
(19) United States
US 20100042603A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0042603 A1
Smyros et al. (43) Pub. Date: Feb. 18, 2010

(54) SYSTEMS AND METHODS FOR SEARCHING
AN INDEX

(76) Inventors: Athena A. Smyros, Gunter, TX
(US); Constantine Smyros, Gunter,
TX (US)

Correspondence Address:
FULBRIGHT & UAWORSK LLP
2200 ROSS AVENUE, SUITE 2800
DALLAS, TX 75201-2784 (US)

(21) Appl. No.: 12/192,834

(22) Filed: Aug. 15, 2008

Publication Classification

(51) Int. Cl.
G06F 7/06 (2006.01)
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/4; 707/E17.014
(57) ABSTRACT

Embodiments of the invention form an information set from
the current set of index information available by the opera
tions of the pre-search and runtime Search components of the
search engine. A search request that contains search terms
and/or other search criteria (e.g. date or file type) is entered by
a user through an input interface. The search terms and the
information set are worked through the search engine mod
ules to provide the actual results sought by the user. These
results are provided to the user via an output interface.
Embodiments involve converting a search request into a for
mat of an index of documents, and then comparing the con
Verted search request and the index for matches.

105

INPUT
INTERFACE 103

---- -- - - - - - - - - - - - - - -
REAL TIME SEARCH -

114

116

l l FTER

-

T RUNTIME sarcHT
DUPLICATE |

111 BLOCKER
PROCESSOR

(- - | 112 SEARCHER 120

|
-
7 - - - - - - - - - - - - al

102 POST SEARCH

RETURNER 104- 122
- - - - - - - - - - - - -

Patent Application Publication Feb. 18, 2010 Sheet 1 of 7 US 2010/0042603 A1

105

INPUT

INTERFACE g
- REALTIME SEARCH

114

- RUN-TIME SEARCH -

DUPLICATE
111 BLOCKER

TOPICAL (- -
112 SEARCHER

- -, - - - - - - - - - - - - - - - - - - -

102 TTPost search TTT

104- 122
- - - - - - - - - - - - -

Patent Application Publication Feb. 18, 2010 Sheet 2 of 7 US 2010/0042603 A1

FROMFORMATTER
OUTPUT 108

FORMATTER LIST

SET MEMBER
VARIABLES

WRITTENTO INDEX

ASSIGNEACH TU
A WINDEXVALUE

CALCULATE POST
ATTRIBUTES

TORUN-TIME
MODULE 103

OPTIONAL SU AND
GROUP WARIABLES
WRITTENTO INDEX

FIG. 2

GRAMMAR
DEPENDENT

Patent Application Publication Feb. 18, 2010 Sheet 3 of 7 US 2010/0042603 A1

FIG. 3
300

SULAYER A1

GRAMMAR GROUPLAYER

INDEPENDENT SetMLAYER INDEXABLE

SECTION LAYER

FL LAYER

STLAYER

PBLAYER

TULAYER

NON-INDEXABLE

INDEXABLE

401 402

HIERARCHAL
TOPIC LIST

DOC-1

INTRA-DOC-1
t-FETCH

OPERATION

INTER-DOC
t-FETCH

OPERATION

INTRA-DOC-2
t-FETCH

OPERATION

INTRA-DOC-n
t-FETCH

OPERATION

NON-HERARCHA
TOPIC LIST DOC-1

406
FIG. 4 400

Patent Application Publication Feb. 18, 2010 Sheet 4 of 7 US 2010/0042603 A1

500 FIG. 5

SPTFIRE
The Precise information Locator

Input Screen - Standard Mode-PartA

You're in Standard Mode. To go to Expert Mode, click here

Search Within a Topic
(Click on a letter)

Or

Specify: O Date (Optional) or G File Type (Optional)

Enter Term (and click to locate information)

SPITFIRE
The Precise information Locator

input Screen-Standard Mode-Part B

You're in Standard Mode. To go to Expert Mode, click

A B C DEFGHIJKLMNOPQRSTUVW XYZ
w

Topic (Click on a term to locate more information)
Or

Click to return to previous screen

Patent Application Publication Feb. 18, 2010 Sheet 5 of 7 US 2010/0042603 A1

SPTFIRE
The Precise information Locator

input Screen - Expert Mode

You're in Expert Mode. To go to Standard Mode, click

Search Within a Topic (Click on a letter)

A B C D E F G H J K L M N OP Q R S TU V W X Y Z

Or

Specify: G Date (Optional) or G File Type (Optional)
O Find docs Containing this exact term
O Find docs containing text similar to your search term
O Find doCS Containing base terms to your search term

Enter Term (and click to locate information)

Click to turn toggler-Fetch on or of

FIG. 7

Patent Application Publication Feb. 18, 2010 Sheet 6 of 7 US 2010/0042603 A1

e FIG. 8
OX

SPTFIRE
The Precise information LOCator

Return Screen

b-Fetch Returns Information Containing Your Basic Search Term Unit Set

Most Relevent Part (MRP) 1-1

Most Relevant Part (MRP) 1-1n

e-Fetch Returns information Containing Your Exact Search Term

Most Relevent Part (MRP) 2-1

Most Relevant Part (MRP) 2-2n

Most Relevent Part (MRP) 3-1

Most Relevant Part (MRP) 3-3n

Most Relevent Part (MRP) 4-1

Most Relevant Part (MRP) 4-4n

O

Locate More Information Within These Results (Optional)

O Enter New Search Term or O Find New Information Within These Topics

A B C D E F G H J K L M N OP Q R S T U V W X Y Z

Click to Locate information

Patent Application Publication Feb. 18, 2010 Sheet 7 of 7 US 2010/0042603 A1

900
?

C d e 912

Joe W.
901 903 904 905 911

COMMUNICATIONS CPU Raw |ROM IOADAPTER ADAPTER

902 USER INTERFACE
ADAPTER DISPLAYADAPTER

908 909

FIG. 9

US 2010/0042603 A1

SYSTEMS AND METHODS FOR SEARCHING
AN INDEX

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is related to co-pending and com
monly assigned, and concurrently filed U.S. patent applica
tion Ser. Nos. Attorney Docket No. 72880-P002US
10802385 entitled “SYSTEMS AND METHODS
UTILIZING ASEARCH ENGINE.” Attorney Docket No.
72880-P003US-10810225 entitled “SYSTEMS AND
METHODS FOR INDEXING INFORMATION FOR A
SEARCH ENGINE.” Attorney Docket No. Attorney
Docket No. 72880-P005 US-10810227 entitled “SYSTEMS
AND METHODS FOR TOPICAL SEARCHING, and At
torney Docket No. 72880-P006US-10810228 entitled
SYSTEMS AND METHODS FOR A SEARCHENGINE
HAVING RUNTIME COMPONENTS, the disclosures of
which are hereby incorporated herein by reference.

TECHNICAL FIELD

0002 This application is related in general to information
repository management and in particular to a search engine
for retrieving information from memory.

BACKGROUND OF THE INVENTION

0003 Computer users use search engines to retrieve infor
mation that meet specific criteria, from information stored on
a computer system. For example, computer users may use
search engines to search for information on the World Wide
Web, on a corporate network, or on a personal computer.
Typically, a user will provide a search term, which is one or
more words, or a phrase, to the search engine and request that
the search engine conduct a search for documents containing
the search term. Depending on the search term provided to the
search engine, the information returned by the search engine
could be voluminous. Consequently, most search engines
provide, to the user, relevance rankings of all the information
returned to the user. The relevance rankings aid the user in
determining which information the user should view to get
the information the user needs.
0004 Current searching technologies are represented by
monolithic general-purpose search services that are based on
broad-brush assumptions, which are typically derived from
mass-market statistics about the information needs of indi
viduals. Also, the current technologies attempt to personalize
searching by collecting and maintaining personal data about
users in central locations. Note that this personal data is
Subject to unauthorized use. The current technology provides
search results based upon the personal data and the mass
market statistics. More specifically, the current technology
relies upon linguistics and semantics to attempt to match
search terms to documents using algorithms by trying to
construe meaning from context.
0005. Current technology has incomplete indexing of the
data or documents that is to be searched. General-purpose
search engines typically use the same basic approach to build
ing an index entry for every document they include in their
search universe. However, different engines use different
assumptions and compromises in building their indexes. The
assumptions determine what is left out of the index in order to
keep the size of the index Small. Typical search engines
include a list of stop words or words that are very common to

Feb. 18, 2010

the documents being indexed. Stop words are words that are
not indexed. Typical stop words include most pronouns,
articles, and prepositions, and high frequency words. For
example, in a database of patent documents, the word patent
may be a stop word.
0006. The use of stop words is problematic for two rea
sons. The first reason is that stop words may have more than
one meaning, with one meaning being very common, and the
other meaning may be a suitable search term. In keeping with
the above patent example, a document discussing patent
leather shoes would not have the word patent indexed. Thus,
a user searching for Such a document would not be readily
able to find it. The second problem is that functional words,
e.g. the articles, the pronouns, prepositions, etc., form the
structure of language. By using these functional words as stop
words, search engines cannot apply any kind of grammatical
analysis to the index. Current search engines may try to parse
phrases to maintain some context by defining a tree that links
nouns and verbs together. However, current linguistics pro
grams that use Such natural language processing (NLP) pars
ing are only about 65% accurate.
0007 Current indexing techniques also include indexing a
metadata tag associated with a document rather than the
document itself. The metadata tag typically comprises infor
mation Such as document type, title, author, date, metadata,
XML objects, other specific context information, etc. Conse
quently, forming an index from the metadata tag rather than
the document greatly limits the accuracy of searches.
0008 Another current indexing technique is to build a
taxonomy of the database to be searched. A taxonomy is a
hierarchy or decomposition of the documents to relate them
to each other. In other words, a taxonomy parses elements of
a group into Subgroups that are mutually exclusive, unam
biguous, and as a whole, include all possibilities. For
example, the accepted biological taxonomy of living things is
kingdom, phylum, class, order, family, genus, species. One
problem with taxonomies, especially in technology, is that it
typically requires between 6 months and 18 months to com
plete for a typical database. And consequently, the taxonomy
is obsolete or out-of-date when completed. Also, the hierar
chy of the taxonomy acts to limit the searching of the database
by requiring searches to conform to the taxonomy, and thus
this will reduce the accuracy of a search.
0009. Whena userenters a list of words to initiate a search,
these search engines attempt to achieve the “best match
between the search term and the index of the documents. The
results are displayed to the user in terms of a ranked list.
Different search engines use different techniques to rank the
results. One common manner is to rank the results based on
the popularity of each hit in the result list. Sites or documents
that are used more often would rank higher than those used
less often. Another manner is to rank the results based on cites
or links, whereby a document that is linked or cited more in
other documents would be ranked higher than a document
with less links or cites. A further manner is ranking by opin
ion, where documents or sites that are subjectively rated as
influential would be ranked higher than those that are not. A
still further manner is by payment, where sites that have paid
fees to the search engine are ranked higher than those that
have not.

BRIEF SUMMARY OF THE INVENTION

0010. The present invention is directed to a system and
method which provides search results from search terms pro

US 2010/0042603 A1

vided by a user or application that match with documents in
an information set. Embodiments of the invention involve a
search engine that responds to a search request received from
a user through an input interface. Other components of the
search engine generate and maintain an index of the informa
tion that is available for searching.
0011. The search terms are converted to a format that is
used for the index. Both the search terms (ST) and the index
are worked through filters and processes of the search engine,
including a RealTime Search component that determines the
precise intersections between the ST and the corresponding
information set (ISet) members of the searchable universe.
When the RealTime Search component has completed its
processing, it passes the results to the Post-Search compo
nent, from where these results are prepared for, and transmit
ted to, the Return Interface.
0012 A Pre-Search component of the search engine cre
ates and maintains the index or indices of the searchable
universe. One module of the Pre-Search component uses a
crawler to locate and scan all documents for selected sets of
information types in the information repository available that
are searchable. This information is then formatted by remov
ing extraneous information. A term unit (TU) array is created
of all the TUs in the exact order of their appearance in each
document. Other information about the document is also
stored and formatted by this module, such as modified date,
document name, title, etc. Each TU array is then indexed in
one or more binary files. The binary format contains all the
required information in an index file on an ISet member-by
ISet member basis. Note that the information is ISet member
centric, not word centric. It is this index file that represents the
searchable ISet for responding to search requests. After cre
ation of the index, the index is maintained to reflect changes
in the searchable universe, e.g. additions, deletions and/or
modifications to documents.
0013 An optional RunTime Search component can be
used to modify the ISet to improve or enhance searching
operations. The ISet may contain partial or total duplicates of
other ISet members, or ISet members may contain duplicate
sets of TUs. One module may be used to notify systems and/or
users of similar documents, as well as the use of ungrammati
cal TU duplication within a document. This information is
communicated back to the Index module of the Pre-Search
component, which can then store this information in the
index. Another module allows for topical searching of the
ISet. This module analyzes the ISet, both within ISet mem
bers (i.e., intradocument) and within groups of ISet members
(i.e., interdocument) for the potential of main topics and
Subtopics. The topic then is a common starting point for more
refined search capabilities. It calculates the ISet’s topical
intervals (TIs) and provides them to the Indexer module for
storage in the index. Another module allows for the index
file(s) to be stored in cache. This module acts as a memory
store until the RealTime Search component is triggered to
respond to a search request, at which time this module makes
its contents available to it as needed. Note that, at this point in
time, the Indexer files used by the RealTime Search compo
nent reflect the ISet as contained in the cache.

0014 When an SR is initiated, the RealTime Search com
ponent of the search engine begins operations. One module
receives the search terms (ST) from an Input Interface. This
module normalizes the ST into the proper form. Thus, dispar
ate input interfaces can be used for the same RealTime Search
component. Next, another module converts the ST into a

Feb. 18, 2010

faster, more efficient readable input form that is used for
determining intersections between the ST and the ISet. A
Subsequent module expands the ST to include synonyms,
acronyms, Boolean values, etc., according to the implemen
tation. Meanwhile, a Filter module operates on the ISet to
remove any documents with noncompliant ST attributes,
such as ISet members that do not have the correct date or are
not in the required format, do not contain the correct topics,
etc. The Filter also performs the function of communicating
with the cache module for the actual index files that are
required to be loaded. The output of this module is the unique
ISet member structure that is sent to the Posit Block Collector
module.

0015 The Posit Block Collector module of the RealTime
Search component operates to complete the intersection of
the ST and the filtered ISet. This module eliminates any
remaining ISet members in which the TUs of the ST are not
found at least once or those that do not meet the document
threshold (docT). This module also performs other functions
to produce a posit block (PB) array or structure for each ISet
member. PBs are the intervals between posits that contain the
ST within the constraints indicated by the type of search
(TOS). For example, with exact search there must be an exact
correlation between the ST and the ISet member.

0016. The Refiner module of the RealTime Search com
ponent receives the ISet member structure from the Posit
Block Collector module. This module evaluates the PB rela
tion to the ST for each ISet member containing a structured
segment. For example, the module identifies the column
name of the posit. This module also compensates for ISet
member length to ensure the relevance scoring is properly
weighted. Depending on the ST frequency of occurrence
within a PB, one or more PBs are sent to be processed by the
Processor module.

