Title: OUTLET UNIT FOR UNDERFLOOR AIR CONDITIONING AND UNDERFLOOR AIR CONDITIONING SYSTEM USING SAME

Abstract
An outlet unit (100) for underfloor air conditioning uses a centripetal fan (2) in order to realize low pressure loss, low noise and energy saving and lessen a heightwise thickness of the whole unit. The centripetal fan (2) is installed in an underfloor chamber (104) formed between a floor panel (103) and a floor slab to face an outlet (1) provided on the floor panel (103), and is driven by a motor (4). The centripetal fan (2) has a hub (200) and a plurality of vanes (20) formed on an external surface of the hub (200), and sucks an air in the underfloor chamber (104) from radially outward direction to have the same spirally flow toward the outlet (1) substantially in an axial direction.
アンダーフロア空調用吹出口ユニット（100）は、低圧損、低騒音、省エネの実現を図るとともにユニット全体の高さ方向の厚みを薄くするために、求心ファン（2）を使用する。この求心ファン（2）は、フロアパネル（103）と床スラブとの間に形成される地下チャンバー（104）内に、フロアパネル（103）に設けられた吹出口（1）に対向して設置され、モーター（4）によって駆動される。求心ファン（2）は、ハブ（200）と、このハブ（200）の外面に形成された複数の羽根（20）を有し、床下チャンバー（104）の空気を径方向外方から吸い込んで吹出口（1）に向けて軸方向に旋回状に流す。

情報としての用途のみ

PCTに基づいて公開される国際出願をパンフレット第1頁にPCT加盟国を問わずするために使用されるコード

<table>
<thead>
<tr>
<th>AL</th>
<th>DE</th>
<th>LI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>DK</td>
<td>LC</td>
</tr>
<tr>
<td>AU</td>
<td>ES</td>
<td>LS</td>
</tr>
<tr>
<td>AZ</td>
<td>FI</td>
<td>LT</td>
</tr>
<tr>
<td>BB</td>
<td>FR</td>
<td>LU</td>
</tr>
<tr>
<td>BD</td>
<td>GA</td>
<td>LV</td>
</tr>
<tr>
<td>BB</td>
<td>GR</td>
<td>MC</td>
</tr>
<tr>
<td>BG</td>
<td>HG</td>
<td>MD</td>
</tr>
<tr>
<td>BH</td>
<td>HU</td>
<td>MG</td>
</tr>
<tr>
<td>BR</td>
<td>IE</td>
<td>MK</td>
</tr>
<tr>
<td>BY</td>
<td>IL</td>
<td>ML</td>
</tr>
<tr>
<td>CA</td>
<td>IS</td>
<td>MN</td>
</tr>
<tr>
<td>CF</td>
<td>IT</td>
<td>MR</td>
</tr>
<tr>
<td>CG</td>
<td>JP</td>
<td>MW</td>
</tr>
<tr>
<td>CH</td>
<td>KE</td>
<td>MX</td>
</tr>
<tr>
<td>CI</td>
<td>KG</td>
<td>NE</td>
</tr>
<tr>
<td>CM</td>
<td>KP</td>
<td>NL</td>
</tr>
<tr>
<td>CN</td>
<td>KR</td>
<td>NO</td>
</tr>
<tr>
<td>CZ</td>
<td>KZ</td>
<td>NZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VN</td>
</tr>
</tbody>
</table>
明細書

アンダーフロア空調用吹出ユニットおよびこれを利用したアンダーフロア空調システム

技術分野
本発明は、一般事務室、電算機室、各種実験室、店舗、工場、病院、ホテル、宴会場、その他各方面の建築施設で採用されているアンダーフロア空調システムおよびこのようなシステムに適用する吹出ユニットに関するものである。

背景技術
アンダーフロア空調システムとは、床スラブとフロアパネルとの間に床下チャンバーを形成し、この床下チャンバーに空気調和機から調和空気を供給し、この調和空気をフロアパネルに形成した吹出口から室内に放出することによって室内的空調を行うシステムである。

図16は、そのようなアンダーフロア空調システムに使用される従来の吹出ユニットの一例を示したものである。この吹出ユニットは、実開昭63-196043号公報に開示されたもので、フロアパネルAに開口する吹出口Oの下方に、床スラブSに下端開口部を臨ませた円筒ダクトDを設け、このダクトDの上端に、吹出気流の角度を調節可能とした吹出グリルGを設けると共に、ダクトDの内部にモータMで駆動するブラシブラシファンF、またF、Pを設け、該ファンF、Pにより、空気調和機（図示せず）側のフロアパネルAの下方に開放する床下チャンバーJへの調和空気の圧力力を補い、調和空気を室内が和らん滑らに供給できるようにしている。
しかし、軸流ファンF Pを用いる吹出ユニットは、ファンの軸方向に空気を流すものであるから、ユニット全体の高さ方向の厚みが大きくなり易い。また、軸流ファンF Pは空気をダクトDの下端の間口から吸い込むので、空気を導くための一定の高さの空間をダクトDの下方に設ける必要がある。その結果、この軸流ファンF Pを用いる吹出ユニットは、軸方向に大きな設置空間を必要とするため、限られた狭い床下空間には設置し難いという問題がある。さらに、高周波の騒音成分が大きく、耳ざわりであるという問題もある。

