(54) Title: METHOD AND ARRANGEMENT FOR WASH AFTER COMPLETED DIGESTION IN A CONTINUOUS DIGESTER FOR THE PRODUCTION OF CELLULOSE PULP

(71) Applicant (for all designated States except US): METSO FIBER KARLSTAD AB [SE/SE]; Box 1033, S-651 15 Karlstad (SE).

(72) Inventor; and
(75) Inventor/Applicant (for US only): JONSSON, Allan [SE/SE]; Mardvagen 5, S-665 00 Kl (SE).

(74) Agent: FURHEM, Hans; c/o Metso Fiber Karlstad AB, Box 1033, S-651 15 Karlstad (SE).

(57) Abstract: The invention concerns a method and an arrangement for wash after completed digestion in a continuous digester (1) for the production of cellulose pulp. Digested softened chips that have not been defibrated are fed out from the bottom plane of the digester. The non-defibrated chips are fed out under the influence of a bottom scraper arranged at the bottom of the digester and subsequently through a bucket shaped outlet tap (10) at the bottom of the digester, and onwards to an outlet line (12) connected to the outlet tap. This takes place before the softened chips pass through a blow-valve (4) arranged in the outlet line, across which blow-valve a pressure drop of at least 0.5 bar and at most 3.5 bar has been established. What is characteristic for the invention is that the softened chips are exposed to an displacement wash after they have passed the outlet tap (10), and which displacement wash has been established in the flow of digested softened chips through the outlet line (12) before the softened chips are defibrated by the pressure drop across the blow-valve (4).
Method and arrangement for wash after completed digestion in a continuous digester for the production of cellulose pulp

Technical area
The invention concerns a method and an arrangement for the improvement of a wash after completed digestion in a continuous digester for the production of cellulose pulp. Digested softened chips that have not yet undergone defibration are fed out from the bottom surface of the digester after having passed a final strainer section in the bottom of the digester. The non-defibrated chips are fed out under the influence of a bottom scraper arranged at the bottom of the digester and subsequently through a bucket shaped outlet tap at the bottom of the digester, and onwards to an outlet line connected to the outlet tap. This takes place before the softened chips pass through a blow-valve arranged in the outlet line, across which blow-valve a fall in pressure of at least 0.5 bar and at most 3-5 bar has been established.

The prior art
Production has been increased above the original design capacity, principally in older continuous digesters, so much that the conventional digester wash at the bottom of the digester has essentially been eliminated. It is often the case in these overloaded digesters that the dilution factor at the bottom of digester is 0, and in certain extreme cases it may be negative. The dilution factor is the factor that specifies the quantity of washing or dilution liquid that is added at the bottom of the digester relative to the current quantity of cooking fluid in the digester. For a dilution factor of 2.0, as is often desired, 2.0 cubic metres of washing or dilution liquid is added at the bottom of the digester per tonne of pulp (2.0 m3/ADT).

Also new digester plants are designed such that the greater part of the digester is used as cooking zone, such that a longer retention time in the cooking process is obtained, which allows reduction of the required cooking temperature to achieve the H factor necessary for delignification. A longer retention time and lower cooking temperature are beneficial for the strength
and yield of pulp, since the cellulose is broken down to a lesser degree, and they also give better control of the cooking process. Large digesters with capacities of over 4000 tonnes of pulp per day have extremely large diameters, greater than 12 metres, at the bottom of the digester, and this means that it becomes extremely difficult to establish a good displacement of the free fluid from between the softened chips by the addition and withdrawal of washing or dilution liquid through the wall of the digester and arrangements having central pipes. The conventional technology for adding washing or dilution liquid through vertical and horizontal nozzles in the wall at the bottom surface of the digester often leads to the formation of flows or a film of liquid along the inner wall of the digester shell down towards the outlet. These flows of low temperature with washing or dilution liquid that has a relatively lower temperature can often be detected on the walls of transfer lines to subsequent storage towers or washing equipment, and in certain cases these cold flows are held intact until the inlet of the storage tower or washing equipment.

