

US 20090192076A1

(19) **United States**

(12) **Patent Application Publication**

MATTHIESSEN et al.

(10) **Pub. No.: US 2009/0192076 A1**

(43) **Pub. Date: Jul. 30, 2009**

(54) **RECOMBINANT VWF FORMULATIONS**

(75) Inventors: **PETER MATTHIESSEN, VIENNA (AT); PETER TURECEK, KLOSTERNEUBURG (AT); HANS-PETER SCHWARZ, VIENNA (AT); KURT SCHNECKER, VIENNA (AT)**

Correspondence Address:
**BAXTER HEALTHCARE CORPORATION
ONE BAXTER PARKWAY, DF2-2E
DEERFIELD, IL 60015 (US)**

(73) Assignees: **BAXTER INTERNATIONAL INC., DEERFIELD, IL (US); BAXTER HEALTHCARE SA, WALLISELLEN (CH)**

(21) Appl. No.: **12/342,646**

(22) Filed: **Dec. 23, 2008**

Related U.S. Application Data

(60) Provisional application No. 61/017,418, filed on Dec. 28, 2007, provisional application No. 61/017,881, filed on Dec. 31, 2007.

Publication Classification

(51) **Int. Cl.**
A61K 38/16 (2006.01)

(52) **U.S. Cl.** **514/7**

ABSTRACT

The present invention provides long-term stable pharmaceutical formulations of recombinant von-Willebrand Factor (rVWF) and methods for making and administering said formulations.

