing disguise including a wireless communications module, in accordance with an embodiment;

FIG. 6 illustrates an IID provided in the form of a beverage cup that includes a straw as the IID mouthpiece, in accordance with an embodiment;

FIG. 7 illustrates an IID provided in the form of a beverage bottle that includes an opening as the IID mouthpiece, in accordance with an embodiment;

FIG. 8 illustrates a cup holder that can be provided to hold/support an IID beverage-housing disguise, in accordance with an embodiment; and

FIG. 9 illustrates a schematic diagram of an IID system wherein an IID housing device communicates either wired or wirelessly with a user interface and display mounted remotely on a vehicle dashboard, in accordance with an embodiment.

DETAILED DESCRIPTION

The particular values and configurations discussed in these non-limiting examples can be varied and are cited merely to illustrate one or more embodiments and are not intended to limit the scope thereof.

A beverage disguise for hand held breathalyzer interface of ignition interlock system can be provided in the form of a non-alcoholic beverage container. The non-alcoholic beverage container can be provided in the mock form of a disposable coffee cup, a paper cup, a soda can and a soft drink bottle, just to name a few and without limitation.

Referring to FIG. 1, which is labeled as “prior art”, a hand held user interface 5 of a typical breathalyzer and ignition interlock system is illustrated. There numerous styles, configurations, brands and manufacturers of such systems, therefore it should be appreciated that the present disclosure is not limited to the device provided in FIG. 1 for exemplary purposes only. The hand held user interface 5 includes a mouthpiece 10, a housing 20 connected to the mouthpiece 10 to accept user breath, a display screen 23, status indicator lights 27, alcohol analyzing electronics and sensors 25 to analyze user breath alcohol content, a vent 30 to exhaust user breath passing through the housing 20 for analysis, and wired connection 35 to a control module (e.g.,
vehicle base station) installed within a motor vehicle for controlling vehicle ignition. The location of the mouthpiece 10, display screen 23, status indicator lights 27, and vents can vary according to manufacturer design. For example, it would be appreciated that the mouthpiece can be located in a manner that it is protruding from the side of the device rather than from the top as depicted in the example of FIG. 1. An IID housing disguise in accordance with features of the embodiments can logically be configured to accommodate any design.

[0042] Modern ignition interlock devices use an ethanol-specific fuel cell for a sensor. A fuel cell sensor is an electrochemical device in which alcohol undergoes a chemical oxidation reaction at a catalytic electrode surface (platinum) to generate an electric current. This current is then measured and converted to an alcohol equivalent reading. Although fuel cell technology is not as accurate or reliable for a sensor as infrared spectroscopy technology used in evidentiary breathalyzers, they are cheaper and tend to be more specific for alcohol. The devices keep a record of the activity on the device and the interlocked vehicle’s electrical system. This record, or log, is printed out or downloaded each time the device’s sensors are calibrated, commonly at 30, 60, or 90-day intervals. Authorities may require periodic review of the log. If violations are detected, then additional sanctions can be implemented. Periodic calibration is performed using either a pressurized alcohol-gas mixture at a known alcohol concentration, or with an alcohol breath arrangement that contains a known alcohol solution.

[0043] The costs of installation, maintenance, and calibration are generally paid by the offender, and typically are about $75 per month. In the United States, the National Highway Traffic Safety Administration’s NHTSA Conforming Products List maintains a list of federally approved IID devices.

Many countries are requiring the ignition interlock as a penalty for drivers convicted of driving under the influence, especially repeat offenders. Most U.S. states now permit judges to order the installation of an IID as a condition of probation for repeat offenders, and for first offenders in some states, law may mandate installation.

[0044] FIG. 2 illustrates an embodiment of an IID housing disguise 40 provided in the form of a beverage container. The illustrated container appears like a coffee cup with a removable lid; however, this design is provided for exemplary purposes only. The IID housing disguise 40 can be provided in numerous other formats as mentioned hereinbefore, such as a coffee cup, a fountain drink cup, a soda can, a soft drink bottle. The IID housing disguise 40 as illustrated can accept the hand held user interface 5 of an IID. The IID housing disguise 40 can sometimes include an IID housing disguise mouthpiece interface 45 and an IID housing disguise vent 49. Locations of the mouthpiece interface 45 and vent 49 are illustrated without the intent of limiting the present invention. Although the mouthpiece interface 45 is shown as part of a lid 42 of the housing disguise in FIG. 2, it should also be appreciated that the mouthpiece interface 45, if needed, could also be integrated with the side or wall 41 of the housing disguise 40. The IID housing disguise mouthpiece interface 45, if provided, can be placed in fluid connection by a flexible tube 43 to a mouthpiece 10 of a hand held user interface 5. In some installments, the mouthpiece interface 45 and flexible tube 43 may not be required because manufacture design of the IID mouthpiece 10 is configured or provided in a manner that it can project through the side/wall 41 or lid 42 of the housing disguise 40 (e.g., the IID mouthpiece is long enough to project through the lid or wall). The IID housing disguise vent 49, if provided, can allow breath exhausted from the vent 30 of the hand held interface contained in the IID housing disguise 40 to also exhaust from the IID housing disguise 40. Wired connection 35 can also be achieved through an open bottom of the IID housing disguise 40, in which case this open bottom will serve adequately as a vent and the disguise vent 49 would not be necessary or would be supplemental. Nevertheless, disguise vent 49 is illustrated as it should be appreciated that venting in some form is operationally necessary for the IID contained in the IID housing disguise 40.

