
JP 2010-529559 A 2010.8.26

10

(57)【要約】
　シーケンシャルループを、トランザクショナルメモリ
システムで使用するために、並列ループに変換するため
の各種の技術および手法を開示する。オープンエンドお
よび／またはクローズドエンドのシーケンシャルループ
を、並列ループに変換することができる。例えば、当初
のシーケンシャルループを含むコードのセクションを解
析して、当初のシーケンシャルループについての繰り返
し定数を決定する。当初のシーケンシャルループを、繰
り返し定数までの数だけトランザクションを発生するこ
とのできる並列ループに変換する。別の例のように、オ
ープンエンドシーケンシャルループは、それぞれの作業
項目を含む個々のトランザクションを、各スペキュレー
ションパイプラインの繰り返し毎に発生する並列ループ
に変換することができる。その並列ループは次いで、異
なるスレッド上で実行される個々のトランザクションの
うち少なくともいくつかと共に、前記トランザクショナ
ルメモリシステムを用いて実行される。

(2) JP 2010-529559 A 2010.8.26

10

20

30

40

50

【特許請求の範囲】
【請求項１】
　クローズドエンドのシーケンシャルループを並列ループに変換する方法であって、
　　トランザクショナルメモリシステムを提供するステップと、
　　当初のシーケンシャルループを含むコードの第１セクションを解析して、前記当初の
シーケンシャルループが実行する繰り返し定数を決定するステップと、
　　前記当初のシーケンシャルループを含むコードの前記第１セクションを、並列ループ
を含むコードの第２セクションに変換するステップであって、前記並列ループは前記繰り
返し定数までの数の複数のトランザクションを生成するよう作動可能であり、前記トラン
ザクションは前記並列ループの少なくとも一部を並列に実行可能にする、ステップと、
　　異なるスレッド上で実行する複数のトランザクションのうちの少なくともいくつかと
共に、前記トランザクショナルメモリシステムを使用してコードの第２セクションを実行
するステップと
　を備えたことを特徴とする方法。
【請求項２】
　前記繰り返し定数は、前記当初のシーケンシャルループと比較してループ終了を判定す
るための一定値を検索することにより決定されることを特徴とする請求項１に記載の方法
。
【請求項３】
　前記トランザクションの各々がそれぞれの誘導変数カウンタをコミット連続番号として
使用し、該コミット連続番号は所定のコミット順処理を使用してトランザクション各々を
正しい順序でコミットするのを保証することを特徴とする請求項１に記載の方法。
【請求項４】
　請求項１に記載の各ステップをコンピュータに実行させるためのコンピュータ実行可能
命令を有することを特徴とするコンピュータ読取可能記憶媒体。
【請求項５】
　コンピュータに実行させるためのコンピュータ実行可能命令を有するコンピュータ読取
可能記憶媒体であって、該コンピュータ実行可能命令は、
　　トランザクショナルメモリシステムを提供するステップと、
　　オープンエンドシーケンシャルループを含むコードの前記第１セクションを、並列ル
ープを含むコードの第２セクションに変換するステップであって、前記並列ループはスペ
キュレーションパイプラインの繰り返し毎にそれぞれの作業項目を含む個々のトランザク
ションを生成するように作動可能であるステップと、
　　異なるスレッド上で実行する前記個々のトランザクションのうち少なくともいくつか
と共に、前記トランザクショナルメモリシステムを使用してコードの前記第２セクション
を実行するステップと、
　を含み、各ステップをコンピュータに実行させることを特徴とするコンピュータ読取可
能記憶媒体。
【請求項６】
　コードの前記第２セクションは、前記トランザクションのうち少なくともいくつかを並
行して実行するように生成されることを特徴とする請求項５に記載のコンピュータ読取可
能記憶媒体。
【請求項７】
　コードの前記前記第２セクションは、前記オープンエンドシーケンシャルループのコン
パイラ分析を実行することなく生成されることを特徴とする請求項５に記載のコンピュー
タ読取可能記憶媒体。
【請求項８】
　当初の入力対出力のマッピングが、前記トランザクションを所定のコミット順でコミッ
トすることにより維持されることを特徴とする請求項５に記載のコンピュータ読取可能記
憶媒体。

(3) JP 2010-529559 A 2010.8.26

10

20

30

40

50

【請求項９】
　前記所定のコミット順が、前記オープンエンドシーケンシャルループの実行順と整合性
が取れていることを特徴とする請求項８に記載のコンピュータ読取可能記憶媒体。
【請求項１０】
　オープンエンドシーケンシャルループから生成される並列ループを実行する方法であっ
て、
　　オープンエンドシーケンシャルループから生成される並列ループで実行する繰り返し
の回数を見積もるスペキュレーションパイプラインを生成するステップと、
　　前記スペキュレーションパイプラインの各繰り返しをもとに、それぞれの作業項目を
含む個々のトランザクションを生成するステップと、
　　異なるスレッドの上で個々のトランザクションのうち少なくともいくつかを実行する
ステップと、
　　それぞれの作業項目毎に終了条件を評価するステップと、
　　前記それぞれの作業項目のうちの特定の１つが、前記並列ループを終了する時期に到
達したと判定するときに、前記それぞれの作業項目のうちの前記特定の１つの先行者をコ
ミットし、後継者を廃棄するステップと、
　を含むことを特徴とする方法。
【請求項１１】
　それぞれの作業項目を実行しながら、現在の繰り返し値を読み出すことを特徴とする請
求項１０に記載の方法。
【請求項１２】
　それぞれの作業項目毎の前記現在の繰り返し値は、所定のコミット順処理において、コ
ミット連続番号として使用されること、を特徴とする請求項１１に記載の方法。
【請求項１３】
　前記現在の繰り返し値は、それぞれの作業項目毎にアクセス可能な値の極小の増分を実
行することにより読み出されることを特徴とする請求項１１に記載の方法。
【請求項１４】
　前記オープンエンドシーケンシャルループの当初の実行と整合性が取れているコミット
順が達成されることを特徴とする請求項１０に記載の方法。
【請求項１５】
　前記オープンエンドシーケンシャルループが、ｗｈｉｌｅループであることを特徴とす
る請求項１０に記載の方法。
【請求項１６】
　前記オープンエンドシーケンシャルループが、ｄｏ　ｗｈｉｌｅループであることを特
徴とする請求項１０に記載の方法。
【請求項１７】
　前記オープンエンドシーケンシャルループが、ｆｏｒループであることを特徴とする請
求項１０に記載の方法。
【請求項１８】
　前記スペキュレーションパイプラインの初期値が、並列ループを実行するコンピュータ
上で利用可能な処理装置の数に少なくとも部分的に基づいて計算されることを特徴とする
請求項１０に記載の方法。
【請求項１９】
　適応的統計データを用いて、前記並列ループの後の実行のために前記スペキュレーショ
ンパイプラインを調整することを特徴とする請求項１０に記載の方法。
【請求項２０】
　請求項１０に記載の各ステップをコンピュータに実行させるためのコンピュータ実行可
能命令を有することを特徴とするコンピュータ読取可能記憶媒体。
【発明の詳細な説明】
【技術分野】

