wo 2010/096233 A2 I 0K DR 00O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

oo AT
1 rld Intellectual Property Organization /) -sady
(19) World Intellectual Property Organization: /g5 1IN I VOV 00 OE 0RO 00 0L A1
International Bureau S,/)
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
26 August 2010 (26.08.2010) PCT WO 2010/096233 A2
(51) International Patent Classification: (74) Agents: KING, Robert L. et al.; 7700 W. Parmer Lane,
GOG6F 12/06 (2006.01) GOG6F 9/06 (2006.01) MD: TX32/PL02, Austin, TX 78729 (US).
GOGE 12/08 (2006.01) (81) Designated States (unless otherwise indicated, for every
(21) International Application Number: kind of national protection available): AE, AG, AL, AM,
PCT/US2010/021780 AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
. - CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(22) International Filing Date: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
22 January 2010 (22.01.2010) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(25) Filing Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
L.) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(26) Publication Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(30) Priority Data: SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
12/389,153 19 February 2009 (19.02.2009) Us TT,TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW .
(71) Applicant (for all designated States except US): 84) Designateq States (unlgss othemise indicated, for every
FREESCALE SEMICONDUCTOR INC. [US/US], kind ofregzonal p}"Ol@C’llOl’l avazlable): ARIPO (BW, GH,
6501 William Cannon Drive West, Austin, Texas 78735 GM, KE, LS) MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
(US). ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
(72) Inventors; and ES, FIL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(75) Inventors/Applicants (for US only): MOYER, William MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,

C. [US/US]; 1111 Meadow Ridge Drive, Dripping
Springs, Texas 78620 (US). COLLINS, Richard G. [US/
US]; 13405 Country Lake Drive, Austin, Texas 78732

(US).

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: ADDRESS TRANSLATION TRACE MESSAGE GENERATION FOR DEBUG

FROM CONTROL 203

COMPRESSION [~
LOGIC

MESSAGE
GENERATION

T0DEBUG
Loaie TERMINALS
i3 1
o
LOGIC |l el o
60 66
DEBUG CONTROL
CIRCUITRY

MESSAGE |~
FIFO

FROM
GLOBAL1%0NTR0L

FIG. 3

(57) Abstract: A data processing system (10) and method
generates debug messages by permitting an external de-
bug tool to have real-time trace functionality. A data pro-
cessor (20, 22, 24) executes a plurality of data processing
instructions and uses a memory (30) for information stor-
age. Debug circuitry (26) generates debug messages in-
cluding address translation trace messages. A memory
management unit (16) has address translation logic (205)
for implementing address translation to translate address-
es between virtual and physical forms. The debug circuit-
ry (26) includes message generation circuitry (64) that is
coupled to the memory management unit (16) for receiv-
ing notice when one or more address translation mappings
are modified. The message generation circuitry (64) gen-
erates an address translation trace message in response to
a detection of a modification of an address translation
mapping occurs and provides the address translation trace
message external to the debug circuitry (26).

WO 2010/096233 A2 I 000000 U0V AU A

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

Published:

WO 2010/096233 PCT/US2010/021780

ADDRESS TRANSLATION TRACE MESSAGE GENERATION FOR DEBUG

Background

Field

[0001] This disclosure relates generally to semiconductors, and more specifically, to
data processing systems that implement address translation and generate address

translation trace messages.
Related Art

[0002] An |[EEE standard known as IEEE ISTO5001, or the Nexus debug standard, is an
established real-time debug standard that supports real-time debug message generation.
The Nexus debug standard specifies a mechanism for identifying to an external trace
reconstruction tool a predetermined operating condition within the system. Debugging
processes are also used in the development of code for a data processing system.
Providing debug information in real-time, without intrusion on the normal operation of the

data processing system is highly desirable to remain transparent to operation of the system.

[0003] Debug messages are generated by the data processing system that contain
address and data information for either program events (program trace messaging), or data
events (data read messaging, data write messaging), as well as other debug information.
The address information is typically virtual address information which is a format that must
be translated to identify a physical memory location known as a physical address.
Correlation of the address to a program undergoing execution is an important part of the
debugging process so that actual program flow and the dynamic values of system data
variables can be monitored. Virtual to physical address mapping or translation must be
performed. However, an external debugger typically does not have the necessary virtual to
physical mapping information to quickly translate the address portions of the debug
messages, particularly when these mappings are dynamically changing due to demand
paging or other remapping operations. The use of the virtual addresses allows a debug user
a straightforward way to trace a computer program via a program listing obtained by a
compile and link function which uses virtual addresses for text and data sections of the
software application. The user typically has no knowledge of how the virtual addresses are
translated to physical addresses by an operating system (OS). Therefore, tracing is required
to indicate virtual addresses. Unfortunately certain program listings are unavailable, such as
program listings for pre-compiled software modules which are executed at runtime.

Examples of such modules are OS calls and library functions. In such an example, no
-1-

WO 2010/096233 PCT/US2010/021780

program listing is available. Thus it is very difficult to properly trace and interpret these
sections of the executed program. Correct translation of a virtual address to a physical
address requires knowing where a program counter is and examining physical memory to
determine where the address is. For systems executing multiple programs the memory
mapping varies dynamically and readily transitions between memory pages. In such
situations, the address translation significantly precludes debug message generation and

interpretation from being performed real-time.

Brief Description of the Drawings

[0004] The present invention is illustrated by way of example and is not limited by the
accompanying figures, in which like references indicate similar elements. Elements in the

figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale.

[0005] FIG. 1 illustrates in block diagram form a data processing system having debug

message generation in accordance with one form of the present invention;

[0006] FIG. 2 illustrates in block diagram form one form of address translation logic of
FIG. 1;

[0007] FIG. 3 illustrates in block diagram form one form of debug circuitry of FIG. 1;
[0008] FIG. 4 illustrates in diagram form exemplary MMU update registers of FIG. 2;

[0009] FIG. 5 illustrates in diagram form an exemplary translation lookaside buffer (TLB)

write entry instruction in accordance with the prior art;

[0010] FIG. 6 illustrates in diagram form an exemplary TLB invalidate address instruction

in accordance with the prior art;

[0011] FIG. 7 illustrates in diagram form an exemplary program trace message in

traditional mode in accordance with the prior art;

[0012] FIG. 8 illustrates in diagram form an exemplary program trace message in history

mode in accordance with the prior art;

[0013] FIG. 9 illustrates in diagram form an exemplary data trace message in

accordance with the prior art;

WO 2010/096233 PCT/US2010/021780

[0014] FIG. 10 illustrates in diagram form an exemplary address translation trace
message with field compression in accordance with one embodiment of the present

invention;

[0015] FIG. 11 illustrates in diagram form an exemplary address translation trace

message in accordance with one embodiment of the present invention;

[0016] FIG. 12 illustrates an example of address compression useable with message

generation in accordance with the prior art;

[0017] FIG. 13 illustrates in diagram form an exemplary address translation trace

message in accordance with one embodiment of the present invention;

[0018] FIG. 14 illustrates in diagram form an exemplary address translation trace
message with history delimitation in accordance with one embodiment of the present

invention; and

[0019] FIG. 15 illustrates in diagram form an exemplary program correlation trace
message with history delimitation in accordance with one embodiment of the present

invention.

Detailed Description

[0020] Many data processing systems typically use address translation logic, such as
translation lookaside buffers (TLBs) to map virtual addresses to physical addresses. Entries
within this address translation logic (such as TLB entries) may be modified or invalidated
through the use of processor instructions or by hardware within the data processing system
which dynamically maintains address translations by performing address translation table
searches and TLB updates as required by software execution, such as by performing
hardware “table-walking” or similar types of hardware searches. According to one aspect of
the present invention, debug messages, such as address translation trace messages, are
generated in response to modification or invalidation of an entry within the address
translation logic. These address translation trace messages can then be provided to an
external development system for improved debugging capability. Furthermore, in cases in
which the virtual address mapping is changed, program correlation messages may also be
generated with the appropriate timing so as to provide more accurate information with
respect to branch history information and sequence count information. Also, according to

another aspect of the present invention, efficiency may be further improved by compressing
-3-

WO 2010/096233 PCT/US2010/021780

one or more fields of the debug messages, by field-compressing the debug messages, or by

merging multiple messages (such as program correlation messages) when possible.