0017. The Processor module of the RealTime Search com
ponent is a numerical processor that computes the number set
(NSet) values, relevance scores, and the most relevant parts
(MRPs) for the intersection of the ST and the ISet. An NSet is
a set of numbers that represents the set of intervals that
describe certain grammatical and/or syntactical conditions in
the intersection between an ST and an ISet member, such as
the replication of the ST within an ISet member's length. The
relevance scores are then calculated based on the relevance
equations applicable to the types of search involved. These
equations are based on the merit of each ISet member and
may not be based on any external factors. The MRPs are ISet
segments containing the ST within the actual MRP excerpt
length specified by implementation requirements. These out
puts are passed back to the refiner module and modified, if
necessary, before transfer to the Aggregator module.
0018. As a single-location entity or as a hierarchal chain,
the Aggregator module of the RealTime Search component
collects all the information about an ISet member (e.g., rel
evance scores, MRPs, etc.) and places it in a single location
for ultimately returning it to the user via a return interface.
Depending on a given implementation, the Aggregator may
also be responsible for translation of the numeric MRP values
to the original words; this process is known as MRP decoding.
0019. The Post-Search component of the search engine
comprises a Returner module that places the information
received from the Aggregator in its final correct form and
returns it to the Return Interface, where depending on imple
mentation MRP decoding may take place. From the Return
Interface, the output is provided to the user.

US 2010/0042603 A1

0020. One embodiment of the invention is a computer
system for searching an index, wherein the indeX has a
numeric matrix format. The system comprises a Normalizer
module that converts a search request comprising at least one
search term in a format usable with the numeric matrix for
mat; a search module that compares the converted search
request and the index, and forms a plurality of blocks,
wherein each block defines a match between the index and the
search term; and a Processor module that determines the
relevance for each match using its associated block.
0021. Another embodiment of the invention is a method
for searching an index having a numeric matrix format com
prising receiving a search request from a user that includes at
least one search term; converting the search request into the
numeric matrix format; comparing the converted search
request and the index; forming a plurality of blocks, wherein
each block defines a match between the index and the search
term; and determining the relevance for each match using its
associated block.
0022. A further embodiment of the invention is a computer
program product having a computer-readable medium having
computer program logic recorded thereon for searching a
index for at least one search term, wherein the index has a
numeric matrix format. The computer program product com
prises logic for converting the at least one search term into the
numeric matrix format; logic for comparing the converted
search term and the index; logic for forming a plurality of
blocks, wherein each block defines a match between the index
and the search term; and logic for determining the relevance
for each match using its associated block.
0023 The foregoing has outlined rather broadly the fea
tures and technical advantages of the present invention in
order that the detailed description of the invention that fol
lows may be better understood. Additional features and
advantages of the invention will be described hereinafter
which form the subject of the claims of the invention. It
should be appreciated by those skilled in the art that the
conception and specific embodiment disclosed may be
readily utilized as a basis for modifying or designing other
structures for carrying out the same purposes of the present
invention. It should also be realized by those skilled in the art
that Such equivalent constructions do not depart from the
spirit and scope of the invention as set forth in the appended
claims. The novel features which are believed to be charac
teristic of the invention, both as to its organization and method
of operation, together with further objects and advantages
will be better understood from the following description
when considered in connection with the accompanying fig
ures. It is to be expressly understood, however, that each of the
figures is provided for the purpose of illustration and descrip
tion only and is not intended as a definition of the limits of the
present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

0024 For a more complete understanding of the present
invention, reference is now made to the following descrip
tions taken in conjunction with the accompanying drawing, in
which:
0025 FIG. 1 is an arrangement of a search engine, accord
ing to embodiments of the invention;
0026 FIG. 2 depicts an arrangement of an indexer of the
search engine of FIG. 1;
0027 FIG.3 depicts an arrangement of processing layers
for the search engine of FIG. 1;

Feb. 18, 2010

0028 FIG. 4 depicts a flowchart of a topical search pro
cess, according to embodiments of the invention;
0029 FIG. 5 depicts an example of an input interface,
according to embodiments of the invention;
0030 FIG. 6 depicts another example of an input interface,
according to embodiments of the invention;
0031 FIG. 7 depicts a further example of an input inter
face, according to embodiments of the invention;
0032 FIG. 8 depicts an example of an output interface,
according to embodiments of the invention; and
0033 FIG.9 depicts a block diagram of a computer system
which is adapted to use the present invention.

DETAILED DESCRIPTION OF THE INVENTION

0034. Note that as discussed above, current search engine
technology does not provide accurate relevancy rankings. In
other words, current search engines give low rankings to
desirable information and high rankings to undesirable infor
mation, and/or do not find desirable information.
0035. There are primarily two reasons for inaccurate rel
evancy rankings. First, apart from an exact search, current
search engines do not take into account how words of the
search term appear in a document in determining the rel
evancy of the document. Rather, current search engines base
rankings, in part, on identifying whether the words of the
search term appear in the document and how often those
words appear. Second, in current search technology, apart
from identifying whether the words of the search term appear
in the document, relevancy rankings are heavily dependent on
criteria that may not reflect the user's needs. For example,
current search engines rely on information about previous
searches conducted by other users, expert authority on the
importance of documents and link popularity. In essence,
current search technology ranks the relevancy of information
primarily on the forecasted need of the user and not on the
actual need of the user as deduced from the information the
user provides when requesting the search.
0036. The accuracy of relevancy rankings is important
because it affects the efficiency with which computer users
retrieve information they need. There is a need, therefore, for
an improvement in current search technology where informa
tion returned to a user after a search request by the user, is
accurately ranked with respect to the needs of the user.
0037. A search engine, according to embodiments of the
invention, in simple terms, receives an input message that
contains a request for desired information, processes the con
tents of the message through the components within the
search engine, and returns an output message that represents
the information requested, including, if desired, links to the
original file(s) and other information about the file(s). The
input message is in the form of a search request (SR) that
includes one or more search terms (ST) and/or associated
search criteria, e.g. name, date, file type, author, editor, pub
lisher, format type, etc. Note this list is only limited by the
format of the original file and host operating system; for
instance, a plain text format (e.g., .txt) typically contains
significantly less information than a word processing file
(e.g., .doc). The search engine comprises various compo
nents, described below, that process the SR for a current
information set (ISet) universe. The search engine returns the
results of the intersection between the SR and the ISet uni
verse, which is the basis for all processing. The search engine
prepares the results and returns an output message in response
to the search request.

US 2010/0042603 A1

0038. The ISet is the information set representing the
searchable documents that meet the search region and file
filter restrictions for a search. The ISet may comprise struc
tured and/or unstructured information source members or
entries. A structured source is typically a database, which
comprises a collection of one or more tables, with headers,
records, and fields. An unstructured source is typically com
prised of text, and may include embedded structured seg
ments, e.g. tables and/or graphics (including imported graph
ics). The word “document as used herein refers to a
structured and/or unstructured information source. Thus, the
search engine is capable of indexing and searching both struc
tured and unstructured information.

0039. A search engine, according to embodiments of the
invention, may accommodate several types of search (TOS)
requests for search terms, ranging from “Exact to "Flex”.
“Bucket', and “Topical. One type is a Bucket Fetch (or
b-Fetch TOS, where the user requests the retrieval of all
searchable documents containing the search term in whole, in
any TU order, or in any TU position. Another type is an Exact
Fetch (or e-Fetch) TOS, where the user requests the retrieval
of all searchable documents containing the search terms pre
cisely as entered, specifically in TU order and TU position. A
further type is a Flex Fetch (orf-Fetch) TOS, where the user
requests the retrieval of all searchable documents containing
the search terms within a range of TUs that include either
search term constrained TU position interruption or con
strained TU order inversion. A still further type is a Topical
Fetch (or t-Fetch) TOS, where the user requests the retrieval
of all searchable documents containing the search terms
within an information category (IC). Additional combinato
rial search types, such as Query Fetch, and the Multi-Media
Fetch for pictures and movies, as well as speech hardware
and/or software Support, can be added to the search engine. In
addition, full application rendering of textual documents; i.e.,
photos, graphics, formatting (styles and text decoration) can
be added by implementing one or more specialty indexes,
such as findex and pindex). Note that a functional index or
findex operates at the TU, fractional length (FL), or section
Scope. A findex efficiently encodes specific information about
formatting that is common throughout multiple ISet member
instances (such as bold, underline, font, border), making the
storage of Such information more distributable. A path index
or pindex operates at various scopes. A pindex is an efficient
encoding scheme that stores path and other file location infor
mation in a form that is distributable.

0040. A search engine, according to embodiments of the
invention, transforms some or all of the search terms and one
or more ISets into numeric code, using grammar-embedded
rules for characters, numbers, and symbols. The search
engine uses mathematical relations and grammatically-con
trolled numeric pattern matches for its transform functions.
Note that as used herein, “grammar” is used in the context of
the rules applicable to human language, “syntax' is used to
describe the rules that make up a programming language,
Such as C++ or Java, and “language” refers to human lan
guage and/or machine language.
0041. A search engine, according to embodiments of the
invention, may operate on an enterprise server or servers, on
a personal computer, on a data storage appliance, and/or on a
portable data device, e.g. an MP3 player, a personal data
assistant, a cellular telephone, a camera, a Smartphone, or any
type of data storage device where data retrieval is needed or
useful. A search engine, according to embodiments of the

Feb. 18, 2010

invention, is useful for portable data devices because the
search engine and its associated ISet both have Small foot
prints, meaning the size of the engine and the size of the ISet
is relatively small, as compared to the stored data. For
example, the search engine may comprise about 250 kilo
bytes, and the ISet may comprise a size that is about one tenth
that of the stored data. Thus, the portable devices may not
need to have their memory increased to use the search engine.
Note that the search engine (or portions thereof) may be
embedded into an operating system.
0042. A search engine, according to embodiments of the
invention as discussed above, comprises a plurality of com
ponents, for example, a Pre-Search component, a RunTime
Search component, a RealTime Search component, and a
Post-Search component. The Pre-Search component pro
vides crawler and information acquisition, formatting, index
ing, and maintenance functions. The Pre-Search component
takes the documents to be searched and puts them into a
searchable index. The RunTime Search component provides
index refining and caching operations. Index refining opera
tions include duplicate blocking and topical searching, while
caching operations store the index in a memory for later use.
The RealTime Search component provides handling of the
input search terms, matching and filtering operations,
numerical computations and relevance scoring, and aggrega
tion of the search results. The RealTime Search component
compares the search terms with the index, and performs rel
evance calculations. The Post-Search component provides
transferring of the aggregated search results to the user for
display or further application processing. The components of
the search engine, including the Pre-Search and Post-Search
components, may be customized, e.g. by user-tunable on-off
Switches to activate various modules and methods. Such cus
tomization may allow refinements to the user's search crite
ria, such as capitalization, synonyms, acronyms, and drill
down among others.
0043. Note that the search engine finds and returns the
structured and unstructured documents that form an intersec
tion between the search terms and ISet members without any
form of manipulation or interference. Thus, the search engine
may operate without heuristics, linguistic analysis, nor scor
ing mechanisms, such as scoring documents based on popular
or authoritative opinions, inbound/outbound links, and other
pre-determined judgments. The search engine may have rel
evance equations and scoring procedures that reflect the
direct merit of a given ISet member or searchable document
to the user's search terms.

0044. A search engine, according to embodiments of the
invention, converts standard grammar rules, through math
ematical relations, into mathematical equations. This allows a
computer executing the search engine to efficiently process
search requests without being computationally intensive. No
heuristics or previous search results are necessary, because
the mathematical equations are solved at run time for actual
constructs of each search entry, thus accurately reflecting the
grammar rules and their mathematical equivalents. This
avoids the use of contextual-based linguistic parsing meth
ods, which typically leads to arbitrary constraints or depen
dence on language analysis oftenuous logic, or probabilistic
modifications of the given search criteria. Additionally, the
search engine can operate in different applications through
extension methods, by using a small data store that uses
associative logic (e.g. a thesaurus) to Support these methods.
Extension methods can include a messaging system that

US 2010/0042603 A1

sends well-formed messages between the search engine and
any other applications or within the search engine at well
defined entry points, excluding the modules that have no
interfaces required as they do only internal processing.
0045. The search engine may be embedded within third
party applications and/or may be a discrete application inte
grated with other applications through the interfaces. For a
web service deployment, the search engine may be used to
index and allow searches to be performed on Internet docu
ments. The search engine may be deployed in a stand-alone
application, a mobile application, or an enterprise applica
tion. The search engine may be implemented in a self-con
tained deployment, i.e. all components located in a single
device, e.g., a computer, a laptop computer, personal com
puter personal data assistance, a camera, a phone, a cell
phone, mobile phone, a computer server, a media server, a
music player, a game box, a Smart phone, a data storage
device, measuring device, handheld Scanner, a scanning
device, a barcode reader, a POS device, digital assistant, desk
phone, IP phone, Solid-state memory device, and a memory
card. Alternatively, the search engine may also be distributed
in multiserver application, thus allowing for multiple
instances of the search engine to work together in a collabo
rative way, (e.g., between mobile devices and enterprise Serv
ers), which increases the speed, scope, and/or precision of
search. In other words, different components may be located
on different devices. Also, multiple instances of the same
components may be located on different devices and operate
together. The search engine may be deployed to allow enter
prise searches, which would allow large companies to use
widely dispersed bodies of documented knowledge, and
allow authorized users to access information wherever it is
held. Implementation administrators can manage the index
ing of the documents to deliver both user value and company
confidentiality. Certain indexes may be replicated across mul
tiple locations within the enterprise, including end-user
devices. The highly compressed format of search results can
then be decoded on the user machine instead of on the server,
allowing the presentation of comprehensive MRP details
without the need to pass large files across the network, until a
full original document copy is actually needed by the user.
0046) Note that the search engine may optionally contain
one or more tolerances that may be used to control system
behavior and affect the outcome of the return set of ISet
members. A tolerance differs from a document filter, such as
a date, because there is no simple yes/no or binary outcome.
There are many outcomes that are possible that the search
engine requires sensitivity to in order to more accurately and
precisely return the results required.
0047. The search engine uses the theories and methods of
discrete and combinatorial mathematics to transform the
search process into mathematical functions with numerical
values. Operating within a runtime constraint set and unique
relevance equations for each search type, these functions
produce relevance scores for a user's specified search criteria.
The search engine may use topics to widen or constrain search
requests, and thereby allow the better user control of the
search. Such topic information is storable within the binary
format. The topic information may then be recalled to use as
a filter to only allow documents with requested topic(s) to be
passed through the filter. The topic information may be added
to the index, thus allowing the topic categories to be available
for rapid RealTime Search. Note that this may be performed
based on document values, and not performed until after the

Feb. 18, 2010

search is completed. Topical information may further refine
the results by only considering the MRPs that are contained
within the requested topic(s) range or interval. Combinatorial
mathematics is a branch of pure mathematics concerning the
study of discrete (and usually finite) objects. This area of
mathematics studies families of sets with certain characteris
tic arrangements of their elements or Subsets, in an effort to
determine what and how many combinations are possible.
Discrete mathematics is the study of mathematical structures
that are fundamentally discrete in the sense of not supporting
or requiring the notion of continuity. Continuity or a continu
ous function refers to a function for which small changes in
the input result in Small changes in the output.
0048. The one or more indexes or ISet, according to
embodiments of the invention is numeric. This allows each
index to be more compact than other indexes even when more
document content is incorporated in the index. The index can
include punctuation and capitals, if needed or desired. The
index does not need to omit any words from the indexes,
unlike conventional indexes that usually exclude a number of
“stop words” that areassumed to be unimportant for searches.
Although the numeric aspect results in the index having a
proprietary format, the index allows for significant customi
Zation based on tolerances, as well as languages.
0049. A search engine, according to embodiments of the
invention, enables a user to include synonyms, acronyms,
and/or other “switches' to focus the search. After processing,
the search engine then returns to the user, via an output
interface, the results of the search. Such results may be one or
more answers, and/or one or more most relevant parts (MRPs)
and their associated hot links, for each relevant ISet member,
ranked according to their relevance to the user's ST.
0050. The search engine, in part or in whole, may be
embedded in a device that may be mounted or attached on a
person's apparel or other material a person carries, on a per
son's body, or implanted in a person's body. The search
engine may be activated by any form of communication Such
as touch, Voice, motion sensor, electronically, optically, etc.
Note that the search engine can be embedded in a laptop
computer, a phone, mobile phone, a music player, a game box,
a data storage device, measuring device, handheld Scanner,
scanning devices, barcode reader, POS devices (e.g. cash
register), digital assistant, desk phone, or IP phone.
0051 FIG. 1 depicts an exemplary arrangement of a
Search Engine 100, according to embodiments of the inven
tion. In this arrangement, the Search Engine 100 comprises
four main components, namely Pre-Search component 101,
RunTime Search component 102, a RealTime Search com
ponent 103, and Post-Search component 104. Note that in this
arrangement InputInterface 105 and Return Interface 106 are
shown to be separate from the RealTime Search component
103 and the Post-Search component 104, respectively. Other
arrangements may have one or both of the Input Interface 105
and Return Interface 106 being integral with the RealTime
Search component 103 and the Post-Search component 104,
respectively.
0.052
0053. The Pre-Search component 101 is operative before
responding to any end-user search request. The Pre-Search
component comprises an Acquisitioner or crawler, a Format
ter, an Indexer, and a Maintainer modules. The Pre-Search
component 101 prepares files from various information
Sources into a consistent, searchable index format.

