Title: BASE UNIT FOR A VEHICLE

Abstract: A base unit for a vehicle such as a mobile work platform includes a chassis (12) and a plurality of wheels (14, 16), at least one of which is mounted by a suspension element (18) which pivots relative to the chassis (12) about a horizontal axis (20) between upper and lower positions. A stop member (23) engages the suspension element in the upper position to limit upwards movement. A biasing mechanism (24) including a spring (40) exerts a biasing force on the suspension element (18) to urge the suspension element upwards. The biasing mechanism also includes an actuator (28) to adjust the biasing force to be either greater than or less than the force needed to maintain the suspension element in engagement with the stop member.
Base unit for a vehicle

The present invention relates to a base unit for a vehicle, for example for a mobile elevating work platform (MEWP). The base unit may also be used with other vehicles such as forklifts or telescopic handling machines ("telehandlers"). The invention also relates to a vehicle having such a base unit.

Mobile elevating work platforms generally have a cage for an operator that is mounted on the end of a hydraulically-operated boom. The boom is mounted on a base unit and can be moved up and down or from side-to-side under the control of an operator in the cage.

The base unit is provided with drive wheels and is fully mobile. It is stabilised by the weight of the base unit and a counter-weight attached to the boom.

In one known type of MEWP the chassis of the base unit is entirely rigid: the wheels are mounted on rigid axles without any form of suspension and have very hard tyres. This provides the stability to ensure that the base unit does not tilt when the boom is extended to one side of the base unit. The base unit is very heavy, and the wheels and tyres provide a significant part of the weight of the base unit.

One disadvantage of using a rigid chassis is that when the MEWP is standing on an uneven surface one of the wheels may be raised off the ground. This does not seriously affect the stability of the platform as the weight of the lifted wheel still contributes to the overall weight of the base unit. However, having one wheel out of contact with the ground can be disconcerting for the operator. Also, if the lifted wheel is a drive wheel, drive from that wheel will be lost.

GB2334015A describes a MEWP in which the base unit includes a suspension mechanism that includes, for each drive wheel, a swing arm on which the wheel is mounted. The
swing arm is arranged to pivot about a substantially horizontal pivot axis and a stop member is provided on the chassis that engages the swing arm to limit upwards movement. The swing arm engages the stop members when the mobile access platform is standing on flat, level ground and the platform cannot therefore tilt significantly, ensuring stability.

A biasing spring is connected to each swing arm, which biases the swing arm upwards towards the stop member. The biasing force is however slightly less than the force needed to maintain the swing arm in engagement with the stop member when the wheel is unsupported. Therefore, when the MEWP is standing on uneven ground, one or other of the swing arms can pivot downwards from its normal position in engagement with the stop member, allowing the unsupported wheel to drop into contact with the ground. All four wheels can therefore maintain contact with the ground even when the platform is standing on or travelling over uneven ground. This improves the confidence of the operator and maintains drive from both of the drive wheels. Also, as the swing arm is biased upwards towards the stop member, the weight of that arm and the associated wheel contribute to the overall weight of the base unit and to the stability of the platform.

The force that the dropped wheel exerts on the ground can be controlled by adjusting the biasing force applied by the spring. Normally, the spring is adjusted so that most of the weight of the dropped wheel and the swing arm is carried by the spring, so that this weight contributes to the stability of the MEWP. This means however that the wheel exerts only a small force on the ground, which can cause it to slip when drive is applied. Reducing the force applied by the spring will increase the force exerted by the wheel on the ground and reduce the risk of slip, but will also reduce the stability of the MEWP. It may therefore be difficult to achieve an ideal compromise between these two conflicting requirements. Furthermore, the fact that the swing arms can pivot downwards from their normal positions in engagement with the stop members may lead to a perceived, but incorrect, impression that the platform has become unstable.