A known wash is shown in Figure 1D at the bottom of the digester where washing liquid is added through a central pipe, arranged directly above the bottom scraper, and where expelled cooking fluid is withdrawn from the surrounding wall of the digester wall. The technology corresponds to that revealed in, for example, US3475271. A variant with several displacement stages is revealed in US4213822. One disadvantage here is that a large part of the bottom section of the digester is used for digester washing.

Figure 1E shows known dilution technology at the bottom of the digester in which dilution liquid is added at the bottom of the digester, typically through nozzles from a source N_d/N_v, and where the pulp is dewatered in a subsequent dewatering arrangement 8 in the outlet line 12. The technology corresponds to that revealed in, for example, SE204236. One disadvantage here is that the dilution gives a limited wash, since the filtrate obtained from the dewaterer is recirculated as dilution liquid.
US3807202 reveals a variant of the wash of defibrated pulp at the bottom of towers. A stationary internal distribution space is arranged in this case in the outlet tap, with a surrounding stationary strainer. Washing liquid is added through the central distribution space and expelled liquid is withdrawn through the surrounding strainer. This solution concerns the washing of defibrated pulp, and does not concern the displacement of liquid from softened chips. One disadvantage here is that the strainer and the distributor space are stationary, and where the defibrated pulp must pass through a narrow gap between them. It is easy for the strainer to become clogged by fibre material and the washing process loses its effect.

A further displacement wash of defibrated pulp is revealed in US6272710 and US6553593, where the pulp is divided into thin streams through a rectangular space under atmospheric conditions. This solution is not suitable for a displacement wash of softened chips at full cooking pressure.

The aim of the invention

The pressure drop that is generated across the blow-valve gives a defibrating effect for the cooked softened chips such that the fibres are released to a greater degree and the pulp can be better washed in a subsequent washing process, preferably a pressure diffuser arranged directly after the digester.

It is desired to implement an displacement wash at the relevant process position before the blow-valve between the softened but as yet not defibrated fragments of chip such that the free liquid between the fragments of chip can be exchanged from a free liquid, typically consumed cooking fluid or black liquor, with a high content of dissolved organic material, principally but not exclusively lignin, to a cleaner liquid with a lower content of dissolved organic material.

After defibration in the exchanged cleaner liquid, organic material that was bound in the softened chips can more easily dissolve and the total washing efficiency from the subsequent wash can be considerably improved.
A first purpose of the invention is to achieve an improved displacement wash of the digested and softened chips before defibration of the chips takes place across the blow-valve.

A second purpose is to be able to install this displacement wash in already existing parts of the equipment at the digester plant, such that no further equipment or components are required. The displacement washer can, when installed in new digester plants, be achieved at very low additional cost since it is only necessary to exchange one pulp line for a displacement washer.

A third purpose is to be able to offer, by the rebuilding of existing equipment, an increase in the dilution factor in overloaded digesters, where the production has been increased from the original design capacity so much that the dilution factor has been severely reduced, and in certain cases even eliminated.

Description of the invention

The method according to the invention relates to improvement of a wash after completed digestion in a continuous digester for the production of cellulose pulp. Softened chips are fed in the method out from the bottom surface of the digester after having passed a final strainer section in the bottom of the digester. The softened chips are fed out under the influence of a bottom scraper arranged at the bottom of the digester and through a bucket shaped outlet tap at the bottom of the digester and further to an outlet line connected to the outlet tap. Finally, the softened chips pass through a blow-valve arranged in the outlet line, across which blow-valve a pressure drop of at least 0.5 bar and at most 3-5 bar has been established. What is characteristic for the method according to the invention is that the softened chips are exposed to a displacement wash after they have passed the outlet tap, and which displacement wash has been established in the flow of digested softened chips through the outlet line before the softened chips are defibrated by the pressure drop across the blow-valve.