FIG. 1

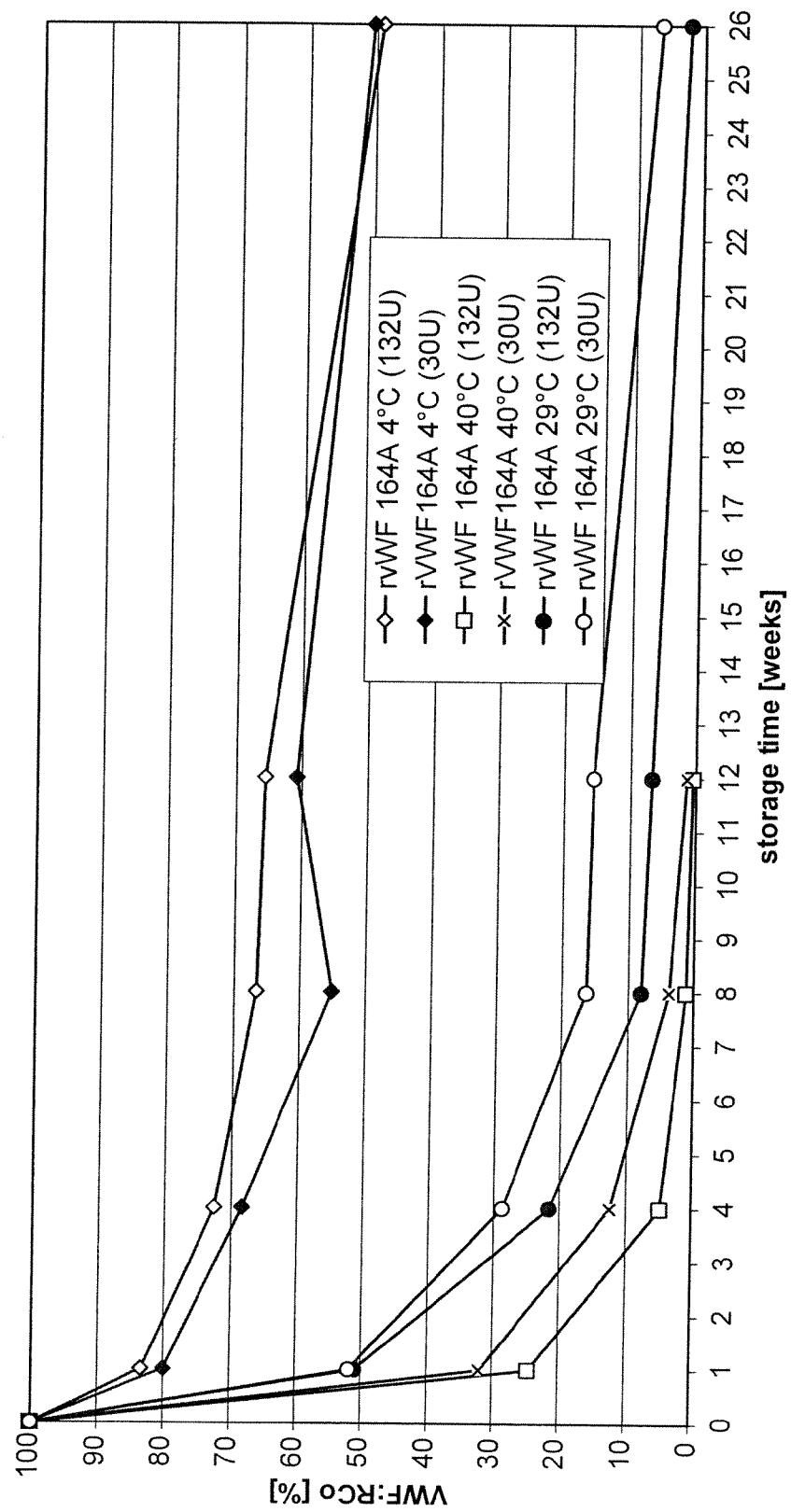


FIG. 2

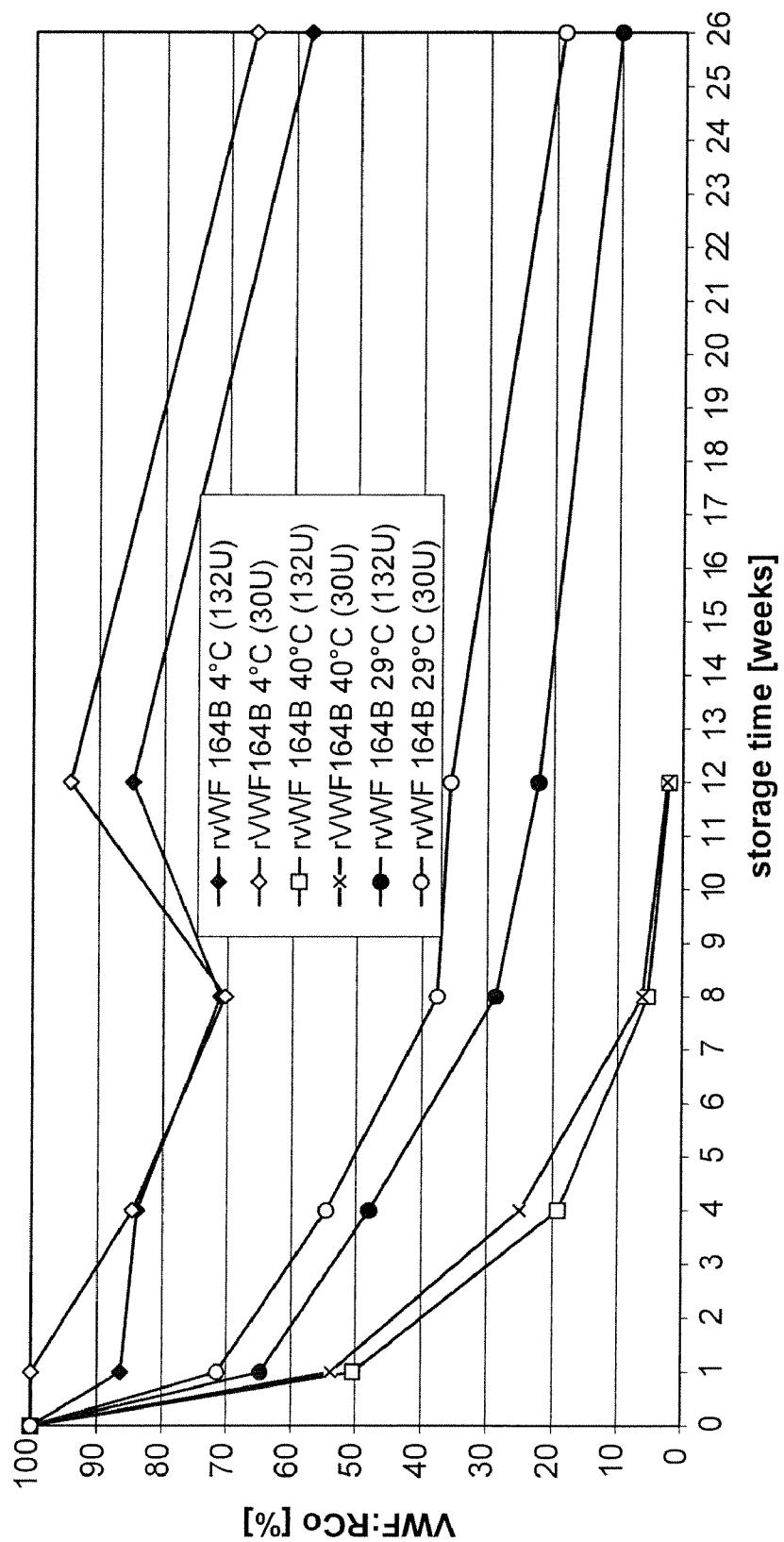


FIG. 3

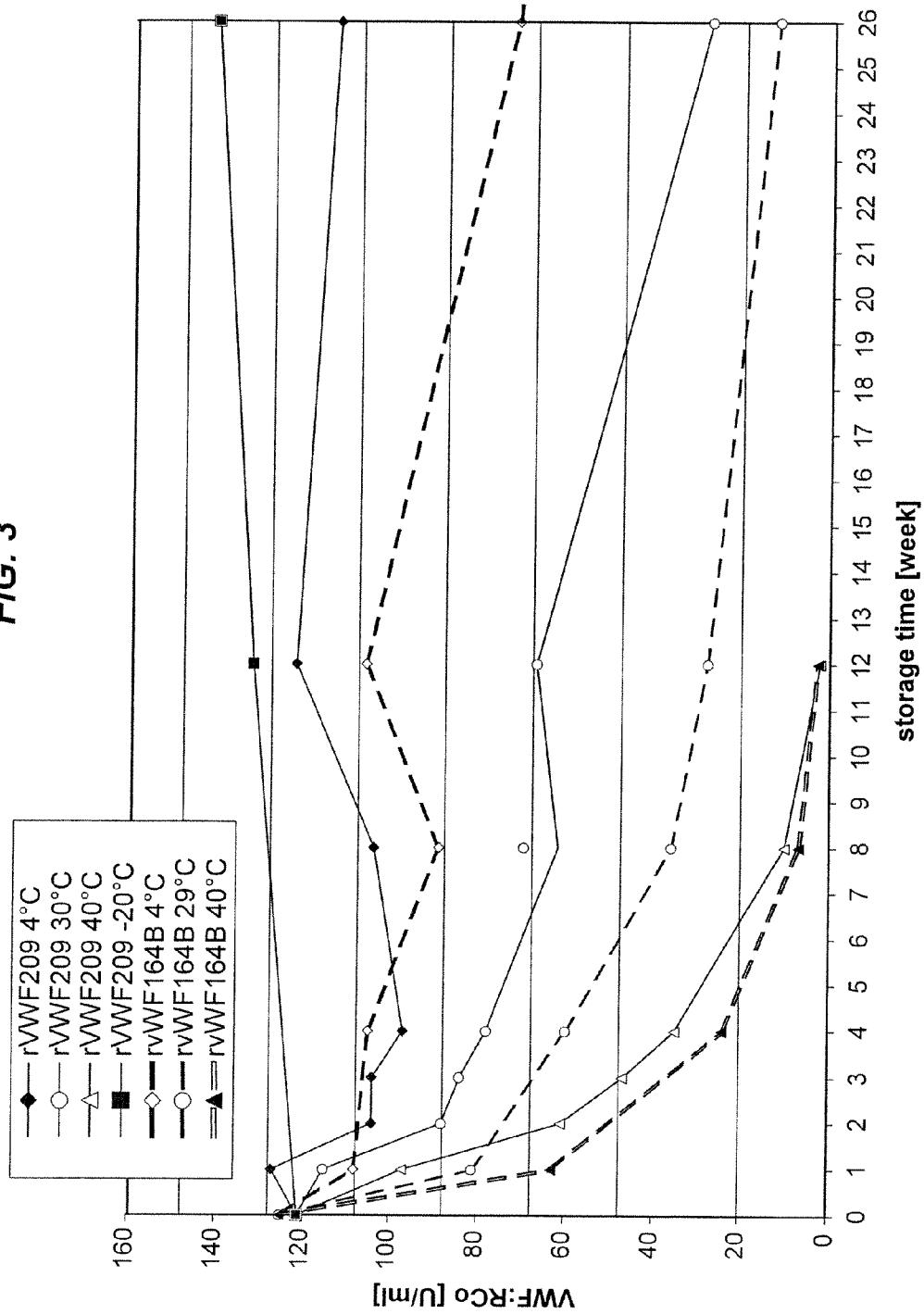


FIG. 4

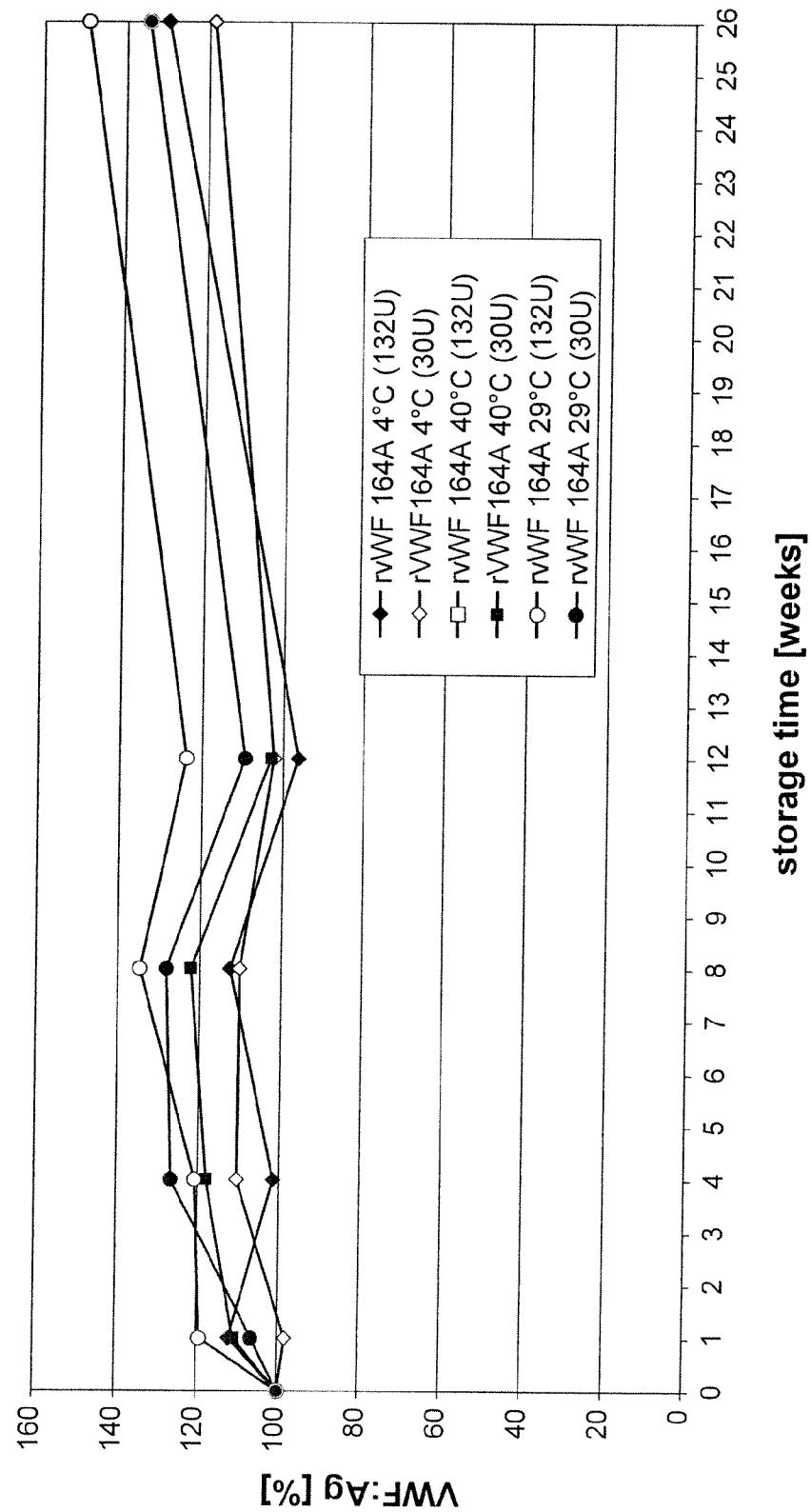


FIG. 5

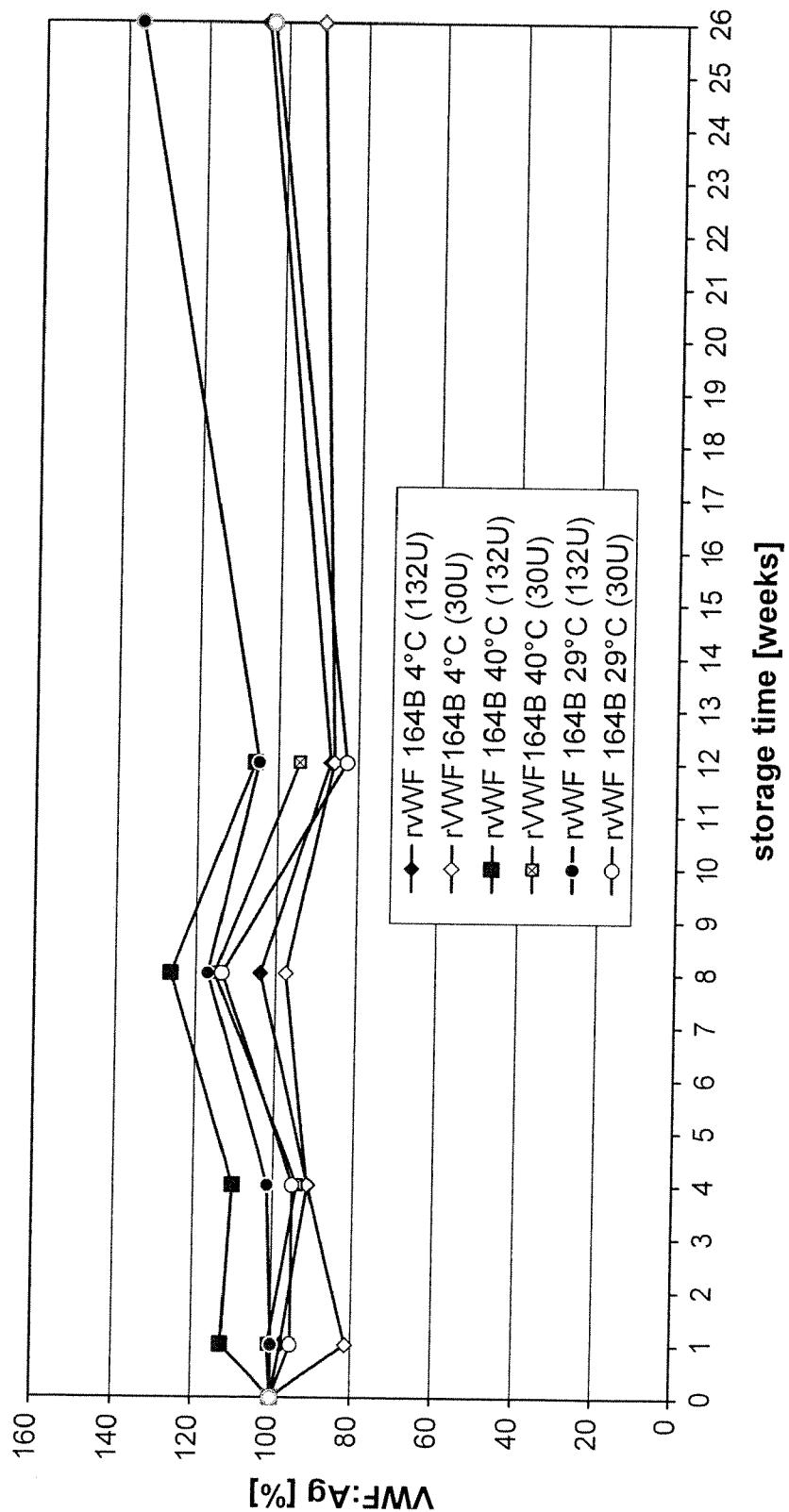


FIG. 6

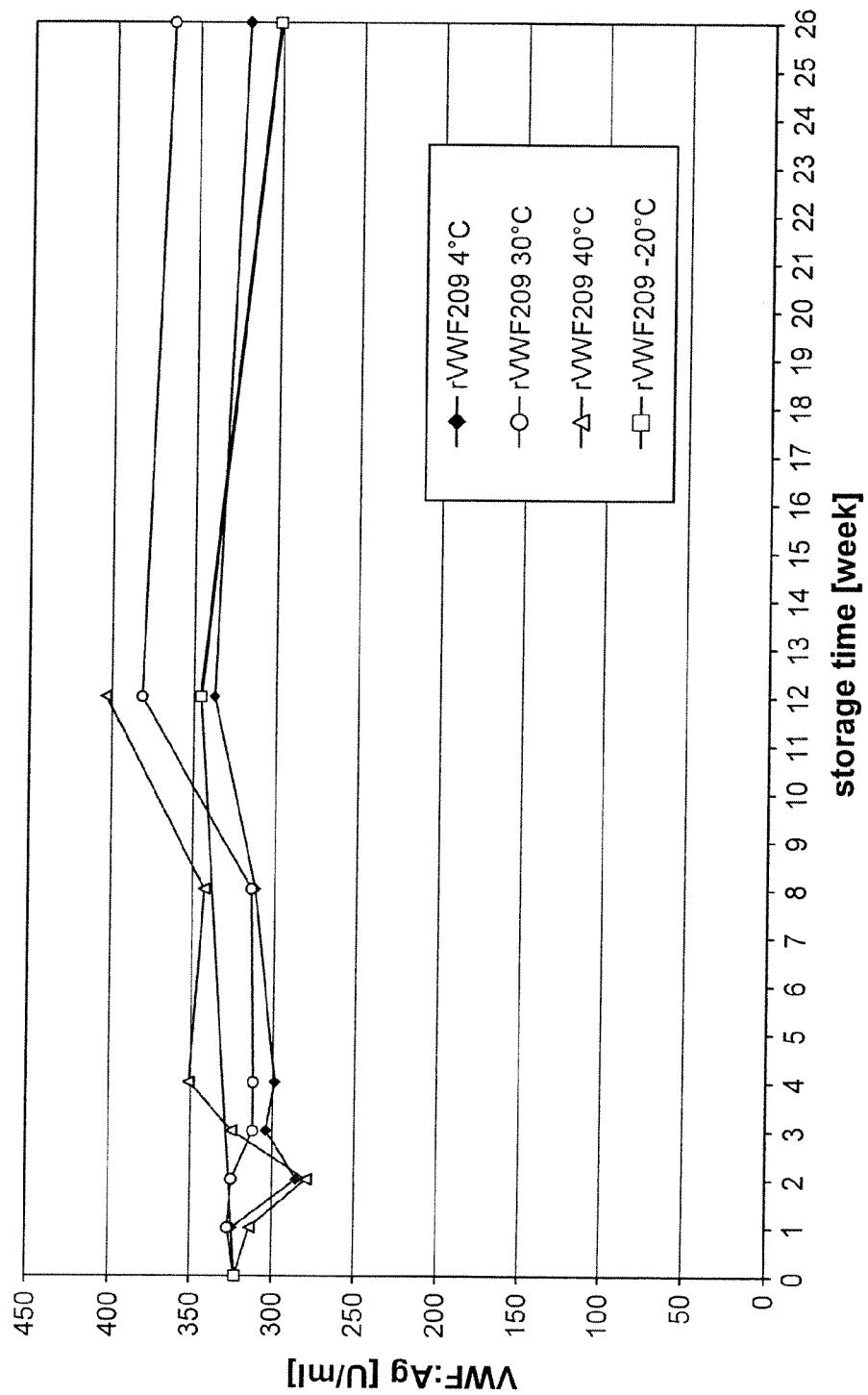


FIG. 7

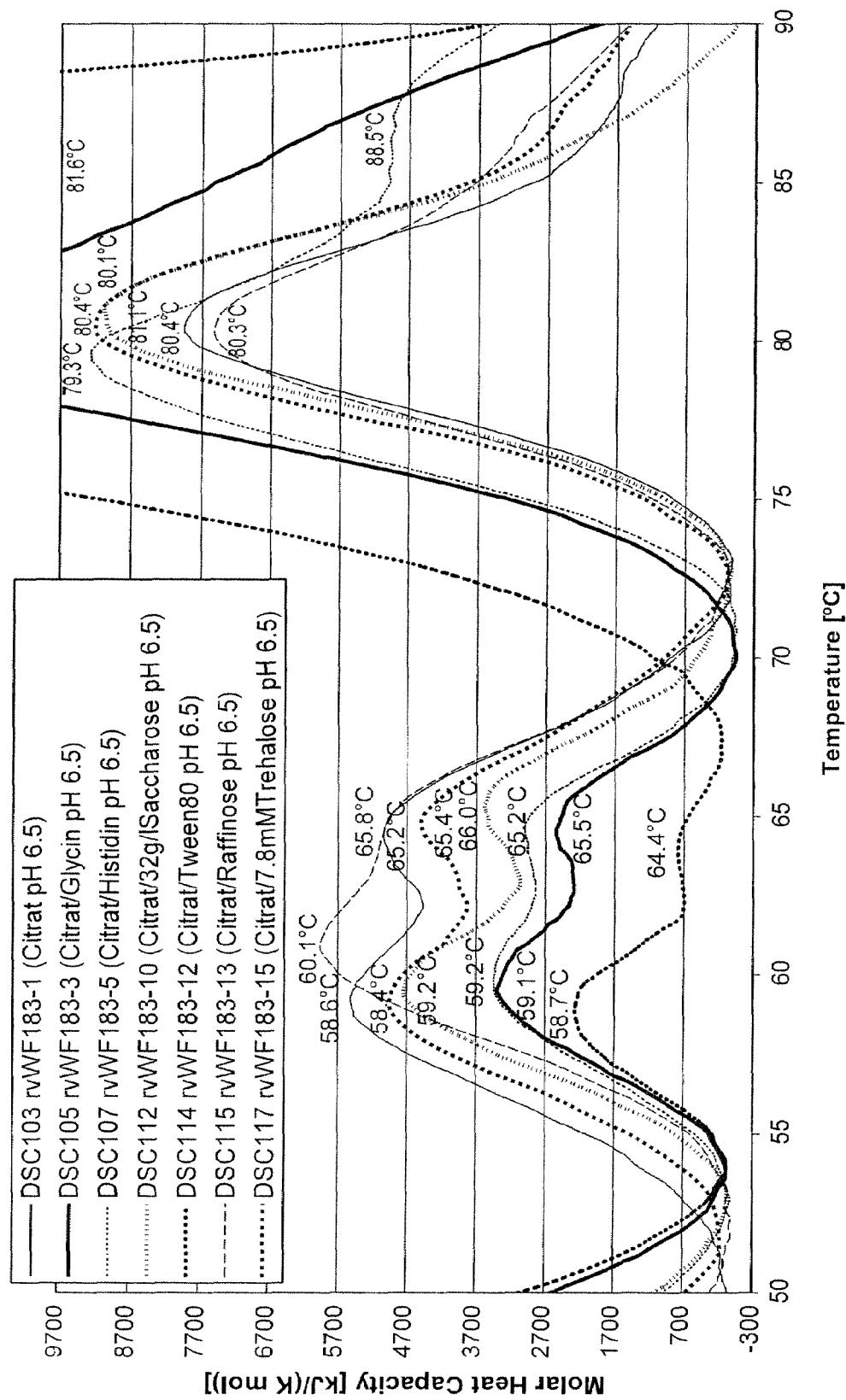


FIG. 8

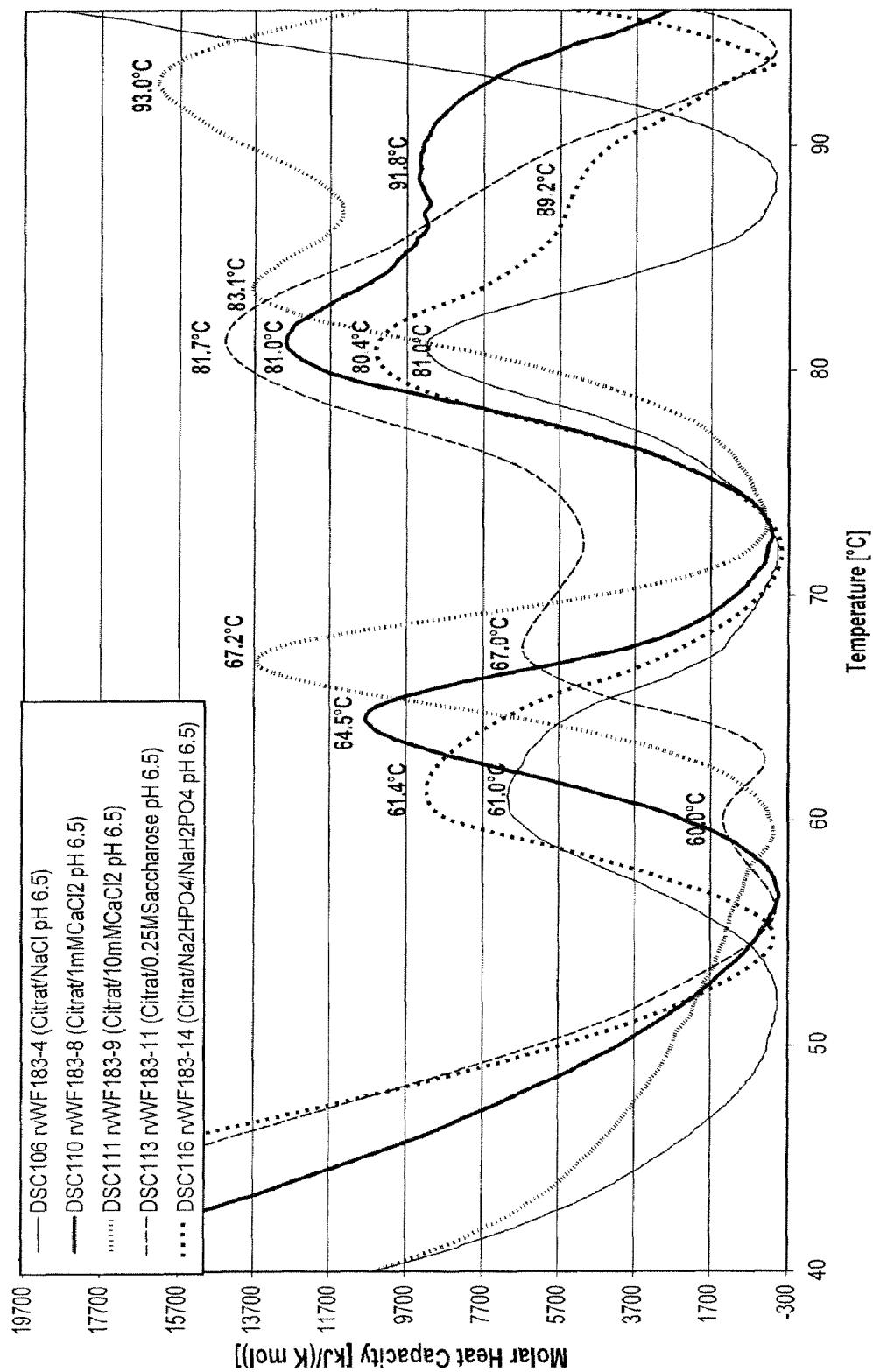
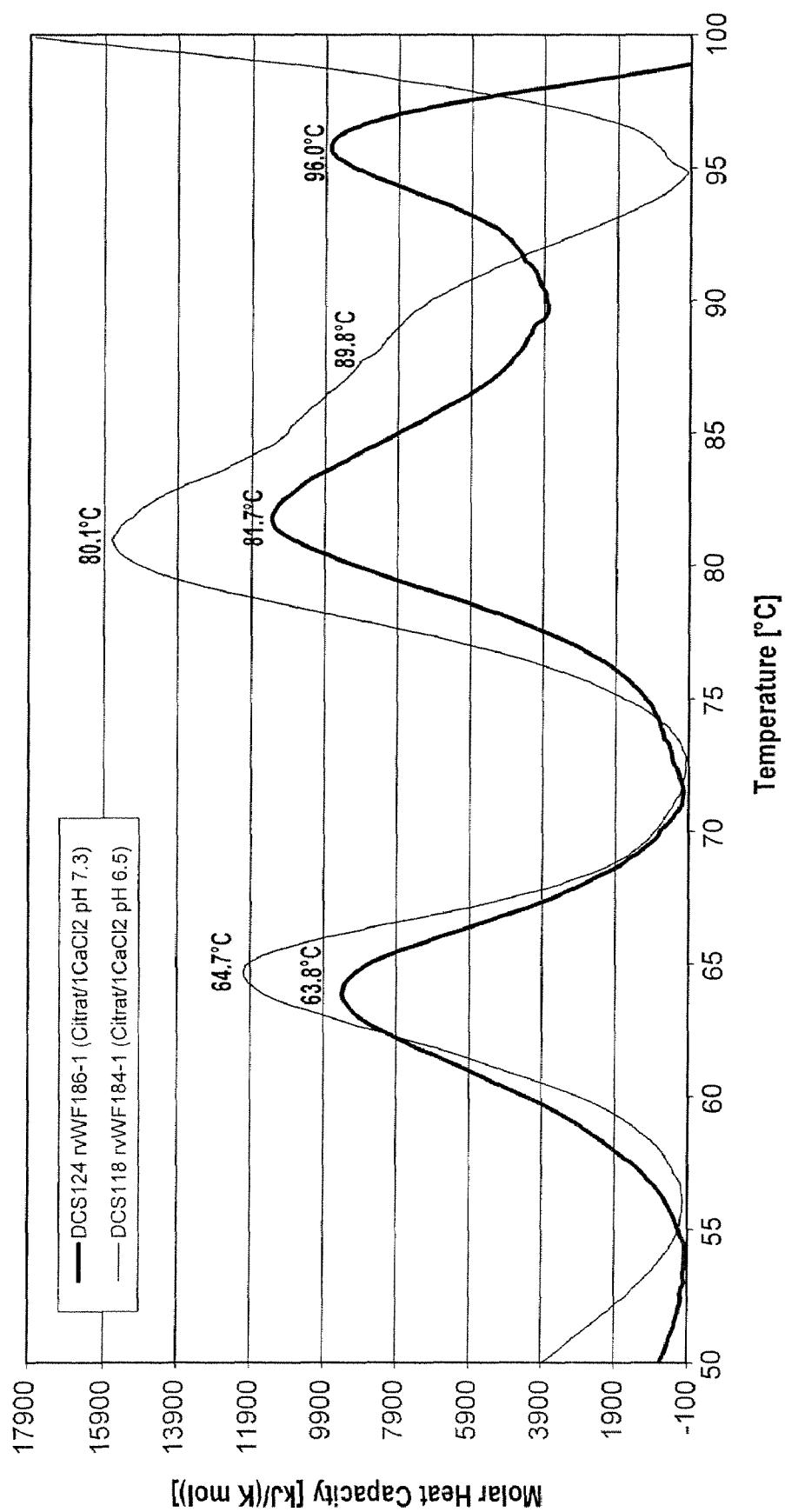



FIG. 9

RECOMBINANT VWF FORMULATIONS

[0001] This application claims priority of U.S. Provisional Application No. 61/017,418, filed Dec. 28, 2007, and U.S. Provisional Application No. 61/017,881 filed Dec. 31, 2007, each of which is incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

[0002] Generally, the invention relates to formulations of recombinant VWF and methods for making a composition comprising recombinant VWF.

BACKGROUND OF THE INVENTION

[0003] Von Willebrand factor (VWF) is a glycoprotein circulating in plasma as a series of multimers ranging in size from about 500 to 20,000 kD. Multimeric forms of VWF are composed of 250 kD polypeptide subunits linked together by disulfide bonds. VWF mediates initial platelet adhesion to the sub-endothelium of the damaged vessel wall. Only the larger multimers exhibit hemostatic activity. It is assumed that endothelial cells secrete large polymeric forms of VWF and those forms of VWF which have a low molecular weight (low molecular weight VWF) arise from proteolytic cleavage. The multimers having large molecular masses are stored in the Weibel-Pallade bodies of endothelial cells and liberated upon stimulation.

[0004] VWF is synthesized by endothelial cells and megakaryocytes as prepro-VWF that consists to a large extent of repeated domains. Upon cleavage of the signal peptide, pro-VWF dimerizes through disulfide linkages at its C-terminal region. The dimers serve as protomers for multimerization, which is governed by disulfide linkages between the free end termini. The assembly to multimers is followed by the proteolytic removal of the propeptide sequence (Leyte et al., *Biochem. J.* 274 (1991), 257-261).

[0005] The primary translation product predicted from the cloned cDNA of VWF is a 2813-residue precursor polypeptide (prepro-VWF). The prepro-VWF consists of a 22 amino acid signal peptide and a 741 amino acid propeptide, with the mature VWF comprising 2050 amino acids (Ruggeri Z. A., and Ware, J., *FASEB J.*, 308-316 (1993)).

[0006] Defects in VWF are causal to Von Willebrand disease (VWD), which is characterized by a more or less pronounced bleeding phenotype. VWD type 3 is the most severe form in which VWF is completely missing, and VWD type 1 relates to a quantitative loss of VWF and its phenotype can be very mild. VWD type 2 relates to qualitative defects of VWF and can be as severe as VWD type 3. VWD type 2 has many sub forms, some being associated with the loss or the decrease of high molecular weight multimers. Von Willebrand syndrome type 2a (VWS-2A) is characterized by a loss of both intermediate and large multimers. VWS-2B is characterized by a loss of highest-molecular-weight multimers. Other diseases and disorders related to VWF are known in the art.

[0007] US. Pat. Nos. 6,531,577, 7,166,709, and European Patent Application No. 04380188.5, describe plasma-derived VWF formulations. However, in addition to quantity and purity issues with plasma-derived VWF, there is also a risk of blood-born pathogens (e.g., viruses and Variant Creutzfeldt-Jakob disease (vCJD)).

[0008] Thus there exists a need in the art to develop a stable pharmaceutical formulation comprising recombinant VWF.

SUMMARY OF THE INVENTION

[0009] The present invention provides formulations useful for compositions comprising recombinant VWF, resulting in a highly stable pharmaceutical composition. The stable pharmaceutical composition is useful as a therapeutic agent in the treatment of individuals suffering from disorders or conditions that can benefit from the administration of recombinant VWF.

[0010] In one embodiment, the invention provides a stable liquid pharmaceutical formulation of a recombinant von Willebrand Factor (rVWF) comprising: (a) a rVWF; (b) a buffering agent; (c) one or more salts; (d) optionally a stabilizing agent; and (e) optionally a surfactant; wherein the rVWF comprises a polypeptide selected from the group consisting of: a) the amino acid sequence set out in SEQ ID NO: 3; b) a biologically active analog, fragment or variant of a); c) a polypeptide encoded by the polynucleotide set out in SEQ ID NO: 1; d) a biologically active analog, fragment or variant of c); and e) a polypeptide encoded by a polynucleotide that hybridizes to the polynucleotide set out in SEQ ID NO: 1 under moderately stringent hybridization conditions; wherein the buffer is comprised of a pH buffering agent in a range of about 0.1 mM to about 500 mM and wherein the pH is in a range of about 2.0 to about 12.0; wherein the salt is at a concentration of about 1 to 500 mM; wherein the stabilizing agent is at a concentration of about 0.1 to 1000 mM; and wherein the surfactant is at a concentration of about 0.01 g/L to 0.5 g/L.

[0011] In another embodiment, the aforementioned formulation is provided wherein the rVWF comprises the amino acid sequence set out in SEQ ID NO: 3. In another embodiment, an aforementioned formulation is provided wherein the buffering agent is selected from the group consisting of sodium citrate, glycine, histidine, Tris and combinations of these agents. In yet another embodiment, an aforementioned formulation is provided wherein the buffering agent is citrate. In still another embodiment of the invention, the aforementioned formulation is provided wherein pH is in the range of 6.0-8.0, or 6.5-7.3. In a related embodiment, the aforementioned formulation is provided wherein the pH is 7.0. In another embodiment, an aforementioned formulation is provided wherein the buffering agent is citrate and the pH is 7.0.

[0012] In still another embodiment, an aforementioned formulation is provided wherein the salt is selected from the group consisting of calcium chloride, sodium chloride and magnesium chloride. In another embodiment, the aforementioned formulation is provided wherein the salt is at a concentration range of 0.5 to 300 mM. In another embodiment, the aforementioned formulation is provided wherein the salt is calcium chloride at a concentration of 10 mM.

[0013] In another embodiment, an aforementioned formulation is provided wherein the rVWF comprises the amino acid sequence set out in SEQ ID NO: 3; wherein the buffering agent is citrate and the pH is 7.0; and wherein the salt is calcium chloride at a concentration of 10 mM. In still another embodiment, an aforementioned formulation is provided wherein the rVWF comprises the amino acid sequence set out in SEQ ID NO: 3; wherein the buffering agent is sodium citrate and the pH is 7.0; and wherein the salt is calcium chloride at a concentration of 10 mM and NaCl at a concentration of 100 mM.