Pre-Search Component 101

US 2010/0042603 A1

0054 These documents are referred to as information set
members or ISet members. For instance, information that
requires searching may be in a word processing file, or a
portable document file, a database, or others. These disparate
forms must be put into a consistent format to allow better
searching operations across a variety of file formats. This is
the process of an ISet member being created and stored in an
index. An index is a collection of ISet members. The index is
the overall store of ISet Universe information at potentially all
operating scopes, depending on implementation, in a search
able format that is efficient and distributable. It includes any
number of Supporting encoding schemes (such as windex,
pindex, etc.) This is itself a file format that can be used by any
application.
0055 Acquistioner Module 107
0056. The Pre-Search component 101 begins its opera
tions with the Acquisitioner module 107. This module oper
ates similarly to a crawler, and scans the associated informa
tion repository or repositories for certain information types.
This module locates and scans all documents for selected sets
of information types (e.g., *.html, *.xls, *.doc, *.ppt, *.pdf,
etc.) in the information repository or repositories available to
the system that comprise the searchable universe. This activ
ity is similar to the crawling function used on the Internet, on
an enterprise network, or on a single device (Such as a laptop
or a Smartphone). The documents, thus located and scanned,
are stored in memory, along with source data such as date,
location address, etc., for transmittal to the Formatter module
108.

0057 Formatter Module 108
0058. The Formatter module 108 removes all extraneous
information, such as meta-tags, from the information
received from the Acquisitioner module 107. The remaining
information is stored as term units (TU) in a TU matrix in a
storage medium. A term unit is any set of characters (e.g.,
words) or symbols separated by a space. The matrix stores all
TUS in the exact order of appearance, as well as any document
attributes such as a hard drive or network ID, modification
date, table information, document name, etc. This informa
tion is provided to the Indexer module 109, which is the next
module of the Pre-Search component 101.
0059 Indexer Module 109
0060. The Indexer module 109 module uses the TU matrix
to create a numeric, binary representation of the information
in a compact and efficient format. This representation com
prises the searchable universe or ISet used by Search Engine
100. Note that the index form is preferably document centric,
and not word centric. This representation can be stored for
redundancy as a set of indexes on disk. Terms are stored in a
windex, which is a numerically encoded term list. These
index(es) and windex(es), along with other specialized index
forms that can be created, form the information set (ISet),
which is the binary format that is searched during search
operations.
0061 The Indexer takes the TU listing, and the file char
acteristics (if any), and converts this information into a set of
indexes that are used to both efficiently and accurately reflect
the document's information. TUs are identified by a “word
index value (this is based on the tolerances required by the
implementation) and are stored in a single format, called a
windex. Other information derived from the TUs in order and
the document's characteristics are also calculated and added
to the index.

Feb. 18, 2010

0062. The Indexer takes the TU listing, and the file char
acteristics (if any), and converts this information into a set of
indexes that are used to both efficiently and accurately reflect
the document's information. For instance, path names for
locations of documents may be stored inapindex; formatting,
including links and embedded elements, may be stored in a
findex. Thus, the basic indexing strategy can be extended to
support any kind of repetitive information within an ISet. This
allows the index format to serve as an application format,
allowing applications to use a searchable formatin addition to
other tasks required to be performed on the information.
0063. The basic information that should be collected by an
index is: document characteristics (Such as modified date, file
format); the document type (structured or unstructured, or
dual); structural information of structured segments or docu
ments; the TUs; the functional-length (FL) indicators; the TU
Type; and the position of the TU or posit. Depending on other
modules, more information can be stored in the index as it
Supports any possible module that needs to write information
to the index (such as the Topical Searcher 112 and Duplicate
Blocker 111 of the RunTime Search component 102, dis
cussed below). The specific order and method of storage is
dependent on implementation.
0064 Document characteristics refer to the qualities of the
document that may be suitable for filtering by searchers. For
instance, all documents must be uniquely identifiable. For
example, the document address may be the unique identifier
of a document. Other document characteristics, such as modi
fied date or document title, may be stored by the index. There
is no limit on the number of document characteristics that can
be stored.

0065. The document type is a special case of a document
characteristic and it refers to the inherent relations indicated
by the document. A structured document implies that the
entire length of the document is built around a set of relations.
The most common type of structured document is a relational
database, where columns have specific relations and a set of
columns or a row have a specific length. Any kind of docu
ment that contains such a relation is considered a structured
document. An unstructured document contains no such rela
tions; the text occurs without any other relations, except for
the inherent grammar and/or syntactical relations. This would
be a word processing file, a presentation file, a text file, or
others. A third document type also exists, whereby an
unstructured document contains structured segments, such as
an embedded table or a database. This type of document is
called a dual document; whereby there are both unstructured
and structured elements. Note that any kind of metatagging,
Such as XML, that provides a structure for a document, is
typically not considered to be a structure by the search engine.
0066. The stored TUs are what are searched. These com
prise the total set of TUs available in a specific document.
Note that only those TUs visible to the user are indexed, and
metatagging or other such markup TUS may not be included
in the actual TU set for a given document. However, these
aspects may also be indexed these values if required. The TU
type refers to the function of a TU within a given grammar/
syntax. There are two basic types: the functional TU (FTU)
which is those TUS that contain no unique meaning; and the
content TU (CTU), which is those TUs that contain a unique
meaning and form the basis of most search requests. These are
identified by the communications ID (Comm ID) that identi
fies the grammar/syntax used by the search engine at the time

US 2010/0042603 A1

of indexing. Each Comm ID requires a set of FTUs to be
identified and stored; the CTUs are all the remaining TUs not
in the FTU set.
0067. The following are some of the English language
FTUS: about, above, across, after, against, along, among, an,
and, another, any, around, as, at, before, behind, below,
beneath, beside, besides, between, beyond, but, by, concern
ing, despite, during, each, either, except, excepting, for, from,
her, his, in, into, its, like, my, near, neither, nor, of off, on,
onto, or, our, out, over, per, regarding, round, several, since,
So, some, that, the, their, these, this, those, through, to,
toward, under, underneath, until, up, upon, what, whatever,
whatsoever, which, who, whom, whose, with, within, with
out, yet, your. Note that this list is not exclusive as other FTUs
may exist. Other languages or other dialects of English may
have different or additional FTUs.
0068. Lastly, the position of each indexable TU is assigned
an integer to indicate its position in the document. This is
referred to as its posit.
0069 FIG. 2 depicts exemplary operations of the Indexer
109 of FIG. 1. The Indexer 109 receives that Formatter list
201 as the input from the Formatter 108. The Formatter List
201 is a list of TUs, punctuation, and other characteristics of
the ISet documents. The Indexer 109 will then build the index
using the list. The Indexer 109 views the documents of the
ISet as a plurality of layers, some of which can be indexed,
and other layers that cannot be indexed.
0070 FIG.3 shows the demarcation between the grammar
dependent and independent layers, along with the indexable
layers. The Search Universe (SU) Layer 301 is the entire
document repository, representing all the information avail
able to a user or system, that is available. The Group Layer
302 is a portion of the SU that is grouped using some kind of
mechanism or filter, such as a set of documents that have the
same file type or are exist at the same network location. The
ISet Member Layer 303 is a single document in an SU, and
may be identified as a unique file Such as a word processing
document or URL, e.g. \\serverA\dir1\dog.doc. The Section
Layer 304 is a part of a document identified using a specific
criteria, such as a set of TUs that belong to a topic. The
Fractional Length (FL) Layer 305 represents a group of term
units (TUs) that have established endpoints derived from
either the beginning or end of a document or are characterized
by the presence of the pattern (CTU, FTU), wherein FTU is
the beginning of a new FL. The Search Term (ST) Layer 306
is the actual entry provided by the Input Interface.
(0071. The Posit Block (PB) Layer 307 is a grouping of
posits that contain one or more repetitions of a search term.
The posits vary in length based on runtime results. They may
contain other TUs that are not part of the search terms, but
occur within constraints between the STs that are found. The
Term Unit (TU) Layer 308 is a term unit, such as a word,
number, or code, that is separated by a space or other known
TU delimiter for the language or syntax being used.
0072. In block 202, the Indexer writes the ISet member
variables to the index. Any descriptors required to be avail
able to eliminate ISet members are considered search criteria
and are established therefore based on implementation. Once
such ISet member variables are known, they are populated
during processing and then available for addition to the index
for storage.
0073. In block 203, the Indexer optionally writes SU
group variables to the index. As an optional step, there may be
a need to further identify an individual index, especially in

Feb. 18, 2010

distributed environments. Therefore, many of the ISet mem
ber group variables listed above, as well as others deemed
necessary by implementation, may be established. These can
be stored in a reserved place in the index, usually at the top,
and occur only once per group in the first index in Such a
group.

0074. In block 204, the Indexer analyzes each TU and
assigns a windex value. Each TU is analyzed for what kind of
value it has, either CTU or FTU, and is therefore assigned a
windex value based on which value. This is done through the
establishment of a set of CTU values within a language. In
addition, in languages such as English that contain punctua
tion require different handling, and these may also be estab
lished in a set. Based on the FTU and the possible punctuation
set, the windex value is known and assignable. Any other
value not already used by the indexer for a specific scope
(such as ISet universe or ISet group) is assigned a CTU value
sequentially, after the range of the FTU and possible punc
tuation values.

(0075. In block 205, the Indexer calculates the posit
attributes. Posit attributes includes information that relates to
the TU at that point in the document. The calculation that is
typically performed is a fractional length calculation. This
calculation is based on the pattern and defines the fractional
length is occurs in the document. Any length at or below a
certain number is considered an FTU. That FL continues until
the pattern changes to indicate that a CTU is adjacent to an
FTU, and that will start a new fractional length. Note that
fractional length does not correspond to a language phrase.
This organizes the document into grammatical units that can
be further processed. This is the basic posit attribute that is
common to all forms of documents, and that can occur in both
structured and unstructured documents. This output is pro
vided to the RealTime Search component 103.
0076. The Indexer works with four types of posit
attributes. The first is a fractional length posit. The fractional
length indicates the length of the posit. For example, consider
the following “The dog went home.” In this case, the frac
tional length indicator is applied to “the and is a set of 4. The
second type of posit attribute is a duplicate attribute. This
attribute indicates that a document is a duplicate of another
document or a part of a document is a duplicate of another
part. This attribute indicates how many posits are duplicated.
For example, consider the following “The dog went home. He
had found his bone.” In this case, the duplicate attribute is
applied to “the and is set at 5. This indicates that “The dog
went home” has been repeated elsewhere in the ISet universe.
The third type of posit attribute is a topical search attribute.
This attribute identifies one or more topics that the document
is associated with. For example, consider the following “The
dog went to the store. Then the dog decided to go for a ride in
the car.” In this case, the posit attribute that indicates the topic
“dog” usually requiring the beginning and end of the topic
length, may either be applied to the posit in the index's posit
listing or in the best mode, is indicated at the ISet member
section for each ISet member that contains topical informa
tion. The fourth type of posit attribute is for structured docu
ments. These attributes indicate where structured fields begin
and end. In documents that are structured or unstructured,
only an ISet member variable needs to be set. If the document
contains structured segments, then the beginning and ending
posits for each segment must be known. These may either be
stored at the posit section in the index, or in the best mode, is

US 2010/0042603 A1

indicated at the ISet member section for each ISet member
that contains structured segments (i.e., not all structured).
0077. Maintainer Module 110
0078. The last module of the Pre-Search component 101 is
the Maintainer module 110, which is an optional module. The
Maintainer module 110 updates the ISet with changes to the
Source documents of the associated information repository.
Thus, any additions, deletions, and/or modifications (e.g.
updates) to the documents of the repository would be located
by the Maintainer module 110. After locating a change to the
repository, this module may cause the Pre-Search component
101 to index only the changed portions of the repository, or
may cause the entire repository to be reindexed. This may
involve operating some or all of the modules of the Pre
Search component. The Maintainer module 110 may operate
at a specific time(s) and/or specified time intervals. This mod
ule may be customized for a given implementation.
0079 RunTime Search Component 102
0080. The RunTime Search component 102 is operative
after the Pre-Search component 101 and either prior to or
concurrent with the RealTime Search component 103. The
RunTime Search component is optional, and provides cach
ing operations and index refining. Such as duplicate blocking
and topical searching. Embodiments of the search engine may
have some or all of the modules of the RunTime Search
component.
I0081 Duplicate Blocker Module 111
0082 One optional module of the RunTime Search com
ponent is the Duplicate Blocker module 111. This module
operates to identify documents of the repository that have
duplicate parts or are duplicates of other documents in the
repository. This module then modifies the ISet of the Indexer
109 to reflect duplications. This notifies other systems and
users of similar documents that are in use as well as the use of
ungrammatical term unit (TU) duplication within a docu
ment. The Duplicate Blocker normally stores information in
the Indexer for any ISet documents containing duplications,
either as a set of TUs (i.e., TU duplication or TUD) repeated
outside of grammar constraints, or parts or all of a document
that repeat within the searchable universe. Note that duplica
tions may be either a set of TUs repeated outside of grammar
and/or syntax constraints, or parts or all of a document that
repeat within the searchable universe. This module makes
searches more efficient.
0083. The level of precision that the module allows is
controllable based on user or system requirements. For
instance, document duplication has two basic types, namely
section and full document duplication (ISet Member). Sec
tion duplication occurs when a portion or section of the docu
ment is exactly the same. Therefore, it is sometimes necessary
when this tolerance is turned on that the segment of the
duplication is noted. This is done by a length counter to
indicate the number of posits that are duplicated. Lastly, the
TUD is calibrated based on the number of TUs that are found
to have duplicated.
0084. The TUD operates by indicating documents that
contain multiple term unit instances that appear without
grammatical form. The TUD operates within each document.
For instance, a common way to increase relevance is to con
stantly repeat a term or set of terms over and over again, Such
as "dog house dog house dog house dog house dog house'.
The TUD can detect this because of the ability to quantify
FLs. For instance, if a FL continuously repeats with the same
terms, including the FTUS, then there is no grammatical

Feb. 18, 2010

meaning, and therefore this group should be blocked from
consideration as to the relevance of its parent document. This
occurs in the Internet by either invisible text, header entries, in
commented code blocks, or other devices. Since the goal is
always to increase the word count, which in turn, should
increase relevance, the search engine will not tolerate certain
conditions. Therefore, for each search type, the search engine
can incorporate TUD density calculations to protect the user
from Such types of inflated document scoring.
I0085. If a document is fully duplicated, then there are two
conditions, namely exact and Subset duplication. In exact
duplication, document A and document B are exactly the
same, including the length of the document in posits and all
other TU block attributes. In subset duplication, document A
is fully contained within document B. In fact, it may be
possible that document A and document Carefully contained
in document B, and so on. All the TU block attributes that are
in both document A and B would be exactly the same as those
in document C for that section where the match occurs.