The displacement wash is preferably established between two opposing walls
of the outlet line, where one wall has nozzles for the addition of washing fluid and the second opposing wall has strainer surfaces for the withdrawal of liquid.

The displacement wash in the outlet line through the addition and withdrawal in the opposing walls preferably exchanges between 0.1 and 2 cubic metres of liquid per tonne of pulp (ADT) for each 2 metres of outlet line.

In order to minimise the risk of clogging of the section of wall that has strainer surfaces for the withdrawal of liquid, it is appropriate that the displacement wash is established, in at least one module through the addition and withdrawal across the opposing walls, such that this displacement wash changes its direction of displacement after a predetermined time, such that first wall section add washing fluid during a first period of time and then in a subsequent second period of time withdraw liquid, with the inverse functionality taking place in the second wall section. This alternation of the direction of displacement may also take place in a manner based on feedback, through detection of the pressure drop across the bed of chips.

The arrangement is intended for the improvement of a wash after a completed digestion process in a continuous digester for the production of cellulose pulp, in which digested softened chips are fed out from the bottom surface of the digester after having passed a final strainer section in the bottom of the digester and subsequently fed out under the influence of a bottom scraper arranged in the bottom of the digester and thereafter through a bucket shaped outlet tap at the bottom of the digester and onwards to an outlet line (12) connected to the outlet tap, before the softened chips pass through a blow-valve (4) arranged in the outlet line, across which blow-valve a pressure drop of at least 0.5 bar and at most 3 bar has been established. The chips at this position before the blow-valve have been softened and maintain their structure essentially as a bundle of softened fibres. The only noticeable mechanical influence to which the softened chips are exposed is that of the bottom scraper. The arrangement at this position is characterised in that it is constituted by a module of the outlet line before the blow-valve is provided with at least one first
axially running section of wall with nozzles for the addition of washing fluid and at least one second section of wall with strainer surfaces for the withdrawal of expelled cooking fluid, where these sections of wall are located at diametrically opposite sides of each other in the inner surface of the outlet line.

It is appropriate that the module in the outlet line has a length of between 2 and 6 metres. Since full cooking pressure has been established in the pulp at this position, also the module must be designed as a pressure vessel, and it is for this reason appropriate that the module be constituted by a tubular pressure vessel, in which pressure vessel the wall sections for the addition and withdrawal of washing fluid are arranged as exchangeable plates.

In order to achieve better displacement washing through thin flows of the softened chips, the module of the outlet line before the blow-valve can be provided with at least one third section of wall that runs in an axial direction and that has nozzles for the addition of washing fluid, and at least one fourth section of wall that runs axially and that has strainer surfaces for the withdrawal of expelled cooking fluid, where these sections of wall are arranged such that sections of wall with nozzles and a sections of wall with strainer surfaces are located arranged facing each other in the inner surface of the outlet line.

By designing the arrangement as a module, increased displacement washing can be easily installed by arranging at least two modules of the outlet line in series. In the case of this installation, at least one module of the outlet line can be arranged in a horizontally running part of the outlet line and at least one module of the outlet line can be arranged in a vertically running part of the outlet line.

Description of drawings

Figures 1A-1E show various known designs of washing zones in the bottom of a continuous digester;

Figure 2 shows a first embodiment of the invention;

Figure 3 shows three different embodiments of the outlet line according to the invention;

Figure 4 shows how a number of modules of the outlet line according to the invention can be coupled together; and
Figure 5 shows a more detailed displacement wash in a module of the outlet line; and
Figures 6a-6b show a detail of the design of the wall section with its nozzles in a first embodiment; and
Figures 6c-6d show a detail of the design of the wall section with its nozzles in a second embodiment.

Detailed description of the invention

The concept of "nozzle" will be used in the following detailed description, and this concept is here used to denote either one or several individual nozzles, or distribution plates with holes that add fluid.