[0021] lllustrated in FIG. 1 is a data processing system 10 that generates debug
messages. Within data processing system 10 is a global interconnect 12. In one form
global interconnect 12 is a system bus. Other forms of interconnect may be used including,
for example, crossbars, point-to-point connections, and optical and wireless transmission
techniques. A bus interface unit (BIU) 14 is coupled to global interconnect 12 via a
bidirectional coupling. In one form the bidirectional coupling is a bidirectional multiple
conductor bus wherein multiple conductor buses herein are represented with a slash across
the conductor. BIU 14 is bidirectionally coupled to memory management unit (MMU) 16.
MMU 16 is coupled to a first input/output terminal of a global control circuit 18 via a
bidirectional multiple conductor bus. A second input/output terminal of global control circuit
18 is coupled to a first input/output terminal of an instruction fetch unit 20 via a bidirectional
multiple conductor bus. Instruction fetch unit 20 has an output coupled to an input of an
instruction decoder 22 via a multiple conductor bus. An output of instruction decoder 22 is
coupled to an input of execution units 24. In one form execution units 24 include at least one
arithmetic logic unit, at least one floating point unit and at least one multiplier circuit. Within
the execution units 24 are register files 25. An input/output terminal of instruction decoder
22 is coupled to a third input/output terminal of the global control circuit 18. A first
input/output terminal of execution units 24 is coupled to a fourth input/output terminal of
global control circuit 18. Execution units 24 and instruction fetch unit 20 are also
bidirectionally coupled to MMU 16. Debug circuitry 26 has an input/output terminal coupled
to a fifth input/output terminal of global control circuit 18. A load/store unit 28 has a first
input/output terminal bidirectionally coupled to a sixth input/output terminal of global control
circuit 18. Load/store unit 28 has a second input/output terminal coupled to a first
input/output terminal of BIU 14. Load/store unit 28 has a third input/output terminal coupled
to a second input/output terminal of execution units 24. A second input/output terminal of
BIU 14 is coupled to a seventh input/output terminal of global control circuit 18. An output of
load/store unit 28 provides a data virtual address and is coupled to a first input of MMU 16
and a first input of debug circuitry 26. An output of instruction fetch unit 20 provides an
instruction virtual address and is coupled to a second input of MMU 16 and a second input of
debug circuitry 26. A first output of MMU 16 provides a data physical address and is
coupled to a first input of BIU 14 and to a third input of debug circuitry 26. A second output
of MMU 16 provides an instruction physical address and is coupled to a second input of BIU

14 and to a fourth input of debug circuitry 26.

WO 2010/096233 PCT/US2010/021780

[0022] A memory 30 is coupled to global interconnect 12 via a bidirectional coupling.
Debug circuitry 26 has a second input/output terminal coupled to a plurality of debug
terminals 40 via bidirectional multiple conductors. The plurality of debug terminals 40 are
coupled to an external development system 36 that is commonly referred to as a debugger
or external debugger. In the illustrated form BIU 14, MMU 16, global control circuit 18,
instruction fetch unit 20, instruction decoder 22, execution units 24 with register files 25,
debug circuitry 26 and load/store unit 28 collectively form a data processor 42 as indicated
by the dashed line grouping in FIG. 1. While global control circuit 18 is illustrated in FIG. 1 in
a segregated location, it should be well understood that the circuitry and functional control of
global control circuit 18 may also be implemented in a distributed manner and be included
within any of the various other system blocks of data processing system 10. Also, in the
illustrated embodiment, global control 18 includes a process identifier (PID) register 19 which
stores a process identifier (PID) for the currently executing process. Global control 18 also
provides the PID to MMU 16.

[0023] In operation, data processing system 10 communicates with devices (not shown)
via global interconnect 12. Information communicated with data processor 42 transfers
through BIU 14. Instruction fetch unit 20 retrieves data processor instructions (i.e. processor
instructions) from BIU 14 under control of global control circuit 18. The retrieved instructions
are sequentially communicated to instruction decoder 22 for decoding under control of global
control circuit 18. Execution units 24 execute instructions and generate data that is either
stored in a cache (not shown) or placed in the memory 30 via coupling through global control
circuit 18, BIU 14 and global interconnect 12. Debugging of the operation of data processor
42 and data processing system 10 is performed by the use of debug circuitry 26 that
generates debug messages for analysis by external development system 36. A test or
debug mode of operation is entered in response to activation of such from external
development system 36. In the illustrated form, debug circuitry 26 is configured to receive
data addresses and instruction addresses, where the addresses may be virtual addresses or
physical addresses. A data address is an address where data resides whereas an instruction
address is an address where an instruction resides. Instruction virtual addresses are
provided from instruction fetch unit 20 to the debug circuitry 26 and MMU 16. A virtual
address is an untranslated address which requires some further processing or translating to
obtain the translated address of the physical storage location where the information is
residing. This translated address is referred to as the physical address. MMU 16 provides
instruction physical addresses to BIU 14 and debug circuitry 26. In one form, the virtual or
untranslated addresses may be logical addresses. In another form the untranslated

addresses may be effective addresses. Effective addresses must first be translated into

-5-

WO 2010/096233 PCT/US2010/021780

virtual addresses before being translated into physical addresses. Load/store unit 28
provides data virtual addresses to debug circuitry 26 and to MMU 16. MMU 16 provides
data physical addresses to BIU 14 and debug circuitry 26.

[0024] Debug circuitry 26 then forms a debug message for external development system
36 using at least a portion of one or more of the received addresses, as will be discussed in
more detail below. The format of debug messages may vary and examples will discussed
below in connection with FIGs. 7, 8, 9, 10, 11 13, 14, and 15.

[0025] lllustrated in FIG. 2 is an exemplary embodiment of a portion of MMU 16 of FIG.
1. MMU 16 includes control circuitry 203, MMU update registers 204, and address
translation logic 205. In one form, address translation logic 205 is implemented as a
translation lookaside buffer (TLB) having N+1 entries, numbered 0 through N, where each
entry includes a virtual address 209, a corresponding physical address 211, a corresponding
translation size (TSIZ) 210, a corresponding translation ID (TID) 212, corresponding
attributes 213, and a corresponding valid field 215. In alternate embodiments, address
translation logic 205 may be implemented differently. Control 203 is bidirectionally coupled to
MMU update registers 204 and provides a modification indicator and address translation
information to debug circuitry 26 and address translation logic 205. Control 203 is also
bidirectionally coupled to global control 18 and receives PID from global control 18. MMU
update registers 204 may include one or more registers and is bidirectionally coupled with

execution units 24.

[0026] In operation, entries 0 through N store address mapping information used to
translate virtual addresses to physical addresses. For example, an instruction or data virtual
address is provided to MMU 16 (such as from instruction fetch unit 20 or load/store unit 28)
where it is compared against the virtual addresses 209 stored in address translation logic
205. If a matching entry is found (where a matching entry is also a valid entry, as indicated
by valid field 215), then the corresponding physical address 211 is provided as the
instruction or data physical address to debug circuitry 26 and BIU 14. The corresponding
TSIZ 210 of the matching entry provides the page size corresponding to the translated
address and the corresponding TID 212 of the matching entry provides an address space
identifier. When the TID field is 0, the matching entry applies to all processes because this
entry is global. However, when the TID 212 is non-zero, a matching entry is only determined
when both the received virtual address and the received PID match the virtual address 209
and the TID 212, respectively, of a valid entry in address translation logic 205. Also, through
the use of MMU update registers 204, control 203, in response to processor instructions
executed by processor 42, can update or modify entries within address translation logic 205,
-6-

WO 2010/096233 PCT/US2010/021780

as will be discussed in more detail below in reference to FIG. 4. When control 203 modifies
or updates an entry within address translation logic 205, a modification indicator is provided

to address translation logic 205 as well as to debug circuitry 26.