I0086 Topical Searcher Module 112
I0087 Another optional module of the RunTime Search
component is the Topical Searcher module 112. This module
analyzes documents in a part or all of the searchable universe
to determine the topics that exist, both within each document
and within groups of documents. The Topical Searcher mod
ule 112 uses the ISet results of the Pre-Search component 101
to efficiently calculate the topical intervals (TIs) that exist for
the searchable universe. The results of this module can be
stored directly in the ISet of the Indexer 109 for maximum
flexibility of use.
I0088 Topical search involves the quantification of identi
fiable section(s) of a document that relate to a central theme or
a topic. In searching, the need to qualify a search term (ST) by
restricting it using an identifiable topic length or interval is a
useful function in many cases. In order to accomplish this, the
document must first be indexed by the Pre-Search component
101, as described above. The grammatical and/or syntactical
boundaries established by the initial indexing are used, as
well as the TU type determination. If required, the Duplicate
Blocker module 111 should be run before this module to
detect ungrammatical/unsyntactical TU duplications, if
required or necessary by the implementation. Then, the Topi
cal Searcher can function. An exemplary process 400 is
shown in FIG. 4.

I0089 Topical search occurs in two phases, namely an
Intradocument phase 401 and an Interdocument phase 402. In
the Intradocument phase 401, each document is analyzed on
its own merit for the topics that occur. The phase involves
locating the individual TUs that meet the requirements for the
inclusion as potential topics, filtering out the noise TUS,
which are the set of FTUs and CTUs that are nontopical for
the given Comm ID (these can be stored in the thesaurus or
general dictionary). Note that filtered words may be affected
by tolerances. A frequency analysis may optionally be done to
determine the potential topic set. Then, a modified form of the
f-Fetch and other Intradoc t-Fetch 403 operations are used to
determine those topics that contain multiple TUs. Multiple
TU topics are then further refined, if necessary, by a set of
comparisons called Multiple-TU Commonality. Then the list
of potential topics is adjusted. Optionally, another filter may
be run on the topics. The potential topics now include both
single-TU and multiple-TUs. The potential topics are now in
their initial ranked order.

US 2010/0042603 A1

0090 Single-TUtopic posits that occur to multi-TUtopics
are eliminated. At this point, both single-TU and multiple-TU
potential topics have their TIs recalculated and their overlap
values adjusted accordingly. From this, it is possible to deter
mine the breadth of the topic's scope, which determines the
main topic and Subtopic values. The distribution analysis is
also recalculated, which is designed to limit the size of the TI
based on spurious and nonconsistent usage within the TI
length. This provides an overlap for each TI. Once these have
been completed, the main topic, if it exists, is determined,
along with the subtopics in the Topic List Document 404.
0091 Main topics are identified as those that have a longer
length of other topics in the document. A Subtopic either is
fully contained within a main topic, if one exists, or is com
pletely separate, as this is hierarchical in nature. If no main
topic exists for a document, then only Subtopics are returned
and the main topic value is null. Further, Subtopics are also
hierarchically related by using the overlap characteristic; if
they are overlapped within another subtopic, then they are a
child of that Subtopic. A terminating point of a hierarchy is a
Subtopic that has no Subtopic contained within it. If required
by an implementation, these are then stored in the index in the
TU block so they are available for search requests.
0092. In the Interdocument phase 402, the results from the
Intradocument phase form the basis for the Interdocument
analysis. In Interdocumentanalysis, a group of documents are
analyzed for topics that are common to them by using modi
fied form of the f-Fetch and a set of Interdoc t-Fetch 407
operations. Two types of Interdocument analysis is possible,
namely Hierarchical 405 and Nonhierarchical 406. In hierar
chical analysis, the hierarchy from the Intradocument analy
sis is preserved; that is, the ordering of main and Subtopics
must match in order to be included. For instance, if a main
topic="canine' in document A and a subtopic="canine' in
document B, then if the threshold for “canine' to be included
in the results is met when “canine-main topic, only docu
ment A and the others that contain "canine' as a main topic
are included in the resulting Interdocument hierarchy. Also,
all the subtopics under “canine' also reflect the underlying
hierarchy from Intradocument analysis.
0093. In nonhierarchical analysis, the main and subtopic
hierarchy from the intradocument is ignored, and only the
occurrence of the topic is necessary for inclusion into an
interdocument topic listing. For instance, only the occurrence
of the topic "canine' is required. Using the example above,
“canine” as a main topic and "canine' as a Subtopic would
mean that both document A and document B would be listed
as documents under the topic "canine'. This type of search is
useful in general search applications where the amount of the
document that contains the term is not required or that a
hierarchical understanding of how the topic was derived. Such
as the Subtopic "husky' in document A is not important.
0094. The Topical Searcher module 112 can be refined like
any other module by the use of tolerances. For instance, the
synonym tolerance may be used at both the TU or the frac
tional length (FL) level to capture synonyms that for the
implementation are considered to be close enough to be con
sidered the same repetition of a topic. In addition, the Syn
onym tolerance may also be used to determine the uniqueness
of a TU within the document. While multiple tolerated TUs
within the document would count as topic indicators, a term
with a high number of synonyms versus terms with low num
ber of synonyms distinguish topics better, and therefore may
be used to modify the order or even the existence of potential

Feb. 18, 2010

topics in come implementations. Other tolerances at the FL
functional-scope level and below may be used with the Topi
cal Searcher to further refine the results, such as Stemming,
acronyms, and abbreviations, among others.
(0095. The Topical Searcher module 112 can function in
one of many scopes; this is especially useful in the distributed
implementations of the search engine. A scope is defined as
what portion of the searchable universe should be included in
the interdocument phase; this allows for documents to be
divided in a variety of means, including departments, disci
plines, or other delineations. For instance, in the same search
able universe, topical search can be run for a group of docu
ments in a particular network node; another topical search
may be run for a group of documents in a geographical loca
tion, which may include the first group of documents, yield
ing potentially different interdocument topical results.
0096. Cacher Module 113
(0097. A further optional module of the RunTime Search
component is the Cacher module 113, which is a cache or a
memory store of the ISet of the Indexer that is made available
to the RealTime Search component 103 during search opera
tions. In the Search Engine 100, ISets and/or index files may
be cached for several reasons. Since the Search Engine 100
has no locality required of its information, the ISet does not
need to be stored locally with the RealTime Search compo
nent 103. Thus, for arrangements where the ISet is stored
distant from the RealTime Search component 103, a cached
stored version local with the RealTime Search component
103 may be used.
(0098. The Cacher module 113 acts as a relay between the
storage device and the memory location of the RealTime
Search component 103. The RealTime Search component
will call the Cacher, if required by an implementation, to get
the Indexer information loaded into memory so that there is
little or no latency in processing the data. Since the docu
ments that comprise the Indexer must be analyzed on their
own merit, the Cacher must be able to send data in sufficiently
large enough chunks to be practical for a given network
configuration.
(0099. Thus, one function of the Cacher is therefore to keep
things in memory so that the RealTime Search component's
host machine does not need to store the information except
when its necessary. For multithreaded RealTime Search,
serving several search requests at the same time, there is a
high possibility that the same index files will be required on a
repeated basis. However, the index files do not need to be in
memory for long periods of time, minimizing the space prob
lem. This is done in exchange for easier maintenance of the
index files, which is vital as documents become more trans
actional in nature.
0100 RealTime Search Component 103
0101 The RealTime Search component 103 operates after
the Pre-Search component 101 and either after or concurrent
with the RunTime Search component 102. The RealTime
Search component 103 provides handling of the input search
terms, matching and filtering operations with the ISet,
numerical computations and relevance scoring, and aggrega
tion of the search results. The component begins operation
when a search request, in the form of one or more ST and/or
search criteria (e.g., TOS, date range, etc.), is received from
the InputInterface 105 by the Inputer module 114. This input
may come from either a user or another system. This compo
nent then processes the search request based on the param
eters set forth by the user or system, as well as internal search

US 2010/0042603 A1

engine parameters to locate all MRPs in each document avail
able at the time of loading the index or indices into memory.
This process completes when the relevance calculations pro
duce the final scoring, and the rank and sort applied to the
results are complete.
0102) Note that the search term always contains at least
one content TU (CTU) or may contain more CTUs, and/or it
may contain one or more functional TUs (FTUs). All CTUs of
a search term are considered “keywords” (KWs) for the pur
pose of searching. Note that in most languages, including
English, any set of characters (e.g., words) or symbols sepa
rated by a space, will form a TU.
(0103) Input Interface
0104. Note that in the embodiment shown in FIG. 1, the
Input Interface 105 is not part of the RealTime Search com
ponent 103, but is discussed here for illustrative purposes.
Other embodiments may have the functions of the Input Inter
face 105 internal to the RealTime Search component 103 or
combined with the Inputer module 114.
0105. The Input Interface provides a way for a user to
operate the search engine, and search the indexes for a desired
search term. Note that the specific interface design is subject
to the needs of a given implementation. For example, FIG. 5
depicts an example 500 of an input interface that may be used
for basic searches, such as a b-Fetch, e-Fetch, or f-Fetch, or
may be used for discovery searches, such as a t-Fetch. As
shown in FIG. 5, the Input Interface may be a graphical user
interface. These search types will be explained in more detail
below. FIG. 6 depicts an example of a GUI that is presented to
a user after Selection of the letter D from the GUI of FIG. 5.
Selecting the letter "D' for a topic category causes a drop
down menu to appear that offers all the topics starting with
“D’ from index files. FIG. 6 also illustrates the option of
continuing the Subtopic drill down or returning to the previ
ous screen to restart the topic search or to perform a Basic
Search. FIG. 7 depicts an example of a GUI that is presented
to a user after selection of the expert mode button from the
GUI of FIG. 5. Note that the GUIs of FIGS. 5-7 are for
illustration purposes only, as other GUIs could be used.
0106 Inputer Module 114
0107 The Inputer module 114 is an entry point into the
search engine. In this arrangement, the Input Interface 105
operates to convert the search request into a form usable by
the search engine. Note that several different types of inter
faces may be serviced by the same application based entirely
on implementation requirements. The Inputer also receives
the ISet from the Pre-Search component 101 and/or the RunT
ime Search component 102. Note that during the RealTime
Search component operations, data may be transferred from
the RunTime Search component 102, (e.g. the caching opera
tion), which is used to store information for real-time opera
tions, if necessary. The search terms are processed through
two sequential modules, namely Normalizer module 115 and
the Tolerator module 117.

0108. A search request (SR), in the form of an ST and its
attributes or search criteria (e.g., TOS, date range, etc.), is
made through the Inputer module 114. The Inputer provides
an interface, either with another system or directly with a user,
that provides the ST and its search criteria to be used by the
search engine. The module takes data from the Input Interface
and routes it to the correct modules within the RealTime
Search component 103, based on whether the input deals with

Feb. 18, 2010

the ST or the document attributes (such as modified date), or
topic qualification (i.e., restricting the scope to specific top
ics).
0109 Input data is typically in the format of a data packet
that comprises a network ID, a user ID, docScope variables
(optional), tolerances (optional), TOS (optional), ST, Comm
ID, drill down set (optional), and/or other fields, if needed.
The network ID value is the address of the sender, such as the
IP address of the sender. This can be provided, for instance, in
the HTTP interface, and it can be any addressing size. The
user ID is optional, and is used to handle access control list
(ACL) values. The network ID plus the randomly generated
search ID value equals the search request ID or SRID, if the
user ID is not used; else the user ID is ANDed to the randomly
generated search ID to make the SRID. The docscope vari
ables are the document attributes that are required by the user
interface to be sent. This is an optional field, since some
interfaces will not require this or some implementations will
have default values. Tolerances are named as text so that there
is no need to keep translation tables. The tolerances should be
named consistently throughout, but the order in which they
are stored will change. Therefore, the text version should be
named by the interface and sent to the Inputer. This is an
optional field, since some interfaces will not require this or
some implementations will have default values. The TOS
value should be fixed throughout the application and only has
to support the number of TOSs for an implementation. The ST
length has a maximum based on implementation, and the
length is tested internally. The Comm ID field is only required
if a RealTime Search component Supports more than one
language or syntax. The Comm ID has a default value of
English. Note that other languages can be added as needed.
The drill down field is reserved for application use only.
Application developers who wish to perform operations that
require specific drill down information will use this field to
indicate the range of documents to be included in the drill
down and other data. Other fields may be added depending on
implementation requirements; these are added to the Input
Interface as well as to the Inputer. Note that at least one TOS
must be identified if the Topical Searcher module 112 is not
used; otherwise, a topic search would count as a TOS.
0110 Normalizer Module 115
0111. The Normalizer module 115 converts the search
terms into a faster, more efficient readable input form using
the current windex. The module may be called as many times
as there are windexes encountered in the ISet. This input form
is sent to the Tolerator module 117. Then, TU structural
analysis is done.
0112 The Normalizer takes the ST as inputted by the user
and convert the ST into the form that is used for determining
intersections between the ST and the searchable universe.
There are two basic phases to normalization, namely windex
translation and TU structural analysis. In windex translation,
the current windex is identified for each index file and used to
translate the ST. Instructural analysis, the FLS, TU types, and
posits are assigned. The output of the Normalizer module
contains all the necessary information for processing the ST.
The windex translation may be re-run, and if multiple wind
exes are used in the searchable universe.