[0045] FIG. 3 illustrates an IID housing disguise 40 in the shape of a soda can holding/containing the hand held user interface 5 of an IID therein and including a window 47 cut into the side/wall 41 of an IID housing disguise 40 to allow users to see the display screen 22 and status indicator lights 27 disposed on the enclosed hand held user interface 5. Also shown is the mouthpiece 10/45 protruding through the side/wall 41 of the soda can disguise.

[0046] FIG. 4 illustrates an IID housing disguise 40 holding/containing breath analyzing functionality of an IID therein and including a display screen 53 and status indicator lights 57 integrated into the side of IID housing disguise 40 to allow users to see the commands on the display screen 53 and status indicator lights 57 disposed on the IID housing 40. A user interface 59 can also be integrated into the side of IID housing 40 to allow a user to operate the IID.

[0047] It should be appreciated that communications can be maintained between the IID 40 and a base station 65 using wired communications 35 or wireless communications 60. Referring to FIG. 5, an IID housing disguise 40 is illustrated that includes a wireless communications module 60. Wireless communication module 60 can support wireless communication with a base station 65 installed within a motor vehicle associated with the IID 40. The wireless communication module 60 can be a Bluetooth wireless communications module to support data synchronization and communications between the IID 40 and the base station 65.

[0048] FIG. 6 illustrates an IID 70 provided in the form of a beverage cup that includes a straw 75 as the IID mouthpiece. The straw 75 can be used by a user to blow into the IID 70. As also explained in FIG. 2, it should be appreciated that the straw 75 can be placed into fluid communication with mouthpiece 10 on an IID 40 that is being held within the IID 70. The IID 70 can also include a vent 89 for the exhaust of breath that is placed into the device by straw 75.

[0049] FIG. 7 illustrates an IID 80 provided in the form of a beverage bottle that includes an opening 85 as the IID mouthpiece. The opening 85 can be used by a user to blow into the IID 80. As also explained in FIGS. 2 and 6, it should be appreciated that the opening 85 can be placed into fluid communication with a mouthpiece 10, if needed, that can be carried inside the bottle-like IID 80. The IID 80 can also include a vent 89 for the exhaust of breath that is placed into the device by opening 85.

[0050] FIG. 8 illustrates a cup holder 90 that can be provided to hold/support an IID beverage-housing disguise 70. The cup holder 90 can be mounted at a base 95 to a dashboard 98 of an associated motor vehicle. The cup holder 90 can safely hold an IID 70 while it is not in use. When used, wiring 25 is shown connecting the IID 70 with a base station mounted to a vehicle. Otherwise, communications with a base station can be wireless as described in detail above.
FIG. 9 illustrates a schematic diagram of an IID system wherein an IID beverage housing disguise 100 can communicate either wired 115 or wirelessly 117 with a user interface 110 including keyboard 120 and display 125 mounted remotely on a vehicle dashboard 130. The user interface 110 can also be incorporated with the cup holder 90. It should be appreciated now given the foregoing description that the display 125 and functions key 120 for an IID system do not have to be integrated directly into the hand held user interface associated with the mouthpiece used to access user breath. Directions and user inputs (other than breath specimen) can be provided on the remote user interface. Such an arrangement can also improve safety during vehicle operation.

Based on the foregoing, it can be appreciated that various embodiments and alternative embodiments can be implemented. For example, in one embodiment a breath alcohol ignition interlock device can comprise a mock beverage housing including at least one of breath alcohol electronics and a hand held breath alcohol analyzer wherein; a mouthpiece in fluid communication with an alcohol sensor associated with the at least one of breath alcohol electronics and a hand held breath alcohol analyzer; and a vent exhausting breath from the mock beverage housing. In another embodiment, the mock beverage container housing can be provided in the disguise of at least one of, for example, a coffee cup, a fountain drink cup, a soda can, a soft drink bottle, and so forth, thereby disguising the hand held breath analyzer as a beverage container. In another embodiment, the mouthpiece can be provided in the disguise of at least one of: a coffee cup lid, a fountain drink cup straw, a soda can opening, a soft drink bottle top. In yet another embodiment, the mock beverage container housing accepts and holds therein a hand held interface of a breathalyzer ignition interlock device. In still another embodiment, the mock beverage container housing can be provided in the disguise of at least one of, for example, a coffee cup, a fountain drink cup, a soda can, a soft drink bottle, thereby disguising the hand held breath analyzer as a beverage container.