(4) JP 2010-529559 A 2010.8.26

10

20

30

40

50

【０００１】
　本発明は、トランザクションを用いるシーケンシャルフレームワークの並行化に関する
。
【背景技術】
【０００２】
　ソフトウェアトランザクショナルメモリ（ＳＴＭ）は、並行計算作業において共有メモ
リに対するアクセスを制御するためのデータベーストランザクションに類似した並行処理
制御機構である。トランザクショナルメモリの文脈におけるトランザクションは、共有メ
モリに対する一連の読取書込を実行するコード１個である。ＳＴＭは、在来のロック機構
の代替として使用される。プログラマが（例えば、アトミック（分割不可能な単位）で）
宣言型注釈をコードブロックの周りに置いてそれらが必要とする安全属性を示すと、シス
テムは、このブロックは他の保護コード領域に関してアトミックに実行（分割不可能な単
位として実行）されることを、自動的に保証する。そのソフトウェアトランザクショナル
メモリプログラム作成モデルは、ロックに基づく優先順位逆転およびデッドロック問題を
防止する。
【０００３】
　典型的ＳＴＭシステムには、多くの利点があるが、それでも、プログラマは、意図しな
いメモリアクセス順序付けを注意深く避けることを要求される。例えば、トランザクショ
ンをコミットする（即ち、コミット処理の）順序は、典型的ＳＴＭ環境においては拘束を
受けない。トランザクションはコミットしようと互いに競争する。このことは、トランザ
クション１がトランザクション２の前にコミットするか後にコミットするかは、しばしば
プログラムの動的スケジューリングの産物である（そしてしばしばプログラム特有のロジ
ックの産物でもある）ことを意味する。その上、メモリの同一片に書込をしようとするよ
うに、２つのトランザクションが衝突するとき、それらのコミット順は、可能な多数の競
合管理方針のうち１つに基づいて任意に決定することができる。これら筋書きの双方にお
いて、特定のコミット順は保証されない。したがって、自分のプログラムが何らかの順で
正しく働くことを確認することはプログラマの双肩に掛かっている。これは並行プログラ
ム作成を極めて困難にする。
【発明の概要】
【発明が解決しようとする課題】
【０００４】
　実行の順序が重要であり、並行性が極めて魅力的である１つの筋書きは、ループの多重
繰り返しを並行して実行するときである。下記のような古典的なｆｏｒ・・・ｅａｃｈル
ープを取り上げる。
【０００５】
　　　ＦｏｒＥａｃｈ（ｓｔｒｉｎｇ　ｓ　ｉｎ　Ｌｉｓｔ＜ｓｔｒｉｎｇ＞）
　　　｛
　　　　　Ｓ；
　　　　｝
【０００６】
　ループの各繰り返しの間、ループ本体におけるステートメントＳが実行される。このよ
うなループは、二番目の繰り返しの始まる前にループの最初の繰り返しを終了させるなど
、順次実行するために書かれていた。このようなシーケンシャルループを、起こりうる副
次効果または順序依存性に対処する特別な注意を払うことなく並行して実行すると、予期
しない結果を生じることがある。
【課題を解決するための手段】
【０００７】
　トランザクショナルメモリシステム内のトランザクションに対して順序付けを適用する
ため、各種の技術および手法を開示する。トランザクショナルメモリシステムは、複数の
トランザクションについて所定のコミット順を指定することができる機能を提供する。そ

(5) JP 2010-529559 A 2010.8.26

10

20

30

40

50

の所定のコミット順は、実行時に、そのトランザクショナルメモリシステム内のそのトラ
ンザクションをコミットする順序を決定するのに使用される。１つの実施において、その
所定のコミット順は全体の順序付けまたは部分的順序付けの何れかにすることができる。
全体の順序付けの場合、そのトランザクションは、線形順序でコミットすることを強制さ
れる。部分的順序付けの場合、そのトランザクションは、許容可能な筋書きのうち１つで
コミットすることができる。１つの実施において、コミットアービトレータが、次にコミ
ットが許されるべきトランザクションをあらわす次回コミット値を追跡し続けており、特
定のトランザクションがコミットする準備が整ったとき、そのコミット順番号がコミット
アービトレータの次回コミット値と一致しているならば、コミットすることを許される。
【０００８】
　第１トランザクションと第２トランザクションとの間に衝突が生じたとき、競合管理処
理が呼び出される。その競合管理処理においては上記所定のコミット順を用いて、その第
１トランザクションとその第２トランザクションの何れが衝突に勝って先に進むことを許
されるかの決定を助ける。
【０００９】
　トランザクショナルメモリシステムと共に使用するための、シーケンシャルループを並
列ループに変換するための手法を開示する。トランザクショナルメモリに基づくシステム
を提供する。当初のシーケンシャルループを含むコードの第１セクションを、トランザク
ションを用いて当初の入力対出力マッピングを維持する並列ループを含むコードの第２セ
クションに変換する。例えば、当初のシーケンシャルループは、当初のシーケンシャルル
ープの各繰り返しをもとに所定のコミット順処理にしたがう個々のトランザクションを作
成し、次いでそのトランザクションを、並行して実行されるように異なるスレッドに割り
当てることにより、並列ループに変換することができる。並列ループを実行する間の特定
のトランザクションの中から処理されない例外（unhandled exception）を発見すると、
その特定のトランザクションおよび、もしあれば先行トランザクションをコミットするこ
とにより、状態変更を行い、後続トランザクションの何れかにより行われる状態変更を廃
棄する。さもなければ、すべてのトランザクションをコミットする。
【００１０】
　１つの実施において、オープンエンドおよび／またはクローズドエンドのシーケンシャ
ルループを並列ループに変換することができる。例えば、当初のシーケンシャルループを
含むコードのセクションを解析して、その当初のシーケンシャルループのために繰り返し
の定数を決定する。その当初のシーケンシャルループは、その繰り返しの定数までの個数
のトランザクションを発生することのできる並列ループに変換される。別の例として、オ
ープンエンドシーケンシャルループは、スペキュレーションパイプラインの各繰り返し当
たりの作業項目それぞれを含む個々のトランザクションを発生する並列ループに変換する
ことができる。これらのトランザクションには異なるスレッドを割り当てて、並列ループ
の少なくとも一部は並行して実行可能にする。その並列ループはこのとき、所定のコミッ
ト順の効能を有するトランザクショナルメモリシステムの保護の下で実行される。
【００１１】
　１つの実施において、オープンエンドのシーケンシャルループから作成された並列ルー
プを実行する方法を提供する。オープンエンドのシーケンシャルループから作成される並
列ループにおいて実施すべき繰り返し数を見積もるスペキュレーションパイプラインを作
成する。上記システムは、そのスペキュレーションパイプラインの各繰り返しをもとに、
それぞれの作業項目を含む個々のトランザクションを作成する。これら個々のトランザク
ションは次いで、異なるスレッドに割り当てられ、結局それらが並行して実行される結果
になる。それぞれの作業項目毎に終了条件を評価する。それぞれの作業項目のうちの特定
の１つがその並列ループを終了する時期に達したと判定するとき、先行のものはコミット
され、後続のものは廃棄される。
【００１２】
　本概要は、詳細な説明において下記に更に詳細に記述する概念の要点を簡略形で紹介す

(6) JP 2010-529559 A 2010.8.26

10

20

30

40

50

るために提供されたものである。本概要は、請求する主題の重要特徴または不可欠特徴を
特定することを目的とはせず、請求主題の範囲決定における補助として使用されることを
目的としてもいない。
【図面の簡単な説明】
【００１３】
【図１】１つの実施のコンピュータシステムの概略図である。
【図２】図１のコンピュータシステム上で作動する１つの実施のトランザクショナルメモ
リアプリケーションの概略図である。
【図３】図１のシステムの１つの実施のためのハイレベル処理の流れ図である。
【図４】図１のシステムの１つの実施のための処理の流れ図であって、コミットアービト
レータを使用して所定のコミット順を実施することを含むステージを示す流れ図である。
【図５】図１のシステムの１つの実施のための処理の流れ図であって、コミットアービト
レータを使用して複数のトランザクションの全体の順序付けを実施することを含むステー
ジを示す流れ図である。
【図６】図１のシステムの１つの実施のための処理の流れ図であって、コミットアービト
レータを使用して複数のトランザクションの部分的順序付けを実施することを含むステー
ジを示す流れ図である。
【図７】図１のシステムの１つの実施のための処理の流れ図であって、所定のコミット順
の情報を使用して、競合を管理する競合管理処理を提供することを含むステージを示す流
れ図である。
【図８】図１のシステムの１つの実施のための処理の流れ図であって、所定のコミット順
の情報を使用して入れ子トランザクションとの競合を管理する競合管理処理を提供するこ
とを含むステージを示す流れ図である。
【図９】共通祖先を持つ最高順位の祖先による模範的な系図を示すロジック図である。
【図１０】共通祖先を持たない最高順位の祖先による模範的な系図を示すロジック図であ
る。
【図１１】図１のシステムの１つの実施のための処理の流れ図であって、トランザクショ
ナルメモリシステム内のコミットアービトレータを使用することにより、無駄な作業の量
を減少することを含むステージを示す流れ図である。
【図１２】図１のシステムの１つの実施のための処理の流れ図であって、競合管理処理に
おいて系図全体を解析して適切な競合解消策を決定することを含むステージを示す流れ図
である。
【図１３】図１のコンピュータシステムの上で働く１つの実施のトランザクショナルメモ
リアプリケーションの概略図である。
【図１４】図１のシステムの１つの実施のための処理の流れ図であって、当初のシーケン
シャルループを並列ループに変換することを含むステージを示す流れ図である。
【図１５】図１のシステムの１つの実施のための処理の流れ図であって、所定のコミット
順処理を使用して、並列ループ内のトランザクションは適切な順序でコミットされること
を確認することを含むステージを示す流れ図である。
【図１６】図１のシステムの１つの実施のための処理の流れ図であって、コミットアービ
トレータを使用して、並列ループが実行している間に生じる競合を検知して対処すること
を含むステージを示す流れ図である。
【図１７】図１のシステムの１つの実施のための処理の流れ図であって、コミットアービ
トレータを使用して、並列ループを実行している間に生じる処理されない例外（unhandle
d exception）を検知して対処することを含むステージを示す流れ図である。
【図１８Ａ】当初のシーケンシャルループから並列ループへの模範的な変換のための仮想
ソースコードを示す図である。
【図１８Ｂ】当初のシーケンシャルループから並列ループへの模範的な変換のための仮想
ソースコードを示す図である。
【図１９】図１のシステムの１つの実施のための処理の流れ図であって、クローズドエン