0113. The Normalizer keeps track of the windex and index
file relation in order to properly prepare the ST. For instance,
the Normalizer should be sent a message after the Filter
module 116 has processed the last index file for a specific
windex. This should indicate to the Normalizer that a windex

US 2010/0042603 A1

translation is necessary for the ST for the search engine to
continue processing index file items. Windex translation is
the process of converting the ST text into the current index
encoded values. There is a 1:1 correspondence between the
number of windexes for a given implementation and the num
ber of times windex translation is done. The main output of
windex translation is, in order, the windex equivalents of the
TUs used in the ST.
0114 Punctuation, capitalization and the wildcard toler
ances affect the windex translation by modifying the scope of
the initial binary search into the windex array. This is
explained further with regards to the Tolerator module 117.
0115 Punctuation, if used in the entry, is always included
in the windex listing. The Tolerator will either keep or discard
punctuation used in the entry based on the tolerated values.
Therefore, punctuation is considered a pass-through value
and is assigned a windex value ifrequired (used) by an imple
mentation.
0116. If capitalization tolerances are in effect, then a
match of “dog” and “Dog” are not equal; therefore, if only
dog is found, then the entry is not considered a match. If
capitalization tolerances are not set, then “dog” and “Dog”
are equal, and both would be considered a match. This must
be handled in the process, which marks for each FL-level and
below tolerance the range of effect of the tolerance, based on
the length in posits as indicated by the input message or Input
Interface. All tolerances must be indicated by only the toler
ances like capitalization, wildcard, and Boolean processing
issues for windex translation. One wildcard is used per letter
in the example; this may be changed based on implementation
since a special character or an input indicator may be used to
indicate the number of wildcard characters. Thusly, “dg:
would not find “ding since this character in the current
implementation only indicates a single character.
0117 If a wildcard is used, such as in “dg”, then all TUs
in the windex that match that pattern are returned, and a
grouping and value of the tolerance are shown. The order is
alphabetical, so “dig comes before “dog” and “dog” comes
before “dug”. There would be three wildcard tolerated values
of equal weight returned by this function.
0118. A Boolean tolerance is used when a posit has more
than one value associated with it or a group of posits has more
than one value associated with it. Therefore, the windex
equivalents need to be found for the terms, without regard to
whether a group is found or not. This requires both a grouping
value and the extra terms that are a part of each posit. The
Boolean is an input to the Normalizer, so the range is known.
This allows the conversion for the windexes to take place. For
instance, if the ST=The dog BOOLEAN OR husky went
shopping, then either “dog”or “husky' must be found or no
value is found in the windex for that posit in the ST.
0119. Once the windex translation is complete, the TUs
are in order with the windex equivalents. The TU structural
analysis is done based on the Comm ID supplied by the
windex. The posits are simply the order of the windexes. The
FTU range indicates where the FL breaks are located, so the
FL number can be identified as well as the TU Type. Once this
is done, then the ST is considered to be normalized. The
process by which the FTU is determined is discussed in the
Indexer module section, as in the TU type and FL breaks.
0120 Tolerator Module 117
0121 The Tolerator module 117, is an optional module,
that expands the search term input by including any syn
onyms, acronyms, etc., that are in the acceptable range of the

Feb. 18, 2010

individual switches. The output from the Tolerator is then sent
to the Posit Block Collector module 118.
0.122 The Tolerator module takes as input the output of the
Normalizer 115 and populates, if needed, any tolerance data,
including all lookups of data stores such as a thesaurus. The
number of tolerances Supported by search engine varies by
implementation and may include: synonym, antonym, hom
onym, abbreviation, capitalization, punctuation, synonym,
frequent misspelling, Stemming, boolean, duplicated term, a
number, numberusage, a formula, and etc. Tolerances that are
used in calculating this module occur in the fractional length
level and below functional scope.
I0123. This module determines the required expansion of
all data points that are impacted by tolerances. Its main output
is to indicate the range of acceptable matches by using a set of
integers. Tolerance ranges define the scope of the tolerance
when used in conjunction with the ST. In some cases, the
tolerance will operate only at a specific functional scope, so
no indication of range is necessary. With TU- and FL-level
tolerances, it is always necessary to identify, in posits, the
start and finish of the range for which the tolerance applies.
0.124. The posit range is indicated by subtracting the pos
ity from the positx (last member in range from 1 member in
range). If this result is zero, then the TU-level scope applies
and the tolerance is treated as a TU-level tolerance. If this
result is greater than Zero, then the FL-level scope applies and
the tolerance is treated as a FL-level tolerance. The Input
Interface 105 only needs to describe the range in terms of
posits in the ST. The value of the tolerance may be time based,
and may occur depending on the individual tolerance, in any
FL.
0.125 Synonym and other lookup tolerances (e.g. stem
ming, acronym, etc.) occurat run-time based on the ST, so the
output from the Normalizer indicates that a lookup is neces
sary. The value is changed by the Tolerator so that the level
indicated by the lookup is returned for each item in the lookup
that is related. Boolean tolerances are done in the RealTime
Search component 103 exclusively, since it requires input
from the Input Interface. The TUD is checked when the
ST=TUD for a given document. The capitalization, punctua
tion, and other such tolerances are set at Pre-Search for an
implementation.
0.126 The set of tolerances that are used in the Tolerator
are broken down into three functional levels, and these are the
constraints in which they operate. Character-based tolerances
operate at the character (or letter/symbol in language) and
depending on the type of character, the system reacts differ
ently. The tolerances that function in this scope are punctua
tion, capitalization, wildcard, and other such tolerances. The
TU functional scope is simply the TU itself. The FL is a group
of TUs that operate together. Therefore, the FL is a superset of
TUs. There is usually an associative relation between a TU
and a FL in several of the tolerances; in fact, they have the
same types of tolerances that operate on them. These include:
Boolean, synonym, acronym/abbreviation, TUD, and others.
The type of tolerance is based on the functional scope and
therefore affects how the grouping value is calculated with the
ST array. If a tolerance is to be applied at the FL level, this
means that the input string contains the breaks where the
tolerance should be applied or a lookup indicates that an FL
grouping is necessary for equivalence.
O127 Filter Module 116
I0128. The ISet, or searchable universe, is passed through
the Filter module 116, which removes any documents with

US 2010/0042603 A1

non-compliant attributes from the ISet and passes the remain
ing ISet members to the Posit Block Collector module 118.
Note that this module is optional.
0129. This module removes documents that do not match
the document scope variables in the inputer search criteria.
Common uses may be to exclude documents that do not have
the correct date, are not in a required file format (Such as doc),
topic, etc. This is a simple comparison, and if the comparison
is false the document is eliminated from consideration. Only
documents that pass through this module are processed.
Another function of the Filter is to communicate with the
Cacher 113 for the actual index files that are required to be
loaded. If no cacher is used, then the Filter must be able to
read index files and perform its necessary operations and
outputs. The output of this module is the unique document
structure that is sent to the Posit Block Collector 118.

0130. The number of criteria used in the filtering process is
based entirely on the number of document scope variables
supported by a searchable universe. However, a variable num
ber of document scope variables will be available on a docu
ment-by-document basis. Therefore, some documents will
not contain a filterable value or values. The handling of this
condition is a binary operation, and can be changed to Support
any implementation. The default is that a no value condition
passes that particular filter test. If a document passes all the
filters, then it is put into an structure format that is the only
information required to perform all RealTime Search opera
tions.

0131 Posit Block Collector 118
(0132) The Posit Block Collector 118 determines which of
the remaining documents meet threshold requirements. The
posit block module eliminates any out-of-bound ISet mem
bers by, primarily, determining TU thresholds and creating a
full posit block matrix. In addition, the preliminary document
threshold (docT) is determined and used to prevent unneces
sary processing of documents not meeting the threshold. The
output of the Posit Block Collector 118 is a set of integers that
indicate the full scope of the acceptable ISet members, and is
provided to the Refiner module 119. A matrix may be imple
mented as a dynamic structure like a linked list or a tree as
well as a simple array.
0133. This module performs several functions, namely TU
threshold; initial document threshold (docT) determination;
and PB builder. One input used by the module is the ST array
from the Normalizer 115. Other data is received from the
Filter. After initial reception of data from the Filter for a
specific SRID, the module must hold all such data until no
more documents exist for that SRID. This is necessary to
begin initial docT determination (IDD), which comprises
three parts, namely create a multipart strata, randomly group
the documents in the strata; process each document in the
group and afterwards, receive a docT initial value.
0134. The docT initial value is used in the TU threshold,
which determines if all the TUs in the ST are in the document;
and if they are not, then the document is eliminated. The TU
threshold is impacted by tolerance encoding. Therefore, the
tolerances set in the Tolerator affect the outcome of this
process. The TU blocks from the index are the only data
stored from this point on. The remainder of the indexed ISet
member is no longer necessary, and the document structure is
reformed with only the pertinent parts. The docT score may
change over time after the initial docT document set has been
processed.

Feb. 18, 2010

I0135). Note that the TU threshold is impacted by tolerance
encoding. Therefore, the tolerances set in the Tolerator affect
the outcome of this process. The TU blocks from the index are
the only data stored from this point on. The remainder of the
indexed ISet member is no longer necessary, and the docu
ment structure is reformed with only the pertinent parts. If the
TU threshold output does not contain enough raw material to
meet the docT threshold, then the file is eliminated. The docT
is established usually on a random sampling of document
before it can be set, if docT is used. Once it is established, the
docT initial value is used in the TU threshold, which deter
mines if all the TUs in the ST are in the document; and if they
are not, then the document is eliminated. The docT score may
change over time after the initial docT document set has been
processed.
0.136 The following is a list of equations for the docT
filtering operations that occur for different search types.
These indicate whether or not a document should be pro
cessed based on its potential maximum relevance score.

If(k6)(N107)X.7x107(k2)(N107)+(k8)(N107)X7
N107 (k4)(N103) divided by RC21, then continue,
else stop Equation 1. b-Fetch DocT Filter.

0.137 The above equation is used for b-Fetch type
searches. This search is further explained below. It is cur
rently preferable to have k2=1 to 100; k4=1 to 100; kó=2.5;
k7=0.5; and k8=0.034.

If(k4)(N105)X.svios (k2)(N105)) divided by
RC21, then continue, else stop Equation 2. e-Fetch DocT Filter.

0.138. The above equation is used for e-Fetch type
searches. This search is further explained below. It is cur
rently preferable to have k2=1 to 100; k4=0.5; and k5-0.5.

If(k7)(k8)(k2)(N106)(N106) divided by RC21,
then continue, else stop. Equation 3. f-Fetch DocT Filter.

0.139. The above equation is used for f-Fetch type
searches. This search is further explained below. It is cur
rently preferable to have k2=1 to 100; k7=0.5; and k8=0.5.
0140. If passed by the docT filter, the document is ready
for the PB builder. This refers to the intervals of posits that
contain the ST within the constraints as indicated by the TOS.
There is an exact correlation in the e-Fetch between the ST
and the ISet member required; b-Fetch uses the N101 con
straint only; the f-Fetch has several different constraints that
are applied. The f-Fetch requires that the constraints for
N108, N109, and N110 be calculated during the PB creation.
The max length of the PB for the f-Fetch is set based on the
size of the ST and the possibility of N110. If N110 is found to
possibly be true, then the max size of the PB would be ST3.
If N110 is not found to be possible, then the max size of the
PB is ST2. N108 and N109 therefore affect the size of the
PB. If they cause the size of the PB to exceed the maximum
size, then the PB is invalid. If all PBs are found to be invalid
by this process, the document is eliminated. The TOS is a
qualifier, and therefore has no direct constraint effect. The
r-Fetch, however, does impact the formation of PBs based on
the structure indicated, such as column break or row break.
0.141. The PBS should process the tolerances to determine
what PB is the strongest case. The general rule is the longer
the PB and the more repetitions it contains within the correct
TOS constraints, then the better it is. If there is a tie, then the
original ST should be used. For instance, the original ST term
has the strongest value, unless the BOOLEAN OR is true (in
that case, both have the same value). For the synonym and
other TU and FL functional-scope tolerances, the tolerated

US 2010/0042603 A1

terms are only considered if only tolerated terms are left in the
potential PBS. The highest scoring tolerance is then consid
ered the final PB. Only one PB per ISet member length is
returned by this module.
0142. The output of this module is the refinement of the
document structure such that all the PBS that are required for
processing are now stored. All other modules will use the PBS
for the remainder of processing.
0143 Refiner Module 119
0144. The Refiner module 119 is used to perform combi
natorial search functions, set the ISet length corrector, calcu
lates the docT, and operates as a transfer agent for information
passed to the Processor module 120.The ISet length corrector
(ILC) normalizes the relevance scorers for ISet universes that
contain variation in the number of posits found for an ISet
member. The Refiner module 119 also receives information
after the Processor module 120, operates on the information,
and then passes the refined information to the Aggregator
module 121.
0145 The Refiner module receives each document from
the Posit Block Collector 118, and performs several func
tions, namely handling structural elements of a document;
passing the document to the Processor, checking the return by
running the r-Fetch, if structured; calculating the ISet length
corrector (ILC) if required; and calculating the docT.
0146 For structured documents or structured segments,
the r-Fetch process must be run to align the PBS so that the
Processor receives the correct information; otherwise, the
intermediate output of this module is the document's PBS
which are sent to the Processor module. Once the document is
returned from the Processor, it has an initial relevance score
that must be refined under the following conditions. If a
document is largely unstructured but contains structured seg
ments, such as a table, then those segments need to be pro
cessed afterwards by the r-Fetch to get the final relevance
score. All structured documents must be processed by the
r-Fetch to get its relevance score.
0147 Depending on the length of the document, the ILC
may be required to refine the relevance score to adjust for
length discrepancies that affect Smaller, yet more relevant,
documents. A weighing factor is used to make this adjustment
after the Processor provides the initial relevance score. Also,
depending on the stage at which the documents have been
passed through the Refiner, it may be necessary to calculate
an initial docT or recalibrate a current docT if the trigger has
been met.
0148. The ILC equation is used when the document's rel
evance as a whole (not just the MRPs) need to be considered.
Since the equations are independent of document size, the
ILC is used to introduce the document size as part of the
relevance score. Therefore, the ISet size (i.e., the number of
posits) is related to the MRP size in posits. The ratio is used to
determine this relation MRP posit length/ISet posit length.
The closer the ratio approaches one, the larger the increase on
the final relevance score. The closer the ratio approaches Zero,
the larger the decrease on the final relevance score. The ILC
equation is expressed as the following:

(MRP Posit Length/ISet Posit Length)*relevance
score=ILC relevance. Equation 4. ILC Equation.

0149 Hence, all documents are passed through the docT
filter based on relevance score only. If the document equals or
exceeds the docT score, then the document is sent to the
Aggregator module. If it fails, it is removed from processing.
On the initial docT filter calculation, the documents may be

Feb. 18, 2010

pruned in the Aggregator, if required by an implementation.
MRPs may also be scored individually and ranked/grouped.
The docT may not be used when MRPs only are required.
0150. Processor Module 120
0151. The Processor module 120 communicates to and
from the Refiner module 119, and computes the NSet values,
relevance scores, and the most relevant parts (MRPs) for the
search. After the Processor module 120 completes its func
tions, its output is sent back to the Refiner module 119.
0152 This module takes as input the PB lengths for a
document as assigned by the Refiner, along with the qualifiers
to the PBS that are contained within the document structure.
Other elements within the document structure are ignored by
this module. The Processor calculates the actual determina
tion of relevance of the basic TOS (e.g. f-Fetch, e-Fetch, and
b-Fetch) using a set of numbers (NSet). This is completely
numeric and is independent of Comm ID, the ST size, or other
text that comprise the searchable universe. The NSet is used to
calculate the relevance scores and create the MRPs. The out
put is the relevance score plus the MRPs, in order from
strongest to weakest, of each document or structured docu
ment or segment. However, the relevance score may be pro
cessed on a PB by PB basis and therefore the output is only the
score for the PB. This is especially true of structured docu
ments. The Refiner would aggregate these results if document
relevance is required.
0153. The NSet is calculated based on the values in the PB,
as well as the quality of the PB, based on the TOS value. The
NSets represent a set of constraints that are necessary to
process the TOS. Each TOS has a unique set of NSets that
establish the grammatical/syntactical relations that exist. The
tolerated members of the PB are assigned a weighting factor.
Any repetitions or even an entire PB may be eliminated if the
NSet calculations show that some constraint for that TOS has
been violated.