[0027] lllustrated in FIG. 3 in an exemplary embodiment of a portion of the debug
circuitry 26 of FIG. 1. Debug circuitry 26 includes debug control circuitry 60, message
generation logic 64, and input/output (1/0) logic 66. Message generation logic 64 includes
compression logic 68 and is coupled to receive the modification indicator and address
translation information from control 203 within MMU 16. Debug control circuitry 60 includes
a message first-in first-out storage circuit (FIFO) 70 and is bidirectionally coupled to
message generation logic 64 and /O logic 66. Debug control circuitry 60 also receives
information from global control circuit 18. 1/O logic 66 is bidirectionally coupled to debug

terminals 40.

[0028] In operation, message generation logic 64 is the logic circuitry which implements
the function of forming debug messages pursuant to a selected one of a plurality of
predetermined formats. Message generation logic 64 forms the debug messages, where
compression logic 68 may perform message compression on parts or all of the messages,
and these debug messages are then provided to debug control circuitry 60 where they are
stored in message FIFO 70. From message FIFO 70, the debug messages are routed to
debug terminals 40 via I/O logic 66. In one embodiment, each time an entry in address
translation logic 205 is modified or updated, message generation logic 64 generates an
address translation trace message. For example, each time control 203 asserts the
modification indicator which indicates to both address translation logic 205 and message
generation logic 64 that an entry in address translation logic 205 is being modified, message
generation logic 64 generates an address translation trace message based on address
translation information received from control 203 . Note that modification of an entry, as
used herein, may also include invalidation of an entry. The format of these address
translation trace messages will be described in more detail below in reference to FIGs. 10,
11, 13 and 14.

[0029] lllustrated in FIG. 4 is one example of MMU update registers 204. In the
illustrated embodiment, MMU update registers 204 includes 4 registers: MAQ, MA1, MA2,
and MA3. These registers are used to update entries in address translation logic 205. In the
illustrated embodiment, each of these registers is a 32-bit register which include a plurality of
fields. MA1 includes a 2-bit TLBSEL field and a 6-bit ESEL field. The TLBSEL field stores a
value which indicates which TLB is to be updated. In the illustrated embodiment, only one
TLB is illustrated (address translation logic 205) in which the TLBSEL field may not be

-7-

WO 2010/096233 PCT/US2010/021780

present; however, in alternate embodiments, any number of TLBs may be implemented.
The ESEL field stores a value which indicates an entry number of the TLB (e.g., one of entry
0 through N in address translation logic 205). MA1 includes an 8-bit TID field and a 5-bit
TSIZE field. The TID field stores a value which indicates a translation identifier field and the
TSIZE field stores a value which indicates a page size. MA2 includes a 22-bit field VPN field
which stores a value which indicates the virtual page number. MA2 also includes various
fields which store attributes such as VLE (page is using Variable Length Encoding for
instructions), W (page is Writethrough), | (page is cache Inhibited), M (page is “memory
coherence required”), G (page is Guarded), and E (page Endianness). MA3 includes a 22-
bit field PPN field which stores a value which indicates the physical page number and stores
a plurality of attributes (e.g. U0-U3 (user defined attributes), UX, SX, UW, SW, UR, and SR
(User and Supervisor Read, Write and eXecute permissions)). Note that in alternate
embodiments, MMU update registers 204 may include more registers than those illustrated
and the information stored therein may be organized in a variety of different formats using
any number of registers. Also, each field may have more or fewer bits, as needed to store
the appropriate of information. Note that the TID may be considered an extension to the
virtual address such that the virtual address can be calculated as “VPN concatenated with
TID”. Therefore, these registers may be updated by global control 18 in response to one or
more processor instructions (such as move to special purpose register instructions) by
processor 42. The information stored in these registers is then used to update an entry in
address translation logic 205 in response to a processor instruction executed by processor
42. In alternate embodiments of the present invention, updates to address translation logic
205 (such as a TLB) may be performed by control logic responsive to a TLB miss. This
control logic may be implemented as part of control logic 203 or may be implemented
elsewhere within MMU 16 or processor 42. In one embodiment, this control logic that is
responsive to a TLB miss automatically obtains address translation entry information by
searching one or more translation tables stored in memory 30, or elsewhere within data
processing system 10, and subsequently performs address translation modifications within
address translation logic 205 based on information retrieved from the address translation

tables, without the use of a processor instruction explicitly executed by processor 42 .

[0030] For example, FIG. 5 illustrates an example of a currently existing processor
instruction, a TLB Write Entry (TLBWE) instruction, which may be used to update a TLB
entry (i.e. an entry within address translation logic 205). The TLBWE instruction causes the
contents of certain fields within MMU update registers 204 to be written into a single entry in
address translation logic 205. The entry that is written (tlb_entry_id) is specified, for
example, by the TLBSEL and ESEL fields of MAO. Upon executing a TLBWE instruction,

-8-

WO 2010/096233 PCT/US2010/021780

this identified entry is updated with the appropriate information in MA1, MA2, and MA3. That
is, the values in the TID field and TSIZE fields of MA1 are stored into the TSIZ field 210 and
TID field 212 of the identified entry of address translation logic 205. Similarly, the value of
VPN in MA2, and the value of PPN and the attributes of MA3 are stored into the
corresponding fields virtual address 209, physical address 211, and attributes 213 of the
identified entry. Also, the valid bit 215 of the identified entry is set to indicate a valid entry.

[0031] FIG. 6 illustrates another example of a currently existing processor instruction, a
TLB Invalidate Entry (TLB_INV) instruction, which may be used to invalidate an entry of
address translation logic 205. The TLB_INV instruction format species two source registers,
RA and RB, which are used, upon execution of a TLB_INV instruction, to calculate an
effective address (EA) of RA+RB. That is EA equals the contents of RA plus the contents of
RB. This EA address is then used to find a matching entry within address translation logic
205, and upon finding a matching entry, the valid bit 215 of that matching entry is set to
indicate an invalid entry. Source registers RA and RB can be any two general purpose

registers located within, for example, register files 25 of processor 42.

[0032] In one embodiment of the present invention, when an entry of address translation
logic 205 is updated, such as whenever either a TLBWE or a TLB_INV instruction is
executed, control 203 notifies debug circuitry 26 via the modification indicator and, in
response thereto, message generation logic 64 in debug circuitry 26 generates an address
translation trace message which may be provided (from FIFO 70, via I/O logic 66) to debug
terminals 40. In this manner, debugger 26 need not explicitly request address translation
information from address translation logic 205 since the information is automatically sent
when a modification occurs. An example of TLBWE-based address translation trace
messages and a TLB_INV-based address translation trace message will be described in
reference to FIGs. 10, 11, and 13. Also, when a TLBWE or a TLB_INV instruction is
executed, control 203, using information stored in MMU update registers 204 as described
above, provides the appropriate control and information to address translation logic 205 to
appropriately update the identified or matching entry. Therefore, note that, in addition to a
modification indicator, control 203 may provide other information, as needed, along with the
modification indicator to address translation logic 205 and to debug circuitry 26. In alternate
embodiments, other update mechanisms may be used to cause entries within address
translation logic 205 to be modified, and in response, control 203 can provide the
appropriate signaling to debug circuitry 26 to indicate the modification and the information
associated with the modification needed to allow debug circuitry 26 to properly generate

address translation trace messages.

WO 2010/096233 PCT/US2010/021780

[0033] lllustrated in FIGs. 7, 8, and 9 are trace messages which are generated by
currently available debug logic. lllustrated in FIG. 7 is a program trace indirect branch
message 80 in traditional mode. lllustrated in FIG. 8 is a program trace indirect branch
message 81 in history mode. Program trace indirect branch messages are generated when
instructions executing on processor 42 perform an indirect branch. An indirect branch is a
branch whose target address is not directly provided in the branch instruction, but instead is
stored in another location, such as a register, or needs to otherwise be dynamically
calculated or determined (such as for subroutine calls). A direct branch is a branch whose
target is directly provided with the instruction, such as with a label corresponding to a
particular address location or provided by an offset value in the instruction, and thus is
typically a static value that can be determined by the debugger based on knowledge of the

program instruction values. lllustrated in FIG. 9 is a data trace message 82.