A first embodiment of the invention is shown in Figure 2, where one part is shown in a larger format in Figure 5. The arrangement is located in the outlet line 12, connected to the outlet tap 10 and before a blow-valve 4. The digested softened chips are fed out under the influence of a bottom scraper driven by a shaft 3 arranged at the bottom of the digester and subsequently through an bucket shaped outlet tap 10 at the bottom of the digester, and onwards to an outlet line 12 connected to the outlet tap before the softened chips pass through a blow-valve 4 arranged in the outlet line. The defibrated pulp is fed after the blow-valve to washing equipment, shown here as a conventional pressure diffuser 5, where washing fluid 6 is led into the bed of pulp from outside and a filtrate 7 is withdrawn from the centre of the pressure diffuser. A pressure drop of at least 0.5 bar and at most 3-5 bar is established across the blow-valve.

The outlet line 12 is here designed as a displacement wash in a module of the outlet line before the blow-valve 4. An axially running first wall section 16a is shown in the drawing with nozzles for the addition of washing fluid N_j and at least one axially running second section of wall 16b with strainer surfaces for the withdrawal of expelled cooking fluid F_j, where these sections of wall are located on diametrically opposing side of each other in the inner surface of the outlet line.
A section of the module is shown in Figure 3a in which a tubular pressure vessel 18 surrounds the complete arrangement with a first wall section 16a that runs axially and a second wall section 16b that runs axially and with strainer surfaces. The washing fluid N_D is added to a chamber C_{iN} between the pressure vessel 18 and the first section of wall 16a. Expelled cooking fluid F_D is then withdrawn through the second section of wall 16b that has strainer surfaces to a chamber C_{iUr}.

The flow of washing fluid, the displacement flow, and the filtrate are shown in Figures 3a to 3c using different arrows: WL, DW, and F, respectively.

A section of an alternative second embodiment of the module is shown in Figure 3b in which a tubular pressure vessel 18 surrounds the complete arrangement with a first wall section 16a that runs axially, a second wall section 16b that runs axially and with strainer surfaces, a third wall section 16c that runs axially, and a fourth section of wall 16d that runs axially and with strainer surfaces. The washing liquid N_D is added in this embodiment to two chambers C_{iN} between the pressure vessel 18 and the first section of wall 16a and between the pressure vessel 18 and the third section of wall 16c. Expelled cooking fluid F_D is then withdrawn through the second section of wall 16b with strainer surfaces and through the fourth section of wall 16d with strainer surfaces to two separate outlet chambers C_{iUr}. In this case a first displacement flow DW is formed that passes from a location at a position at 3 o'clock to a position at 6 o'clock, together with a second displacement flow DW that passes from a location at a position at 12 o'clock to a position at 9 o'clock.

A section of an alternative third embodiment of the module is shown in Figure 3c in which a tubular pressure vessel 18 surrounds the complete arrangement with a first wall section 16a that runs axially, a second wall section 16b that runs axially and with strainer surfaces, a third wall section 16c that runs axially, and a fourth section of wall 16d that runs axially and with strainer surfaces, and where all sections of wall are parallel and form between them two channels for the softened chips. Washing liquid N_D is added in this embodiment to a first chamber C_N between the pressure vessel 18 and the first section of wall 16a.
and it is added to a second chamber C_{N} between an oblique separator wall and the third section of wall 16c. Expelled cooking fluid F_{Dj} is then withdrawn through the second section of wall 16b with strainer surfaces and through the fourth section of wall 16d with strainer surfaces to two separate outlet chambers $C_{O\tau}$- In this case, first and second displacement flows DW are formed through two separate flows of the softened chips.

It is appropriate that the module in the outlet line have a length of between 2 and 6 metres. Since full cooking pressure has been established in the pulp at this position, the module must be designed as a pressure vessel, and it is for this reason appropriate that the module be constituted by a tubular pressure vessel, in which pressure vessel the wall sections for the addition and withdrawal of washing fluid are arranged as exchangeable plates.