0154) Once the NSets are calculated, then the MRPs can
be created. These are also directly derived from the NSet
calculations and indicates the largest relevant grouping of
repetitions within a section of a document. Based on NSet
value, the MRPs can be put in order from strongest to weak
est. The number of MRPs that can be returned can vary based
on implementation requirements; some implementations
may choose not to return MRPs at all.
0155 The final relevance score is determined using the
equations for each individual TOS. All relevance is calculated
at System runtime, as each relevance score is based entirely on
the NSet and MRPs that were found for the document and is
calculated on a document-by-document basis. The Processor
outputs the relevance score and the MRPs, if required, to the
Refiner.

0156 All relevance determinations in the search engine
are based on a constraint model. A constraint refers to the
length, usually in term units, of a given number set (NSet)
member, such as N10x (where “x' is a variable depending on
the specific TOS being referenced).
(O157. There are three basic types of NSet constraints. The
first is the length of the TUs that comprise the ST within an
ISet member. This length is variable based on the ST. For
instance, the user may be looking for a paragraph in the ISet
universe or he may simply be looking for the occurrence of
the term unit “dog”. The second is the length that comprises
the occurrences of the repetition within a grammatically
based limit. The third is the length that comprises the minor
interval-constrained TU occurrences within a grammatically

US 2010/0042603 A1

based difference. Note that other constraints may be used to
further refine the ST and/or the ISet member. Each TOS has a
set of internal constraints. The Combinatorial searches also
have a set of constraints that are independent of the basic
TOS. In addition, there are a set of constraints that vary based
on implementation, Such as the use of acronym callouts or
document duplication (either in whole or part). These are
referred to as “tolerances” and area special case of constraints
within search engine, see the discussion of the Tolerator 117.
0158 Aggregator Module 121
0159. The Aggregator module 121 collects all the infor
mation about one or more ISet members and places the infor
mation in a single location for output, including the MRPs,
document attributes, ranking, etc. The Aggregator module
121 may be a single-location data store, or may comprise a
hierarchical chain of data stores, particularly if multiple
instances of search engines or several data stores are operat
ing together on one or more servers. If MRPs need to be
translated back into the original language, then MRP decod
ing may take place in this module. Multiple networks may use
separate aggregators to maintain separate indexes and real
time search components and still have a single aggregation
point, if necessary, based on user or application needs.
0160 This module usually receives the information from
the Refiner on a document-by-document basis, as well as the
current docTafter a change to the docT has occurred. If only
MRPs are required, then each MRP and required character
istics are used. The Aggregator's purpose is collect, as a
single-location entity or as a hierarchal chain, all the infor
mation about an ISet member and place it in a single location
for return to the calling interface along with the MRPs. It then
aggregates and sorts the documents, so that they may be
processed for the user. The relevance scores may be used to
sort documents. The MRPs may also be sorted in this manner
if required for an implementation.
0161 Each item (MRP or document) is placed in sorted
order based on the relevance score. If there is a tie, then the
modified date, alphabetical document address/name, or other
criteria may be used. The sort is typically from the most
relevant (highest score) to the least relevant or those equal to
the docT. When the docT is changed, it is sent to the Aggre
gator. Any documents that do not meet the docT are elimi
nated. The documents received by the Aggregator pass the
refiner's docT filter at the time the docT had a specific value.
If that changes, then the Aggregator should filter the results.
After the entire ISet has been processed, and all final docu
ments have been sent to the Aggregator, the sort is complete
and the documents are sent to the Returner for final process
ing.
0162 The optimal return type tolerance is processed by
the Aggregator and measures the quality of ST, also known as
search differentiation. This allows the user or return system
gauge a ST for a specific ISet at locating specific information.
If a term is differentiated, it means there is a high variance in
the score of each document with respect to the entire index
set. If a term is not differentiated, it means there is a low
variance in the scoring of each document with respect to the
entire index set. The calculation of differentiation done by the
return type always depends on the relevance scores. This
however, does not measure the actual score, so a high scoring
term across the ISet may be poorly differentiated. The return
type may be presented in the Returner as a graphic or as a text
or not shown at all; in addition, the return type can be used to
trigger other searches.

Feb. 18, 2010

0163 The output of the Aggregator is the return document
structure in sorted order, sent as blocks of data to the Returner
module 122 for formatting. In some implementations, MRP
decoding occurs in this module, see the discussion in the
Returner module 122.

0164 Post-Search Component 104
0.165. The Post-Search component 104 comprises the
Returner module 122, which after receiving the RealTime
Search results, puts the information in its final form, such as
in a web page. The information in the correct form is then
returned to the Return Interface 106.

0166 Post-Search operates when the RealTime Search
component 103 has outputted its results and the data now
needs to be put into the correct format and returned to the user.
This is after the results are known, and the correct format and
shipment to the individual user or system needs to be deter
mined and completed. The operations of this component are
complete when the user or system Successfully receives the
results.

(0167 Returner Module 122
(0168 The Returner module 122 receives the final form of
the document structure in order from the Aggregator 121. For
each SRID, the return form variable is set. Data is moved into
the return form, and not all fields from the document structure
need to be used. As soon as the first return screen or other
initial interface is formed, it is sent to the Return Interface
106.

0169. The Returner requires the some information in order
to correctly write a form, namely an output file format, Such as
HTML, custom application format, etc. or even raw text, and
data points that to be inserted into file format, such a shell
HTML file that contains paragraph tags to properly insert
MRPS.

(0170 Note that the drill down tolerance allows searchers
to search within results using any criteria, but retaining
enough information about the first search to make the second
search effective. There are two basic choices, namely an
unrelated drill down with respect to score, or a related drill
down with the scores being compared as part of the result
processing.
0171 It is possible to either store the original search
parameters or to store the original document addresses, in
order. This leads to the required parameters that must be
processed by the Returner for correct form to send back to the
Return Interface since the Returner does not maintain state
information. These parameters are the docIDs of all returned
documents in order, as well as the relevance scores for each.
The basic idea is that a set of documents need to be acted on,
so the PBS and other information from the first search is not
required, only the docID (address) is necessary to run the
Filter module 116 for documents. Documents would need to
be read again from the Cacher in Some implementations.
(0172. Note that MRP decoding may be performed by the
Returner or the Aggregator. MRP decoding is a conversion
from windex to TU. It requires the matching windex set for
each MRP, which is stored as part of the return, and the MRPs.
Each MRP is converted by reading the each windex value. All
required information for the MRPs, including punctuation
and capitalization, if required by an implementation, is
returned. Depending on other specialty indexes, such as the
findex, which stores formatting information; these may also
be called during MRP decoding.
(0173 Return Interface 106

US 2010/0042603 A1

0174. Note that in the embodiment shown in FIG. 1, the
Return Interface 106 is not part of the Post-Search component
104, but is discussed here for illustrative purposes. Other
embodiments may have the functions of the Return Interface
106 internal to the Post-Search component 104 or combined
with the Returner module 122.

(0175. The function of the Return Interface is to provide a
way for the user to observe the results of the operation of the
search engine for a desired search term. As with the Input
Interface, specific interface designs are subject to the needs of
a given implementation. For illustration purposes, FIG. 8
depicts an example of a Return Interface 106 showing the
MRPs for each ISet member that meets the search criteria.
Note that the interface may be a GUI. FIG. 8 also depicts the
options of performing a sub-topic search based on the infor
mation contained in the discovered ISet member's MRPs or
entering a new search term.
(0176)
0177. The main focus of the search engine is the search
intersection of the search terms and the ISet members. The
following equation describes the basic Search function, rep
resented as an intersection:

Searching

STnISet"

0178. This equation reflects that searching is a binary
operation. The first term of this equation is the search term or
ST, which is the user-entered string (i.e., search set). The
second term is the ISet, which is the set of terms that comprise
the range (“n”) of the search universe that is assessable to the
user, and where the required scope of the search based on user
input is determined. An ISet member is a single instance of a
document or other source in the searchable universe. The
intersection of the ST and ISet represents the results of the
search, namely documents that contain the search terms or
variants thereof.

(0179 There are several types of search (TOSs) that can be
performed on the search engine. A user can condition the STS
with respect to a desired level of grammatical and/or syntac
tical usage. As described herein, there are three types of basis
searches and there are two types of combinational searches.
However, the search engine may be configured to operate
with other types of searches.
0180
0181. There are three basic types of searches, namely a
Bucket Fetch or b-Fetch, an Exact Fetch or e-Fetch, and a
Flex Fetch or f-Fetch. A basic TOS is an expression of the
intersection between the ST and ISet member at its most
fundamental level. The intersection has a grammatical or
Syntactical element, that is reflected in how the constraints,
intervals, and relevance equations are derived. Even if the
ST's grammatical/syntactical value is not required to count a
repetition of the ST, it is used to refine the posit block array
(PB) intervals, and the strength of the ISet Member in the
relevance equation.
0182 Bucket Fetch
0183. A Bucket Fetch or b-Fetch TOS, is the end-user
request for the retrieval of all searchable documents contain
ing the ST in whole, in any TU order, or in any TU position.
The search term may contain one or more TUS to an unlimited
number of TUs. The search engine returns only those docu
ments containing at least one appearance of each TU or those
that meet the required docT, in a form where they may be in
exactly the same TU order and TU position as in the original

Equation 5. Basic Search.

Basic Searches

Feb. 18, 2010

ST or they may be in any TU order or TU position relative to
the original ST. Note that a Bucket Fetch has no constraints
associated with it.

0.184 For example, consider the search terms ST="dog
went store'. Each ISet member must contain all the TUs
comprising the ST regardless of TU order or TU position to be
considered possibly relevant. Thus, a document containing
“The store manager keeps a dog on guard at night after a
burglar went into the store' is an example of an acceptable
return for a Bucket Fetch.

0185. Equation 6 defines the b-Fetch relevance score asso
ciated with each returned ISet member.

0186 The following table describes the constraints (k) in
b-Fetch Equation 6.

TABLE 1

Constraints in b-Fetch Equation 6.

k1 Function that varies with occurrence of N101 TUs
k2 Function dependent on ST tolerance
k3 Numeric constant based on N101 and N103 minor interval

constrained TUs
k4 Function dependent on Fractional Length and TU layers
k5 Function that varies with occurrence of N101, N102, and N105

TUs and TU sets

0187. It is currently preferable to have k1=5; k2=1 to 100:
k3=0.067, k4=1 to 100 and k5=a minimum of 2.
0188 The following table describes the terms used in
b-Fetch Equation 6.

TABLE 2

Terms in b-Fetch Equation 6.

N101 Number of minor-interval constrained TUs within ISetM length
N102 Number of TU sets within minor ISetM intervals
N103. Number of non-constrained TUs within minor ISetM intervals
N104 Number of major-interval constrained TUs within ISetM length
N105 Number of minor interval constrained TUs within major ISetM

intervals
N106 Number of non-constrained TUs within ISetM length
N107 Number of TU sets within ISetM length

ISetM = ISet Member

(0189 Exact Fetch
0190. An Exact Fetch or e-Fetch TOS is the end-user
request for the retrieval of all searchable documents contain
ing the ST precisely as entered, including STTU order and ST
TU position. An Exact Fetch TOS is used to locate a precise
match of the ST in the searchable ISet. It may contain from
two to an unlimited number of TUs. The search engine will
returns those documents containing the precise ST, meaning
whose content and functional words are in the precise TU
order and precise TU position as in the original ST.
0191 For example, consider the search term ST="the dog
went to the store'. Each ISet member must contain exactly
this term in this exact TU order and TU position to be con
sidered possibly relevant.

US 2010/0042603 A1

0.192 Equation 7 defines the e-Fetch relevance score asso
ciated with each returned ISet member.

0193 The following table describes the constraints (k) in
e-Fetch Equation 7.

TABLE 3

Constraints in e-Fetch Equation 7.

k1 Function that varies with occurrence of N101 TUs
k2 Function dependent on ST tolerance
k3 Function that varies with occurrence of N101, N102, and N104 TUs

and TU sets

(0194 It is currently preferable to have k1=2; k2=1 to 100:
k3=a minimum of 2.
0.195 The following table describes the terms used in
e-Fetch Equation 7.

TABLE 4

Terms in the e-Fetch Equation 7.

N101 Number of minor-interval constrained TUs within ISetM length
N102 Number of TU sets within minor ISetM intervals
N103 Number of major-interval constrained TUs within ISetM length
N104 Number of minor interval constrained TUs within major ISetM

intervals
N105 Number of TU sets within ISetM length

ISetM = ISet Member

0196. Flex Fetch
(0197) A Flex Fetch or f-Fetch is the end-user request for
the retrieval of all searchable documents containing the ST
within a range of TUs that include either 1) ST constrained
TU-position interruption and/or 2) constrained STTU-order
inversion. These constraints involve ST augmentation by
either one or more other content TUs (CTUs) and/or func
tional TUs (FTUs), both within and external to the ST.
0198 For example, consider the search terms comprising
the phrase “small engines” and the search returns “small
gasoline engines', 'small diesel engines', 'small economical
engines”, “engines that are Small', etc. "Engines' may be
modified by insertions such as "gasoline' and “economical'.
but does not contain nongrammatical or syntactical number
of them. Note that insertions become nongrammatical based
on number when they exceed the number of terms in an ST.
thereby not representing a relation. The use of inversion is
also correctly constrained, and thus each of the returns pre
serves the integrity of the ST. Furthermore, the output always
contains all the CTUs of the ST, although it may contain other
TU(s) within its first and last terms (i.e., between “small' and
“engines”), or it may be separated into two or more relevant
parts, only if inversion is true.
0199 As another example, consider the search terms
ST=“the dog went to the store'. Each ISet member must
contain these terms, either as Stated or as in “the dog went into
the store' or “the dog Cody went into the department store’
for the ISet member to possibly be relevant. The order and
position may change, but are constrained by the rules of the
grammar and/or syntax of the language to prevent nongram
matical variations from occurring. Another example illus
trates this. Consider the search terms ST="bluejacket'. Each

Feb. 18, 2010

of the following ISet member extract would be considered
nearly equivalent or equivalent: blue jacket, blue denim
jacket; jacket in blue. In each case, no grammatical rules were
violated. Note that a search engine user would not have to
specify any closeness between term units nor any other con
ditions. This would be handled by the search engine by its
grammar-embedded functions.
0200. As shown by the above examples, the search term
should contains at least one CTU and may contain two or
more CTUs, and/or it may contain one or more FTUs. All
CTU members of a search term are considered “keywords'
(KWS) for the purpose of searching. In most languages,
including English, a TU is any set of characters (e.g., words)
or symbols separated by a space.
0201 An insertion is when a PB contains one or more
other FTUs or CTUS both within and external to the ST. The
insertions are restricted to a set of grammatical or syntactical
constraints, as well as the size of the ST. These are always
determined at runtime, so no set values are required as either
part of the input. Inversion is described as the change in FL
whereby the last KW of the FL. occurs in the previous FL. This
means that if the ST contains only one FL originally, the ISet
member would have two FL. For example, ST=“the Siberian
husky', and the inversion is “the husky of Siberian... =ISet
member. Note that the TU “husky” occurs in the previous FL
and the remaining TU (in this case, just Siberian) occur in the
next FL.
0202 Equation 8 defines the f-Fetch relevance score asso
ciated with each returned ISet member.

0203 The following table describes the constraints (k) in
f-Fetch Equation 8.

Equation 8. f-Fetch.

