(54) 发明名称
2次电池的充放电电路以及电池组

(57) 摘要
本发明提供一种2次电池的充放电电路以及电池组，其能够结合各种状况，自发地进行2次电池的充电动作和放电动作的自动的切换。2次电池的充放电电路可以进行基于电源电压的向2次电池(E2)的充电和从2次电池向外部设备(3)提供电力。并且，具有：在电2次电池(E2)侧流动电流的充电方向和从2次电池(E2)向外部设备(3)侧流动电流的放电方向的双方中，可以调节输出的双向调节器(10)；检测在2次电池(E2)中流动的电流的方向的充放电检测电路(20)；以及根据充放电检测电路(20)的检测，切换双向调节器(10)的动作方向的切换控制电路(30)。
1. 一种 2 次电池的充放电电路，进行基于电源电压的对 2 次电池的充电和从 2 次电池向外设备的电力供给，其特征在于，

具有：

双向调节器，其在向 2 次电池侧流动电流的充电方向和从 2 次电池向外设备侧流动电流的放电方向的双方中调节电流或者电压；

充放电检测电路，其检测在 2 次电池中流动的电流的流向；以及

切换控制电路，其根据该充放电检测电路的检测结果，将所述双向调节器的动作方向切换到所述充电方向或者所述放电方向。

所述充放电检测电路具有：

在 2 次电池的充电电流和放电电流流动的电流路径上串联连接的一个或者多个场效应晶体管；

为使该场效应晶体管的两端电压成为规定电压而向栅极端子提供偏置电压的单元；以及

比较所述场效应晶体管的两端电压的比较电路。

所述双向调节器被构成为，通过使晶体管进行开关动作来调节输出的开关控制和使晶体管的导通电阻连续变化来调节输出的线性控制进行降压动作。

所述充放电电路还具有控制单元，该控制单元根据电源电压和/或电池电压，将所述双向调节器的降压动作时的控制方式切换到开关控制或者线性控制。

2. 一种 2 次电池的充放电电路，进行基于电源电压的对 2 次电池的充电和从 2 次电池向外设备的电力供给，其特征在于，

具有：

双向调节器，其在向 2 次电池侧流动电流的充电方向和从 2 次电池向外设备侧流动电流的放电方向的双方中调节电流或者电压；

充放电检测电路，其检测在 2 次电池中流动的电流的流向；以及

切换控制电路，其根据该充放电检测电路的检测结果，将所述双向调节器的动作方向切换到所述充电方向或者所述放电方向。

所述双向调节器具有串联连接在 2 次电池的充电电流和放电电流的电流路径上，进行输出调节的多个场效应晶体管；

所述充放电检测电路比较该双向调节器的多个场效应晶体管的两端电压，检测出电流的流向。

所述双向调节器被构成为，通过使晶体管进行开关动作来调节输出的开关控制和使晶体管的导通电阻连续变化来调节输出的线性控制进行降压动作。

所述充放电电路还具有控制单元，该控制单元根据电源电压和/或电池电压，将所述双向调节器的降压动作时的控制方式切换到开关控制或者线性控制。

3. 一种 2 次电池的充放电电路，进行基于电源电压的对 2 次电池的充电和从 2 次电池向外设备的电力供给，其特征在于，

具有：

双向调节器，其在向 2 次电池侧流动电流的充电方向和从 2 次电池向外设备侧流动电流的放电方向的双方中调节电流或者电压；
充放电检测电路，其检测在2次电池中流动的电流的流向；
切换控制电路，其根据该充放电检测电路的检测结果，将所述双向调节器的动作方向切换到所述充电方向或者所述放电方向；以及
进行电源电压的检测的电源电压检测电路；
根据所述电源电压检测电路的检测，仅在电源电压低于所述2次电池的满充电电压时输入电源电压，进行2次电池的充电；
所述双向调节器包括构成，通过使晶体管进行开关动作来调节输出的开关控制和使晶体管的导通电阻连续变化来调节输出的线性控制进行降压动作；
所述充放电电路还具有控制单元，该控制单元根据电源电压和/或电池电压，将所述双向调节器的降压动作时的控制方式切换到开关控制或者线性控制。
4. 根据权利要求3所述的2次电池的充放电电路，其特征在于，
具有：能够切断电源电压的输入的第1开关元件；以及
在电源电压高于所述2次电池的满充电电压时关断所述第1开关元件，切断电源电压的输入的单元。
5. 根据权利要求3所述的2次电池的充放电电路，其特征在于，
所述双向调节器被构成为能够进行升压动作，
在2次电池充电时，当充电电压接近电源电压时，所述双向调节器开始升压动作，向2次电池提供充放电电流。
6. 一种2次电池的充放电电路，进行基于电源电压的对2次电池的充电和从2次电池向外设备的电力供给，其特征在于，
具有：
双向调节器，其在向2次电池流放电流的充电方向和从2次电池向外部设备流放电流的放电方向的双方中调节电流或者电压；
充放电检测电路，其检测在2次电池中流动的电流的流向；以及
切换控制电路，其根据该充放电检测电路的检测结果，将所述双向调节器的动作方向切换到所述充电方向或者所述放电方向，
在从2次电池向外部设备的放电过程中，当电池电压接近所述外部设备的最低动作电压时，所述双向调节器开始升压动作，向外部设备进行电压供给；
所述双向调节器被构成为，通过使晶体管进行开关动作来调节输出的开关控制和使晶体管的导通电阻连续变化来调节输出的线性控制进行降压动作；
所述充放电电路还具有控制单元，该控制单元根据电源电压和/或电池电压，将所述双向调节器的降压动作时的控制方式切换到开关控制或者线性控制。
7. 根据权利要求6所述的2次电池的充放电电路，其特征在于，
在开始所述所述双向调节器的放电时的升压动作的电池电压的阈值以及与设定该升压动作的电池电压的阈值中设置滞后。
8. 根据权利要求1～5、6、7中的任意一项所述的2次电池的充放电电路，其特征在于，
具有：
异常检测电路，其检测2次电池的过充电和/或过放电；以及
控制电路，其根据所述异常检测电路的检测，切断所述双向调节器的输入和/或输出。
9. 一种 2 次电池的充放电电路，进行基于电源电压的对 2 次电池的充电和从 2 次电池向外部设备的电力供给，其特征在于，