It is an object of the present invention to provide a base unit for a vehicle that mitigates at least one of the afore-mentioned disadvantages, or that provides one or more advantages over the previous arrangement.
According to the present invention there is provided a base unit for a vehicle, the base unit including a chassis and a plurality of wheels, at least one of said wheels being mounted on the chassis by a suspension mechanism comprising a suspension element, said suspension element being arranged to pivot relative to the chassis about a substantially horizontal pivot axis between an upper position and a lower position, a stop member arranged to engage the suspension element in the upper position to limit upwards movement thereof, and a biasing mechanism arranged to exert a biasing force on the suspension element to urge the suspension element upwards towards the upper position, said biasing mechanism including an actuator operable to adjust the biasing force so that, in a first operating condition the biasing force is greater than the force needed to maintain the suspension element in engagement with the stop member when the wheel is suspended, and in a second operating condition the biasing force is less than the force needed to maintain the suspension element in engagement with the stop member when the wheel is suspended.

Because the suspension element cannot move upwards from its upper position in engagement with the stop member, the platform cannot tilt significantly, this being essential for stability. The suspension element is normally maintained in this position by the biasing mechanism, even if one of the wheels is suspended above the ground, to ensure that the stability is not compromised. However, by activating the actuator the suspension element can be allowed to drop down to the lower position so that it can maintain contact with the ground even when the platform is standing on or travelling over an uneven surface. This improves the confidence of the operator and, if the wheels are driven, allows drive to be provided by all the drive wheels. However, as a large part of the weight of the suspension element and the attached wheel is still carried by the chassis, this weight contributes to the overall weight of the base unit and to the stability of the platform.

Advantageously, the biasing mechanism includes a resilient biasing element that biases the suspension element towards the upper position, and the actuator is operable to urge the suspension element towards the lower position. This provides a simple and effective mechanism for selecting the operating condition of the suspension mechanism according to the operational circumstances.

Advantageously, the resilient biasing element applies a biasing moment M_B to the suspension element that has a value that is greater than the weight moment M_w of the
suspension element when the suspension element is in the upper position. In a preferred embodiment, the resilient biasing element applies a biasing moment M_B to the suspension element that has a value in the range 1.0 to 1.5, preferably 1.0 to 1.1, times the weight moment M_w of the suspension element when the suspension element is in the upper position. Therefore, when the drive system is not being used and the hydraulic actuator is not pressurised, the suspension elements are urged upwards and are held in their housings. Because the force exerted by the resilient biasing element is more than the force needed to lift the wheel, the full mass of the wheel assembly contributes to the overall weight of the base unit. The stability of the platform is not therefore compromised.

For example, the suspension element and wheel of a large MEWP may typically weigh approximately 200kg and the resilient biasing member (for example a spring) may be arranged to exert a moment on the suspension element that is sufficient to support a weight of approximately 210kg (allowing also for the additional moment needed to overcome pin frictions and to compensate for hysteresis in the biasing member). Therefore, when the platform is standing on uneven ground and one of the wheels is suspended above the ground, its full weight contributes to the stability of the MEWP.

Advantageously, the actuator is operable to apply an actuator moment MA to the suspension element, where MA has a value greater than the value of $M_B - M_w$ when the suspension element is in the lower position, where M_B is the biasing moment and M_w is the weight moment. The force exerted on the ground may then be determined from the turning moments acting on the suspension elements, where the moment MG resulting from the reaction force acting on the wheel from the ground is: $MG = MA + M_w - M_B$.

In a preferred embodiment MA has a value in the range 1.0 to 1.5, preferably 1.0 to 1.2, times greater than the value of $M_B - M_w$. This ensures that the wheel is able to transmit drive to the ground without unduly affecting the stability of the vehicle. For example, if the suspension element and wheel weigh approximately 200kg and the resilient biasing member is able to support a weight of approximately 210kg, the actuator may be arranged to exert a force equivalent to a weight of 30kg so that the wheel is pressed against the ground with a force of 20kg (allowing for any pin frictions, spring rates and hysteresis). It should be understood that these figures are only illustrative. The actual forces may be much larger or much smaller depending on the size and design of the MEWP.
Advantageously, the resilient biasing element is configured to apply a closing force to the actuator.

Advantageously, the base unit includes an adjuster device, for example an adjustable bolt, for adjusting the bias force applied by the resilient biasing element.