In another embodiment, the mouthpiece can be provided in the disguise of at least one of: a coffee cup lid, a fountain drink cup straw, a soda can opening, a soft drink bottle top. In other embodiments, the mouthpiece can be in fluid connection with a second mouthpiece associated with said handheld interface of a breathalyzer ignition interlock device. In still other embodiments, the exhaust allows analyzed breath exiting the hand held interface of a breathalyzer ignition interlock interface. In still other embodiments, the mouthpiece can be in fluid connection with a second mouthpiece associated with said handheld interface of a breathalyzer ignition interlock device. In another embodiment, the exhaust allows analyzed breath exiting the hand held interface of a breathalyzer ignition interlock interface. In another embodiment, a wireless communication module can support communication with a base station installed within a motor vehicle. In still another embodiment, the wireless communication module can comprise a Bluetooth wireless communications module. In still further embodiments, the Bluetooth wireless communications module can support data synchronization and communications with said base station.

It will be appreciated that variations of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also, that various presently unforeseen or anticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.

What is claimed is:

1. A mock beverage container housing for concealment and containment of a hand held interface section of an ignition interlock system, comprising:
 a top; a bottom; and
 at least one sidewall separating the top and the bottom and forming a shape for the mock beverage container housing, wherein the mock beverage container housing formed by the top, the bottom and the at least one sidewall accepts and holds therein the hand held interface, and wherein an opening is formed in at least one of the sidewall and top to provide access to a mouthpiece, the mouthpiece configured to facilitate fluid communication with a breath alcohol sensor associated with the hand held interface.

2. The mock beverage container of claim 1, wherein the at least one sidewall further comprises a window formed therein to provide access to a screen of the hand held interface.

3. The mock beverage container of claim 1, wherein at least one of said sidewall and said bottom further comprises at least one opening operable as an exhaust for releasing human breath blown into the mouthpiece and the mock beverage.

4. The mock beverage container of claim 1, wherein said mock beverage container housing is provided in a disguise of at least one of: a coffee cup, a fountain drink cup, a soda can, a soft drink bottle, thereby disguising the hand held breath alcohol analyzer as a beverage container.

5. The mock beverage container of claim 1, wherein the mouthpiece is part of and in direct fluid connection with the hand held interface of the ignition interlock device.

6. The mock beverage container of claim 1, wherein the mouthpiece includes a first mouthpiece integrated with the mock beverage container and is in fluid communication with a second mouthpiece that is part of and integrated with the ignition interlock device.

7. The mock beverage container of claim 6, wherein the first mouthpiece is provided in the disguise of at least one of: a coffee cup lid, a fountain drink cup straw, a soda can opening, a soft drink bottle top.

8. The mock beverage container of claim 1, further comprising wireless communication module supporting communication with a base station installed within a motor vehicle.

9. The mock beverage container of claim 8, wherein said wireless communication module comprises a Bluetooth wireless communications module.

10. A breath alcohol ignition interlock device container, comprising:
 a mock beverage container housing including a top, a bottom and at least one sidewall connecting the top and the bottom, the mock beverage container housing configured to contain and conceal a hand held interface portion of an ignition interlock system, wherein the hand held interface including at least one of breath alcohol electronics and a hand held breath alcohol analyzer therein; an opening adapted to enable a mouthpiece to extend from the hand held interface through at least one of the side wall or the top, wherein the mouthpiece provides fluid communication between a user and an alcohol sensor.
associated with the at least one of breath alcohol electronics and a hand held breath alcohol analyzer; and an opening formed on the mock beverage container for exhausting breath blown into said mock beverage housing via the mouthpiece.

11. The breath alcohol ignition interlock device container of claim 10, wherein the mouthpiece is formed as part of said top to represent a removable lid and the mouthpiece is configured for placement into fluid communication with the alcohol sensor.

12. The breath alcohol ignition interlock device container of claim 10, wherein at least one opening is formed in at least one of the sidewall or bottom and is operable as an exhaust for releasing human breath blown into the mock beverage container for processing by said breath alcohol sensor and concealed by said mock beverage container.

13. The breath alcohol ignition interlock device container of claim 10, wherein the at least one sidewall includes a window formed therein to provide access to a screen associated with the hand held interface portion.

14. A mock beverage container provided in the form of at least one of: a coffee cup, a fountain drink cup, a soda can, a soft drink bottle, and configured to contain and conceal a hand held breath alcohol analyzer section of an ignition interlock system and disguise it as a beverage container;

a mouthpiece interface formed in at least one of a side of the mock beverage container or a lid-looking top, the mouthpiece configured to provide fluid communication of breath from a user with an alcohol sensor associated with the hand held breath alcohol analyzer section; a window formed on the side of the mock beverage container providing access to a user interface including a display screen associated with the hand held breath alcohol analyzer section; and an opening formed on the mock beverage container housing for exhausting breath blown into the hand held breath alcohol analyzer section and the mock beverage container housing via the mouthpiece.

15. The mock beverage container of claim 14, wherein the opening is formed in a bottom of the mock beverage container and is adapted to enable electric wiring connected to the hand held breath analyzer section to pass through the bottom for connection to a base unit of the ignition interlock system located outside of said mock beverage container.

16. The breath alcohol ignition interlock device container of claim 14, wherein said mouthpiece further comprises at least one of a through hole or integrated straw formed in at least one of the side or a top of the mock beverage container.

* * * * *