(7) JP 2010-529559 A 2010.8.26

10

20

30

40

50

ドシーケンシャルループを並列ループに変換することを含むステージを示す流れ図である
。
【図２０】図１のシステムの１つの実施のための処理の流れ図であって、スペキュレーシ
ョンパイプラインを使用して、オープンエンドシーケンシャルループを並列ループに変換
することを含むステージを示す流れ図である。
【図２１】図１のシステムの１つの実施のための処理の流れ図であって、オープンエンド
シーケンシャルループから作成された並列ループを実行することを含むステージを示す流
れ図である。
【図２２】図１のシステムの１つの実施のための処理の流れ図であって、オープンエンド
シーケンシャルループから作成された並列ループにおける各作業項目を適切な順序でコミ
ットさせていることを確認することを含むステージを示す流れ図である。
【図２３】図１のシステムの１つの実施のための処理の流れ図であって、スペキュレーシ
ョンパイプラインを計算して並列ループの中に幾つの繰り返しを含むかを決定することを
含むステージを示す流れ図である。
【図２４Ａ】当初のオープンエンドシーケンシャルループから並列ループへの模範的な変
換のための仮想ソースコードを示す図である。
【図２４Ｂ】当初のオープンエンドシーケンシャルループから並列ループへの模範的な変
換のための仮想ソースコードを示す図である。
【発明を実施するための形態】
【００１４】
　本発明の原理の理解を促進する目的のために、ここで図面に示す実施例を参照し、特定
の言語を用いてそれを記述する。とは言っても、それによる範囲の限定は意図されていな
いことは理解されるであろう。記述する実施例における代替案および追加の変更、および
ここに記述するような原理のさらなる応用は何れも、当業者にとっては普通に思い浮かぶ
はずのものである。
【００１５】
　このシステムは、トランザクショナルメモリシステムとしての一般的文脈で記述するが
、このシステムはこれらに加えて別の目的にも役立つ。１つの実施において、ここに記述
する１つまたは複数の手法は、ＭＩＣＲＯＳＯＦＴ（登録商標）．ＮＥＴフレームワーク
のようなフレームワークプログラムの範囲内の特性として、またはソフトウェアアプリケ
ーションを開発する開発者のためのプラットホームを提供する任意の別の型のプログラム
またはサービスが備える特性として実施することができる。別の実施において、ここに記
述する手法の１つ以上が、同時実行環境において実行するアプリケーションの開発を扱う
別のアプリケーションの伴う特性として実施される。
【００１６】
　１つの実施においては、複数のトランザクションについて、所定のコミット順を指定す
ることができる機能を、トランザクショナルメモリシステムの中に備える。所定のコミッ
ト順は、トランザクションをコミットする順序の決定を助けることに使用される。１つの
実施例において、競合管理処理は、第１トランザクションと第２トランザクションとの間
に衝突を生じるときに呼び出される。次いでその所定のコミット順を競合管理処理におい
て使用して、第１トランザクションまたは第２トランザクションが競合に勝って先に進む
ことを許されるべきかどうかを決定するのを助ける。
【００１７】
　別の実施において、当初のシーケンシャルループを並列ループに転換する機能を、トラ
ンザクショナルメモリシステムの中に提供する。当初のシーケンシャルループは、当初の
入力対出力マッピングは維持されることを保証する方法で、並列ループに転換される。用
語「当初の入力対出力マッピングは維持される」は、ここで使用するとき、並行化ループ
実行の後のプログラムの状態は、代わりにシーケンシャルループが働いたときと全く同様
であることを意味する。１つの実施において、当初のシーケンシャルループの各繰り返し
をトランザクションの中に置き、次いでここに記述する所定のコミット順処理を用いてそ

(8) JP 2010-529559 A 2010.8.26

10

20

30

40

50

のトランザクションは適切な順序でコミットすることを確認することにより、並列ループ
において当初の入力対出力マッピングは維持される。
【００１８】
　ここで明確にする例の多くは、ソフトウェアトランザクショナルメモリシステムの文脈
で記述するけれども、他の実施において、ここに明確にする幾つかの、すべての、または
、さらなる追加の機能および／または手法は、ソフトウェアトランザクショナルメモリシ
ステムとは別個にまたは併せての何れでも、ハードソフトウェアトランザクショナルメモ
リシステムを用いて実施することができることは理解されるであろう。
【００１９】
　図１に示すように、このシステムの１つまたは複数の部分を実施するために使用する模
範的なコンピュータシステムは、計算装置（コンピューティングデバイス）１００のよう
な計算装置を含む。その最も基本的な構成において、計算装置１００は典型的に、少なく
とも１つの処理装置１０２およびメモリ１０４を含む。計算装置の正確な構成および型に
より、メモリ１０４は、（ＲＡＭのような）揮発性、（ＲＯＭ、フラッシュメモリなどの
ような）不揮発性、またはその２つの何らかの結合である。この最も基本的な構成を図１
に破線１０６で示す。
【００２０】
　加えて、計算装置１００は、さらなる特性／機能性をも有する。例えば、装置１００は
、これらに限定はされないが磁気的または光学的ディスクまたはテープを含む追加の記憶
装置（取り外し可能なおよび/または取り外しができない）をも含む。このような追加記
憶装置は、取り外し可能な記憶装置１０８および取り外しができない記憶装置１１０によ
り図１に示している。コンピュータ記憶媒体は、コンピュータ読取可能命令、データ構造
体、プログラムモジュールまたは他のデータのような情報ストレージのため任意の方法ま
たは手法で実施される揮発性および不揮発性、取り外し可能なおよび取り外しができない
、の媒体を含む。メモリ１０４、取り外し可能な記憶装置１０８および取り外しができな
い記憶装置１１０はすべて、コンピュータ記憶媒体の例である。コンピュータ記憶媒体は
、ＲＡＭ、ＲＯＭ、ＥＥＰＲＯＭ、フラッシュメモリまたは他のメモリ技術、ＣＤ－ＲＯ
Ｍ、デジタル多目的ディスク（ＤＶＤ）、または他の光学的記憶装置、磁気カセット、磁
気テープ、磁気ディスク記憶装置または他の磁気記憶装置、若しくは所望の情報の記憶に
使用することができて装置１００がアクセスすることのできる他の媒体の何れをも含むが
、これらに限定はされない。このようなコンピュータ記憶媒体は装置１００の一部である
ことがある。
【００２１】
　計算装置１００は、計算装置１００が他のコンピュータ／アプリケーション１１５と連
絡可能にする１つまたは複数の通信接続１１４を備える。装置１００は、キーボード、マ
ウス、ペン、音声入力装置、タッチ入力装置、などのような、入力装置１１２をも有する
。ディスプレイ、スピーカ、プリンタ、などのような出力装置１１１も含むことができる
。これらの装置は技術的によく知られているので、ここで長々と論じる必要はない。１つ
の実施において、計算装置１００は、トランザクショナルメモリアプリケーション２００
を含む。トランザクショナルメモリアプリケーション２００は、図２においてさらに詳細
に記述する。
【００２２】
　ここで図１に対する参照を続けると共に、図２に転じて、計算装置１００の上で作動す
るトランザクショナルメモリアプリケーション２００を示す。トランザクショナルメモリ
アプリケーション２００は、計算装置１００の上に存在するアプリケーションプログラム
のうちの１つである。しかしながら、トランザクショナルメモリアプリケーション２００
は、代わりにまたは追加して１つまたは複数のコンピュータの上および／または図１に示
すものとは異なる変換の中にコンピュータ実行可能命令として具体化されることは理解さ
れるであろう。代わりにまたはさらに、トランザクショナルメモリアプリケーション２０
０の１つまたは複数の部分は、別のコンピュータおよび／またはアプリケーション１１５