Advantageously, the base unit includes a pair of opposed suspension elements arranged to pivot about substantially horizontal pivot axes, and a common biasing mechanism that interconnects the two opposed suspension elements. This simplifies the mechanism and reduces the number of parts and the weight of the mechanism. In particular, as three points are required to define a plane, three of the wheels will always be in contact with the ground. The fourth wheel will drop into contact with the ground but will only press lightly on the ground. Therefore the machine only needs suspension on two opposed wheels (that is, on one axle) and the suspension for only one wheel of an axle is required to operate at any one time. This allows much of the spring/actuator mechanism to be shared between the two opposed wheels, thereby greatly reducing the cost and complexity of the system.

Alternatively, each suspension element may include a separate biasing mechanism.

Advantageously, the suspension mechanism includes a drive device for driving the wheel, for example a hydraulic drive motor or any other suitable drive mechanism.

Advantageously, the base unit may include at least one wheel that is mounted rigidly to the chassis. Advantageously, the rigidly mounted wheel or wheels are steerable. Alternatively, a suspension mechanism may be provided for all four wheels. Also, all four wheels may be steered and/or driven.

According to another aspect of the invention there is provided a vehicle including a base unit according to any one of the preceding statements of invention, and a lifting mechanism mounted on the base unit.

Advantageously, the vehicle includes a control system for controlling operation of the lifting mechanism, said control system including a control device configured to control operation of the actuator and operable to select either the first operating condition or the second operating condition. The control device may for example consist of or be part of the control console or it may be part of a control system located elsewhere on the vehicle.
Advantageously, the control system is configured to prevent actuation of the actuator when the lifting mechanism is in a lifted condition, so that when the lifting mechanism is in a lifted condition each suspension element is located in the upper position. Therefore, when the lifting mechanism is activated, pressure will be released from the actuator and each suspension element will either remain in or return slowly to the upper position. This ensures that the base unit has maximum stability when the lifting mechanism is activated. Further, in the event of a failure of the control system or the hydraulic system, the actuator is preferably deactivated so that the spring returns the wheel to a safe, stable position.

In one preferred embodiment, the vehicle is a mobile elevating work platform having a work platform mounted on the lifting mechanism.

Certain embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:

Figure 1 is an end view of a mobile elevating work platform according to a first embodiment of the invention;

Figure 2 is an isometric view showing a base unit for the mobile elevating work platform in a first operating condition;

Figure 3 is an isometric view showing the base unit in second operating condition;

Figure 4 is an isometric view showing part of the base unit at an enlarged scale;

Figure 5 is a schematic diagram illustrating the turning moments acting on a suspension element in a first operating condition;

Figure 6 is a schematic diagram illustrating the turning moments acting on a suspension element in a second operating condition, and

Figure 7 is a partially cut-away isometric view of a suspension component of mobile elevating work platform according to a second embodiment of the invention.

Figure 1 shows a typical mobile elevating work platform, which includes a wheeled base 2, a hydraulically operated lifting mechanism 3 comprising an extending boom 4 and a rising structure 5, and a cage 6 for a human operator 8, including a control console 9 for
controlling operation of the MEWP. The boom 4, which is shown here in two different operating positions, may be retracted and folded onto the wheeled base 2 for transportation or storage. Movement of the boom is controlled by various hydraulic cylinders 10, which are connected to a hydraulic drive system (not shown) that is controlled via the control console 9.

The components of the MEWP as described above are all conventional and will not therefore be described in further detail. It should be understood that the mobile elevating work platform may take various alternative forms.

In this example the base unit 2 includes a chassis 12, a pair of steerable wheels 14 that are mounted in conventional manner on a fixed axle at the front end of the chassis 12 and a pair of drive wheels 16a, 16b (shown in Figures 2 and 3) that are mounted at the rear of the chassis 12. The drive wheels 16a, 16b may be driven by, for example, hydraulic drive motors (not shown). Although in this embodiment only the rear wheels are driven it should be understood that all of the wheels may alternatively be driven.

Each rear drive wheel 16a, 16b is mounted on a suspension element comprising in this embodiment a swing arm 18a, 18b that can pivot vertically about a horizontal pivot pin 20 that extends through the lower part of the swing arm in a direction parallel to the longitudinal axis of the chassis 12. Alternatively, the suspension element may comprise a double wishbone or short-long arm suspension, or any other suitable suspension mechanism. The swing arm 18a, 18b contains a drive motor for the wheel and extends outwards through a housing 22 on the side of the chassis 12. The upper, inner part of the swing arm 18a, 18b engages a stop member 23 on the side of the chassis to restrict upwards movement of the swing arm 18a, 18b. When the base unit 2 is standing on flat, level ground, each swing arm 18a, 18b engages the respective stop member 23 and cannot move upwards from that position, thereby ensuring the stability of the machine.