[0034] Referring to FIG. 7, trace message 80 has four illustrated fields. A virtual address
field contains the virtual address of trace message 80. A sequence count field contains a
value that represents a number of instructions that has been executed since the last
program trace message. A source processor field contains a value that identifies what
processor that the trace message 80 is associated with. This field information is valuable in
multiple processor systems. A transfer code field contains a value that identifies trace
message 80 as a program trace indirect branch message having a particular predetermined
field format. In the example of FIG. 7, the value that represents a program trace message
with the illustrated form is “000100,” indicating the program trace indirect branch message

was generated using traditional branch trace mode operation.

[0035] Referring to FIG. 8, trace message 81 has five illustrated fields. A virtual address
field contains the virtual address of trace message 81. A branch history field contains a
plurality of 1-bit values, where, for each direct branch taken since the last program trace
message, a corresponding 1-bit value is set or cleared to indicate whether the direct branch
was taken or not taken. A sequence count field contains a value that represents a number of
instructions that has been executed since the last program trace message. A source
processor field contains a value that identifies what processor that the trace message 80 is
associated with. This field information is valuable in multiple processor systems. A transfer
code field contains a value that identifies trace message 80 as a program trace indirect
branch message having a particular predetermined field format. In the example of FIG. §,
the value that represents a program trace message with the illustrated form is “011100,”
indicating the program trace indirect branch message was generated using history mode

branch trace operation.

-10-

WO 2010/096233 PCT/US2010/021780

[0036] Referring to FIG. 9, trace message 82 has five illustrated fields. A data value(s)
field contains one or more data values associated with trace message 82. A virtual address
field contains the virtual address of the trace message 82. A data size field contains a value
that represents the length of the data or the number of bits contained in a data word. A
source processor field contains a value that identifies what processor that the trace message
82 is associated with. This field information is valuable in multiple processor systems. A
transfer code field contains a value that identifies the trace message 80 as a data trace
message having a particular predetermined field format. In the example of FIG. 9, the value
that represents a data write trace message with the illustrated form is “000101”. The value

that represents a data read trace message with the illustrated form is “000110”.

[0037] FIGs. 10 and 11 illustrate address translation trace messages 84 and 86,
respectively, in accordance with embodiments of the present invention. In response to
execution of a TLBWE instruction, as described above, a debug message such as address
translation trace message 84 or address translation trace message 86 may be generated by
debugger 26. Therefore, note these address translation trace messages may be referred to
as TLBWE-based address translation trace messages. Note that address translation trace
message 84 is a field compressed version of a TLBWE-based address translation trace

message and address translation trace message 86 is a non-field compressed version.

[0038] Referring first to FIG. 11, trace message 86 has eight illustrated fields. The
positioning of the fields is arbitrary. A compressed physical address field contains the
physical address, in compressed form, of trace message 86. That is, this field represents a
compressed version of the physical page number address of the modified entry of the TLB
(of address translation logic 205) which triggered the generation of the trace message. A
compressed virtual address field contains the virtual address, in compressed form, of trace
message 86. That is, this field represents a compressed version of the virtual page number
address of the modified entry. A TID field contains a value which represents the TID value
of the modified entry. A TSIZ field contains a value which represents the TSIZ value of the
modified entry. A source processor field contains a value that identifies what processor that
the trace message 86 is associated with. This field information is valuable in multiple
processor systems. A transfer code (TCODE) field contains a value that identifies trace
message 84 as an address translation trace message having a particular predetermined field
format. In the example of FIG. 10, the value that represents an address translation trace
message is “100001”. An event code (ECODE) field contains a value that further identifies
the predetermined field format. That is, it may be used to further distinguish between

different types of address translation trace messages. In the example of FIG. 11, the value

-11-

WO 2010/096233 PCT/US2010/021780

that represents a non-field compressed TLBWE-based address translation trace message
with the illustrated form is “1101”. Note that, in the example of FIG. 11, each of the physical
address and the virtual address fields contains compressed values. One method of
compression will be described below in reference to FIG. 12. However, note that in alternate
embodiments, only one of these fields may be compressed, or neither of these fields may be
compressed. Also, any number of bits, as needed, may be used for each field and a

message may include more or less information than illustrated.

[0039] Referring back to FIG. 10, FIG. 10 is a field-compressed version (having five
illustrated fields) of address translation trace message 86 of FIG. 11. That is, note that for
address translation trace message 84, the TID and TSIZ fields are not included as part of the
debug message and thus are not transmitted via debug terminals 40. Furthermore, in the
example of FIG. 10, the value of the ECODE field is different from that of FIG. 11 because
the value of “1100” in FIG. 10 represents a field compressed TLBWE-based address
translation trace message with the illustrated form. Note that the description for the
remainder of the fields in address translation trace message 84 is the same as those
provided above for address translation trace message 86. Therefore, note that in the field
compressed mode, the address translation message is compressed by not including
selected fields. (In one embodiment, this field compression may be performed by

compression logic 68.)

[0040] In one embodiment, for field-compressed address translation trace messages,
those fields which contain a predetermined prevalent value are the fields that are not
included in the message. For example, in one embodiment, both the TID and TSIZE fields
tend to have a prevalent value and thus need not be transmitted in each address translation
trace message. For example, in one embodiment, a TID value of 00000000 indicates that
the address translation entry is to be available to all process ID values, rather than restricted
to matching a single process ID (PID) value. In this embodiment, an all-zero TID value may
be considered a prevalent TID value. In alternate embodiments, a different TID value
representing a predominant process with a predetermined non-zero TID value may be
defined to be a prevalent value. In one embodiment, a particular page size for virtual and
physical pages may be prevalent. For example, in many systems, a page size of 4 kilobytes
(4Kbytes) is a predominant page size value and may thus be defined as a predetermined
prevalent value, since a majority of address translation entries will have such a value
encoded in the TSIZ field of the stored TLB entry. For these common cases, field
compression allows for a reduction in the maximum message length that must be

transmitted to the external development system 36. Such a reduction may improve

-12-

WO 2010/096233 PCT/US2010/021780

bandwidth of debug messages, and may also be of benefit in optimizing the size of message
FIFO 70 of debug control circuitry 60. In one embodiment, the predetermined prevalent
value of a field that is to be removed from the message or not transmitted to external
development system 36 is controlled by a user of system 10. That is, this value can be
stored in user programmable storage location, such as, for example, within MMU update

registers 204.

[0041] FIG. 12 illustrates one method for compressing a particular field of a debug
message, such as the physical and virtual address fields of a message to obtain, for
example, the compressed physical and compressed virtual addresses of FIGs. 10 and 11.
(In one embodiment, this compression may be performed by compression logic 68.) Two
addresses labeled A1 and A2 are provided. Address A2 is a current address to be used in
generating a debug message, such as a physical or virtual address that is to be included in
an address franslation trace message. Address A1 is a previous address that was used in
generated a previous debug message, such as a previous physical or virtual address,
respectively, that was included in a previous address translation trace message. The actual
values of addresses A1 and A2 are exemplary only and it should be understood that any
address value may be used. A modified address is created by performing a logic operation
on addresses A1 and A2. The logic operation, in one embodiment, is an exclusive OR
operation in which corresponding respective bit positions of address A1 and address A2 are
exclusive ORed. The resulting modified address is illustrated in FIG. 12 in which twenty
leading zeros are generated. The portion of the address from least significant bit to the most
significant binary one bit is grouped as illustrated in FIG. 12 and this grouping forms a
modified address M1 which is used as the address (e.g. the compressed physical or
compressed virtual address) in the debug message resulting in a smaller average message
size for many messages. Redundant information which can be recreated from a previously
sent message address is removed. Conversely, the address A2 may be re-created from the
debug message address by a debugger as follows. Previous address A1 is exclusive-ORed
with the address message M1. The address message M1 is expanded back to a thirty-two
bit format by adding the required leading edge zeros in front of the address message M1.
The exclusive OR operation results in the address A2. Thus FIG. 12 illustrates how
translating from an address to a debug message address and vice versa is implemented.
Note that the modified address M1 sent in the first trace message when debugging is first
enabled contains a full address with leading zeros removed. The debugger can assume a
previous address value of all zeros as an initial address for the basis of expanding the

modified address M1 to a full address for the message.