(9) JP 2010-529559 A 2010.8.26

10

20

30

40

50

、若しくはコンピュータソフトウェア技術に携わる人の心に浮かぶ通りの別のこのような
変換の上で、システムメモリ１０４の部分とすることができる。
【００２３】
　トランザクショナルメモリアプリケーション２００は、ここに記述する手法の幾つかま
たは全部を実行することを担当するプログラムロジック２０４を含む。プログラムロジッ
ク２０４は、トランザクショナルメモリ（ＳＴＭ）システムを提供するロジック２０６、
そのＳＴＭシステム内の複数のトランザクションについて、所定のコミット順を指定可能
にするコミットアービトレータを動的または静的に作成するロジック２０８、そのコミッ
トアービトレータがその所定のコミット順を実行時において使用して、そのトランザクシ
ョナルメモリシステム内の複数のトランザクションがコミットする順序を決定するのを助
けるロジック２１０、第１トランザクションと第２トランザクションとの間に衝突が生じ
たときに呼び出される競合管理処理を提供するロジック２１２、その所定のコミット順を
その競合管理処理において使用して、第１トランザクションまたは第２トランザクション
の何れがその競合に勝って先に進むことを許されるかを決定する（例えば、同一トランザ
クショングループの２つのトランザクションのうちの何れが低いコミット順を有するかに
よって決める）のを助けるロジック２１４、そのコミットアービトレータを作動可能にし
て、その所定の順序付けに使用し１つまたは複数の順序付け値（例えば、全体の順序付け
においては－複数のトランザクションのうちでコミットすることを許される次のトランザ
クションを表している次回コミットフィールド）を追跡するため使用可能にするため、お
よび１つまたは複数の順序付け値を所与のトランザクションの特定コミット順番号に対し
て比較しそのトランザクションのコミットは実行されるべき順序付けを適切に与えられて
いるか否かを調べるロジック２１６、および当該アプリケーションをオペレーション（運
用）するための他のロジック２２０を含む。１つの実施において、プログラムロジック２
０４は、プログラムロジック２０４のプロシージャに対する信号呼出を使用するなど、別
のプログラムからプログラム的に呼び出される作動をすることができる。
【００２４】
　ここで図１～図２に対する参照を続けると共に、図３～図１０に転じて、トランザクシ
ョナルメモリアプリケーション２００の１つまたは複数の実施を実行するためのステージ
をさらに詳細に記述する。図３は、トランザクショナルメモリアプリケーション２００の
ためのハイレベル処理の流れ図である。１つの形として、図３の処理は、少なくとも部分
的に計算装置１００の運用ロジックにおいて実施される。このプロシージャ（手続き）は
、出発点２４０において始まり、トランザクショナルメモリシステム（例えば、ソフトウ
ェアトランザクショナルメモリシステム）を提供すること（ステージ２４２）を伴う。複
数のトランザクション（即ち、動的または静的に割り当てられた）について所定のコミッ
ト順（即ち、全体の順序付けまたは部分的順序付け）を指定可能にする機能を提供する（
ステージ２４４）。用語「所定のコミット順」は、ここで使用するとき、関連トランザク
ションの特定のグループは、そのトランザクションのラン開始前の何れかの時点で決定し
た通りにコミットされる明確な順序を含むことを意味する。用語トランザクションの「グ
ループ」は、ここで使用するとき、同一のコミットアービトレータにより管理されるトラ
ンザクションの特定のセット（例えば、複数のトランザクション）と同時に、これらトラ
ンザクションの入れ子チルドレン（nested children）を含む。
【００２５】
　その所定のコミット順を実行時に使用して、そのトランザクショナルメモリシステム内
の複数のトランザクションがコミットする順序を決定するのを助ける（ステージ２４６）
。その所定のコミット順を使用して、その複数のトランザクションの2つまたはそれ以上
の複数の間で生じる衝突を解決するのを助ける（ステージ２４８）。処理は終点２５０に
おいて終了する。
【００２６】
　図４は、コミットアービトレータを使用して所定のコミット順を実施することを含むス
テージを示す。１つの形として、図４の処理は、計算装置１００のオペレーティングロジ

(10) JP 2010-529559 A 2010.8.26

10

20

30

40

50

ックにおいて、少なくとも部分的に実施される。このプロシージャは、出発点２７０にお
いて始まり、トランザクショナルメモリシステム用の、そのコミットアービトレータは、
複数のトランザクションについて所定のコミット順を指定させる１つまたは複数のコミッ
トアービトレータを提供すること（ステージ２７２）を伴う。用語「コミットアービトレ
ータ」は、ここで使用するとき、相互のために順序付けをしなければならない１つまたは
複数のトランザクションのグループの管理を担当する任意の型のプログラム、特性、また
は処理を含むことを意味する。１つの実施において、１つまたは複数のコミットアービト
レータは、任意の所与の時期にプログラムにおいて作動することができる。例えば、必要
な数のコミットアービトレータを作成して、トランザクションの様々なグループを管理す
ることができる。そのコミットアービトレータは、トランザクションの相互のために適切
な順序付けを決定するのに使用する１つまたは複数の順序付け値を追跡して更新する（ス
テージ２７４）。全体の順序付けの場合は、複数のトランザクションのうち次にコミット
すべき次のトランザクションをあらわず次回コミットフィールドを使用することができる
（ステージ２７４）。部分的順序付けの場合は、可能な様々の順序の有向グラフ（direct
ed graph）を、その順序付け値を使用して追跡する。必要に応じて、そのコミットアービ
トレータは、その所定のコミット順を使用して、複数のトランザクションそれぞれのため
にコミット順番号を与える（ステージ２７６）。
【００２７】
　複数のトランザクションのうちの特定のトランザクションがコミットの準備をするとき
、１つまたは複数の順序付け値がそのコミットは適切であることを示していると、そのコ
ミットアービトレータは、そのトランザクションがコミットするのを許可する（ステージ
２７８）。全体の順序付けの場合、次回コミットフィールドと特定のトランザクションに
ついてのコミット順番号とが同一番号を有するとき、この筋書きが生じる。このような筋
書きにおいて、そのコミットアービトレータは、そのトランザクションがコミットするこ
とを許し、コミットに成功するときは、次いで次回コミットフィールドを数列の次の番号
（例えば、次に高い番号）に増加する（ステージ２７８）。複数のトランザクションのう
ちの特定のトランザクションがコミットの準備をするとき、その特定のトランザクション
についてのコミット順番号は順序付け値に対して比較するとき、そのコミットは適切でな
いことが明らかになると、その特定のトランザクションは、先行トランザクションがコミ
ットした後のある時期に解除されるまで保留モードに置く（ステージ２８０）。全体の順
序付けの場合、この保留モードに入るのは、次回コミットフィールドと特定のトランザク
ションについてのコミット順番号とが同一の値を持っていないときである。
【００２８】
　１つの実施において、システムは、その直前の先行者がコミットした後、トランザクシ
ョンの活動を開始させる。この場合は、それは正しくコミットできる。代わりに、システ
ムは、直前ではない先行者がコミットした後、その直前の先行者が未だコミットしていな
い場合に、トランザクションの保留を解除し活動開始を選ぶことができる。保留解除の後
、システムは、現実にコミットすることがそのトランザクションについて適切であるか否
かを点検する。適切ならばそのトランザクションはコミットする。その処理は、終点２８
２において終了する。
【００２９】
　図５は、コミットアービトレータを使用して複数のトランザクションの全体の順序付け
を実施することを含むステージの１つの実施を示す。１つの形として、図５の処理は計算
装置１００のオペレーティングロジックにおいて少なくとも部分的に実行される。このプ
ロシージャは、出発点２９０において始まり、複数のトランザクションについて所定の全
体の順序付けを指定すること（例えば、複数のトランザクションがコミットすべき正確な
順序を指定すること）を許すよう動作可能な１つまたは複数のコミットアービトレータを
提供すること（ステージ２９２）を伴う。複数のトランザクションのうちの特定のトラン
ザクションがそのコミット時点に達するとき、そのコミット順を実施するため、その特定
のトランザクションのコミット順をそのコミットアービトレータの次回コミットフィール