具有：
双向调节器，其在向 2 次电池侧流动电流的充电方向和从 2 次电池向外部设备侧流动电流的放电方向的双方中调节电流或者电压；
充放电检测电路，其检测在 2 次电池中流动的电流的流向；
切换控制电路，其根据该充放电检测电路的检测结果，将所述双向调节器的动作方向切换到所述充电方向或者所述放电方向；
可切断对外部设备的输出的第 2 开关元件；
检测输出电压的输出电压检测电路；以及
在输出电压超过了基准值时关断所述第 2 开关元件的控制电路。
所述双向调节器被构成为，通过使晶体管进行开关动作来调节输出的开关控制和使晶体管的导通电阻连续变化来调节输出的线性控制进行降压动作，
所述充放电电路还具有控制单元，该控制单元根据电源电压和 / 或电池电压，将所述双向调节器的降压动作时的控制方式切换到开关控制或者线性控制。

10. 根据权利要求 1～5、6、7、9 中的任意一项所述的 2 次电池的充放电电路，其特征在于，

具有：
设置在连接所述电源电压和 2 次电池的电流路径上的熔丝；
检测所述电源电压以及输入电流的电压电流检测电路；以及
与所述熔丝串联连接的第 3 开关元件，
在所述电源电压或者输入电流超过限制值时，导通所述第 3 开关元件，切断所述熔丝。

11. 根据权利要求 10 所述的 2 次电池的充放电电路，其特征在于，
所述第 3 开关元件，兼用所述双向调节器电路的输出调节用的晶体管而构成。

12. 一种电池组，其特征在于，
将 2 次电池和权利要求 1～5、6、7、9 中的任意一项所述的 2 次电池的充放电电路设置
在封装内来进行了一体化。
2 次电池的充放电电路以及电池组

技术领域
[0001] 本发明涉及对例如锂离子电池等 2 次电池进行充电或放电的 2 次电池的充放电电路以及封装 2 次电池而构成的电池组。

背景技术
[0002] 例如，在便携电话或一部分数字照相机等，可以在装置中安装着 2 次电池的状态下进行充电的系统中，如图 19 所示，一般在充放电电路 5 中具有双向调节器电路 120，通过该双向调节器电路 120 调节充电时或放电时的电流或电压。此外，一般根据与电源装置 2 或作为电力供给目标的电池使用设备(set device)3 连接的端子的切换状态，进行双向调节器电路 120 的充电动作和放电动作的切换。即，根据端子连接切换电路 110 的切换状态，在连接了电源装置 2 时，使双向调节器电路 120 进行充电动作；在没有连接电源装置 2 时，使双向调节器电路 120 进行放电动作。
[0003] 此外，作为与本发明相关联的技术，公开了以下技术。例如，在专利文献 1 中公开了以下技术：在由主电源和辅助电源（2 次电池）提供电力的电源装置中，利用双向变换器在主电源的电力剩余时对辅助电源进行充电，在主电源的电力不足时从辅助电源进行放电。
[0004] 此外，在专利文献 2 中公开了以下技术：在连接了太阳能电池、蓄电池 (battery) 以及负载的太阳光发电设备中，在蓄电池的前级连接双向变换器，根据放电指令和充电指令使双向变换器进行充电动作和放电动作。
[0005] 此外，在专利文献 3 中公开了：在充电时作为降压型断续开关 (chopper) 电路来进行蓄电池的充电，在放电时作为升压型断续开关电路来进行蓄电池的放电的双向变换器。
[0006] 专利文献 1：特开平 6-245543 号公报
[0007] 专利文献 2：特开平 5-055467 号公报
[0008] 专利文献 3：特开 2003-304644 号公报

发明内容
[0009] 如所述，以前就有在 2 次电池上连接双向调节器，切换进行充电和来自 2 次电池的放电的充放电电路。但是，在现有的充放电电路中，在有无电源连接的一切条件下进行切换，或者为了进行充电动作和放电动作的切换，需要来自外部的指令。
[0010] 本发明者想到，若不根据来自外部的指令，而是根据各种状况由充放电电路自发地进行充电动作和放电动作的适当的切换，则可以将 2 次电池简单地应用到有便利性的各种用途中。
[0011] 该发明的目的是提供一种能够结合各种状况，自发地进行 2 次电池的充电动作和放电动作的适当的切换的充放电电路。
[0012] 本发明为了达成上述目的，做成以下构成：一种 2 次电池的充放电电路，可以进行基于电源电压的对 2 次电池的充电和从 2 次电池向外接设备的电力供给，其具有：双向调节
器，其在向 2 次电池侧流动电流的充电方向和从 2 次电池向外部设备侧流动电流的放电方向的双方中，可以调节电流或者电压。充放电检测电路，其检测出在 2 次电池中流动电流的流向。以及切换控制电路，其根据该充放电检测电路的检测结果，将前述双向调节器的动作方向切换至所述充电方向或者所述放电方向。

[0013] 根据这样的手段，例如，在 2 次电池的充电率低的状态下在电源端子上连接了 AC 适配器等电源装置时，在连接有电源装置的状态下外部设备的负载瞬时增大而产生电源供给的不足时，在电源装置的连接断开时等，产生电源的连接状态或外部负载的变化，不能维持双向调节器的之前的动作状态的情况下，在 2 次电池中流动电流的流向稍微变化。然后，能够检测出该变化来自发地切换此后的双向调节器的动作状态。此外，此时的电流的流向的变化，在需要充电时表示充电方向，在可进行放电时表示放电方向，根据此时的连接设备或者连接电源的状态以及 2 次电池的充电率等表示恰当的方向，因而基于该检测的双向调节器的动作切换是对应于各种状况的恰当的切换。

[0014] 理想的是，所述充放电检测电路具有：在 2 次电池的充电电流和放电电流流动的电流路径上串联连接的一个或者多个场效应晶体管（FET1、FET2；图 2、图 5）；为使该场效应晶体管的两端电压成为规定电压而向栅极端子提供偏置电压的单元（B1，B2；图 2，或者 11，15；图 5）；以及比较所述场效应晶体管的两端电压的比较电路（Comp1，Comp2；图 2，或者 21；图 5）。

[0015] 根据这样的结构，充放电检测电路在充电时或放电时流过较大电流时成为小的电阻，能够实现低损耗，即使在切换电流方向时成为小的电流值，也可以准确地检测出其流向的变化。

[0016] 而且，理想的是，所述双向调节器具有在 2 次电池的充电电流和放电电流的电流路径上串联连接，并进行输出调节的多个场效应晶体管（FET1，FET2；图 2，图 5），所述充放电检测电路比较该双向调节器的多个场效应晶体管的两端电压，检测出电流的流向。

[0017] 通过这样的结构，能够通过元件的并用化来实现成本的降低或者损耗的降低。此外，通过双向调节器的通常动作，导通了场效应晶体管时，可以成为与向该场效应晶体管提供了上述用于检测电流方向的偏置电压的状态相同的晶体，因而根据此时的晶体管的两端电压，也可以准确地检测出电流的流向的变化。

[0018] 而且，理想的是，具有进行电源电压的检测的电源电压检测电路（40；图 7），仅在电源电压低于所述 2 次电池的满充电电压时，输入电源电压，可以进行 2 次电池的充电。

[0019] 具体地说，具有：可切断电源电压的输入的第 1 开关元件（FET5；图 8）；以及在电源电压高于所述 2 次电池的满充电电压时，关断所述第 1 开关元件，切断电源电压的输入的单元。

[0020] 此外，具体地说，所述双向调节器被构成为可进行升压动作，在 2 次电池充电时，当电压接近电池电压时，所述双向调节器开始升压动作，于 2 次电池提供充电电流。

[0021] 通过这样的结构，即使成为由于元件损坏等而将电源电压直接施加到 2 次电池的状况，由于电源电压在满充电电压以下，因而也可以在 2 次电池中不产生过充电，确保高安全性。此外，通过充电时的升压动作，即使电源电压在满充电电压以下，也可以使 2 次电池满充电。

[0022] 而且，理想的是，所述双向调节器（10；图 10）被构成为通过使晶体管进行开关动
作来调节输出的开关控制和使晶体管的导通电阻连续变化来调节输出的线性控制，可进行降压动作，还具有控制单元 (51)，其根据电源电压以及 / 或者电池电压，将所述双向调节器的降压动作时的控制方式切换到开关控制或者线性控制。

【0024】通过这样的结构，通过在充电电压稍微低于电源电压的期间里进行线性控制，能够减少充电时的损耗，实现充电效率的提高。

【0025】而且，理想的是，在从 2 次电池向外部设备的放电中，当电池电压接近所述外部设备的最低动作电压时，所述双向调节器开始升压动作，向外部设备提供电力。

【0026】此外，可以在开始所述双向调节器的放电时的升压动作的电池电压的阈值以及停止该升压动作的电池电压的阈值中设置滞后 (V13～V12；图 14)。

【0027】通过这样的结构，即使没有电源电压的输入，也充分地使用 2 次电池的电力，能够长时间持续驱动外部设备。此外，通过上述的滞后，也可以避免在升压动作的转换时，升压动作的开始状态和停止状态抖动而成为不稳定状态。

【0028】而且，理想的是，具有：异常检测电路 (71；图 15)，其检测 2 次电池的过充电以及 / 或者过放电；以及控制电路 (72)，其根据所述异常检测电路的检测，切断所述双向调节器的输入以及 / 或者输出。

【0029】此外，理想的是，还具有：熔丝 (93；图 17)，其设在连接所述电源电压和 2 次电池的电流路径上，电压电流检测电路 (92)，其检测所述电源电压以及输入电流，以及与所述熔丝串联连接的第 3 开关元件 (FET3)，在所述电源电压或者输入电流超过限制值时，导通所述第 3 开关元件，切断所述熔丝。

【0030】而这样的保护手段，能够对应各种异常时，保护 2 次电池或者外部设备。

【0031】此外，为了达成上述目的，本发明为一种电池组，在内置了 2 次电池的电池组中，将上述的 2 次电池的充放电电路设置在封装内，与 2 次电池一体化。通过做成这样的结构，能够将 2 次电池简单地应用到具有便利性的各种用途中。

【0032】另外，在该发明内容的说明中，将表示与实施方式的对应关系的附图标记记载在括号内，但本发明并不限于此。

【0033】如以上所说明的那样，根据本发明，能够根据各种状况通过充电电路自动地进行 2 次电池的充电动作和放电动作的恰当的切换，由此具有可以简单地将 2 次电池应用到便利性高的各种用途中的效果。

附图说明

【0034】图 1 是表示本发明的第一实施方式的 2 次电池的充放电系统的概要的框图；

【0035】图 2 是具体表示图 1 的充放电检测电路的部分的结构图；

【0036】图 3A 是表示在图 2 的充放电检测电路中检测出充电时的状态的说明图；

【0037】图 3B 是表示在图 2 的充放电检测电路中检测出放电时的状态的说明图；

【0038】图 4 表示由一个晶体管构成图 1 的充放电检测电路的电流电压转换元件的一个电路例；
图 5 是表示第 2 实施方式的充放电系统的电路结构图；
图 6 是说明图 5 的双向调节器电路的各功能的图；
图 7 是表示第 3 实施方式的充放电系统的概略结构的框图；
图 8 是图 7 的充放电系统的电路结构图；
图 9 是表示第 3 实施方式的充放电系统的变形例的电路结构图；
图 10 是表示第 4 实施方式的充放电系统的概略结构的框图；
图 11 是表示假设与充放电系统连接的 3 种电源装置的输出特性的特性曲线图；
图 12 是说明图 10 的充放电系统的充电时的动作的特性曲线图；
图 13 是表示第 5 实施方式的充放电系统的电路结构图；
图 14 是说明图 13 的充放电系统的放电时的动作的特性曲线图；
图 15 是表示第 6 实施方式的充放电系统的电路结构图；
图 16 是表示第 7 实施方式的充放电系统的电路结构图；
图 17 是表示第 8 实施方式的充放电系统的电路结构图；
图 18 表示本发明的电池组的实施方式的一例；
图 19 是表示现有的充放电系统的一例的框图。
符号说明
2 电源装置
3 电池使用设备
E2 2 次电池
10 双向调节器电路
11 第 1SW 控制电路
15 第 2SW 控制电路
20 充放电检测电路
21 检测电路
30 切换控制电路
FET1 ~ FET4 晶体管
B1, B2 偏压电路
Comp1, Comp2 比较器
40 电源电压检测电路（高电压的输入切断控制用）
41 开关电路
50 电源电压检测电路（用于向线性动作的切换控制）
53 电池电压检测电路（用于向线性动作的切换控制）
61 电池电压检测电路（用于向升压输出的切换控制）
71 电压电流检测电路（用于过充电・过放电的检测）
72 保护动作控制电路
81 电压检测电路（用于过大电压输出的检测）
FET6 开关元件
82 开关控制电路
92 电压电流检测电路（用于异常输入的检测）
具体实施方式

[0081] 以下根据附图说明本发明的实施方式。

[0082]（第1实施方式）

[0083]图1是表示本发明的第1实施方式的2次电池的充放电系统概要的框图，图2是具体表示该充放电系统中的充电检测电路结构图。

[0084]第1实施方式的充放电系统是例如从AC适配器等电源装置2输入电源电压来对2次电池E2进行充电，或者从2次电池E2向例如便携电话或数字照相机等电池使用设备3提供电力的系统。在该充放电系统中，由除了电源装置2、电池使用设备3以及2次电池E2以外的部分构成充放电电路。

[0085]该充放电系统具有：AC适配器等电源装置2、例如锂离子电池或镍氢电池等2次电池E2、输入电源电压向2次电池E2输出充电电流或者2次电池E2的电池电压向电池使用设备3提供电压的双向调节器电路10、检测2次电池E2的电流的流向即充电方向或放电方向的充放电检测电路20、以及根据该充放电检测电路20的输出将双向调节器电路10的动作切换到充电动作或者放电动作的切换控制电路30等。

[0086]双向调节器电路10是通过晶体管的开关控制或者晶体管的导通电阻的控制，来进行恒流输出或者升压•降压输出等输出调节的电路。此外，通过切换控制电路30的控制，可以执行将电源装置2侧作为输入来调节2次电池E2侧的输出的充电动作，和将2次电池E2侧作为输出来调节电池使用设备3侧的输出的放电动作。

[0087]例如图2所示，充放电检测电路20由在2次电池E2与电源端子10之间串联连接的两个晶体管FET1、FET2向这些晶体管FET1、FET2的两端提供低电压且产生大致恒定的电压的栅偏压的偏压电路B1、B2、通过比较该两个晶体管FET1、FET2的两端的电压，进行表示电流方向的信号输出的两个比较器Comp1、Comp2等构成。

[0088]两个晶体管FET1、FET2例如是P沟道型MOSFET，以体二极管相互反向的方式分别连接，由此，在晶体管FET1、FET2中的某一方中，在源-漏间的通道中流过电流，在源-漏之间输出被控制的电压。

[0089]偏压电路B1、B2，在晶体管FET1、FET2中流过的电流较大时，使其源-漏间电阻变小，避免损耗增大；在电流较小的时候，使源-漏间电阻变大，使源-漏间的电压上升到可检测的电平。在源-漏间产生的电压最好是例如20mV～50mV等可检测且较低的电压，该电压值并非必须是严格的恒压，大致成为上述电压就可以。因此，例如也可以由在各个漏极端子上连接电阻、在栅极端子上连接电阻的齐纳二极管等构成偏压电路B1、B2。

[0090]然后，对上述结构的充放电系统动作进行说明。

[0091]在图3A和图3B中表示说明了在检测出充电和检测出放电的各情况下的充放电检测电路的状态的图。

[0092]例如，在双向调节器电路10进行放电状态，在2次电池E2的充电率降低的状态下连接了输出容量大的电源装置2时，有时在双向调节器电路10中电流逆流，只流过充电方
向的电流。