13-

WO 2010/096233 PCT/US2010/021780

[0042] FIG. 13 illustrates an address translation trace messages 88, in accordance with
one embodiment of the present invention. In response to execution of a TLB_INV
instruction, as described above, a debug message such as address translation trace
message 88 may be generated by debugger 26. Therefore, note that address translation
trace message 88 may be referred to as a TLB_INV-based address translation trace
message. Trace message 88 has four illustrated fields. The positioning of the fields is
arbitrary. A TLB_INV virtual address field contains the uncompressed virtual address of
trace message 88. That is, this field contains the calculated value of the effective address
(calculated using the values in RA and RB) which was used to find a matching entry in
address translation logic 205 in order to invalidate it, as was described above. (Alternatively,
note that the TLB_INV virtual address may also be compressed.) A source processor field
contains a value that identifies what processor that the trace message 88 is associated with.
This field information is valuable in multiple processor systems. A transfer code (TCODE)
field contains a value that identifies trace message 88 as an address translation trace
message having a particular predetermined field format. In the example of FIG. 13, the
value that represents an address translation trace message is “100001”. An event code
(ECODE) field contains a value that further identifies the predetermined field format. That s,
it may be used to further distinguish between different types of address translation trace
messages. In the example of FIG. 13, the value that represents a TLB_INV-based address
translation trace message with the illustrated form is “1110”. Note that any number of bits,
as needed, may be used for each field and a message may include more or less information

than illustrated.

[0043] As discussed above in reference to FIG. 8, the branch history field is useful in
order to provide a better view of the address translations used for specific taken branches
(e.g. for direct branches) which do not generate program trace messages. However, when a
change in virtual memory mapping occurs between those executed branches (e.g. indirect
branches) which do generate program trace messages, the branch history field no longer
provides accurate information beyond the point at which the change in mapping occurred.
Therefore, in one embodiment, a program correlation message may be generated which
includes the branch history information up to the point of the change in virtual address
mapping. That is, a program correlation message can be generated when an address
translation trace message is generated in response to a modification of an entry in address
translation logic 205. For example, a program correlation message can be generated when
a TLBWE-based address translation message is generated. Furthermore, this program
correlation message can also be properly ordered with respect to that TLBWE-based

address translation message, to allow a debugger, such as external development system 36,

-14-

WO 2010/096233 PCT/US2010/021780

to perform program trace reconstruction in the context of the mappings in place at the time
the branch history was accumulated. In this manner, the program correlation message can
properly provide the branch history information and instruction count information (i.e.
sequence count information) for instructions executed since the last program trace message
was generated up to the point that an entry in address translation logic 205 was modified by
the TLBWE instruction. In one embodiment, the program correlation message corresponding

to an address translation trace message is provided before the address translation message.

[0044] FIG. 15 illustrates a program correlation message 92 with branch history
delimitation which may be generated and properly ordered with respect to an address
translation trace message generated in response to modification of an entry in address
translation logic 205. Program correlation message 92 has five illustrated fields. The
positioning of the fields is arbitrary. A branch history field contains a plurality of 1-bit values,
where, for each direct branch taken since the last program trace message, a corresponding
1-bit value is set or cleared to indicate whether the direct branch was taken or not taken.
This branch history field contains this information for each direct branch taken up to the point
at which an entry in address translation logic 205 is modified and an address translation
trace message, such as TLBWE-based address translation trace message 84 or 86, is
generated. A sequence count field (also referred to as an instruction count field) contains a
value that represents a number of instructions that has been executed since the last
program trace message up to the point at which the entry in address translation logic 205 is
modified. A source processor field contains a value that identifies what processor that the
program correlation message 92 is associated with. This field information is valuable in
multiple processor systems. A transfer code field contains a value that identifies program
correlation message 92 as a program correlation message with history delimitation of a
predetermined field format. In the example of FIG. 15, the value that represents a program
trace message with the illustrated form is “100001”. An event code (ECODE) field contains
a value that further identifies the predetermined field format of program correlation message
92. That is, it may be used to further distinguish between different types of program
correlation trace messages. For example, it may be used to represent whether the program
correlation message is a merged message or not. (A merged message will be described in
further detail below.) In the example of FIG. 15, the value of the ECODE field represents
that the program correlation message is not merged, meaning it was caused by only one
trigger source (e.g. the modification of an entry in address translation logic 205). Note that
any number of bits, as needed, may be used for each field and a message may include more

or less information than illustrated. (Note that, in an alternate embodiment, only one of the

-15-

WO 2010/096233 PCT/US2010/021780

branch history field or the instruction count field may be included in the program correlation

message.)

[0045] FIG. 14 illustrates an address translation trace message 90 with history
delimitation. That is, in the example of FIG. 14, in response to an entry of address
translation logic 205 being modified, rather than generating both an address translation trace
message (such as a TLBWE-based address translation trace message) and a program
correlation message, a single address translation trace message may be generated which
further includes branch history information and an instruction count. That is, the information
of a TLBWE-based address translation trace message (such as trace messages 84 or 86)
may further include branch history information or instruction count information or both up to
the point that the modification of the entry of address translation logic 205. In one
embodiment, an address translation trace message 90 includes the fields of a field-
compressed TLBWE-based address translation trace message, such as translation message
84, so as to reduce the message size. This size reduction may be needed, for example, so
that the generate message can properly fit within message FIFIO 70. That is, the TSIZ and
TID fields may not be included in this type of address translation trace message with history

delimitation.

[0046] In the illustrated embodiment of FIG. 14, trace message 90 has seven illustrated
fields. The positioning of the fields is arbitrary. A compressed physical address field
contains the physical address, in compressed form, of trace message 90. That is, this field
represents a compressed version of the physical address of the modified entry of the TLB (of
address translation logic 205) which triggered the generation of the trace message. A
compressed virtual address field contains the virtual address, in compressed form, of trace
message 09. That is, this field represents a compressed version of the virtual address of the
modified entry. A branch history field contains a plurality of 1-bit values, where, for each
direct branch taken since the last program trace message, a corresponding 1-bit value is set
or cleared to indicate whether the direct branch was taken or not taken. This branch history
field contains this information for each direct branch taken up to the point at which an entry
in address translation logic 205 is modified, thus triggering generation of trace message 90.
A sequence count field contains a value that represents a number of instructions that has
been executed since the last program trace message up to the point at which the entry in
address translation logic 205 is modified. A source processor field contains a value that
identifies what processor that the trace message 90 is associated with. This field information
is valuable in multiple processor systems. A transfer code (TCODE) field contains a value

that identifies trace message 90 as an address translation trace message having a particular

-16-

WO 2010/096233 PCT/US2010/021780

predetermined field format. In the example of FIG. 14, the value that represents an address
translation trace message is “100001”. An event code (ECODE) field contains a value that
further identifies the predetermined field format. That is, it may be used to further distinguish
between different types of address translation trace messages. In the example of FIG. 14,
the value of the ECODE field represents an address translation trace message with history
delimitation of the illustrated format. Note that, any number of bits, as needed, may be used
for each field and a message may include more or less information than illustrated.
Therefore, note that with generation of a trace message with history delimitation, such as
trace message 90, a separate program correlation message (such as program correlation

message 92) need not be generated.

[0047] In one embodiment, the determination of whether to provide a program
correlation message with history delimitation 92 and an address translation trace message at
the point that a change of mapping occurs in address translation logic 205 or whether to
provide a single address translation trace message with history delimitation 90 may be
based on whether field compression can occur to limit the maximum size of a message. If
prevalent values are present in the address translation modification, then in one
embodiment, a single address translation trace message with history delimitation 90 is
generated. If prevalent values are not present, which requires that the TSIZ and/or TID
information be provided to external development system 36, the determination may be made
to send both a program correlation message with history delimitation (such as message 92)
and an address translation trace message (such as message 86). In one embodiment, a
single address translation trace message with history delimitation which was not field
compressed would exceed the size of the entries in message FIFO 70, and thus would
require a larger than optimal FIFO. By selectively generating program correlation message
with history delimitation message 92 based on whether message compression is inadequate
to allow a single address translation trace message with history delimitation to fit in a
predetermined message bit-length, optimization of the width of the entries in message FIFO
70 may be performed, since in some embodiments, the majority of messages require fewer
bits than address translation trace messages 86 and 90, and much of the storage capacity of
FIFO 70 is unused within a given entry. A better optimization may be to increase the number
of entries in FIFO 70 while narrowing the width of the entries. Note that in some
embodiments, the determination of whether one or more fields may be eliminated from an
address translation trace message due to containing a predetermined prevalent value may
be used to select between a single address translation trace message with history
delimitation, or both a program correlation message with history delimitation and an address

translation trace message without history delimitation. In other embodiments, additional

-17-

WO 2010/096233 PCT/US2010/021780

factors, such as the degree of compression of one or both of compressed virtual address
and compressed physical address fields may be used in determining the optimal messaging

decision strategy.