In the following description, the two rear wheels will be referred to as a left rear wheel 16a and a right rear wheel 16b, and the two swing arms will be referred to as a left swing arm 18a and a right swing arm 18b.
The left and right swing arms 18a, 18b are connected to one another by a biasing mechanism 24 that extends between left and right mounting brackets 26a, 26b mounted at the upper, inner ends of the respective swing arms. The biasing mechanism 24 is shown in more detail in Figure 4. The biasing mechanism 24 includes a hydraulic actuator 28 comprising a cylinder 30 that is attached by a pivot pin 31a to the left mounting bracket 26a and a piston rod 32 that is attached by a pivot pin 31b to the right mounting bracket 26b. A first mounting plate 34 is attached to the end of the piston rod 32 and a second mounting plate 36 is attached to the free end of the cylinder 30. A pair of tensioning bolts 38 are screwed into threaded holes in the first mounting plate 34 and extend through unthreaded holes in the second mounting plate 36 towards the pivot end of the cylinder 30. Each of these tensioning bolts 38 supports a compression spring 40, which is compressed between the head 38a of the bolt and the second mounting plate 36. The springs 40 exert a closing force on the hydraulic actuator 28. This force can be adjusted by rotating the heads 38a of the bolts 38 while the mechanism is in the closed position.

The swing arms 18a, 18b can each pivot about the pivot pin 20 between (i) an upper position as depicted in Fig. 2 in which the swing arm is in engagement with the respective stop member 23a, 23b, and (ii) a lower position as depicted in Fig. 3 in which the right swing arm 18b is pivoted downwards and no longer engages the stop member. In the example depicted in Fig. 3 the left swing arm 18a is shown in the upper position in engagement with the stop member 23a.

The swing arms 18a, 18b will normally be in the upper position as depicted in Fig. 2 when the MEWP is standing on flat, level ground and the respective wheels 16a, 16b are fully supported by the ground. In this position, the hydraulic actuator 28 is in an unextended condition with the piston rod 32 retracted fully into the cylinder 30.

The compression springs 40 bias the swing arms 18a, 18b towards the upper position through the tensioning bolts 38. The tensioning bolts 38 are adjusted so that if the hydraulic actuator is inactive (unpressurised), the compression springs 40 exert a biasing force on the swing arms 18a, 18b that is slightly larger than the force needed to overcome the weight of the swing arms 18a, 18b and the associated wheels 16a, 16b. Therefore, the swing arms 18a, 18b are maintained in the upper position in contact with the stop members 23a, 23b even if the wheels 16a, 16b are out of contact with the ground and are suspended
solely by the suspension mechanism. This may occur for example when the MEWP is standing on uneven ground.

In order to allow one or other of the swing arms 18a, 18b to pivot downwards to the lower position, the hydraulic actuator 28 must be activated by pressurising it with hydraulic fluid. This causes the actuator 28 to open. The force applied by the actuator 28 counteracts the effective biasing force of the biasing springs 40, allowing one of the swing arms 18a, 18b to pivot downwards to the lower position as shown in Fig. 3. Therefore, if one or other of the wheels 16a, 16b is suspended out of contact with the ground, the actuator 28 when activated will cause that wheel to drop down into contact with the ground or to press harder against the ground. This allows drive to be applied through the wheel.

The force applied by the actuator 28 is designed to be just enough to overcome the maximum compression force of the springs 40 at the end of the actuator stroke, so that the forces are balanced. This reduces the load/stresses on the chassis 12 and the swing arms 18a, 18b and allows unnecessary weight to be removed from the structure, providing a lower overall machine weight. There is provision for adjustment to the force provided by the actuator. The force exerted by the actuator must be sufficient that the moment exerted on the pivoting arm is greater than that exerted by the spring with the arm in the fully lowered position. A stop is provided to prevent the actuator over-compressing the spring.