(11) JP 2010-529559 A 2010.8.26

10

20

30

40

50

ドと比較する（ステージ２９６)。１つの実施において、このシステムが（明白に衝突が
無いとの理由などで）全体の順序付けを実施する必要が無いと決定するときには、全体の
順序付け要件は必要に応じて破棄することができ（ステージ２９４）、処理は終点３０２
において終了する。
【００３０】
　コミット順序付けを実施しようとするときで、しかも特定のトランザクションのコミッ
ト順がコミットアービトレータの次回コミットフィールドと同一値を有するときは（判定
点２９６）、その特定のトランザクションをコミットし、コミットに成功すると、次回コ
ミットフィールドを増加して、次の後継者があれば、それを解除（awake;起動）させる（
ステージ２９８）。特定のトランザクションのコミット順がコミットアービトレータの次
回コミットフィールドと同一値を有しないときは（判定点２９６）、その特定のトランザ
クションを、先行トランザクションがコミットした後のちょうどよい時点で解除するまで
、保留／休眠モードに置く（ステージ３００）。１つの実施においては、その後の時点で
、先行者と衝突が起こるときは、その特定のトランザクションは、以上終了し、ロールバ
ックして先行者を前に進めるよう要求される。さもなければ、このような衝突が起こらな
い場合は、その特定のトランザクションは、ここに記述するコミット順要件に合致すると
直ちにコミットすることができなければならない。この処理は終点３０２において終了す
る。
【００３１】
　図６は、コミットアービトレータを使用して複数のトランザクションの部分的順序付け
を実施することを含むステージの１つの実施を示す。１つの形として、図６の処理は計算
装置１００のオペレーティングロジックにおいて少なくとも部分的に実行される。このプ
ロシージャは出発点３１０において始まり、複数のトランザクションについて所定の部分
的順序付けを指定すること（例えば、複数のトランザクションがコミットすべき複数の容
認できる順序を（例えば、有向グラフの形で）指定すること）を許す作動をすることので
きる１つまたは複数のコミットアービトレータを提供すること（ステージ３１２）を伴う
。複数のトランザクションのうちの特定のトランザクションがそのコミット時点に達する
とき、そのコミット順を実施するため、先行トランザクションの状態（例えば、１つまた
は複数の順序付け値）を、（例えば、そのコミットアービトレータが追跡する通りの）特
定のコミットしているトランザクションに関して調べる（ステージ３１４）。その特定の
トランザクションに対する先行トランザクション全部がコミットし終えているときは（判
定点３１６）、その特定のトランザクションはコミットされる（ステージ３１８）。コミ
ットに成功すると、コミットアービトレータが追跡する１つまたは複数の値を必要に応じ
て更新し、もしあれば、可能な次の後継者全部を解除（活動開始）させる（３１８）。
【００３２】
　その特定のトランザクションに対する先行トランザクション全部がコミットし終えてい
ないときには（判定点３１６)、その特定のトランザクションを、先行トランザクション
がコミットした後のちょうど良い時点で解除されるまで保留／休眠モードに置く（ステー
ジ３２０）。処理は、終点３２２において終了する。
【００３３】
　図７は、その所定のコミット順の情報を使用して競合を管理する競合管理処理を提供す
ることを含むステージを示す１つの実施を示す。１つの形として、図７の処理は計算装置
１００のオペレーティングロジックにおいて少なくとも部分的に実行される。このプロシ
ージャは、出発点３４０において始まり、トランザクションの１つまたは複数のグループ
についての所定のコミット順をサポートするトランザクショナルメモリシステムを提供す
ること（ステージ３４２）を伴う。第１トランザクションと第２トランザクションとの間
に競合を生じたときに呼び出される競合管理処理を提供する（ステージ３４４）。その競
合管理処理においてその所定のコミット順を使用して、第１トランザクションまたは第２
トランザクションのうちの何れが競合に勝って先に進むことを許されるべきかを決定する
のを助ける（ステージ３４６）。第１トランザクションと第２トランザクションとが同一

(12) JP 2010-529559 A 2010.8.26

10

20

30

40

50

トランザクショングループの一部でないときには（判定点３４８）、これら２つのトラン
ザクションの間で、所定のコミット順は (存在しないので) 実施しない（ステージ３５０
）。このような筋書きにおいて、その２つのトランザクションは同一トランザクショング
ループの中にないので、競合を解決することに順序付け要因は使用されない（ステージ３
５０）。
【００３４】
　第１トランザクションと第２トランザクションとが同一トランザクショングループの一
部であるときには（判定点３４８）、このシステムは、第１トランザクションの第１順序
番号と第２トランザクションの第２順序番号とを比較する（ステージ３５２）。より低い
順序番号（または別の適切な優先順序付け）を有するトランザクションが先へ進むことを
許される（ステージ３５４）。処理は、終点３５６において終了する。
【００３５】
　図８は、上記所定のコミット順の情報を使用して入れ子トランザクションとの競合を管
理する競合管理処理を提供することを含むステージの１つの実施である。１つの形として
、図８の処理は計算装置１００のオペレーティングロジックにおいて少なくとも部分的に
実行される。１つの実施においては、特定のトランザクションをコミットする前に、トラ
ンザクション毎に、系図の全体(entire ancestor chain)を考慮に入れるので、その系図
の中に順序付けがあればそれを実施する。このプロシージャは、出発点３７０において始
まり、第１トランザクションと第２トランザクションとの間に競合が生じたときに呼び出
される競合管理処理を提供すること（ステージ３７２）を伴う。その競合管理処理におい
て所定のコミット順を使用して、第１トランザクションまたは第２トランザクションのう
ちの何れがその競合に勝って先に進むことを許されるかを決定するのを助ける（ステージ
３７４）。第１トランザクションと第２トランザクションとが同一トランザクショングル
ープの一部でないときには（判定点３７６）、これら２つのトランザクションの間で、所
定のコミット順は（存在しないので）実施せず（ステージ３７８）、処理は終点３８８に
おいて終了する。その第１トランザクションと第２トランザクションとが同一トランザク
ショングループの一部であるときには（判定点３７６）、このシステムは、入れ子トラン
ザクションを含むか否かを点検する（判定点３８０）。
【００３６】
　入れ子トランザクションを含まないときには（判定点３８０）、第１トランザクション
の順序番号（または他の順序付け表示）と第２トランザクションの順序番号（または他の
順序付け表示）とを比較する（ステージ３８４）。より低い順序番号を有する（または他
の適切な判断基準を用いることにより、順序では次であると判定された）トランザクショ
ンが先に進むことを許される（ステージ３８６）。
【００３７】
　入れ子トランザクションを含むときには（判定点３８０）、第１トランザクションの最
上位祖先の順序番号（または他の順序付け表示）と第２トランザクションの最上位祖先の
順序番号（または他の順序付け表示）とを比較する（ステージ３８２）。用語「最上位祖
先」は、ここで使用するとき、共通祖先が関与する場合は共通祖先の直接の子を含み、共
通祖先が関与しない場合は各トランザクションの最高順位の祖先を意味する。共通および
共通でない祖先が関与するこれらの筋書きをさらに詳しく図９および図１０に示す。より
低い順序番号を有するトランザクション（例えば、より低い順序番号または適切な他の判
断基準を有していた祖先に関係するトランザクション）が先に進むことを許される（ステ
ージ３８６）。処理は終点３８８において終了する。
【００３８】
　図９は、共通祖先を有する系図の一例を、最高順位の祖先と共に示すロジック図（論理
図）である。図示の事例において、トランザクションＡはＤおよびＥの共通祖先である。
ＤとＥとの間に生じる競合において、トランザクションＢとＣ（共通祖先Ａの直接の子）
の順序番号を解析して、ＤまたはＥの何れが先に進むことを許されるべきかを決定する（
図８のステージ３８２）。