[0048] In one embodiment, additional triggering events (in addition to a change in virtual
memory mapping as is caused by modification of an entry of address translation logic 205)
may result in the need for a program correlation message (PCM) which provides branch
history and a sequence count (i.e. instruction count) up to the point of the triggering event.
In one embodiment, processor 42 may be capable of transparently executing multiple
instruction sets with unique binary encodings, such as a normal fixed length instruction set,
and an alternate variable length encoded (VLE) instruction set. In one embodiment, the
instruction set being executed is constant within an instruction page, but may differ in
different pages of memory, and thus the interpretation of the stored binary values in the
physical memory by the external debugger depends on an accurate knowledge of which
instruction set is present in a given page. For example, when processor 42 crosses a page
boundary that results in an execution mode switch into or out of a sequence of VLE
instructions, a PCM is generated which effectively breaks up any running instruction count
and history information between the two modes of operation, thus needing a program
correlation message to provide the branch history and sequence count up to the point at
which the execution mode switch occurs. Also, in another example, when using program
traces in history mode (such as when generating trace messages like trace message 81),
when a direct branch results in an execution mode switch into or out of VLE instructions, a
PCM is also generated. In addition to these PCM type triggers, another example occurs
when program trace messaging becomes masked due to reaching a predetermined
instruction mask, or when certain predetermined processor 42 exceptions or other system
events within data processing system 10 occur. In these cases, rather than generating a
program correlation message due to each of these events which may occur (such as when a
change in virtual mapping occurs at the same time as crossing a page boundary resulting in
an execution mode switch), a single program correlation message representing both
triggering events can be generated. In this example, a format such as that of program
correlation message 92 of FIG. 15 can be generated, in which the value of the ECODE field
may be used to indicate it is a merged message (i.e. one that is generated due to multiple
triggering events). In this case, different ECODE values can simply indicate whether the
program correlation message is a merged program correlation message or not, or may
further indicate, if merged, what types of triggers caused the program correlation message to

be generated.

-18-

WO 2010/096233 PCT/US2010/021780

[0049] By now it should be appreciated that there has been provided a data processing
system having efficient real-time debug addressing. By generating address translation trace
messages in response to modification or invalidation of an entry within address translation
logic 205, debug circuitry 26 need not explicitly request this type of address translation
information. In one embodiment, any modification of any of the one or more fields of the
entry is sufficient to result in generation of an address translation trace message. In this
manner, improved debugging may be performed in systems which utilize address
translation, such as in systems which utilize one or more TLBs for translating addresses.
Furthermore, in cases in which the virtual address mapping is changed, program correlation
messages may be generated with the appropriate timing so as to provide more accurate
information with respect to branch history information and sequence count information. Also,
efficiency may be further improved by compressing one or more fields of the debug
messages, by field-compressing the debug messages, or by merging multiple messages
(such as program correlation messages) when possible. Changes to address translation
mappings may be caused by processor instruction execution of control instructions for
modification of TLB contents, or in alternate embodiments may be caused by memory
management unit hardware which autonomously maintains the TLB via translation table
searches such as by performing table-walks to obtain new translations when TLB misses

ocaur.

[0050] Because the various apparatus implementing the present invention are, for the
most part, composed of electronic components and circuits known to those skilled in the art,
circuit details have not been explained in any greater extent than that considered necessary
as illustrated above, for the understanding and appreciation of the underlying concepts of the
present invention and in order not to obfuscate or distract from the teachings of the present

invention.

[0051] Some of the above embodiments, as applicable, may be implemented using a
variety of different information processing systems. For example, although FIG. 1 and the
discussion thereof describe an exemplary memory system architecture, this exemplary
architecture is presented merely to provide a useful reference in discussing various aspects
of the invention. Of course, the description of the architecture has been simplified for
purposes of discussion, and it is just one of many different types of appropriate architectures
that may be used in accordance with the invention. Those skilled in the art will recognize
that the boundaries between logic blocks are merely illustrative and that alternative
embodiments may merge logic blocks or circuit elements or impose an alternate

decomposition of functionality upon various logic blocks or circuit elements.

-19-

WO 2010/096233 PCT/US2010/021780

[0052] Thus, it is to be understood that the architectures depicted herein are merely
exemplary, and that in fact many other architectures can be implemented which achieve the
same functionality. In an abstract, but still definite sense, any arrangement of components
to achieve the same functionality is effectively "associated" such that the desired
functionality is achieved. Hence, any two components herein combined to achieve a
particular functionality can be seen as "associated with" each other such that the desired
functionality is achieved, irrespective of architectures or intermedial components. Likewise,
any two components so associated can also be viewed as being "operably connected," or

"operably coupled," to each other to achieve the desired functionality.

[0053] Furthermore, those skilled in the art will recognize that boundaries between the
functionality of the above described operations are merely illustrative. The functionality of
multiple operations may be combined into a single operation, and/or the functionality of a
single operation may be distributed in additional operations. Moreover, alternative
embodiments may include multiple instances of a particular operation, and the order of

operations may be altered in various other embodiments.

[0054] Although the invention is described herein with reference to specific
embodiments, various modifications and changes can be made without departing from the
scope of the present invention as set forth in the claims below. For example, any number of
integrated circuit chips may be used. Accordingly, the specification and figures are to be
regarded in an illustrative rather than a restrictive sense, and all such modifications are
intended to be included within the scope of the present invention. Any benefits, advantages,
or solutions to problems that are described herein with regard to specific embodiments are
not intended to be construed as a critical, required, or essential feature or element of any or

all the claims.

[0055] The term “coupled,” as used herein, is not intended to be limited to a direct

coupling or a mechanical coupling.

[0056] Furthermore, the terms “a” or “an,” as used herein, are defined as one or more
than one. Also, the use of introductory phrases such as “at least one” and “one or more” in
the claims should not be construed to imply that the introduction of another claim element by
the indefinite articles "a" or "an" limits any particular claim containing such introduced claim
element to inventions containing only one such element, even when the same claim includes

the introductory phrases "one or more" or "at least one" and indefinite articles such as "a" or

"an." The same holds true for the use of definite articles.

220-

WO 2010/096233 PCT/US2010/021780

[0057] Unless stated otherwise, terms such as “first” and “second” are used to arbitrarily
distinguish between the elements such terms describe. Thus, these terms are not

necessarily intended to indicate temporal or other prioritization of such elements.
[0058] The following are various embodiments of the present invention.

[0059] Item 1 includes a data processing system that generates debug messages
including a data processor for executing a plurality of data processing instructions; a memory
coupled to the data processor for storing and providing information to the data processor;
debug circuitry coupled to the data processor for generating debug messages including
address translation trace messages; a memory management unit coupled to the debug
circuitry and data processor where the memory management unit includes translation logic
for implementing address translation to translate addresses between virtual and physical
forms. The debug circuitry includes message generation circuitry coupled to the memory
management unit for receiving notice when one or more address translation mappings are
modified. The message generation circuitry generates an address translation trace
message in response to detection of a modification of an address translation mapping and
providing the address translation trace message external to the debug circuitry. Item 2
includes the data processing system of item 1, wherein the memory management unit sends
an indicator signal to the message generation circuitry each time any address translation
mapping is updated. Item 3 includes the data processing system of item 2, wherein the
message generation circuitry further includes compression logic for selectively removing at
least one field of the address translation trace message. ltem 4 includes the data
processing system of item 3 wherein each of the at least one field of the address translation
trace message that is removed by the compression logic contains a predetermined prevalent
value for that field. Item 5 includes the data processing system of item 4 wherein the
predetermined prevalent value is controlled by a user of the data processing system, and the
predetermined prevalent value is stored in a storage location accessible by the user of the
data processing system. ltem 6 includes the data processing system of item 3 wherein the
at least one field that is removed is either an address translation size field or an address
translation identification field for identifying one of a process identifier or an address space.
Item 7 includes the data processing system of item 1 wherein the one or more address
translation mappings are stored in a translation lookaside buffer (TLB). Item 8 includes the
data processing system of item 7 wherein the memory management unit sends an indicator
signal to the message generation circuitry each time the TLB writes a TLB entry or

invalidates an entry. Item 9 includes the data processing system of item 1 and further

21-

WO 2010/096233 PCT/US2010/021780

includes a debug terminal coupled to the debug circuitry; and a debugger coupled to the

debug terminal for receiving the address translation trace message from the debug circuitry.