When the lifting mechanism 4, 5 is activated, pressure is released from the hydraulic actuator 28 allowing the swing arms 18a, 18b to return gradually to their upper positions in engagement with the stop members 23a, 23b. Damping is applied to control the speed at which the swing arms return to the upper position when the actuator is deactivated to prevent jerking/slamming. The time taken for the swing arms 18a, 18b to return to their upper positions is less than the time it would take to lift the booms 4 into an unstable position. The stability of the platform is not therefore compromised. Alternatively, the machine may include a safety system that prevents the lifting mechanism from being activated unless the wheels are in the upper position and/or when the actuator 28 is activated/extended. The machine may also include a safety switch that prevents activation of the actuator 28 when the boom is raised.
The weight of the wheel and the swing arm, the biasing force provided by the compression springs and the force provided by the actuator all produce turning moments acting to cause the swing arm to rotate about the pivot pin 20 between the upper and lower positions. These turning moments are illustrated in Figs. 5 and 6. In Fig. 5 the swing arm 18b is shown in the first operating condition in which the biasing force is greater than the force needed to maintain the swing arm in the upper position in engagement with the stop member 23b. In this condition the weight of the wheel 16b and the swing arm 18b produces a clockwise weight moment M_w and the biasing force of the springs produces an anticlockwise biasing moment M_B. The biasing moment M_B is greater than the weight moment M_w and therefore the swing arm 18b is maintained in the upper position.

In Fig. 6 the swing arm 18b is shown in the second operating condition in which the actuator has been activated to allow the swing arm to drop to the lower position in which it engages the ground. In this condition the actuator produces a clockwise actuator moment M_A which acts with the weight moment M_w against the biasing moment M_B and the anticlockwise moment M_G produced by the ground reaction force. The sum of the actuator moment M_A and the weight moment M_w is greater than the biasing moment M_B and therefore the swing arm is able to drop to the lower position.

More specifically, in the first operating condition:

$$M_B > M_w$$

or in a preferred embodiment:

$$M_B = A \cdot M_w \text{ where } A = 1.0 \text{ to } 1.5, \text{ preferably } 1.0 \text{ to } 1.1$$

In the second operating condition:

$$M_A + M_w = M_B + M_G$$

so, $$M_A + M_w > M_B$$

or in a preferred embodiment:

$$M_A = B \cdot (M_B - M_w) \text{ where } B = 1.0 \text{ to } 1.5, \text{ preferably } 1.0 \text{ to } 1.2$$

The ranges indicated above for the values of the coefficients A and B ensure that in the first operating condition the swing arm is held against the stop member in the upper position, while in the second operating condition the swing arm is allowed to fall into
contact with the ground but most of its weight is still carried by the chassis, so that the
stability is not significantly compromised.

Operation of the hydraulic actuator 28 may be controlled automatically or by the machine
operator, via the control console 9. For example, the actuator may be activated by
receiving an actuation signal from an activation control (or "Green button") that is
mounted on the control console in the cage or a control box on the base. Alternatively, an
activation signal can be generated using a footswitch mounted on the floor of the cage or
by using a trigger switch on a joystick that is mounted on the control console in the cage.

More generally, the MEWP includes a control system for controlling operation of the
lifting mechanism, said control system including a control device configured to control
operation of the actuator and operable to select either the first operating condition in which
the biasing force is greater than the force needed to maintain the suspension element in
engagement with the stop member when the wheel is suspended, or the second operating
condition in which the biasing force is less than the force needed to maintain the
suspension element in engagement with the stop member when the wheel is suspended.

In the case of automatic operation, the actuator 28 may be activated/pressurised when the
drive system to the wheels is engaged, thus allowing any suspended drive wheel to drop
down to the lower position and ensuring that the drive wheels are pressed firmly against
the ground so that they can propel the MEWP for forward or reverse travel. When the drive
system to the wheels is disengaged, the actuator 28 is deactivated/depressurised, causing
the swing arms 18a 18b to return to the upper position in contact with the stop members
23a, 23b, to ensure maximum stability. The drive system and the lifting mechanism may
also be interlinked to ensure that the lifting mechanism cannot be operated while the drive
is engaged.