【0093】在这样的情况下，如图 3A 所示，通过该充电方向的微小电流，在晶体管 FET1、FET2 的两端在 2 次电池 E2 侧产生可检测的低电压（例如 30mV ~ 100mV 以上），通过比较器 Comp1 检测出该电压后输出充电检测信号。

【0094】若输出充电检测信号，则切换控制电路 30 将双向调节器电路 10 的动作状态从放电动作切换到充电动作，由此充放电系统转移到充电状态。

【0095】此外，例如，在连接了电源装置 2 的状态下，双向调节器电路 10 进行放电动作，从 2 次电池 E2 向电池使用设备 3 提供电力的状态下，2 次电池 E2 的充电率降低，成为不能继续双向调节器电路 10 的放电动作的状态时，也存在通过来自电源装置 2 的电压，双向调节器电路 10 的电流逆流向，只流过充电方向的电流的情况。

【0096】在这种情况下，如上所述，通过输出充电方向的电流，进行从放电动作到充电动作的切换。

【0097】另一方面，在双向调节器电路 10 进行充电动作来对 2 次电池 E2 进行充电的状态下，在电源装置 2 被取下时，在双向调节器电路 10 中不继续进行充电动作，只流过放电方向的电流。

【0098】于是，如图 3B 所示，通过该放电方向的微小电流，在晶体管 FET1、FET2 的两端中，在负载 3 侧产生可检测的低电压（例如 30mV ~ 100mV 以上），通过比较器 Comp2 检测出该电压，输出放电检测信号。

【0099】当输出放电检测信号时，切换控制电路 30 将双向调节器电路 10 的动作状态从充电动作切换到放电动作，由此充放电系统被转移到放电状态。

【0100】图 4 表示在充电检测电路中由一个晶体管构成电流电压转换元件时的一个电路例。

【0101】图 2 的充电检测电路 20 中，作为将电流转换成电压的元件，以体二极管相互反向的方式连接两个晶体管 FET1、FET2 而构成，也可以如图 4 所示由一个晶体管 FETO 构成。在该电路例中设置了开关 26 和比较器 25，该开关 26 根据电流的流向来将晶体管 FETO 的背栅切换到源极或者漏极的两个端子，该比较器 25 根据晶体管 FETO 的两端电压切换开关 26 的连接。即使是这样的构成，也可以使用一个晶体管 FETO 进行控制，以使放电电流或者充电电流不流过体二极管，即使是微小电流也检测出电流的流向的变化。

【0102】如上所述，根据第 1 实施方式的充放电系统，能够通过充放电系统自发电地进行充电动作和放电动作的适当的切换，因而能够将 2 次电池容易应用到便利性高的各种用途中。例如，对通过 AC 适配器驱动的电池使用设备，仅仅将该充放电系统并联连接到电源端子上，就能够通过 2 次电池实现电池使用设备的暂时的无线化。此外，例如图 5 通过由充电电路将一个满充电的 2 次电池连接到其他空的 2 次电池上，可以使充电电流从一个 2 次电池流到另一个 2 次电池来实现电荷的分配。此外，能够简单地应用到在电源装置 2 的额定电力中暂时电力不足时自发电由 2 次电池提供电力来补充电热等各种用途中。

【0103】（第 2 实施方式）

【0104】在图 5 中表示第 2 实施方式的充放电系统的结构图，在图 6 中表示该充放电系统的双向调节器电路的动作方法的说明图。

【0105】第 2 实施方式的充放电系统，使充放电检测电路的晶体管 FET1、FET2 兼用作双向
调节器电路的晶体管 FET1, FET2, 其他结构与第 1 实施方式大致相同。

[0106] 该实施方式的双向调节器电路由以下各部分构成：在电源装置 2 与 2 次电池 E2 之间依次串联连接的第 1 晶体管 FET1、电抗器 L1, 第 2 晶体管 FET2; 在电抗器 L1 的一侧的端子与地之间连接的第 3 晶体管 FET3; 在电抗器 L1 的另一侧的端子与地之间连接的第 4 晶体管 FET4; 进行第 1 和第 3 晶体管 FET1, FET3 的驱动控制的第 1SW 控制电路 11; 以及进行第 2 和第 4 晶体管 FET2, FET4 的驱动控制的第 2SW 控制电路 15 等。

[0107] 如图 5 所示，第 1～第 4 晶体管 FET1～FET4 可以应用 P 沟道型 MOSFET 和 N 沟道型 MOSFET 等。

[0108] 如图 6 所示，该双向调节器电路通过第 1 晶体管 FET1 和第 3 晶体管 FET3 的开关控制可以进行充电时的降压动作和放电时的升压动作。此外，通过第 2 晶体管 FET2 和第 4 晶体管 FET4 的开关控制可以进行放电时的降压动作和充电时的升压动作。

[0109] 晶体管的控制方式可以应用脉冲宽度调制式或频率调制方式等开关控制，或者如串联 (series) 调节器或并联 (shunt) 调节器那样使晶体管的导通电阻连续变化的线性控制等各种方式。

[0110] 另外，虽未图示，但在第 1 和第 2SW 控制电路 11, 15 中输入表示 2 次电池 E2 的电压或电流的检测电压以及表示向电池使用设备 3 的输出电压的检测电压，并根据这些来调节向 2 次电池 E2 的充电电流或充电电压，或者调节向电池使用设备 3 的输出电压。