[0060] Item 10 includes a method for generating debug messages including executing a
plurality of data processing instructions with a data processor; coupling debug circuitry to the
data processor for generating debug messages including address translation trace
messages; coupling a memory management unit to the debug circuitry and data processor,
wherein the memory management unit includes a translation lookaside buffer (TLB) for
implementing address translation to translate addresses between virtual and physical forms;
detecting when TLB entries are modified; generating an address translation trace message
in response to a detection of modification of a TLB entry; and providing the address
translation trace message to a debug terminal. Item 11 includes the method of claim 10 and
further includes sending an indicator signal from the memory management unit to the
message generation circuitry each time the TLB writes a TLB entry or invalidates an entry.
Item 12 includes the method of item 11 and further includes compressing a length of the
address translation trace message by removing at least one field of the address translation
trace message. ltem 13 includes the method of item 12 and further includes correlating the
at least one field that is removed to an address translation size field or an address
translation identification field for identifying an address space or a process identifier. Item 14
includes the method of item 12 and further includes correlating a predetermined prevalent
value to each of the at least one field of the address translation trace message; and
removing the at least one field only if the predetermined prevalent value exists for the at
least one field. . Item 15 includes the method of item 14 and further includes controlling the
predetermined prevalent value by a user of the data processing system; and storing the

predetermined value in one or more of a plurality of user accessible registers.

[0061] Item 16 includes a data processing system having global control circuitry for
controlling the data processing system; a data processor coupled to the global control
circuitry, where the data processor comprising an instruction fetch unit coupled to an
instruction decoder, the instruction decoder coupled to one or more execution units for
executing a plurality of data processing instructions; a memory management unit coupled to
the global control circuitry and the data processor where the memory management unit
comprising address translation logic for implementing address translation to translate
addresses between virtual and physical forms; a bus interface unit for interfacing the
memory management unit and a global interconnect; a memory coupled to the global
interconnect for storing and providing information from and to the data processor; and debug

circuitry coupled to the global control circuitry and the memory management unit where the

2.

WO 2010/096233 PCT/US2010/021780

debug circuitry generating debug messages including address translation trace messages.
The debug circuitry includes message generation circuitry coupled to the memory
management unit for receiving notice when one or more address translation mappings are
modified. The message generation circuitry generates an address translation trace
message in response to a detection of modification of an address translation mapping and
providing the address translation trace message external to the debug circuitry. ltem 17
includes the data processing system of item 16 wherein the message generation circuitry
further includes compression logic for selectively removing at least one field of the address
translation trace message. Item 18 includes the data processing system of item 17 wherein
each of the at least one field of the address translation trace message that is removed by the
compression logic contains a predetermined prevalent value for that field. Item 19 includes
the data processing system of item 18 wherein the predetermined prevalent value is
controlled by a user of the data processing system and the predetermined prevalent value is
stored in a storage location accessible by the user of the data processing system. ltem 20
includes the data processing system of item 16 wherein the one or more address translation
mappings are stored in a translation lookaside buffer (TLB) and the memory management
unit sends an indicator signal to the message generation circuitry each time the TLB writes a

TLB entry or invalidates an entry.

D3-

WO 2010/096233 PCT/US2010/021780

CLAIMS

What is claimed is:

1. A data processing system that generates debug messages, comprising:

a data processor for executing a plurality of data processing instructions;

a memory coupled to the data processor for storing and providing information to the
data processor;

debug circuitry coupled to the data processor for generating debug messages
including address translation trace messages;

a memory management unit coupled to the debug circuitry and data processor, the
memory management unit comprising address translation logic for implementing
address translation to translate addresses between virtual and physical forms,
wherein:

the debug circuitry comprises:

message generation circuitry coupled to the memory management unit for
receiving notice when one or more address translation mappings are
modified, the message generation circuitry generating an address
translation trace message in response to detection of a modification of
an address translation mapping and providing the address translation

trace message external to the debug circuitry.

2. The data processing system of claim 1 wherein the memory management unit sends
an indicator signal to the message generation circuitry each time any address translation

mapping is updated.

3. The data processing system of claim 2 wherein the message generation circuitry
further comprises:
compression logic for selectively removing at least one field of the address

translation trace message.
4. The data processing system of claim 3 wherein each of the at least one field of the

address translation trace message that is removed by the compression logic contains a

predetermined prevalent value for that field.

4.

WO 2010/096233 PCT/US2010/021780

5. The data processing system of claim 4 wherein the predetermined prevalent value is
controlled by a user of the data processing system, the predetermined prevalent value being

stored in a storage location accessible by the user of the data processing system.

6. The data processing system of claim 3 wherein the at least one field that is removed
is either an address translation size field or an address translation identification field for

identifying one of a process identifier or an address space.

7. The data processing system of claim 1 wherein the one or more address translation

mappings are stored in a translation lookaside buffer (TLB).

8. The data processing system of claim 7 wherein the memory management unit sends
an indicator signal to the message generation circuitry each time the TLB writes a TLB entry

or invalidates an entry.

9. The data processing system of claim 1 further comprising:
a debug terminal coupled to the debug circuitry; and
a debugger coupled to the debug terminal for receiving the address translation trace

message from the debug circuitry.

10. A method for generating debug messages comprising:

executing a plurality of data processing instructions with a data processor;

coupling debug circuitry to the data processor for generating debug messages
including address translation trace messages;

coupling a memory management unit to the debug circuitry and data processor, the
memory management unit comprising a translation lookaside buffer (TLB) for
implementing address translation to translate addresses between virtual and
physical forms;

detecting when TLB entries are modified,;

generating an address translation trace message in response to a detection of
modification of a TLB entry; and

providing the address translation trace message to a debug terminal.
11. The method of claim 10 further comprising:

sending an indicator signal from the memory management unit to the message

generation circuitry each time the TLB writes a TLB entry or invalidates an entry.

25-

WO 2010/096233 PCT/US2010/021780

12. The method of claim 11 further comprising:
compressing a length of the address translation trace message by removing at least

one field of the address translation trace message.

13. The method of claim 12 further comprising:
correlating the at least one field that is removed to an address translation size field or
an address translation identification field for identifying an address space or a

process identifier.

14. The method of claim 12 further comprising:
correlating a predetermined prevalent value to each of the at least one field of the
address translation trace message; and
removing the at least one field only if the predetermined prevalent value exists for the

at least one field.

15. The method of claim 14 further comprising:
controlling the predetermined prevalent value by a user of the data processing
system; and
storing the predetermined value in one or more of a plurality of user accessible

registers.

16. A data processing system, comprising:

global control circuitry for controlling the data processing system;

a data processor coupled to the global control circuitry, the data processor
comprising an instruction fetch unit coupled to an instruction decoder, the
instruction decoder coupled to one or more execution units for executing a
plurality of data processing instructions;

a memory management unit coupled to the global control circuitry and the data
processor, the memory management unit comprising address translation logic for
implementing address translation to translate addresses between virtual and
physical forms;

a bus interface unit for interfacing the memory management unit and a global
interconnect;

a memory coupled to the global interconnect for storing and providing information

from and to the data processor; and

06-

WO 2010/096233 PCT/US2010/021780

debug circuitry coupled to the global control circuitry and the memory management
unit, the debug circuitry generating debug messages including address
translation trace messages, wherein:
the debug circuitry comprises:
message generation circuitry coupled to the memory management unit for
receiving notice when one or more address translation mappings are
modified, the message generation circuitry generating an address
translation trace message in response to a detection of modification of
an address translation mapping and providing the address translation

trace message external to the debug circuitry.