In the case of manual operation, the operator can decide when to maintain the swing arms
18a, 18b in the normal upper positions as depicted in Fig. 2 and when to allow one or other
of the swing arms to pivot downwards to the lower position as depicted in Fig. 3. Usually,
the swing arms 18a, 18b will be maintained in the upper position when the lifting
mechanism is actuated to raise the boom, and they will be allowed to pivot to the dropped
positions only when the boom is retracted. This allows the wheels 16a, 16b to follow the contours of the ground when the MEWP is standing on or travelling over uneven ground.

The base unit 2 may also be useful for other vehicles where a very high degree of stability is required, for example forklifts or telescopic handling machines.

Figure 7 illustrates a modification of the MEWP shown in Figures 1 to 6, in which the previous biasing mechanism 24 comprising a hydraulic actuator 30 and a pair of compression springs 40 is replaced by a new modular biasing mechanism 44 in which a single compression spring 46 is positioned inside a hydraulic actuator 48. The hydraulic actuator includes a piston 50 mounted inside a cylinder 52, which connected via a rod 54 that extends through a first end 52a of the cylinder 52 to a pivot mount 56. A second pivot mount 58 is provided at the second end 52b of the cylinder 52. The spring 46 is compressed between the piston 50 and the first end 52a of the cylinder 52.

In the first operating condition the compressed spring 46 exerts a force on the piston 50, urging it towards the second end 52b of the cylinder 52, so that the swing arm is held in engagement with the stop element, as shown in Figs. 2 and 5. In the second operating condition when the MEWP is standing on uneven ground, hydraulic fluid is supplied under pressure through an inlet 60 at the second end of the cylinder 52. This drives the piston 50 towards the first end compressed spring 46, thereby overcoming the bias force and further compressing the spring 46, so that the swing arm is allowed to drop under gravity out of engagement with the stop element and into contact with the ground, as shown in Figs. 3 and 6. Hydraulic fluid from the void between the piston 50 and the first end 52a of the cylinder 52 flows out of the cylinder through an outlet vent 62. Movement of the piston 50 along the cylinder 52 is limited by an annular stop surface 64 provided on the inner surface of the cylinder 52 between the first and second ends 52a, 52b.

Various modifications of the invention are possible. For example the swing arms do not need to be connected to one another or to share the same suspension system. Instead, an individual suspension system may be provided for each wheel. In an alternative embodiment of the invention, the swing arms could be connected together by a tie rod with a spring at either end. The hydraulic actuator could be replaced by a different type of linear actuator or actuator mechanism. In a further modification of the apparatus shown in
Figures 2 to 4, the two compression springs 40 (on either side of the actuator) may include a single spring or more springs.
CLAIMS

1. A base unit for a vehicle, the base unit including a chassis and a plurality of wheels, at least one of said wheels being mounted on the chassis by a suspension mechanism comprising a suspension element, said suspension element being arranged to pivot relative to the chassis about a substantially horizontal pivot axis between an upper position and a lower position, a stop member arranged to engage the suspension element in the upper position to limit upwards movement thereof, and a biasing mechanism arranged to exert a biasing force on the suspension element to urge the suspension element upwards towards the upper position, said biasing mechanism including an actuator operable to adjust the biasing force so that, in a first operating condition the biasing force is greater than the force needed to maintain the suspension element in engagement with the stop member when the wheel is suspended, and in a second operating condition the biasing force is less than the force needed to maintain the suspension element in engagement with the stop member when the wheel is suspended.

2. A base unit according to claim 1, wherein the biasing mechanism includes a resilient biasing element that biases the suspension element towards the upper position, and wherein the actuator is operable to urge the suspension element towards the lower position.

3. A base unit according to claim 2, wherein the resilient biasing element applies a biasing moment M_B to the suspension element that has a value greater than the weight moment M_W of the suspension element when the suspension element is in the upper position.

4. A base unit according to claim 3, wherein the actuator is operable to apply an actuator moment M_A to the suspension element, where M_A has a value greater than the value $M_B - M_W$ when the suspension element is in the lower position.

5. A base unit according to any one of claims 2 to 4, wherein the resilient biasing element is configured to apply a closing force to the actuator.
6. A base unit according to any one of claims 2 to 5, including an adjuster device for adjusting bias force applied by the resilient biasing element.

7. A base unit according to any one of the preceding claims, including a pair of suspension elements arranged to pivot about substantially horizontal pivot axes, and a common biasing mechanism that interconnects the two suspension elements.