[0111] 该实施方式的充放电检测电路，作为将电流转换为电压的元件，使用了双向调节器电路的第 1 晶体管 FET1 和第 2 晶体管 FET2。并且，将它们的各个两端电压输入检测电路 21 中来监视电流的流向。

[0112] 另外，在该实施方式的电路结构中，在第 1 和第 2 晶体管 FET1, FET2 的中间设有产生电动势的电抗器 L1, 因而构成从一个晶体管 FET1, FET2 的各自的两端输入四个电压来检测电流的流向。如果是电抗器 L1 的连接位置不同的双向调节器电路，则可以省略中央侧的两个输入，只输入晶体管 FET1, FET2 的两端的两个电压来监视电流的流向。

[0113] 此外，在该实施方式中，可以如下进行构成第 1SW 控制电路 11 或者第 2SW 控制电路 15，为了在第 1 晶体管 FET1 或第 2 晶体管 FET2 中不断可以检测电流的流向的程度的低电压，在第 1 晶体管 FET1 或第 2 晶体管 FET2 进行导通动作时，而且电流少的情况下，驱动晶体管 FET1, FET2 以使导通电阻稍微变高。

[0114] 另外，或者构成以规定周期间歇性地进行基于检测电路 21 的电流方向的监视，并且如图 5 中以虚线所示，在进行电流方向的检测的时刻从检测电路 21 向 SW 控制电路 11, 15 输出其通知信号，在已输入了该通知信号时，从 SW 控制电路 11, 15 向晶体管 FET1, FET2 提供在低压或高压下动作的栅偏压。

[0115] 通过成为这样的构成，将双向调节器电路的晶体管 FET1, FET2 的配用作充放电检测电路的电流电压转换元件，能够得到与第 1 实施方式相同的作用。

[0116] （第 3 实施方式）

[0117] 图 7 是表示第 3 实施方式的充放电系统的概略结构的俯视图，图 8 是该充电系统电路结构图。另外，在图 8 中省略了充放电检测电路 20 和切换控制电路 30 的结构。

[0118] 在第 3 实施方式的充放电系统中，在第 2 实施方式的结构的基础上，附加了将所输入的电源电压限制到 2 次电池 E2 的满充电电压以下的结构。
即，在该实施方式的充放电系统中，在连接了电源装置 2 的电源端子与双向调节器电路 10 之间设有检测电源电压的电源电压检测电路 40 和在电源电压高于基准电压时切断电源电压的输入的开关电路 41。

电源电压检测电路 40 例如可以由电阻分割电路等构成。

如图 8 所示，开关电路 41 由在电源端子与双向调节器电路 10 之间串联连接的开关晶体管 FET5 以及比较电源电压检测电路 40 的检测电压与基准电压，控制 MOS 晶体管 FET5 导通及断开的控制电路 41a 构成。

使开关电路 41 断开的基准电压，可以设定成 2 次电池 E2 的满充电电压（例如 4.2V）或者比该电压稍低的电压（例如 3.8V ～ 4.2V）。

由于电源电压在满充电电压以下，因而双向调节器电路 10 构成为在充电电压在电源电压以上时，通过进行伴随升压动作的输出控制来使 2 次电池 E2 充电到满充电为止。

根据该实施方式的充放电系统，由于能够将电源电压的输入限制到 2 次电池 E2 的满充电电压以下，因此即使是因电路故障等产生电源电压直接施加到 2 次电池 E2 的状况，也能够防止 2 次电池 E2 过充电，确保高安全性。

在图 9 中表示第 3 实施方式的充放电系统的变形例。

另外，请如图 9 所示，切断电源电压的输入的开关元件也可以兼用双向调节器电路的第 1 晶体管 FET1。

（第 4 实施方式）

图 10 是表示第 4 实施方式的充放电系统的概略结构的框图，图 11 是表示作为所连接的电源装置而设的三种电源装置的输出特性的特性曲线图。

第 4 实施方式的充放电系统，在第 2 实施方式的基础上，附加了根据电源电压或充电电压，将充电时的双向调节器电路 10 的动作模式适当切换到开关控制模式和线性控制模式的功能。另外，在本实施方式中，对于充放电检测电路或其作用结构，省略了图示或说明，但与第 2 实施方式相同地具有这些结构。

为了实现上述功能，该实施方式的充放电系统在电源电压的输入端具有检测电压的电源电压检测电路 50。并且，构成为将该检测电压输入到切换控制电路 51 中，通过切换控制电路 51 来切换降压充电时的双向调节器电路 10 的动作模式。

在该实施方式的充放电系统中，假设如图 11 所示，作为电源电压来输入与 2 次电池 E2 的满充电电压的电压 V1，比满充电电压高的电压 V2，高得多的电压 V3 等多个大小的电源电压。

双向调节器电路 10 构成为在充电时的降压动作时，可以使用晶体管进行开关动作，来调节充电电压的开关控制模式；与串联调节器那样使晶体管的导通电阻连续变化来调节充电电压的线性控制模式。

在图 12 中表示说明该充放电系统的充电时的动作的特性曲线图。

在该实施方式的充放电系统中，在充电率低且充电电压也低的期间 D1 中，由于电源电压和充电电压的差大，因而不管电源电压的大小，双向调节器电路 10 进行开关动作来对 2 次电池 E2 进行充电。