[0014] Other formulations are also contemplated by the instant invention. For example, in one embodiment, an aforementioned formulation is provided wherein the one or more buffering agents is histidine and Tris at a concentration of 3.3 mM each. In another embodiment, the aforementioned formulation is provided wherein the pH is 7.0. In yet another embodiment, an aforementioned formulation is provided wherein the first salt is sodium chloride at a concentration of 30 mM and the second salt is calcium chloride at a concentration of 0.56 mM.

[0015] In still another embodiment of the invention, an aforementioned formulation is provided wherein the stabilizing agent is selected from the group consisting of mannitol, lactose, sorbitol, xylitol, sucrose, trehalose, mannose, maltose, lactose, glucose, raffinose, cellobiose, gentiobiose, isomaltose, arabinose, glucosamine, fructose and combinations of these stabilizing agents. In another embodiment, the aforementioned formulation is provided wherein the stabilizing agents are trehalose at a concentration of 7.8 mM and mannitol at a concentration of 58.6 mM.

[0016] In another embodiment, an aforementioned formulation is provided wherein the surfactant is selected from the group consisting of digitonin, Triton X-100, Triton X-114, TWEEN-20, TWEEN-80 and combinations of these surfactants. In another embodiment, the aforementioned formulation is provided wherein the surfactant is TWEEN-80 at 0.03 g/L.

[0017] In one embodiment of the invention, an aforementioned formulation is provided wherein the rVWF comprises amino acid sequence set out in SEQ ID NO: 3; wherein the buffering agents are histidine at a concentration of 3.3 mM and Tris at a concentration of 3.3 mM at pH 7.0; wherein the first salt is sodium chloride at a concentration of 30 mM and the second salt is calcium chloride at a concentration of 0.56 mM; wherein the stabilizing agents are trehalose at a concentration of 7.8 mM mannitol at a concentration of 58.6 mM; and wherein the surfactant is TWEEN-80 at 0.03 g/L.

BRIEF DESCRIPTION OF THE FIGURES

[0018] FIG. 1 shows that rVWF is not stable in Advate buffer after 26 weeks, due to the presence of glutathione.

[0019] FIG. 2 shows that rVWF is stable in Advate 1:3 buffer for up to 12 weeks at 4° C.

[0020] FIG. 3 shows that the stability of a citrate-based formulation is better than Advate 1:3 buffer formulation containing 0.1M glutathione.

[0021] FIG. 4 shows that rVWF concentration is stable over 26 weeks in Advate buffer.

[0022] FIG. 5 shows that rVWF concentration is stable over time in Advate 1:3 buffer.

[0023] FIG. 6 shows that rVWF concentration is stable over time in citrate-based buffer.

[0024] FIG. 7 shows that most excipients increase the unfolding temperature of rVWF by about 1 or 2° C.

[0025] FIG. 8 shows that 10 mM CaCl₂ increases unfolding temperature of rVWF by about 8° C. to about 67° C.

[0026] FIG. 9 shows that the effect of CaCl₂ is similar at pH 7.3 and pH 6.5.

DETAILED DESCRIPTION OF THE INVENTION

Definition of Terms

[0027] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly

understood by one of ordinary skill in the art to which this invention belongs. The following references provide one of skill with a general definition of many of the terms used in this invention: Singleton, et al., DICTIONARY OF MICROBIOLOGY AND MOLECULAR BIOLOGY (2d ed. 1994); THE CAMBRIDGE DICTIONARY OF SCIENCE AND TECHNOLOGY (Walker ed., 1988); THE GLOSSARY OF GENETICS, 5TH ED., R. Rieger, et al. (eds.), Springer Verlag (1991); and Hale and Marham, THE HARPER COLLINS DICTIONARY OF BIOLOGY (1991).

[0028] Each publication, patent application, patent, and other reference cited herein is incorporated by reference in its entirety to the extent that it is not inconsistent with the present disclosure.

[0029] It is noted here that, as used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise.

[0030] As used herein, the following terms have the meanings ascribed to them unless specified otherwise.

[0031] The term "comprising," with respect to a peptide compound, means that a compound may include additional amino acids at either or both amino and carboxy termini of the given sequence. Of course, these additional amino acids should not significantly interfere with the activity of the compound. With respect to a composition of the instant invention, the term "comprising" means that a composition may include additional components. These additional components should not significantly interfere with the activity of the composition.

[0032] The term "pharmacologically active" means that a substance so described is determined to have activity that affects a medical parameter (e.g., but not limited to blood pressure, blood cell-count, cholesterol level) or disease state (e.g., but not limited to cancer, autoimmune disorders).

[0033] As used herein the terms "express," "expressing" and "expression" mean allowing or causing the information in a gene or DNA sequence to become manifest, for example, producing a protein by activating the cellular functions involved in transcription and translation of a corresponding gene or DNA sequence. A DNA sequence is expressed in or by a cell to form an "expression product" such as a protein. The expression product itself, e.g. the resulting protein, may also be said to be "expressed." An expression product can be characterized as intracellular, extracellular or secreted. The term "intracellular" means inside a cell. The term "extracellular" means outside a cell, such as a transmembrane protein. A substance is "secreted" by a cell if it appears in significant measure outside the cell, from somewhere on or inside the cell.

[0034] As used herein a "polypeptide" refers to a polymer composed of amino acid residues, structural variants, related naturally-occurring structural variants, and synthetic non-naturally occurring analogs thereof linked via peptide bonds. Synthetic polypeptides can be prepared, for example, using an automated polypeptide synthesizer. The term "protein" typically refers to large polypeptides. The term "peptide" typically refers to short polypeptides.

[0035] As used herein a "fragment" of a polypeptide is meant to refer to any portion of a polypeptide or protein smaller than the full-length polypeptide or protein expression product.

[0036] As used herein an "analog" refers to any of two or more polypeptides substantially similar in structure and hav-

ing the same biological activity, but can have varying degrees of activity, to either the entire molecule, or to a fragment thereof. Analogs differ in the composition of their amino acid sequences based on one or more mutations involving substitution of one or more amino acids for other amino acids. Substitutions can be conservative or non-conservative based on the physico-chemical or functional relatedness of the amino acid that is being replaced and the amino acid replacing it.

[0037] As used herein a "variant" refers to a polypeptide, protein or analog thereof that is modified to comprise additional chemical moieties not normally a part of the molecule. Such moieties may modulate the molecule's solubility, absorption, biological half-life, etc. The moieties may alternatively decrease the toxicity of the molecule and eliminate or attenuate any undesirable side effect of the molecule, etc. Moieties capable of mediating such effects are disclosed in Remington's Pharmaceutical Sciences (1980). Procedure for coupling such moieties to a molecule are well known in the art. For example, the variant may be a blood clotting factor having a chemical modification which confers a longer half-life in vivo to the protein. In various aspects, polypeptides are modified by glycosylation, pegylation, and/or polysialylation.

[0038] Recombinant VWF

[0039] The polynucleotide and amino acid sequences of prepro-VWF are set out in SEQ ID NO:1 and SEQ ID NO:2, respectively, and are available at GenBank Accession Nos. NM_000552 and NP_000543, respectively. The amino acid sequence corresponding to the mature VWF protein is set out in SEQ ID NO: 3 (corresponding to amino acids 764-2813 of the full length prepro-VWF amino acid sequence).

[0040] One form of useful rVWF has at least the property of in vivo-stabilizing, e.g. binding, of at least one Factor VIII (FVIII) molecule and having optionally a glycosylation pattern which is pharmacologically acceptable. Specific examples thereof include VWF without A2 domain thus resistant to proteolysis (Lankhof et al., Thromb. Haemost. 77: 1008-1013, 1997), and the VWF fragment from Val 449 to Asn 730 including the glycoprotein Ib-binding domain and binding sites for collagen and heparin (Pietu et al., Biochem. Biophys. Res. Commun. 164: 1339-1347, 1989). The determination of the ability of a VWF to stabilize at least one FVIII molecule can be carried out in VWF-deficient mammals according to methods known in the state in the art.

[0041] The rVWF of the present invention may be produced by any method known in the art. One specific example is disclosed in WO86/06096 published on Oct. 23, 1986 and U.S. patent application Ser. No. 07/559,509, filed on Jul. 23, 1990, which is incorporated herein by reference with respect to the methods of producing recombinant VWF. Thus, methods are known in the art for (i) the production of recombinant DNA by genetic engineering, e.g. via reverse transcription of RNA and/or amplification of DNA, (ii) introducing recombinant DNA into prokaryotic or eucaryotic cells by transfection, e.g. via electroporation or microinjection, (iii) cultivating said transformed cells, e.g. in a continuous or batchwise manner, (iv) expressing VWF, e.g. constitutively or upon induction, and (v) isolating said VWF, e.g. from the culture medium or by harvesting the transformed cells, in order to (vi) obtain purified rVWF, e.g. via anion exchange chromatography or affinity chromatography. A recombinant VWF may be made in transformed host cells using recombinant DNA techniques well known in the art. For instance,

sequences coding for the polypeptide could be excised from DNA using suitable restriction enzymes.

[0042] Alternatively, the DNA molecule could be synthesized using chemical synthesis techniques, such as the phosphoramidate method. Also, a combination of these techniques could be used.

[0043] The invention also provides vectors encoding polypeptides of the invention in an appropriate host. The vector comprises the polynucleotide that encodes the polypeptide operatively linked to appropriate expression control sequences. Methods of effecting this operative linking, either before or after the polynucleotide is inserted into the vector, are well known. Expression control sequences include promoters, activators, enhancers, operators, ribosomal binding sites, start signals, stop signals, cap signals, polyadenylation signals, and other signals involved with the control of transcription or translation. The resulting vector having the polynucleotide therein is used to transform an appropriate host. This transformation may be performed using methods well known in the art.

[0044] Any of a large number of available and well-known host cells may be used in the practice of this invention. The selection of a particular host is dependent upon a number of factors recognized by the art, including, for example, compatibility with the chosen expression vector, toxicity of the peptides encoded by the DNA molecule, rate of transformation, ease of recovery of the peptides, expression characteristics, bio-safety and costs. A balance of these factors must be struck with the understanding that not all host cells are equally effective for the expression of a particular DNA sequence. Within these general guidelines, useful microbial host cells include bacteria, yeast and other fungi, insects, plants, mammalian (including human) cells in culture, or other hosts known in the art.

[0045] Next, the transformed host is cultured and purified. Host cells may be cultured under conventional fermentation conditions so that the desired compounds are expressed. Such fermentation conditions are well known in the art. Finally, the polypeptides are purified from culture by methods well known in the art.

[0046] Depending on the host cell utilized to express a compound of the invention, carbohydrate (oligosaccharide) groups may conveniently be attached to sites that are known to be glycosylation sites in proteins. Generally, O-linked oligosaccharides are attached to serine (Ser) or threonine (Thr) residues while N-linked oligosaccharides are attached to asparagine (Asn) residues when they are part of the sequence Asn-X-Ser/Thr, where X can be any amino acid except proline. X is preferably one of the 19 naturally occurring amino acids not counting proline. The structures of N-linked and O-linked oligosaccharides and the sugar residues found in each type are different. One type of sugar that is commonly found on both is N-acetylneurameric acid (referred to as sialic acid). Sialic acid is usually the terminal residue of both N-linked and O-linked oligosaccharides and, by virtue of its negative charge, may confer acidic properties to the glycosylated compound. Such site(s) may be incorporated in the linker of the compounds of this invention and are preferably glycosylated by a cell during recombinant production of the polypeptide compounds (e.g., in mammalian cells such as CHO, BHK, COS). However, such sites may further be glycosylated by synthetic or semi-synthetic procedures known in the art.

[0047] Alternatively, the compounds may be made by synthetic methods. For example, solid phase synthesis techniques may be used. Suitable techniques are well known in the art, and include those described in Merrifield (1973), *Chem. Polypeptides*, pp. 335-61 (Katsoyannis and Panayotis eds.); Merrifield (1963), *J. Am. Chem. Soc.* 85: 2149; Davis et al. (1985), *Biochem. Int.* 10: 394-414; Stewart and Young (1969), *Solid Phase Peptide Synthesis*; U.S. Pat. No. 3,941,763; Finn et al. (1976), *The Proteins* (3rd ed.) 2: 105-253; and Erickson et al. (1976), *The Proteins* (3rd ed.) 2: 257-527. Solid phase synthesis is the preferred technique of making individual peptides since it is the most cost-effective method of making small peptides.

[0048] Fragments, Variants and Analogs of VWF

[0049] Methods for preparing polypeptide fragments, variants or analogs are well-known in the art.

[0050] Fragments of a polypeptide are prepared using, without limitation, enzymatic cleavage (e.g., trypsin, chymotrypsin) and also using recombinant means to generate a polypeptide fragments having a specific amino acid sequence. Polypeptide fragments may be generated comprising a region of the protein having a particular activity, such as a multimerization domain or any other identifiable VWF domain known in the art.

[0051] Methods of making polypeptide analogs are also well-known. Amino acid sequence analogs of a polypeptide can be substitutional, insertion, addition or deletion analogs. Deletion analogs, including fragments of a polypeptide, lack one or more residues of the native protein which are not essential for function or immunogenic activity. Insertional analogs involve the addition of, e.g., amino acid(s) at a non-terminal point in the polypeptide. This analog may include insertion of an immunoreactive epitope or simply a single residue. Addition analogs, including fragments of a polypeptide, include the addition of one or more amino acids at either of both termini of a protein and include, for example, fusion proteins.

[0052] Substitutional analogs typically exchange one amino acid of the wild-type for another at one or more sites within the protein, and may be designed to modulate one or more properties of the polypeptide without the loss of other functions or properties. In one aspect, substitutions are conservative substitutions. By "conservative amino acid substitution" is meant substitution of an amino acid with an amino acid having a side chain of a similar chemical character. Similar amino acids for making conservative substitutions include those having an acidic side chain (glutamic acid, aspartic acid); a basic side chain (arginine, lysine, histidine); a polar amide side chain (glutamine, asparagine); a hydrophobic, aliphatic side chain (leucine, isoleucine, valine, alanine, glycine); an aromatic side chain (phenylalanine, tryptophan, tyrosine); a small side chain (glycine, alanine, serine, threonine, methionine); or an aliphatic hydroxyl side chain (serine, threonine).

[0053] Analogs may be substantially homologous or substantially identical to the recombinant VWF from which they are derived. Preferred analogs are those which retain at least some of the biological activity of the wild-type polypeptide, e.g. blood clotting activity.

[0054] Polypeptide variants contemplated include polypeptides chemically modified by such techniques as ubiquitination, glycosylation, including polysialation, conjugation to therapeutic or diagnostic agents, labeling, covalent polymer attachment such as pegylation (derivatization with

polyethylene glycol), introduction of non-hydrolyzable bonds, and insertion or substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur in human proteins. Variants retain the same or essentially the same binding properties of non-modified molecules of the invention. Such chemical modification may include direct or indirect (e.g., via a linker) attachment of an agent to the VWF polypeptide. In the case of indirect attachment, it is contemplated that the linker may be hydrolyzable or non-hydrolyzable.

[0055] Preparing pegylated polypeptide analogs will generally comprise the steps of (a) reacting the polypeptide with polyethylene glycol (such as a reactive ester or aldehyde derivative of PEG) under conditions whereby the binding construct polypeptide becomes attached to one or more PEG groups, and (b) obtaining the reaction product(s). In general, the optimal reaction conditions for the acylation reactions will be determined based on known parameters and the desired result. For example, the larger the ratio of PEG: protein, the greater the percentage of poly-pegylated product. In some embodiments, the binding construct will have a single PEG moiety at the N-terminus. Polyethylene glycol (PEG) may be attached to the blood clotting factor to provide a longer half-life in vivo. The PEG group may be of any convenient molecular weight and may be linear or branched. The average molecular weight of the PEG ranges from about 2 kiloDalton ("kD") to about 100 kDa, from about 5 kDa to about 50 kDa, or from about 5 kDa to about 10 kDa. The PEG groups are attached to the blood clotting factor via acylation or reductive alkylation through a natural or engineered reactive group on the PEG moiety (e.g., an aldehyde, amino, thiol, or ester group) to a reactive group on the blood clotting factor (e.g., an aldehyde, amino, or ester group) or by any other technique known in the art.

[0056] Methods for preparing polysialylated polypeptide are described in United States Patent Publication 20060160948, Fernandes et Gregoriadis; *Biochim. Biophys. Acta* 1341: 26-34, 1997, and Saenko et al., *Haemophilia* 12:42-51, 2006. Briefly, a solution of colominic acid containing 0.1 M NaIO₄ is stirred in the dark at room temperature to oxidize the CA. The activated CA solution is dialyzed against, e.g., 0.05 M sodium phosphate buffer, pH 7.2 in the dark and this solution was added to a rVWF solution and incubated for 18 h at room temperature in the dark under gentle shaking. Free reagents can then be separated from the rVWF-polysialic acid conjugate by ultrafiltration/diafiltration. Conjugation of rVWF with polysialic acid may also be achieved using glutaraldehyde as cross-linking reagent (Migneault et al., *Biotechniques* 37: 790-796, 2004).

[0057] It is further contemplated that a polypeptide of the invention may be a fusion protein with a second agent which is a polypeptide. In one embodiment, the second agent which is a polypeptide, without limitation, is an enzyme, a growth factor, an antibody, a cytokine, a chemokine, a cell-surface receptor, the extracellular domain of a cell surface receptor, a cell adhesion molecule, or fragment or active domain of a protein described above. In a related embodiment, the second agent is a blood clotting factor such as Factor VIII, Factor VII, Factor IX. The fusion protein contemplated is made by chemical or recombinant techniques well-known in the art.

[0058] It is also contemplated that prepro-VWF and pro-VWF polypeptides may provide a therapeutic benefit in the formulations of the present invention. For example, U.S. Pat. No. 7,005,502 describes a pharmaceutical preparation com-

prising substantial amounts of pro-VWF that induces thrombin generation in vitro. In addition to recombinant, biologically active fragments, variants, or analogs of the naturally occurring mature VWF, the present invention contemplates the use of recombinant biologically active fragments, variants, or analogs of the prepro-VWF (set out in SEQ ID NO:2) or pro-VWF polypeptides (amino acid residues 23 to 764 of SEQ ID NO: 2) in the formulations described herein.

[0059] Polynucleotides encoding fragments, variants and analogs may be readily generated by a worker of skill to encode biologically active fragments, variants, or analogs of the naturally-occurring molecule that possess the same or similar biological activity to the naturally-occurring molecule. These polynucleotides can be prepared using PCR techniques, digestion/ligation of DNA encoding molecule, and the like. Thus, one of skill in the art will be able to generate single base changes in the DNA strand to result in an altered codon and a missense mutation, using any method known in the art, including, but not limited to site-specific mutagenesis. As used herein, the phrase "moderately stringent hybridization conditions" means, for example, hybridization at 42° C. in 50% formamide and washing at 60° C. in 0.1×SSC, 0.1% SDS. It is understood by those of skill in the art that variation in these conditions occurs based on the length and GC nucleotide base content of the sequences to be hybridized. Formulas standard in the art are appropriate for determining exact hybridization conditions. See Sambrook et al., 9.47-9.51 in Molecular Cloning, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989).

[0060] Formulations and Excipients in General

[0061] Excipients are additives that are included in a formulation because they either impart or enhance the stability and delivery of a drug product. Regardless of the reason for their inclusion, excipients are an integral component of a drug product and therefore need to be safe and well tolerated by patients. For protein drugs, the choice of excipients is particularly important because they can affect both efficacy and immunogenicity of the drug. Hence, protein formulations need to be developed with appropriate selection of excipients that afford suitable stability, safety, and marketability.

[0062] The principal challenge in developing formulations for therapeutic proteins is stabilizing the product against the stresses of manufacturing, shipping and storage. The role of formulation excipients is to provide stabilization against these stresses. Excipients may also be employed to reduce viscosity of high concentration protein formulations in order to enable their delivery and enhance patient convenience. In general, excipients can be classified on the basis of the mechanisms by which they stabilize proteins against various chemical and physical stresses. Some excipients are used to alleviate the effects of a specific stress or to regulate a particular susceptibility of a specific protein. Other excipients have more general effects on the physical and covalent stabilities of proteins. The excipients described herein are organized either by their chemical type or their functional role in formulations. Brief descriptions of the modes of stabilization are provided when discussing each excipient type.

[0063] Given the teachings and guidance provided herein, those skilled in the art will know what amount or range of excipient can be included in any particular formulation to achieve a biopharmaceutical formulation of the invention that promotes retention in stability of the biopharmaceutical (e.g., a polypeptide). For example, the amount and type of a salt to be included in a biopharmaceutical formulation of the inven-

tion can be selected based on the desired osmolality (i.e., isotonic, hypotonic or hypertonic) of the final solution as well as the amounts and osmolality of other components to be included in the formulation. Similarly, by exemplification with reference to the type of polyol or sugar included in a formulation, the amount of such an excipient will depend on its osmolality.