(13) JP 2010-529559 A 2010.8.26

10

20

30

40

50

【００３９】
　図１０は、共通祖先を有しない系図の一例を最高順位の祖先と共に示すロジック図（論
理図）である。図示の事例において、トランザクションＡはトランザクションＣの祖先で
ある。トランザクションＤはトランザクションＦの祖先である。ＣとＦとの間に生じる競
合において、このときはトランザクションＡとＤ（それぞれの最高順位の祖先）の順序番
号を比較してトランザクションＣまたはＦの何れが先に進むことを許されるべきかを決定
する（図８のステージ３８２）。
【００４０】
　図１１は、トランザクショナルメモリシステム内のコミットアービトレータを使用する
ことにより、無駄な作業の量を減少することを含むステージの１つの実施を示す。１つの
形として、図１１の処理は計算装置１００のオペレーティングロジックにおいて少なくと
も部分的に実行される。このプロシージャは、出発点４００において始まり、トランザク
ショナルメモリシステム用の、複数のトランザクションについて所定のコミット順を指定
させる１つまたは複数のコミットアービトレータを提供すること（ステージ４０２）を伴
う。そのコミットアービトレータは、トランザクションを保留／休眠モードに置いて、（
例えば、所定のコミット順を解析して正しい順序を判定することにより）先行トランザク
ションが未だ実行中であるとき、そのトランザクションが再度実行されることを阻止する
よう動作できる（ステージ４０４）。そのコミットアービトレータは、（例えば、再度所
定のコミット順を解析して正しい順序を判定することにより）先行者が完了したとき、保
留に置かれたトランザクションを解除するよう動作することもできる（ステージ４０６）
。これら阻止と解除の機構を備えることにより、そのコミットアービトレータは、後に取
り消さなければならない動作の実行を阻止して、それにより無駄になる作業の量を軽減す
るのを助ける（ステージ４０８）。この処理は終点４１０において終了する。
【００４１】
　図１２は、競合管理処理において系図の全体を解析して適切な競合解消策を決定するこ
とを含むステージを示す。１つの形として、図１２の処理は計算装置１００のオペレーテ
ィングロジックにおいて少なくとも部分的に実行される。このプロシージャは、出発点４
３０において始まり、第１トランザクションと第２トランザクションとの間に競合が生じ
るときに呼び出される競合管理処理を提供すること（ステージ４３２）を伴う。その競合
管理処理において所定のコミット順を使用して、第１トランザクションまたは第２トラン
ザクションのうちの何れがその競合に勝って先に進むことを許されるかを決定するのを助
ける（ステージ４３４）。所定のコミット順の系図の全体を解析して、適切な競合管理を
決定するのを助ける（ステージ４３６）。例えば、ＢはＡの中にネスト化（入れ子に）さ
れており、ＤはＣの中にネスト化されているという、４つのトランザクション、２つの親
と２つの子、があるとする。ＡはＣの前にコミットしなければならないというＡとＣとの
間の順序付け関係があると仮定する。ＢとＤとの間に競合が生じると、競合管理処理はＢ
を支持するはずである。ＡはＣの前にコミットしなければならないことを考えると、Ｄを
支持することは無駄だからである（ステージ４３６）。この処理は終点４３８において終
了する。
【００４２】
　ここで、図１に対する参照を続けると共に、図１３を参照すると、計算装置１００の上
で働く並列ループサポートを有するトランザクショナルメモリアプリケーション５００が
示されている。１つの実施において、並列ループサポートを有するトランザクショナルメ
モリアプリケーション５００は、計算装置１００の上に存在するアプリケーションプログ
ラムのうちの１つである。しかしながら、並列ループサポートを有するトランザクショナ
ルメモリアプリケーション５００は、代わりにまたはさらに１つまたは複数のコンピュー
タの上および／または図１に示すものとは異なる変換におけるコンピュータ実行可能命令
として具体化されることは理解されるであろう。代わりにまたはさらに、並列ループサポ
ートを有するトランザクショナルメモリアプリケーション５００の１つまたは複数の部分
は、他のコンピュータおよび／またはアプリケーション、若しくはコンピュータソフトウ

(14) JP 2010-529559 A 2010.8.26

10

20

30

40

50

ェア技術の当事者の心に浮かぶ通りの他の変換の上で、システムメモリ１０４の一部分と
することができる。
【００４３】
　並列ループサポートを有するトランザクショナルメモリアプリケーション５００は、こ
こに記述する手法の幾つかまたはすべての実行を担当するプログラムロジック５０４を含
む。プログラムロジック５０４は、トランザクショナルメモリシステムを提供するロジッ
ク５０６、当初のシーケンシャルループを含むコードの第１セクションを、トランザクシ
ョンを使用して当初の入力対出力マッピングを維持し安全性を向上させる並列ループを含
むコードの第２セクションに変換するロジック５０８、当初のシーケンシャルループの１
つまたは複数の繰り返しを、並列ループ内のトランザクションのうちの個々の１つの中に
置くロジック５１０、当初のシーケンシャルループの実行順と整合性が取れた所定のコミ
ット順を用いてトランザクションをコミットすることにより、当初の入力対出力マッピン
グを維持するロジック５１２、当初のシーケンシャルループがデータを修正する動作を含
むとき、コミットアービトレータを使用して並列ループにおける競合を検知し対処するロ
ジック５１４、当初のシーケンシャルループのコンパイラ解析を実施することなくコード
の上記第２セクションを作成するロジック５１５、（ヒューリスティックス（経験則）、
コードの第１セクションにおけるユーザ定義の注釈、などを用いて）上記当初のシーケン
シャルループは並べ替えを受け付けないと判断するときは当初のシーケンシャルループの
実行順序に左右されない順序でトランザクションがコミットするのを許可する方法でコー
ドのその第２セクションを作成するロジック５１６、少なくとも上記トランザクションの
うち一部は並行して実行されるように、コードの上記第２セクションを生成するロジック
５１７、異なるスレッド上で実行されているトランザクションのうち少なくともいくつか
と共に、上記トランザクショナルメモリシステムを使用してコードの第２セクションを実
行するロジック５１８、および当該アプリケーションをオペレーションするための他のロ
ジック５２０を含む。１つの実施において、プログラムロジック５０４は、プログラムロ
ジック５０４におけるプロシージャに対する単一呼出を用いるなど、別のコンピュータか
らプログラム的に呼び出されるよう動作することができる。
【００４４】
　ここで、当初のシーケンシャルループを並列ループに変換することを含むハイレベルス
テージの１つの実施を示す図１４を参照する。１つの形として、図１４の処理は、計算装
置１００のオペレーティングロジックにおいて少なくとも部分的に実行される。このプロ
シージャは、出発点５５０において始まり、シーケンシャルループの繰り返しの各々（ま
たは繰り返しの連続ストリップ）をもとに（例えば、それぞれの作業項目を含む）個々の
トランザクションを作成することにより、当初のシーケンシャルループを、所定のコミッ
ト順にしたがって当初のシーケンシャルループの当初の実行と整合性が取れたコミット順
を遵守する並列ループに変換すること（ステージ５５２）を伴う。別の実施においては、
繰り返し毎に１つのトランザクションを作成することは余りに犠牲が大きい場合に、繰り
返しの連続ストリップ（例えば、隣接するもの）を１つのトランザクションにまとめてグ
ループ化することができる（ステージ５５２）。このシステムは、当初のシーケンシャル
ループのコンパイラ解析を実行することなく並列ループを生成する（ステージ５５４）。
次いで、異なるスレッドに割り当てられている上記個別のトランザクションの少なくとも
いくつかを用いて、それらが並列に実行するように、上記並列ループを実行する（ステー
ジ５５６）。この処理は終点５５８において終了する。
【００４５】
　図１５は、所定のコミット順処理を使用して、並列ループ内のトランザクションは適切
な順序でコミットされることを確認することを含むステージの１つの実施を示す。１つの
形として、図１５の処理は、計算装置１００のオペレーティングロジックにおいて少なく
とも部分的に実行される。この処理は、出発点５７０において始まり、当初のシーケンシ
ャルループを、所定のコミット順処理にしたがう並列ループに変換すること（ステージ５
７２）を伴う。このシステムは、並列ループ内のトランザクション毎にコミット順番号を