一方面，在充电率从中等程度变高的期间 D2 中，由于电源电压与充电电压的差变小，因而根据电源电压的大小切换双向调节器电路的动作模式。即，当电源电压为比满充电
电压稍高的电压 V2 时，将双向调节器电路 10 的动作切换到线性控制模式，通过例如串联调节器的动作等降低电源电压，来对 2 次电池 E2 进行充电。
[0136] 另一方面，当电源电压为比充电电压低的电压 V1 时，需要进行升压动作，因而不用线性控制模式而使用开关控制模式来对 2 次电池 E2 进行充电。而且，当电源电压为比充电电压高的电压 V3 时，由于与充电电压的电压差不变小，因而不用线性模式，而是维持开关控制模式来对 2 次电池 E2 进行充电。
[0137] 像这样当电源电压比充电电压稍微高时，通过将双向调节器电路 10 设成线性控制模式，能够使双向调节器电路 10 中的损耗比维持开关控制模式时小，由此能够实现充电效率的提高。
[0138] 另外，如在图 10 中虚线所示，在 2 次电池 E2 的前级设置检测充电电压的电池电压检测电路 53，将该检测电压输入到切换控制电路 51 中，并且在切换控制电路 51 中比较电源电压和充电电压，在电源电压比充电电压稍高（例如 +0.1V ～ 0.4V）的期间，将双向调节器电路 10 的控制从开关控制模式切换到线性控制模式，通过串联调节器的动作来降低电源电压后对 2 次电池 E2 进行充电。根据这样的控制，也可以实现充电的效率的提高。
[0139] 第 5 实施方式）
[0140] 在图 13 中表示第 5 实施方式的充放电系统的电路结构图，在图 14 中表示说明该充放电系统的放电时的动作的特性曲线。
[0141] 第 5 实施方式的充放电系统在第 2 实施方式的结构的基础上，附加上了在 2 次电池 E2 的放电时，在电池电压接近电池使用设备 3 的最低动作电压时，使双向调节器电路 10 进行升压动作的功能。另外，在本实施方式中，关于充电及检测电路或其作用结构，省略了图示或者说明，但与第 2 实施方式相同地具有这些结构。
[0142] 在该实施方式的充放电系统中，为了实现上述功能，在 2 次电池 E2 的前级设有检测电池电压的电池电压检测电路 61。并且，向切换控制电路 30 输入该检测电压，放电时电池电压低于一定值时，通过开关控制来使双向调节器电路进行升压动作。
[0143] 如图 14 所示，将开始进行升压动作的电池电压设定为比电池使用设备 3 的最低动作电压 V11 稍低的第 1 限偏电压 V12。此外，在进行了放电时的升压动作时，即使途中对 2 次电池 E2 进行充电，电池电压稍微上升，若在下一个放电动作时不超过比第 1 限偏电压 V12 稍高的第 2 限偏电压 V13，则继续升压动作。
[0144] 这样，通过在停止升压动作的限偏电压 V13 与开始升压动作的限偏电压 V11 之间设定了一些电位差，能够防止切换升压动作的开始和停止时动作抖动而使动作变得不稳定。
[0145] 此外，当不转移到充电动作而继续进行放电时，电池电压到达最低电池电压 V14 时，为了防止 2 次电池 E2 的过放电，停止升压动作，停止对电池使用设备 3 提供电力。
[0146] 根据该实施方式的充放电系统，即使 2 次电池 E2 的电池电压成为电池使用设备 3 的最低动作电压以下，也能够继续提供电力直到放完 2 次电池 E2 的电力为止，因而有助于延长基于 2 次电池 E2 的电池使用设备 3 的可使用时间。
[0147] 第 6 实施方式）
[0148] 在图 15 中表示第 6 实施方式的充放电系统的电路结构图。
[0149] 第 6 实施方式的充放电系统，在第 2 实施方式的结构的基础上，附加了防止 2 次电
池E2的过充或过放电的保护功能。在本实施方式中，关于放电检测电路或进行充电和放电的切换的切换控制电路也省略了图示或者说明，但与第2实施方式相同地也具有这些结构。

【0150】为了实现上述保护功能，在该实施方式的充放电系统中，在2次电池E2的前级设有检测电池电压或是充放电电流的电压电流检测电路71；以及在从该电压电流检测电路71输出了过充或过放电的检测信号时，从电池使用设备或电源装置2切断2次电池E2的连接的保护用控制电路72。

【0151】保护用控制电路72例如通过在双向调节器电路的构成元件中，强制关断在电源装置2与2次电池E2之间串联连接的晶体管FET1、FET2中的某一个来进行2次电池E2的切断。例如，在过充电时关断晶体管FET1，在过放电时关断晶体管FET2，防止充电或过放电。

【0152】另外，也可以设置切断2次电池E2的充放电电流或者放电电流的专用开关元件，关断该开关元件。

【0153】此外，如图15中虚线所示，保护用控制电路72可以不向晶体管FET1、FET2的栅极端子直接输出关断的驱动信号来关断晶体管FET1、FET2，而是经由第1和第2SW控制电路61、15关断晶体管FET1、FET2。

【0154】通过这样的结构，能够防止2次电池E2的过充电或者过放电，做成安全性高的充放电系统。

【0155】（第7实施方式）

【0156】在图16中表示第7实施方式的充放电系统的电路结构图。

【0157】第7实施方式的充放电系统在第2实施方式的结构的基础上，附加了当电池使用设备3的输出电压超过最大额定电压时停止电压输出的保护功能。在本实施方式中，关于充放电检测电路或进行充放电动作和放电动作的切换的切换控制电路也省略了的图示或者说明，但与第2实施方式相同地也具有这些结构。

【0158】为了实现上述的保护功能，该实施方式的充放电系统具有：在电源端子或双向调节器电路的节点N1与电池使用设备3之间设置的开关元件FET6、检测输出电压的电压检测电路81、以及根据该检测电压导通・关断控制开关元件FET6的开关控制电路82。