[0064] By way of example, inclusion of about 5% sorbitol can achieve isotonicity while about 9% of a sucrose excipient is needed to achieve isotonicity. Selection of the amount or range of concentrations of one or more excipients that can be included within a biopharmaceutical formulation of the invention has been exemplified above by reference to salts, polyols and sugars. However, those skilled in the art will understand that the considerations described herein and further exemplified by reference to specific excipients are equally applicable to all types and combinations of excipients including, for example, salts, amino acids, other tonicity agents, surfactants, stabilizers, bulking agents, cryoprotectants, lyoprotectants, anti-oxidants, metal ions, chelating agents and/or preservatives.

[0065] Further, where a particular excipient is reported in molar concentration, those skilled in the art will recognize that the equivalent percent (%) w/v (e.g., (grams of substance in a solution sample/mL of solution)×100%) of solution is also contemplated.

[0066] Of course, a person having ordinary skill in the art would recognize that the concentrations of the excipients described herein share an interdependency within a particular formulation. By way of example, the concentration of a bulking agent may be lowered where, e.g., there is a high polypeptide concentration or where, e.g., there is a high stabilizing agent concentration. In addition, a person having ordinary skill in the art would recognize that, in order to maintain the isotonicity of a particular formulation in which there is no bulking agent, the concentration of a stabilizing agent would be adjusted accordingly (i.e., a "tonicifying" amount of stabilizer would be used). Common excipients are known in the art and can be found in Powell et al., Compendium of Excipients for Parenteral Formulations (1998), PDA J. Pharm. Sci. Technology, 52:238-311.

[0067] Buffers and Buffering Agents

[0068] The stability of a pharmacologically active polypeptide formulation is usually observed to be maximal in a narrow pH range. This pH range of optimal stability needs to be identified early during pre-formulation studies. Several approaches, such as accelerated stability studies and calorimetric screening studies, have been demonstrated to be useful in this endeavor (Remmeli R. L. Jr., et al., *Biochemistry*, 38(16): 5241-7 (1999)). Once a formulation is finalized, the drug product must be manufactured and maintained throughout its shelf-life. Hence, buffering agents are almost always employed to control pH in the formulation.

[0069] Organic acids, phosphates and Tris have been employed routinely as buffers in protein formulations. The buffer capacity of the buffering species is maximal at a pH equal to the pKa and decreases as pH increases or decreases away from this value. Ninety percent of the buffering capacity exists within one pH unit of its pKa. Buffer capacity also increases proportionally with increasing buffer concentration.

[0070] Several factors need to be considered when choosing a buffer. First and foremost, the buffer species and its concentration need to be defined based on its pKa and the

desired formulation pH. Equally important is to ensure that the buffer is compatible with the polypeptide and other formulation excipients, and does not catalyze any degradation reactions. A third important aspect to be considered is the sensation of stinging and irritation the buffer may induce upon administration. For example, citrate is known to cause stinging upon injection (Laursen T, et al., *Basic Clin Pharmacol Toxicol.*, 98(2): 218-21 (2006)). The potential for stinging and irritation is greater for drugs that are administered via the subcutaneous (SC) or intramuscular (IM) routes, where the drug solution remains at the site for a relatively longer period of time than when administered by the IV route where the formulation gets diluted rapidly into the blood upon administration. For formulations that are administered by direct IV infusion, the total amount of buffer (and any other formulation component) needs to be monitored. One has to be particularly careful about potassium ions administered in the form of the potassium phosphate buffer, which can induce cardiovascular effects in a patient (Hollander-Rodriguez J C, et al., *Am. Fam. Physician.*, 73(2): 283-90 (2006)).

[0071] The buffer system present in the compositions is selected to be physiologically compatible and to maintain a desired pH of the pharmaceutical formulation. In one embodiment, the pH of the solution is between pH 2.0 and pH 12.0. For example, the pH of the solution may be 2.0, 2.3, 2.5, 2.7, 3.0, 3.3, 3.5, 3.7, 4.0, 4.3, 4.5, 4.7, 5.0, 5.3, 5.5, 5.7, 6.0, 6.3, 6.5, 6.7, 7.0, 7.3, 7.5, 7.7, 8.0, 8.3, 8.5, 8.7, 9.0, 9.3, 9.5, 9.7, 10.0, 10.3, 10.5, 10.7, 11.0, 11.3, 11.5, 11.7, or 12.0.

[0072] The pH buffering compound may be present in any amount suitable to maintain the pH of the formulation at a predetermined level. In one embodiment, the pH buffering concentration is between 0.1 mM and 500 mM (1 M). For example, it is contemplated that the pH buffering agent is at least 0.1, 0.5, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.7, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 500 mM.

[0073] Exemplary pH buffering agents used to buffer the formulation as set out herein include, but are not limited to glycine, histidine, glutamate, succinate, phosphate, acetate, citrate, Tris and amino acids or mixtures of amino acids, including, but not limited to aspartate, histidine, and glycine.

[0074] Salts

[0075] Salts are often added to increase the ionic strength of the formulation, which can be important for protein solubility, physical stability, and isotonicity. Salts can affect the physical stability of proteins in a variety of ways. Ions can stabilize the native state of proteins by binding to charged residues on the protein's surface. Alternatively, salts can stabilize the denatured state by binding to peptide groups along the protein backbone (—CONH—). Salts can also stabilize the protein native conformation by shielding repulsive electrostatic interactions between residues within a protein molecule. Salts in protein formulations can also shield attractive electrostatic interactions between protein molecules that can lead to protein aggregation and insolubility. In formulations provided, the salt concentration is between 0.1, 1, 10, 20, 30, 40, 50, 80, 100, 120, 150, 200, 300, and 500 mM.

[0076] Stabilizers and Bulking Agents

[0077] In the present pharmaceutical formulations, a stabilizer (or a combination of stabilizers) may be added to prevent or reduce storage-induced aggregation and chemical degradation. A hazy or turbid solution upon reconstitution indicates that the protein has precipitated or at least aggregated. The term "stabilizer" means an excipient capable of preventing

aggregation or other physical degradation, as well as chemical degradation (for example, autolysis, deamidation, oxidation, etc.) in an aqueous state. Stabilizers that are conventionally employed in pharmaceutical compositions include, but are not limited to, sucrose, trehalose, mannose, maltose, lactose, glucose, raffinose, cellobiose, gentiobiose, isomaltose, arabinose, glucosamine, fructose, mannitol, sorbitol, glycine, arginine HCl, poly-hydroxy compounds, including polysaccharides such as dextran, starch, hydroxyethyl starch, cyclodextrins, N-methylpyrrolidene, cellulose and hyaluronic acid, sodium chloride, [Carpenter et al., *Develop. Biol. Standard* 74:225, (1991)]. In the present formulations, the stabilizer is incorporated in a concentration of about 0.1, 0.5, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.7, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 500, 700, 900, or 1000 mM.

[0078] If desired, the formulations also include appropriate amounts of bulking and osmolarity regulating agents. Bulking agents include, for example, mannitol, glycine, sucrose, polymers such as dextran, polyvinylpyrrolidone, carboxymethylcellulose, lactose, sorbitol, trehalose, or xylitol. In one embodiment, the bulking agent is mannitol. The bulking agent is incorporated in a concentration of about 0.1, 0.5, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.7, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 500, 700, 900, or 1000 mM.

[0079] Surfactants

[0080] Protein molecules have a high propensity to interact with surfaces making them susceptible to adsorption and denaturation at air-liquid, vial-liquid, and liquid-liquid (silicone oil) interfaces. This degradation pathway has been observed to be inversely dependent on protein concentration and results in either the formation of soluble and insoluble protein aggregates or the loss of protein from solution via adsorption to surfaces. In addition to container surface adsorption, surface-induced degradation is exacerbated with physical agitation, as would be experienced during shipping and handling of the product.

[0081] Surfactants are commonly used in protein formulations to prevent surface-induced degradation. Surfactants are amphipathic molecules with the capability of out-competing proteins for interfacial positions. Hydrophobic portions of the surfactant molecules occupy interfacial positions (e.g., air/liquid), while hydrophilic portions of the molecules remain oriented towards the bulk solvent. At sufficient concentrations (typically around the detergent's critical micellar concentration), a surface layer of surfactant molecules serve to prevent protein molecules from adsorbing at the interface. Thereby, surface-induced degradation is minimized. The most commonly used surfactants are fatty acid esters of sorbitan polyethoxylates, i.e. polysorbate 20 and polysorbate 80. The two differ only in the length of the aliphatic chain that imparts hydrophobic character to the molecules, C-12 and C-18, respectively. Accordingly, polysorbate-80 is more surface-active and has a lower critical micellar concentration than polysorbate-20.

[0082] Detergents can also affect the thermodynamic conformational stability of proteins. Here again, the effects of a given detergent excipient will be protein specific. For example, polysorbates have been shown to reduce the stability of some proteins and increase the stability of others. Detergent destabilization of proteins can be rationalized in terms of the hydrophobic tails of the detergent molecules that can engage in specific binding with partially or wholly unfolded

protein states. These types of interactions could cause a shift in the conformational equilibrium towards the more expanded protein states (i.e. increasing the exposure of hydrophobic portions of the protein molecule in complement to binding polysorbate). Alternatively, if the protein native state exhibits some hydrophobic surfaces, detergent binding to the native state may stabilize that conformation.

[0083] Another aspect of polysorbates is that they are inherently susceptible to oxidative degradation. Often, as raw materials, they contain sufficient quantities of peroxides to cause oxidation of protein residue side-chains, especially methionine. The potential for oxidative damage arising from the addition of stabilizer emphasizes the point that the lowest effective concentrations of excipients should be used in formulations. For surfactants, the effective concentration for a given protein will depend on the mechanism of stabilization. It has been postulated that if the mechanism of surfactant stabilization is related to preventing surface-denaturation the effective concentration will be around the detergent's critical micellar concentration. Conversely, if the mechanism of stabilization is associated with specific protein-detergent interactions, the effective surfactant concentration will be related to the protein concentration and the stoichiometry of the interaction (Randolph T. W., et al., *Pharm Biotechnol.*, 13:159-75 (2002)).

[0084] Surfactants may also be added in appropriate amounts to prevent surface related aggregation phenomenon during freezing and drying [Chang, B, *J. Pharm. Sci.* 85:1325, (1996)]. Exemplary surfactants include anionic, cationic, nonionic, zwitterionic, and amphoteric surfactants including surfactants derived from naturally-occurring amino acids. Anionic surfactants include, but are not limited to, sodium lauryl sulfate, dioctyl sodium sulfosuccinate and dioctyl sodium sulfonate, chenodeoxycholic acid, N-lauroylsarcosine sodium salt, lithium dodecyl sulfate, 1-octanesulfonic acid sodium salt, sodium cholate hydrate, sodium deoxycholate, and glycodeoxycholic acid sodium salt. Cationic surfactants include, but are not limited to, benzalkonium chloride or benzethonium chloride, cetylpyridinium chloride monohydrate, and hexadecyltrimethylammonium bromide. Zwitterionic surfactants include, but are not limited to, CHAPS, CHAPSO, SB3-10, and SB3-12. Non-ionic surfactants include, but are not limited to, digitonin, Triton X-100, Triton X-114, TWEEN-20, and TWEEN-80. Surfactants also include, but are not limited to lauromacrogol 400, polyoxy 40 stearate, polyoxyethylene hydrogenated castor oil 10, 40, 50 and 60, glycerol monostearate, polysorbate 40, 60, 65 and 80, soy lecithin and other phospholipids such as dioleyl phosphatidyl choline (DOPC), dimyristoylphosphatidyl glycerol (DMPG), dimyristoylphosphatidyl choline (DMPC), and (dioleyl phosphatidyl glycerol) DOPG; sucrose fatty acid ester, methyl cellulose and carboxymethyl cellulose. Compositions comprising these surfactants, either individually or as a mixture in different ratios, are therefore further provided. In the present formulations, the surfactant is incorporated in a concentration of about 0.01 to about 0.5 g/L.

[0085] Other Common Excipient Components

[0086] Amino Acids

[0087] Amino acids have found versatile use in protein formulations as buffers, bulking agents, stabilizers and antioxidants. Histidine and glutamic acid are employed to buffer protein formulations in the pH range of 5.5-6.5 and 4.0-5.5 respectively. The imidazole group of histidine has a pKa=6.0 and the carboxyl group of glutamic acid side chain has a pKa

of 4.3 which makes these amino acids suitable for buffering in their respective pH ranges. Glutamic acid is particularly useful in such cases (e.g., Stemgen®). Histidine is commonly found in marketed protein formulations (e.g., Xolair®, Herceptin®, Recombinate®), and this amino acid provides an alternative to citrate, a buffer known to sting upon injection. Interestingly, histidine has also been reported to have a stabilizing effect, as observed in formulations with ABX-IL8 (an IgG2 antibody), with respect to aggregation when used at high concentrations in both liquid and lyophilized presentations (Chen B, et al., *Pharm Res.*, 20(12): 1952-60 (2003)). Histidine (up to 60 mM) was also observed to reduce the viscosity of a high concentration formulation of this antibody. However, in the same study, the authors observed increased aggregation and discoloration in histidine containing formulations during freeze-thaw studies of the antibody in stainless steel containers. The authors attributed this to an effect of iron ions leached from corrosion of steel containers. Another note of caution with histidine is that it undergoes photo-oxidation in the presence of metal ions (Tomita M, et al., *Biochemistry*, 8(12): 5149-60 (1969)). The use of methionine as an antioxidant in formulations appears promising; it has been observed to be effective against a number of oxidative stresses (Lam X M, et al., *J Pharm Sci.*, 86(11): 1250-5 (1997)).

[0088] The amino acids glycine, proline, serine and alanine have been shown to stabilize proteins by the mechanism of preferential exclusion. Glycine is also a commonly used bulking agent in lyophilized formulations (e.g., Neumega®, Genotropin®, Humatropin®). Arginine has been shown to be an effective agent in inhibiting aggregation and has been used in both liquid and lyophilized formulations (e.g., Activase®, Avonex®, Enbrel® liquid). Furthermore, the enhanced efficiency of refolding of certain proteins in the presence of arginine has been attributed to its suppression of the competing aggregation reaction during refolding.

[0089] Antioxidants

[0090] Oxidation of protein residues arises from a number of different sources. Beyond the addition of specific antioxidants, the prevention of oxidative protein damage involves the careful control of a number of factors throughout the manufacturing process and storage of the product such as atmospheric oxygen, temperature, light exposure, and chemical contamination. The most commonly used pharmaceutical antioxidants are reducing agents, oxygen/free-radical scavengers, or chelating agents. Antioxidants in therapeutic protein formulations are water-soluble and remain active throughout the product shelf-life. Reducing agents and oxygen/free-radical scavengers work by ablating active oxygen species in solution. Chelating agents such as EDTA are effective by binding trace metal contaminants that promote free-radical formation. For example, EDTA was utilized in the liquid formulation of acidic fibroblast growth factor to inhibit the metal ion catalyzed oxidation of cysteine residues. EDTA has been used in marketed products like Kineret® and Ontak®.

[0091] In addition to the effectiveness of various excipients to prevent protein oxidation, the potential for the antioxidants themselves to induce other covalent or physical changes to the protein is of concern. For example, reducing agents can cause disruption of intramolecular disulfide linkages, which can lead to disulfide shuffling. In the presence of transition metal ions, ascorbic acid and EDTA have been shown to promote methionine oxidation in a number of proteins and peptides (Akers M J, and Defelippis M R. Peptides and Pro-

teins as Parenteral Solutions. In: Pharmaceutical Formulation Development of Peptides and Proteins. Sven Frokjaer, Lars Hovgaard, editors. Pharmaceutical Science. Taylor and Francis, UK (1999)); Fransson J. R., *J. Pharm. Sci.* 86(9): 4046-1050 (1997); Yin J, et al., *Pharm Res.*, 21(12): 2377-83 (2004)). Sodium thiosulfate has been reported to reduce the levels of light and temperature induced methionine-oxidation in rhuMab HER2; however, the formation of a thiosulfate-protein adduct was also reported in this study (Lam X M, Yang J Y, et al., *J Pharm Sci.* 86(11): 1250-5 (1997)). Selection of an appropriate antioxidant is made according to the specific stresses and sensitivities of the protein.

[0092] Metal Ions

[0093] In general, transition metal ions are undesired in protein formulations because they can catalyze physical and chemical degradation reactions in proteins. However, specific metal ions are included in formulations when they are co-factors to proteins and in suspension formulations of proteins where they form coordination complexes (e.g., zinc suspension of insulin). Recently, the use of magnesium ions (10-120 mM) has been proposed to inhibit the isomerization of aspartic acid to isoaspartic acid (WO 2004039337).

[0094] Two examples where metal ions confer stability or increased activity in proteins are human deoxyribonuclease (rhDNase, Pulmozyme®), and Factor VIII. In the case of rhDNase, Ca^{+2} ions (up to 100 mM) increased the stability of the enzyme through a specific binding site (Chen B, et al., *J Pharm Sci.*, 88(4): 477-82 (1999)). In fact, removal of calcium ions from the solution with EGTA caused an increase in deamidation and aggregation. However, this effect was observed only with Ca^{+2} ions; other divalent cations Mg^{+2} , Mn^{+2} and Zn^{+2} were observed to destabilize rhDNase. Similar effects were observed in Factor VIII. Ca^{+2} and Sr^{+2} ions stabilized the protein while others like Mg^{+2} , Mn^{+2} and Zn^{+2} , Cu^{+2} and Fe^{+2} destabilized the enzyme (Fatouros, A., et al., *Int. J. Pharm.*, 155, 121-131 (1997)). In a separate study with Factor VIII, a significant increase in aggregation rate was observed in the presence of Al^{+3} ions (Derrick T S, et al., *J. Pharm. Sci.*, 93(10): 2549-57 (2004)). The authors note that other excipients like buffer salts are often contaminated with Al^{+3} ions and illustrate the need to use excipients of appropriate quality in formulated products.

[0095] Preservatives

[0096] Preservatives are necessary when developing multi-use parenteral formulations that involve more than one extraction from the same container. Their primary function is to inhibit microbial growth and ensure product sterility throughout the shelf-life or term of use of the drug product. Commonly used preservatives include benzyl alcohol, phenol and m-cresol. Although preservatives have a long history of use, the development of protein formulations that includes preservatives can be challenging. Preservatives almost always have a destabilizing effect (aggregation) on proteins, and this has become a major factor in limiting their use in multi-dose protein formulations (Roy S, et al., *J Pharm Sci.*, 94(2): 382-96 (2005)).

[0097] To date, most protein drugs have been formulated for single-use only. However, when multi-dose formulations are possible, they have the added advantage of enabling patient convenience, and increased marketability. A good example is that of human growth hormone (hGH) where the development of preserved formulations has led to commercialization of more convenient, multi-use injection pen presentations. At least four such pen devices containing pre-

served formulations of hGH are currently available on the market. Norditropin® (liquid, Novo Nordisk), Nutropin AQ® (liquid, Genentech) & Genotropin (lyophilized—dual chamber cartridge, Pharmacia & Upjohn) contain phenol while Somatropin® (Eli Lilly) is formulated with m-cresol.

[0098] Several aspects need to be considered during the formulation development of preserved dosage forms. The effective preservative concentration in the drug product must be optimized. This requires testing a given preservative in the dosage form with concentration ranges that confer anti-microbial effectiveness without compromising protein stability. For example, three preservatives were successfully screened in the development of a liquid formulation for interleukin-1 receptor (Type I), using differential scanning calorimetry (DSC). The preservatives were rank ordered based on their impact on stability at concentrations commonly used in marketed products (Remmeli R L Jr., et al., *Pharm Res.*, 15(2): 200-8 (1998)).

[0099] Some preservatives can cause injection site reactions, which is another factor that needs consideration when choosing a preservative. In clinical trials that focused on the evaluation of preservatives and buffers in Norditropin, pain perception was observed to be lower in formulations containing phenol and benzyl alcohol as compared to a formulation containing m-cresol (Kappelgaard A. M., *Horm Res.* 62 Suppl 3:98-103 (2004)). Interestingly, among the commonly used preservative, benzyl alcohol possesses anesthetic properties (Minogue S C, and Sun D A., *Anesth Analg.*, 100(3): 683-6 (2005)).

[0100] Lyophilization

[0101] It is also contemplated that the formulations comprising a VWF polypeptide of the invention may be lyophilized prior to administration. Lyophilization is carried out using techniques common in the art and should be optimized for the composition being developed [Tang et al., *Pharm Res.* 21:191-200, (2004) and Chang et al., *Pharm Res.* 13:243-9 (1996)].

[0102] A lyophilization cycle is, in one aspect, composed of three steps: freezing, primary drying, and secondary drying [A. P. Mackenzie, *Phil Trans R Soc London, Ser B, Biol* 278:167 (1977)]. In the freezing step, the solution is cooled to initiate ice formation. Furthermore, this step induces the crystallization of the bulking agent. The ice sublimes in the primary drying stage, which is conducted by reducing chamber pressure below the vapor pressure of the ice, using a vacuum and introducing heat to promote sublimation. Finally, adsorbed or bound water is removed at the secondary drying stage under reduced chamber pressure and at an elevated shelf temperature. The process produces a material known as a lyophilized cake. Thereafter the cake can be reconstituted with either sterile water or suitable diluent for injection.

