

EP 3 272 260 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:

21.08.2024 Bulletin 2024/34

(51) International Patent Classification (IPC):
A47K 13/30 (2006.01)

(21) Application number: **16180788.8**

(52) Cooperative Patent Classification (CPC):
A47K 13/30; E03D 5/105; E03D 9/08

(22) Date of filing: **22.07.2016**

(54) SANITARY DEVICE SEAT AND SANITARY DEVICE

SITZ FÜR EINE SANITÄRE VORRICHTUNG UND SANITÄRE VORRICHTUNG

SIÈGE DE DISPOSITIF SANITAIRE ET DISPOSITIF SANITAIRE

(84) Designated Contracting States:

**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

• **Long, Chen
Shanghai, Shanghai (CN)**

(43) Date of publication of application:

24.01.2018 Bulletin 2018/04

(74) Representative: **Lindner Blaumeier
Patent- und Rechtsanwälte
Partnerschaftsgesellschaft mbB
Dr. Kurt-Schumacher-Str. 23
90402 Nürnberg (DE)**

(73) Proprietor: **Duravit Aktiengesellschaft
78132 Hornberg (DE)**

(56) References cited:
**WO-A1-95/11615 DE-A1- 102015 112 819
JP-A- H05 291 925 JP-A- H05 293 060
JP-B2- 3 427 618 KR-A- 20100 007 389
US-A1- 2014 047 629**

(72) Inventors:

• **Zhengxue, Yan
Shanghai (CN)**
• **Chaobo, Lu
Shanghai, Shanghai (CN)**

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] The invention relates to a sanitary device seat, comprising a ring- or U-shaped seat body and at least one capacitive element adapted to provide a sensing signal processible to a seat occupancy information.

[0002] Many comfort features of modern sanitary devices, frequently called electric toilets or electric bidets, require an occupancy information describing whether the sanitary device seat is occupied or not. It is known to attach a microswitch to the sanitary device, whereby the microswitch is switched by a vertical displacement occurring when a user takes seat. Furthermore, it is known to arrange a capacitor module with a capacitive element and an integrated signal processing into the seat body. The capacitor module detects a change of the permittivity resulting from an approach of a human body to the sanitary device seat.

[0003] This kind of capacitive proximity sensing suffers from the large dimensions of known capacitor modules, requiring to divide the seat body into two pieces laterally, to arrange the capacitor module between them and to reassemble both pieces. Disadvantageously, the production of those sanitary device seats is very complex and the further reduction of the thickness of the sanitary device seat is rendered difficult.

[0004] DE 10 2015 112819 A1 discloses a toilet seat with a seat body, wherein a heating wire is located on the seat body and covered by a coating layer. Additionally, a sensor for gaining the current occupancy state by sensing a change of light or a touch of a hand is provided.

[0005] Another toilet seat having a heater and an electrostatic capacitance sensor with a detection electrode is known from JP H05 293060 A. Further toilet seats with sensors and heaters are disclosed in JP 3 427618 B2, KR 2010 0007389 A, WO 95/11615 A1, and JP H05 291925 A.

[0006] US 2014/047629 A1 discloses a toilet seat having an upper seat portion and a lower seat portion and a seat heating and an object sensor arranged between these portions. According to one specific embodiment of this disclosure, the object sensor can comprise a sprayed-on electrically conductive coating or paint, wherein changes in capacitance are monitorable.

[0007] It is an object to the invention to provide a more easily manufacturable sanitary device seat of reduced thickness.

[0008] This is inventively achieved by a sanitary device seat as initially described, whereby the capacitive element is arranged directly on the surface of the seat body and covered by an overlay coating the seat body, whereby the capacitive element is fixed by in-mold-decoration at the seat body and optionally fixed by the coating.

[0009] The invention bases on the consideration to place the capacitive element between the seat body specifying the basic form of the sanitary device seat, and the overlay, building an outer skin of at least parts of the sanitary device seat. Thus, the seat body may be only

as thick as necessary to match mechanical stability requirements, whereby a particularly flat capacitive element may be arranged at the seat body and coated by the overlay, as well. Advantageously, this allows the sanitary device seat to be manufactured with a very small cross-sectional height. Additionally, the manufacturing process of the inventive sanitary device seat may be simplified significantly since dividing and reassembling the seat body, e.g. by welding, is avoided.

[0010] The capacitive element used for the inventive sanitary device seat should be chosen very thin, e.g. having a cross-sectional height which is at most a tenth, preferably at most a hundredth, of the cross-sectional height of the seat body. Particularly, the capacitive element may have a cross-sectional height between 10 μm and 1 mm. This allows the capacitive element to remain invisible from the exterior of the sanitary device seat when the seat body is coated with the respectively thin overlay. The capacitive element may be arranged directly on the surface of the seat body. Furthermore, the sanitary device seat may comprise a connector, arranged to connect the capacitive element from the exterior of the sanitary device seat. The connector may be adapted to provide an external electric signal to the capacitive element and/or to provide the seat occupancy information or a signal processible to the seat occupancy information to the exterior of the sanitary device seat. The ring-shaped sanitary device seat may be considered as O-shaped, as well, meaning that the seat fully surrounds an opening for a person to sit on, whereas the U-shaped seat does not surround the opening completely. A typical inventive sanitary device may also comprise a lid, attached to the sanitary device seat and adapted to cover the opening of the sanitary device seat in a closed position and/or to allow a user to sit on the sanitary device seat in an opened position.