8. A base unit according to any one of the preceding claims, wherein the suspension mechanism includes a drive device for driving the wheel.

9. A base unit according to any one of the preceding claims, including at least one wheel that is mounted rigidly to the chassis.

10. A base unit according to claim 9, wherein the at least one rigidly mounted wheel is steerable.

11. A vehicle including a base unit according to any one of the preceding claims, and a lifting mechanism mounted on the base unit.

12. A vehicle according to claim 11, including a control system for controlling operation of the lifting mechanism, said control system including a control device configured to control operation of the actuator and operable to select either the first operating condition or the second operating condition.

13. A vehicle according to claim 12, the control system being configured to prevent actuation of the actuator when the lifting mechanism is in a lifted condition, so that when the lifting mechanism is in a lifted condition each suspension element is located in the upper position.

14. A vehicle according to claim 13, wherein the vehicle is a mobile elevating work platform having a work platform mounted on said lifting mechanism.

15. A base unit substantially as described herein with reference to and as illustrated by the accompanying drawings.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INV. B66F11/04 B60G17/005
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
B66F B60G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>us 3 771 812 A (PERCE W ET AL) 13 November 1973 (1973-11-13) the whole document</td>
<td>1-6</td>
</tr>
<tr>
<td>X</td>
<td>us 5 915 705 A (VANDENBERG ERVIN K [US]) 29 June 1999 (1999-06-29) abstract col umn 4, line 30 - col umn 6, line 27 figures</td>
<td>1-6</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
“A” document defining the general state of the art which is not considered to be of particular relevance
“E” earlier application or patent but published on or after the international filing date
“L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
“O” document relating to an oral disclosure, use, exhibition or other means
“P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
“S” document member of the same patent family

Date of the actual completion of the international search
10 December 2013

Date of mailing of the international search report
16/12/2013

Name and mailing address of the ISA
European Patent Office, P. B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer
Sheppard, Bruce

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB 2 141 078 A (TURNER QUICK LI FT CORP) 12 December 1984 (1984-12-12) abstract figures</td>
<td>1-5</td>
</tr>
<tr>
<td>Y</td>
<td>WO 90/08228 A1 (M00G ALFONS [DE]) 26 July 1990 (1990-07-26) abstract page 6, paragraph 2 page 7 - page 11 figures</td>
<td>11-14</td>
</tr>
<tr>
<td>A</td>
<td>GB 2 334 015 A (BOWDEN FRANK ROGER [GB]) 11 August 1999 (1999-08-11) cited in the application cited in the application cited in the application the whole document</td>
<td>8-10 1</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6003885 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9814360 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 3771812 A</td>
</tr>
<tr>
<td>US 5915705 A</td>
<td>29-06-1999</td>
<td>NON E</td>
</tr>
<tr>
<td>GB 2141078 A</td>
<td>12-12-1984</td>
<td>CA 1212135 A</td>
</tr>
<tr>
<td>GB 2141078 A</td>
<td>12-12-1984</td>
<td>GB 2141078 A</td>
</tr>
<tr>
<td>US 4504080 A</td>
<td>12-03-1985</td>
<td>US 4504080 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4842990 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2045635 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 8900673 Ul</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2047914 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2901753 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H04502792 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5167295 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9008228 A</td>
</tr>
<tr>
<td>GB 2334015 A</td>
<td>11-08-1999</td>
<td>AT 250552 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69911480 Di</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69911480 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0936180 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2207119 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2334015 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6264221 Bl</td>
</tr>
</tbody>
</table>
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. ✗ Claims Nos.: 15 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

 see FURTHER INFORMATION sheet PCT/ISA/210

3. □ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ✗ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

□ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

□ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

No protest accompanied the payment of additional search fees.
Continuation of Box II.2

Claims Nos.: 15

The formulation of claim 15, which is contrary to Rule 6.2 (a) PCT, fails to comply with the requirements of the PCT to such an extent that no meaningful search for the subject matter claimed can be carried out (Article 17(2) (b) in conjunction with Article 17(2) (a) (i) PCT).

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination on before the EPO (see EPO Guidelines C-IV, 7.2), should the problems which led to the Article 17(2) declaration be overcome.