[0103] The lyophilization cycle not only determines the final physical state of the excipients but also affects other parameters such as reconstitution time, appearance, stability and final moisture content. The composition structure in the frozen state proceeds through several transitions (e.g., glass transitions, wettings, and crystallizations) that occur at specific temperatures and can be used to understand and optimize the lyophilization process. The glass transition temperature (Tg and/or Tg') can provide information about the physical state of a solute and can be determined by differential scanning calorimetry (DSC). Tg and Tg' are an important parameter that must be taken into account when designing the lyophilization cycle. For example, Tg' is important for pri-

mary drying. Furthermore, in the dried state, the glass transition temperature provides information on the storage temperature of the final product.

[0104] Methods of Preparation

[0105] The present invention further contemplates methods for the preparation of pharmaceutical formulations. A variety of aqueous carriers, e.g., sterile water for injection, water with preservatives for multi dose use, or water with appropriate amounts of surfactants (for example, polysorbate-20), 0.4% saline, 0.3% glycine, or aqueous suspensions may contain the active compound in admixture with excipients suitable for the manufacture of aqueous suspensions. In various aspects, such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyl-eneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl, p-hydroxybenzoate.

[0106] Administration

[0107] To administer compositions to human or test animals, in one aspect, the compositions comprises one or more pharmaceutically acceptable carriers. The phrases "pharmaceutically" or "pharmacologically" acceptable refer to molecular entities and compositions that are stable, inhibit protein degradation such as aggregation and cleavage products, and in addition do not produce allergic, or other adverse reactions when administered using routes well-known in the art, as described below. "Pharmaceutically acceptable carriers" include any and all clinically useful solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like, including those agents disclosed above.

[0108] The pharmaceutical formulations may be administered orally, topically, transdermally, parenterally, by inhalation spray, vaginally, rectally, or by intracranial injection. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intracisternal injection, or infusion techniques. Administration by intravenous, intradermal, intramuscular, intramammary, intraperitoneal, intrathecal, retrobulbar, intrapulmonary injection and or surgical implantation at a particular site is contemplated as well. Generally, compositions are essentially free of pyrogens, as well as other impurities that could be harmful to the recipient.

[0109] Single or multiple administrations of the compositions can be carried out with the dose levels and pattern being selected by the treating physician. For the prevention or treatment of disease, the appropriate dosage will depend on the type of disease to be treated, as defined above, the severity and course of the disease, whether drug is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the drug, and the discretion of the attending physician.

[0110] Kits

[0111] As an additional aspect, the invention includes kits which comprise one or more pharmaceutical formulations packaged in a manner which facilitates their use for administration to subjects. In one embodiment, such a kit includes pharmaceutical formulation described herein (e.g., a composition comprising a therapeutic protein or peptide), packaged in a container such as a sealed bottle or vessel, with a label affixed to the container or included in the package that describes use of the compound or composition in practicing the method. In one embodiment, the pharmaceutical formulation is packaged in the container such that the amount of headspace in the container (e.g., the amount of air between the liquid formulation and the top of the container) is very small. Preferably, the amount of headspace is negligible (i.e., almost none). In one embodiment, the kit contains a first container having a therapeutic protein or peptide composition and a second container having a physiologically acceptable reconstitution solution for the composition. In one aspect, the pharmaceutical formulation is packaged in a unit dosage form. The kit may further include a device suitable for administering the pharmaceutical formulation according to a specific route of administration. Preferably, the kit contains a label that describes use of the pharmaceutical formulations.

[0112] Dosages

[0113] The dosage regimen involved in a method for treating a condition described herein will be determined by the attending physician, considering various factors which modify the action of drugs, e.g. the age, condition, body weight, sex and diet of the patient, the severity of any infection, time of administration and other clinical factors. By way of example, a typical dose of a recombinant VWF of the present invention is approximately 50 U/kg, equal to 500 μ g/kg.

[0114] Formulations of the invention may be administered by an initial bolus followed by a continuous infusion to maintain therapeutic circulating levels of drug product. As another example, the inventive compound may be administered as a one-time dose. Those of ordinary skill in the art will readily optimize effective dosages and administration regimens as determined by good medical practice and the clinical condition of the individual patient. The frequency of dosing will depend on the pharmacokinetic parameters of the agents and the route of administration. The optimal pharmaceutical formulation will be determined by one skilled in the art depending upon the route of administration and desired dosage. See for example, Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, Pa. 18042) pages 1435-1712, the disclosure of which is hereby incorporated by reference. Such formulations may influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of the administered agents. Depending on the route of administration, a suitable dose may be calculated according to body weight, body surface area or organ size. Appropriate dosages may be ascertained through use of established assays for determining blood level dosages in conjunction with appropriate dose-response data. The final dosage regimen will be determined by the attending physician, considering various factors which modify the action of drugs, e.g. the drug's specific activity, the severity of the damage and the responsiveness of the patient, the age, condition, body weight, sex and diet of the patient, the severity of any infection, time of administration and other clinical factors. As studies are con-

ducted, further information will emerge regarding the appropriate dosage levels and duration of treatment for various diseases and conditions.

[0115] The following examples are not intended to be limiting but only exemplary of specific embodiments of the invention.

Example 1

Shaking Experiments

[0116] In order to determine the amount of precipitation of rVWF in various formulations, the percent recovery of rVWF following turbulent shaking was tested under a variety of conditions.

[0117] rVWF in Advate buffer (90 mM NaCl, 1.68 mM CaCl₂, 10 mM L-histidine, 1 mM tris, 0.26 mM glutathione,

23.4 mM trehalose, 175.7 mM mannitol, and 0.1 g/L TWEEN-80, pH 7.0) or Advate 1:3 buffer (Advate buffer diluted 3-fold in water) was subjected to turbulent shaking on a shaker at room temperature (RT) for 0 min, 1 min, 2.5 hrs, or 4 days, and percent recovery of the rVWF was measured relative to the starting material prior to shaking. As shown in Table 1, losses of about 40-80% were observed in the Advate buffer while losses of about 20-30% were observed in the Advate 1:3 buffer. VWF antigen VWF:Ag corresponds to the amount of VWF which can be detected in an VWF-specific ELISA using polyclonal anti-VWF antibody, while VWF:RCO corresponds to the amount of VWF which causes agglutination of stabilized platelets in the presence of ristocetin. In both cases human reference plasma calibrated against the actual WHO standard was used as standard (1 ml of reference plasma usually contains 1U VWF).

TABLE 1

Influence of turbulent shaking time on rVWF recovery						
rVWF	Turbulent shaking at RT	VWF:Ag [U/ml]	Recovery [%]	VWF:RCO [U/ml]	Recovery [%]	RCO/VWF:Ag [U/U]
Advate	0 min	213	100%	104	100%	0.49
	1 min	120	56%			
	2.5 hr	139	65%			
	4 d	37	17%	7	7%	0.19
Advate 1:3	0 min	206	100%	134	100%	0.65
	1 min	152	74%			
	2.5 hr	170	82%			
	4 d	138	67%	131	98%	0.95

[0118] The effect of freeze/thawing and lyophilization was also tested in the shaking experiments. Freezing was performed at -20° C. in an -20° C. cold room or on dry ice, thawing in both cases at RT and both started from the liquid formulations. As for lyophilization, the formulated VWF samples described herein were frozen within a pilot scale lyophilizer at <=-40° C. and were lyophilized using a standard Iyo program. Shaking was performed directly with the liquid formulations (2 ml in 5 ml vials). As shown in Table 2, percent recovery of rVWF was higher in Advate 1:3 buffer compared to Advate buffer.

TABLE 2

RVWF		VWF:Ag [U/ml]	VWF:Ag recovery [%]	VWF:RCO [U/ml]	VWF:RCO recovery [%]	RCO:Ag [U/U]
Advate	Frozen	213	100%	104	100%	0.49
	Frozen - 3x at -20° C.	229	107%	84	81%	0.37
	Frozen - 3x with dry ice	231	108%	72	69%	0.31
	Lyophilized	242	113%	61	59%	0.25
	Starting material	213	100%	104	100%	0.49
	Heavily shaken for 4 days at RT	37.0	17%	7.2	6.9%	0.19
Advate 1:3	Frozen	206	100%	134	100%	0.65
	Frozen - 3x at -20° C.	184	89%	132	99%	0.72
	Frozen - 3x with dry ice	195	94%	128	96%	0.66

TABLE 2-continued

RVWF	VWF:Ag [U/ml]	VWF:Ag recovery [%]	VWF:RCO [U/ml]	VWF:RCO recovery [%]	RCO:Ag [U/U]
Lyo	195	94%	107	80%	0.55
Starting material	206	100%	134	100%	0.65
Heavily shaken for 4 days at RT	138	67%	131	98%	0.95

[0119] Percent recovery was also measured in the shaking experiments with rVWF being stored in syringes with headspace and without headspace. Interestingly, when rVWF is stored in syringes without headspace and shaken as described above, no rVWF precipitation was observed. In contrast, when rVWF is stored in syringes with headspace, some precipitation was observed.

[0120] In summary, turbulent shaking resulted in at least 30% loss of rVWF in Advate buffer or Advate 1:3 buffer, with Advate buffer showing higher loss of recovery compared to Advate 1:3 buffer. Interestingly, the same precipitates observed in the turbulent shaking experiments were not observed when rVWF was stored and transported ~5000 km in an automobile (representing the expected shaking during transport). Precipitation of rVWF could be eliminated by storage in syringes without headspace.

Example 2

Stability of Recombinant VWF

[0121] The stability of rVWF was tested by assessing the activity level of rVWF present in a various formulations.

[0122] As shown in FIG. 1, rVWF is not stable in Advate buffer after 26 weeks due to the presence of 0.3 mM glutathione. As shown in FIG. 2, however, rVWF is more stable in Advate 1:3 buffer (e.g., for up 12 weeks at 4° C.).

[0123] As shown in FIG. 3, the stability of a citrate-based formulation (15 mM sodium citrate, 10 mM CaCl₂, 100 mM NaCl, pH 7.0) is better than Advate 1:3 buffer formulation containing 0.1M glutathione.

[0124] Likewise, the concentration of rVWF was measured over time in various buffers. As shown in FIG. 4, FIG. 5 and FIG. 6, rVWF concentration is stable over time in Advate buffer, Advate 1:3 buffer, and citrate-based buffer, respectively.

Example 4

Characterization of the Liquid Formulations

[0125] Differential scanning calorimetry (DSC) was used to assess the extent of protein (rVWF) unfolding in various buffers. As shown in Table 3, Advate buffer pH 7.0 is the optimum for stabilization.

[0126] DSC is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and references are measured as a function of temperature. The result of a DSC experiment is a curve of heat flux versus temperature or versus time.

[0127] The Differential Scanning Calorimeter can scan through a range of temperatures while heating and cooling

and it determines a phase transition, i.e. melting, crystallization, or glass transition, by measuring the amount of heat needed to reach a set temperature. The calorimeter was calibrated with a set of pure metals (zinc, indium, and tin) that have a known heat capacity, Cp and melting point, Tm. The respective reference buffer was placed into the reference capillary and the rVWF sample was placed into the sample capillary of the instrument.

TABLE 3

Unfolding temperature in various buffers			
Lot	Buffer	pH	T unfold [° C]
rVWF161A	Advate	7.0	66.0
rVWF161B	Immunate	6.8	64.5
rVWF161C	Citrate	6.8	61.2
rVWF161D	NovoSeven	6.8	64.9
rVWF158	HePes	7.4	61.3

Buffer components and concentrations:

A) Advate:	5.26 g/l NaCl 0.248 g/l CaCl ₂ 32 g/l D-Mannitol 8 g/l Trehalose 1.56 g/l L-Histidine 1.2 g/l Tris 0.08 g/l Glutadione red.	pH = 7.0
B) Immunate:	5.25 g/l Glycin 2.2 g/l NaCl 5.25 g/l NaCit3 5.25 g/l Lysin-HCl 0.62 g/l CaCl ₂	pH = 6.8
C) Citrat:	3 g/l Glycin 2.92 g/l NaCl 2.5 g/l NaCit3 30 g/l D-Mannitol 10 g/l Trehalose	pH = 6.8
D) NovoSeven:	0.75 g/l Glycin 2.92 g/l NaCl 1.47 g/l CaCl ₂ 30 g/l D-Mannitol	pH = 6.8

[0128] rVWF158: 20 mM HePes, 150 mM NaCl, 5 g/L sucrose, pH 7.4

[0129] Further, as shown in FIG. 7, most formulation excipients increase the unfolding temperature by about 1-2° C. FIG. 8 shows that 10 mM CaCl₂ increases the unfolding temperature by ~8° C. to ~67° C., an unfolding temperature which can also be reached by Advate buffer. This effect of CaCl₂ is similar at pH 7.3 and 6.5, as shown in FIG. 9. Finally, the effect of trehalose and sucrose were analyzed on the

unfolding temperature. Compared to citrate alone, neither trehalose nor sucrose increased the unfolding temperature of rVWF. A summary of the unfolding temperature (T_{max}) data for rVWF in the presence of various excipients is set out in Table 4.

TABLE 4

15 mM Sodium Citrate buffer	—	15 mM Tris	15 mM Glycine	50 mM NaCl
ΔH [kJ/mol]	128494.3	656259.7	157352.2	124985.8
Unfolding T [°C.] -	58.6		59.1	61
Peak 1				
Peak 2	65.2	68.5	65.5	
Peak 3	80.4		80.1	81
Peak 4				
15 mM Sodium Citrate buffer	15 mM Histidine	20.52 g/L Mannitol	10.26 g/L Trehalose	
ΔH [kJ/mol]	134044.5	1588590.1	612235.9	
Unfolding T [°C.] -	59.2	58.5	58.5	
Peak 1				
Peak 2	65.2	65.5	71.3	
Peak 3	79.3	78.2	81.5	
Peak 4	88.5		92.7	
15 mM Sodium Citrate buffer	1 mM CaCl ₂	10 mM CaCl ₂	32 g/L Saccharose	0.25 mM Saccharose
ΔH [kJ/mol]	266008.2	308171.3	115082.4	246904.6
Unfolding T [°C.] -	64.5	67.2	59.2	60
Peak 1				
Peak 2			66	67
Peak 3	81	83.1	81.1	81.7
Peak 4	91.8	93		
15 mM Sodium Citrate buffer	0.1 g/L TWEEN-80	32 g/L Raf-finose	Na ₂ HPO ₄ /NaHPO ₄	7.8 mM Trehalose
ΔH [kJ/mol]	338792.7	127329.2	197967.5	135573.3
Unfolding T [°C.] -	58.7	60.1	61.4	58.4
Peak 1				
Peak 2	64.4	65.8		65.4
Peak 3	81.6	80.3	80.4	80.4
Peak 4			89.2	

[0130] In addition to the various buffers, DSC was used to assess unfolding temperature of rVWF at various pH values in Advate buffer. The results are shown in Table 5, below.

Advate buffer pH 7.0 is the optimum for stabilization (i.e., highest unfolding temperature; Peak 1) of rVWF.

TABLE 5

pH	Peak 1	Peak 2
5.0	59.5	62.0
6.0	65.2	75.4
7.0	67.2	82.8
8.0	66.6	85.6
9.0	65.0	84.9

[0131] The fluorescence spectrum of rVWF in Advate buffer and Advate 1:3 buffer was assessed after storage at various temperatures for various lengths of time. No (or only slight) change in fluorescence spectrum was observed after storage at 40° C. from 0 to 28 days in either Advate or Advate 1:3 buffers. No difference was observed at other temperatures.

[0132] Likewise, degradation of rVWF was assessed using gelfiltration (Superose 6). While some degradation was observed after 26 weeks at 4° C. in Advate buffer, almost no degradation of rVWF in Advate 1:3 buffer was observed after 26 weeks at 4° C. At 40° C., glutathione increased the amount of degradation over time (albeit to a slower extent in Advate 1:3 buffer).

[0133] Based on the above Examples, Advate 1:3 buffer offers an advantage with respect to freeze/thawing and recovery after lyophilization as compared to the undiluted Advate buffer. Moreover, Advate 1:3 buffer can stabilize (e.g., maintain biological activity) rVWF activity during incubation at 40° C. better than Advate buffer. rVWF in Advate 1:3 buffer is stable for 4 weeks of incubation at 4° C. Finally, DSC has demonstrated that pH 7.0 is optimum for preventing degradation of rVWF (i.e., showed the highest unfolding temperature).

[0134] Thus, in view of the data presented herein, a formulation was proposed for rVWF including 15 mM citrate (or glycine or histidine), 10 mM CaCl₂, pH 6.5-7.3, adjusted to the desired osmolarity by NaCl. For example, in one embodiment, the citrate-based formula is 15 mM sodium citrate, 10 mM CaCl₂, 100 mM NaCl, pH 7.0.

[0135] Alternatively, an Advate or Advate 1:3 buffer, without glutathione, is also contemplated: Advate: 90 mM NaCl, 1.68 mM CaCl₂, 10 mM L-histidine, 10 mM Tris, 0.26 mM glutathione, 23.4 mM trehalose, 175.7 mM mannitol, and 0.1 g/L TWEEN-80, pH 7.0; Advate 1:3: 30 mM NaCl, 0.56 mM CaCl₂, 3.3 mM L-histidine, 3.3 mM tris, 7.8 mM trehalose, 58.6 mM mannitol, and 0.03 g/L TWEEN-80, ph 7.0.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 3

```

<210> SEQ ID NO 1
<211> LENGTH: 8833
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polynucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: prepro-vWF

```

-continued

<400> SEQUENCE: 1

agctcacagc	tattgtggtg	ggaaagggag	ggtggttgtt	ggatgtcaca	gcttgggctt	60
tatctcccc	agcagtgggg	actccacagc	ccctgggcta	cataacagca	agacagtccg	120
gagctgttagc	agacctgatt	gagccttgc	agcagctgag	agcatggcct	agggtgggct	180
gcaccattgt	ccagcagctg	agtttccag	ggaccttgg	gatagccgca	gccctcattt	240
gcaggggaag	atgattcccg	ccagattgc	cgggggtgt	cttgctctgg	ccctcattt	300
gccagggacc	ctttgtgcag	aaggaactcg	cggcagggtca	tccacggccc	gatgcagcct	360
tttcggaaat	gacttcgtca	acaccttga	tgggagcatg	tacagcttg	cgggataactg	420
cagttacctc	ctggcagggg	gctgccagaa	acgctccttc	tcgattattg	gggacttcca	480
gaatggcaag	agagtgagcc	tctccgtgt	tcttgggaa	tttttgaca	tccatttgc	540
tgtcaatgg	accgtgacac	agggggacca	aagagtctcc	atgcctatg	cctccaaagg	600
gctgtatcta	gaaactgagg	ctgggtacta	caagctgtcc	ggtgaggcct	atggcttgc	660
ggccaggatc	gatggcagcg	gcaacttca	agtccctgt	tcagacagat	acttcaacaa	720
gacactgcggg	ctgtgtggca	actttaacat	ctttgtgaa	gatgacttta	tgacccaaga	780
agggaccttgc	acctcgacc	cttatgactt	tgccaaactca	tgggctctga	gcagtggaga	840
acagtgggtgt	gaacgggcat	ctcccccag	cagctcatgc	aacatctct	ctggggaaat	900
gcagaagggc	ctgtgggagc	agtgccagct	tctgaagagc	acctcggtgt	ttgcccgcgt	960
ccaccctctg	gtgggaccccg	agocttttgt	ggccctgtgt	gagaagactt	tgtgtgagtg	1020
tgctgggggg	ctggagtgcg	cctgcctgc	cctcctggag	tacgccccga	cctgtgcccc	1080
ggagggaaatg	tgctgtacg	gtggacccga	ccacagcgcg	tgcageccag	tgtgeccctgc	1140
tggatggag	tataggcagt	gtgtgtcccc	ttgcgcagg	acctgcacaga	gcctgoacat	1200
caatgaaatg	tgtcaggagc	gatgcgtgg	tggctgcagc	tgcctggagg	gacagctcct	1260
ggatgaaggc	ctctgcgtgg	agagcacccg	gtgtccctgc	gtgcattccg	gaaagcgcta	1320
ccctcccgcc	acctccctct	ctcgagactg	caacacctgc	atttgcggaa	acagecagtg	1380
gatctgcagc	aatgaagaat	gtccaggggg	gtgccttgc	acaggtaat	cacacttcaa	1440
gagctttgac	aacagatact	tcaccttcg	tgggatctgc	cagtacctgc	tggccgggaa	1500
ttgcgcaggac	cactcctct	ccattgtcat	tgagactgtc	cagtgtgt	atgaccgcga	1560
cgcgtgtgc	acccgcctcg	tcaccgtccg	gtgcctggc	ctgcacaaca	gccttgcgaa	1620
actgaagcat	ggggcaggag	ttgccatgga	tggccaggac	gtccagtc	cccttcgtaa	1680
agggtacctc	cgcacccgc	atacagtgc	ggcctccgt	cgcctcagct	acggggagga	1740
cctgcagatg	gactggatg	gcccgggag	gtgcgtgg	aagctgtccc	ccgtctatgc	1800
cgggaaagacc	tgeggcctgt	gtgggaatta	caatggcaac	caggcggacg	acttccttac	1860
ccccctctgg	ctggcggagc	ccgggtgg	ggacttcgg	aacgcctgga	agctgcacgg	1920
ggactgcccag	gacctgcaga	agcagcacag	cgatccctgc	gccctcaacc	cgcgcatgac	1980
caggttctcc	gaggaggcgt	gcccgggtct	gacgtcccc	acattcgagg	cctgcacatcg	2040
tgccgtcagc	ccgcgtccct	acctgcggaa	ctgcgcgtac	gacgtgtgt	cctgcgtcg	2100
cggccgcgag	tgccgtgcgc	gcccctggc	cagctatgcc	gcccgtcg	cggggagagg	2160
cgtgcgcgtc	gcccgtgcgc	agccaggccc	ctgtgagctg	aactgcccga	aaggccaggt	2220