TABLE 5

Constraints in f-Fetch Equation 8.

k1 Function that varies woccurrence of N101 TUs
k2 Function dependent on ST tolerance
k3 Function that varies with occurrence of N101, N102, and N104

TUs and TU sets
k4 Function that varies with occurrence of N108
k5 Function that varies with occurrence of N109
k6 Function that varies with occurrence of N110

(0204. It is currently preferable to have k1=2; k2=1 to 100:
k3=a minimum of 2, k4=0.25, k5=0.50, and kó=0.75.
0205 The following table describes the terms used in
f-Fetch Equation 8.

TABLE 6

Terms in f-Fetch Equation 8.

N101 Number of minor-interval constrained TUs within
ISetM length

N102 Number of TU sets within minor ISetM intervals
N103 Number of net fractional interval constrained TUs

within ISetM length
N104 Number of major-interval constrained TUs within

ISetM length
N105 Number of minor interval constrained TUs within major

ISetM intervals

US 2010/0042603 A1

TABLE 6-continued

Terms in f-Fetch Equation 8.

N106 Number of TU sets within ISetM length
N108 Number of fractional interval constrained non-ST-split

TUS
N109 Number of fractional interval constrained ST split TUs
N110 Number of fractional interval constrained inverted TUs

ISetM = ISet Member

0206 Combinatorial Searches
0207. There are two types of combinatorial searches,
namely a Record Fetch or r-Fetch, and a Topical Fetch or
t-Fetch. These searches add information that is necessary to
process an SR that is outside the scope of the ST. In general,
these searches condition the ISet members so that the SR can
be properly processed. Note that other combinational
searches may be performed with the search engine, such as a
Query Fetch or q-Fetch, and a Multi-Media Fetch or m-Fetch.
0208 Relational Fetch
0209 A Record Fetch or r-Fetch is a request to analyze
structured documents or segments of documents that are
structured. A structure in this context refers to the grouping of
words, either by a column definition (as in a database), or in
a columnar or row fashion with a loose (unenforced) relation
(as in a word processing table). Such delineations in the text
mean that the grammatical relations are bounded not by the
inherent grammar but by the length of a column or row. In an
unstructured document, no such restriction exists. An
unstructured document has no inherent relations indicated by
any form, so the document is only analyzed for its grammati
cal and/or syntactical attributes using the basic TOSs. The
r-Fetch restricts the basic TOSs and constrains them to run
within the correct lengths as indicated by such a structure. The
r-Fetch is also used to rank both structured, unstructured
documents with structured segments, and unstructured docu
ments so that both can be properly compared.
0210 Equation 9 defines the r-Fetch relevance score asso
ciated with each returned ISet member.

0211. The following table describes the constraints (k) in
r-Fetch Equation 9.

TABLE 7

Constraints in r-Fetch Equation 9.

k1 Function that varies with occurrence of MRPs
k2 Function that varies with occurrence of N104
k3 Function that varies with occurrence of N105
k4 Function that varies with occurrence of N106

0212. It is currently preferable to have k1=a minimum of
1: k2=0.75; k3=0.25, and k4=0.50.
0213. The following table describes the terms used in
r-Fetch Equation 9.

TABLE 8

Terms in r-Fetch Equation 9.

N101
N102

RC Score
Number of PBS in the ISetM or ISet member Length

17
Feb. 18, 2010

TABLE 8-continued

Terms in r-Fetch Equation 9.

N103 Number of MRPs in the 'PB
N104 Number of Primary keys in the i? MRP of the PB
N105 Number of Foreign keys in the i' MRP of the " PB
N106 Number of Group keys in the it MRP of the PB

ISetM = ISet Member

0214) Topical Fetch
0215 Topical Fetch is a combinatorial-discovery type of
search that assigns topics to sections or entire ISet members.
At the beginning, the Topical Fetch functions at the ISet
member level, and therefore a set of functions is performed on
the document before any combination is possible for a higher
Scope. First, all windex values for the document are analyzed
to determine if they can pass the topical filter, which removes
noise TUs from the windex values of the document. The
topical filter contains the entire set of FTUs for a specific
Comm ID as well as a set of CTUs. A sample list of such
CTUs are listed below; these are also affected by the potential
data store used by as well as requirements for a specific
implementation as well.

TABLE 9

Sample List of Noise TUs.

He
Hers
Him
How
f
inasmuch
S

t
its
meanwhile
Ot

much
must
Ole

not
other
others
ought
OS

shall
she
should
Such
than
therefore
theirs
them
then
they
thus
throughout

US 2010/0042603 A1

TABLE 9-continued

Sample List of Noise TUs.

till

Were

whatsoever
when
whichever
whoever
whomever
whosoever
would
you
yours

0216. Once the noiseTUs are filtered out, then a frequency
analysis may be run with the remaining windex values to
determine the most used TUs in the document. Note that this
frequency analysis is optional. There are several ways to run
frequency tests based on mathematics. The output varies
based on the size of the document and the range of topics
present in a document. After filtering the noise TUS and a
frequency reduction, if implemented, the output is the set of
single-TU potential topics.
0217 Note that if any tolerances are used by an implemen

tation, they are usually incorporated at the beginning. For
instance, if a synonym or Stemming tolerance is used with the
Topical Searcher, then it is necessary to group such terms with
their parent single-TUtopic. This is usually done by the use of
a data store Such as a thesaurus or a project dictionary, which
is used to find the terms that are considered to be near the TU,
and stored accordingly as a part of the windex value set to be
used for the remainder of the analysis.
0218. The potential topics and their associated posits must
be collected. This information is used to calculate the initial
TIs that are possible with the single-TU topics. The TI for
mation is based on Comm ID, and uses the following process.
Each instance of a potential topic is measured in posits from
one another to form a topic cluster (TCL). A TCL has, in
English, between 80 to 350 posits between its end points,
based on Comm ID. The TCL can grow so long as each
instance is inside this constraint. If a TCL is closed, then it is
possible a topic cluster group (TCG) can be formed, so long
as there is another TCL as the TCG’s endpoint. Thus, a TCG
requires tow TCLs as endpoints in order for its formation. The
TCG interval between two clusters is a multiple, in English,
between 2 and 5 of the TCL, again based on Comm ID. ATI
is either a TCL or TCG, depending on the maximum length
possible. Note that the entire set of posits for a specific windex
may form one or more TIs based on the constraints imposed
above.

0219. Once the TIs are formed, then they are overlapped to
determine the basic posit relations that exist. An overlap is a
binary operation that refers to the relation between a TI and a
neighbor, e.g. its immediate successor, based on the starting
posit for each TI. The overlap condition occurs when the two
TIs have posits in common. In other words, the TIs are sorted
based on the beginning posit from Smallest to largest with
respect to their order of appearance inside the document.
Overlaps also serve a constraints, where an overlap ends
when two consecutive TIs do not share any posits in common.
The endpoints of an overlap are the beginning posit of the first
TI in the overlap and the ending posit of the last TI.

18
Feb. 18, 2010

0220. With the overlaps calculated, the multiple-TUtopic
determination occurs. It starts by establishing the maximum
length of a topic for a Comm ID. Then, there are modified
constraints based on thef-Fetch TOS that are used to establish
the maximum length of a frame. A frame refers to the total
number of posits in order that are examined for the multiple
TUtopic. A frame's endpoints can be compared to the number
of single-TUtopics that occur within the frame, subject to the
constraint that, if no inversion is true (e.g. all remain in the
same FL), the number of insertions cannot exceed four times
the number of single-TU topics. This is expressed by: (4)
(single-TUtopics/frame). If the no inversion condition holds
true, then the starting and ending posits must be checked to
make Sure that the maximum length is not violated. An inver
sion occurs when there are two adjacent FLS, where the first
adjacent FL contains a single-TUtopic and the second adja
cent FL contains at least one single-TUtopic. Subject to the
multiple-TU constraints. There may be other rules associated
with this, depending on the Comm ID. In English, the use of
FTUS is a requirement for an inversion. If an inversion con
dition is true, the maximum number of insertions cannot
exceed 50% of the number used for noninverted topics. Note
that noninversions are more restrictive than inversions. This
scalar is then multiplied by the number of single-TU topics
within the frame, expressed by: (scalar) (single-TU topics/
frame)+(scalar) (single-TU topics/frame). If the inversion
condition holds true, then the starting posit in frame 1 and the
ending posit in frame 2 must be checked to make Sure that the
maximum length is not violated.
0221) The resulting frame contains the multiple-TUtopic,
subject to any tolerances. Each frame that can be formed by
the single-TUtopics must be analyzed so that the total set of
multiple-TU topics can be found. It is possible that no mul
tiple-TU topics will exist. However, if tolerances are used,
then it is necessary to be able to determine ifa tolerated TU is
related to a single-TUtopic, and adjust the frame accordingly
or remove the frame if only one TU remains in the frame.
Such tolerances will operate on the overlap determined by the
single-TU topic constraint. After a frame has been analyzed
for both length, constraints involving insertions and inver
sions, and tolerances, then the frame can be considered a
multiple-TU potential topic.
0222. Once this set is established, it is usually necessary to
run a set of refinements called Multiple-TU Commonality.
This is usually necessary to remove spurious expressions of a
multiple-TU topic that do not occur within length or fre
quency conditions, such as the TCL boundaries. Multiple-TU
potential topics are examined by using their common charac
teristics, namely the number of TUs within the multiple-TU
topic, the frequency within an overlap or a document con
straint, and the position of repetitive elements. A repetitive
element occurs when in a binary comparison, most or all but
one of the TUs are in the same order and in the same position
in both multiple-TU topics. For example: if xyz is equal to
multiple-TU topic 1 and Xya is equal to multiple TUtopic 2.
then the repetitive elements are the subset (xy).
0223) A variety of tests based on these combinations can
be done, which can be tailored for a variety of implementa
tions. The basic tests are as follows. Comparisons of the
smallest possible multiple-TU topic for the Comm ID for
repetitive elements in more than one multiple-TU topics.
Next, comparisons using the generic form AB to ABC, where
the repetitive elements comprise all the TUs in the first term
and all but one in the second term. Also there are comparisons

US 2010/0042603 A1

using the form AB to AC to ABC, where the repetitive element
is the starting term, and the ending terms all occur in the last,
larger set (ABC). Lastly, the pivot test takes the form CAB to
CA to AB, where A is the pivot that links the smaller sets (CA,
AB) with (CAB), which is greater in size (number of TUs).
There are significant variations to these basic tests. In general,
tests should be run from the Smallest set comparisons (num
ber of TUS-2) to the largest set comparisons (maximum
number allowed).
0224. An optional modifier reduction may be necessary in
Some implementations. A modifier is a TU that cannot, for a
given Comm ID, be a single-TUtopic by itself or terminate a
multiple-TU topic. Some examples in English are: bigger,
additional, steamed, westerly, and reducing. These may be
removed from any potential single- or multiple-TU topics
remaining, if required by an implementation.
0225. When a multiple-TUtopic set has been established,

it is necessary then to remove it from the single-TUtopic TIs
any occurrences that form multiple-TU topics. This will
require an adjustment of the single-TUtopic TI, especially if
the multiple-TUtopic exists as an endpoint. Also, since it is an
independent operation, the multiple-TU topics must have
their TIs calculated. Note that any single or orphans of a
single- or multiple-TUtopic cannot form a TI. Once all such
TIs are calculated, then the density of the TI can be deter
mined by a simple count of the number of instances that form
the TI.
0226. Afterwards, the overlap is determined for the TIs
that are the final set of topics for the document. The overlap
works the same way as before, with the starting posit of each
TI used to determine the order within the document, and each
successive TI checked to see if any posits are found to be in
common. The final output is the final overlap values that exist
for the document. There is not limit to the number of overlaps
that can occur within a document. If any tolerances are used
Such as synonyms or Stemming in an implementation, then a
group assignment is necessary for each overlap that has been
found. This indicates the set of values that are related to the
final TIs for that overlap or section of the document.
0227. Once this has been done, then the topics can be
placed in a standard outline form using any standard lexico
graphic method known in the art, if required by an implemen
tation. Such topical information may also be written to the
index file as part of the ISet-Memberscope variable section or
assigned to corresponding posit values. This would contain
the overlap constraint, each TI's endpoints along with its
corresponding windex values (i.e., its topic identifier) under
that constraint, and the tolerance group values that relate to
the overlap constraint, if required by an implementation.

EXAMPLE

0228. The following example is used to show how the
search engine, according to embodiments of the invention,
operates to index a short document and then finds a search
term (ST) in the document using the index.
0229. Short Document names “test” and is comprised of
the text of “The quick brown fox jumped over a lazy dog. The
fox then ran away.”
0230. The search engine begins by acquiring the docu
ment is acquired by the system. English is the language of the
document. A parse is done to locate the TUs by using the TU
separator of the language; in this case, a space. The resulting
strings are further broken down to remove external punctua
tion, creating an initial matrix.

Feb. 18, 2010

The Matrix 1

quick

brown

Fox

jumped

OWe

lazy

Dog

The

Fox

Then

Ran

away

0231. The initial matrix is converted into a windex form,
whereby the TU are replaced with a numeric code using the
FTU matrix along with punctuation supported by the ASCII
characterset. Assume this is the first document being indexed
by the search engine, and that the CTU values start at 120.
Matrix 1 is thusly converted into matrix 2.

61 Matrix 2

120

121

122

123

52

124

125

87

61

122

126

127

128

87

0232 From this basic encoded matrix, an ST can be
entered by a user and processed by the invention. The storage
of this on disk can vary based on implementation. In this
simple example, Matrix 3 shows a preferred arrangement of

US 2010/0042603 A1

the index format, including any ISet member variables such
as document name. In this case, the document name="test'.
There are two basic blocks that are illustrated, namely an ISet
block and a windex or TU block. The string “test” is the ISet
block member. The windex block begins with the first occur
rence of the first TU in windex order, and underneath each
windex number contains all the posit numbers for that windex
number (a space indicates the end of the individual windex
block in the matrix). Implementation specific items such as
length counters have not been included so as to make the
index more readable.

Test 3 Matrix 3

122

7 4

12

52

6 123

5

61

1 124
11 8 128

15

87 125

10 9

126

120 13

2

127

121 14

0233. Matrix 3 contains all the information in a storage
mode. The ISet member variable is stored as a string for this
example; however, it may be encoded using a technique simi
lar to the windex.
0234. At this point, the basic information needed to con
duct searches is available. For this example, assume that a
user enters the search term “fox'. This is a single-TU entry,
and the b-Fetch is automatically chosen because of the size of
the ST.
0235. The ST is converted into the same format as matrix
3; in this case, that means that a windex value must be
assigned to “fox'. That value, as seen from matrix 3 is equal
to 122.
0236. The windex value 122 is compared to each docu
ment to determine its location. Forab-Fetch, the existence of
the value is sufficient, without any other constraint, to be a
potential document that is returned. In this example, only one
document is in the searchable universe. The comparison takes
place by using a modified binary search to locate the windex
value within the TU block. The windex value is found in this
document, and what is returned is the part of the document
containing this windex value, as well as any other TUS as
required by an implementation.
0237. The value 122 is found, and that indicates that the

first test, the TU threshold test, has passed. We will assume at
this point that the document threshold is equal to 1 for the
remainder of this example. Next, we need to construct a frame

20
Feb. 18, 2010

of 24 posits. The frame starts on the first KW. This is done to
determine the full extent of the PB matrix. In this example,
there are two occurrences of 122 in the frame of 24. Since the
document is less than the frame size, only one frame is pos
sible for the document. All the windex values from posit 4 to
12 are included in this frame since two KWs occurred. Again,
for this example, all other TUs that may be used to make up an
MRP for clarity have been eliminated. Again, the space indi
cates the break within the ISet member and windex blocks. In
this case, the following matrix is returned.

Test Matrix 4

52

87

10
125

122

12

123

124

0238. Once this has been done, the number of KWs found
is recorded as two. There are no orphans in this example as the
ST=1. There is therefore only one PB returned for this
example. The PB starts at posit 4 and ends at posit 12.
0239 Since there is only one PB, and since no refinements
or tolerances are required in this simple example, the Proces
sor can now process the equation. First, the PB indicates that
there are two KWs. Since the ST=1, this means that the
number of KWs=the number of N101 S.

0240 Next, the N103 number is true because there are at
least two KWs and they occur within a single PB of less than
or equal to 24. Since there are two N101s that occur within the
N103, there are two N102s.
0241. No other constraints are required, so the relevance
equation can then be processed. k2-1 since no tolerances are
required so no adjustment in score is required.

Rcb=(5)(2)(1)(2)=20

0242. Thus, the relevance score for this document is 20. If
other documents were available and matched, then this docu
ment would be ranked accordingly. The document and its
relevance is then returned to the user.

0243) Note that any of the functions described herein may
be implemented inhardware, software, and/or firmware, and/
or any combination thereof. When implemented in software,
the elements of the present invention are essentially the code

US 2010/0042603 A1

segments to perform the necessary tasks. The program or
code segments can be stored in a processor-readable medium.
The “processor-readable medium may include any medium
that can store or transfer information. Examples of the pro
cessor-readable medium include an electronic circuit, a semi
conductor memory device, a ROM, a flash memory, an eras
able ROM (EROM), a floppy diskette, a compact disk
CD-ROM, an optical dish, a hard disk, a fiber optic medium,
etc. The code segments may be downloaded via computer
networks such as the Internet, Intranet, etc.
0244 FIG. 9 illustrates Computer System 900 adapted to
use the present invention. Central Processing Unit (CPU)901
is coupled to System Bus 902. The CPU 901 may be any
general purpose CPU, such as an Intel Pentium processor.
However, the present invention is not restricted by the archi
tecture of CPU901 as long as CPU901 supports the inventive
operations as described herein. Bus 902 if coupled to Random
Access Memory (RAM)903, which may be SRAM, DRAM,
or SDRAM. ROM 904 is also coupled to System Bus 902,
which may be PROM, EPROM, or EEPROM. RAM903 and
ROM904 hold user and system data and programs as is well
known in the art.
0245 System Bus 902 is also coupled to input/output (I/O)
Controller Card 905, Communications Adapter Card 911,

Term

ACL

Bucket Fetch (b-Fetch)

Communications

Feb. 18, 2010

User Interface Card 908, and Display Card 909. The I/O
Adapter Card 905 connects to Storage Devices 906, such as
one or more of a hard drive, a CD drive, a floppy disk drive, a
tape drive, to the computer system. The I/O Adapter 905 is
also connected to Printer 914, which would allow the system
to print paper copies of information Such as document, pho
tographs, articles, etc. Note that the printer may be a printer
(e.g. inkjet, laser, etc.), a fax machine, or a copier machine.
Communications Card 911 is adapted to couple the Computer
System 900 to a Network 912, which may be one or more of
a telephone network, a local (LAN) and/or a wide-area
(WAN) network, an Ethernet network, and/or the Internet
Network. User Interface Card 908 couples user input devices,
such as Keyboard913, Pointing Device 907, and Microphone
916, to the Computer System 900. User Interface Card 908
also provides sound output to a user via Speaker(s) 915. The
Display Card 909 is driven by CPU901 to control the display
on Display Device 910.
0246 Note that the following glossary is intended to assist
the reader in understanding the material described herein. The
glossary is to Supplement to definitions, explanations, and
meanings provided herein, and is not to replace or otherwise
limit in any manner the terms used herein.

GLOSSARY

Definition

Access Control List used by network operating systems to
control access to share points and files.
A Basic Type of Search request used to find the Search
Term, comprising of 1 or more term unit(s), in a set of
documents regardless of term unit order or term unit
position.
“Communications refers to all manner of information
transfer, including but not limited to client-server, web
based and other systems. This is without regard to the
media (if any is required) for the information to be
transferred.

Communications ID (Comm ID) Identifies the grammar or syntax used at the time of

Computer

Constraint

Content TU (CTU)
DLen
Data Storage Device

Document

Dual Document

Exact Fetch (e-Fetch)

Findex

indexing, and it uses a set of FTUs to be identified and
stored. English is the default language.
“Computer refers to any entity that can process a
sequence of instructions, this is not limited to
conventional computing where Switching devices are used
at the lowest level. This includes all manner of digital and
analog computing, including optical, quantum, nanotech,
fluidic, pneumatic or other decision-making devices or
systems.
Result of a formation of an interval that cannot exceed
boundaries as set at runtime.
ATU that has a unique meaning(s).
Document Length.
“Data Storage Device'... Storage refers to any system
capable of storing and retrieving information, including
but not limited to all forms of magnetic, charge-storage,
quantum well, and optical storage.
Textual or database (e.g., table or array) information set;
See ISet Member.
An unstructured document that contains structured
segments, e.g., an embedded table or database.
A Basic Type of Search request used to find the Search
Term, comprising of 2 or more term units, exactly as listed
in the Search Term, without any change to their term unit
order or term unit position.
Operates at the TU, phrase, or section scope. It efficiently
encodes specific information about formatting that is
common throughout multiple ISet member instances (such
as bold, underline, font, border), making the storage of
such information more distributable.

US 2010/0042603 A1

Term

Flex Fetch (f-Fetch)

Fraction

Fractional Length (FL)

Fractional Length (FL) Layer
Frequency

Functional Scope
Functional TU (FTU)

Group

Group Layer
Index

Indexing

Information Category

ISet

ISet Length Corrector (ILC)

ISet Member (ISetM)
ISet Member (ISetM) Layer

ISet Universe

Most Relevant Part (MRP)

MRPDecoder

Order

Pindex

Posit

Posit Block (PB)

Posit Block (PB) Layer

Record Fetch (r-Fetch)

Relevance

Search Region

22

-continued

GLOSSARY

Definition

A Basic Type of Search request used to find the Search
Term within a range of term units that include either ST
constrained term unit-position interruption or constrained
ST term unit-order inversion.
A fraction is either a) a series of CTUs or b) contains an
FTU or FTU series then a single CTU or a series of CTUs;
it does not correspond to an English FL in definition.
The number of posits that occur starting wan FTU or first
posit of an ISet and ending withe last CTU that occurs
irectly before an FTU or the last posit of an ISet member.
The functional level constrained by an FL instance.
The number of times a STTU, FL, or entire set appears in
he ISet Member.
The level at which a function operates on a range of data.
ATU that contains no unique meaning, but provides some
type of information about another TU, usually a content
TU.
A portion of the SU that is grouped using some kind of
mechanism or filter, such as a set of documents that have
he same file type or are exist at the same network
ocation.
The functional level for group.
The index is the overall store of ISet Universe information
at potentially all operating scopes, depending on
implementation, in a searchable format that is efficient
and distributable. It include any number of Supporting
encoding schemes (such as Windex, Pindex, etc.). This is
itself a file format that can be used by any application.
Process of creating a usable set of data required for all
search functions, and may be used to replace original
Ocument.

The highest level of a topic that occurs with an ISet
Member, group, or universe.
Information Set representing the searchable documents
hat meet the search region and file filter restrictions for a

search (see 'search region).
The process that normalizes relevance scores for
ocuments of varying lengths (DLens).
A single Subset of an ISet.
The functional level that processes data for the entire ISet
Member instance.
All documents that constitute the total searchable
ocuments in an information repository (e.g., data store).

ISet segment(s) containing the ST within the actual MRP
excerpt length.
Process that translates the numeric MRP values to the
original term units.
The occurrence of a set of TUs from left to right (as in
English), either in a search term or in a document.
An efficient encoding scheme that stores path and other
file location information in a form that is distributable, and
operates at various scopes.
The sequentially-numbered position (i.e., integer) assigned
to each indexable TU, within an ISet member.
A grouping of posits that contain one or more repetitions
of an ST; they vary in length based on runtime results.
They may contain other TUs that are not part of the ST but
occur within constraints between the STs that are found.
The functional level where processing occurs within a PB
instance.
A Combinatorial Type of Search request used to find the
Search Term within a range of term units instructured
documents or segments of documents that are structured.
In this context, structure refers to a group of TUs, either
by enforced column definition (as in a database), or in a
columnarrow fashion with a loose (unenforced) relation
(as in a word processing table).
The score given to each ISet Member that indicates how
close its content matched the search request. The score
may be used to sort the search results for the user.
The range of addresses that comprise a region; this is
identified by a unique integer. For instance, a company

Feb. 18, 2010

US 2010/0042603 A1

Term

Search Request (SR)
Search Request ID (SRID)

Search Term (ST)
Search Term (ST) Layer

Search or Searchable Universe
(SU)
Search Universe (SU)

Search Universe (SU) Layer

Section

Section Layer

Switch

Term Unit (TU)

Term Unit Duplication (TUD)

Term Unit Interval

Term Unit (TU) Layer

Tolerance

Topical-Fetch (t-Fetch)

User
Windex

23

-continued

GLOSSARY

Definition

can set a file server as a region, identified as 233, another
server as 235. This way, the specific region that the user
is either restricted to or requires can be identified.
The search term and search criteria
he unique identifier for a request So it may be tracked or

So all related processing may be grouped.
Set of all term units in the search request
The functional level where processing occurs win an ST
instance.
For a given implementation, all the searchable information
in its repository.
The SU is the entire document repository, representing all
he information available to a user or system, that is

available.
The functional level which processes data whose scope is
he SU.
Apart of a document identified using a specific criteria,
Such as a set of TUs that belong to a topic.
The functional level which processes data that occurs win
he section instance.
A Switch refers to any system variable available to the
user that has a multitude of values. A Switch may be
manifested in an output interface as a Switch, dial, slider,
wheel, motion sensor, touch sensor, drop down list, check
box, radio button, or any such input mechanism that
allows a variety of values to be selected.
in most languages, including English, any set of characters
(e.g., words) or symbols separated by a space.
The existence of two or more copies of a TU that occur
outside of grammatical or syntactical constraints.
The distance between two TUs, using the TU as the unit of
measure. This is a binary operation.
The functional level at which processing occurs win a TU
constraint.
The range in which a specific function can operate in to
affect the outcome of the search intersection.
A Combinatorial-Discovery Type of Search that assigns
topics to sections or entire ISet Members.
A user may be a person, an application, or a system.
Operates at TU scope. An efficient encoding scheme that
stores a single term unit in a language, such as English, in

Feb. 18, 2010

a form that is distributable.

0247 Although the present invention and its advantages
have been described in detail, it should be understood that
various changes, Substitutions and alterations can be made
herein without departing from the spirit and scope of the
invention as defined by the appended claims. Moreover, the
Scope of the present application is not intended to be limited
to the particular embodiments of the process, machine, manu
facture, composition of matter, means, methods and steps
described in the specification. As one of ordinary skill in the
art will readily appreciate from the disclosure of the present
invention, processes, machines, manufacture, compositions
of matter, means, methods, or steps, presently existing or later
to be developed that perform substantially the same function
or achieve Substantially the same result as the corresponding
embodiments described herein may be utilized according to
the present invention. Accordingly, the appended claims are
intended to include within their scope Such processes,
machines, manufacture, compositions of matter, means,
methods, or steps.
What is claimed is:
1. A computer system for searching an index, wherein the

index has a numeric matrix format, the system comprising:

a Normalizer module that converts a search request com
prising at least one search term in a format usable with
the numeric matrix format;

a search module that compares the converted search
request and the index, and forms a plurality of blocks,
wherein each block defines a match between the index
and the search term; and

a Processor module that determines the relevance for each
match using its associated block.

2. The system of claim 1, wherein the index is one of a
plurality of indexes, and the Normalizer module, the search
module, and the Processor module operate with the plurality
of indexes.

3. The system of claim 1, wherein the match is between the
search item and a portion of the document.

4. The system of claim 1, wherein each document is one of
a structured document and an un-structured document.

5. The system of claim 1, further comprising:
a Tolerator module that alters the search request by includ

ing related terms.
6. The system of claim 5, wherein the related terms are one

of a computer, laptop computer, personal computer, personal

US 2010/0042603 A1

data assistant, a camera, a phone, a cellphone, mobile phone,
a computer server, a media server, a music player, a game box,
a Smartphone, a data storage device, measuring device, hand
held scanner, a scanning device, a barcode reader, a POS
device, digital assistant, desk phone, IP phone, Solid-state
memory device, and a memory card.

7. The system of claim 5, wherein operation of the Tolera
tor module is controlled by at least one switch included in the
search request.

8. The system of claim 5, further comprising:
an Inputer module that provides an interface between a user

and the system.
9. The system of claim 5, wherein the Normalizer identifies

a format of the index and then translates the search request
based on the format of the index.

10. The system of claim 1, wherein the normalizer forms a
matrix of term units in the search request, wherein each term
unit is a set of characters that is separated by a space from
another term unit.

11. The system of claim 1, wherein the Normalizer assigns
an integer to at least one term unit to indicate its position
within the search request.

12. The system of claim 1, wherein the index is an index of
documents of an information repository, the system further
comprising:

a Filter module that passes documents that match at least
one variable in the search request from the index.

13. The system of claim 1, wherein the search module
comprises:

a Posit Block Collector that filters documents by using a
mathematical formula based on a type of the search
request to indicate a potential relevance.

14. The system of claim 13, wherein the Posit Block Col
lector modifies the index to reflect the filtered documents.

15. The system of claim 1, wherein the search module
comprises:

a Refiner module that operates with a Processor module to
normalize a relevance score for documents of different
lengths, and manages large documents.

16. The system of 15, wherein the search is a combinational
search and the Refiner module manages the combinational
search and performs a relevance analysis for the combina
tional search.

24
Feb. 18, 2010

17. The system of claim 1, further comprising:
an Aggregator module that forms a response to the search

request by assembling the matched blocks according to
their relevance.

18. A method for searching an index having a numeric
matrix format comprising:

receiving a search request from a user that includes at least
one search term;

converting the search request into the numeric matrix for
mat,

comparing the converted search request and the index;
forming a plurality of blocks, wherein each block defines a

match between the index and the search term; and
determining the relevance for each match using its associ

ated block.
19. The method of claim 18, further comprising:
identifying a format of the index;
wherein the converting includes converting the search

request based on the format of the index.
20. The method of claim 18, whereinforming the plurality

of blocks comprises:
filtering documents by using a mathematical formula based

on a type of the search request to indicate a potential
relevance.

21. A computer program product having a computer-read
able medium having computer program logic recorded
thereon for searching a index for at least one search term,
wherein the index has a numeric matrix format, the computer
program product comprising:

logic for converting the at least one search term into the
numeric matrix format;

logic for comparing the converted search term and the
index;

logic for forming a plurality of blocks, wherein each block
defines a match between the index and the search term;

logic for determining the relevance for each match using its
associated block.

22. The product of claim 21, wherein the logic for forming
the plurality of blocks comprises:

logic for filtering documents by using a mathematical for
mula based on a type of the search request to indicate a
potential relevance.

c c c c c

