PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GO6F 11/00, 11/28 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/08188

18 February 1999 (18.02.99)

(21) International Application Number: PCT/US97/14118

(22) International Filing Date: 11 August 1997 (11.08.97)

(71) Applicant: TRANSMETA CORPORATION [US/US]; 6940
Freedom Circle, Santa Clara, CA 95054 (US).

(72) Inventors: KELLY, Edmund, J.; 3251 Pinot Blanc Way,
San Jose, CA 95135 (US). CMELIK, Robert, F.; 1024
Chula Vista Terrace, Sunnyvale, CA 94086 (US). WING,
Malcolm, John; Apartment 5, 24 Kent Place, Menlo Park,
CA 94025 (US).

(74) Agent: KING, Stephen, L.; 30 Sweetbay Road, Rancho Palos
Verdes, CA 90275 (US).

(81) Designated States: CA, CN, DE, GB, JP, KR, European patent
(AT, BE, CH, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE).

Published
With international search report.

(54) Title: A MEMORY CONTROLLER FOR DETECTING A FAILURE OF SPECULATION OF A COMPONENT BEING

ADDRESSED

Translation Look Aside Buffer

Most significant bits

Most significant bits Control

of virtual address of physical address bits A/N,T
N d N
~ ~
r ~N < - ~ genem -
R ~ exception
Y access I‘ ! ol 1
Compare puljydsmlc:l pass Compare |
| |
Most significant Type of address
bits of address Mem or 1/0

Translated instruction(s)

(57) Abstract

A memory controller for a microprocessor including apparatus to both detect a failure of speculation on the nature of the memory

being addressed, and apparatus to recover from such failures.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG

BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
T
™
TR
TT
UA
uG
us
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland -
Chad

Togo

Tajikistan
Turkmenistan

Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

Yugoslavia
Zimbabwe

10

15

20

25

WO 99/08188 PCT/US97/14118

-1-

A Memory Controller for Detecting a Failure of Speculation of a Component Being Adressed

BACKGROUND OF THE INVENTION

Field Of The Invention

This invention relates to computer systems and, more particularly, to

methods and apparatus for providing an improved microprocessor.

History Of The Prior Art

There are thousands of application programs which run on computers
designed around particular families of microprocessors. The largest
number of programs in existence are designed to run on computers
(generally referred to as “IBM Compatible Personal Computers”) using
the “X86” family of microprocessors (including the Intel® 8088, Intel
8086, Intel 80186, Intel 80286, 1386, 1486, and progressing through
the various Pentium® microprocessors) designed and manufactured by
Intel Corporation of Santa Clara, California. There are many other
examples of programs designed to run on computers using other
families of processors. Because there are so many application
Jprograms which run on these computers, there is a large market for
microprocessors capable of use in such computers, especially
computers designed to process X86 programs. The microprocessor

market is not only large but also quite lucrative.

Although the market for microprocessors which are able to run large
numbers of application programs is large and lucrative, it is quite
difficult to design a new competitive microprocessor. For example,
even though the X86 family of processors has been in existence for a

number of years and these processors are included in the majority of

15

20

25

WO 99/08188 PCT/US97/14118

-

computers sold and used, there are few successful competitive
microprocessors which are able to run X86 programs. The reasons for

this are many.

In order to be successful, a microprocessor must be able to run all of
the programs (including operating systems and legacy programs)
designed for that family of processors as fast as existing processors
without costing more than existing processors. In addition, to be
economically successful, a new microprocessor must do at least one of
these things better than existing processors to give buyers a reason to

choose the new processor over existing proven processors.

It is difficult and expensive to make a microprocessor run as fast as
state of the art microprocessors. Processors carry out instructions
through primitive operations such as loading, shifting, adding,
storing, and similar low level operations and respond only to such
primitive instructions in executing any instruction furnished by an
application program. For example, a processor designed to run the
instructions of a complicated instruction set computer (CISC) such as
a X86 in which instructions may designate the process to be carried
out at a relatively high level have historically included read only
memory (ROM) which stores so-called micro-instructions. Each
micro-instruction includes a sequence of primitive instructions which
when run in succession bring about the result commanded by the
high level CISC instruction. Typically, an “add A to B” CISC
instruction is decoded to cause a look up of an address in ROM at
which a micro-instruction for carrying out the functions of the “add A
to B” instruction is stored. The micro-instruction is loaded, and its

primitive instructions are run in sequence to cause the “add A to B”

10

15

20

25

WO 99/08188 PCT/US97/14118

-3-

instruction to be carried out. With such a CISC computer, the
primitive operations within a micro-instruction can never be changed
during program execution. Each CISC instruction can only be run by
decoding the instruction, addressing and fetching the micro-
instruction, and running the sequence of primitive operations in the
order provided in the micro-instruction. Each time the micro-

instruction is run, the same sequence must be followed.

State of the art processors for running X86 applications utilize a
number of techniques to provide the fastest processing possible at a
price which is still economically reasonable. Any new processor which
implements known hardware techniques for accelerating the speed at
which a processor may run must increase the sophistication of the
processing hardware. This requires increasing the cost of the

hardware.

For example, a superscalar microprocessor which uses a plurality of
processing channels in order to execute two or more operations at

once has a number of additional requirements. At the most basic

level, a simple superscalar microprocessor might decode each
application instruction into the micro-instructions which carry out the
function of the application instruction. Then, the simple superscalar —
microprocessor schedules two micro-instructions to run together if the
two micro-instructions do not require the same hardware resources

and the execution of a micro-instruction does not depend on the

results of other micro-instructions being processed.

A more advanced superscalar microprocessor typically decodes each

application instruction into a series of primitive instructions so that

10

15

20

25

WO 99/08188 PCT/US97/14118

-4-

those primitive instructions may be reordered and scheduled into the
most efficient execution order. This requires that each individual
primitive operation be addressed and fetched. To accomplish
reordering, the processor must be able to ensure that a primitive
instruction which requires data resulting from another primitive
instruction is run after that other primitive instruction produces the
needed data. Such a superscalar microprocessor must assure that
two primitive instructions being run together do not both require the
same hardware resources. Such a processor must also resolve
conditional branches before the effects of branch operations can be

completed.

Thus, superscalar microprocessors require extensive hardware to
compare the relationships of the primitive instructions to one another
and to reorder and schedule the sequence of the primitive instructions
to carry out any instruction. As the number of processing channels
increases, the amount and cost of the hardware to accomplish these
superscalar acceleration techniques increases approximately
quadratically. All of these hardware requirements increase the
complexity and cost of the circuitry involved. As in dealing with
micro-instructions, each time an application instruction is executed, a -
superscalar microprocessor must use its relatively complicated
addressing and fetching hardware to fetch each of these primitive
instructions, must reorder and reschedule these primitive instructions
based on the other primitive instructions and hardware usage, and
then must execute all of the rescheduled primitive instructions. The

need to run each application instruction through the entire hardware

15

20

25

WO 99/08188 PCT/US97/14118

-5-

sequence each time it is executed limits the speed at which a

superscalar processor is capable of executing its instructions.

Moreover, even though these various hardware techniques increase
the speed of processing, the complexity involved in providing such
hardware significantly increases the cost of such a microprocessbr.
For example, the Intel 486 DX4 processor uses approximately 1.5
million transistors. Adding the hardware required to accomplish the
checking of dependencies and scheduling necessary to process
instructions through two channels in a basic superscalar
microprocessor such as the Intel Pentium® requires the use of more
than three million transistors. Adding the hardware to allow
reordering among primitive instructions derived from different target
instructions, provide speculative execution, allow register renaming,
and provide branch prediction increases the number of transistors to
over six million in the Intel Pentium Pro™ microprocessor. Thus, it
can be seen that each hardware addition to increase operation speed
has drastically increased th¢ number of transistors in the latest state

of the art microprocessors.

Even using these known techniques may not produce a
microprocessor faster than existing microprocessors because
manufacturers use most of the economically feasible techniques
known to accelerate the operation of existing microprocessors.
Consequently, designing a faster processor is a very difficult and

expensive task.

Reducing the cost of a processor is also very difficult. As illustrated

above, hardware acceleration techniques which produce a sufficiently

20

25

WO 99/08188 PCT/US97/14118

-6-

capable processor are very expensive. One designing a neEw processor
must obtain the facilities to produce the hardware. Such facilities are
very difficult to obtain because chip manufacturers do not typically
spend assets on small runs of devices. The capital investment
required to produce a chip manufacturing facility is so great that it is

beyond the reach of most companies.

Even though one is able to design a new processor which runs all of
the application programs designed for a family of processors at least
as fast as competitive processors, the price of competitive processors
includes sulfficient profit that substantial price reductions are sure to

be faced by any competitor.

Although designing a competitive processor by increasing the
complexity of the hardware is very difficult, another way to run
application programs (target application programs) designed for a
particular family of microprocessors (target microprocessors) has been
to emulate the target microprocessor in software on another faster
microprocessor (host microprocessor). This is an incrementally
inexpensive method of running these programs because it requires
only the addition of some form of emulation software which enables
the application program to run on a faster microprocessor. The
emulator software changes the target instructions of an application
program written for the target processor family into host instructions
capable of execution by the host microprocessor. These changed
instructions are then run under control of the operating system on the

faster host microprocessor.

10

15

20

25

WO 99/08188 PCT/US97/14118

-7-

There have been a number of different designs by which target
applications may be run on host computers with faster processors
than the processors of target computers. In general, the host
computers executing target programs using emulation software utilize
reduced instruction set (RISC) microprocessors because RISC
processors are theoretically simpler and consequently can run faster

than other types of processors.

However, even though RISC computer systems running emulator
software are often capable of running X86 (or other) programs, they
usually do so at a rate which is substantially slower than the rate at
which state of the art X86 computer systems run the same programs.
Moreover, often these emulator programs are not able to run all or a

large number of the target programs available.

The reasons why emulator programs are not able to run target
programs as rapidly as the target microprocessors is quite
complicated and requires some understanding of the different
emulation operations. Figure 1 includes a series of diagrams
representing the different ways in which a plurality of different types

of microprocessors execute target application programs.

In Figure 1(a), a typical CISC microprocessor such as an Intel X86
microprocessor is shown running a target application program which
is designed to be run on that target processor. As may be seen, the
application is run on the CISC processor using a CISC operating
system (such as MS DOS, Windows 3.1, Windows NT, and OS/2
which are used with X86 computers) designed to provide interfaces by

which access to the hardware of the computer may be gained.

10

15

20

25

WO 99/08188 PCT/US97/14118

-8-

Typically, the instructions of the application program are selected to
utilize the devices of the computer only through the access provided
by the operating system. Thus, the operating system handles the
manipulations which allow applications access to memory and to the
various input/output devices of the computer. The target computer
includes memory and hardware which the operating system
recognizes, and a call to the operating system from a target
application causes an operating system device driver to cause an
expected operation to occur with a defined device of the target
computer. The instructions of the application execute on the
processor where they are changed into operations (embodied in
microcode or the more primitive operations from which microcode is
assembled) which the processor is capable of executing. As has been
described above, each time a complicated target instruction is
executed, the instruction calls the same subroutine stored as
microcode (or as the same set of primitive operations). The same
subroutine is always executed. If the processor is a superscalar, these
primitive operations for carrying out a target instruction can often be
reordered by the processor, rescheduled, and executed using the
various processing channels in the manner described above; however,

the subroutine is still fetched and executed.

In Figure 1(b), a typical RISC microprocessor such as a PowerPC
microprocessor used in an Apple Macintosh computer is represented
running the same target application program which is designed to be
run on the CISC processor of Figure 1(a). As may be seen, the target
application is run on the host processor using at least a partial target

operating system to respond to a portion of the calls which the target

15

20

25

WO 99/08188 PCT/US97/14118

-9-

application generates. Typically these are calls to the application-like
portions of the target operating system used to provide graphical
interfaces on the display and short utility programs which are
generally application-like. The target application and these portions of
the target operating system are changed by a software emulator such
as Soft PC® which breaks the instructions furnished by the target
application program and the application-like target operating system
programs into instructions which the host processor and its host
operating system are capable of executing. The host operating system
provides the interfaces through which access to the memory and

input/output hardware of the RISC computer may be gained.

However, the host RISC processor and the hardware devices
associated with it in a host RISC computer are usually quite different
than are the devices associated with the processor for which the target
application was designed; and the various instructions provided by
the target application program are designed to cooperate with the
device drivers of the target operating system in accessing the various
portions of the target computer. Consequently, the emulation
program, which changes the instructions of the target application
program to primitive host instructions which the host operating -
system is capable of utilizing, must somehow link the operations
designed to operate hardware devices in the target computer to
operations which hardware devices of the host system are capable of
implementing. Often this requires the emulator software to create
virtual devices which respond to the instructions of the target
application to carry out operations which the host system is incapable

of carrying out because the target devices are not those of the host

10

15

20

25

WO 99/08188 PCT/US97/14118

-10-

computer. Sometimes the emulator is required to create links from
these virtual devices through the host operating system to host
hardware devices which are present but are addressed in a different

manner by the host operating system.

Target programs when executed in this manner run relatively slowly
for a number of reasons. First, each target instruction from a target
application program and from the target operating system must be
changed by the emulator into the host primitive functions used by the
host processor. If the target application is designed for a CISC
machine such as an X86, the target instructions are of varying lengths
and quite complicated so that changing them to host primitive
instructions is quite involved. The original target instructions are first
decoded, and the sequence of primitive host instructions which make
up the target instructions are determined. Then the address (or
addresses) of each sequence of primitive host instructions is
determined, each sequence of the primitive host instructions is
fetched, and these primitive host instructions are executed in or out of
order. The large number of extra steps required by an emulator to
change the target application and operating system instructions into
host instructions understood by the host processor must be -
conducted each time an instruction is executed and slows the process

of emulation.

Second, many target instructions include references to operations
conducted by particular hardware devices which function in a
particular manner in the target computer, hardware which is not
available in the host computer. To carry out the operation, the

emulation software must either make software connections to the

10

15

20

25

WO 99/08188 PCT/US97/14118

-11-

hardware devices of the host computer through the existing host
operating system or the emulator software must furnish a virtual
hardware device. Emulating the hardware of another computer in
software is very difficult. The emulation software must generate
virtual devices for each of the target application calls to the host
operating system; and each of these virtual devices must provide calls
to the actual host devices. Emulating a hardware device requires that
when a target instruction is to use the device, the code representing
the virtual device required by that instruction be fetched from memory
and run to implement the device. Either of these methods of solving
the problem adds another series of operations to the execution of the

sequence of instructions.

Complicating the problem of emulation is the requirement that the
target applicafion take various exceptions which are carried out by
hardware of the target computer and the target operating system in
order for the computer system to operate. When a target exception is
taken during the operation of a target computer, state of the computer
at the time of the exception must be saved typically by calling a
microcode sequence to accomplish the operation, the correct exception
handler must be retrieved, the exception must be handled, then the -
correct point in the program must be found for continuing with the
program. Sometimes this requires that the program revert to the state
of the target computer at the point the exception was taken, and at
other times a branch provided by the exception handler is taken. In
any case, the hardware and software of the target computer required
to accomplish these operations must somehow be provided in the

process of emulation. Because the correct target state must be

10

15

20

25

WO 99/08188 PCT/US97/14118

-12-

available at the time of any such exception for proper execution, the
emulator is forced to keep accurate track of this state at all times so
that it is able to correctly respond to these exceptions. In the prior
art, this has required executing each instruction in the order provided
by the target application because only in this way could correct target

state be maintained.