-continued

gtacacctgcag	tgccgggacccc	cctgcacaccc	gacctgcgcgc	tctctctctt	acccggatga	2280
ggaatgcata	gaggcctgcc	tggagggctg	cttctgcccc	ccagggctct	acatggatga	2340
gaggggggac	tcgcgtgccc	aggcccagtg	cccctgttac	tatgacggtg	agatcttcca	2400
gccagaagac	atcttctcag	accatcacac	catgtgctac	tgtgaggatg	gcttcatgca	2460
ctgtaccatg	agtggagtcc	ccggaagctt	gctgcctgac	gctgtccctca	gcagtcctct	2520
gtctcatcgc	agcaaaagga	gcctatcttg	tcggcccccc	atggtaaagc	tggtgtgtcc	2580
cgctgacaac	ctgcgggctg	aagggctcga	gtgtacaaaa	acgtgccaga	actatgaccc	2640
ggagtgcatg	agcatggct	gtgtctctgg	ctgcctctgc	ccccccggca	tggtccggca	2700
tgagaacaga	tgtgtggccc	tggaaagggtg	tccctgcttc	catcaggcga	aggagtatgc	2760
ccctggagaa	acagtgaaga	ttggctgcaa	cacttgcgtc	tgtcgggacc	ggaagtggaa	2820
ctgcacagac	catgtgtgt	atgccacgtg	ctccacgatc	ggcatggccc	actacccac	2880
cttcgacggg	ctcaaatacc	tgttccccgg	ggagtgccag	tacgttctgg	tgcaggattt	2940
ctgcccggat	aaccctggga	ccttcggat	cctagtgggg	aataaggat	gcagccaccc	3000
ctcagtggaa	tgcaagaaac	gggtcaccat	cctgggtggag	ggaggagaga	ttgagctgtt	3060
tgacggggag	gtgaatgtga	agaggccat	gaaggatgag	actcactttg	aggtggtgga	3120
gtctggccgg	tacatcatc	tgtgtctggg	caaagccctc	tccgtggct	gggacogcca	3180
cctgagcatc	tccgtggtcc	tgaagcagac	ataccaggag	aaagtgtgt	gcctgtgtgg	3240
gaatttgtat	ggcatccaga	acaatgaccc	caccagcagc	aacctccaa	tggaggaaga	3300
ccctgtggac	tttgggaact	cctggaaagt	gagctgcag	tgtgtgaca	ccagaaaaagt	3360
gcctctggac	tcatccccctg	ccacctgcata	taacaacatc	atgaagcaga	cgatggtgga	3420
ttccctctgt	agaatcccta	ccagtgcacgt	cttccaggac	tgcacacaagc	tggggactt	3480
cgagccatat	ctggatgtct	gcatttacga	cacctgctcc	tgtgagttca	ttggggactg	3540
ccctgtcttc	tgcacaccca	ttgctgccta	tgcacacgtg	tgtgcacccagc	atggcaaggt	3600
ggtgcacctgg	aggacggeca	cattgtgcc	ccagagctgc	gaggagagga	atctccggga	3660
gaacgggtat	gagtgtgagt	ggcgctataa	cagctgtgca	cctgcctgtc	aagtacgtg	3720
tcagcaccct	gagccactgg	cctgcctgt	gcagtgtgt	gagggtgc	atgcccactg	3780
ccctccaggg	aaaatccctgg	atgagcttt	gcagacctgc	gttgcaccc	aagactgtcc	3840
agtgtgtgag	gtggctggcc	ggcggtttgc	ctcaggaaag	aaagtccact	tgaatccca	3900
tgaccctgag	cactgcccaga	tttgcactg	tgtatgtgtc	aacctcacct	gtgaacgcct	3960
ccaggagccg	ggaggccctgg	tgggtccctcc	cacatgtcc	ccgggtggcc	ccaccactct	4020
gtatgtggag	gacatctgg	aaccgcgtt	gcacgatttc	tactgcacca	ggctactgg	4080
cctggcttcc	ctgctggatg	gtccctccag	gctgtccgg	gctgagttt	aaagtgtgaa	4140
ggccctttgtg	gtggacatga	tggagccggct	gcccacatcc	cagaagtggg	tccggcgtgg	4200
cgtgggtggag	taccacgcac	gtcccccacgc	ctacatcggt	ctcaaggacc	ggaagcggacc	4260
gtcagagctg	cgccgcattg	ccagccagg	gaagtatgcg	ggcagccagg	tggcctccac	4320
cagcggggtc	ttgaaataca	cactgttcca	aatcttcagc	aagatgcacc	gccctgaagc	4380
ctcccgcatc	accctgctcc	tgtatggcc	ccaggagccc	caacggatgt	cccgaaactt	4440
tgtccgctac	gtccaggggcc	tgaagaagaa	gaaggtcatt	gtatccccc	tgggcattgg	4500

-continued

gccccatgcc	aacctaagc	agatccgcct	catcgagaag	caggccccctg	agaacaaggc	4560
cttcgtgctg	agcagtgtgg	atgagctgga	gcagcaaagg	gacgagatcg	ttagctacct	4620
ctgtgacctt	gcccctgaag	cccctcctcc	tactctgccc	cccgacatgg	cacaagtac	4680
tgtggggcccg	gggcttgg	gggtttcgac	cctggggccc	aagaggaact	ccatggttct	4740
ggatgtggcg	ttcgtcctgg	aaggatcgga	caaaatttgt	gaagccgact	tcaacaggag	4800
caaggagttc	atggaggagg	tgattcagcg	gatggatgtg	ggccaggaca	gcatccacgt	4860
cacggtgctg	cagtactct	acatggtgac	tgtggagtag	cccttcagcg	aggcacagtc	4920
caaaggggac	atccctgcage	gggtgcgaga	gatccgctac	cagggcggca	acaggaccaa	4980
cactgggctg	gcccctgcgt	acctctctga	ccacagcttc	ttggtcagcc	agggtgaccg	5040
ggagcaggcg	ccaaacactgg	tctacatggt	caccggaaat	cctgcctctg	atgagatcaa	5100
gaggctgcct	ggagacatcc	aggtggtgc	cattggagtg	ggccctaatg	ccaacgtgca	5160
ggagctggag	aggattggct	ggcccaatgc	ccctatccctc	atccaggact	ttgagacgct	5220
cccccgagag	gtccctgacc	tggtgctgca	gaggtgtgc	tccggagagg	ggctgcagat	5280
ccccaccctc	tcccctgcac	ctgactgcag	ccagccccctg	gacgtgatcc	ttctccctgga	5340
tggctccctc	agtttcccag	cttcttattt	tgtgaaatg	aagagttcg	ccaaggcttt	5400
cattcaaaa	gccaatatacg	ggccctcgct	cactcagggt	tcagtgcgtc	agtatggaag	5460
catcaccacc	attgacgtgc	catggAACgt	ggtcccggag	aaagcccatt	tgctgagcct	5520
tgtggacgctc	atgcacgcgg	agggaggccc	cagccaaatc	ggggatgc	tgggctttgc	5580
tgtgcgatac	ttgacttcag	aatgcatgg	tgccaggccg	ggagcctcaa	aggcgggtgg	5640
cattctggtc	acggacgtct	ctgtggattc	agtggatgc	gcagctgtat	ccgcccaggctc	5700
caacagagtg	acagtgttcc	ctattggaa	tggagatcgc	tacgtgcag	cccagotacg	5760
gatcttggca	ggccccageag	gagactccaa	cgtggtaag	ctccagcgaa	tcgaagacct	5820
ccctaccatg	gtcaccttgg	gcaatttcct	cctccacaaa	ctgtgetctg	gatttggtag	5880
gatttgcgt	gatgaggatg	ggaatgagaa	gaggccccgg	gacgtctgga	ccttgcaga	5940
ccagtgccac	accegtgactt	gccagccaga	tggccagacc	ttgctgaaga	gtcatcggt	6000
caactgtgac	cgggggctga	ggccctcggt	ccctaacagc	cagtccccctg	ttaaagtgg	6060
agagacctgt	ggctgccgct	ggacctgcct	ctgcgtgtgc	acaggeagct	ccactcggca	6120
categtgacc	tttgcattggc	agaatttcaa	gctgactggc	agctgttctt	atgtcttatt	6180
tcaaaacaag	gagcaggacc	tggaggtgat	tctccataat	ggtgcgtgca	gcccctggagc	6240
aaggcaggcc	tgcattaaat	ccatcgagg	gaagcacagt	gcccctcccg	tcgagctgca	6300
cagtgacatg	gaggtgacgg	tgaatggag	actggctct	gttccttacg	tgggtggaa	6360
catggaagtc	aacgtttatg	gtgccatcat	gcatcggtc	agattcaatc	accttggta	6420
catcttcaca	ttcaactccac	aaaacaatga	gttccaaactg	cagtcagcc	ccaagacttt	6480
tgcttcaaag	acgtatggtc	tgtgtggat	ctgtgtatgg	aacggagcc	atgacttcat	6540
gctgagggat	ggcacagtca	ccacagactg	gaaaacactt	gttcaggaat	ggactgtgca	6600
gcggccaggg	cagacgtgcc	agcccatcc	ggaggagcag	tgtcttgc	ccgacagctc	6660
ccactgcccag	gtccctccct	taccactgt	tgtgtatgc	cacaaggctc	tggctccagc	6720
cacattctat	gccccatctg	ccatctgccc	agcaggacag	ttgcccaccag	gagcaagtgt	6780

-continued

cgccctttat	gcccacacct	gtcgaggaccaa	cggggctgc	gttgactgga	ggacacacctga	6840
tttctgtgt	atgtcatgcc	caccatctct	ggtctacaac	cactgtgagc	atggctgtcc	6900
ccggcactgt	gatggcaacg	tgagctcctg	tggggaccat	ccctccgaag	gctgtttctg	6960
ccctccagat	aaagtcatgt	tggaggcag	ctgtgtccct	gaagaggcct	gcactcagtg	7020
cattggtag	gatggagtcc	agcaccagtg	cctggaaagcc	tgggtcccg	accaccagcc	7080
ctgtcagatc	tgcacatgcc	tcagcggggc	gaaggtcaac	tgcacaacgc	agccctgccc	7140
cacggccaaa	gctcccacgt	gtggcctgtg	tgaagtagcc	cgcctccgcc	agaatgcaga	7200
ccagtgtgc	cccgagtgatg	agtgtgtgt	tgacccagtg	agctgtgacc	tgcccccaagt	7260
gcctcactgt	gaacgtggcc	tccagccac	actgaccaac	cctggcgagt	gcagacccaa	7320
cttcacactgc	gcctgcagga	aggaggagtg	caaaagagtg	tccccaccc	cctgcccccc	7380
gcaccgtttg	cccacccttc	ggaagaccca	gtgctgtgat	gagtagttagt	gtgcctgcaa	7440
ctgtgtcaac	tccacagtga	gtctccctt	tgggtacttg	gcctcaactg	ccaccaatga	7500
ctgtggctgt	accacaacca	cctgccttc	cgacaagggt	tgtgtccacc	gaagcaccat	7560
ctaccctgtg	ggccagatct	gggaggaggg	ctgcgtatgt	tgcacctgca	ccgacatgga	7620
ggatgcgtg	atgggcctcc	gegtggccca	gtgctccag	aagccctgtg	aggacagctg	7680
tcggtcgggc	ttcacttacg	ttctgcata	aggcgagtgc	tgtggaaagg	gcctgcacatc	7740
tgccctgtgag	gtgggtactg	gtccaccccg	gggggactcc	cagtcttct	ggaagagtgt	7800
cggtcccaag	tgggcctccc	cgagaaaccc	ctgcctcatc	aatgagtgtg	tccgagtgaa	7860
ggaggaggtc	tttataacaac	aaaggaacgt	ctccctgc	cagctggagg	tccctgtctg	7920
cccttcgggc	tttcagctga	gctgtaaagc	ctcagcgtgc	tgcctcaagct	gtcgtgtga	7980
gcgcatggag	gcctgcatgc	tcaatggac	tgtcattggg	cccgggaaga	ctgtgtatgt	8040
cgtgtgtgc	acgacactgc	gtgcgtatgt	gcaggtgggg	gtcatctctg	gattcaagct	8100
ggagtgcagg	aagaccaccc	gcaacccctg	ccccctgggt	tacaaggaa	aaaataaacac	8160
aggtaatgt	tgtggagat	gttgcctac	ggcttgcacc	attcagctaa	gaggaggaca	8220
gatcatgaca	ctgaagcgtg	atgagaacgt	ccaggatggc	tgtgatactc	acttctgcaa	8280
ggtaatgt	agaggagagt	acttctggg	gaagagggtc	acaggctgcc	cacccttga	8340
tgaacacaag	tgtctggctg	agggaggtaa	aattatgaaa	attccaggca	cctgctgtga	8400
cacatgtgag	gacgtgtgt	gcaacgcacat	cactgcccagg	ctgcgtatg	tcaaggtgg	8460
aacgtgtgt	tctgtgtgt	agggtggat	ccactactgc	caggcataat	gtgcacgca	8520
agccatgtac	tccattgaca	tcaacgtatg	gcaggaccag	tgcctctgt	gtctccgac	8580
acggacggag	cccatgcagg	tggccctgca	ctgcaccaat	ggctctgtt	tgtaccatga	8640
gttctcaat	gcatggagt	gcaaatgctc	ccccaggaag	tgcagcaagt	gaggtgtctg	8700
cagctgcatg	ggtgcctgt	gtgcctgca	ttggcctgtat	ggccaggcca	gagtgtgtcc	8760
agtctctgc	atgttctgt	cttgcaccc	tctgatgttca	caataaaggc	tgagcttta	8820
tcttgcaaaa	ggc					8833

<210> SEQ ID NO 2

<211> LENGTH: 2783

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

-continued

```

<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Polypeptide
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<223> OTHER INFORMATION: prepro-vWF

<400> SEQUENCE: 2

Met Ile Pro Ala Arg Phe Ala Gly Val Leu Leu Leu Ile Leu Pro Gly
1 5 10 15

Thr Leu Cys Ala Glu Gly Thr Arg Gly Arg Ser Ser Thr Ala Arg Cys
20 25 30

Ser Leu Phe Gly Ser Asp Phe Val Asn Thr Phe Asp Gly Ser Met Tyr
35 40 45

Ser Phe Ala Gly Tyr Cys Ser Tyr Leu Leu Ala Gly Gly Cys Gln Lys
50 55 60

Arg Ser Phe Ser Ile Ile Gly Asp Phe Gln Asn Gly Lys Arg Val Ser
65 70 75 80

Leu Ser Val Tyr Leu Gly Glu Phe Phe Asp Ile His Leu Phe Val Asn
85 90 95

Gly Thr Val Thr Gln Gly Asp Gln Arg Val Ser Met Pro Tyr Ala Ser
100 105 110

Lys Leu Glu Thr Glu Ala Gly Tyr Tyr Lys Leu Ser Gly Glu Ala Tyr
115 120 125

Gly Phe Val Ala Arg Ile Asp Gly Ser Gly Asn Phe Gln Val Leu Leu
130 135 140

Ser Asp Arg Tyr Phe Asn Lys Thr Cys Gly Leu Cys Gly Asn Phe Asn
145 150 155 160

Ile Phe Ala Glu Asp Asp Phe Met Thr Gln Glu Gly Thr Leu Thr Ser
165 170 175

Asp Pro Tyr Asp Phe Ala Asn Ser Trp Ala Leu Ser Ser Gly Glu Gln
180 185 190

Trp Cys Glu Arg Pro Ser Ser Ser Cys Asn Ile Ser Ser Gly Glu Met
195 200 205

Gln Lys Gly Leu Trp Glu Gln Cys Gln Leu Leu Lys Ser Thr Ser Val
210 215 220

Phe Ala Arg Cys His Pro Leu Val Asp Pro Glu Pro Phe Cys Glu Lys
225 230 235 240

Thr Leu Cys Glu Cys Ala Gly Leu Glu Cys Ala Cys Pro Ala Leu
245 250 255

Leu Glu Tyr Ala Arg Thr Cys Ala Gln Glu Gly Met Val Leu Tyr Gly
260 265 270

Trp Thr Asp His Ser Ala Cys Ser Pro Val Cys Pro Ala Gly Met Glu
275 280 285

Tyr Arg Gln Cys Val Ser Pro Cys Ala Arg Thr Cys Gln Ser Leu His
290 295 300

Ile Asn Glu Met Cys Gln Glu Arg Cys Val Asp Gly Cys Ser Cys Pro
305 310 315 320

Glu Gly Gln Leu Leu Asp Glu Gly Leu Cys Val Glu Ser Thr Glu Cys
325 330 335

Pro Cys Val His Ser Gly Lys Arg Tyr Pro Pro Gly Thr Ser Leu Ser
340 345 350

Arg Asp Cys Asn Thr Cys Ile Cys Arg Asn Ser Gln Trp Ile Cys Ser
355 360 365

```

-continued

Asn	Glu	Glu	Cys	Pro	Gly	Glu	Cys	Leu	Val	Thr	Gly	Gln	Ser	His	Phe
370					375										
Lys	Ser	Phe	Asp	Asn	Arg	Tyr	Phe	Thr	Phe	Ser	Gly	Ile	Cys	Gln	Tyr
385					390				395						400
Leu	Leu	Ala	Arg	Asp	Cys	Gln	Asp	His	Ser	Phe	Ser	Ile	Val	Ile	Glu
405					410										415
Thr	Val	Gln	Cys	Ala	Asp	Asp	Arg	Asp	Ala	Val	Cys	Thr	Arg	Ser	Val
420					425				430						
Thr	Val	Arg	Leu	Pro	Gly	Leu	His	Asn	Ser	Leu	Val	Lys	Leu	Lys	His
435					440				445						
Gly	Ala	Gly	Val	Ala	Met	Asp	Gly	Gln	Asp	Val	Gln	Leu	Pro	Leu	Leu
450					455				460						
Lys	Gly	Asp	Leu	Arg	Ile	Gln	His	Thr	Val	Thr	Ala	Ser	Val	Arg	Leu
465					470				475						480
Ser	Tyr	Gly	Glu	Asp	Leu	Gln	Met	Asp	Trp	Asp	Gly	Arg	Gly	Arg	Leu
485					490				495						
Leu	Val	Lys	Leu	Ser	Pro	Val	Tyr	Ala	Gly	Lys	Thr	Cys	Gly	Leu	Cys
500					505				510						
Gly	Asn	Tyr	Asn	Gly	Asn	Gln	Gly	Asp	Asp	Phe	Leu	Thr	Pro	Ser	Gly
515					520				525						
Leu	Ala	Glu	Pro	Arg	Val	Glu	Asp	Phe	Gly	Asn	Ala	Trp	Lys	Leu	His
530					535				540						
Gly	Asp	Cys	Gln	Asp	Leu	Gln	Lys	Gln	His	Ser	Asp	Pro	Cys	Ala	Leu
545					550				555						560
Asn	Pro	Arg	Met	Thr	Arg	Phe	Ser	Glu	Glu	Ala	Cys	Ala	Val	Leu	Thr
565					570				575						
Ser	Pro	Thr	Phe	Glu	Ala	Cys	His	Arg	Ala	Val	Ser	Pro	Leu	Pro	Tyr
580					585				590						
Leu	Arg	Asn	Cys	Arg	Tyr	Asp	Val	Cys	Ser	Cys	Ser	Asp	Gly	Arg	Glu
595					600				605						
Cys	Leu	Cys	Gly	Ser	Tyr	Ala	Ala	Ala	Cys	Ala	Gly	Arg	Gly	Val	Arg
610					615				620						
Val	Ala	Trp	Arg	Glu	Pro	Gly	Arg	Cys	Glu	Leu	Asn	Cys	Pro	Lys	Gly
625					630				635						640
Gln	Val	Tyr	Leu	Gln	Cys	Gly	Thr	Pro	Cys	Asn	Leu	Thr	Cys	Arg	Ser
645					650				655						
Leu	Ser	Tyr	Pro	Asp	Glu	Glu	Cys	Asn	Glu	Ala	Cys	Leu	Glu	Gly	Cys
660					665				670						
Phe	Cys	Pro	Pro	Met	Asp	Glu	Arg	Gly	Asp	Cys	Val	Pro	Lys	Ala	Gln
675					680				685						
Cys	Pro	Cys	Tyr	Tyr	Asp	Gly	Glu	Ile	Phe	Gln	Pro	Glu	Asp	Ile	Phe
690					695				700						
Ser	Asp	His	His	Thr	Met	Cys	Tyr	Cys	Glu	Asp	Gly	Phe	Met	His	Cys
705					710				715						720
Thr	Met	Ser	Gly	Val	Pro	Gly	Ser	Leu	Leu	Pro	Asp	Ala	Val	Leu	Ser
725					730				735						
Ser	Pro	Leu	Ser	His	Arg	Ser	Lys	Arg	Ser	Leu	Ser	Cys	Arg	Pro	Pro
740					745				750						
Met	Val	Lys	Leu	Val	Cys	Pro	Ala	Asp	Asn	Leu	Arg	Ala	Glu	Gly	Leu
755					760				765						