By designing the arrangement as a module, increased displacement washing can be easily installed by arranging at least two modules of the outlet line in series, as is shown in Figure 4. In the case of this installation, at least one module 12a of the outlet line can be arranged in a horizontally running part of the outlet line and at least one module 12b/12c of the outlet line can be arranged in a vertically running part of the outlet line.

A more detailed module that corresponds to the embodiment shown in Figure 3c is shown in Figure 5. The module is a tubular pressure vessel 18 with flanges 17 that surround the complete arrangement. The first section of wall 16a that runs axially has two parallel inlet chambers 45a/45a' externally to the module in order to achieve a better distribution of washing fluid along the length of the module. Several inlet chambers can, of course, be implemented.

A second section of wall 16b that runs axially and with strainer surfaces is arranged at a distance that is less than half of the diameter of the module. Expelled cooking fluid F_{Dj} is subsequently withdrawn through the second section of wall 16b that has strainer surfaces to an outlet chamber 45b/$C_{O\tau}$, and the expelled cooking fluid is withdrawn from the outlet chamber from this chamber through the outlet 42b. The bottom of the outlet chamber 45b/$C_{O\tau}$ is constituted by an oblique separator wall 44. A first sub-flow of softened chips
PF is formed between the first and the second sections of wall. A second inlet chamber 46a is formed between the oblique separator wall 44 and a third section of wall 16c that runs axially for the distribution of washing fluid along the length of the module, which washing fluid is input through the inlet 41b. A fourth section of wall 16d that runs axially and that has strainer surfaces is arranged at a distance. Expelled cooking fluid F_{ij} is subsequently withdrawn through the fourth section of wall 16d that has strainer surfaces to two outlet chambers 46b/46b' ($C_{Ou}r$), and the expelled cooking fluid is withdrawn from this chamber from the outlet chamber through the outlet 42a/42a'. The bottom of the outlet chamber 46b/46b' ($C_{Ou}r$) is constituted by the inner surface of the pressure vessel. A second sub-flow of softened chips PF is formed between the third and the fourth sections of wall.

An appropriate first embodiment is shown in Figure 6a, seen from above in Figure 6b, of the nozzles that are formed in the various sections of wall 16a-16d. The wall or the strainer surface 16 has been designed with a depression that has a form that corresponds to the edge of a cheese grater. The flow of softened chips formed is here shown by the arrow PF, and it passes first over the straight edge 51 of the perforation and passes over the depression 50 before the flow reaches the rounded edge 52 of the depression, which edge lies downstream. Since the flow is constituted by softened chips that retain a tendency to bind together, an appropriate depression can be given a form in which the edge 51 is not much longer, preferably shorter, than the minor axis of the chips, which normally passes transverse to the direction of the fibre. (Chips are normally cut with a certain thickness and with a minor axis that runs transverse to the direction of the fibre, and with a major axis that lies parallel to the direction of the fibre.)

An appropriate second embodiment is shown in Figure 6c, seen from above in Figure 6d, of the nozzles that are formed in the various sections of wall 16a-16d. The wall or strainer surface 16 has been designed with a round depression with a form that corresponds to the dimples on a golf ball. The flow of softened chips formed is here shown by the arrow PF. Holes 55 are located...
in one or several rows at the half of the depression that lies upstream. Since the flow is constituted by softened chips that retain a tendency to bind together, it is appropriate that the round depression be given a diameter that is not much longer, preferably shorter, than the minor axis of the chips, which normally passes transverse to the direction of the fibre. (Chips are normally cut with a certain thickness and with a minor axis that runs transverse to the direction of the fibre, and with a major axis that lies parallel to the direction of the fibre.)

The method and the arrangement according to the invention can be modified in several ways within the framework of the patent claims. In those cases in which several modules have been placed in series, a similar displacement effect can be established in all modules, which means that the direction of displacement is the same in all flows of pulp, and when it is desired to change the direction of displacement in order to rinse clean the section of wall that has withdrawal function it is possible to synchronise in steps the change in the modules with the rate of flow of the pulp.

In the case in which several modules are used, the washing fluid can be led in series through these modules. In the embodiment shown in Figure 4, the filtrate F_{D3} from the last module 12c can be led in as washing fluid N_{D2} into the second module, and finally the filtrate F_{D2} from the second module 12b can be led into the first module as washing fluid N_{D1j}. Such a serial wash using counterflow can also take place in several steps in an individual module similar to that shown in Figure 5, with several chambers 45a, 45a', 46b, 46b' and a corresponding chamber division into 45b and 46a.

Example of implementation

For a continuous digester with a capacity of over 4,000 tonnes (ADT) pulp per day, the diameter of the bottom of the digester is 12.5 m. The outlet tap for this magnitude of digester typically has a diameter of 2.1 m and a height of 1.1 m. The outlet line typically has a diameter of 0.5 m.

The internal surface area of the outlet line for each stretch of length 2 m will then be approximately 3.14 m^2.

With a typical strainer loading, i.e. the withdrawal capacity of the strainer
surface, of 5-10 m³/hour/m², it is then possible in a digester of this magnitude to establish a withdrawal volume of 36-72 m³/hour from the outlet tap and 15-31 m³/hour from a module of length 2 m of the outlet line.

With a length of four modules of the outlet line arranged in series before the blow-valve, it would be possible to increase the dilution factor by up to 0.3 (i.e. 0.3 m³ per ADT of pulp), given a production of 4,000 tonnes of pulp per day.
CLAIMS

1. A method for the improvement of a wash after a completed digestion process in a continuous digester (1) for the production of cellulose pulp, in which digested softened chips are fed out from the bottom surface of the digester after having passed a final strainer section (2) in the bottom of the digester and subsequently fed out under the influence of a bottom scraper (3) arranged in the bottom of the digester and thereafter through a bucket shaped outlet tap (10) at the bottom of the digester and onwards to an outlet line (12) connected to the outlet tap before the softened chips pass through a blow-valve (4) arranged in the outlet line, across which blow-valve a pressure drop of at least 0.5 bar and at most 3 bar has been established characterised in that the softened chips are subject to a displacement wash after that they have passed the outlet tap (10), and which displacement wash has been establish in the flow of digested softened chips through the outlet line (12) before the softened chips are defibrated by the pressure drop across the blow-valve.

2. The method according to claim 1 characterised in that the displacement wash is established between two opposing walls of the outlet line, where one wall has nozzles for the addition of washing fluid and the second opposing wall has strainer surfaces for the withdrawal of liquid.

3. The method according to claim 2 characterised in that the displacement wash through the addition and withdrawal in the opposing walls exchanges between 0.1 and 2 m3 of liquid per tonne of pulp (ADT) for each 2 metres of outlet line.

4. The method according to claim 3, characterised in that the displacement wash in a module through addition and withdrawal through the opposing walls changes its direction of displacement after a predetermined time, such that first wall sections add washing fluid during a first period of time and then in a subsequent second period of time withdraw liquid, with the inverse functionality taking place in the second wall section.
5. An arrangement for the improvement of a wash after the completion of digestion in a continuous digester (1) for the production of cellulose pulp, where digested softened chips are fed out from the bottom surface of the digester after passing through a final strainer section (2) at the bottom of the digester and thereafter fed out under the influence of a bottom scraper (3) arranged at the bottom of the digester and thereafter through a bucket shaped outlet tap (10) at the bottom of the digester and onwards to an outlet line (12) connected to the outlet tap before the softened chips pass through a blow-valve (4) arranged in the outlet line, across which blow-valve a pressure drop of at least 0.5 bar and at most 3 bar has been established characterised in that one module of the outlet line before the blow-valve is provided with at least one first wall section (16a) that runs axially and that has nozzles for the addition of washing fluid and at least one second wall section (16b) that runs axially and that has strainer surfaces for the withdrawal of expelled cooking fluid, where these wall sections are located on diametrically opposing sides of each other in the inner surface of the outlet line.

6. The arrangement according to claim 5 characterised in that the module of the outlet line has a length of between 2 and 6 metres.

7. The arrangement according to claim 6 characterised in that the module is constituted by a tubular pressure vessel (12) in which pressure vessel the wall sections (16a-16d) for the addition and withdrawal of washing fluid are arranged.

8. The arrangement according to claim 7, characterised in that the module of the outlet line before the blow-valve is provided also with at least one third section of wall (16c) that runs in an axial direction and that has nozzles for the addition of washing fluid, and at least one fourth section of wall (16d) that runs axially and that has strainer surfaces for the withdrawal of expelled cooking fluid, where these sections of wall are arranged such that section
walls with nozzles and a section walls with strainer surfaces are located arranged facing each other in the inner surface of the outlet line.

9. The arrangement according to any one of claims 5-8, **characterised in** that at least two modules (12a/1 2b/1 2c) of the outlet line are arranged in series.

10. The arrangement according to claim 8, **characterised in** that at least one module (12a) of the outlet line is arranged in a horizontal part of the outlet line and at least one module (12b/1 2c) of the outlet line is arranged in a vertical part of the outlet line.
Fig. 1B

Fig. 1C

Fig. 1D

Fig. 1E
Fig. 5
INTERNATIONAL SEARCH REPORT

International application No.
PCT/SE2010/050308

A. CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Documentation searched (classification system followed by classification symbols)

IPC: D21C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-INTERNAL, WPI DATA, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 6699357 B2 (V. SNEKKENES ET AL), 2 March 2004 (02.03.2004), column 6, line 29 - line 51 ----</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>US 3259538 A (A. P. SCHNYDER), 5 July 1966 (05.07.1966), column 3, line 55 - column 4, line 31 ----</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>WO 9424362 A1 (KAMYR AB), 27 October 1994 (27.10.1994), claim 1 ----</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>US 3085624 A (A.J. HORSTMAN), 16 April 1963 (16.04.1963), column 3, line 9 - line 33 ----</td>
<td>1-10</td>
</tr>
</tbody>
</table>

D. Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search 23 June 2010
Date of mailing of the international search report 28-06-2010

Name and mailing address of the ISA/Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer
Marianne Bratsberg / MRo
Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 2009)
International patent classification (IPC)

D21C 3/24 (2006.01)
D21C 9/02 (2006.01)

Download your patent documents at www.prv.se
The cited patent documents can be downloaded:
• From "Cited documents" found under our online services at www.prv.se (English version)
• From "Anförda dokument" found under "e-tjanster" at www.prv.se (Swedish version)

Use the application number as username. The password is ZAQILALUFD.

Paper copies can be ordered at a cost of 50 SEK per copy from PRV InterPat (telephone number 08-782 28 85).

Cited literature, if any, will be enclosed in paper form.
<table>
<thead>
<tr>
<th>Country</th>
<th>Application No.</th>
<th>Date</th>
<th>Patent No.</th>
<th>Date</th>
<th>Patent Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>6699357</td>
<td>02/03/2004</td>
<td>BR 0104467 A</td>
<td>23/03/2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CA 2357393 A</td>
<td>03/05/2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP 1203841 A</td>
<td>08/05/2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 2002155484 A</td>
<td>31/05/2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SE 515970 C</td>
<td>05/11/2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SE 0004049 A,L</td>
<td>05/11/2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US 20020079071 A</td>
<td>27/06/2002</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>3259538</td>
<td>05/07/1966</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO</td>
<td>9424362</td>
<td>27/10/1994</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FI 43033 B</td>
<td>02/09/1970</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GB 892277 A</td>
<td>21/03/1962</td>
<td></td>
</tr>
</tbody>
</table>