[0011] Preferably, the capacitive element is or comprises a looped coil. Such a looped coil may be made of a thin wire being wounded one or several times on a free end, forming a capacitor structure whose capacitance may change due to an approach of an object having a relative permittivity significantly higher than 1, e.g. the human body. The other free end of the wire may be connected to the connector. Alternatively or additionally the capacitive element comprises or is a capacitive foil. Such a capacitive foil is comparable to those used for touch screens etc. The capacitive element may be or comprise a printed circuit, as well. The printed circuit may comprise a wiring made of an electrically conductive material forming a capacitor structure. Furthermore the capacitive element may be realized by laser direct structuring. This way, the capacitor structure may be drawn on the seat body by a laser and electroplated afterwards. Of course, a plurality of capacitive elements may be arranged at the seat body, particularly distributed over its surface.

[0012] Furthermore, not according to the claimed invention, the capacitive element may be glued on the seat body. This allows a very feasible arrangement and fixa-

tion of the capacitive element at the seat body.

[0013] According to the present invention, the capacitive element is fixed by in-mold-decoration at the seat body. According to a very feasible embodiment of the inventive sanitary device seat, the capacitive element is also fixed by the coating.

[0014] Advantageously, the seat body is made of one piece. As already mentioned, several steps required for the manufacture of conventional sanitary device seats may be saved, such as dividing and reassembling. Particularly, the seat body is free of joining seams.

[0015] Moreover, the sanitary device seat may have a thickness of the most 10 mm, preferably at most 7 mm, more preferably at most 5 mm, with a minimal thickness of 3 mm. Thickness may be defined as the sanitary device seat's cross-sectional height.

[0016] Particularly, the overlay is painted and/or glued and/or plated and/or laminated on the seat body. Those surface processing methods have been found out as very useful for a further simplification of the manufacturing process of the inventive sanitary device seat.

[0017] Additionally, the seat body may be made from a plastic material, particularly comprising polypropylene and/or acrylnitril-butadien-styrol and/or urea-formaldehyde resin, and/or a composite material. Those materials are very suitable for the above-mentioned methods of fixing the capacitive element and/or realizing the overlay. However, the material of which the seat body is made is not limited to the aforementioned materials.

[0018] Aside, the invention relates to a sanitary device, comprising an inventive sanitary device seat.

[0019] A typical inventive sanitary device may also comprise a bowl, especially made of ceramics, to which the sanitary device seat is attached. Alternatively to the lid being attached to the sanitary device seat as mentioned above, the lid may be attached to the bowl. The sanitary device may be adapted as a toilet and/or for washing parts of the human body (bidet). The inventive sanitary device may furthermore comprise a connector adapted to fit to the connector of the sanitary device seat.

[0020] The inventive sanitary device may comprise a signal processing unit being adapted to determine the seat occupancy information depending on the sensing signal. The signal processing unit may be connected to the capacitive element, particularly via the connector of the sanitary device seat and/or the other connector. In general, the signal processing unit may be adapted to supply a voltage and/or a current to the capacitive element.

[0021] Preferably, the signal processing unit is adapted to apply an alternating, particularly rectangular or trapezoidal, current to the capacitive element. Particularly, if a passive capacitive element is used, e.g. the looped coil, the capacitive foil or a capacitive element realized by laser direct structuring, the temporary constant current will charge the capacitor realized by the capacitive element resulting in a nearly linear change of voltage dropping over the capacitive element. The magnitude of this

change depends on the capacitance which depends again on the permittivity being changed by the object, e.g. the human body. Thus, a very reliable sensing signal is provided by the capacitive element.

[0022] Advantageously, the signal processing unit is adapted to measure a voltage dropping over the capacitive element as the sensing signal. The signal processing unit may additionally be adapted to evaluate this voltage and to determine the occupancy information basing on the evaluation result. The voltage is preferably the aforementioned voltage resulting from the applied current.

[0023] The signal processing unit or a respective signal processing unit may be arranged between the seat body and the overlay of the inventive sanitary device seat. In this case the capacitive element is or comprises the printed circuit and/or is integrated with the signal processing unit, preferably. Alternatively, the signal processing unit may be disposed outside the sanitary device seat. This allows the sanitary device seat to be composed merely of the coated seat body, the capacitive element and its connector, rendering a very thin realization of the sanitary device seat possible.

[0024] Referring to the inventive sanitary device, it may comprise a control unit being adapted to control at least one functional component of the sanitary device depending on the occupancy information. Preferably, the functional component is or comprises a spraying unit adapted to spray a liquid towards a human body sitting on the sanitary device seat and/or a blowing unit adapted to blow air towards a human body sitting on the seat and/or a heating unit adapted to heat the sanitary device seat and/or a flushing unit and/or a movement device adapted to close a lid of the sanitary device and/or a deodorization unit. However, the at least one functional component is not limited to the aforementioned devices.

[0025] Advantageously, a service device is arranged separately from the sanitary device seat and incorporating the control unit and/or the signal processing unit, which is disposed outside the sanitary device seat, in a housing. Providing the service device allows the sanitary device seat to have a reduced thickness of its entire dimensions. The connector fitting to the connector of the sanitary device seat may be attached to the service device.