また、図17は特開平7-91730号公報に開示された吹出ユニットを示しており、特にユニットの高さ方向の厚みを薄くすることをねらいとしているものである。なお、図17では、図16に示したものと同様の部材には同じ参照符号を付している。図17に示した吹出ユニットでは、吹出グリルGを挿入し両側に一本のクロスフローファンF C, F Cを対向配置し、横方向から取り込む空気を仕切板Pにより上方に曲げ、吹出グリルGに置くようにしている。

しかし、この一本のクロスフローファンF C, F Cを用いる吹出ユニットは、横方向から取り込んだ空気の流れを仕切板Pにより強制的に上方に曲げるものであるから、圧損が大きい。また、高さ方向に薄くできても、水平横方向にユニットが拡がり、設置性が依然悪いという問題がある。

使用ファンの別例として、ダーボファンやシロコファン等の遠心ファンを使用することも考えられるが、この種のファンでは、吹出方向が径方向であるため、径方向に吹き出された空気を軸方向に導くための流路を形成する必要がある。この結果、吹出ユニットが大型となる。また、このことから機内の圧損が増大するため、発生騒音が例えば40～45dB(A)と大きくなる。これを低減するためには、所定容量の空気チャンバーを並
設する必要があり、ユニットの小型化を図ることはできない。

図18にさらに別の従来技術を示す。これは特開平5-106595号公報に開示されたものである。この従来技術では、吹出口からの吹出空気を旋回流にして、周囲の室内空気との混合性に優れた気流特性を吹出空気を持たせて、室内温度分布の均一化を図っている。そのために、吹出空気を円周方向に強制的に曲げて旋回流を生じさせる多数の傾斜状羽根Kと同心円状スリットLをもった吹出グリルG Sを形成して、これを吹出口に介装するようにしている。

図18に示した吹出グリルGSは、旋回流による室内温度分布の改善に伴い、コールドドラフトをも低減できるという利点がある。しかしながら、吹出空気の向きを制御的に変えるものであるため、圧損が大きく、発生騒音も大きいという問題がある。

コールドドラフトを積極的に低減するためには、その他、特開平7-145985号公報のもののように、吹出グリルの下方側に、加熱ヒータを配置し、吹出空気温度を高めるやり方もあるが、省エネルギー的な手法ではない。

発明の開示

本発明の主目的は、低圧損、低騒音、省エネが囲まれながら、吹出ユニットの高さ方向の厚みを薄くでき、設置性を向上することができるアンダーフロア空調用吹出ユニットおよびこの吹出ユニットを用いたアンダーフロア空調システムを提供することにある。

上記目的を達成するため、本発明のアンダーフロア空調用吹出ユニットは、フロアパネルに設けられた吹出口と、ハブと、このハブの外面に形成された複数の羽根とを有し、上記フロアパネルと床スラブとの間に形成される床下チャンバー内に上記吹出口に対向して設けられて、上記床下チャ
ンバーの空気を径方向外方から吸い込んで上記吹出口に向けて略軸方向に
流す求心ファンと、上記求心ファンを回転駆動するモータとを備えたこと
を特徴としている。

上記求心ファンは、その径方向外方から空気を吸込み、吹出口に向けて
略軸方向に空気を吹出すものであるため、軸流ファンを使用した従来の吹
出ユニットとは異なり、空気を導入するための空間を吹出ユニットの下方
に設ける必要がない。したがって、軸流ファンを使用した従来の吹出ユニッ
トと本発明の吹出ユニットとを比較すると、両吹出ユニットの軸方向の寸
法が同じ場合には、本発明の吹出ユニットのための設置空間の方が高さ方
向（軸方向）に小さく済む。したがって、本発明の吹出ユニットは限ら
れた床下空間に設置するのに適したものとなる。また、遠心ファンのよう
に特別に空気チャンバーを設けなくても、低騒音が図れ、空気チャンバー
が必要なことからも吹出ユニット自体の小型・薄形化が図れる。

更に、求心ファンの吹出気流は自然に旋回流となるため、図18に示し
たような吹出側に強制的に空気を曲げるための吹出グリルGSを設ける必
要がないため、低圧損化及び低騒音化が図れる。また、吹出空気の旋回流
は圧縮の室内空気を誘引し巻き込むので吹出空気と室内空気とが十分に混
合される上、吹出速度が適当に減速されるので、室内温度分布を改善でき
ると共にコールドドラフトを低減できる。また、加熱ヒータを使用しなく
てもコールドドラフトを低減できるので、省エネも図れる。こうして、本
発明によれば、フリーアクセスフロアの床下チャンバーという狭い場所に
設置する吹出ユニットとして好適な高性能かつ薄形の吹出ユニットが得ら
れる。

一実施例では、上記求心ファンの各羽根の羽根前縁は、チップ側がハブ
側よりも軸方向において吐出側でかつ半径方向外側に存在するよう傾斜し
ている。

羽根前縁のこのような傾斜構造により、ユニットの高さ方向の寸法を大きくすることなく、求心ファンへの吸込エリアを十分確保でき、ユニット高さの一層の薄形化が図れる。即ち、求心ファンに流れる空気は、羽根前縁から入り、羽根後縁に抜ける。このとき、羽根前縁と羽根後縁とを周囲側で結ぶ羽根チップからも空気が吸込まれるが、少量である。このため、吸込エリアは、羽根前縁の前方部分になる。こうして、羽根前縁を、そのチップ側がハブ側よりも軸方向において吐出側に存在するように傾斜させることにより、逆に、羽根前縁を、そのチップ側がハブ側よりも軸方向において吸込側に存在するように傾斜させる場合に比べ、軸方向の高さを小としながら、吸込エリアを大きく確保できるのである。