-continued

Glu Cys Thr Lys Thr Cys Gln Asn Tyr Asp Leu Glu Cys Met Ser Met
 770 775 780
 Gly Cys Val Ser Gly Cys Leu Cys Pro Pro Gly Met Val Arg His Glu
 785 790 795 800
 Asn Arg Cys Glu Arg Cys Pro Cys Phe His Gln Gly Lys Glu Tyr Ala
 805 810 815
 Pro Gly Glu Thr Val Lys Ile Gly Cys Asn Thr Cys Val Cys Arg Asp
 820 825 830
 Arg Lys Trp Asn Cys Thr Asp His Val Cys Asp Ala Thr Cys Ser Thr
 835 840 845
 Ile Gly Met Ala His Tyr Leu Thr Phe Asp Gly Leu Lys Tyr Leu Phe
 850 855 860
 Pro Gly Glu Cys Gln Tyr Val Leu Val Gln Asp Tyr Cys Gly Ser Asn
 865 870 875 880
 Pro Gly Thr Phe Arg Ile Leu Val Gly Asn Lys Gly Cys Ser His Pro
 885 890 895
 Ser Val Lys Cys Lys Lys Arg Val Thr Ile Leu Val Glu Gly Gly Glu
 900 905 910
 Ile Glu Leu Phe Asp Gly Glu Val Asn Val Lys Arg Pro Met Lys Asp
 915 920 925
 Glu Thr His Phe Glu Val Val Glu Ser Gly Arg Tyr Ile Ile Leu Leu
 930 935 940
 Leu Gly Lys Ala Leu Ser Val Val Trp Asp Arg His Leu Ser Ile Ser
 945 950 955 960
 Val Val Leu Lys Gln Thr Tyr Gln Glu Lys Val Cys Gly Leu Cys Gly
 965 970 975
 Asn Phe Asp Gly Ile Gln Asn Asn Asp Leu Thr Ser Ser Asn Leu Gln
 980 985 990
 Val Glu Glu Asp Pro Val Asp Phe Gly Asn Ser Trp Lys Val Ser Ser
 995 1000 1005
 Gln Cys Ala Asp Thr Arg Lys Val Pro Leu Asp Ser Ser Pro Ala
 1010 1015 1020
 Thr Cys His Asn Asn Ile Met Lys Gln Thr Met Val Asp Ser Ser
 1025 1030 1035
 Cys Arg Ile Leu Thr Ser Asp Val Phe Gln Asp Cys Asn Lys Leu
 1040 1045 1050
 Val Asp Pro Glu Pro Tyr Leu Asp Val Cys Ile Tyr Asp Thr Cys
 1055 1060 1065
 Ser Cys Glu Ser Ile Gly Asp Cys Ala Cys Phe Cys Asp Thr Ile
 1070 1075 1080
 Ala Ala Tyr Ala His Val Cys Ala Gln His Gly Lys Val Val Thr
 1085 1090 1095
 Trp Arg Thr Ala Thr Leu Cys Pro Gln Ser Cys Glu Glu Arg Asn
 1100 1105 1110
 Leu Arg Glu Asn Gly Tyr Glu Cys Glu Trp Arg Tyr Asn Ser Cys
 1115 1120 1125
 Ala Pro Ala Cys Gln Val Thr Cys Gln His Pro Glu Pro Leu Ala
 1130 1135 1140
 Cys Pro Val Gln Cys Val Glu Gly Cys His Ala His Cys Pro Pro
 1145 1150 1155
 Gly Lys Ile Leu Asp Glu Leu Leu Gln Thr Cys Val Asp Pro Glu

-continued

1160	1165	1170
Asp Cys	Pro Val Cys	Glu Val Ala Gly Arg Arg Phe Ala Ser Gly
1175	1180	1185
Lys Lys	Val Thr Leu Asn Pro	Ser Asp Pro Glu His Cys Gln Ile
1190	1195	1200
Cys His	Cys Asp Val Val Asn	Leu Thr Cys Glu Ala Cys Gln Glu
1205	1210	1215
Pro Gly	Gly Leu Val Val Pro	Pro Thr Asp Ala Pro Val Ser Pro
1220	1225	1230
Thr Thr	Leu Tyr Val Glu Asp	Ile Ser Glu Pro Pro Leu His Asp
1235	1240	1245
Phe Tyr	Cys Ser Arg Leu Leu	Asp Leu Val Phe Leu Leu Asp Gly
1250	1255	1260
Ser Ser	Arg Leu Ser Glu Ala	Glu Phe Glu Val Leu Lys Ala Phe
1265	1270	1275
Val Val	Asp Met Met Glu Arg	Leu Arg Ile Ser Gln Lys Trp Val
1280	1285	1290
Arg Val	Ala Val Val Glu Tyr	His Asp Gly Ser His Ala Tyr Ile
1295	1300	1305
Gly Leu	Lys Asp Arg Lys Arg	Pro Ser Glu Leu Arg Arg Ile Ala
1310	1315	1320
Ser Gln	Val Lys Tyr Ala Gly	Ser Gln Val Ala Ser Thr Ser Glu
1325	1330	1335
Val Leu	Lys Tyr Thr Leu Phe	Gln Ile Phe Ser Lys Ile Asp Arg
1340	1345	1350
Pro Glu	Ala Ser Arg Ile Thr	Leu Leu Leu Met Ala Ser Gln Glu
1355	1360	1365
Pro Gln	Arg Met Ser Arg Asn	Phe Val Arg Tyr Val Gln Gly Leu
1370	1375	1380
Lys Lys	Lys Lys Val Ile Val	Ile Pro Val Gly Ile Gly Pro His
1385	1390	1395
Ala Asn	Leu Lys Gln Ile Arg	Leu Ile Glu Lys Gln Ala Pro Glu
1400	1405	1410
Asn Lys	Ala Phe Val Leu Ser	Ser Val Asp Glu Leu Glu Gln Gln
1415	1420	1425
Arg Asp	Glu Ile Val Ser Tyr	Leu Cys Asp Leu Ala Pro Glu Ala
1430	1435	1440
Pro Pro	Pro Thr Leu Pro Pro	Asp Met Ala Gln Val Thr Val Gly
1445	1450	1455
Pro Gly	Leu Leu Gly Val Ser	Thr Leu Gly Pro Lys Arg Asn Ser
1460	1465	1470
Met Val	Leu Asp Val Ala Phe	Val Leu Glu Gly Ser Asp Lys Ile
1475	1480	1485
Gly Glu	Ala Asp Phe Asn Arg	Ser Lys Glu Phe Met Glu Glu Val
1490	1495	1500
Ile Gln	Arg Met Asp Val Gly	Gln Asp Ser Ile His Val Thr Val
1505	1510	1515
Leu Gln	Tyr Ser Tyr Met Val	Thr Val Glu Tyr Pro Phe Ser Glu
1520	1525	1530
Ala Gln	Ser Lys Gly Asp Ile	Leu Gln Arg Val Arg Glu Ile Arg
1535	1540	1545

-continued

Tyr Gln Gly Gly Asn Arg Thr Asn Thr Gly Leu Ala Leu Arg Tyr
 1550 1555 1560
 Leu Ser Asp His Ser Phe Leu Val Ser Gln Gly Asp Arg Glu Gln
 1565 1570 1575
 Ala Pro Asn Leu Val Tyr Met Val Thr Gly Asn Pro Ala Ser Asp
 1580 1585 1590
 Glu Ile Lys Arg Leu Pro Gly Asp Ile Gln Val Val Pro Ile Gly
 1595 1600 1605
 Val Gly Pro Asn Ala Asn Val Gln Glu Leu Glu Arg Ile Gly Trp
 1610 1615 1620
 Pro Asn Ala Pro Ile Leu Ile Gln Asp Phe Glu Thr Leu Pro Arg
 1625 1630 1635
 Glu Ala Pro Asp Leu Val Leu Gln Arg Cys Cys Ser Gly Glu Gly
 1640 1645 1650
 Leu Gln Ile Pro Thr Leu Ser Pro Ala Pro Asp Cys Ser Gln Pro
 1655 1660 1665
 Leu Asp Val Ile Leu Leu Asp Gly Ser Ser Ser Phe Pro Ala
 1670 1675 1680
 Ser Tyr Phe Asp Glu Met Lys Ser Phe Ala Lys Ala Phe Ile Ser
 1685 1690 1695
 Lys Ala Asn Ile Gly Pro Arg Leu Thr Gln Val Ser Val Leu Gln
 1700 1705 1710
 Tyr Gly Ser Ile Thr Thr Ile Asp Val Pro Trp Asn Val Val Pro
 1715 1720 1725
 Glu Lys Ala His Leu Leu Ser Leu Val Asp Val Met Gln Arg Glu
 1730 1735 1740
 Gly Gly Pro Ser Gln Ile Gly Asp Ala Leu Gly Phe Ala Val Arg
 1745 1750 1755
 Tyr Leu Thr Ser Glu Met His Gly Ala Arg Pro Gly Ala Ser Lys
 1760 1765 1770
 Ala Val Val Ile Leu Val Thr Asp Val Ser Val Asp Ser Val Asp
 1775 1780 1785
 Ala Ala Ala Asp Ala Ala Arg Ser Asn Arg Val Thr Val Phe Pro
 1790 1795 1800
 Ile Gly Ile Gly Asp Arg Tyr Asp Ala Ala Gln Leu Arg Ile Leu
 1805 1810 1815
 Ala Gly Pro Ala Gly Asp Ser Asn Val Val Lys Leu Gln Arg Ile
 1820 1825 1830
 Glu Asp Leu Pro Thr Met Val Thr Leu Gly Asn Ser Phe Leu His
 1835 1840 1845
 Lys Leu Cys Ser Gly Phe Val Arg Ile Cys Met Asp Glu Asp Gly
 1850 1855 1860
 Asn Glu Lys Arg Pro Gly Asp Val Trp Thr Leu Pro Asp Gln Cys
 1865 1870 1875
 His Thr Val Thr Cys Gln Pro Asp Gly Gln Thr Leu Leu Lys Ser
 1880 1885 1890
 His Arg Val Asn Cys Asp Arg Gly Leu Arg Pro Ser Cys Pro Asn
 1895 1900 1905
 Ser Gln Ser Pro Val Lys Val Glu Glu Thr Cys Gly Cys Arg Trp
 1910 1915 1920

-continued

Thr Cys Pro Cys Val Cys Thr Gly Ser Ser Thr Arg His Ile Val
 1925 1930 1935
 Thr Phe Asp Gly Gln Asn Phe Lys Leu Thr Gly Ser Cys Ser Tyr
 1940 1945 1950
 Val Leu Phe Gln Asn Lys Glu Gln Asp Leu Glu Val Ile Leu His
 1955 1960 1965
 Asn Gly Ala Cys Ser Pro Gly Ala Arg Gln Gly Cys Met Lys Ser
 1970 1975 1980
 Ile Glu Val Lys His Ser Ala Leu Ser Val Glu Leu His Ser Asp
 1985 1990 1995
 Met Glu Val Thr Val Asn Gly Arg Leu Val Ser Val Pro Tyr Val
 2000 2005 2010
 Gly Gly Asn Met Glu Val Asn Val Tyr Gly Ala Ile Met His Glu
 2015 2020 2025
 Val Arg Phe Asn His Leu Gly His Ile Phe Thr Phe Thr Pro Gln
 2030 2035 2040
 Asn Asn Glu Phe Gln Leu Gln Leu Ser Pro Lys Thr Phe Ala Ser
 2045 2050 2055
 Lys Thr Tyr Gly Leu Cys Gly Ile Cys Asp Glu Asn Gly Ala Asn
 2060 2065 2070
 Asp Phe Met Leu Arg Asp Gly Thr Val Thr Thr Asp Trp Lys Thr
 2075 2080 2085
 Leu Val Gln Glu Trp Thr Val Gln Arg Pro Gly Gln Thr Cys Gln
 2090 2095 2100
 Pro Glu Gln Cys Leu Val Pro Asp Ser Ser His Cys Gln Val Leu
 2105 2110 2115
 Leu Leu Pro Leu Phe Ala Glu Cys His Lys Val Leu Ala Pro Ala
 2120 2125 2130
 Thr Phe Tyr Ala Ile Cys Gln Gln Asp Ser Cys His Gln Glu Gln
 2135 2140 2145
 Val Cys Glu Val Ile Ala Ser Tyr Ala His Leu Cys Arg Thr Asn
 2150 2155 2160
 Gly Val Cys Val Asp Trp Arg Thr Pro Asp Phe Cys Ala Met Ser
 2165 2170 2175
 Cys Pro Pro Ser Leu Val Tyr Asn His Cys Glu His Gly Cys Pro
 2180 2185 2190
 Arg His Cys Asp Gly Asn Val Ser Ser Cys Gly Asp His Pro Ser
 2195 2200 2205
 Glu Gly Cys Phe Cys Pro Pro Asp Lys Val Met Leu Glu Gly Ser
 2210 2215 2220
 Cys Val Pro Glu Glu Ala Cys Thr Gln Cys Ile Gly Glu Asp Gly
 2225 2230 2235
 Val Gln His Gln Phe Leu Glu Ala Trp Val Pro Asp His Gln Pro
 2240 2245 2250
 Cys Gln Ile Cys Thr Cys Leu Ser Gly Arg Lys Val Asn Cys Thr
 2255 2260 2265
 Thr Gln Pro Cys Pro Thr Ala Lys Ala Pro Thr Cys Gly Leu Cys
 2270 2275 2280
 Glu Val Ala Arg Leu Arg Gln Asn Ala Asp Gln Cys Cys Pro Glu
 2285 2290 2295
 Tyr Glu Cys Val Cys Asp Pro Val Ser Cys Asp Leu Pro Pro Val

-continued

2300	2305	2310
Pro His	Cys Glu Arg Gly Leu	Gln Pro Thr Leu Thr Asn Pro Gly
2315	2320	2325
Glu Cys	Arg Pro Asn Phe Thr	Cys Ala Cys Arg Lys Glu Glu Cys
2330	2335	2340
Lys Arg	Val Ser Pro Pro Ser	Cys Pro Pro His Arg Leu Pro Thr
2345	2350	2355
Leu Arg	Lys Thr Gln Cys Cys	Asp Glu Tyr Glu Cys Ala Cys Asn
2360	2365	2370
Cys Val	Asn Ser Thr Val Ser	Cys Pro Leu Gly Tyr Leu Ala Ser
2375	2380	2385
Thr Ala	Thr Asn Asp Cys Gly	Cys Thr Thr Thr Cys Leu Pro
2390	2395	2400
Asp Lys	Val Cys Val His Arg	Ser Thr Ile Tyr Pro Val Gly Gln
2405	2410	2415
Phe Trp	Glu Glu Gly Cys Asp	Val Cys Thr Cys Thr Asp Met Glu
2420	2425	2430
Asp Ala	Val Met Gly Leu Arg	Val Ala Gln Cys Ser Gln Lys Pro
2435	2440	2445
Cys Glu	Asp Ser Cys Arg Ser	Gly Phe Thr Tyr Val Leu His Glu
2450	2455	2460
Gly Glu	Cys Cys Gly Arg Cys	Leu Pro Ser Ala Cys Glu Val Val
2465	2470	2475
Thr Gly	Ser Pro Arg Gly Asp	Ser Gln Ser Ser Trp Lys Ser Val
2480	2485	2490
Gly Ser	Gln Trp Glu Asn Pro	Cys Leu Ile Asn Glu Cys Val Arg
2495	2500	2505
Val Lys	Glu Glu Val Phe Ile	Gln Gln Arg Asn Val Ser Cys Pro
2510	2515	2520
Gln Leu	Glu Val Pro Val Cys	Pro Ser Gly Phe Gln Leu Ser Cys
2525	2530	2535
Lys Thr	Ser Ala Cys Cys Pro	Ser Cys Arg Cys Glu Arg Met Glu
2540	2545	2550
Ala Cys	Met Leu Asn Gly Thr	Val Ile Gly Pro Gly Lys Thr Val
2555	2560	2565
Met Ile	Asp Val Cys Thr Thr	Cys Arg Cys Met Val Gln Val Gly
2570	2575	2580
Val Ile	Ser Gly Phe Lys Leu	Glu Cys Arg Lys Thr Thr Cys Asn
2585	2590	2595
Pro Cys	Pro Leu Gly Tyr Lys	Glu Glu Asn Asn Thr Gly Glu Cys
2600	2605	2610
Cys Gly	Arg Cys Leu Pro Thr	Ala Cys Thr Ile Gln Leu Arg Gly
2615	2620	2625
Gly Gln	Ile Met Thr Leu Lys	Arg Asp Glu Thr Leu Gln Asp Gly
2630	2635	2640
Cys Asp	Thr His Phe Cys Lys	Val Asn Glu Arg Gly Glu Tyr Phe
2645	2650	2655
Trp Glu	Lys Arg Val Thr Gly	Cys Pro Pro Phe Asp Glu His Lys
2660	2665	2670
Cys Leu	Ala Glu Gly Gly Lys	Ile Met Lys Ile Pro Gly Thr Cys
2675	2680	2685

-continued

Cys Asp Thr Cys Glu Glu Pro Glu Cys Asn Asp Ile Thr Ala Arg
 2690 2695 2700

Leu Gln Tyr Val Lys Val Gly Ser Cys Lys Ser Glu Val Glu Val
 2705 2710 2715

Asp Ile His Tyr Cys Gln Gly Lys Cys Ala Ser Lys Ala Met Tyr
 2720 2725 2730

Ser Ile Asp Ile Asn Asp Val Gln Asp Gln Cys Ser Cys Cys Ser
 2735 2740 2745

Pro Thr Arg Thr Glu Pro Met Gln His Cys Thr Asn Gly Ser Val
 2750 2755 2760

Val Tyr His Glu Val Leu Asn Ala Met Glu Cys Lys Cys Ser Pro
 2765 2770 2775

Arg Lys Cys Ser Lys
 2780

<210> SEQ ID NO 3
 <211> LENGTH: 2050
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthetic Polypeptide
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <223> OTHER INFORMATION: mature vWF