[0026] Besides, an unclaimed method for manufacturing a sanitary device seat is disclosed, comprising the steps: providing a seat body; arranging at least one capacitive element adapted to provide a sensing signal processible to a seat occupancy information at the seat body; and covering the seat body by an overlay coating it. A looped coil and/or a capacitive foil and/or a printed circuit may be used as capacitive element and/or the capacitive element may be realized by laser direct structuring. Arranging the capacitive element at the seat body may comprise gluing the capacitive element and/or fixing the capacitive element by in-mold-decoration at the seat body. Covering the seat body may comprise fixing the capacitive element by the coating. Furthermore, covering

the seat body may comprise painting and/or gluing and/or plating and/or laminating the seat body. A seat body made of one piece and/or having a thickness of at most 10 mm, preferably 7 mm, more preferably 5 mm, with a minimum thickness of 3 mm, may be used.

[0027] All statements referring to the inventive sanitary device seat may apply analogously to the inventive sanitary device and the aforementioned method, so that advantages achieved by the inventive sanitary device seat may be achieved by the inventive sanitary device.

[0028] In the following, the invention is described in detail, whereby references are made to the principle drawings, which show:

- Fig. 1 a perspective view of an sanitary device, comprising a first embodiment of an sanitary device seat;
- Fig. 2 a top view on a first embodiment of the sanitary device seat shown in fig. 1;
- Fig. 3 a cross-section of the sanitary device seat shown in fig. 2 along a line III-III;
- Fig. 4 a block diagram of the sanitary device shown in fig. 1;
- Fig. 5 time curves of the measured voltage provided by a capacitive element while a test process;
- Fig. 6 a cross-section of a further embodiment of an sanitary device seat; and
- Fig. 7 and 8 each a top view on a further embodiment of an sanitary device seat;

[0029] Fig. 1 shows a perspective view on a sanitary device 1, comprising a ring-shaped sanitary device seat 2 (in the following simply referred to as seat 2) which is arranged on a bowl 3. According to further embodiments the seat may be U-shaped.

[0030] A lid 4 is attached pivotally to the seat 2 to cover it in a closed position and to allow a person to sit on the seat 2 in an opened position. The bowl 3 is connected to a sewer system and has a cistern 5 with an operating element 6 to initiate flushing. Within the seat 2 a capacitive element 7 is arranged adapted to provide a sensing signal processible by a signal processing unit 8 to a seat occupancy information. The signal processing unit 8 and a control unit 9 are incorporated in a housing of a service device 10 being arranged separately from the seat 2. A connector 11 of the service device 10 is connected to a further connector 12 (cf. Fig. 2) arranged at the seat 2, whereby the capacitive element 7 is connected to the signal processing unit 8 via both connectors 11, 12.

[0031] Besides, the sanitary device 1 comprises further functional components 13, which are not shown in

detail for reasons of clarity. The functional components 13 are controllable by the control unit 9 and comprise a spraying unit adapted to spray a liquid towards the human body sitting on the seat 2, a blowing unit adapted to blow warmed air towards the human body, a heating unit adapted to heat the seat 2, a flushing unit adapted to flush the bowl 3 by allowing water from the cistern 5 to flow into the bowl 3, a movement device adapted to close the lid 4 and a deodorization unit. Note, that this enumeration is not exhaustive.

[0032] Fig. 2 shows a top view on the seat 2, comprising the capacitive element 7 and the connector 12 being connected to the external signal processing unit 8. The capacitive element 7 is a looped coil, made of a thin wire 14 which is wound several times on a free end 15. The other free end 16 of the wire 14 is connected to the connector 12.

[0033] Fig. 3 shows a cross-section along a line III-III of the seat 2, having a thickness of 5 mm. As can be seen, the seat 2 comprises a seat body 17 made of one piece and of a plastic material, e.g. polypropylene, acrylnitril-butadien-styrol, urea-formaldehyde resin, a composite material, or a combination thereof. Note, that this enumeration is not exhaustive. The wire 14, particularly its winding visible in fig. 3, is placed on the surface of the seat body 17 within grooves and glued thereon according to an unclaimed embodiment.

[0034] The seat body 17 and the capacitive element 7 are covered by an overlay 18 coating the side of the seat body 17 on which the capacitive element 7 is arranged. The overlay 18 is painted on the seat body 17.

[0035] Fig. 4 shows a block diagram of the sanitary device 1. The wire 14 is connected to the signal processing unit 8 providing the seat occupancy information to the control unit 9 which controls the functional components 13. In the unoccupied state of the seat 2 the capacitive element 7 may be modeled by a capacitance C_{Base} being connected to ground. It has to be noted, that there is no mechanical connection to an object realizing ground potential, but that the wire 14 is a capacitor structure which forms a capacitor with a virtual capacitor structure on ground potential in the environment of the wire 14 having the total capacitance $C_{total} = C_{Base}$.

[0036] When an object, particularly the body of a person taking seat, with a relative permittivity significantly greater than 1 approaches the capacitive element 7 or the wire 14, respectively, its total capacitance C_{total} increases. This is modeled by an additional capacitance C_{Body} connected in parallel to the capacitance C_{Base} and two coupling capacitances C_x and C_f . In practice, the capacitances C_x and C_f have only a small influence on the total capacity, which can thus be approximated by $C_{total} \approx C_{Base} + C_{Body} > C_{Base}$ in the occupied state of the seat 2.

[0037] The signal processing unit 8 is adapted to apply a rectangular current to the capacitive element 7, which charges and discharges it, and to measure a voltage U_m dropping over the capacitive element 7. During one pulse

of the rectangular current with a constant intensity I_s the voltage U_m increases linearly with the time.

[0038] This can be modeled by the term

$$U_m(t) = C_{\text{total}}^{-1} \cdot I_s \cdot t .$$

[0039] Thus, U_m increases faster in the unoccupied state of the seat 2 than in the occupied state, since C_{total} is lower in the unoccupied state than in the occupied state.

[0040] Fig. 5 shows time curves of the voltage U_m measured while a test process, in which a constant current is applied to the capacitive element 7 for 3 μs . As can be seen in the left curve showing the unoccupied state of the seat 2, the voltage U_m increases up to 4,4 V. By contrast, in the occupied state the voltage U_m only increases up to 3,2 V, making it possible for the signal processing unit 8 to clearly distinguish both occupancy states of the seat 2 by evaluating the voltage U_m . Basing on this evaluation result, the signal processing unit 8 determines the occupancy information which is provided to the control unit 9. Therefore, the signal processing unit 8 compares the measured voltage U_m with a threshold value U_{th} which may be chosen to 4,0 V, whereby the seat 2 is assumed to be occupied if $U_m < U_{\text{th}}$. Note, that the specific voltage values refer to an exemplary configuration and may be different in other configurations of the capacitive element 7. In practice, the threshold value is saved in a memory of the signal processing unit 8. According to other embodiments, the threshold value may be derived from a user input into an input device of the sanitary device 1 describing a desired sensitivity of occupancy sensing.

[0041] Depending on the occupancy information provided by the signal processing unit 8 the control unit 9 activates and deactivates the functional competence 13. E.g. if the occupancy information indicates, that the seat 2 is no longer occupied, the control unit 9 activates the flushing unit, activates the movement device to close the lid 4 and activates the deodorization unit. On the contrary, if the occupancy information indicates the seat 2 being occupied, the control unit 9 will activate the heating unit, the spraying unit and the blowing unit. Particularly, the heating unit is deactivated when the seat 2 is detected to be unoccupied again. Of course, other conditions may be considered by the control unit 9 when controlling the functional components 13.

[0042] Fig. 6 shows a cross-section of the further embodiment of the seat 2 according to an unclaimed embodiment which differs from fig. 3 in that, grooves in the seat body 17 are omitted and the overlay 18 surrounds the wire 14. Additionally, the overlay 18 coats the entire circumference of the seat body 17.

[0043] Fig. 7 shows a top view on a further embodiment of the seat 2 according to an unclaimed embodiment which differs from fig 2 in that the capacitive element is a capacitive foil glued or laminated on the seat body 17.

[0044] Fig. 8 shows a top view on a further embodiment of the seat 2 which differs from fig. 2 in that the capacitive element 7 comprises an a printed circuit realizing the signal processing unit 8, as well. Thus, the signal processing unit is not arranged within the service device 10, so that the occupancy information determined by the seat-side signal processing unit 8 is provided to the control unit 9 directly via the connector 12.

[0045] According to another embodiment not according to the invention, the capacitive element 7 is realized by laser direct structuring on the seat body 17 or, as it is the case for the present invention, fixed by in-mold decoration at the seat body 17. According to yet another embodiment, the overlay 18 is glued and/or plated and/or laminated on the seat body 17. Therefore, the overlay 18 may be a foil.

[0046] According to another embodiment, the sanitary device 1 is a bidet, allowing a person sitting on the seat 2 to wash his body.

20

Claims

1. Sanitary device seat, comprising a ring- or U-shaped seat body (17) and at least one capacitive element (7) adapted to provide a sensing signal processible to a seat occupancy information, wherein the capacitive element (7) is arranged directly on the surface of the seat body (17) and covered by an overlay (18) coating the seat body (17), whereby the capacitive element (7) is fixed by in-mold-decoration at the seat body (17) and optionally fixed by the coating.
2. Sanitary device seat according to claim 1, characterized in that the capacitive element (7) is or comprises a looped coil and/or a capacitive foil and/or a printed circuit.
3. Sanitary device seat according to one of the preceding claims, characterized in that the seat body (17) is made of one piece.
4. Sanitary device seat according to one of the preceding claims, characterized in that it has a thickness of at most 10 mm.
5. Sanitary device seat according to one of the preceding claims, characterized in that the overlay (18) is painted and/or glued and/or plated and/or laminated on the seat body (17).
6. Sanitary device seat according to one of the preceding claims, characterized in that the seat body (17) is made from a plastic material, particularly comprising polypropylene and/or acrylnitril-butadien-styrol and/or urea-formaldehyde resin, and/or a composite material.

7. Sanitary device, comprising a sanitary device seat (2) according to one of the preceding claims.

8. Sanitary device according to claim 7, **characterized in that** a signal processing unit (8) is adapted to determine the seat occupancy information depending on the sensing signal. 5

9. Sanitary device according to claim 8, **characterized in that** the signal processing unit (8) is adapted to apply an alternating, particularly rectangular or trapezoidal, current to the capacitive element (7). 10

10. Sanitary device according to claim 8 or 9, **characterized in that** the signal processing unit (8) is adapted to measure a voltage dropping over the capacitive element (7) as the sensing signal. 15

11. Sanitary device according to one of the claims 8 to 10, **characterized in that** the signal processing unit (8) is disposed outside the sanitary device seat (2) or arranged between the seat body (17) and the overlay (18). 20

12. Sanitary device according to one of claims 7 to 11, **characterized in that** a control unit (9) is adapted to control at least one functional component (13) of the sanitary device (1) depending on the occupancy information. 25

13. Sanitary device according to claim 12, **characterized in that** the functional component (13) is or comprises a spraying unit adapted to spray a liquid towards a human body sitting on the sanitary device seat (2) and/or a blowing unit adapted to blow air towards a human body sitting on the sanitary device seat (2) and/or a heating unit adapted to heat the sanitary device seat (2) and/or a flushing unit and/or a movement device adapted to close a lid (4) of the sanitary device (1) and/or a deodorization unit. 30

14. Sanitary device according to one of the claims 8 to 13, **characterized in that** a service device (10) is arranged separately from the sanitary device seat (2) and incorporating the control unit (9) and/or the signal processing unit (8), which is disposed outside the sanitary device seat (2), in a housing. 35

5. Sanitäreinrichtungssitz (18) des Sitzkörpers (17) bedeckt ist, wobei das kapazitive Element (7) durch In-Mold-Decoration an dem Sitzkörper (17) befestigt ist und gegebenenfalls durch die Beschichtung befestigt ist. 40

2. Sanitäreinrichtungssitz gemäß Anspruch 1, **dadurch gekennzeichnet, dass** das kapazitive Element (7) eine Spulenschleife und/oder eine kapazitive Folie und/oder eine gedruckte Schaltung ist oder umfasst. 45

3. Sanitäreinrichtungssitz gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** der Sitzkörper (17) aus einem Stück besteht. 50

4. Sanitäreinrichtungssitz gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** er eine Dicke von höchstens 10 mm aufweist. 55

5. Sanitäreinrichtungssitz gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Decklage (18) auf den Sitzkörper (17) gemalt und/oder geklebt und/oder plattiert und/oder laminiert ist. 60

6. Sanitäreinrichtungssitz gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** der Sitzkörper (17) aus einem Kunststoffmaterial besteht, insbesondere umfassend Polypropylen und/oder Acrylnitril-Butadien-Styrol und/oder Harnstoff-Formaldehyd-Harz und/oder ein Verbundmaterial. 65

7. Sanitäreinrichtung, umfassend einen Sanitäreinrichtungssitz (2) gemäß einem der vorstehenden Ansprüche. 70

8. Sanitäreinrichtung gemäß Anspruch 7, **dadurch gekennzeichnet, dass** eine Signalverarbeitungseinheit (8) dafür ausgelegt ist, die Sitzbelegungsinformation abhängig von dem Messsignal zu bestimmen. 75

9. Sanitäreinrichtung gemäß Anspruch 8, **dadurch gekennzeichnet, dass** die Signalverarbeitungseinheit (8) dafür ausgelegt ist, einen Wechselstrom, insbesondere rechteckig oder trapezoid, an das kapazitive Element (7) anzulegen. 80

10. Sanitäreinrichtung gemäß Anspruch 8 oder 9, **dadurch gekennzeichnet, dass** die Signalverarbeitungseinheit (8) dafür ausgelegt ist, einen Spannungsabfall über das kapazitive Element (7) als das Messsignal zu messen. 85

11. Sanitäreinrichtung gemäß einem der Ansprüche 8 bis 10, **dadurch gekennzeichnet, dass** die Signalverarbeitungseinheit (8) außerhalb des Sanitärein- 90

Patentansprüche

1. Sanitäreinrichtungssitz, umfassend einen ring- oder U-förmigen Sitzkörper (17) und wenigstens ein kapazitives Element (7), das dafür ausgelegt ist, ein Messsignal bereitzustellen, das zu einer Sitzbelegungsinformation verarbeitbar ist, wobei das kapazitive Element (7) direkt auf der Oberfläche des Sitzkörpers (17) angeordnet ist und von einer Deckla- 55

50

55

60

65

70

75

80

85

90

richtungssitzes (2) angeordnet ist oder zwischen dem Sitzkörper (17) und der Decklage (18) angeordnet ist.

12. Sanitäreinrichtung gemäß einem der Ansprüche 7 bis 11, **dadurch gekennzeichnet, dass** eine Steuereinheit (9) dafür ausgelegt ist, wenigstens eine funktionelle Komponente (13) der Sanitäreinrichtung (1) abhängig von der Belegungsinformation zu steuern.

13. Sanitäreinrichtung gemäß Anspruch 12, **dadurch gekennzeichnet, dass** die funktionelle Komponente (13) eine Sprücheinheit ist oder umfasst, die dafür ausgelegt ist, eine Flüssigkeit in Richtung zu einem menschlichen Körper zu sprühen, der auf dem Sanitäreinrichtungssitz (2) sitzt, und/oder eine Gebläseeinheit, die dafür ausgelegt ist, Luft in Richtung zu einem menschlichen Körper zu blasen, der auf dem Sanitäreinrichtungssitz (2) sitzt, und/oder eine Heizeinheit, die dafür ausgelegt ist, den Sanitäreinrichtungssitz (2) zu wärmen, und/oder eine Spüleinheit und/oder eine Bewegungsvorrichtung, die dafür ausgelegt ist, einen Deckel (4) der Sanitäreinrichtung (1) zu schließen, und/oder eine Desodorierungseinheit.

14. Sanitäreinrichtung gemäß einem der Ansprüche 8 bis 13, **dadurch gekennzeichnet, dass** eine Servicevorrichtung (10) getrennt von dem Sanitäreinrichtungssitz (2) angeordnet ist und die Steuereinheit (9) und/oder die Signalverarbeitungseinheit (8) enthält, die außerhalb des Sanitäreinrichtungssitzes (2) in einem Gehäuse angeordnet ist.

4. Siège de dispositif sanitaire selon l'une des revendications précédentes, **caractérisé en ce qu'il a une épaisseur d'au plus 10 mm.**

5. Siège de dispositif sanitaire selon l'une des revendications précédentes, **caractérisé en ce que le recouvrement (18) est peint et/ou collé et/ou plaqué et/ou stratifié sur le corps de siège (17).**

10. 6. Siège de dispositif sanitaire selon l'une des revendications précédentes, **caractérisé en ce que le corps de siège (17) est réalisé en matière plastique, notamment comprenant du polypropylène et/ou de l'acrylnitril-butadiène-styrol et/ou de la résine uré-formaldéhyde, et/ou un matériau composite.**

15. 7. Dispositif sanitaire, comprenant un siège de dispositif sanitaire (2) selon l'une des revendications précédentes.

20. 8. Dispositif sanitaire selon la revendication 7, **caractérisé en ce qu'une unité de traitement du signal (8) est adaptée pour déterminer les informations d'occupation du siège en fonction du signal de détection.**

25. 9. Dispositif sanitaire selon la revendication 8, **caractérisé en ce que l'unité de traitement du signal (8) est adaptée pour appliquer un courant alternatif, notamment rectangulaire ou trapézoïdal, à l'élément capacitif (7).**

30. 10. Dispositif sanitaire selon la revendication 8 ou 9, **caractérisé en ce que l'unité de traitement du signal (8) est adaptée pour mesurer une chute de tension sur l'élément capacitif (7) en tant que signal de détection.**

35. 11. Dispositif sanitaire selon l'une des revendications 8 à 10, **caractérisé en ce que l'unité de traitement du signal (8) est disposée à l'extérieur du siège de dispositif sanitaire (2) ou agencée entre le corps de siège (17) et le recouvrement (18).**

40. 12. Dispositif sanitaire selon l'une des revendications 7 à 11, **caractérisé en ce qu'une unité de commande (9) est adaptée pour commander au moins un composant fonctionnel (13) du dispositif sanitaire (1) en fonction des informations d'occupation.**

45. 13. Dispositif sanitaire selon la revendication 12, **caractérisé en ce que le composant fonctionnel (13) est ou comprend une unité de pulvérisation adaptée pour pulvériser un liquide vers un corps humain assis sur le siège de dispositif sanitaire (2) et/ou une unité de soufflage adaptée pour souffler de l'air vers un corps humain assis sur le siège de dispositif sanitaire (2) et/ou une unité de chauffage adaptée pour chauffer le siège de dispositif sanitaire (2) et/ou une unité**

Revendications

1. Siège de dispositif sanitaire, comprenant un corps de siège (17) en forme d'anneau ou de U et au moins un élément capacitif (7) adapté pour fournir un signal de détection pouvant être traité pour des informations d'occupation du siège, l'élément capacitif (7) étant agencé directement sur la surface du corps de siège (17) et recouvert par un revêtement (18) recouvrant le corps de siège (17), l'élément capacitif (7) étant fixé par une décoration dans le moule sur le corps de siège (17) et, éventuellement, fixé par le revêtement.

2. Siège de dispositif sanitaire selon la revendication 1, **caractérisé en ce que** l'élément capacitif (7) est ou comprend une bobine en boucle et/ou une feuille capacitive et/ou un circuit imprimé.

3. Siège de dispositif sanitaire selon l'une des revendications précédentes, **caractérisé en ce que** le corps de siège (17) est réalisé d'une seule pièce.

de chasse d'eau et/ou un dispositif de mouvement adapté pour fermer un couvercle (4) du dispositif sanitaire (1) et/ou une unité de désodorisation.

14. Dispositif sanitaire selon l'une des revendications 8 5
à 13, **caractérisé en ce qu'un dispositif de service**
(10) est agencé séparément du siège de dispositif sanitaire (2) et incorporant l'unité de commande (9)
et/ou l'unité de traitement du signal (8), qui est dis- 10
posée à l'extérieur du siège de dispositif sanitaire (2), dans un boîtier.

15

20

25

30

35

40

45

50

55

FIG. 1

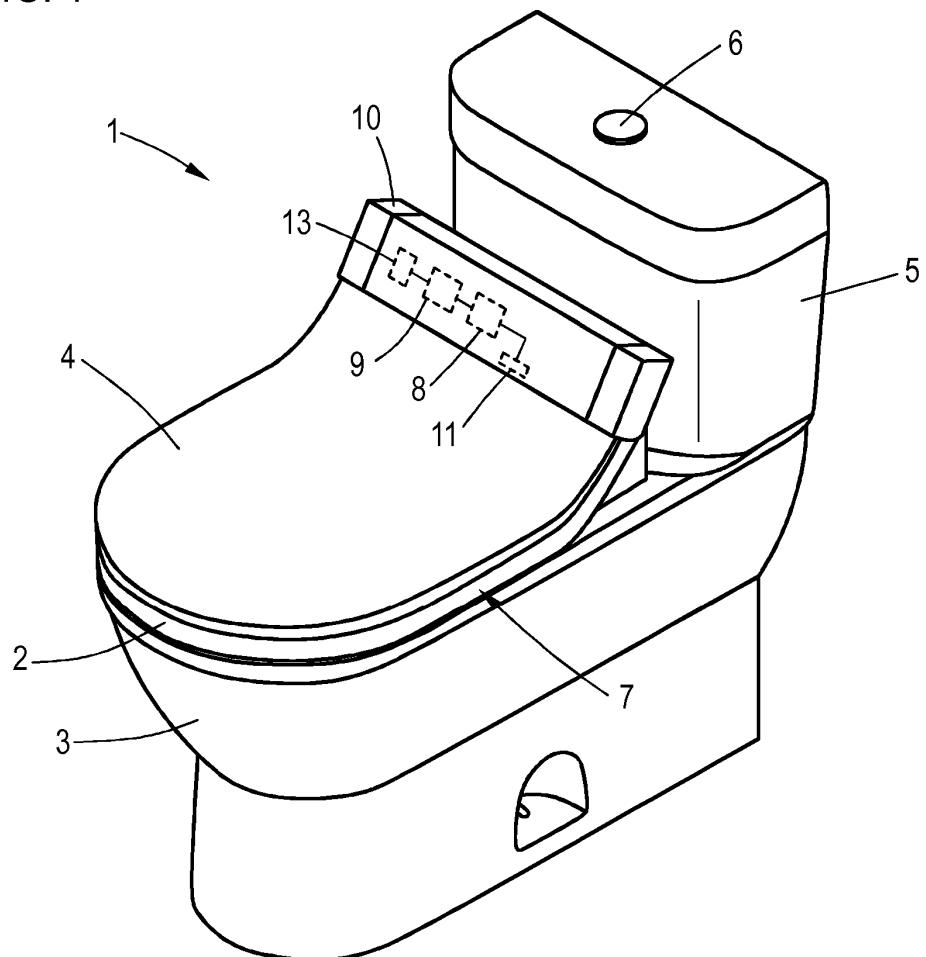


FIG. 2

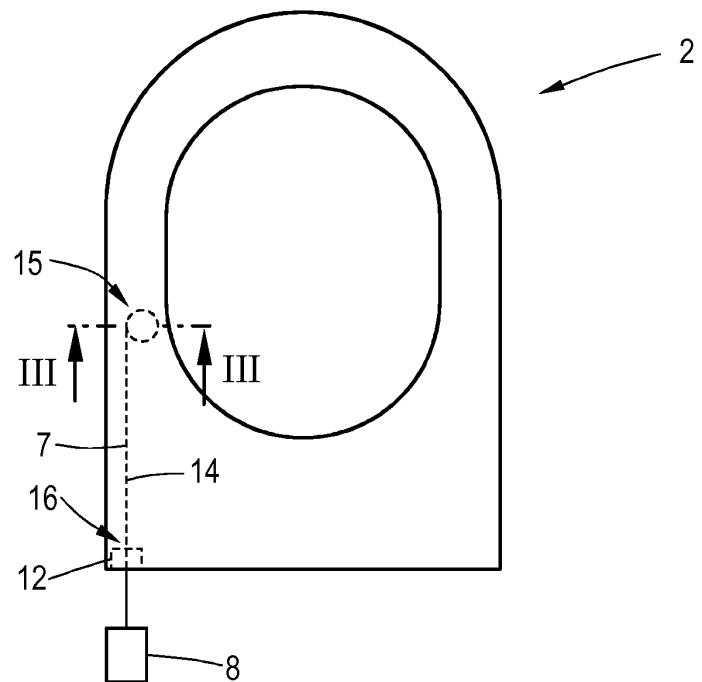


FIG. 3

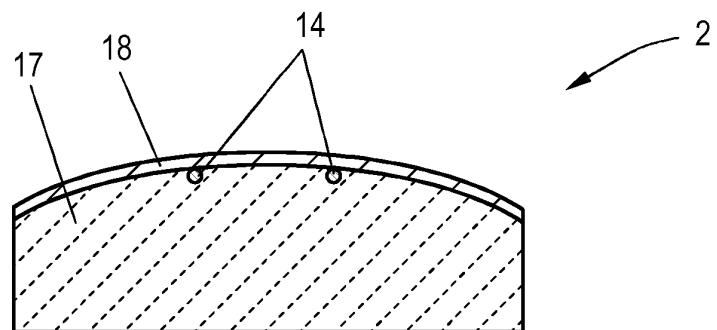


FIG. 4

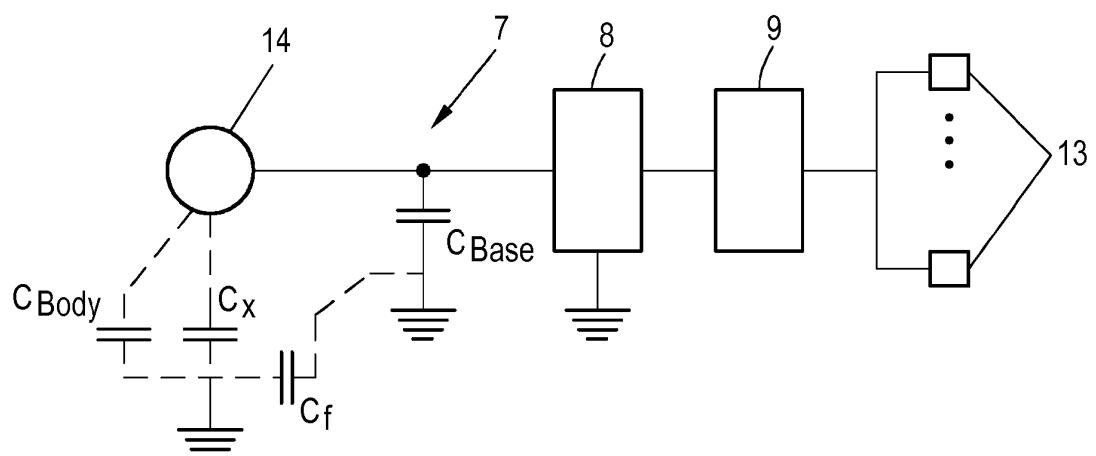


FIG. 5

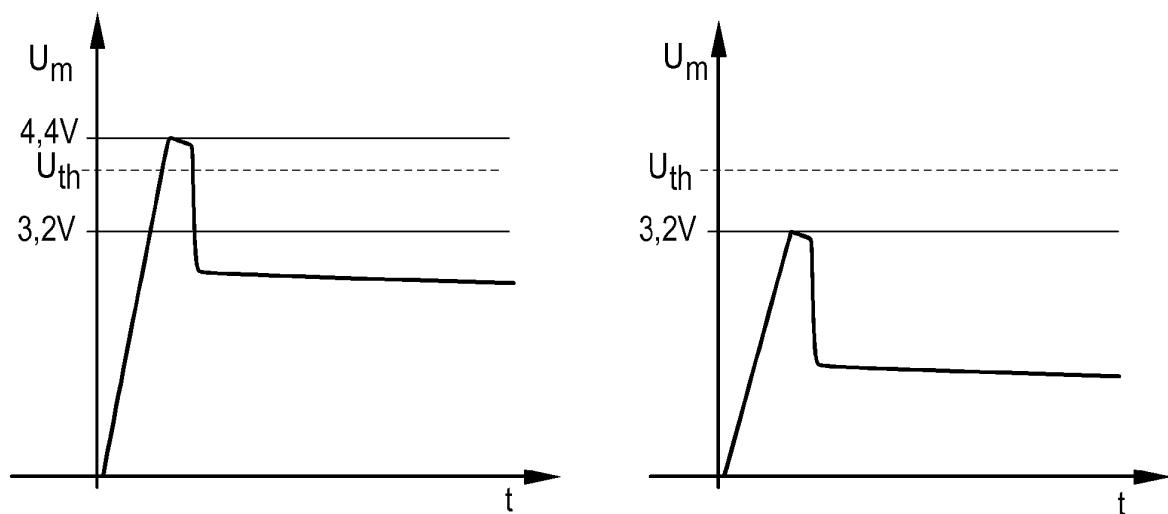


FIG. 6

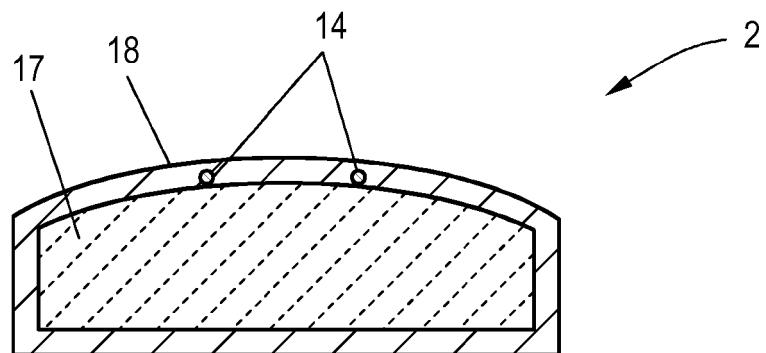


FIG. 7

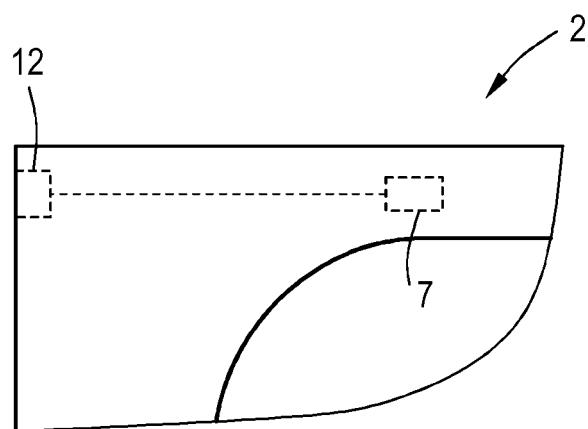
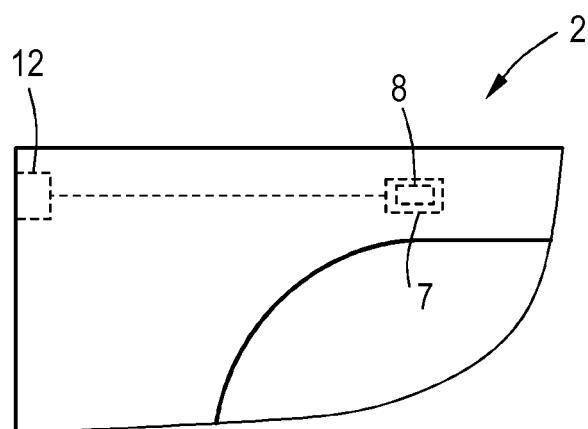



FIG. 8

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- DE 102015112819 A1 [0004]
- JP H05293060 A [0005]
- JP 3427618 B [0005]
- KR 20100007389 A [0005]
- WO 9511615 A1 [0005]
- JP H05291925 A [0005]
- US 2014047629 A1 [0006]