また、各羽根の前縁が3次元的に吐出側へ傾斜した形態とすることにより、吸込空気流がこの羽根前縁のハブ側部分にまで回り込むとともに、吸込空気流を円滑に軸方向に流すことができる。したがって、従来(2次元多翼状求心ファン)のような空気流が遠心力に大きく逆らって羽根内を流れることによる性能劣化や発生音の増大を回避できる。

一実施例においては、上記求心ファンの吸込側には、平板状の吸込案内体が上記モータの回転軸と直交するように設けられ、上記求心ファンの吐出側には、円筒状の吹出案内体が上記回転軸と同軸に設けられている。

この構成の吹出ユニットは、求心ファンの吸込側においては、平板状の吸込案内体により、径方向外方側から空気を円滑に吸い込むことができ、吹出側においては、円筒状の吹出案内体により、吹出口側に向けて空気を円滑に吹出すことができる。この結果、求心ファンに対する空気の流れを円滑に確保でき、一層の低圧損耗及び低騒音化が図られる。

一実施例においては、上記吹出案内体における上流側の円筒始端部は、
上記求心ファンにおけるチップ側の羽根前縁と羽根後縁との間のレベルに位置している。つまり、吹出案内体は、求心ファンにおけるチップ側の羽根前縁と羽根後縁との間のレベルから始まる。したがって、求心ファンへの吸込エリアを広く確保できる。また、この構成は、ファン全体をダクト内にすばり配設するものではないから、ファン羽根外周部に死水域が生じるのを防ぐことができ、良好な気流の流れを確保することができる。

一方、実施例においては、上記吹出案内体は、上流側の円筒始端部から径方向外方に張り出した吸込空気導入手段を有している。

この構成の吹出ユニットでは、上記吸込空気導入手段によって吸込空気を吹出案内体に円滑に導くことができるので、圧損を一層低減することができる。なお、吸込空気導入手段は、例えば、ベルマウスによって構成することができる。

また、一方実施例では、上記吹出案内体の近傍かつ軸方向上流側に、吸込流れと該当吸込流に対する逆流とを仕切る空気流ガイド部材を配置している。

この構成においては、例えば先ず開放状態において、求心ファンを回転駆動すると、上記吹出案内体の上流側で半径方向側方から吸入された空気流は、求心ファンの各羽根によって加速されつつ軸方向あるいは軸方向斜め外周方向に向かって吹き出される。

一方、流量を上記開放状態から徐々に絞っていくと、ファンの回転による遠心力の影響が次第に大きくなる（遠心力が軸方向力よりも次第に大きくなる）ために、吹出案内体の空気吸込口付近で半径方向外側に向かって逆流を生じるようになる。乱れの大きい逆流がそのまま再度求心ファンに吸い込まれた場合には、特に小、中風量域での静圧低下による空力性能の悪化、および騒音の增大を招く原因となる。しかし、本発明によれば、この逆流は、上記吹出案内体と空気流ガイド部材との間に形成される空気流
出力より、本来の吸い込み流とは分断された状態で発座に、求心ファンへの空気導入通路の上流側に循環状態で吹き出されるようになる。その結果、本来の吸込流が逆流の抵抗を受けたり、逆流によって乱されることがなく、小、中風量域でも安定した流れが得られるようになって、圧損を一層良好に低減でき、従って、静圧は大幅に上昇し、発生音も低減されることになる。

また、一実施例では、上記求心ファンのハブは、吹出側外径が吸込側外径よりも大きい。

このようにハプの吹出側外径を吸込側外径よりも大きくすることにより、吹出側の静圧を高めることができ、性能を改善することができる。即ち、ファンの全圧は、絶対速度上昇（動圧）に相対速度減少（静圧）と正心力による周速度増加（静圧）とを加算したものである。求心ファンの場合、風は、ファン吸込時よりも吹出時の方が径方向に縮小した流れとなるから、本来的に、周速度が低減しており、静圧が低下する傾向にある。このことにより、なるべくファン吹出時、風の流れをハブの傾斜により外向きにして正心力を増し、周速度を増加した方がよく、ハブの吹出側外径を吸込側外径よりも大ききすることによりこれが実現でき、静圧を高めることができる。そして、静圧が高くなると、ファンの回転数が低くなり、省電力・静音化が可能になり、性能を改善できるのである。

また、一実施例においては、さらに、上記吹出口に取り付けられる吹出グリルを備え、上記吹出グリルは、上記フロアパネルに係定されるグリル枠と、このグリル枠の内側に、径方向に互いに間隔をおいて同心円状に配置された複数のグリルリングと、これらグリルリングを上記グリル枠に連結する径方向リブとを有し、上記径方向リブは鉛直線に対して吹出流の旋回方向前方に傾斜している。
この構成の吹出ユニットでは、吹出グリルに設ける径方向リブが鉛直線に対する吹出流の旋回方向前方に傾斜しているため、吹出口に向けて流れ
る吹出空気の旋回流は、径方向リブから大きな抵抗を受けることなく、径方向リブをすり抜けて流れれる。このように吹出口部分で大きな抵抗が付か
ないため、吹出部分での圧損を一層低減できると共に、風切り音を低減す
ることができる。

別の実施例においては、上記モータの一部を上記ハブの内側に収容して
いる。

この構成では、モータを求心ファンの外側に設置した場合に比べて、ハ
ブに収容しているモータの部分だけ、ユニットの高さ方向におけるモータ
の出っ張りを少なくでき、ユニット高さをより一層薄くできる。

さらに、上記モータを求心ファンの吹出側において支持するようにすれ
ば、モータの支持に際し吹出側のグリル等を利用でき、構造簡易でありな
がら、更に一層の薄形化を図ることができる。たとえば、一実施例では、
上記吹出グリルは、上記複数のグリルリングの径方向内側に、軸方向に伸
びる中心筒を有している。そして、上記モータの一端側の部分が上記ハブ
内に収容され、上記モータの他端側の部分が上記中心筒内に嵌合するよう
になっている。したがって、ユニットの高さを小さくできるので、この吹
出ユニットはわずかな床下スペースでも設置できる。

一実施例では、上記求心ファンに隣接させて、該求心ファンの吸込側に
室内空気を取り込む吸込ファンを配置している。

この構成の吹出ユニットでは、冷房時（例えば室温26°Cの環境を維持
するために、空調機より20°Cに温度調節された空気が床下チャンバー
内に供給され、求心ファンにより室内に吹き出されているとする。）、隣接
する吸込ファンにより、求心ファンの吸込側に室内空気を取り込み、フリ
二アクセスフロアの床下チャンバーの室内空気より低い温度の空気と混合して室内に吹出すことができるため、加熱ヒータを用いることなく、吹出空気の冷え過ぎを抑制でき、冷房時のコールドドラフトを低減することができる。

一実施例では、上記吸込ファンは、正逆転可能とした第2の求心ファンからなり、これら2つの求心ファンをケーシングに内装している。

この場合、2つの求心ファンを共に正転させることにより、大風量の吹出が可能である一方、正逆転可能な求心ファンを逆転させることにより、ケーシング内において、フリーアクセスフロアの床下チャンバーの空気と室内空気を良好に混合でき、簡易かつ適正な構成でありながら、吹出空気の冷え過ぎを抑制でき、冷房時のコールドドラフトを良好に低減することができる。

さらに、本発明は、上述のいずれかの実施例に係る吹出ユニットを備えたアンダーフロア空調システムを提供する。このアンダーフロア空調システムは、上記いずれかの吹出ユニットの他、床スラブとフロアパネルとの間に形成された床下チャンバーと、空気調和機と、上記空気調和機からの調和空気を上記床下チャンバーに供給する手段と、室内の空気を上記空気調和機に戻す手段とを備えている。

一実施例においては、上記室内的空気を上記空気調和機に戻す手段は、天井に設けられた吸込口を有している。

図面の簡単な説明

図1は本発明に係るアンダーフロア空調システム全体の概略断面図。
図2は図1のアンダーフロア空調システムに使用される吹出ユニットの第1の実施形態を示す断面図。
図3は図2のⅢーⅢ線断面図。
図4は図2の要部拡大断面図。
図5は図2のV-V線断面図。
図6は図5のVI-VI線断面図。
図7は図5のVII-VIII線断面図。
図8は図5のVIII-IX線断面図。
図9は図5のIX-IX線断面図。
図10は図2の吹出ユニットの効果を比較例と対比して示すグラフである。
図11は空気流ガイド部材の別の例を示す断面図。
図12は空気流ガイド部材のさらに別の例を示す断面図。
図13は図1のアンダーフロア空調システムに使用される吹出ユニットの第2の実施形態を示す断面図。
図14は図1のアンダーフロア空調システムに使用される吹出ユニットの第3の実施形態を吹出グリルを取り外した状態で見た平面図。
図15は図14のXV-XV線断面図。
図16は従来技術の吹出ユニットの断面図。
図17は別の従来技術の吹出ユニットの断面図。
図18は従来の吹出グリルを示す断面図。
図19は逆流の発生を防ぐ方法の問題点を示すグラフ。
発明を実施するための最良の形態
図1は、本発明の一実施形態であるアンダーフロア空調システム全体の概要を示し、事務室101の床スラブ102上に、フロアパネル103を施設して、該フロアパネル103の下方に床下チャンバー104を形成している。フロアパネル103の適宜箇所には、複数の吹出口1を分散させて設けており、各吹出口1に対応させて、吹出ユニット100を設けてい
る。床下チャンバー104には、供給ダクト105を介して、空調機室106に配設する空気調和機109から供給する冷風または温風を吐出すようにしている。本例での空気調和機109は下吹出ファン107及び冷温水コイル108を有しているが、冷温水コイル108に代えて冷媒コイルを使用することもできる。一方、天井110には、照明装置111の両側にスリット状の吸込口112を設け、この吸込口112から天井裏空洞部113及びリターンダクト114を介して空気調和機109に空気を戻すようにしている。

次に、上記吹出ユニット100について詳細に説明する。

吹出ユニット100は、図2～図4に示すように、床下チャンバー104内の空気を径方向外方から吸い込み、これを吹出口1に向けて軸方向に流す求心ファン2を備えている。

この求心ファン2は、外面を略単葉双曲面とした有底筒形のハブ200の外面に、図3に示す通り、6枚の羽根20を備えている。ハブ200は、図4に示す通り、上部の吹出側外径D2を、下部の吸込側外径D1よりも大きくしており、吹出側の静圧を高める工夫がなされている。ハブ200の内方には、ボス201を取り付け、このボス201にモータ4から延びる回転軸3を结合している。尚、ハブ200の外面は、略単葉双曲面とする他、その極限として、直線状としてもよい。

上記求心ファン2の羽根前縁21は、図4に示す通り、その中心部のハブ側211から外周部のチップ側212に向けて、羽根後縁22との距離が順次短くなる関係に傾斜させている。羽根後縁22は、その中心部のハブ側221から外周部のチップ側222に向けて水平に延びている。

上記求心ファンの各羽根の羽根前縁を、チップ側がハブ側よりも軸方向において吐出側でかつ半径方向外側に存在するよう傾斜させて、羽根が空
気をすくいながら、かつ、やや中心方向に空気を吐出するように各羽根の前縁が3次元的に吐出側へ傾斜した形態とすることにより、吸込空気流がこの羽根前縁のハブ側部分にまで回り込むとともに、吸込空気流を円滑な軸方向に流すことができる。したがって、従来（2次元多翼状求心ファン）のような空気流が遠心力に大きく逆らって羽根内を流れるることによる性能劣化や発生音の増大を回避できる。

上記求心ファンの吸込側には、回転軸3と直交する平板状の吸込案内体5を配設している。この吸込案内体5は、図2の通り、フロアパネル103の下方に設置するスタッド51を介して支持している。尚、モータ4は、吸込案内体5の下方に固定するモータケース52に内装している。

上記求心ファンの吹出側には、回転軸3と同軸の円筒状の吹出案内体6を配設している。この吹出案内体6は、放射方向のブラケット600を介してフロアパネル103に支持されている。

図4に示す通り、上記吹出案内体6における上流側の円筒始端部60の高さは、求心ファン2におけるチップ側の羽根前縁212と羽根後縁222との間のレベルに位置させている。また、その円筒始端部60には、径方向外方に張り出す吸込空気導入手段としての断面略半円形の円環状のベルマウス61を連続させている。このベルマウス61は、その形状のおかげで吸込空気を吹出案内体6内に円滑に導くので、圧損を低減できる。

なお、吸込空気導入手段は、本実施形態におけるように設けた方が望ましいが、必須ではない。また、吸込空気導入手段としては、断面形状が本実施形態におけるベルマウス61のように湾曲したものの他、図示しないが、全く湾曲せず単に径方向外方に水平に張り出しているだけの形状のもとのすることもできる。

上記吹出案内体6の近傍かつ軸方向上流側には、ベルマウス61との間
に空気流出空間１０が形成されるように、円環状で平板形の空気流ガイド部材６２を配置している。この空気流ガイド部材６２は、吸込案内体５と同じくスタッド５１に支持されている。上記空気流ガイド部材６２は、上記吹出案内体６のベルマウス６１付近の空気吸い込み領域Rで生じる逆流成分を、空気流ガイド部材６２と上記吸込案内体５との間の本来の吸い込み空気流とは分断した状態で、吹出案内体６への空気導入通路１１の上流側に、空気流出空間１０から循環可能に速やかに戻すことによって、本来の吸込空気流には逆流させないように機能する。つまり、空気流ガイド部材６２は、吸込流と、該吸込流に対する逆流を仕切っているのである。

したがって、上記求心ファン２を使用し、かつ空気流ガイド部材６２を設けた吹出ユニット１００では、例えば開放点側から流路を絞っていても吹出案内体６の空気吸込領域R付近で逆流現象を生じなくなる。これについてさらに説明する。

すなわち、上記構成では、先ず開放状態において上記モータ４を駆動することにより求心ファン２を回転させると、上記吹出案内体６のベルマウス６１を介して空気導入通路１１より半径方向内方から吸入された空気流は、各羽根２０によって加速されつつ軸方向あるいは斜め外方に向かって吹き出される。ところが、流量を開放状態から徐々に絞っていくと、次第に遠心力の影響が大きくなるために吹出案内体６の空気吸い込み口側付近Rで図４に示すように半径方向外側に向かって逆流を生じる。しかし、この逆流は上記吹出案内体６のベルマウス６１と空気流ガイド部材6２との間に形成された空気流出路１０より即座に空気導入通路１１の上流側に吹き出される。その結果、小、中風量域でも安定した流れが得られるようになるって、静圧は大幅に上昇し、発生音も低減されることになる。

図１０は、空気流ガイド部材６２による空気流出口１０を有する本実施
形態に係る吹出ユニット100の逆風性能改善効果を、空気流出路10を
有しない比較例と、求心ファン2単体について比較したものである。なお、
同図において、空気流ガイド部材62は単にガイド部材として表されている
が、図10の内容から、本実施形態の構成のものによって、小、中風量域
における空力性能・騒音性能が大幅に向上していることがわかる。

尚、この例では空気流ガイド部材62は平板形としたが、端部の一方ま
たは両方の断面を円弧状にすればより風の流れがよくなる。たとえば、図
11で示す空気流ガイド部材62Aは、断面形状を空気導入通路11の空
気流の上流側と下流側ともに有定の曲率半径の円弧状とし、全体として扁平
な断面構造としたものである。また、図12に示した空気流ガイド部
材62Bは、断面形状を、空気導入通路11の空気流の上流側では所定の
曲率半径の円弧状とし、さらに下流側方向に次第に厚さを薄くしてエッジ
部化したものである。空気流ガイド部材62A、62Bのいずれも、平板
状の空気流ガイド部材62に比べて、本来の吸込込み空気流の乱れをより
少なくするとともに逆流成分をより容易に分断できる。従って、より一層
の送風性能の向上と静音化を図ることができる。

ところで、逆流の問題を解決する方法として、空気流ガイド部材62,
62A、62Bを設ける替わりに、吹出案内体6の円筒部分を吹出方向後
方側に延ばして求心ファン2の羽根20のチップ部を覆い隠すことにより、
逆流の発生そのものを防ぐ構成にすることも考えられる。しかし、このよ
うにすると確かに逆流を防ぐことはできるが、求心ファン2の吸込面積を
減らすことになるため、図19のグラフからもわかるように、大風量域で
送風能力が低下してしまう。また、求心ファン2の外周部にいわゆる死水
域が生じることにもなる。したがって、このような方法は望ましくない。
本実施形態では、羽根のチップ部を覆い隠すことによって逆流の発生その
ものを防止するのではなく、空気流ガイド部材62, 62A, 62Bを使
用することにより、発生した逆流を本来の吸込流と分断した状態で、空気
導入通路11の上流側に吹き出すようにしたものである。したがって、送
風能力の低下や死水域の問題は生じない。
円形の吹出口1には、図2、図5に示すように、樹脂製の円形の吹出グ
リル7がはめ込まれている。この吹出グリル7は、吹出口案内体6の円筒部
分に嵌合する筒状のグリル脚73と、このグリル脚73に一体化されたグ
リル枠74と、下端面が上記グリル脚73の下端面と同じ高さにあり、上
端面がグリル枠74の上端面と同じ高さにある中心筒75と、この中心筒
75とグリル枠74、グリル脚73との間に同心円状に配置された複数のグ
リルリング71と、これらグリルリング71を周方向4カ所において中
心筒75とグリル脚73とに連絡する径方向リブ72とを有する。上記グ
リル枠74の径方向外側部分は、フロアパネル103に係止されるように、
グリル脚73から張り出している。また、径方向リブ72は、図6～9に
示すように、鉛直線に対して吹出流の旋回方向前方に傾斜（傾斜角度は、
この例では、鉛直線に対して略30度）している。径方向リブ72のこの
傾斜のためで、吹出口1に向けて流れる旋回流は、径方向リブ72をすり
抜けて流れ、径方向リブ72によって大きな抵抗を受けないので、吹出部
分での圧損を低減できるとともに、風切り音を低減できる。
図13は、図1のアンダーフロア空調システムにおいて使用された上述
の吹出ユニット100に替えて使用できる吹出ユニット100'を示して
いる。図13において、図2～4および図5におけるのと同様の部材には
同じ参照番号を付している。
この吹出ユニット100'は、第1の実施形態に係る吹出ユニット10
0とは、モータ4の設置箇所が異なる点で異なる。つまり、吹出ユニット
100ではモータ4は求心ファン2の下面に設けたが、吹出ユニット100'では、モータ4をハブ200の内側に入れ込んでいる。そして、ハブ200から突出したモータ4の上部を、ハブ4の上方に設置される吹出グリル7の中心筒75の内に収容すると同時に中心筒75によって支持している。このような構造の場合は、モータ4の外径が小さいことが望ましく、誘導電動機等の交流（AC）モータではなく、直流（DC）モータを採用するのが好ましい。DCモータは、同じ出力のものであれども、ACモータよりも小型にできるので、ハブ200内にモータのほぼ全体を収容できるからである。この場合、吸込案内体5からフロアパネル103まで距離hを100mmにまですることが可能である。

図14及び図15は、図1のアンダーフロア空調システムに使用される吹出ユニット100に替えて使用可能なさらに別の吹出ユニット100”を示している。図14、15において、図2～4および図5におけるのと同様の部材には同じ参照番号を付している。

この吹出ユニット100”では、求心ファン2に隣接させて、求心ファン2の吸込側に室内空気を取り込む吸込ファン8を配置している。この実施形態における求心ファンは、図2～4および図13にそれぞれ示した吹出ユニット100、100’における求心ファン2と同一構成のものである。また、吸込ファン8には、求心ファン2と同様な構造をもち、正逆転可能とした第2の求心ファンを用いている。そして、これら2つの求心ファン2、8を、フロアパネル103の下方に設けるケーシング9に内装するようにしている。ケーシング9は側方が開口している。

この吹出ユニット100”は、2つの求心ファン2、8を共に正転させた場合には、大風量の吹出が可能である。また、冬房時には、正逆転可能な求心ファン8を逆転させることにより、ケーシング9内において、床下
チャンバー104の室内空気より低い温度の空気と吹出口1（この場合に
は、吸込口）から吸い込む室内空気とを良好に混合でき、吹出空気の冷え
過ぎを抑制でき、冷房時のコールドドラフトを良好に低減することができ
る。

産業上の利用可能性

本発明のアンダーフロア空調用吹出ユニットおよびアンダーフロア空調
システムは、一般事務室、電算機室、各種実験室、店舗、工場、病院、ホ
テル、宴会場、その他各方面での建築施設で利用でき、特に床下空間を大
きくとれない所に使用するのに好適なものである。
請求の範囲

1. フロアパネル（103）に設けられた吹出口（1）と、
ハブ（200）と、このハブ（200）の外面に形成された複数の羽根
（20）とを有し、上記フロアパネル（103）と床スラブ（102）と
の間に形成される床下チャンバー（104）内に上記吹出口（1）に対向
して設けられ、上記床下チャンバー（104）の空気を径方向外方から吸
い込んで上記吹出口（1）に向けて略軸方向に流す求心ファン（2）と、
上記求心ファン（2）を回転駆動するモータ（4）とを備えたことを特
徴とするアンダーフロア空調用吹出ユニット（100, 100°, 100°）。

2. 上記求心ファン（2）の各羽根（20）の羽根前縁（21）は、チッ
プ側（212）がハブ側（211）よりも軸方向において吐出側でかつ半
径方向外側に存在するよう傾斜していることを特徴とする請求項1に記載
のアンダーフロア空調用吹出ユニット。

3. 上記求心ファン（2）の吸込側に、上記モータ（4）の回転軸（3）
と直交するように設けられた平板状の吸込案内体（5）と、
上記求心ファン（2）の吹出側に、上記回転軸（3）と同軸に設けられ
た円筒状の吹出案内体（6）とをさらに備えたことを特徴とする請求項1
に記載のアンダーフロア空調用吹出ユニット。

4. 上記吹出案内体（6）における上流側の円筒端部（60）は、上記
求心ファン（2）におけるチップ側の羽根前縁（212）と羽根後縁（2
22）との間のレベルに位置していることを特徴とする請求項3に記載の
アンダーフロア空調用吹出ユニット。

5. 上記吹出案内体（6）は、上流側の円筒始端部（6 0）から径方向外
方に張り出した吸込空気導入手段（6 1）を有することを特徴とする請求
項3に記載のアンダーフロア空調用吹出ユニット。

6. 上記吹出案内体（6）の近傍かつ軸方向上流側に、吸込流と該吸込流
に対する逆流を仕切る空気流ガイド部材（6 2）を配置していることを
特徴とする請求項3に記載のアンダーフロア空調用吹出ユニット。

7. 上記吹出フード（2 0 0）は、吹出側外径（D 2）が吸
込側外径（D 1）よりも大きいことを特徴とする請求項1に記載のアンダ
ーフロア空調用吹出ユニット。

8. 上記吹出口（1）に取り付けられる吹出グリル（7）をさらに備え、
上記吹出グリル（7）は、上記フロアパネル（1 0 3）に係止されるグ
リル枠（7 4）と、このグリル枠（7 4）の内側に、径方向に互いに間隔
をおいて同心円状に配置された複数のグリルリング（7 1）と、これらグ
リルリング（7 1）を上記グリル枠（7 4）に連結する径方向リブ（7 2）
とを有し、上記径方向リブ（7 2）は鉛直面に対して吹出流の旋回方向前
方、より傾斜していることを特徴とする請求項1に記載のアンダーフロア空
調用吹出ユニット。

9. 上記モータ（4）の一部を上記ハブ（2 0 0）の内側に収容したこと
を特徴とする請求項1に記載のアンダーフロア空調用吹出ユニット。
10. 上記モータ（4）を上記求心ファン（2）の吹出側において支持していることを特徴とする請求項9に記載のアンダーフロア空調用吹出ユニット。

11. 上記吹出グリル（7）はさらに、上記複数のグリルリング（75）の徑方向内側に、軸方向に伸びる中心筒（75）を有し、
上記モータ（4）の一端側の部分は上記ハブ（200）内に収容される
とともに、上記モータ（4）の他端側の部分は上記中心筒（75）内に嵌合するようになっていることを特徴とする請求項8に記載のアンダーフロア空調用吹出ユニット。

12. 上記求心ファン（2）に隣接させて、該求心ファン（2）の吸込側に室内空気を取り込む吸込ファン（8）を配置していることを特徴とする請求項1に記載のアンダーフロア空調用吹出ユニット。

13. 上記吸込ファン（8）は、正逆転可能とした第2の求心ファンからなり、これら2つの求心ファン（2, 8）をケーシング（9）に内装していることを特徴とする請求項12に記載のアンダーフロア空調用吹出ユニット。

14. 床スラブ（102）とフロアパネル（103）との間に形成された床下チャンバー（104）と、
空気調和機（109）と、
上記空気調和機（109）からの調和空気を上記床下チャンバー（10
4）に供給する手段（105）と、

上記床下チャンバー（104）に供給された調和空気を室（101）内
に吹き出す請求項1に記載のアンダーフロア空調用吹出ユニット（100、
100'、100")と、

室内的空気を上記空気調和機（109）に戻す手段（112、114）
とを備えたことを特徴とするアンダーフロア空調システム。

15. 上記室内的空気を上記空気調和機（109）に戻す手段は、天井（1
10）に設けられた吸込口（112）を有することを特徴とする請求項1
4に記載のアンダーフロア空調システム。
Fig. 10

試験条件
外 径 : φ190
回転数 : 1200rpm
チップ隙間 : 2.5mm
Fig. 19

- ○: $z = -0.2H_t$
- △: $z = 0$
- □: $z = +0.5H_t$
- ●: $z = +H_t$

圧力 [mmAq]

音圧 [dB(A)]

風量 [m³/h]
INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/02553

A. CLASSIFICATION OF SUBJECT MATTER

Int. C16 F24F13/068, F04D17/02, F04D29/18, F04D29/40

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. C16 F24F13/068, F04D17/02, F04D29/18, F04D29/40

Documented searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1926 - 1996

Kokai Jitsuyo Shinan Koho 1926 - 1996

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y A</td>
<td>JP, 06-174260, A (Tokyu Kensetsu K.K., Hitachi Reinetsu K.K., Nitto Boseki Co., Ltd.), June 24, 1994 (24. 06. 94), Fig. 2</td>
<td>1-3, 5, 7-9, 14, 15, 4, 6, 10-13</td>
</tr>
<tr>
<td>Y A</td>
<td>JP, 05-164394, A (Takenaka Corp.), June 29, 1993 (29. 06. 93), Figs. 1 to 3</td>
<td>1-3, 5, 7-9, 14, 15, 4, 6, 10-13</td>
</tr>
<tr>
<td>Y A</td>
<td>JP, 55-180995, U (Matsushita Seiko Co., Ltd.), December 26, 1980 (26. 12. 80), Fig. 2</td>
<td>1-3, 5, 7-9, 14, 15, 4, 6, 10-13</td>
</tr>
<tr>
<td>Y A</td>
<td>JP, 59-593, A (Daikin Industries, Ltd.), January 5, 1984 (05. 01. 84), Figs. 5, 9</td>
<td>1-3, 5, 7-9, 14, 15, 4, 6, 10-13</td>
</tr>
<tr>
<td>Y A</td>
<td>JP, 60-249697, A (Akaishi Kinzoku Kogyo K.K.), December 10, 1985 (10. 12. 85), Figs. 1 to 3</td>
<td>7</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. **□** See patent family annex.

* "A" Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

* "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

* "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

* "&" document member of the same patent family

Date of the actual completion of the international search

December 27, 1996 (27. 12. 96)

Date of mailing of the international search report

January 14, 1997 (14. 01. 97)

Name and mailing address of the ISA/

Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP, 04-155145, A (Matsushita Seiko Co., Ltd.), May 28, 1992 (28. 05. 92), Figs. 1, 2, 4, 5, 7, 8</td>
<td>8</td>
</tr>
</tbody>
</table>
国際調査報告

国際出願番号 PCT／JP96／02553

A. 発明の属する分野の分類（国際特許分類（IPC））

Int C1' F24F13／068, F04D17／02, F04D29／18, F04D29／40

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int C1' F24F13／068, F04D17／02, F04D29／18, F04D29／40

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1926－1996年
日本国公開実用新案公報 1926－1996年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文書

<table>
<thead>
<tr>
<th>引用文書のカテゴリ</th>
<th>引用文書名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y A</td>
<td>J. P. 06－174260, A (東急建設株式会社. 日立製作株式会社. 日東紡績) (24. 06. 94), 第2図 1-3, 5, 7, 9, 14, 15</td>
<td>4, 6, 10－13</td>
</tr>
<tr>
<td>Y A</td>
<td>J. P. 05－164394, A (株式会社三木工機) (29. 06. 93), 第1－3図 1-3, 5, 7, 9, 14, 15</td>
<td>4, 6, 10－13</td>
</tr>
<tr>
<td>Y A</td>
<td>J. P. 55－180995, U (松下精工株式会社) (26. 12. 80), 第2図 1-3, 5, 7, 9, 14, 15</td>
<td>4, 6, 10－13</td>
</tr>
<tr>
<td>Y A</td>
<td>J. P. 59－593, A (ダイキン工業株式会社) (05. 1. 1984 (05. 01. 84), 第5, 9図 1-3, 5, 7, 9, 14, 15</td>
<td>4, 6, 10－13</td>
</tr>
</tbody>
</table>

X 引用文書のカテゴリ

「A」特に関連のある文書ではなく、一般的な技術水準を示すもの

「E」先行文書であるが、国際出願日以後に公表されたもの

「L」優先権主張に隣接する文書又は他の文書の発行日若しくは他の特別な理由を考慮するために引用する文書（理由を付す）

「O」口頭による説明、使用、展示等に言及する文献

「P」国際出願日前に、かつ優先権の主張の基礎となる出願人の日後の出願文書

「T」国際出願日又は優先日後に公表され文書であって出願と予定するものではなく、発明の理解や理解の理解の理解のために引用するもの

「X」特に関連のある文書であって、当該文書のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に発表のある文書であって、当該文書と他の1以上の文書との、当業者によって自明である組合せによって進歩性がないと考えられるもの

「&」同一パラメタファミリー文書

国際調査を完了した日 27. 12. 96 国際調査報告の発送日 14.01.97

国際調査機関の名称及び住所

日本国特許庁（ＩＳＡ／ＪＰ） 郵便番号100
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員） 清田 榮章
電話番号 03－3581－1101 内線 3337

様式PCT／ISA／210（第2ページ）（1992年7月）
<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>引用文献名及一部の箇所</th>
<th>関連する箇所の表示</th>
<th>関連する箇所の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP, 60-249697, A (赤石金属工業株式会社), 10.12月, 1985 (10.12.85), 第1-3部</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP, 04-155145, A (松下精工株式会社), 28.5月, 1992 (28.05.92), 第1, 2, 4, 5, 7, 8部</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>