<400> SEQUENCE: 3

Ser Leu Ser Cys Arg Pro Pro Met Val Lys Leu Val Cys Pro Ala Asp
 1 5 10 15

Asn Leu Arg Ala Glu Gly Leu Glu Cys Thr Lys Thr Cys Gln Asn Tyr
 20 25 30

Asp Leu Glu Cys Met Ser Met Gly Cys Val Ser Gly Cys Leu Cys Pro
 35 40 45

Pro Gly Met Val Arg His Glu Asn Arg Cys Val Ala Leu Glu Arg Cys
 50 55 60

Pro Cys Phe His Gln Gly Lys Glu Tyr Ala Pro Gly Glu Thr Val Lys
 65 70 75 80

Ile Gly Cys Asn Thr Cys Val Cys Arg Asp Arg Lys Trp Asn Cys Thr
 85 90 95

Asp His Val Cys Asp Ala Thr Cys Ser Thr Ile Gly Met Ala His Tyr
 100 105 110

Leu Thr Phe Asp Gly Leu Lys Tyr Leu Phe Pro Gly Glu Cys Gln Tyr
 115 120 125

Val Leu Val Gln Asp Tyr Cys Gly Ser Asn Pro Gly Thr Phe Arg Ile
 130 135 140

Leu Val Gly Asn Lys Gly Cys Ser His Pro Ser Val Lys Cys Lys Lys
 145 150 155 160

Arg Val Thr Ile Leu Val Glu Gly Glu Ile Glu Leu Phe Asp Gly
 165 170 175

Glu Val Asn Val Lys Arg Pro Met Lys Asp Glu Thr His Phe Glu Val
 180 185 190

Val Glu Ser Gly Arg Tyr Ile Ile Leu Leu Leu Gly Lys Ala Leu Ser
 195 200 205

Val Val Trp Asp Arg His Leu Ser Ile Ser Val Val Leu Lys Gln Thr
 210 215 220

-continued

Tyr Gln Glu Lys Val Cys Gly Leu Cys Gly Asn Phe Asp Gly Ile Gln
 225 230 235 240
 Asn Asn Asp Leu Thr Ser Ser Asn Leu Gln Val Glu Glu Asp Pro Val
 245 250 255
 Asp Phe Gly Asn Ser Trp Lys Val Ser Ser Gln Cys Ala Asp Thr Arg
 260 265 270
 Lys Val Pro Leu Asp Ser Ser Pro Ala Thr Cys His Asn Asn Ile Met
 275 280 285
 Lys Gln Thr Met Val Asp Ser Ser Cys Arg Ile Leu Thr Ser Asp Val
 290 295 300
 Phe Gln Asp Cys Asn Lys Leu Val Asp Pro Glu Pro Tyr Leu Asp Val
 305 310 315 320
 Cys Ile Tyr Asp Thr Cys Ser Cys Glu Ser Ile Gly Asp Cys Ala Cys
 325 330 335
 Phe Cys Asp Thr Ile Ala Ala Tyr Ala His Val Cys Ala Gln His Gly
 340 345 350
 Lys Val Val Thr Trp Arg Thr Ala Thr Leu Cys Pro Gln Ser Cys Glu
 355 360 365
 Glu Arg Asn Leu Arg Glu Asn Gly Tyr Glu Cys Glu Trp Arg Tyr Asn
 370 375 380
 Ser Cys Ala Pro Ala Cys Gln Val Thr Cys Gln His Pro Glu Pro Leu
 385 390 395 400
 Ala Cys Pro Val Gln Cys Val Glu Gly Cys His Ala His Cys Pro Pro
 405 410 415
 Gly Lys Ile Leu Asp Glu Leu Leu Gln Thr Cys Val Asp Pro Glu Asp
 420 425 430
 Cys Pro Val Cys Glu Val Ala Gly Arg Arg Phe Ala Ser Gly Lys Lys
 435 440 445
 Val Thr Leu Asn Pro Ser Asp Pro Glu His Cys Gln Ile Cys His Cys
 450 455 460
 Asp Val Val Asn Leu Thr Cys Glu Ala Cys Gln Glu Pro Gly Gly Leu
 465 470 475 480
 Val Val Pro Pro Thr Asp Ala Pro Val Ser Pro Thr Thr Leu Tyr Val
 485 490 495
 Glu Asp Ile Ser Glu Pro Pro Leu His Asp Phe Tyr Cys Ser Arg Leu
 500 505 510
 Leu Asp Leu Val Phe Leu Leu Asp Gly Ser Ser Arg Leu Ser Glu Ala
 515 520 525
 Glu Phe Glu Val Leu Lys Ala Phe Val Val Asp Met Met Glu Arg Leu
 530 535 540
 Arg Ile Ser Gln Lys Trp Val Arg Val Ala Val Val Glu Tyr His Asp
 545 550 555 560
 Gly Ser His Ala Tyr Ile Gly Leu Lys Asp Arg Lys Arg Pro Ser Glu
 565 570 575
 Leu Arg Arg Ile Ala Ser Gln Val Lys Tyr Ala Gly Ser Gln Val Ala
 580 585 590
 Ser Thr Ser Glu Val Leu Lys Tyr Thr Leu Phe Gln Ile Phe Ser Lys
 595 600 605
 Ile Asp Arg Pro Glu Ala Ser Arg Ile Thr Leu Leu Leu Met Ala Ser
 610 615 620

-continued

Gln Glu Pro Gln Arg Met Ser Arg Asn Phe Val Arg Tyr Val Gln Gly
 625 630 635 640
 Leu Lys Lys Lys Lys Val Ile Val Ile Pro Val Gly Ile Gly Pro His
 645 650 655
 Ala Asn Leu Lys Gln Ile Arg Leu Ile Glu Lys Gln Ala Pro Glu Asn
 660 665 670
 Lys Ala Phe Val Leu Ser Ser Val Asp Glu Leu Glu Gln Gln Arg Asp
 675 680 685
 Glu Ile Val Ser Tyr Leu Cys Asp Leu Ala Pro Glu Ala Pro Pro Pro
 690 695 700
 Thr Leu Pro Pro Asp Met Ala Gln Val Thr Val Gly Pro Gly Leu Leu
 705 710 715 720
 Gly Val Ser Thr Leu Gly Pro Lys Arg Asn Ser Met Val Leu Asp Val
 725 730 735
 Ala Phe Val Leu Glu Gly Ser Asp Lys Ile Gly Glu Ala Asp Phe Asn
 740 745 750
 Arg Ser Lys Glu Phe Met Glu Glu Val Ile Gln Arg Met Asp Val Gly
 755 760 765
 Gln Asp Ser Ile His Val Thr Val Leu Gln Tyr Ser Tyr Met Val Thr
 770 775 780
 Val Glu Tyr Pro Phe Ser Glu Ala Gln Ser Lys Gly Asp Ile Leu Gln
 785 790 795 800
 Arg Val Arg Glu Ile Arg Tyr Gln Gly Gly Asn Arg Thr Asn Thr Gly
 805 810 815
 Leu Ala Leu Arg Tyr Leu Ser Asp His Ser Phe Leu Val Ser Gln Gly
 820 825 830
 Asp Arg Glu Gln Ala Pro Asn Leu Val Tyr Met Val Thr Gly Asn Pro
 835 840 845
 Ala Ser Asp Glu Ile Lys Arg Leu Pro Gly Asp Ile Gln Val Val Pro
 850 855 860
 Ile Gly Val Gly Pro Asn Ala Asn Val Gln Glu Leu Glu Arg Ile Gly
 865 870 875 880
 Trp Pro Asn Ala Pro Ile Leu Ile Gln Asp Phe Glu Thr Leu Pro Arg
 885 890 895
 Glu Ala Pro Asp Leu Val Leu Gln Arg Cys Cys Ser Gly Glu Gly Leu
 900 905 910
 Gln Ile Pro Thr Leu Ser Pro Ala Pro Asp Cys Ser Gln Pro Leu Asp
 915 920 925
 Val Ile Leu Leu Asp Gly Ser Ser Ser Phe Pro Ala Ser Tyr Phe
 930 935 940
 Asp Glu Met Lys Ser Phe Ala Lys Ala Phe Ile Ser Lys Ala Asn Ile
 945 950 955 960
 Gly Pro Arg Leu Thr Gln Val Ser Val Leu Gln Tyr Gly Ser Ile Thr
 965 970 975
 Thr Ile Asp Val Pro Trp Asn Val Val Pro Glu Lys Ala His Leu Leu
 980 985 990
 Ser Leu Val Asp Val Met Gln Arg Glu Gly Gly Pro Ser Gln Ile Gly
 995 1000 1005
 Asp Ala Leu Gly Phe Ala Val Arg Tyr Leu Thr Ser Glu Met His
 1010 1015 1020
 Gly Ala Arg Pro Gly Ala Ser Lys Ala Val Val Ile Leu Val Thr

-continued

1025	1030	1035	
Asp Val	Ser Val Asp	Ser Val Asp Ala Ala Ala Asp	Ala Ala Arg
1040	1045	1050	
Ser Asn	Arg Val Thr Val Phe	Pro Ile Gly Ile Gly	Asp Arg Tyr
1055	1060	1065	
Asp Ala	Ala Gln Leu Arg Ile	Leu Ala Gly Pro Ala	Gly Asp Ser
1070	1075	1080	
Asn Val	Val Lys Leu Gln Arg	Ile Glu Asp Leu Pro	Thr Met Val
1085	1090	1095	
Thr Leu	Gly Asn Ser Phe Leu	His Lys Leu Cys Ser	Gly Phe Val
1100	1105	1110	
Arg Ile	Cys Met Asp Glu Asp	Gly Asn Glu Lys Arg	Pro Gly Asp
1115	1120	1125	
Val Trp	Thr Leu Pro Asp Gln	Cys His Thr Val Thr	Cys Gln Pro
1130	1135	1140	
Asp Gly	Gln Thr Leu Leu Lys	Ser His Arg Val Asn	Cys Asp Arg
1145	1150	1155	
Gly Leu	Arg Pro Ser Cys Pro	Asn Ser Gln Ser Pro	Val Lys Val
1160	1165	1170	
Glu Glu	Thr Cys Gly Cys Arg	Trp Thr Cys Pro Cys	Val Cys Thr
1175	1180	1185	
Gly Ser	Ser Thr Arg His Ile	Val Thr Phe Asp Gly	Gln Asn Phe
1190	1195	1200	
Lys Leu	Thr Gly Ser Cys Ser	Tyr Val Leu Phe Gln	Asn Lys Glu
1205	1210	1215	
Gln Asp	Leu Glu Val Ile Leu	His Asn Gly Ala Cys	Ser Pro Gly
1220	1225	1230	
Ala Arg	Gln Gly Cys Met Lys	Ser Ile Glu Val Lys	His Ser Ala
1235	1240	1245	
Leu Ser	Val Glu Leu His Ser	Asp Met Glu Val Thr	Val Asn Gly
1250	1255	1260	
Arg Leu	Val Ser Val Pro Tyr	Val Gly Gly Asn Met	Glu Val Asn
1265	1270	1275	
Val Tyr	Gly Ala Ile Met His	Glu Val Arg Phe Asn	His Leu Gly
1280	1285	1290	
His Ile	Phe Thr Phe Thr Pro	Gln Asn Asn Glu Phe	Gln Leu Gln
1295	1300	1305	
Leu Ser	Pro Lys Thr Phe Ala	Ser Lys Thr Tyr Gly	Leu Cys Gly
1310	1315	1320	
Ile Cys	Asp Glu Asn Gly Ala	Asn Asp Phe Met Leu	Arg Asp Gly
1325	1330	1335	
Thr Val	Thr Thr Asp Trp Lys	Thr Leu Val Gln Glu	Trp Thr Val
1340	1345	1350	
Gln Arg	Pro Gly Gln Thr Cys	Gln Pro Ile Leu Glu	Glu Gln Cys
1355	1360	1365	
Leu Val	Pro Asp Ser Ser His	Cys Gln Val Leu Leu	Leu Pro Leu
1370	1375	1380	
Phe Ala	Glu Cys His Lys Val	Leu Ala Pro Ala Thr	Phe Tyr Ala
1385	1390	1395	
Ile Cys	Gln Gln Asp Ser Cys	His Gln Glu Gln Val	Cys Glu Val
1400	1405	1410	

-continued

Ile Ala Ser Tyr Ala His Leu Cys Arg Thr Asn Gly Val Cys Val
 1415 1420 1425
 Asp Trp Arg Thr Pro Asp Phe Cys Ala Met Ser Cys Pro Pro Ser
 1430 1435 1440
 Leu Val Tyr Asn His Cys Glu His Gly Cys Pro Arg His Cys Asp
 1445 1450 1455
 Gly Asn Val Ser Ser Cys Gly Asp His Pro Ser Glu Gly Cys Phe
 1460 1465 1470
 Cys Pro Pro Asp Lys Val Met Leu Glu Gly Ser Cys Val Pro Glu
 1475 1480 1485
 Glu Ala Cys Thr Gln Cys Ile Gly Glu Asp Gly Val Gln His Gln
 1490 1495 1500
 Phe Leu Glu Ala Trp Val Pro Asp His Gln Pro Cys Gln Ile Cys
 1505 1510 1515
 Thr Cys Leu Ser Gly Arg Lys Val Asn Cys Thr Thr Gln Pro Cys
 1520 1525 1530
 Pro Thr Ala Lys Ala Pro Thr Cys Gly Leu Cys Glu Val Ala Arg
 1535 1540 1545
 Leu Arg Gln Asn Ala Asp Gln Cys Cys Pro Glu Tyr Glu Cys Val
 1550 1555 1560
 Cys Asp Pro Val Ser Cys Asp Leu Pro Pro Val Pro His Cys Glu
 1565 1570 1575
 Arg Gly Leu Gln Pro Thr Leu Thr Asn Pro Gly Glu Cys Arg Pro
 1580 1585 1590
 Asn Phe Thr Cys Ala Cys Arg Lys Glu Glu Cys Lys Arg Val Ser
 1595 1600 1605
 Pro Pro Ser Cys Pro Pro His Arg Leu Pro Thr Leu Arg Lys Thr
 1610 1615 1620
 Gln Cys Cys Asp Glu Tyr Glu Cys Ala Cys Asn Cys Val Asn Ser
 1625 1630 1635
 Thr Val Ser Cys Pro Leu Gly Tyr Leu Ala Ser Thr Ala Thr Asn
 1640 1645 1650
 Asp Cys Gly Cys Thr Thr Thr Cys Leu Pro Asp Lys Val Cys
 1655 1660 1665
 Val His Arg Ser Thr Ile Tyr Pro Val Gly Gln Phe Trp Glu Glu
 1670 1675 1680
 Gly Cys Asp Val Cys Thr Cys Thr Asp Met Glu Asp Ala Val Met
 1685 1690 1695
 Gly Leu Arg Val Ala Gln Cys Ser Gln Lys Pro Cys Glu Asp Ser
 1700 1705 1710
 Cys Arg Ser Gly Phe Thr Tyr Val Leu His Glu Gly Glu Cys Cys
 1715 1720 1725
 Gly Arg Cys Leu Pro Ser Ala Cys Glu Val Val Thr Gly Ser Pro
 1730 1735 1740
 Arg Gly Asp Ser Gln Ser Ser Trp Lys Ser Val Gly Ser Gln Trp
 1745 1750 1755
 Ala Ser Pro Glu Asn Pro Cys Leu Ile Asn Glu Cys Val Arg Val
 1760 1765 1770
 Lys Glu Glu Val Phe Ile Gln Gln Arg Asn Val Ser Cys Pro Gln
 1775 1780 1785

-continued

Leu	Glu	Val	Pro	Val	Cys	Pro	Ser	Gly	Phe	Gln	Leu	Ser	Cys	Lys
1790				1795						1800				
Thr	Ser	Ala	Cys	Cys	Pro	Ser	Cys	Arg	Cys	Glu	Arg	Met	Glu	Ala
1805				1810						1815				
Cys	Met	Leu	Asn	Gly	Thr	Val	Ile	Gly	Pro	Gly	Lys	Thr	Val	Met
1820				1825						1830				
Ile	Asp	Val	Cys	Thr	Thr	Cys	Arg	Cys	Met	Val	Gln	Val	Gly	Val
1835				1840						1845				
Ile	Ser	Gly	Phe	Lys	Leu	Glu	Cys	Arg	Lys	Thr	Thr	Cys	Asn	Pro
1850				1855						1860				
Cys	Pro	Leu	Gly	Tyr	Lys	Glu	Glu	Asn	Asn	Thr	Gly	Glu	Cys	Cys
1865				1870						1875				
Gly	Arg	Cys	Leu	Pro	Thr	Ala	Cys	Thr	Ile	Gln	Leu	Arg	Gly	Gly
1880				1885						1890				
Gln	Ile	Met	Thr	Leu	Lys	Arg	Asp	Glu	Thr	Leu	Gln	Asp	Gly	Cys
1895				1900						1905				
Asp	Thr	His	Phe	Cys	Lys	Val	Asn	Glu	Arg	Gly	Glu	Tyr	Phe	Trp
1910				1915						1920				
Glu	Lys	Arg	Val	Thr	Gly	Cys	Pro	Pro	Phe	Asp	Glu	His	Lys	Cys
1925				1930						1935				
Leu	Ala	Glu	Gly	Gly	Lys	Ile	Met	Lys	Ile	Pro	Gly	Thr	Cys	Cys
1940				1945						1950				
Asp	Thr	Cys	Glu	Glu	Pro	Glu	Cys	Asn	Asp	Ile	Thr	Ala	Arg	Leu
1955				1960						1965				
Gln	Tyr	Val	Lys	Val	Gly	Ser	Cys	Lys	Ser	Glu	Val	Glu	Val	Asp
1970				1975						1980				
Ile	His	Tyr	Cys	Gln	Gly	Lys	Cys	Ala	Ser	Lys	Ala	Met	Tyr	Ser
1985				1990						1995				
Ile	Asp	Ile	Asn	Asp	Val	Gln	Asp	Gln	Cys	Ser	Cys	Cys	Ser	Pro
2000				2005						2010				
Thr	Arg	Thr	Glu	Pro	Met	Gln	Val	Ala	Leu	His	Cys	Thr	Asn	Gly
2015				2020						2025				
Ser	Val	Val	Tyr	His	Glu	Val	Leu	Asn	Ala	Met	Glu	Cys	Lys	Cys
2030				2035						2040				
Ser	Pro	Arg	Lys	Cys	Ser	Lys								
2045				2050										

What is claimed is:

1. A stable liquid pharmaceutical formulation of a recombinant von Willebrand Factor (rVWF) comprising: (a) a rVWF; (b) a buffering agent; (c) one or more salts; (d) optionally a stabilizing agent; and (e) optionally a surfactant; wherein said rVWF comprises a polypeptide selected from the group consisting of:
 - a) the amino acid sequence set out in SEQ ID NO: 3;
 - b) a biologically active analog, fragment or variant of a);
 - c) a polypeptide encoded by the polynucleotide set out in SEQ ID NO: 1;
 - d) a biologically active analog, fragment or variant of c); and
 - e) a polypeptide encoded by a polynucleotide that hybridizes to the polynucleotide set out in SEQ ID NO: 1 under moderately stringent hybridization conditions;

wherein said buffer is comprised of a pH buffering agent in a range of about 0.1 mM to about 500 mM and wherein the pH is in a range of about 2.0 to about 12.0; wherein said salt is at a concentration of about 1 to 500 mM;

wherein said stabilizing agent is at a concentration of about 0.1 to 1000 mM; and

wherein said surfactant is at a concentration of about 0.01 g/L to 0.5 g/L.

2. The formulation of claim 1 wherein the rVWF comprises the amino acid sequence set out in SEQ ID NO: 3.

3. The formulation of claim 1 wherein the buffering agent is selected from the group consisting of sodium citrate, glycine, histidine, Tris and combinations of these agents.

4. The formulation of claim 3 wherein the buffering agent is sodium citrate at a concentration of 15 mM.

5. The formulation of claim 1 wherein pH is in the range of 6.0-8.0.

6. The formulation of claim 5 wherein pH is in the range of 6.5-7.3.

7. The formulation of claim 4 wherein the pH is 7.0.

8. The formulation of claim 1 wherein the buffering agent is citrate and the pH is 7.0.

9. The formulation of claim 1 wherein the salt is selected from the group consisting of calcium chloride, sodium chloride and magnesium chloride.

10. The formulation of claim 9 wherein the salt is at a concentration range of 0.5 to 300 mM.

11. The formulation of claim 10 wherein the salt is calcium chloride at a concentration of 10 mM.

12. The formulation of claim 1 wherein the rVWF comprises the amino acid sequence set out in SEQ ID NO: 3; wherein the buffering agent is citrate and the pH is 7.0; and wherein the salt is calcium chloride at a concentration of 10 mM.

13. The formulation of claim 1 wherein the rVWF comprises the amino acid sequence set out in SEQ ID NO: 3; wherein the buffering agent is sodium citrate at a concentration of 15 mM and the pH is 7.0; and wherein the salt is calcium chloride at a concentration of 10 mM and NaCl at a concentration of 100 mM.

14. The formulation of claim 3 wherein the one or more buffering agents is histidine and Tris at a concentration of 3.3 mM each.

15. The formulation of claim 3 wherein the pH is 7.0.

16. The formulation of claim 9 wherein the one or more salts is sodium chloride at a concentration of 30 mM and calcium chloride at a concentration of 0.56 mM.

17. The formulation of claim 1 wherein the stabilizing agent is selected from the group consisting of mannitol, lactose, sorbitol, xylitol, sucrose, trehalose, mannose, maltose, lactose, glucose, raffinose, cellobiose, gentiobiose, isomaltose, arabinose, glucosamine, fructose and combinations of these stabilizing agents.

18. The formulation of claim 17 wherein the stabilizing agents are trehalose at a concentration of 7.8 mM and mannitol at a concentration of 58.6 mM.

19. The formulation of claim 1 wherein the surfactant is selected from the group consisting of digitonin, Triton X-100, Triton X-114, TWEEN-20, TWEEN-80 and combinations of these surfactants.

20. The formulation of claim 1 wherein the surfactant is TWEEN-80 at 0.03 g/L.

21. The formulation of claim 1 wherein the rVWF comprises amino acid sequence set out in SEQ ID NO: 3; wherein the buffering agents are histidine at a concentration of 3.3 mM and Tris at a concentration of 3.3 mM at pH 7.0; wherein the salts are sodium chloride at a concentration of 30 mM and calcium chloride at a concentration of 0.56 mM; wherein the stabilizing agents are trehalose at a concentration of 7.8 mM and mannitol at a concentration of 58.6 mM; and wherein the surfactant is TWEEN-80 at 0.03 g/L.

* * * * *