Moreover, prior art emulators have always been required to maintain
the order of execution of the target application for other reasons.
Target instructions can be of two types, ones which affect memory or
ones which affect a memory mapped input/output (I/O) device. There
is no way to know without attempting to execute an instruction
whether an operation is to affect memory or a memory-mapped 1/0O
device. When instructions operate on memory, optimizing and
reordering is possible and greatly aids in speeding the operation of a
system. However, operations affecting I/O devices often must be
practiced in the precise order in which those operations are
programmed without the elimination of any steps or they may have
some adverse effect on the operation of the I/O device. For example, a
particular I/O operation may have the effect of clearing an I/O
register. If the operations take place out of order so that a register is -
cleared of a value which is still necessary, then the result of the
operation may be different than the operation commanded by the
target instruction. Without a means to distinguish memory from
memory mapped I/0, it is necessary to treat all instructions as
though they affect memory mapped I/O. This severely restricts the
nature of optimizations that are achievable. Because prior art

emulators lack both means to detect the nature of the memory being

15

20

25

WO 99/08188 PCT/US97/14118

-13-

addressed and means to recover from such failures, they are required
to proceed sequentially through the target instructions as though each
operation affects memory mapped I/O. This greatly limits the

possibility of optimizing the host instructions.

Another problem which limits the ability of prior art emulators to
optimize the host code is caused by self-modifying code. If a target
instruction has been changed to a sequence of host instructions
which in turn write back to change the original target instruction,
then the host instructions are no longer valid. Consequently, the
emulator must constantly check to determine whether a store is to the
target code area. All of these problems make this type of emulation

much slower than running a target application on a target processor.

Another example of the type of emulation software shown in figure
1(b) is described in an article entitled, “Talisman: Fast and Accurate
Multicomputer Simulation,” R. C. Bedichek, Laboratory for Computer
Sciences, Massachusetts Institute of Technology. This is a more
complete example of translation in that it can emulate a complete
research system and run the research target operating system.

Talisman uses a host UNIX operating system.

In Figure 1(c), another example of emulation is shown. In this case, a
PowerPC microprocessor used in an Apple Macintosh computer is
represented running a target application program which was designed
to be run on the Motorola 68000 family CISC processors used in the
original Macintosh computers; this type of arrangement has been
required in order to allow Apple legacy programs to run on the

Macintosh computers with RISC processors. As may be seen, the

15

20

25

WO 99/08188 PCT/US97/14118

-14-

target application is run on the host processor using at least a partial
target operating system to respond to the application-like portions of
the target operating system. A software emulator breaks the
instructions furnished by the target application program and the
application-like target operating system programs into instructions
which the host processor and its host operating system are capable of
executing. The host operating system provides the interfaces through
which access to the memory and input/output hardware of the host

computer may be gained.

Again, the host RISC processor and the devices associated with it in
the host RISC computer are quite different than are the devices
associated with the Motorola CISC processor; and the various target
instructions are designed to cooperate with the target CISC operating
system in accessing the various portions of the target computer.
Consequently, the emulation program must link the operations
designed to operate hardware devices in the target computer to
operations which hardware devices of the host system are capable of
implementing. This requires the emulator to create software virtual
devices which respond to the instructions of the target application and
to create links from these virtual devices through the host operating -
system to host hardware devices which are present but are addressed

in a different manner by the host operating system.

The target software run in this manner runs relatively slowly for the
same reasons that the emulation of Figure 1(b) runs slowly. First,
each target instruction from the target application and from the target
operating system must be changed by fetching the instruction; and all

of the host primitive functions derived from that instruction must be

15

20

25

WO 99/08188 PCT/US97/14118

-15-

run in sequence each time the instruction is executed. Second, the
emulation software must generate virtual devices for each of the target
application calls to the host operating system; and each of these
virtual devices must provide calls to the actual host devices. Third,
the emulator must treat all instructions as conservatively as it treats
instructions which are directed to memory mapped I/O devices or risk
generating exceptions from which it cannot recover. Finally, the
emulator must maintain the correct target state at all times and store
operations must always check ahead to determine whether a store is
to the target code area. All of these requirements eliminate the ability
of the emulator to practice significant optimization of the code run on
the host processor and make this type of emulation much slower than
running the target application on a target processor. Emulation rates
less than one-quarter as fast as state of the art processors are
considered very good. In general, this has relegated this type of
emulation software to uses where the capability of running

applications designed for another processor is useful but not primary.

In Figure 1(d), a particular method of emulating a target application
program on a host processor which provides relatively good
performance for a very limited series of target applications is -
illustrated. The target application furnishes instructions to an
emulator which changes those instructions into instructions for the
host processor and the host operating system. The host processor is a
Digital Equipment Corporation Alpha RISC processor, and the host
operating system is Microsoft NT. The only target applications which
may be run by this system are 32 bit applications designed to be

executed by a target X86 processor with a Windows WIN32s compliant

10

15

20

25

WO 99/08188 PCT/US97/14118

-16-

operating system. Since the host and target operating systems are
almost identical, being designed to handle these same instructions,
the emulator software may change the instructions very easily.
Moreover, the host operating system is already designed to respond to
the same calls that the target application generates so that the .

generation of virtual devices is considerably reduced.

Although this is technically an emulation system running a target
application on a host processor, it is a very special case. Here the
emulation software is running on a host operating system already
designed to run similar applications. This allows the calls from the
target applications to be more simply directed to the correct facilities
of the host and the host operating system. More importantly, this
system will run only 32 bit Windows applications which probably
amount to less than one percent of all X86 applications. Moreover,
this system will run applications on only one operating system,
Windows NT; while X86 processors run applications designed for a
large number of operating systems. Such a system, therefore, could
be considered not to be compatible within the terms expressed earlier
in this specification. Thus, a processor running such an emulator

cannot be considered to be a competitive X86 processor. -

Another method of emulation by which software may be used to run
portions of applications written for a first instruction set on a
computer which recognizes a different instruction set is illustrated in
Figure 1(e). This form of emulation software is typically utilized by a
programmer who may be porting an application from one computer
system to another. Typically, the target application is being designed

for some target computer other than the host machine on which the

10

15

20

25

WO 99/08188 PCT/US97/14118

.17-

emulator is being run. The emulator software analyzes the target
instructions, translates those instructions into instructions which
may be run on the host machine, and caches those host instructions
so that they may be reused. This dynamic translation and caching
allows portions of applications to be run very rapidly. This form of
emulator is normally used with software tracing tools to provide
detailed information about the behavior of a target program being run.
The output of a tracing tool may, in turn, be used to drive an analyzer

program which analyzes the trace information.

In order to determine how the code actually functions, an emulator of
this type, among other things, runs with the host operating system on
the host machine, furnishes the virtual hardware which the host
operating system does not provide, and otherwise maps the operations
of the computer for which the application was designed to the
hardware resources of the host machine in order to carry out the
operations of the program being run. This software virtualizing of
hardware and mapping to the host computer can be very slow and

incomplete.

Moreover, because it often requires a plurality of host instructions to
carry out one of the target instructions, exceptions including faults
and traps which require a target operating system exception handler
may be generated and cause the host to cease processing the host
instructions at a point unrelated to target instruction boundaries.
When this happens, it may be impossible to handle the exception
correctly because the state of the host processor and memory is
incorrect. If this is the case, the emulator must be stopped and rerun

to trace the operations which generated the exception. Thus, even

10

15

20

25

WO 99/08188 PCT/US97/14118

-18-

though such an emulator may run sequences of target code very
rapidly, it has no method for recovering from these exceptions so

cannot run any significant portion of an application rapidly.

This is not a particular problem with this form of emulator because
the functions being performed by the emulators, tracers, and the
associated analyzers are directed to generating new programs or
porting old programs to another machine so that the speed at which
the emulator software runs is rarely at issue. That is, a programmer
is usually not interested in how fast the code produced by a emulator
runs on the host machine but in whether the emulator produces code
which is executable on the machine for which it is designed and which
will run rapidly on that machine. Consequently, this type of
emulation software does not provide a method for running application
programs written in a first instruction set to run on a different type of
microprocessor for other than programming purposes. An example of
this type of emulation software is described in an article entitled,
“Shade: A Fast Instruction-Set Simulator for Execution Profiling,”

Cmelik and Keppel.

It is desirable to provide competitive microprocessors which are faster
and less expensive than state of the art microprocessors yet are
entirely compatible with target application programs designed for state
of the art microprocessors running any operating systems available for

those microprocessors.

More particularly, it is desirable to provide a host processor having
circuitry for enhancing the speed of operation and compatibility of

such a processor.

10

15

20

WO 99/08188 PCT/US97/14118

-19-

Summary Of The Invention

It is, therefore, an object of the present invention to provide a host
processor with apparatus for enhancing the operation of a
microprocessor which is less expensive than conventional state of the
art microprocessors yet is compatible with and capable of runnihg
application programs and operating systems designed for other

microprocessors at a faster rate than those other microprocessors.

This and other objects of the present invention are realized by a
memory controller for a microprocessor including apparatus to both
detect a failure of speculation on the nature of the memory being

addressed, and apparatus to recover from such failures.

These and other objects and features of the invention will be better
understood by reference to the detailed description which follows
taken together with the drawings in which like elements are referred

to by like designations throughout the several views.

Brief Description Of The Drawings

Figures 1(a)-(e) are diagrams illustrating the manner of operation of

microprocessors designed in accordance with the prior art. -

Figure 2 is a block diagram of a microprocessor designed in
accordance with the present invention running an application

designed for a different microprocessor.

Figure 3 is a diagram illustrating a portion of the microprocessor

shown in Figure 2.

10

15

20

WO 99/08188 PCT/US97/14118

-20-

Figure 4 is a block diagram illustrating a register file used in a

microprocessor designed in accordance with the present invention.

Figure 5 is a block diagram illustrating a gated store buffer designed

in accordance with the present invention.

Figure 6(a)-(c) illustrate instructions used in various microprocessors
of the prior art and in a microprocessor designed in accordance with

the present invention.

Figure 7 illustrates a method practiced by a software portion of a

microprocessor designed in accordance with the present invention.

Figure 8 illustrates another method practiced by a software portion of

a microprocessor designed in accordance with the present invention.

Figure 9 is a block diagram illustrating an improved computer system

including the present invention.

Figure 10 is a block diagram illustrating a portion of the

microprocessor shown in Figure 3.

Figure 11 is a block diagram illustrating in more detail a translation

look aside buffer shown in the microprocessor of Figure 3. -

Notation And Nomenclature

Some portions of the detailed descriptions which follow are presented
in terms of symbolic representations of operations on data bits within
a computer memory. These descriptions and representations are the
means used by those skilled in the data processing arts to most

effectively convey the substance of their work to others skilled in the

15

20

25

WO 99/08188 PCT/US97/14118

21-

art. The operations are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these quantities
take the form of electrical or magnetic signals capable of being stored,
transferred, combined, compared, and otherwise manipulated. It has
proven convenient at times, principally for reasons of common usage,
to refer to these signals as bits, values, elements, symbols, characters,
terms, numbers, or the like. It should be borne in mind, however,
that all of these and similar terms are to be associated with the
appropriate physical quantities and are merely convenient labels

applied to these quantities.

Further, the manipulations performed are often referred to in terms,
such as adding or comparing, which are commonly associated with
mental operations performed by a human operator. No such
capability of a human operator is necessary or desirable in most cases
in any of the operations described herein which form part of the
present invention; the operations are machine operations. Useful
machines for performing the operations of the present invention
include general purpose digital computers or other similar devices. In
all cases the distinction between the method operations in operating a
computer and the method of computation itself should be borne in -
mind. The present invention relates to a method and apparatus for
operating a computer in processing electrical or other (e.g.
mechanical, chemical) physical signals to generate other desired

physical signals.

During the following description, in some cases the target program is
referred to as a program which is designed to be executed on an X86

microprocessor in order to provide exemplary details of operation

10

20

25

WO 99/08188 PCT/US97/14118
222-

because the majority of emulators run X86 applications. However, the

target program may be one designed to run on any family of target

computers. This includes target virtual computers, such as Pcode

machines, Postscript machines, or Java virtual machines.

Detailed Description

The present invention helps overcomes the problems of the prior art
and provides a microprocessor which is faster than microprocessors of
the prior art, is capable of running all of the software for all of the
operating systems which may be run by a large number of families of
prior art microprocessors, yet is less expensive than prior art

microprocessors.

Rather than using a microprocessor with more complicated hardware
to accelerate its operation, the present invention is a part of a
combination including an enhanced hardware processing portion
(referred to as a “morph host” in this specification) which is much
simpler than state of the art microprocessors and an emulating
software portion (referred to as “code morphing software” in this
specification) in a manner that the two portions function together as a
microprocessor with more capabilities than any known competitive -
microprocessor. More particularly, a morph host is a processor which
includes hardware enhancements to assist in having state of a target
computer immediately at hand when an exception or error occurs,
while code morphing software is software which translates the
instructions of a target program to morph host instructions for the
morph host and responds to exceptions and errors by replacing

working state with correct target state when necessary so that correct

10

15

20

25

WO 99/08188 PCT/US97/14118

-23-

retranslations occur. Code morphing software may also include
various processes for enhancing the speed of processing. Rather than
providing hardware to enhance the speed of processing as do all of the
very fast prior art microprocessors, the improved microprocessor
allows a large number of acceleration enhancement techniques to be
carried out in selectable stages by the code morphing software.
Providing the speed enhancement techniques in the code morphing
software allows the morph host to be implemented using much less
complicated hardware which is faster and substantially less expensive
than the hardware of prior art microprocessors. As a comparison, one
embodiment including the present invention designed to run all
available X86 applications is implemented by a morph host including
approximately one-quarter of the number of gates of the Pentium Pro
microprocessor yet runs X86 applications substantially faster than
does the Pentium Pro microprocessor or any other known

microprocessor capable of processing these applications.

The code morphing software utilizes certain techniques which have
previously been used only by programmers designing new software or
emulating new hardware. The morph host includes hardware
enhancements especially adapted to allow the acceleration techniques -
provided by the code morphing software to be utilized efficiently.

These hardware enhancements allow the code morphing software to
implement acceleration techniques over a broader range of
instructions. These hardware enhancements also permit additional
acceleration techniques to be practiced by the code morphing software
which are unavailable in hardware processors and could not be

implemented in those processors except at exorbitant cost. These

10

15

20

25

WO 99/08188 PCT/US97/14118

4.

techniques significantly increase the speed of the microprocessor
which includes the present invention compared to the speeds of prior

art microprocessors practicing the execution of native instruction sets.

For example, the code morphing software combined with the
enhanced morph host allows the use of techniques which allow the
reordering and rescheduling of primitive instructions generated by a
sequence of target instructions without requiring the addition of
significant circuitry. By allowing the reordering and rescheduling of a
number of target instructions together, other optimization techniques
can be used to reduce the number of processor steps which are
necessary to carry out a group of target instructions to fewer than
those required by any other microprocessors which will run the target

applications.

The code morphing software combined with the enhanced morph host
translates target instructions into instructions for the morph host on
the fly and caches those host instructions in a memory data structure
(referred to in this specification as a “translation buffer”). The use of a
translation buffer to hold translated instructions allows instructions
to be recalled without rerunning the lengthy process of determining
which primitive instructions are required to implement each target
instruction, addressing each primitive instruction, fetching each
primitive instruction, optimizing the sequence of primitive
instructions, allocating assets to each primitive instruction, reordering
the primitive instructions, and executing each step of each sequence
of primitive instructions involved each time each target instruction is

executed. Once a target instruction has been translated, it may be

10

15

20

25

WO 99/08188 PCT/US97/14118

225-

recalled from the translation buffer and executed without the need for

any of these myriad of steps.

A primary problem of prior art emulation techniques has been the.
inability of these techniques to handle with good performance
exceptions generated during the execution of a target program. “This is
especially true of exceptions generated in running the target
application which are directed to the target operating system where
the correct target state must be available at the time of any such
exception for proper execution of the exception and the instructions
which follow. Consequently, the emulator is forced to keep accurate
track of the target state at all times and must constantly check to
determine whether a store is to the target code area. Other exceptions
create similar problems. For example, exceptions can be generated by
the emulator to detect particular target operations which have been
replaced by some particular host function. In particular, various
hardware operations of a target processor may be replaced by software
operations provided by the emulator software. Additionally, the host
processor executing the host instructions derived from the target
instructions can also generate exceptions. All of these exceptions can
occur either during the attempt to change target instructions into host -
instructions by the emulator, or when the host translations are
executed on the host processor. An efficient emulation must provide
some manner of recovering from these exceptions efficiently and in a
manner that the exception may be correctly handled. None of the

prior art does this for all software which might be emulated.

In order to overcome these limitations of the prior art, a number of

hardware improvements are included in the enhanced morph host.

10

15

20

25

WO 99/08188 PCT/US97/14118

.26-

These improvements include a gated store buffer and a large plurality
of additional processor registers. Some of the additional registers
allow the use of register renaming to lessen the problem of
instructions needing the same hardware resources. The additional
registers also allow the maintenance of a set of host or working
registers for processing the host instructions and a set of target
registers to hold the official state of the target processor for which the
target application was created. The target (or shadow) registers are
connected to their working register equivalents through a dedicated
interface that allows an operation called “commit” to quickly transfer
the content of all working registers to official target registers and
allows an operation called “rollback” to quickly transfer the content of
all official target registers back to their working register equivalents.
The gated store buffer stores working memory state changes on an
“uncommitted” side of a hardware “gate” and official memory state
changes on a “committed” side of the hardware gate where these
committed stores “drain” to main memory. A commit operation
transfers stores from the uncommitted side of the gate to the
committed side of the gate. The additional official registers and the
gated store buffer allow the state of memory and the state of the target
registers to be updated together once one or a group of target)

instructions have been translated and run without error.

These updates are chosen by the code morphing software to occur on
integral target instruction boundaries. Thus, if the primitive host

instructions making up a translation of a series of target instructions
are run by the host processor without generating exceptions, then the

working memory stores and working register state generated by those

10

15

20

25

WO 99/08188 PCT/US97/14118

27-

instructions are transferred to official memory and to the official target
registers. In this manner, if an exception occurs when processing the
host instructions at a point which is not on the boundary of one or a
set of target instructions being translated, the original state in the
target registers at the last update (or commit) may be recalled to the
working registers and uncommitted memory stores in the gated store
buffer may be dumped. Then, for the case where the exception
generated is a target exception, the target instructions causing the
target exception may be retranslated one at a time and executed in
serial sequence as they would be executed by a target microprocessor.
As each target instruction is correctly executed without error, the
state of the target registers may be updated; and the data in the store
buffer gated to memory. Then, when the exception occurs again in
running the host instructions, the correct state of the target computer
is held by the target registers of the morph host and memory; and the
operation may be correctly handled without delay. Each new
translation generated by this corrective translating may be cached for
future use as it is translated or alternatively dumped for a one time or
rare occurrence such as a page fault. This allows the microprocessor
created by the combination of the code morphing software and the
morph host to execute the instructions more rapidly than processors

for which the software was originally written.

It should be noted that in executing target programs using the
microprocessor including the present invention, many different types
of exceptions can occur which are handled in different manners. For
example, some exceptions are caused by the target software

generating an exception which utilizes a target operating system

10

15

20

25

WO 99/08188 PCT/US97/14118

8-

exception handler. The use of such an exception handler requires
that the code morphing software include routines for emulating the
entire exception handling process including any hardware provided by
the target computer for handling the process. This requires that the
code morphing software provide for saving the state of the target
processor so that it may proceed correctly after the exception has been
handled. Some exceptions like a page fault, which requires fetching
data in a new page of memory before the process being translated may
be implemented, require a return to the beginning of the process being
translated after the exception has been handled. Other exceptions
implement a particular operation in software where that operation is
not provided by the hardware. These require that the exception
handler return the operation to the next step in the translation after
the exception has been handled. Each of these different types of
exceptions may be efficiently handled by the microprocessor including

the present invention.

Additionally, some exceptions are generated by host hardware and
detect a variety of host and target conditions. Some exceptions

behave like exceptions on a conventional microprocessor, but others
are used by the code morphing software to detect failure of various -
speculations. In these cases, the code morphing software, using the
state saving and restoring mechanisms described above, causes the
target state to be restored to its most recent official version and
generates and saves a new translation (or re-uses a previously
generated safe translation) which avoids the failed speculation. This

translation is then executed.

10

15

20

25

WO 99/08188 PCT/US97/14118

-29-

The morph host includes additional hardware exception detection
mechanisms that in conjunction with the rollback and retranslate
method described above allow further optimization. Examples are a
means to distinguish memory from memory mapped I/O and a means
to eliminate memory references by protecting addresses or address

ranges thus allowing target variables to be kept in registers.

For the case where exceptions are used to detect failure of other
speculations, such as whether an operation affects memory or
memory mapped 1/0, recovery is accomplished by the generation of
new translations with different memory operations and different

optimizations.

Figure 2 is a diagram of morph host hardware designed in accordance
with the present invention represented running the same application
program which is being run on the CISC processor of Figure 1(a). As
may be seen, the microprocessor includes the code morphing software
portion and the enhanced hardware morph host portion described
above. The target application furnishes the target instructions to the
code morphing software for translation into host instructions which
the morph host is capable of executing. In the meantime, the target
operating system receives calls from the target application program
and transfers these to the code morphing software. In a preferred
embodiment of the microprocessor, the morph host is a very long
instruction word (VLIW) processor which is designed with a plurality
of processing channels. The overall operation of such a processor is

further illustrated in Figure 6(c).

10

15

20

25

WO 99/08188 PCT/US97/14118

-30-

In Figure 6(a)-(c) are illustrated instructions adapted for use with each
of a CISC processor, a RISC processor, and a VLIW processor. As may
be seen, the CISC instructions are of varied lengths and may include a
plurality of more primitive operations (e.g., load and add). The RISC
instructions, on the other hand, are of equal length and are essentially
primitive operations. The single very long instruction for the VLIW
processor illustrated includes each of the more primitive operations
(i.e., load, store, integer add, compare, floating point multiply, and
branch) of the CISC and RISC instructions. As may be seen in Figure
6(c), each of the primitive instructions which together make up a
single very long instruction word is furnished in parallel with the other
primitive instructions either to one of a plurality of separate
processing channels of the VLIW processor or to memory to be dealt
with in parallel by the processing channels and memory. The results
of all of these parallel operations are transferred into a multiported

register file.

A VLIW processor which may be the basis of the morph hostis a

much simpler processor than the other processors described above .

It does not include circuitry to detect issue dependencies or to reorder,
optimize, and reschedule primitive instructions. This, in turn, allows -
faster processing at higher clock rates than is possible with either the
processors for which the target application programs were originally
designed or other processors using emulation programs to run target
application programs. However, the processor is not limited to VLIW
processors and may function as well with any type of processor such

as a RISC processor.

10

15

20

25

WO 99/08188 PCT/US97/14118

-31-

The code morphing software of the microprocessor shown in Figure 2
includes a translator portion which decodes the instructions of the
target application, converts those target instructions to the primitive
host instructions capable of execution by the morph host, optimizes
the operations required by the target instructions, reorders and
schedules the primitive instructions into VLIW instructions (a
translation) for the morph host, and executes the host VLIW
instructions. The operations of the translator are illustrated in Figure
7 which illustrates the operation of the main loop of the code

morphing software.

In order to accelerate the operation of the microprocessor which
includes the code morphing software and the enhanced morph host
hardware, the code morphing software includes a translation buffer as
is illustrated in Figure 2. The translation buffer of one embodiment is
a software data structure which may be stored in memory; a hardware
cache might also be utilized in a particular embodiment. The
translation buffer is used to store the host instructions which embody
each completed translation of the target instructions. As may be seen,
once the individual target instructions have been translated and the
resulting host instructions have been optimized, reordered, and -
rescheduled, the resulting host translation is stored in the translation
buffer. The host instructions which make up the translation are then
executed by the morph host. If the host instructions are executed
without generating an exception, the translation may thereafter be
recalled whenever the operations required by the target instruction or

instructions are required.

10

15

20

25

WO 99/08188 PCT/US97/14118

-32-

Thus, as shown in Figure 7, a typical operation of the code morphing
software of the microprocessor when furnished the address of a target
instruction by the application program is to first determine whether
the target instruction at the target address haé been translated. If the
target instruction has not been translated, it and subsequent target
instructions are fetched, decoded, translated, and then (possibly)
optimized, reordered, and rescheduled into a new host translation,
and stored in the translation buffer by the translator. As will be seen
later, there are various degrees of optimization which are possible.
The term “optimization” is often used generically in this specification
to refer to those techniques by which processing is accelerated. For
example, reordering is one form of optimization which allows faster
processing and which is included within the term. Many of the
optimizations which are possible have been described within the prior
art of compiler optimizations, and some optimizations which were
difficult to perform within the prior art like “super-blocks” come from
VLIW research. Control is then transferred to the translation to cause

execution by the enhanced morph host hardware to resume.

When the particular target instruction sequence is next encountered

in running the application, the host translation will then be found in -
the translation buffer and immediately executed without the necessity
of translating, optimizing, reordering, or rescheduling. Using the
advanced techniques described below, it has been estimated that the
translation for a target instruction (once completely translated) will be
found in the translation buffer all but once for each one million or so
executions of the translation. Consequently, after a first translation,

all of the steps required for translation such as decoding, fetching

10

15

20

25

WO 99/08188 PCT/US97/14118

-33-

primitive instructions, optimizing the primitive instructions,
rescheduling into a host translation, and storing in the translation
buffer may be eliminated from the processing required. Since the
processor for which the target instructions were written must decode,
fetch, reorder, and reschedule each instruction each time the
instruction is executed, this drastically reduces the work required for
executing the target instructions and increases the speed of the

microprocessor of the improved processor.

In eliminating all of these steps required in execution of a target
application by prior art processors, the microprocessor including the
present invention overcomes problems of the prior art which made
such operations impossible at any reasonable speed. For example,
some of the techniques of the improved microprocessor were used in
the emulators described above used for porting applications to other
systems. However, some of these emulators had no way of running
more than short portions of applications because in processing
translated instructions, exceptions which generate calls to various
system exception handlers were generated at points in the operation
at which the state of the host processor had no relation to the state of
a target processor processing the same instructions. Because of this, -
the state of the target processor at the point at which such an
exception was generated was not known. Thus, correct state of the
target machine could not be determined; and the operation would
have to be stopped, restarted, and the correct state ascertained before
the exception could be serviced and execution continued. This made

running an application program at host speed impossible.

10

15

20

25

WO 99/08188 PCT/US97/14118

-34-

The morph host hardware of the present invention includes a number
of enhancements which overcome this problem. These enhancements
are each illustrated in Figures 3, 4, and 5. In order to determine the
correct state of the registers at the time an error occurs, a set of
official target registers is provided by the enhanced hardware to hold
the state of the registers of the target processor for which the original
application was designed. These target registers may be included in
each of the floating point units, any integer units, and any other
execution units. These official registers have been added to the morph
host of the present invention along with an increased number of
normal working registers so that a number of optimizations including
register renaming may be practiced. One embodiment of the
enhanced hardware includes sixty-four working registers in the
integer unit and thirty-two working registers in the floating point unit.
The embodiment also includes an enhanced set of target registers
which include all of the frequently changed registers of the target
processor necessary to provide the state of that processor ; these
include condition control registers and other registers necessary for

control of the simulated system.

It should be noted that depending on the type of enhanced processing -
hardware utilized by the morph host, a translated instruction

sequence may include primitive operations which constitute a

plurality of target instructions from the original application. For
example, a VLIW microprocessor may be capable of running a

plurality of either CISC or RISC instructions at once as is illustrated

in Figure 6(a)-(c). Whatever the morph host type, the state of the

target registers of the morph host hardware of the invention is not

10

15

20

25

WO 99/08188 PCT/US97/14118

-35-

changed except at an integral target instruction boundary; and then
all target registers are updated. Thus, if the microprocessor of the
present invention is executing a target instruction or instructions
which have been translated into a series of primitive instructions
which may have been reordered and rescheduled into a host
translation, when the processor begins executing the translated
instruction sequence, the official target registers hold the values
which would be held by the registers of the target processor for which
the application was designed when the first target instruction was
addressed. After the morph host has begun executing the translated
instructions, however, the working registers hold values determined
by the primitive operations of the translated instructions executed to
that p;oint. Thus, while some of these working registers may hold
values which are identical to those in the official target registers,
others of the working registers hold values which are meaningless to
the target processor. This is especially true in an embodiment which
provides many more registers than does a particular target machine in
order to allow advanced acceleration techniques. Once the translated
host instructions begin, the values in the working registers are
whatever those translated host instructions determine the condition of
those registers to be. If a set of translated host instructions is —
executed without generating an exception, then the new working
register values determined at the end of the set of instructions are
transferred together to the official target registers (possibly including a
target instruction pointer register). In the present embodiment of the

processor, this transfer occurs outside of the execution of the host

10

15

20

25

WO 99/08188 PCT/US97/14118

-36-

instructions in an additional pipeline stage so it does not slow

operation of the morph host.

In a similar manner, a gated store buffer such as that illustrated in
Figure 5 is utilized in the hardware of the improved microprocessor to
control the transfer of data to memory. The gated store buffer
includes a number of elements each of which may hold the address
and data for a memory store operation. These elements may be
implemented by any of a number of different hardware arrangements
(e.g., first-in first-out buffers); the embodiment illustrated is
implemented utilizing random access memory and three dedicated
working registers. The three registers store, respectively, a pointer to
the head of the queue of memory stores, a pointer to the gate, and a
pointer to the tail of the queue of the memory stores. Memory stores
positioned between the head of the queue and the gate are already
committed to memory, while those positioned between the gate of the
queue and the tail are not yet committed to memory. Memory stores
generated during execution of host translations are placed in the store
buffer by the integer unit in the order generated during the execution
of the host instructions by the morph host but are not allowed to be
written to memory until a commit operation is encountered in a host -
instruction. Thus, as translations execute, the store operations are
placed in the queue. Assuming these are the first stores so that no
other stores are in the gated store buffer, both the head and gate
pointers will point to the same position. As each store is executed, it
is placed in the next position in the queue and the tail point is
incremented to the next position (upward in the figure). This

continues until a commit command is executed. This will normally

15

20

25

WO 99/08188 PCT/US97/14118

-37-

happen when the translation of a set of target instructions has been
completed without generating an exception or a error exit condition.
When a translation has been executed by the morph host without
error, then the memory stores in the store buffer generated during
execution are moved together past the gate of the store buffer
(committed) and subsequently written to memory. In the embodiment
illustrated, this is accomplished by copying the value in the register

holding the tail pointer to the register holding the gate pointer.

Thus, it may be seen that both the transfer of register state from
working registers to official target registers and the transfer of working
memory stores to official memory occur together and only on
boundaries between integral target instructions in response to explicit

commit operations.

This allows the microprocessor to recover from target exceptions
which occur during execution by the enhanced morph host without
any significant delay. If a target exception is generated during the
running of any translated instruction or instructions, that exception is
detected by the morph host hardware or software. In response to the
detection of the target exception, the code morphing software may
cause the values retained in the official registers to be placed back
into the working registers and any non-committed memory stores in
the gated store buffer to be dumped (an operation referred to as
“rollback”). The memory stores in the gated store buffer of Figure 5
may be dumped by copying the value in the register holding the gate

pointer to the register holding the tail pointer.

15

20

25

WO 99/08188 PCT/US97/14118

-38-

Placing the values from the target registers into the working registers
may place the address of the first of the target instructions which were
running when the exception occurred in the working instruction
pointer register. Beginning with this official state of the target
processor in the working registers, the target instructions which were
running when the exception occurred are retranslated in serial order
without any reordering or other optimizing. After each target
instruction is newly decoded and translated into a new host
translation, the translated host instruction representing the target
instructions is executed by the morph host and causes or does not
cause an exception to occur. (If the morph host is other than a VLIW
processor, then each of the primitive operations of the host translation
is executed in sequence. If no exception occurs as the host
translation is run, the next primitive function is run.) This continues
until an exception re-occurs or the single target instruction has been
translated and executed. In one embodiment, if a translation of a
target instruction is executed without an exception being generated,
then the state of working registers is transferred to the target registers
and any data in the gated store buffer is committed so that it may be
transferred to memory. However, if an exception re-occurs during the
running of a translation, then the state of the target registers and
memory has not changed but is identical to the state produced in a
target computer when the exception occurs. Consequently, when the
target exception is generated, the exception will be correctly handled

by the target operating system.

Similarly, once a first target instruction of the series of instructions

the translation of which generated an exception has been executed

15

20

25

WO 99/08188 PCT/US97/14118

-39.

without generating an exception, the target instruction pointer points
to the next of the target instructions. This second target instruction is
decoded and retranslated without optimizing or reordering in the same
manner as the first. As each of the host translations of a single target
instruction is processed by the morph host, any exception generated
will occur when the state of the target registers and memory is
identical to the state which would occur in the target computer.
Consequently, the exception may be immediately and correctly
handled. These new translations may be stored in the translation
buffer as the correct translations for that sequence of instructions in
the target application and recalled whenever the instructions are

rerumn.

Other embodiments of the invention for accomplishing the same result
as the gated store buffer of Figure 5 might include arrangements for
transferring stores directly to memory while recording data sufficient
to recover state of the target computer in case the execution of a
translation results in an exception or an error necessitating rollback.
In such a case, the effect of any memory stores which occurred during
translation and execution would have to be reversed and the memory
state existing at the beginning of the translation restored; while -
working registers would have to receive data held in the official target
registers in the manner discussed above. One embodiment for
accomplishing this maintains a separate target memory to hold the
original memory state which is then utilized to replace overwritten
memory if a rollback occurs. Another embodiment for accomplishing
memory rollback logs each store and the memory data replaced as

they occur, and then reverses the store process if rollback is required.

15

20

25

WO 99/08188 PCT/US97/14118

-40-

The code morphing software of the present invention provides an
additional operation which greatly enhances the speed of processing
programs which are being translated. In addition to simply
translating the instructions, optimizing, reordering, rescheduling,
caching, and executing each translation so that it may be rerun.
whenever that set of instructions needs to be executed, the translator
also links the different translations to eliminate in almost all cases a
return to the main loop of the translation process. Figure 8 illustrates
the steps carried out by the translator portion of the code morphing
software in accomplishing this linking process. It will be understood
by those skilled in the art that this linking operation essentially
eliminates the return to the main loop for most translations of

instructions, which eliminates this overhead.

Presume for exemplary purposes that the target program being run
consists of X86 instructions. When a translation of a sequence of
target instructions occurs and the primitive host instructions are
reordered and rescheduled, two primitive instructions may occur at
the end of each host translation. The first is a primitive instruction
which updates the value of the instruction pointer for the target
processor (or its equivalent); this instruction is used to place the -
correct address of the next target instruction in the target instruction
pointer register. Following this primitive instruction is a branch
instruction which contains the address of each of two possible targets
for the branch. The manner in which the primitive instruction which
precedes the branch instruction may update the value of the
instruction pointer for the target processor is to test the condition

code for the branch in the condition code registers and then determine

10

15

20

25

WO 99/08188 PCT/US97/14118

-41-

whether one of the two branch addresses indicated by the condition
controlling the branch is stored in the translation buffer. The first
time the sequence of target instructions is translated, the two branch
targets of the host instruction both hold the same host processor

address for the main loop of the translator software.

When the host translation is completed, stored in the translation
buffer, and executed for the first time, the instruction pointer is
updated in the target instruction pointer register (as are the rest of the
target registers); and the operation branches back to the main loop.

At the main loop, the translator software looks up the instruction
pointer to the next target instruction in the target instruction pointer
register. Then the next target instruction sequence is addressed.
Presuming that this sequence of target instructions has not yet been
translated and therefore a translation does not reside in the
translation buffer, the next set of target instructions is fetched from
memory, decoded, translated, optimized, reordered, rescheduled,
cached in the translation buffer, and executed. Since the second set
of target instructions follows the first set of target instructions, the
primitive branch instruction at the end of the host translation of the
first set of target instructions is auto‘matically updated to substitute -
the address of the host translation of the second set of target
instructions as the branch address for the particular condition

controlling the branch.

If then, the second translated host instruction were to loop back to the
first translated host instruction, the branch operation at the end of
the second translation would include the main loop address and the

X86 address of the first translation as the two possible targets for the

10

20

25

WO 99/08188 PCT/US97/14118

-42-

branch. The update-instruction-pointer primitive operation preceding
the branch tests the condition and determines that the loop back to
the first translation is to be taken and updates the target instruction
pointer to the X86 address of the first translation. This causes the
translator to look in the translation buffer to see if the X86 address
being sought appears there. The address of the first translation is
found, and its value in host memory space is substituted for the X86
address in the branch at the end of the second host translated
instruction. Then, the second host translated instruction is cached
and executed. This causes the loop to be run until the condition
causing the branch from the first translation to the second translation
fails, and the branch takes the path back to the main loop. When this
happens, the first translated host instruction branches back to the
main loop where the next set of target instructions designated by the
target instruction pointer is searched for in the translation buffer, the
host translation is fetched from the cache; or the search in the
translation buffer fails, and the target instructions are fetched from
memory and translated. When this translated host instruction is
cached in the translation buffer, its address replaces the main loop

address in the branch instruction which ended the loop.

In this manner, the various translated host instructions are chained
to one another so that the need to follow the long path through the
translator main loop only occurs where a link does not exist.
Eventually, the main loop references in the branch instructions of
host instructions are almost completely eliminated. When this
condition is reached, the time required to fetch target instructions,

decode target instructions, fetch the primitive instructions which

10

15

20

25

WO 99/08188 PCT/US97/14118

-43-

make up the target instructions, optimize those primitive operations,
reorder the primitive operations, and reschedule those primitive
operations before running any host instruction is eliminated. Thus, in
contrast to all prior art microprocessors which must take each of
these steps each time any application instruction sequence is run, the
work required to run any set of target instructions using the improved
microprocessor after the first translation has taken place is drastically
reduced. This work is further reduced as each set of translated host
instructions is linked to the other sets of translated host instructions.
In fact, it is estimated that translation will be needed in less than one
translation execution out of one million during the running of an

application.

Those skilled in the art will recognize that the implementation of the
microprocessor requires a large translation buffer since each set of
instructions which is translated is cached in order that it need not be
translated again. Translators designed to function with applications
programmed for different systems will vary in their need for
supporting buffer memory. However, one embodiment of the
microprocessor designed to run X86 programs utilizes a translation

buffer of two megabytes of random access memory. -

Two additional hardware enhancements help to increase the speed at
which applications can be processed by the microprocessor which
includes the present invention. The first of these is an
abnormal/normal (A/N) protection bit stored with each address
translation in a translation look-aside buffer (TLB) (see Figure 3)
where lookup of the physical address of target instructions is first

accomplished. Target memory operations within translations can be

10

15

20

25

WO 99/08188 PCT/US97/14118

-44-

of two types, ones which operate on memory (normal) or ones which

operate on a memory mapped I/O device (abnormal).

A normal access which affects memory completes normally. When
instructions operate on memory, the optimizing and reordering of
those instructions is appropriate and greatly aids in speeding the
operation of any system using the microprocessor which includes the
present invention. On the other hand, the operations of an abnormal
access which affects an I/O device often must be practiced in the
precise order in which those operations are programmed without the
elimination of any steps or they may have some adverse affect at -the
I/0 device. For example, a particular I/O operation may have the
effect of clearing an [/O register; if the primitive operations take place
out of order, then the result of the operations may be different than
the operation commanded by the target instruction. Without a means
to distinguish memory from memory mapped I/0O, it is necessary to
treat all memory with the conservative assumptions used to translate
instruction which affect memory mapped I/0O. This severely restricts
the nature of optimizations that are achievable. Because prior art
emulators lacked means to both detect a failure of speculation on the
nature of the memory being addressed, and means to recover from -

such failures, their performance was restricted.

In one embodiment of the microprocessor illustrated in Figure 11, the
A/N bit is a bit which may be set in the translation look-aside buffer
to indicate either a memory page or memory-mapped I/0O. The
translation look-aside buffer stores page table entries for memory
accesses. Each such entry includes a virtual address being accessed

and the physical address at which the data sought may be accessed

15

20

25

WO 99/08188 PCT/US97/14118

-45-

as well as other information regarding the entry. In the present
invention, the A/N bit is part of that other information and indicates
whether the physical address is a memory address or a memory-
mapped 1/0 address. A translation of an operation which affects
memory as though it were a memory operation is actually a
speculation that the operation is one affecting memory. In one
embodiment, when the code morphing software first attempts to
execute a translation which requires an access of either memory or a
memory-mapped 1/O device, it is actually presuming that the access
is a memory access. In a different embodiment, the software might
presume the target command requires an I/O access. Presuming an
access of that address has not previously been accomplished, there
will be no entry in the translation look-aside buffer; and the access
will fail in the translation look-aside buffer. This failure causes the
software to do a page table lookup and fill a storage location of the
translation look-aside buffer with the page table entry to provide the
correct physical address translation for the virtual address. In
accomplishing this, the software causes the A/N bit for the physical
address to be entered in the translation look-aside buffer. Then
another attempt to execute the access takes place once more
assuming that the access is of a memory address. As the access is
attempted, the target memory reference is checked by comparing the
access type presumed (normal or abnormal) against the A/N
protection bit now in the TLB page table entry. When the access type
does not match the A/N protection, an exception occurs. If the
operation in fact affects memory, then the optimizing, reordering, and
rescheduling techniques described above were correctly applied during

translation. If the comparison with the A/N bit in the TLB shows that

10

15

20

25

WO 99/08188 PCT/US97/14118

-46-

the operation, however, affects an I/O device, then execution causes
an exception to be taken; and the translator produces a new
translation one target instruction at a time without optimizing,
reordering, or rescheduling of any sort. Similarly, if a translation
incorrectly assumes an I/O operation for an operation which actually
affects memory, execution causes an exception to be taken; and the
target instructions are retranslated using the optimizing, reordering,
and rescheduling techniques. In this manner, the processor can

enhance performance beyond what has been traditionally possible.

It will be recognized by those skilled in the art that the technique
which uses the A/N bit to determine whether a failure of speculation
has occurred as to whether an access is to memory or a memory-
mapped 1/O device may also be used for speculations regarding other
properties of memory-mapped addresses. For example, different types
of memory might be distinguished using such a normal/abnormal bit.
Other similar uses is distinguishing memory properties will be found

by those skilled in the art.

One of the most frequent speculations practiced by the improved
microprocessor is that target exceptions will not occur within a
translation. This allows significant optimization over the prior art.
First, target state does not have to be updated on each target
instruction boundary, but only on target instruction boundaries which
occur on translation boundaries. This eliminates instructions
necessary to save target state on each target instruction boundary.
Optimizations that would previously have been impossible in
scheduling and removing redundant operations are also made

possible.

10

15

20

25

WO 99/08188 PCT/US97/14118

-47-

The improved microprocessor is admirably adapted to select the
appropriate process of translation. In accordance with the method of
translating described above, a set of instructions may first be
translated as though it were to affect memory. When the optimized,
reordered, and rescheduled host instructions are then executed, the
address may be found to refer to an 1/O device by the condition of the
A/N bit provided in the translation look-aside buffer. The comparison
of the A/N bit and the translated instruction address which shows
that an operation is an 1/O operation generates an error exception
which causes a software initiated rollback procedure to occur, causing
any uncommitted memory stores to be dumped and the values in the
target registers to be placed back into the working registers. Then the
translation starts over, one target instruction at a time without
optimization, reordering, or rescheduling. This re-translation is the

appropriate host translation for an I/O device.

In a similar manner, it is possible for a memory operation to be
incorrectly translated as an I/O operation. The error generated may
be used to cause its correct re-translation where it may be optimized,

reordered, and rescheduled to provide faster operation.

Prior art emulators have also struggled with what is generally referred
to as self modifying code. Should a target program write to the
memory that contains target instructions, this will cause translations
that exist for these target instructions to become “stale” and no longer
valid. It is necessary to detect these stores as they occur dynamically.
In the prior art, such detection has to be accomplished with extra
instructions for each store. This problem is larger in scope than

programs modifying themselves. Any agent which can write to

10

15

20

25

WO 99/08188 PCT/US97/14118

-48-

memory, such as a second processor or a DMA device, can also cause

this problem.

The present invention deals with this problem by another
enhancement to the morph host. A translation bit (T bit) which may
also be stored in the translation look-aside buffer is used to indicate
target memory pages for which translations exist. The T bit thus
possibly indicates that particular pages of target memory contain
target instructions for which host translations exist which would
become stale if those target instructions were to be overwritten. If an
attempt is made to write to the protected pages in memory, the
presence of the translation bit will cause an exception which when
handled by the code morphing software can cause the appropriate
translation(s) to be invalidated or removed from the translation buffer.
The T bit can also be used to mark other target pages that translation

may rely upon not being written.

This may be understood by referring to Figure 3 which illustrates in
block diagram form the general functional elements of the
microprocessor which includes the invention. When the morph host
executes a target program, it actually runs the translator portion of
the code morphing software which includes the only original
untranslated host instructions which effectively run on the morph
host. To the right in the figure is illustrated memory divided into a
host portion including essentially the translator and the translation
buffer and a target portion including the target instructions and data,
including the target operating system. The morph host hardware
begins executing the translator by fetching host instructions from

memory and placing those instructions in an instruction cache. The

10

15

20

25

WO 99/08188 PCT/US97/14118

-49-

translator instructions generate a fetch of the first target instructions
stored in the target portion of memory. Carrying out a target fetch
causes the integer unit to look to the official target instruction pointer
register for a first address of a target instruction. The first address is
then accessed in the translation look-aside buffer of the memory
management unit. The memory management unit includes hardware
for paging and provides memory mapping facilities for the TLB.
Presuming that the TLB is correctly mapped so that it holds lookup
data for the correct page of target memory, the target instruction
pointer value is translated to the physical address of the target
instruction. At this point, the condition of the bit (T bit) indicating
whether a translation has been accomplished for the target
instruction is detected; but the access is a read operation, and no T
bit exception will occur. The condition of the A/N bit indicating
whether the access is to memory or memory mapped I/O is also
detected. Presuming the last mentioned bit indicates a memory
location, the target instruction is accessed in target memory since no
translation exists. The target instruction and subsequent target
instructions are transferred as data to the morph host computing
units and translated under control of the translator instructions
stored in the instruction cache. The translator instructions utilize
reordering, optimizing, and rescheduling techniques as though the
target instruction affected memory. The resulting translation
containing a sequence of host instructions is then stored in the
translation buffer in host memory. The translation is transferred
directly to the translation buffer in host memory via the gated store
buffer. Once the translation has been stored in host memory, the

translator branches to the translation which then executes. The

15

20

25

WO 99/08188 PCT/US97/14118

-50-

execution (and subsequent executions) will determine if the
translation has made correct assumptions concerning exceptions and
memory. Prior to executing the translation, the T bit for the target
page(s) containing the target instructions that have been translated is
set. This indication warns that the instruction has been translated;
and, if an attempt to write to the target address occurs, the attempt
generates an exception which causes the translation to possibly be

invalidated or removed.

An additional hardware enhancement to the morph host is a circuit
utilized to allow data which is normally stored in memory but is used
quite often in the execution of an operation to be replicated (or
“aliased”) in an execution unit register in order to eliminate the time
required to fetch the data from memory on each use. To accomplish
this in one embodiment, the morph host is designed to respond to a
“load and protect” command which copies the memory data to a
working register 111 in an execution unit 110 shown in Figure 10 and
places the memory address in a register 112 in that unit. Associated
with the address register is a comparator 113. The comparator
receives the addresses of loads and stores to the gated store buffer
directed to memory during translations. If a memory address for -
either a load or a store compares with an address in the register 112
(or additional registers depending on the implementation), an
exception is generated. The code morphing software responds to the
exception by assuring that the memory address and the register hold
the same correct data. In one embodiment, this is accomplished by
rolling back the translation and reexecuting it without any “aliased”

data in an execution register. Other possible methods of correcting

10

20

25

WO 99/08188 PCT/US97/14118

-51-

the problem are to update the register with the latest memory data or

memory with the latest load data.

It will be recognized by those skilled in the art that the microprocessor
of the present invention may be connected in circuit with typical
computer elements to form a computer such as that illustrated in
Figure 9. As may be seen, when used in a modern X86 computer the
microprocessor is joined by a processor bus to memory and bus
control circuitry. The memory and bus control circuitry is arranged to
provide access to main memory as well as to cache memory which
may be utilized with the microprocessor. The memory and bus control
circuitry also provides access to a bus such as a PCI or other local bus
through which I/0O devices may be accessed. The particular computer
system will depend upon the circuitry utilized with a typical
microprocessor which the microprocessor including the present

invention replaces.

In order to illustrate the operation of the processor of the present
invention and the manner in which acceleration of execution occurs,
the translation of a small sample of X86 target code to host primitive
instructions is presented at this point. The sample illustrates the
translation of X86 target instructions to morph host instructions
including various exemplary steps of optimizing, reordering, and
rescheduling by the microprocessor which includes the invention. By
following the process illustrated, the substantial difference between
the operations required to execute the original instructions using the
target processor and the operations required to execute the
translation on the host processor will become apparent to those

skilled in the art.

10

15

20

25

30

35

40

45

WO 99/08188 PCT/US97/14118

-52-

The original instruction illustrated in C language source code
describes a very brief loop operation. Essentially, while some variable
“n” which is being decremented after each loop remains greater than
“0”, a value “c” is stored at an address indicated by a pointer “*s”
which is being incremented after each loop.

Original C code

while((n--)>0) {
*S++=C

Win32 x86 instructions produced by a compiler compiling this C code.

mov $ecx, [%$ebp+0xc] // load ¢ from memory address into the
$ecx

mov $eax, [$ebp+0x8] // load s from memory address into the
%$eax

mov [$eax], $ecx // store ¢ into memory address s held
in %eax

add Yeax, #4 // increment s by 4.

mov [$ebp+0x8] , $eax // store (s + 4) back into memory

mov %$eax, [$ebp+0x10] // load n from memory address into the
%eax

lea secx, [Yeax-1] // decrement n and store the result in
secx

mov [$ebp+0x10] , $ecx // store (n-1) into memory

and Seax, ¥eax // test n to set the condition codes
ig .-0x1b // branch to the top of this section if
|ln>o||

Notation: [..] indicates an address expression for a memory operand.

In the example above, the address for a memory operand is formed from
the contents of a register added to a hexadecimal constant indicated
by the Ox prefix. Target registers are indicated with the % prefix,
e.g. %ecx is the ecx register. The destination of an operation is to
the left. '

Target instruction key:
jg = jump if greater

mov = move
lea = load effective address
and = AND

In this first portion of the sample, each of the individual X86 assembly

language instructions for carrying out the execution of the operation

10

15

20

25

30

35

40

WO 99/08188

PCT/US97/14118

-53-

defined by the C language statement is listed by the assembly

language mnemonic for the operation followed by the parameters

involved in the particular primitive operation. An explanation of the

operation is also provided in a comment for each instruction. Even

though the order of execution may be varied by the target processor

from that shown, each of these assembly language instructions must

be executed each time the loop is executed in carrying out the target C

language instructions. Thus, if the loop is executed one hundred

times, each instruction shown above must be carried out one hundred

times.

Shows each X86 instruction_shown above followed by the host instructions necessary

to implement the X86 Instruction.

moyv
add
RO

1d
Recx

moyv
add
R2

14
Recx

mov

st
Reax

add
add
mov
add

R5
st

mov

%ecx, [Yoebp+0xc]
RO, Rebp, Oxc

Recx, [RO]

%eax, [Yoebp+0x8]
R2,Rebp, 0x8

Reax, [R2]

[%eax], Y%ecx

[Reax] ,Recx

%eax, #4
Reax,Reax, 4
[%ebp+0x8], %eax
R5,Rebp, 0x8

[R5] ,Reax

%eax, [Yoebp+0x10]

// load c¢ from memory address into ecx
; form the memory address and put it in

; load ¢ from memory address in RO into

// load s from memory address into %eax
; form the memory address and put it in

; load s from memory address in R2 into

// store ¢ into memory address s held in %eax

; store ¢ into memory address s held in

// increment s by 4

; increment S by 4

// store (s + 4) back into memory
; form the memory address and put it in

; store (s + 4) back into memory

// load n from memory address into %eax

10

15

20

25

30

35

40

WO 99/08188 PCT/US97/14118

-54-

add R7,Rebp, 0x10 ; form the memory address and put it in
R7
1d Reax, [R7] ; load n from memory address into the
Reax
lea 96ecx,[969ax-1] // decrement n and store the result in
$ecx
sub Recx,Reax, 1 ; decrement n and store the result in
Recx
mov [%ebp+0x10], %ecx // store (n - 1) into memory
add RY,Rebp, 0x10 ; form the memory address and put it in
RO
st [R9] ,Recx ; store (n - 1) into memory
and 9693X,9693X // test n to set the condition codes
andcc R11l,Reax,Reax ; test n to set the condition
codes
ig -0x1b // branch to the top of this section if
l|n>0|l
jg mainloop,mainlocop ; jump to the main loop
Host Instruction key:

1d = load add = ADD st =store

sub = subtract jg = jump if condition codes indicate

greater
andcc = and set the condition codes

The next sample illustrates the same target primitive instructions
which carry out the C language instructions. However, following each
primitive target instruction are listed primitive host instructions
required to accomplish the same operation in one particular
embodiment of the microprocessor of the invention in which the
morph host is a VLIW processor designed in the manner described
herein. It should be noted that the host registers which are shadowed

by official target registers are designated by an “R” followed by the X86

10

15

20

25

30

35

40

45

50

WO 99/08188 PCT/US97/14118

-55-

register designation so that, for example, Reax is the working register

associated with the EAX official target register.

Adds host instructions necessary to perform X86 address computation and upper and
lower segment limit checks.

mov %ecx, [Y%oebp+0xc] // load ¢

add RO, Rebp, 0xc ; form logical address into RO

chkl RO,Rss_limit ; Check the logical address against segment
lower limit

chku RO,R_FFFFFFFF ; Check the logical address against segment
upper limit

add R1,R0O,Rss_base ; add the segment base to form the
linear address

1d Recx, [R1] ; load ¢ from memory address in R1 into
Recx

mov %eax, [Yoebp+0x8] // load s

add R2,Rebp, 0x8 ; form logical address into RO

chkl R2,Rss_limit ; Check the logical address against segment
lower limit

chku R2,R FFFFFFFF ; Check the logical address against segment
upper limit

add R3,R2,Rss_base ; add the segment base to form the
linear address

14 Reax, [R3] ; load s from memory address in R3 into
Ra

mov [%eax], %ecx // store c¢ into [s]

chku Reax,Rds limit ; Check the logical address against segment
upper limit

add R4,Reax,Rds_base ; add the segment base to form the
linear address

st [R4] ,Recx ; store ¢ into memory address s

add %6eax,#4 // increment s by 4

addcc Reax,Reax, 4 ; increment s by 4

mov [%ebp+0x8], %eax // store (s + 4) to memory

add R5,Rebp, 0x8 ; form logical address into R5

chkl RS5,Rss_limit ; Check the logical address against segment
lower limit

chku R5,R_FFFFFFFF ; Check the logical address against segment
upper limit

add R6,R5,Rss_base ; add the segment base to form the

linear address

st

[R6] ,Reax ; store (s + 4) to memory address in R6

10

15

20

25

30

35

40

45

WO 99/08188

PCT/US97/14118

-56-

mov %eax, [%ebp+0x10] // load n

add R7,Rebp, 0x10 ;
chkl R7,Rss_limit ; Check

lower limit
chku R7,R_FFFFFFFF ; Check

upper limit

add R8,R7,Rss_base ;
linear address

1d Reax, [R8] ;
Reax

form logical address into R7
the logical address against segment

the logical address against segment
add the segment base to form the

load n from memory address in R8 into

lea %ecx, [Yoeax-1] // decrement n

sub Recx,Reax, 1 ;

decrement n

mov [%ebp+0x10], %ecx // store (n - 1)

add R9,Rebp, 0x10 :
chkl R9,Rss_limit ; Check

lower limit
chku R9,R_FFFFFFFF ; Check

upper limit

add R10,R9,Rss_base ;
linear address

st [R10],Recx ;
address in R10

form logical address into R9
the logical address against segment

the logical address against segment
add the segment base to form the

store n-1 in Recx into memory using

and %Geax,ﬁaeax // test n to set the condition codes

andcc R11,Reax,Reax

; test n to set the condition

codes

ig .-0x1b // branch to the top of this section if
lln>o "

ig mainloop,mainloop ; jump to the main loop

Host Instruction key:
chkl + check lower limit
chku = check upper limit

The next sample illustrates for each of the primitive target

instructions the addition of host primitive instructions by which

addresses needed for the target operation may be generated by the

code morphing software. It should be noted that host address

generation instructions are only required in an embodiment of a

10

15

20

25

30

35

40

45

WO 99/08188 PCT/US97/14118

-57-

microprocessor in which code morphing software is used for address
generation rather than address generation hardware. In a target
processor such as an X86 microprocessor these addresses are
generated using address generation hardware. Whenever address
generation occurs in such an embodiment of the invention, the .
calculation is accomplished; and host primitive instructions are also
added to check the address values to determine that the calculated

addresses are within the appropriate X86 segment limits.

Adds instructions to maintain the target X86 instruction pointer “eip” and
the commit instructions that use the special morph host hardware to update X86 state.

mov %ecx, [Y%oebp+0xc] // load c

add RO, Rebp, Oxc
chkl RO,Rss_limit
chku RO,R_FFFFFFFF
add R1,RO,Rss_base
14 Recx, [R1]

add Reip,Reip, 3 ; add X86 instruction length to
eip in Reip
commit ; commits working state to

official state

mov %eax, [%ebp+0x8] // load s

add R2,Rebp, 0x8
chkl R2,Rss_limit
chku R2,R_FFFFFFFF
add R3,R2,Rss_base
1d Reax, [R3]

add Reip, Reip, 3 ; add X86 instruction length to _
eip in Reip
commit ; commits working state to

official state

mov [%eax], %ecx // store c¢ into [s]

chku Reax,Rds_limit
add R4 ,Reax,Rds_base

st [R4] ,Recx

add Reip,Reip,2 ; add X86 instruction length to
eip in Reip

commit ; commits working state to

official state

add %eax, #4 // increment s by 4

10

15

20

25

30

35

40

45

50

WO 99/08188

addcc Reax,Reax, 4
add Reip,Reip, 5
eip in Reip
commit

official state

mov [%ebp+0x8], %eax

add R5,Rebp, 0x8
chkl R5,Rss_limit
chku RS5,R_FFFFFFFF
add R6,R5,Rss_base
st [R6] ,Reax

add Reip,Reip,3
eip in Reip

commit

official state

mov %eax, [Y%ebp+0x10]

add R7,Rebp, 0x10
chkl R7,Rss_limit
chku R7,R_FFFFFFFF
add R8,R7,Rss_base
14 Reax, [R8]

add Reip,Reip, 3
eip in Reip

commit

official state

lea %ecx, [Y%oeax-1]

sub Recx,Reax, 1
add Reip,Reip, 3
eip in Reip
commit

official state

mov [%ebp+0x10], %ecx

add R9,Rebp, 0x10
chkl R9,Rss_limit
chku R9,R_FFFFFFFF
add R10,R9,Rss base
st [R10] ,Recx

add Reip,Reip, 3

eip in Reip

commit

official state

and %eax, %eax

andcc R1l1l,Reax,Reax

PCT/US97/14118

-58-

; add X86 instruction length to

; commits working state to

// store (s + 4)

; add X86 instruction length to

; commits working state to

// load n

; add X86 instruction length to

; commits working state to

// decrement n

; add X86 instruction length to

; commits working state to

// store (n - 1) -

add X86 instruction length to

; commits working state to

// test n

10

20

25

30

WO 99/08188 PCT/US97/14118

-59-
add Reip,Reip, 3

commit ; commits working state to
official state

jg ~0x1b // branch "n>0"

add Rseq,Reip, Length(jg)

ldc Rtarg,EIP (target)

selcc Reip,Rseq,Rtarg

commit ; commits working state to:
official state

jg mainloop,mainloop

Host Instruction key:

commit = copy the contents of the working registers to the
official target registers and send working stores to memory

This sample illustrates the addition of two steps to each set of
primitive host instructions to update the official target registers after
the execution of the host instructions necessary to carry out each
primitive target instruction and to commit the uncommitted values in
the gated store buffer to memory. As may be seen, in each case, the
length of the target instruction is added to the value in the working
instruction pointer register (Reip). Then a commit instruction is
executed. In one embodiment, the commit instruction copies the
current value of each working register which is shadowed into its
associated official target register and moves a pointer value
designating the position of the gate of the gated store buffer from)
immediately in front of the uncommitted stores to immediately behind

those stores so that they will be placed in memory.

It will be appreciated that the list of instructions illustrated last above
are all of the instructions necessary to form a host translation of the
original target assembly language instructions. If the translation were

to stop at this point, the number of primitive host instructions would

10

15

20

25

WO 99/08188 PCT/US97/14118

-60-

be much larger than the number of target instructions (probably six
times as many instructions), and the execution could take longer than
execution on a target processor. However, at this point, no reordering,

optimizing, or rescheduling has yet taken place.

If an instruction is to be run but once, it may be that the time
required to accomplish further reordering and other optimization is
greater than the time to execute the translation as it exists at this
point. If so, one embodiment of the microprocessor ceases the
translation at this point, stores the translation, then executes it to
determine whether exception or errors occur. In this embodiment,
steps of reordering and other optimization only occur if it is
determined that the particular translation will be run a number times
or otherwise should be optimized. This may be accomplished, for
example by placing host instructions in each translation which count
the number of times a translation is executed and generate an
exception (or branch) when a certain value is reached. The exception
(or branch) transfers the operation to the code morphing software
which then implements some or all of the following optimizations and
any additional optimizations determined useful for that translation. A
second method of determining translations being run a number of -
times and requiring optimization is to interrupt the execution of
translations at some frequency or on some statistical basis and
optimize any translation running at that time. This would ultimately
provide that the instructions most often run would be optimized.
Another solution would be to optimize each of certain particular types
of host instructions such as those which create loops or are otherwise

likely to be run most often.

5

10

15

20

25

30

35

40

45

50

WO 99/08188

Optimization

-61-

PCT/US97/14118

Assumes 32 bit flat address space which allows the elimination of segment base

additions and some limit checks.

Win32 uses Flat 32b segmentation

Record Assumptions:
Rss_base==
Rss_limit==
Rds_base==

Rds_limit==FFFFFFFF
S8 and DS protection check

mov %ecx,[%ebp+0xc]

add RO, Rebp, Oxc
chku RO,R_FFFFFFFF
14 Recx, [RO]

add Reip,Reip, 3
commit

mov %eax,[%ebp+0x8]

add R2,Rebp, 0x8
chku R2,R_FFFFFFFF
14 Reax, [R2]

add Reip,Reip, 3
commit

mov [%eax],%ecx

chku Reax,R_FFFFFFFF
st [Reax] ,Recx

add Reip,Reip,2
commit

add %eax,#4

addcc Reax,Reax, 4
add Reip,Reip, 5
commit

mov [%ebp+0x8],%eax

add R5,Rebp, 0x8
chku RS5,R_FFFFFFFF
st [R5] ,Reax

add Reip,Reip, 3
commit

mov %eax,[%ebp+0x10]

//

//

/7

//

//

load ¢

load s

store ¢ into [s]

increment s by 4

store (s + 4)

// load n

10

15

20

25

30

35

40

WO 99/08188

add R7,Rebp, 0x10
chku R7,R_FFFFFFFF
1d Reax, [R7]

add Reip, Reip, 3
commit

lea %ecx,[%eax-1]
sub Recx,Reax, 1

add Reip,Reip, 3
commit

mov [%ebp+0x10],%ecx

add R9,Rebp, 0x10
chku R9,R_FFFFFFFF

st [R9] ,Recx
add Reip,Reip, 3
commit

and %eax,%eax

andcc R1l1l,Reax,Reax
add Reip,Reip, 3
commit

jg .-0x1b

add Rseq, Reip, Length (jg)
ldc Rtarg,EIP (target)
selcc Reip,Rseq,Rtarg
commit

jg mainloop,mainloop

PCT/US97/14118

-62-

// decrement n

// store (n - 1)

// test n

// branch "n>0"

This sample illustrates a first stage of optimization which may be

practiced utilizing the improved microprocessor. This stage of

optimization, like many of the other operations of the code morphing

software, assumes an optimistic result. The particular optimization

assumes that a target application program which has begun as a 32

bit program written for a flat memory model provided by the X86

family of processors will continue as such a program. It will be noted

that such an assumption is particular to the X86 family and would

10

15

20

25

WO 99/08188 PCT/US97/14118

-63-

not necessarily be assumed with other families of processors being

emulated.

If this assumption is made, then in X86 applications all segments are
mapped to the same address space. This allows those primitive host
instructions required by the X86 segmentation process to be
eliminated. As may be seen, the segment values are first set to zero.
Then, the base for data is set to zero, and the limit set to the
maximum available memory. Then, in each set of primitive host
instructions for executing a target primitive instruction, the check for
a segment base value and the computation of the segment base
address required by segmentation are both eliminated. This reduces
the loop to be executed by two host primitive instructions for each
target primitive instruction requiring an addressing function. At this
point, the host instruction check for the upper memory limit still

exists.

It should be noted that this optimization requires the speculation
noted that the application utilizes a 32 bit flat memory model. If this
is not true, then the error will be discovered as the main loop resolves
the destination of control transfers and detects that the source
assumptions do not match the destination assumptions. A new
translation will then be necessary. This technique is very general and
can be applied to a variety of segmentation and other “moded” cases
where the “mode” changes infrequently, like debug, system

management mode, or “real” mode.

Assume data addressed includes no bytes outside of computer memory limits which
can only occur on unaligned page crossing memory references at the upper memory
limit, and can be handled by special case software or hardware.

10

15

20

25

30

35

40

45

50

WO 99/08188

mov %ecx, [Y%oebp+0xc]

add RO, Rebp, Oxc
1d Recx, [RO]
add Reip,Reip, 3
commit

mov %eax, [%ebp+0x8]

add R2,Rebp, 0x8
14 Reax, [R2]
add Reip,Reip, 3
commit

mov [%eax], %ecx

st [Reax] ,Recx
add Reip,Reip, 2
commit

add %eax, #4
addcc Reax,Reax, 4

add Reip,Reip, 5
commit

mov [%ebp+0x8], %eax

add R5, Rebp, 0x8

st [R5] ,Reax
add Reip,Reip, 3
commit

mov %eax, [Y%oebp+0x10]

add R7,Rebp, 0x10

1d Reax, [R7]
add Reip,Reip, 3
commit

lea %ecx, [%oeax-1]

sub Recx,Reax, 1
add Reip,Reip, 3
commit

mov [%ebp+0x10], %ecx

add R9,Rebp, 0x10
st [R9] ,Recx
add Reip,Reip,3
commit

-64-

/7

/!

//

/7

//

//

/7

/7

PCT/US97/14118

load ¢

load s

store ¢ into [s]

increment s by 4

store (s + 4)

load n

decrement n

store (n - 1)

10

15

20

25

30

35

40

WO 99/08188 PCT/US97/14118

-65-
and %eax, %eax // test n
andcc R1l1l,Reax,Reax
add Reip,Reip, 3
commit
jg .-0x1b . // branch "n>0"

add Rseq, Reip, Length (jg)
ldc Rtarg,EIP (target)
selcc Reip,Rseq, Rtarg
commit
ig mainloop,mainloop
Host Instruction key:
selcc = Select one of the source registers and copy its

contents to the destination register based on the condition
codes.

The above sample illustrates a next stage of optimization in which a
speculative translation eliminates the upper memory boundary check
which is only necessary for unaligned page crossing memory
references at the top of the memory address space. Failure of this
assumption is detected by either hardware or software alignment fix
up. This reduces the translation by another host primitive instruction
for each target primitive instruction requiring addressing. This
optimization requires both the assumption noted before that the
application utilizes a 32 bit flat memory model and the speculation
that the instruction is aligned. If these are not both true, then the
translation will fail when it is executed; and a new translation will be

necessary.

Detect and eliminate redundant address calculations. The example shows the code
after eliminating the redundant operations.

mov %ecXx, [Yoebp+0xc] // load c

add RO, Rebp, Oxc
14 Recx, [RO]
add Reip,Reip,3
commit

10

15

20

25

30

35

40

45

50

WO 99/08188

mov %eax, [%ebp+0x8]

add R2,Rebp, 0x8
1d Reax, [R2]
add Reip,Reip, 3
commit

mov [%eaXx], %ecx

st [Reax] ,Recx
add Reip,Reip, 2
commit

add %eax, #4
addcc Reax,Reax, 4

add Reip,Reip, 5
commit

mov [%ebp+0x8], %eax

st [R2],Reax
add Reip,Reip, 3
commit

mov %eax, [%ebp+0x10]

add R7,Rebp, 0x10

1d Reax, [R7]
add Reip,Reip, 3
commit

lea %ecx, [Yoeax-1]
sub Recx,Reax, 1

add Reip,Reip, 3
commit

mov [%ebp+0x10], %ecx

st [R7] ,Recx
add Reip,Reip, 3
commit

and %eax,%eax

andcc R11l,Reax,Reax
add Reip,Reip, 3
commit

-66-

//

//

//

/7

/7

!/

/7

//

PCT/US97/14118

load s

store ¢ into [s]

increment s by 4

store (s + 4)

load n

decrement n

store (n - 1)

test n

10

15

20

25

WO 99/08188 PCT/US97/14118
-67-

ig -0x1b // branch "n>0"

add Rseq,Reip, Length(jg)

ldc Rtarg,EIP(target)

selcc Reip,Rseq,Rtarg

commit
jg mainloop,mainloop

This sample illustrates a next optimization in which common host
expressions are eliminated. More particularly, in translating the
second target primitive instruction, a value in working register Rebp
(the working register representing the stack base point register of an
X86 processor) is added to an offset value 0x8 and placed in a host
working register R2. It will be noted that the same operation took
place in translating target primitive instruction five in the previous
sample except that the result of the addition was placed in working
register RS. Consequently the value to be placed in working register
R5 already exists in working register R2 when host primitive
instruction five is about to occur. Thus, the host addition instruction
may be eliminated from the translation of target primitive instruction
five; and the value in working register R2 copied to working register
RS5. Similarly, a host instruction adding a value in working register
Rebp to an offset value 0x10 may be eliminated in the translation of
target primitive instruction eight because the step has already been
accomplished in the translation of target primitive instruction six and
the result resides in register R7. It should be noted that this
optimization does not depend on speculation and consequently is not

subject to failure and retranslation.

10

15

20

25

30

35

40

45

50

WO 99/08188 PCT/US97/14118

-68-

Assume that target exceptions will not occur within the translation so delay updating
eip and target state.

mov %ecx,[%ebp+0xc] // load ¢

add RO, Rebp, 0xc
14 Recx, [RO]

mov %eax,[%ebp+0x8] // load s

add R2,Rebp, 0x8
ld Reax, [R2]

mov [%eax],%ecXx // store c into [s)
st [Reax] ,Recx
add °/oeax,#4 // increment s by 4

add Reax,Reax, 4

mov [%ebp+0x8],%eax // store (s + 4)
st [R2] ,Reax
mov %eax,[%ebp+0x10] // load n

add R7,Rebp, 0x10
14 Reax, [R7]

lea %ecx,[%eax-1] // decrement n

sub Recx,Reax, 1

mov [%ebp+0x10],%ecx // store (n - 1)
st [R7],Recx
and %eax,%eax // test n)

andcc R11l,Reax,Reax

ig ~0x1b // branch "n>0"

add Rseq, Reip, Length(block)
ldc Rtarg,EIP(target)

selcc Reip,Rseq,Rtarg

commit

jg mainloop,mainloop

10

15

20

25

WO 99/08188 PCT/US97/14118

-69-

The above sample illustrates an optimization which speculates that
the translation of the primitive target instructions making up the
entire translation may be accomplished without generating an
exception. If this is true, then there is no need to update the official
target registers or to commit the uncommitted stores in the store
buffer at the end of each sequence of host primitive instructions which
carries out an individual target primitive instruction. If the
speculation holds true, the official target registers need only be
updated and the stores need only be committed once, at the end of the
sequence of target primitive instructions. This allows the elimination
of two primitive host instructions for carrying out each primitive target
instruction. These are replaced by a single host primitive instruction
which updates the official target registers and commits the

uncommitted stores to memory.

As will be understood, this is another speculative operation which is
also highly likely to involx}e a correct speculation. This step offers a
very great advantage over all prior art emulation techniques if the
speculation holds true. It allows all of the primitive host instructions
which carry out the entire sequence of target primitive instructions to
be grouped in a sequence in which all of the individual host primitives -
may be optimized together. This has the advantage of allowing a great
number of operations to be run in parallel on a morph host which
takes advantage of the very long instruction word techniques. It also
allows a greater number of other optimizations to be made because
more choices for such optimizations exist. Once again, however, if the
speculation proves untrue and an exception is taken when the loop is

executed, the official target registers and memory hold the official

10

15

20

25

30

35

WO 99/08188 PCT/US97/14118

-70-

target state which existed at the beginning of the sequence of target
primitive instructions since a commit does not occur until the
sequence of host instructions is actually executed. All that is
necessary to recover from an exception is to dump the uncommitted
stores, rollback the official registers into the working registers, and
restart translation of the target primitive instructions at the beginning
of the sequence. This re-translation produces a translation of one
target instruction at a time, and the official state is updated after the
host sequence representing each target primitive instruction has been
translated. This translation is then executed. When the exception
occurs on this re-translation, correct target state is immediately
available in the official target registers and memory for carrying out
the exception.
in summary:

add RO,Rebp, Oxc

14 Recx, [RO]

add R2,Rebp, 0x8
1d Reax, [R2]

st [Reax] ,Recx

add Reax,Reax, 4

st [R2] ,Reax

add R7,Rebp, 0x10

1d Reax, [R7] // Live out
sub Recx,Reax, 1 // Live out
st [R7] ,Recx

andcc R1l1l,Reax,Reax -
add Rseq,Reip, Length (block)

ldc Rtarg,EIP(target)

selcc Reip,Rseq,Rtarg

commit

jg mainloop, mainloop

The comment "Live Out" refers to the need to actually maintain Reax
and Recx correctly prior to the commit. Otherwise further
optimization might be possible.

10

15

20

25

30

35

WO 99/08188 PCT/US97/14118

T1-

The summary above illustrates the sequence of host primitive
instructions which remain at this point in the optimization process.
While this example shows the maintenance of the target instruction
pointer (EIP) inline, it is possible to maintain the pointer EIP for
branches out of line at translation time, which would remove the
pointer EIP updating sequence from this and subsequent steps of the

example.

Renaming to reduce register resource dependencies. This will allow subsequent
scheduling to be more effective. From this point on, the original target X86 code is
omitted as the relationship between individual target X86 instructions and host
instructions becomes increasingly blurred.

add RO, Rebp, Oxc
14 R1, [RO]
add R2,Rebp, 0x8
1d R3, [R2]

st [R3],R1

add R4 ,R3,4

st [R2] ,R4

add R7,Rebp, 0x10

1d Reax, [R7] // Live out
sub Recx,Reax, 1 // Live out
st [R7] ,Recx

andcc R11l,Reax,Reax

add Rseq, Reip, Length (block)
ldc Rtarg,EIP(target)

selcc Reip,Rseq,Rtarg

commit

ig mainloop,mainloop

This sample illustrates a next step of optimization, normally called
register renaming, in which operations requiring working registers
used for more than one operation in the sequence of host primitive
instructions are changed to utilize a different unused working register
to eliminate the possibility that two host instructions will require the
same hardware. Thus, for example, the second host primitive
instruction in two samples above uses working register Recx which

represents an official target register ECX. The tenth host primitive

15

20

25

30

35

WO 99/08188 PCT/US97/14118

-72-

instruction also uses the working register Recx. By changing the
operation in the second host primitive instruction so that the value
pointed to by the address in RO is stored in the working register R1
rather than the register Recx, the two host instructions do not both
use the same register. Similarly, the fourth, fifth, and sixth host
primitive instructions all utilize the working register Reax in the
earlier sample; by changing the fourth host primitive instruction to
utilize the previously unused working register R3 instead the working
register Reax and the sixth host primitive instruction to utilize the
previously unused working register R4 instead of the register Reax,

these hardware dependencies are eliminated.

After the scheduling process which organizes the primitive host operations as multiple
operations that can execute in the parallel on the host VLIW hardware. Each line
shows the parallel operations that the VLIW machine executes, and the “&” indicates
the parallelism.

add R2,Rebp, 0x8 & add RO, Rebp, Oxc

nop & add R7,Rebp, 0x10

la R3, [R2] & add Rseq,Reip, Length (block)

14 R1, [RO] & add R4,R3,4

st [R3],R1 & ldc Rtarg,EIP(target)

14 Reax, [R7] & nop

st [R2] ,R4 & sub Recx,Reax, 1l

st [R7],Recx & andcc R1l1l,Reax,Reax

selcc Reip,Rseq,Rtarg & jg mainloop,mainloop & commit

Host Instruction key:
nop = no operation

The above sample illustrates the scheduling of host primitive
instructions for execution on the morph host. In this example, the
morph host is presumed to be a VLIW processor which in addition to
the hardware enhancements provided for cooperating with the code
morphing software also includes, among other processing units, two

arithmetic and logic (ALU) units. The first line illustrates two

10

15

20

25

30

35

WO 99/08188 PCT/US97/14118

-73-

individual add instructions which have been scheduled to run
together on the morph host. As may be seen, these are the third and
the eight primitive host instructions in the sample just before the
summary above. The second line includes a NOP instruction (no
operation but go to next instruction) and another add instruction.
The NOP instruction illustrates that there are not always two
instructions which can be run together even after some scheduling
optimizing has taken place. In any case, this sample illustrates that
only nine sets of primitive host instructions are left at this point to

execute the original ten target instructions.

resolve host branch targets and chain stored translations

add R2,Rebp, 0x8 & add RO, Rebp, Oxc

nop & add R7,Rebp, 0x10

14 R3, [R2] & add Rseq,Reip,Length(block)

1d R1, [RO] & add R4,R3,4

st [R3],R1 & ldc Rtarg,EIP(target)

1d Reax, [R7] & nop

st [R2] ,R4 & sub Recx,Reax, 1l

st [R7],Recx & andcc R11,Reax,Reax

selcc Relp,Rseq,Rtarg & jg Sequential,Target & commit

This sample illustrates essentially the same set of host primitive
instructions except that the instructions have by now been stored in
the translation buffer and executed one or more times because the -
last jump (jg) instruction now points to a jump address furnished by
chaining to another sequence of translated instructions. The chaining
process takes the sequence of instructions out of the translator main
loop so that translation of the sequence has been completed.

Advanced Optimizations, Backward Code Motion:

This and subsequent examples start with the code prior to scheduling.
This optimization first depends on detecting that the code is a loop.
Then invariant operations can be moved out of the loop body and
executed once before entering the loop body.

15

20

25

30

35

40

45

WO 99/08188

entry:
add
add
add
add
ldc

Loop:
1d
1d
st
add
st
1ld
sub
st

-74-

RO, Rebp, Oxc
R2,Rebp, 0x8

R7,Rebp, 0x10
Rseq,Reip, Length (block)
Rtarg,EIP (target)

R1, [RO]

R3, [R2]
[R3],R1
R4,R3,4

[R2] ,R4
Reax, [R7]
Recx,Reax, 1
[R7] ,Recx

andcc R1l1l, Reax,Reax
selcc Reip,Rseq,Rtarg

commit

jg

mainloop, Loop

PCT/US97/14118

The above sample illustrates an advanced optimization step which is

usually only utilized with sequences which are to be repeated a large

number of times. The process first detects translations that form

loops, and reviews the individual primitives host instructions to

determine which instructions produce constant results within the loop

body. These instructions are removed from the loop and executed

only once to place a value in a register; from that point on, the value

stored in the register is used rather than rerunning the instruction.

Schedule the loop body after backward code motion. For example purposes, only ~

the code in the loop body is shown scheduled

Entry:
add
add
add
add
ldc

Loop:
1d
1d
st
1d
st

RO, Rebp, 0xc

R2,Rebp, 0x8

R7,Rebp, 0x10

Rsedq, Reip, Length (block)
Rtarg, EIP (target)

R3, [R2] & nop
R1, [RO] &
[R3],R1 & nop
Reax, [R7] & nop
[R2] ,R4 &

add R4,R3,4

sub Recx,Reax, 1

10

15

20

25

30

WO 99/08188 PCT/US97/14118

-75-

st [R7] ,Recx & andcc R11,Reax,Reax
selcc Reip,Rseq,Rtarg & jg Sequential, Loop & commit

Host Instruction key:
ldc = load a 32-bit constant

When these non-repetitive instructions are removed from the loop and
the sequence is scheduled for execution, the scheduled instructions
appear as in the last sample above. It can be seen that the initial
instructions are performed but once during the first iteration of the
loop and thereafter only the host primitive instructions remaining in
the seven clock intervals shown are executed during the loop. Thus,
the execution time has been reduced to seven instruction intervals
from the ten instructions necessary to execute the primitive target

instructions.

As may be seen, the steps which have been removed from the loop are
address generation steps. Thus, address generation only need be
done once per loop invocation in the improved microprocessor; that is,
the address generation need only be done one time. On the other
hand, the address generation hardware of the X86 target processor
must generate these addresses each time the loop is executed. If a
loop is executed one hundred times, the improved microprocessor -
generates the addresses only once while a target processor would
generate each address one hundred times.
After Backward Code Motion:
Target:

add RO, Rebp, 0xc

add R2,Rebp, 0x8

add R7,Rebp, 0x10

add Rseq,Reip, Length (block)
ldc Rtarg, EIP(target)

10

15

20

25

30

35

40

45

50

55

WO 99/08188 PCT/US97/14118

-76-
Loop:
14 R1, [RO]
1d R3, [R2]
st [R3],R1
add R4,R3,4
st [R2] ,R4
1id Reax, [R7] //Live out
sub Recx,Reax, 1 //Live out
st [R7] ,Recx

andcc R1l1l,Reax, Reax
selcc Reip,Rseq,Rtarg
commit

jg mainloop, Loop

Register Allocation :

This shows the use of register alias detection hardware of the morph
host that allows variables to be safely moved from memory into
registers. The starting point is the code after "backward code
motion". This shows the optimization that can eliminate loads.

First the loads are performed. The address is protected by the alias
hardware, such that should a store to the address occur, an "alias"
exception is raised. The loads in the loop body are then replaced
with copies. After the main body of the loop, the alias hardware is
freed.

Entry:

add RO, Rebp, 0xc

add R2,Rebp, 0x8

add R7,Rebp, 0x10

add Rseq, Reip, Length (block)

ldc Rtarg,EIP(target)

1d Rc, [RO] ;First do the load of the variable from
memory

prot [RO],Aliasl ;Then protect the memory location from
stores

14 Rs, [R2]

prot [R2],Alias2 -

1a Rn, [R7]

prot [R7],Alias3
Loop:

copy RI1,Rc
copy R3,Rs
st [R3],R1
add R4,Rs,4

copy Rs,R4

st [R2] ,Rs,NoAliagCheck
copy Reax,Rn //Live out
sub Recx,Reax, 1 //Live out

copy Rn,Recx

10

15

20

25

30

35

WO 99/08188 PCT/US97/14118

-77-
st [R7] ,Rn,noAliasCheck
andcc R11l,Reax,Reax
selcc Reip,Rseq,Rtarg
commit
ig Epilog, Loop

Epilog:

FA Aliasl Free the alias detection hardware
FA Alias2 Free the alias detection hardware
FA Alias3 Free the alias detection hardware
3 Sequential

Host Instruction key:
protect = protect address from loads FA = free alias
copy = copy j = jump

This sample illustrates an even more advanced optimization which
may be practiced by the microprocessor including the present
invention. Referring back to the second sample before this sample, it
will be noticed that the first three add instructions involved computing
addresses on the stack. These addresses do not change during the
execution of the sequence of host operations. Consequently, the
values stored at these addresses may be retrieved from memory and
loaded in registers where they are immediately available for execution.
As may be seen, this is done in host primitive instructions six, eight,
and ten. In instructions seven, nine and eleven, each of the memory
addresses is marked as protected by special host alias hardware and
the registers are indicated as aliases for those memory addresses so
that any attempt to vary the data will cause an exception. At this
point, each of the load operations involving moving data from these
stack memory addresses becomes a simple register-to-register copy
operation which proceeds much faster than loading from a memory
address. It should be noted that once the loop has been executed
until n=0, the protection must be removed from each of the memory

addresses so that the alias registers may be otherwise utilized.

10

15

20

25

30

35

40

45

WO 99/08188 PCT/US97/14118

-78-
Copy Propagation :

After using the alias hardware to turn loads within the loop body
into copies, copy propagation allows the elimination of some copies.

Entry:
add RO, Rebp, Oxc
add R2,Rebp, 0x8
add R7,Rebp, 0x10
add Rseq, Reip, Length (block)
ldc Rtarg, EIP(target)
1d Rc, [RO]
prot [RO],Aliasl
14 Rs, [R2]
prot [R2],Alias2
1d Recx, [R7]
prot [R7],Alias3
Loop:
st [Rs] ,Rc
add Rs,Rs,4
st [R2] ,Rs,NoAliasCheck
copy Reax,Recx //Live out
sub Recx,Reax, 1 //Live out
st [R7] ,Recx,NoAliasCheck
andcc R1l1l,Reax,Reax
selcc Reip,Rseq,Rtarg
commit
ig Epilog, Loop
Epilog:

FA Aliasl
FA Alias?2
FA Alias3
j Sequential

This sample illustrates the next stage of optimization in which it is
recognized that most of the copy instructions which replaced the load
instructions in the optimization illustrated in the last sample are
unnecessary and may be eliminated. That is, if a register-to-register
copy operation takes place, then the data existed before the operation
in the register from which the data was copied. If so, the data can be

accessed in the first register rather than the register to which it is

10

15

20

25

30

35

40

WO 99/08188 PCT/US97/14118

-79-

being copied and the copy operation eliminated. As may be seen, this
eliminates the first, second, fifth, and ninth primitive host
instructions shown in the loop of the last sample. In addition, the
registers used in others of the host primitive instructions are also
changed to reflect the correct registers for the data. Thus, for
example, when the first and second copy instructions are eliminated,
the third store instruction must copy the data from the working
register Rc where it exists (rather than register R1) and place the data
at the address indicated in working register Rs where the address

exists (rather than register R3).

Example illustrating scheduling of the loop body only .

Entry:

add RO, Rebp, 0xc

add R2,Rebp, 0x8

add R7,Rebp, 0x10

add Rseq,Reip, Length (block)

ldc Rtarg,EIP(target)

1d Rc, [RO]

prot [RO],Aliasl

1d Rs, [R2]

prot [R2],Alias2

1d Recx, [R7]

prot [R7],Alias3
Loop:

st [Rs] ,Rc, & add Rs,Rs,4 & copy
Reax,Recx -

st [R2] ,Rs,NAC & sub Recx,Reax, 1l

st [R7] ,Recx,NAC & andcc R11,Reax,Reax

selcc Reip,Rseq,Rtarg & jg Epilog,Loop & commit
Epilog:

FA Aliasl

FA Alias2

FA Alias3

3 Sequential

Host Instruction key:
NAC= No Alias Check

10

15

20

25

30

35

40

WO 99/08188

PCT/US97/14118

-80-

The scheduled host instructions are illustrated in the sample above.

It will be noted that the sequence is such that fewer clocks are

required to execute the loop than to execute the primitive target

instruction originally decoded from the source code. Thus, apart from

all of the other acceleration accomplished, the total number of .

combined operations to be run is simply less than the operations

necessary to execute the original target code.

Store Elimination by use of the alias hardware .

Entry:
add
add
add
add
ldc

1d
prot
and stores

1d
prot
and stores

1d
prot
and stores

Loop:

st
Reax, Recx

sub

selcc

Epilog:
FA
FA
FA
st
st
Recx

RO, Rebp, Oxc
R2,Rebp, 0x8

R7,Rebp, 0x10
Rseq,Reip, Length (block)
Rtarg,EIP (target)

Rc, [RO]

[RO] ,Aliasl ;protect the address from loads
Rs, [R2]

[R2] ,Alias2 ;protect the address from loads
Recx, [R7]

[R7],Alias3 ;protect the address from loads
[Rs] ,Rc, & add Rs,Rs,4 & copy
Recx,Reax, 1 & andcc R1l1l,Reax,Reax

Reip, Rseq, Rtarg & jg Epilog,Loop & commit -
Aliasil

Alias2

Alias3

{R2],Rs ;writeback the final value of Rs
[R7] ,Recx ;writeback the final value of
Sequential

The final optimization shown in this sample is the use of the alias

hardware to eliminate stores. This eliminates the stores from within

10

WO 99/08188 PCT/US97/14118

-81-

the loop body, and performs them only in the loop epilog. This
reduces the number of host instructions within the loop body to three

compared to the original ten target instructions.

Although the present invention has been described in terms of a
preferred embodiment, it will be appreciated that various
modifications and alterations might be made by those skilled in the
art without departing from the spirit and scope of the invention. For
example, although the invention has been described with relation to
the emulation of X86 processors, it should be understood that the
invention applies just as well to programs designed for other processor
architectures, and programs that execute on virtual machines, such
as P code, Postscript, or Java programs. The invention should

therefore be measured in terms of the claims which follow.

What Is Claimed Is:

10

WO 99/08188 PCT/US97/14118

-82-

Claim 1. A system for controlling access to memory in a computer

comprising

hardware means for indicating whether an address of an instruction is

directed to memory or to a memory mapped I/O device,

software means for initiating an instruction speculating that the

address is memory or [/O,

means for comparing the speculation made with respect to the

instruction with an indication of the hardware means, and

means for taking a corrective action if a comparison shows that the

speculation and the indication differ.

Claim 2. A system for controlling access to memory as in Claim 1

in which the hardware means comprises:

a look-aside buffer including a plurality of storage locations for virtual

addresses and associated physical addresses, and

a storage position in each storage location of the translation look aside

buffer.

Claim 3. A system for controlling access to memory as in Claim 1
in which the software means for initiating an instruction speculating
that the address is memory or I/0 is a set of instructions for a host
processor translated from a set of instructions for a target processor,
the set of instructions including an indication of a speculation for

each address used by the instruction.

10

WO 99/08188 PCT/US97/14118

-83-

Claim 4. A system for controlling access to memory as in Claim 1

in which the hardware means comprises:

a look-aside buffer including a plurality of storage locations for

virtual addresses and associated physical addresses, and

a storage position in each storage location of the translation

look aside buffer; and

in which the software means for initiating an instruction speculating
that the address is memory or I/O is a set of instructions for a host
processor translated from a set of instructions for a target processor,
the set of instructions including an indication of a speculation for

each address used by the instruction.

Claim 5. A system for controlling access to memory as in Claim 4
in which the means for comparing the speculation made with respect
to the instruction with an indication of the hardware means comprises
a hardware comparator for comparing the an indication of a
speculation for each address with a condition of a storage position in a

storage location storing a matching address.
Claim 6. A memory controller for a microprocessor comprising: -

means to both detect a failure of speculation on the nature of the

memory being addressed, and
means to recover from such a failure.

Claim 7. A memory controller as claimed in Claim 6 in which the
means to detect a failure of speculation on the nature of the memory

being addressed comprises

WO 99/08188 PCT/US97/14118

-84-

hardware means for storing an indication of the nature of the physical

memory being addressed, and

means for comparing a speculation on the nature of the memory being
addressed and an indication of the nature of the physical memory

being addressed stored by the hardware means.

Claim 8. A memory controller as claimed in Claim 7 in which the

means to recover from such failures comprises:

means responsive to a failure of a comparison by the means for
comparing a speculation on the nature of the memory being addressed
and an indication of the nature of the physical memory being

addressed for generating an exception, and
means for responding to the exception.

Claim 9. A memory controller as claimed in Claim 6 in which the
means to detect a failure of speculation on the nature of the memory

being addressed comprises

hardware means for storing an indication of the nature of the

physical memory being addressed, and

means for comparing a speculation on the nature of the memory
being addressed and an indication of the nature of the physical

memory being addressed stored by the hardware means; and
in which the means to recover from such failures comprises:

means responsive to a failure of a comparison by the means for

comparing a speculation on the nature of the memory being

WO 99/08188 PCT/US97/14118

-85-

addressed and an indication of the nature of the physical

memory being addressed for generating an exception, and
means for responding to the exception.

Claim 10. A memory controller as claimed in Claim 9 in which the

means for responding to the exception comprises:

means for recovering state of a computer utilizing the microprocessor,

and

means for accessing the address presuming the nature of the memory

being addressed is different than the speculation.

Claim 11. A memory controller as claimed in Claim 9 in which the

means to recover from such a failure comprises:

means for generating an exception in response to a failure of

speculation on the nature of the memory being addressed,

means for providing a process for recovering from an exception related
to a failure of the speculation on the nature of the memory being

addressed.

Claim 12. A memory control system for a computer comprising:
main memory,

memory-mapped input/output (I/O) devices,

memory control software for causing commands to affect operations at

particular addresses,

10

10

WO 99/08188 PCT/US97/14118

-86-

a translation lookaside buffer including memory locations for storing
virtual addresses which have been recently accessed and translations

of those virtual addresses to physical addresses within the computer,

at least one memory position for each memory location recording an
indication whether the address is assumed to be memory or mérnory—

mapped I/0.

Claim 13. A memory control system as claimed in Claim 12 further
comprising a comparator for detecting whether an instruction
accessing a virtual address stored in the translation lookaside buffer
presumes that the physical address is the same as the indication

recorded for the physical address.

Claim 14. A method of recovering from a failed speculation regarding
a property of components accessed as memory in a computer system

comprising the steps of:

providing a process for recovering from an exception related to a
failure of the existence of a property of components accessed as

memory,

generating an access to an address speculating on a property of a -

particular address,

detecting failure of the speculation by comparing the speculation to

the property of the component addressed, and

responding to detection of a failure of the speculation by running the

process.

10

15

WO 99/08188 PCT/US97/14118

-87-

Claim 15. A method of recovering from a failed speculation as
claimed in Claim 14 in which the step of detecting failure of the
speculation includes generating an exception in response to the failure

of the speculation.

Claim 16. A method of recovering from a failed speculation as

claimed in Claim 14

in which the step of providing a process for recovering from an
exception related to a failure of the existence of a property of

components accessed as memory comprises:

storing an exception handler for recovering storing an indication
of state of the computer system existing prior to the speculation,

and

storing an indication of state of the computer system existing

prior to the speculation; and

in which the step of responding to detection of a failure of the

speculation by running the process comprises:
recovering the stored indication of state, and

continuing with the operation of the computer utilizing the
recovered state from the point at which the failed speculation

was taken.
Claim 17. A microprocessor comprising:

a host processor capable of executing a first instruction set,

10

WO 99/08188 PCT/US97/14118

-88-

code morphing software for translating programs written for a target
processor having a second different instruction set into instructions of

the first instruction set, and
a memory controller comprising

an address translation buffer including a plurality of storage
locations in which recently accessed virtual target addresses
and physical addresses represented by the virtual target

addresses are to be recorded,

each of the storage locations including means for
indicating whether a physical address is a memory
address or a memory-mapped input/output (I/O) address;

and

means for comparing an indication in a storage location with a
speculation made that an access to a virtual target address in a
storage location is to memory or memory-mapped I/O to
indicate a subsequent operation to be taken in accessing the

address.

Claim 18. A microprocessor as claimed in Claim 17 in which the -
means for comparing an indication in a storage location with a
speculation made that an access to a virtual target address in a
storage location is to memory or memory-mapped I/O to indicate a

subsequent operation taken in accessing the address comprises

means for generating an exception in response to a failure of a

comparison, and

10

WO 99/08188 PCT/US97/14118

-89-

means for responding to the exception to indicate a subsequent

operation to be taken in accessing the address.

Claim 19. A microprocessor as claimed in Claim 18 in which the
means for indicating whether a physical address is a memory address
or a memory-mapped input/output (I/O) address comprises a étorage

position in a storage location.
Claim 20. A memory controller comprising

an address translation buffer including a plurality of storage locations
in which recently accessed virtual addresses and physical addresses

represented by the virtual addresses are to be recorded,

each of the storage locations including means for indicating
whether a physical address is a memory address or a memory-

mapped input/output (I/O) address; and

means for comparing an indication in a storage location with a
speculation made that an access to an address in a storage location is
to memory or memory-mapped I/O to indicate a subsequent operation

taken in accessing the address.

Claim 21. A memory controller as claimed in Cléim 20 in which the
means for comparing an indication in a storage location with a
speculation made that an access to a virtual target address in a
storage location is to memory or memory-mapped I/O to indicate a

subsequent operation taken in accessing the address comprises

means for generating an exception in response to a failure of a

comparison, and

WO 99/08188 PCT/US97/14118

-90-

means for responding to the exception to indicate a subsequent

operation to be taken in accessing the address.

Claim 22. A memory controller as claimed in Claim 20 in which the
means for indicating whether a physical address is a memory address
or a memory-mapped input/output (I/O) address comprises a sltorage

position in a storage location.

PCT/US97/14118

WO 99/08188

1/7

(@)
oppys

(P)

o3d

| ©4nbid

(®)
o|ddy

(9)
0dHos

(p)

[33ul

9IDMPIDH }SOH

9IDMpJIDH }SOH

9IDMpJIDH }SOH

9IDMPIDH }SOH

alompipH jebup}

‘sAg *JodQ 3SOH

'sAg *JadQ }SOH

sAg do 3soH Hpd

‘sAg ‘1edp 3SOH

'sAg ‘1edQ 39b6.up]

Joypjnwiy

103pjnwi3

Joypjnwig

Joypjnwi3

uoppolddy 31ebip)

uonoolddy 39bi4p]

uonpoyddy 3ebip]

sAsdp 3ebup] D

sAsdp je6up] YD

uopooyddy 3ebip)

uonpolddy 3ebip)

PCT/US97/14118

WO 99/08188

¢ o.4nbid

fowew 31ebup]

| jo5u0)

'sfS |

-—{00DUIGJ| sng|

oHnqg

UOD|SUD] ! JO}DjSUDJ]

Alowaul! 3s0H

N~
N
N

Jossadoidosdlpy <

weysAg bBunpuedp 3ebip]

uonpolddy 3eb.ip)

p}pQ * sio)sibal| (sie)sibal|| ||sieysibaul|sloysibal
Ssaappp|| D100 || BupHop || || 1piouJO || BupHopm
Vooot&&”lgu._ot:n Eoﬂml o gL ||<180/0L |~ yun sebuieyu] | [yun juiod Bupool
Kiousop = v NAN] ; |]
u] bipq
§SaJppD 3504 Yoyodsip
_ [64yoDd ® Yope)
suoponnsu] % pipQ Y| uononnsuj
Z o4nbid
(3soH ydiow)
©IDMpPIDH psoubyul uonoas
9IDMPIDH
UOND|NWIS SJDMPIDH | " (o1pmyj0s
siojpupy doy] | Jeynq | g jes uoponnpsul/| 39S buiydiow 9po))
siojpuby jdnusju] | UORDISUDI] ! UORONIISU| JOID|SUDI] uoRoes
suojouny sujyoow ispg ! ! 9IDMYOS

WO 99/08188

Register File

3/7

PCT/US97/14118

Working || Target
[RO J||[_EAX]
CRT_]||| | Gated Store Buffer. | Ol
| — AU
[Rs_|| | | <
T — s
L R6_|||L |
LR6 | l Tail pointer —=
[R.7 ILESP Uncommitted
. Uncommitted
. Uncommitted
. . _o|Uncommitted
. Gate pointer - Committed
. Committed
. Committed
Committed
RES Committed
[R10_|{|__EIP_] Committed
- Committed
Figure 4 Committed
Head pointer -— Committed
Figure 5 Cache
Addresses of
loads 8|c stores
110 ¢
Exception if
'6‘3{2“’— = 111 113 addresses compare
Memory | .| ___4
Addrese 112

Figure 10

PCT/US97/14118

WO 99/08188

4/7

9 o.4nbi4

()

T4 ¥3ALSIOFY A3LIOdILTINN

LINn || LN nv nv nv # L#
HONvYE| dd d4 LNI INI Wan W3AN
A
(T I T I I I I I I I I I I T I T T I I I T I I T TITITIIITII 1]
qozﬁ_m 1NN d4 dON 3J¥VdNOD adv 3FM¥oLsS avol]

<
uoponisu] MIA olbuls

(q)

HONYdd
J4vdN0D
JIOLS
LINKN dd
aav
avol

(°)

HONvd
JUVdN0D
JOLS
1NN d4

CIT]
L
[T
L]

aav ‘avo1 CIT T T T 1]

PCT/US97/14118

WO 99/08188

N
N
(@)

|L eJnBbi4

(s)uononuysu) pejpjsubd)

0/l do Wepy ssaippD o S}q
ssaippb jo adA] jupoyjubls }sop

§saJppD
) aindwo) ssod _co_mw_m 2 aipdwio)

\ §8990D \

uopdaoxe - -

a)puousb

+ N = £ - %

N N.
(. \ -

L‘N/V suq sseippp [pojskuyd jo 8S8IPPD [DNMIA JO
lonuoy syq juooyubls 1sopy | s)q Jupoyubls JsoN

Jajing opisy 007 UuonD|suDl)

J o.4nbBi4

—| uonb|subJ} 93Noex3

j
i !

49}jnq uonb|supt} O} ppy
losseooid 10} 8|npayos
ezjwnRdo
saAlpwild 0} HBAUO)
8p029(]

9)}b|subdj

é
184inq
uoD|suD.}
ul

SoA

doo ulbp

WO 99/08188

1st translation

Prim. Inst.
Prim. Inst.
Prim. Inst.

Update EIP

BranchToMain

or
BranchToMain

S

6/7

Update
address

PCT/US97/14118

L 2d translation

Prim. Inst.
Prim. Inst.
Prim. Inst.

Update EIP

Loop to 1st
translation

or
BranchToMain

Figure 8

PCT/US97/14118

WO 99/08188

7/7

Jo}spw snq
Aippuooss

|

6 ©.4nBl

oAD|S snhq
Kippuooes

i

Nm:n KIDpuooes

snq |po0T
W

|

ebpliq
snq Aippuodes

i

|

i

Je}sbwl

snq |pooT snq D207

9AD|S

i

J9||os3uod
snq |poo|/Ailows

OvoLc o

snq 1088300.d 0

Josseooudosoly

Aouwawi
UIDW

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US97/14118
A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOG6F 11/00, 11/28
US CL :395/185.06

According to International Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S.

395/185.06, 182.07, 414, 416, 182.13, 183.04, 183.05; 371/21.6

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS

C.

DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X,P

Y,P

Y,P

US 5,564,111 A (GLEW et al) 08 October 1996, Figures 1-3;
Abstract; col. 1, lines 1-39; col. 2, lines 6-8, lines 14-27, lines 61-
63; col. 3, lines 5-11, lines 24-49; col. 4, lines 51-62; col. 5, lines
44-53; col. 11, lines 13-26.

US 5,564,111 A (GLEW et al) 08 October 1996, Figures 1-3, §;
Abstract; col. 1, lines 1-39, lines 46-50; col. 2, lines 6-27, lines 41-
53, lines 61-67; col. 3, lines 1-4, lines 24-49; col. 4, lines 51-62;
col. 5, lines 37-53; col. 6, lines 42-44; col. 7, lines 38-59; col. 10,
lines 45-66; col. 11, lines 13-26.

US 5,553,255 A (JAIN et al) 03 September 1996, Figure 4; col. 10,
lines 39-67.

6, 12

1-5,7-11, 13- 22

1-5, 7-11, 13-22

Further documents are listed in the continuation of Box C. D See patent family annex.

Special categories of cited documents:

A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier document published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

0" document referring to an oral disclosure, use, exhibition or other
means

"p* document published prior to the international filing date but later than

the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

the principle or theory underlying the invention

X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

"Y* document of particular relevance; the claimed invention cannot be
considered to invoive an inventive step when the document is
combined with one or more other such do: ts, such combinati
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

16 SEPTEMBER 1997

Date of mailing of the international search report

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

3 0 0CT 1997
Authoﬁ%i oner ! /

Robert W' Beausoliel /J\/

Telephone No. (703) 305-9713

Form PCT/ISA/210 (second sheet)(July 1992)»

INTERNATIONAL SEARCH REPORT International application No.

PCT/US97/14118

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 4,896,257 A (IKEDA et al) 23 January 1990, Figures 1-2; 3-5,17-19
Abstract; col. 1, lines 28-38, lines 57-68; col. 2, lines 1-25, lines
43-68.

YP US 5,566,298 A (BOGGS et al) 15 October 1996, Abstract; col. 1, |10, 16
lines 44-67; col. 2, lines 1-34, lines 38-48; col. 24, lines 7-9.

AP US 5,581,722 A (WELLAND) 03 December 1996, see entire 1-22
document.

AP US 5,613,083 A (GLEW et al) 18 March 1997, see entire 1-22
document.

A US 5,442,766 A (CHU et al) 15 August 1995, see entire document. |1-22

A US 4,954,942 A (MASUDA et al) 04 September 1990, see entire 1-22
document.

A US 5,465,337 A (KONG) 07 November 1995, see entire document. {1-22

Form PCT/ISA/210 (continuation of second sheet)(July 1992)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