(15) JP 2010-529559 A 2010.8.26

10

20

30

40

50

割り当てる（または、そのトランザクションをコミットする順序を追跡する別の適切な方
法を用いる）（ステージ５７４）。並列ループを実行しているとき、このシステムは、そ
の所定のコミット順処理を使用して、それぞれのトランザクションを、並列ループの先行
の繰り返し（iteration）が首尾良くコミットした後でのみ、完了することができること
を確実にする（例えば、そのトランザクションのコミット順が、そのトランザクションは
コミットすることができると示すまで、そのトランザクションを待たせる）(ステージ５
７６)。この処理は終点５７８において終了する。
【００４６】
　図１６は、コミットアービトレータを使用して、並列ループが実行している間に生じる
衝突を検知して対処することを含むステージの１つの実施を示す。１つの形として、図１
６の処理は、計算装置１００のオペレーティングロジックにおいて少なくとも部分的に実
行される。この処理は、出発点６００において始まり、当初のシーケンシャルループを、
所定のコミット順処理を用いて正しい順序付けを確実にする並列ループに、変換すること
（ステージ６０２）を伴う。このシステムは、その並列ループを実行する（ステージ６０
４）。このシステムは次いで、同一データ要素を（例えば、スレッド安全性が欠けている
との理由で、順序付け要件の理由で、などで）修正しようとする個々のトランザクション
の１つ以上（例えば、ループ繰り返し）を、上記並列ループが含むことを検知する（ステ
ージ６０６）。コミットアービトレータを使用して、順番通りでない実行を検知し、先行
トランザクションが完了次第に後続トランザクションの再実行の手続を取るなどにより、
上記並列ループを実行する間に生じる衝突を検知して処理する（ステージ６０８）。この
処理は終点６１０において終了する。
【００４７】
　図１７は、コミットアービトレータを使用して、並列ループを実行している間に生じる
処理されない例外を検知して対処することを含むステージの１つの実施を示す。１つの形
として、図１７の処理は、計算装置１００のオペレーティングロジックにおいて少なくと
も部分的に実行される。この処理は、出発点６３０において始まり、当初のシーケンシャ
ルループを、トランザクションを用いて当初の入力対出力マッピングを維持し安全性を向
上させる並列ループに変換すること（ステージ６３２）を伴う。このシステムはその並列
ループを実行して（ステージ６３４）、並列ループを実行している間に特定のトランザク
ションに生じる処理されない例外を検知する（ステージ６３６）。その特定のトランザク
ションおよびその特定のトランザクションの先行トランザクションがあればそれにより行
われた状態変更をコミットする（ステージ６３８）。後続トランザクションの何れかによ
りその特定のトランザクションに対し推論的に行われた状態変更を、それらのトランザク
ションをロールバック（後退）させることにより廃棄する（ステージ６４０）。処理は終
点６４２において終了する。
【００４８】
　図１８Ａ～図１８Ｂは、当初のシーケンシャルループから並列ループへの模範的な変換
についての仮想のソースコードを示す。図１８Ａはｆｏｒ・・・ｅａｃｈループ６５２を
含む当初のシーケンシャルループ６５０を示すが、別の形式のループ構造も使用すること
ができることは理解されるであろう。ループにおける繰り返し毎に１つまたは複数のステ
ートメント６５４が実行される。図１８Ｂは、ここに説明する手法のうち一部を使用して
並列ループ６６０に変換した後、シーケンシャルループが呈する様相の仮想の例を示す。
図示の事例においては、当初のシーケンシャルループ６６４の繰り返し毎に個々のトラン
ザクションを創出することにより、並列ループを生成する。別の実施においては、繰り返
し毎に１つのトランザクションを作ることは犠牲が多過ぎると思われる場合に、繰り返し
の連続ストリップ（例えば、隣接するもの）をトランザクションの中にまとめてグループ
にすることができる。このとき個々のトランザクションの各々は、当初のループにおいて
ステートメント６６７として含まれていた作業を実行するため、新しい作業項目を作成す
る。個々のクラス６６２を使用して作業項目繰り返しを宣言することができる。その個々
のトランザクションは次いで、異なるスレッドに割り当てられるのでそれらは並行して実

(16) JP 2010-529559 A 2010.8.26

10

20

30

40

50

行することができる。
【００４９】
　図１９は、クローズドエンドシーケンシャルループを並列ループに変換することを含む
ステージの１つの実施を示す。１つの形として、図１９の処理は、計算装置１００のオペ
レーティングロジックにおいて少なくとも部分的に実行される。この処理は、出発点６７
０において始まり、トランザクショナルメモリシステムを提供すること（ステージ６７２
）を伴う。このシステムは、当初のシーケンシャルループを含むコードの第１セクション
を解析して、当初のシーケンシャルループが実行するだろう繰り返し定数を（例えば、ル
ープ終了を判断するために使用する定数を検索することにより）決定する（ステージ６７
４）。当初のシーケンシャルループを含むコードの第１セクションを、繰り返しの定数ま
でトランザクションを生成することのできる並列ループを含むコードの第２セクションに
変換する（ステージ６７６）。このシステムは、異なるスレッドに割り当てられているト
ランザクションのうち少なくともいくつかと共に、それらが並行して実行するように、上
記トランザクショナルメモリシステムを使用してコードの第２セクションを実行する（ス
テージ６７８）。このシステムは、所定のコミット順処理を用いて、そのトランザクショ
ンを正しい順序でコミットする（例えば、各トランザクションはそれぞれの誘導変数カウ
ンタをコミット連続番号として使用するところで）（ステージ６８０）。この処理は終点
６８２において終了する。
【００５０】
　１つの実施において、図１９に記述する変換処理は、誘導変数をループ本体自体には決
して書き込まないループのためにのみ使用する。言い換えると、ループは、そのループ本
体における誘導変数に書き込むことにより、若しくは誘導変数のアドレスを採用しそれを
用いて書き込みに導く何か（ファンクションに渡す、それを擬似する、など）をすること
により、不適格となることがある。
【００５１】
　図２０は、スペキュレーションパイプラインを使用して、オープンエンドシーケンシャ
ルループを並列ループに変換することを含むステージの１つの実施を示す。１つの形とし
て、図２０の処理は、計算装置１００のオペレーティングロジックにおいて少なくとも部
分的に実行される。この処理は、出発点７００において始まり、トランザクショナルメモ
リシステムを提供すること（ステージ７０２）を伴う。このシステムは、当初のオープン
エンドシーケンシャルループを含むコードの第１セクションを、（例えば、少なくともい
くつかのトランザクションが並行して実行するように）、スペキュレーションパイプライ
ンの繰り返し毎の作業項目それぞれを含む個々のトランザクションを生成する動作をする
ことのできる並列ループを含むコードの第２セクションに変換する（ステージ７０４）。
コードのその第２セクションは、そのオープンエンドシーケンシャルループのコンパイラ
解析を実行することなく、生成される（ステージ７０６）。このシステムは、異なるスレ
ッドに割り当てられているトランザクションのうち少なくともいくつかと共に、それらが
並行して実行するように、上記トランザクショナルメモリシステムを使用してコードの第
２セクションを実行する（ステージ７０８）。そのトランザクションを（例えば、オープ
ンエンドシーケンシャルループの実行順と整合性がとれた）所定のコミット順でコミット
することにより、当初の入力対出力マッピングは維持される（ステージ７１０）。この処
理は、終点７１２において終了する。
【００５２】
　図２１は、オープンエンドシーケンシャルループから生成された並列ループを実行する
ことを含むステージの１つの実施を示す。１つの形として、図２１の処理は、計算装置１
００のオペレーティングロジックにおいて少なくとも部分的に実行される。この処理は、
出発点７３０において始まり、オープンエンドシーケンシャルループ（例えば、ｗｈｉｌ
ｅループ、ｄｏ　ｗｈｉｌｅループ、ｆｏｒループ、など）から生成される並列ループに
おいて実行すべき繰り返しの回数を見積もるスペキュレーションパイプラインを生成する
こと（ステージ７３２）を伴う。１つの実施において、このシステムは、そのスペキュレ

(17) JP 2010-529559 A 2010.8.26

10

20

30

40

50

ーションパイプラインの各繰り返しをもとに、それぞれの作業項目を含む個々のトランザ
クションを生成する（ステージ７３４）。別の実施例において、繰り返し毎に１つのトラ
ンザクションを作ることは犠牲が多過ぎると思われる場合などに、このシステムは、繰り
返しの連続ストリップ（例えば、隣接するもの）をもとに、それらをトランザクションの
中にまとめてグループ化する（ステージ７３４）。このシステムは、上記個々のトランザ
クションを、それらが並行して実行するように、異なるスレッドに割り当てる（７３５）
。このシステムは、それぞれの作業項目毎に終了条件を評価する（ステージ７３６）。そ
のそれぞれの作業項目のうちの特定の１つが、上記並列ループを終了する時期に到達した
と判定するときには、先行者をコミットして、後継者を廃棄する（ステージ７３８）。こ
の処理は終点７４０において終了する。
【００５３】
　図２２は、オープンエンドシーケンシャルループから生成された並列ループ内の各作業
項目を適切な順序でコミットさせることを確実にすることを含むステージの１つの実施を
示す。１つの形として、図２２の処理は、計算装置１００のオペレーティングロジックに
おいて少なくとも部分的に実行される。この処理は、出発点７６０において始まり、それ
ぞれのトランザクションにおけるそれぞれの作業項目各々を実行しながら、現在の繰り返
し値を取り出すこと（ステージ７６２）を伴う。１つの実施において、現在の繰り返し値
は、それぞれの作業項目各々がアクセスすることのできる値を、極小の増分（atomic inc
rement）を実行することにより取り出す（ステージ７６２）。このシステムは、それぞれ
の作業項目各々の現在の繰り返し値を、所定のコミット順処理におけるコミット連続番号
として使用する（ステージ７６４）。このシステムは、そのオープンエンドシーケンシャ
ルループの当初の実行と整合性が取れたコミット順を達成する（ステージ７６６）。この
処理は終点７６８において終了する。
【００５４】
　図２３は、スペキュレーションパイプラインを計算してその並列ループの中に幾つの繰
り返しを含むかを決定することを含むステージの１つの実施を示す。１つの形として、図
２３の処理は、計算装置１００のオペレーティングロジックにおいて少なくとも部分的に
実行される。この処理は、出発点７９０において始まり、このシステムが、並列ループを
実行するコンピュータ上の利用可能な処理装置の数に少なくとも基づいて、スペキュレー
ションパイプラインの初期値を作成すること（ステージ７９２）を伴う。１つの実施にお
いて、ＣＰＵ束縛作業を行うのに費やす作業負荷を時間率で割った処理装置の数に基づい
て、スペキュレーションパイプラインの初期値を生成する（ステージ７９２）。幾多の他
の計算も利用可能である。その初期値を用いて、その並列ループの特定の実行のために作
成される、上記並列ループの繰り返し数が幾つであるかを決定する（ステージ７９４）。
このシステムは、適応的統計データを用いて、その並列ループの以後の実行のためにその
スペキュレーションパイプラインを調整することができる（例えば、経歴を用いてそのル
ープの予想所要時間をさらに良く決定する、作業項目がブロックするとき柔軟に調整する
、などで）（ステージ７９６）。この処理は終点７９８において終了する。
【００５５】
　図２４Ａ～図２４Ｂは、当初のオープンエンドシーケンシャルループから並列ループへ
の模範的な変換のための仮想のソースコードを示す。用語「オープンエンドシーケンシャ
ルループ」は、ここで使用するとき、その繰り返し数が未知であるシーケンシャルループ
を含むことを意味する。図２４Ａを参照すると、当初のオープンエンドシーケンシャルル
ープ８１０が示されている。このループは、条件が真である間（例えば、図示の事例では
Ｐ＝ｔｒｕｅである間）一定のステートメントを実行するｗｈｉｌｅループである。図２
４Ｂは、その当初のシーケンシャルループが並列ループ８２０に変換された後の様相を示
す。図２４Ｂの仮想のコードに示すように、スペキュレーションパイプラインの繰り返し
毎に、並行して実行する作業項目が生成される。１つの実施においては、このため標準ワ
ークスチーリングキュー（standard work stealing queue）を使用することができる。ｃ
ｕｒｒｅｎｔＩｔｅｒａｔｉｏｎと呼ばれる共有変数は、各作業項目にアクセスすること

(18) JP 2010-529559 A 2010.8.26

10

20

ができる。各作業項目が実行するにつれ、標準ｃｏｍｐａｒｅ－ａｎｄ－ｓｗａｐハード
ウェア命令または別の機構のように、ｃｕｒｒｅｎｔＩｔｅｒａｔｉｏｎに極小の増分を
実行して、それ自体の繰り返し値をフェッチ(fetch)する。これは、１つの繰り返しは何
れも単一の作業者（worker）により処理されること、およびトランザクションがループの
繰り返しのうち１つを実行し始める順序を決定することを保証する。これは次いで、トラ
ンザクションのコミット連続番号となり、繰り返しは先行者と後継者の間で正しい順序で
直列化可能であることを保証する。各作業項目は、そのループ構造が命令する通りに、Ｐ
または作業の前または後に終了条件を適用することができるものは何でも、評価する（例
えば、図２４Ｂに示す「ｗｈｉｌｅ」の場合は前であるが、ｄｏ－ｗｈｉｌｅの場合は「
後」）。作業者の１つが、終了する時期であることを認識すると、先行者全部はコミット
し、次いで後継者全部を廃棄しなければならない。
【００５６】
　ここに説明する例は、各種の技術および手法を用いてコミット順序付けを実施すること
について述べたけれども、トランザクションはコミットアービトレータを全く有しないこ
とに注意しなければならない。トランザクションがコミットアービトレータを全く有しな
いこのような場合は、通常の無秩序なコミットが生じる。
【００５７】
　主題事項を、構造的特性および／または方法論的行動に特定の言語を用いて記述したけ
れども、添付の請求項に定義する主題事項は、上述の具体的な特性または行動に必ずしも
限定されるものではないことは理解されなければならない。むしろ、上述の具体的な特性
および行動は、請求項の実施の模範的な形態として開示されているものである。ここに記
述する通りのおよび／または以下の請求項による実施の思想の範囲内に入る等価物（均等
物）、変更および修正のすべては、保護されることが望まれる。
【００５８】
　例えば、コンピュータソフトウェアの当業者は、ここに説明した例示において記述した
ような、クライアントおよび／またはサーバアレンジメント、ユーザインターフェイス画
面コンテンツ、および／またはデータレイアウトは、１つまたは複数のコンピュータの上
で異なって組織され、上記例示において描写したより少ないまたは多いオプションまたは
機能を含むことができることを、認識するであろう。

(19) JP 2010-529559 A 2010.8.26

【図１】 【図２】

【図３】 【図４】

(20) JP 2010-529559 A 2010.8.26

【図５】 【図６】

【図７】 【図８】

(21) JP 2010-529559 A 2010.8.26

【図９】 【図１０】

【図１１】 【図１２】

(22) JP 2010-529559 A 2010.8.26

【図１３】 【図１４】

【図１５】 【図１６】

(23) JP 2010-529559 A 2010.8.26

【図１７】 【図１８Ａ】

【図１８Ｂ】 【図１９】

(24) JP 2010-529559 A 2010.8.26

【図２０】 【図２１】

【図２２】 【図２３】

(25) JP 2010-529559 A 2010.8.26

【図２４Ａ】 【図２４Ｂ】

(26) JP 2010-529559 A 2010.8.26

10

20

30

40

【国際調査報告】

(27) JP 2010-529559 A 2010.8.26

10

20

30

40

(28) JP 2010-529559 A 2010.8.26

10

フロントページの続き

(81)指定国　　　　 AP(BW,GH,GM,KE,LS,MW,MZ,NA,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),
EP(AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MT,NL,NO,PL,PT,RO,SE,SI,SK,T
R),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BR,BW,BY,
BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IS,JP,KE,K
G,KM,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LT,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PG,PH,PL,PT
,RO,RS,RU,SC,SD,SE,SG,SK,SL,SM,SV,SY,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VC,VN,ZA,ZM,ZW

(72)発明者 ジョン　ジョセフ　グレイ
 アメリカ合衆国　９８０５２　ワシントン州　レッドモンド　ワン　マイクロソフト　ウェイ　マ
 イクロソフト　コーポレーション　インターナショナル　パテンツ内
(72)発明者 ヨセフ　レバノーニ
 アメリカ合衆国　９８０５２　ワシントン州　レッドモンド　ワン　マイクロソフト　ウェイ　マ
 イクロソフト　コーポレーション　インターナショナル　パテンツ内
Ｆターム(参考) 5B081 CC30 CC32

	biblio-graphic-data
	abstract
	claims
	description
	drawings
	search-report
	overflow