【0159】通过成为这样的结构，例如在连接了比电池使用设备3的最大额定电压高的电压的电源装置2时，或者由于双向调节器电路的误动作而输出了高电压时，可以关断开关元件FET6来保护电池使用设备3。

【0160】（第8实施方式）

【0161】图17中表示第8实施方式的充放电系统的电路结构图。

【0162】第8实施方式的充放电系统在第2实施方式的结构的基础上，附加了在从电源端子输入了异常的高电压时切断熔丝93，完全切断对2次电池E2的输入的第2保护功能。在本实施方式中，关于充放电检测电路或者进行充放电动作和放电动作的切换的切换控制电路也省略了图示或者说明，但与第2实施方式相同地也具有这些结构。

【0163】为了实现上述的第2保护功能，该实施方式的充放电系统具有：在电源端子与双向调节器电路之间串联连接的熔丝93、检测输入电压以及输入电流的电压电流检测电路92、以及可以控制双向调节器电路的晶体管FET1、FET3、FET2来切断熔丝93的保护用控制
电路 94。

[0164] 在该实施方式的充放电系统中，首先，通过双向调节器电路的通开的保护功能（第 1 保护功能），在输入了过大电压时，关断晶体管 FET1 来切断输入的保护动作起作用。但是，在输入了更大的异常电压时，即使进行该保护动作，有时也成为如晶体管 FET1 被损坏等不可控制的状态，通过晶体管 FET1 输入异常电压或异常电流。

[0165] 在该实施方式的充放电系统中，在这种情况下，基于熔丝 93 的切断的第 2 保护功能起作用。

[0166] 因此，在第 2 保护功能中使用的电压电流检测电路 92，检测在第 1 保护功能中被关断的晶体管后级的电位点 N2 的电压。

[0167] 熔丝 93 可以使用在超过了限制电流时被切断的通开的熔丝、或者具有电阻成分，在超过了正常的输入功率时被切断的电阻熔丝等。

[0168] 保护用控制电路 94，在通过电压电流检测电路 92 检测出超过限制电压或者限制电流的输入时，输出强制性地导通在晶体管 FET1 与地之间连接的晶体管 FET3 的信号。由此，大电流流过无法控制而成为通电状态的晶体管 FET1 和被导通的晶体管 FET3，能够切断熔丝 93。

[0169] 同时，保护用控制电路 94 输出强制性地关断与 2 次电池 E2 串联连接的晶体管 FET2 的信号。由此，避免 2 次电池 E2 的放电电流流过为了切断熔丝 93 而导通的晶体管 FET3，能够防止 2 次电池 E2 的过放电。

[0170] 如上所述，根据该实施方式的充放电系统，能够在输入异常的过大电流时，不在 2 次电池 E2 中流过过大电流，切断熔丝 93 来切断过大电压的输入，因而能够实现确保更高的安全性。

[0171] 另外，在该实施方式中，保护动作控制电路 94 直接控制双向调节器电路的晶体管 FET2、FET3 来切断熔丝 93 或者防止 2 次电池 E2 的过放电，但也可以如在图 17 中以虚线所示，从保护动作控制电路 94 向第 1 和第 2SW 控制电路 11、15 输出信号，经由第 1 和第 2SW 控制电路 11、15 同样地控制晶体管 FET2、FET3。

[0172] 此外，为了熔丝 93 的切断或者防止此时的 2 次电池 E2 的放电电流而使用了双向调节器电路的晶体管，也可以设置专用的晶体管来进行这些处理。

[0173] （第 9 实施方式）

[0174] 在图 18 中表示本发明的电池组的实施方式的一例。

[0175] 该实施方式的电池组 100，在内置 2 次电池 E2 的封装 (package) 中内置了第 1～第 8 实施方式的充放电用的电路。

[0176] 在充放电电路中需要设置电抗器 L1 或者检测电压或电流的电阻，但这些可以利用可进行表面安装的体积小的元件，因而可以几乎不让封装变大地内置充放电电路。此外，控制系统的电路或控制电流和电压的晶体管等可以集成设置在一个或两个芯片的半导体上。

[0177] 输入输出端子 101 表示与电源装置 2 连接的两个端子和与电池使用设备 3 连接的两个端子，但若是能共用与电源装置 2 和电池使用设备 3 连接的端子的充放电电路，则可以共用这些端子而做成两个端子。

[0178] 根据这样的电池组 100，能够构成具有根据与外部设备或者电源装置的连接状态、
以及2次电池E2的充电状态，在适当的时刻自发地切换充电动作和放电动作的功能的蓄电池(battery)，因而能够将蓄电池功能简单地应用到各种用途中。

【0179】以上，根据实施方式说明了本发明，但本发明并不限于上述实施方式。例如，在第3～第8实施方式中表示的附加功能，可以汇总其中的多个或者全部功能，由一个充放电系统具有。此外，在实施方式中具体表示的2次电池的种类、电路结构或者动作内容的细节等，可以在不脱离本发明主旨的范围内进行适当的变更。

【0180】产业上的可利用性

【0181】该发明可以利用于对例如锂离子电池等2次电池进行充电或进行放电的2次电池的充放电电路，以及封装2次电池而构成的电池组。
图 4
图11

电压(V)

- V3 ≥ 4.5V 以上
- V2 = 4.3 ~ 4.5V
- V1 = 3.9 ~ 4.1V

电流(A)

电源装置3
电源装置2
电源装置1
根据电池电压的上升停止升压输出的电压V13

电池电压(V)

图14
图18

100 (电池组)

内置充放电电路·保护电路

101 (输入输出端子)