17. The data processing system of claim 16 wherein the message generation circuitry
further comprises:
compression logic for selectively removing at least one field of the address

translation trace message.

18. The data processing system of claim 17 wherein each of the at least one field of the
address translation trace message that is removed by the compression logic contains a

predetermined prevalent value for that field.

19. The data processing system of claim 18 wherein the predetermined prevalent value
is controlled by a user of the data processing system, the predetermined prevalent value

being stored in a storage location accessible by the user of the data processing system.

20. The data processing system of claim 16 wherein the one or more address translation
mappings are stored in a translation lookaside buffer (TLB) and the memory management
unit sends an indicator signal to the message generation circuitry each time the TLB writes a

TLB entry or invalidates an entry.

27-

PCT/US2010/021780

WO 2010/096233

8

J [D3NNODHIIN V40T 2 oy
2 QL
R sspooy y
— | WIISAHd =] (4390n830)
0 | > (18) LN | NOILONMISN T WNILSAS
——>| VRN [e—1 > ININAOTIAIG
Ajonaw | | T ong4d d TYNY3LX3
| ssayaay [L b o 1} 2 |
| WIISAHd) | ~
| VIV —| | 9
_ L, | ’ _
_ 17 _
| oy o) LD 1 |
| o | ez [| | | e |
_ ad- A A R @ |
— C A= SIN |
W | { A9 Nollnoda [, |
| | lssmaav | 4 4 - » |
L oyy] VA Y[vy Y |
e B < . o w0000 | |
| | wolsiovon [TouNoo | L ssuaay | NOLOTISN [y |
A | WE0T0 WILYIA |
0l L NOLLONHLSN |
. {3l 1IN HO134 |
| g | L_0d | *~"T—3| Nouomiisn |3 |
_ _

L

PCT/US2010/021780

¢ DIA

L NIg ANV
9z AY1INJYID 5Ng3a 0l)
$39S34AAY TYOISAHd
¥1¥a ANY NOILONYLSNI

2/8

@L) @ | (IsL) 3zs | SSaav | ssavaay
A (SANEELLY o1l | NOLLYISNWL | T¥OISAHd | TvnidiA | N

WO 2010/096233

=1 | NOLYWNOINI
A ls3ainamiLy (L) a @ZISL) 371S | SS3YaAqv | sS3¥aav 0 NOLLYISNVYL
NOILVISNVYL [NOILVISNVYL | TWOISAHd | TVNLYIA qSIyaay any
az° ez wec 0eC WzS e g)| SOLEN
mmmk g1
SHaLSIO 07 AULINONID
-——————~/ 3 v v
1 a1vadn nmw > 10HINOY > 9ng3a 0L
102 f 80z f f
¥Z SLINN H «
NOILNO3X3
NO¥4/0L (62 LINN FHOLS/AYOT ANV gy 84 JOHINOO
02 LINN HOL34 NOILONYLSNI NO¥4) a0
$39S34AQY TVNLYIA NOY3/0L

Y1va ANV NOILONYLSNI

PCT/US2010/021780

WO 2010/096233

38

AJT'

0v
STYNINYAL
ongaaol

99

J190T
ol

« | ~| 39vsSaw

¢ 'DId
8l

JOYINOD vE019
WOH4

04l

AYLINDYID
TO¥1INOD ON83d

21901
NOILVHAN3O
JOVSSIN

JI90T
~ NOISSTHdNOD

£0¢ T04.LNOJ WO¥4

WO 2010/096233

012345678 9101121314151617 181920 2122 23 24 25 26 27 28 29 30 31

204
y

48

PCT/US2010/021780

FIG. 4

(I 1] wre
(@ o
= wn=
o — o=
= <
> Ll XX
D™
Dl
o
= ==
D — Y)
o —
o
1353 — ~
(]
= ol
= = a
o
o
(l0) 138911
o
><C Jd1—N
2 = 2 2
= = = =

PCT/US2010/021780

WO 2010/096233

5/8

- LY HOMRd -

(v3) uonepieau qp
a4+ vy - V3
3002408ns ay vy 0 1€
AN €L
- 1MV ¥OIMd -
SV ‘o¥IN LYW= (@ Kquaap) NN
(1353 13891L) OvW =PI Anua™qp
1§ 0¢ 12 02 96 0
0 3002408Nns 0 1€

IME1L

PCT/US2010/021780

WO 2010/096233

6/8

- 1HY HORMd -

(av34 vLva) 6 DIH
011000
@LMMYLVa) JOVSSIN JOVHL VIVa
104000
EE EE EE EE
JA0O ¥IASNYML | HOSSIO0Md I0MN0S | 3ZIS YIVA SS3HAAY TYNLHIA SENAI
s
- 1Y HOId -
(JA0N AYOLSH)
001110 JOVSSIN HONVHE LOTHIANI FOVHL AVEO0Yd
EE EE R AYOLSH R
JA0D HIISNVEL | HOSSID0Hd I0MNOS | INNOD IONINDIS HONYYE SSTAAY TYNLYIA
L\
- 1Y HOIMd -
(300N TYNOILIOVYL)
001000 JOVSSIN HONVHE LOTHIANI FDVHL AVEO0Yd
EE EE EE EE
300D HIISNVEL | HOSSID0Hd I0HNOS INNOD IONIND3S SSHAQY TYNLHIA

e

PCT/US2010/021780

WO 2010/096233

- MY YO - 0000 0440 4400 bEbb 1400 0000 0000 0000 =2V
¢l DIA 0000 0440 Lhbb 0000 0000 0000 0000 0000 =N
0000 0000 00+F bibb 1400 0000 0000 0000 =Y
=N D Y
NOILYIH0-34 SSTHaaY
0000 OLLO LLLL = (LN) I9DVSSIN SSIHAQY
0000 0410 LLLL 0000 0000 0000 0000 0000=2V & IV
0000 0440 4400 bbb 1400 0000 0000 0000 =2y
0000 0000 0041 bbb 1400 0000 0000 0000 =Y
NOLLY¥IN3D 39YSSIN
N
N 39YSSIN 30VHL NOILYTSNYAL SSIMaAY 43sva - IMgTL
T3 40S53008d] G01}) SSaay SSUaav
(l00o0}) 30001 30800~ |3qona| 481 | A WNLEIANINOD | T¥OISAH ¥dNOD
SL1g9) sugy) GLdy) GLds) (uds) L1 26-}) L1 26-})
L
Ol OIA
(q35STMdN0D)
39YSSIN 30VHL NOILYTSNVALL SSIHAAY 43SvE - IMETL
T3 405530054 SSUaav SSUaav
(l00o0}) 30001 304N0S (00i1) 30003 WNLIAEANOD | TVOISAHd ¥dWOD
SL1g9) sLg) sLg) SL1g 26-}) (L1 26-})

"t

PCT/US2010/021780

WO 2010/096233

88

1 DIA

NOILVLIAIM3d AHOLSIH
HLIM JOVSSIN NOILY1THYHO0D WVYO0Yd

Gooo0) 3qopy | THAB0983I08 30003 INNOD IONIND3S | AUOLSIH HONVAIE
(119 9) SLg) SLg) cLg81) SLazel)
%
NOLLY.LINIT3Q AMOLSIH
HLIM 39YSSIN I9VHL NOILYISNVYL SS3Maav
07314 40SS3004d INNOD | AYOLSHH e e
(00o0}) 30001 0800 | 39093 | 35N3noas | HoNvME | TVNLNIA HdWOD TVOISAHd ¥dINOD
L8 9) cugy) Guay) Suasl) SLgzet) SLg ze-)) SLg ze-))
LY
JOVSSINIOVML
NOILYISNY¥L SSHAQY a3sve - ANI gL
07314 40SS3004d (03SSTIANOONN)_
(loooo}) 30001 304N0S (0ih}) 30033 SSTHAQY WLYIAANI_E1L

f/ww

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings

