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DESCRIPTION
BACKGROUND OF THE INVENTION

[0001] The present invention relates to non-invasive functional assessment of coronary artery 
stenosis, and more particularly, to machine learning based non-invasive functional assessment 
of coronary artery stenosis from medical image data.

[0002] Cardiovascular disease (CVD) is the leading cause of deaths worldwide. Among various 
CVDs, coronary artery disease (CAD) accounts for nearly fifty percent of those deaths. Despite 
significant improvements in medical imaging and other diagnostic modalities, the increase in 
premature morbidity and mortality for CAD patients is still very high. The current clinical 
practice for diagnosis and management of coronary stenosis involves the assessment of the 
diseased vessel either visually or by Quantitative Coronary Angiography (QCA). Such 
assessment provides the clinician with an anatomical overview of the stenosis segment and 
parent vessel, including the area reduction, lesion length, and minimal lumen diameter, but 
does not provide a functional assessment of the effect of the lesion on blood flow through the 
vessel. Measuring the fractional flow reserve (FFR) by inserting a pressure wire into the 
stenosed vessel has been shown to be a better option for guiding revascularization decisions, 
since the FFR is more effective in identifying ischemia causing lesions, as compared to 
invasive angiography. QCA only evaluates the morphological significance if the stenosis and 
has a number of other limitations. Pressure wire based FFR measurements involve risks 
associated with the intervention necessary to insert the pressure wire into the vessel, and for a 
very narrow stenosis, the pressure wire may induce an additional pressure drop.

[0003] Recently, mechanistic models have been proposed that use mathematical equations to 
model the physics of the blood flow in a three-dimensional anatomical model of the coronary 
vessels of a patient extracted from medical images. Such approaches rely on physics-based 
mathematical equations to model the physiology at rest and at hyperemia, thereby allowing 
one to numerically solve the equations on a computer and determine the flow and pressure 
drop for an individual patient. The most widely used physics-based model is the Navier-Stokes 
equation, which is a non-linear partial differential equation that is based on principles of mass, 
momentum, and energy conservation and is used to characterize the flow of blood in the 
coronary arteries. This is often coupled with mathematical equations that model the physiology 
of the upstream (heart, aorta) and downstream (myocardium) regions of the anatomy. 
Depending on the complexity and clinical use case, these methods can be used to incorporate 
physiological models at various scales. Although various types of physics-based models, 
boundary conditions, and physiological assumptions have been proposed for blood flow, a 
common theme of mechanistic models is their use of mathematical equations to model the 
various physiological interactions explicitly. However, a drawback of such mechanistic models 
is the high computational cost and complexity of associated with the model preparation and 
numerical solution of the physics-based equations. Additionally, such mechanistic models
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typically incorporate only anatomical and some partial physiological measurements, and leave 
out other meaningful measurements. A method and an apparatus for determining stenosis 
using a neural network is disclosed in document WO 2014/072861 A2. This method and 
apparatus extracts features from received images and uses these features to detect an FFR 
value for the stenosis.

BRIEF SUMMARY OF THE INVENTION

[0004] The present disclosure provides methods and systems for machine learning based 
assessment of hemodynamic indices from medical image data. Embodiments of the present 
invention provide a data-driven, statistical methods to calculate one or more hemodynamic 
indices, such as fractional flow reserve (FFR), coronary flow reserve (CFR), instantaneous 
wave-free ratio (IFR), hyperemic stress reserve (HSR), basal stenosis resistance (BSR), and 
index of microcirculatory resistance (IMR), directly from medical image data. Embodiments of 
the present invention employ machine-learning algorithms to learn the complex mapping 
between the input parameters or the input medical image data and the output hemodynamic 
index.

[0005] In the present invention, a medical image of the patient including the stenosis of interest 
is received. Image patches corresponding to the stenosis of interest and a coronary tree of the 
patient are detected. An FFR value for the stenosis of interest is determined using a trained 
deep neural network regressor applied directly to the detected image patches.

[0006] These and other advantages of the invention will be apparent to those of ordinary skill 
in the art by reference to the following detailed description and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007]

FIG. 1 illustrates a method of training a machine-learning based mapping for determining FFR 
according to an embodiment of the present disclosure;

FIG. 2 illustrates a framework for implementing the method of FIG. 1 according to an 
embodiment of the present disclosure;

FIG. 3 illustrates geometric features characterizing the shape of a stenosis;

FIG. 4 illustrates an algorithm for training a machine-learning based mapping using enhanced 
image-based boosting ridge regression according to an embodiment of the present disclosure;

FIG. 5 illustrates a feature selection algorithm according to an embodiment of the present
disclosure;
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FIG. 6 illustrates a method for determining FFR for a patient using a trained machine-learning 
based mapping according to an embodiment of the present disclosure;

FIGS. 7, 8, and 9 illustrated various scenarios for implementing the method of FIG. 6;

FIG. 10 illustrates a method for determining FFR using trained deep neural networks applied 
directly to medical image data of the patient according to the present invention;

FIG. 11 illustrates training a deep multi-layer neural network regressor for a particular 
parameter space;

FIG. 12 illustrates a method of training series of deep neural networks for object detection 
according to an embodiment of the present invention;

FIG. 13 illustrates applying a trained deep neural network regressor to image patches to 
determine an FFR value for a stenosis according to an embodiment of the present invention; 
and

FIG. 14 is a high-level block diagram of a computer capable of implementing the present 
invention.

DETAILED DESCRIPTION

[0008] The present invention relates to methods and systems for machine-learning based 
assessment of hemodynamic indices for coronary artery stenosis, such as fractional flow 
reserve (FFR). Embodiments of the present invention are described herein to give a visual 
understanding of method for assessing coronary artery stenosis. A digital image is often 
composed of digital representations of one or more objects (or shapes). The digital 
representation of an object is often described herein in terms of identifying and manipulating 
the objects. Such manipulations are virtual manipulations accomplished in the memory or other 
circuitry I hardware of a computer system. Accordingly, is to be understood that embodiments 
of the present invention may be performed within a computer system using data stored within 
the computer system.

[0009] Fractional Flow Reserve (FFR) is a functional measure for determining the 
hemodynamic significance of a coronary stenosis. FFR is defined as the fraction of the flow in 
the stenosed vessel to the flow in a normal vessel, both of which are determined at maximal 
hyperemia. In particular, FFR can be expressed as:

fyStenosis

FFR = , . (1)
0 Normal ' '

max 
Here, max refers to the maximal hyperemia condition. The Normal vessel is hypothetical (i.e., if
the stenosis is not present). Since such as normal vessel is not present, an alternate pressure­
based formulation is typically used for quantifying FFR. Due to the coronary auto-regulation
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mechanism, the resting flow remains constant in a range of perfusion pressures. Auto­
regulation is achieved by lowering the microvascular resistance. In order to calculate FFR via
pressure measurements, one needs to operate in the maximal hyperemia regime, where the 
pressure is directly proportional to the flow (since the myocardial resistance is now fixed at its 
lowest value and can change no further). As a result, flow-rate terms can be substituted by 
appropriate perfusion pressure terms, all of which can be measured in the stenosed vessel,
with no need for the hypothetical normal vessel. In this case, FFR can be calculated as:

FFR = Ö Stenosis 
max

Ö Normal

max

NP
ΔΡNormal

Stenosis

-Pv (2)

Here, Pd and Pao are the average distal pressure and aortic pressure, respectively, over the 

cardiac cycle, and Pv is the venous pressure (Pva 0). FFR varies in the range [0, 1], with 0.80 

typically being the cut-off value below which the stenosis is deemed hemodynamically 
significant (i.e., ischemic).

[0010] In addition to FFR, other hemodynamic indices, such as pressure-drop, coronary flow 
reserve (CFR), instantaneous wave-free ratio (IFR), hyperemic stress reserve (HSR), basal 
stenosis resistance (BSR), and index of microcirculatory resistance (IMR), can be used to 
assess coronary artery stenoses. Embodiments of the present invention are described herein 
as estimating FFR for a patient. It is to be understood that the present invention is not limited 
to FFR estimation and embodiments of the present invention may be similarly applied to 
estimate other hemodynamic indices, as well.

[0011] Embodiments of the present invention utilize a data-driven, statistical method to 
calculate one or more hemodynamic indices from anatomical, functional, diagnostic, molecular, 
and/or demographic information from an individual patient. Embodiments of the present 
invention employ machine-learning algorithms to learn the complex mapping between the input 
parameters (e.g., anatomical, function, and/or demographic information) and the output 
quantity of interest (e.g., FFR). Unlike mechanistic model based methods, embodiment of the 
present invention do not rely on an a priori assumed model describing the relationship between 
the inputs and the output. Instead, embodiments of the present invention determine the 
optimal mapping via a statistical approach using machine-learning algorithms to learn the 
mapping from training data.

[0012] According to an advantageous embodiment, a machine-learning based method for 
determining FFR includes two phases: a training phase and a prediction phase. The training 
phase is an offline process, during which a database of annotated training data with ground 
truth measurements is assembled. In particular, a database of lesions (stenoses) with 
invasively measured FFR values from multiple patients is constructed. In this database, each 
instance (i.e., an invasively measured FFR value) is represented by a number of features, 
such as anatomical functional, diagnostic, molecular, and/or demographic measurements. The 
training phase then learns or trains a mapping between the features and the ground truth 
values by minimizing the best fit between predictions and ground truth values over the entire 
training database.
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[0013] The prediction phase is an online process, whereby an FFR value for a new dataset 
(unseen data) is calculated by using the learned mapping from the training phase. To achieve 
this, the required features are extracted from the new dataset and the values for the features 
are used as input to the pre-learned mapping.

[0014] FIG. 1 illustrates a method of training a machine-learning based mapping for 
determining FFR according to an embodiment of the present disclosure. The method of FIG. 1 
is used to implement the training phase that results in a trained mapping for determining FFR. 
FIG. 2 illustrates a framework for implementing the method of FIG. 1 according to an 
embodiment of the present disclosure.

[0015] Referring to FIG. 1, at step 100, training data is received. The training data is a 
database of stenoses from multiple patients, with each stenosis having a ground truth FFR 
value. The ground truth FFR value for each stenosis can be an invasively measured FFR 
value. FIG. 2 illustrates a framework for implementing the method of FIG. 1 according to an 
embodiment of the present disclosure. As shown in FIG. 2, the training data 200 can include 
anatomical data 202, functional data 204, and demographic data 206 for each training 
instance, as well as the ground truth measured FFR value 208 for each training instance. The 
anatomical data 202 can include one or more medical images of the stenosis. For example, 
the anatomical data 202 can include medical imaging data obtained using one or more medical 
imaging modalities, such as Computed Tomography (CT), X-ray angiography, Magnetic 
Resonance Imaging (MRI), Ultrasound, Intra-Vascular Ultrasound (IVUS), Optical Coherence 
Tomography (OCT), etc. The functional data 204 can include functional measurements, such 
as blood pressure, heart rate, and ECG measurements, as well as data relating to one or more 
medical imaging tests for a patient, such as data from a perfusion scan (e.g., SPECT, PET, 
etc.) or data related to contrast agent propagation in medical images. The demographic data 
206 can include demographic information, such as age, gender, height, and weight, etc. 
Although not shown in FIG. 2, the training data can also include various other types of data, 
such as in-vitro diagnostics data, genotype of the patient, lifestyle factors of the patient, and 
patient history.

[0016] At step 110, features are extracted from the training data. This feature extraction step is 
shown as step 210 of FIG. 2. In particular, a set of features is extracted for each training 
instance (i.e., each measured FFR value). The set of features for each training instance can 
include anatomical, functional, diagnostics, molecular, and/or demographic measurements. 
The anatomical features may be extracted from the medical imaging data. The anatomical 
features can include anatomical measurements characterizing the stenosis, as well as other 
anatomical measurements for associated regions such as the heart, the coronary vessel tree, 
the myocardium, and the aorta. Depending on the source and type of the input data, the 
extracted features may be binary, numerical, categorical, ordinal, binomial, interval, text-based, 
or combinations thereof.

[0017] According to an advantageous implementation, the anatomical features extracted from
medical image data can include parameters characterizing the geometry of the stenosis, such
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as reference diameters of the vessel proximal and distal o the stenosis, minimal lumen 
diameter (MLD) within the stenosis, lesion length (LL), entrance angle of the stenosis, entrance 
length, exit angle of the stenosis, exit length, percentage of the diameter blocked by the 
stenosis, and the percentage of the area blocked by the stenosis. It is also possible that 
additional parameters characterizing the geometry of the stenosis can be extracted, as well, or 
various parameters can be combined to generate additional features. According to an 
advantageous embodiment, the features characterizing the geometry of the stenosis can be 
automatically extracted using the method described in United States Patent No. 8,526,699. 
FIG. 3 illustrates geometric features characterizing the shape of a stenosis. In particular, FIG. 
3 shows the radius rprox of the proximal vessel, the radius of the distal vessel, the lesion 

length Lsten of the stenosis, the radius rSfen of the stenosis, the entrance angle β of the 

stenosis, and the exit angle γ of the stenosis.

[0018] The anatomical features extracted from the medical image data can also include 
parameters characterizing the morphology of the stenosis, such as characteristics of 
calcification, characteristics of the plaque, characteristics of thrombus, characteristics of diffuse 
disease (i.e., single stenosis or diffused stenosis along artery), the presence of total or sub­
total occlusion (i.e., complete blockage or partial blockage), and the presence of myocardial 
bridging. The parameters characterizing the morphology of the stenosis can be binary 
parameters indicating presence or absence or numerical values indicating a grading for a 
particular parameter.

[0019] The anatomical features extracted from the medical image data can also include 
parameters characterizing the geometry of the vessel branch bearing the stenosis, such as 
vessel radius and areas sampled along the centerline of the branch, terminal radius and area 
of the vessel branch, centerline tortuosity measures, the location of the stenosis in the branch 
(e.g., proximal, mid, or distal in the branch), a cumulative number of vessel narrowings in the 
branch proximal to the stenosis of interest, and a cumulative number of calcifications within the 
branch proximal to the stenosis of interest.

[0020] The anatomical features extracted from the medical image data can also include 
parameters characterizing the entire coronary artery tree, such as an indication of left or right 
dominance, size of coronary territories associated with myocardial masses, terminal radius of 
each coronary branch, number of lesions (stenoses) in the entire coronary tree, an indication 
of which segments of the coronary artery tree has lesions, bifurcations (type and angulations), 
trifurcations (type and angulations), the number and location of stents already implanted, and 
the number and location of bypass grafts. The "type" of each bifurcation and trifurcation refers 
to a characterization of each bifurcation and trifurcation as one of a set of predetermined 
types.

[0021] The anatomical features extracted from the medical image data can also include
parameters characterizing cardiac anatomy and function, such as end-systolic volume (ESV),
end-diastolic volume (EDV), ejection fraction (EF), endocaridal volume, epicardial volume,
myocardial volume, trabeculae and papillary muscle volume and mass, left and right ventricular
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volume and mass, characteristics of contrast agent attenuation (e.g., different intensity values 
for each voxel from different frames of a medical image sequence), and characteristics of 
contrast agent propagation (e.g., a number of frames to propagate contrast agent).

[0022] Additional features may be extracted from functional measurements and/or 
demographic information for a patient associated with each training instance. Such features 
can include systolic blood pressure, diastolic blood pressure, mean arterial pressure, heart rate 
at rest and/or during stress, parameters derived from an ECG trace (e.g., QRS duration, R-R 
interval, etc.), past history of heart disease, past history of valve dysfunction, past history of 
valve repair or replacement, body mass index (BMI), body surface area (BSA), weight, height, 
age, and sex. The features for the patient's past history may be binary, indicating that there is 
a past history or not, or categorical, providing further indication of a category of the past 
history.

[0023] In addition to the anatomic and morphological features extracted from medical images, 
functional features may also be extracted from one or more medical imaging tests for a patient. 
For example, data from a perfusion scan, such as SPECT, PET, etc., may be used to extract 
features such as metrics characterizing relative and/or absolute tissue perfusion in each 
coronary artery at rest and/or during stress. Another example is using angiographic data to 
extract characteristics of contrast agent propagation, which may be quantified by metrics such 
as time-to-peak, peak density, and time-averaged density from a time-density curve.

[0024] In addition to the above describe features, several derived features may also be 
computed from the extracted features. These derived features may be represented as linear or 
non-linear combinations of the extracted features. For example, lesion length (LL) and minimal 
lumen diameter (MLD) may be combined to obtain a new feature (LL/MLDA4), which could 
then be used in the training database. Furthermore, molecular information as measured by in- 
vitro diagnostic tests (e.g., serum test indicating the level of myocardial damage, inflammation, 
etc.), and diagnostic information regarding the nature of blockage (e.g., fibrotic, calcified, etc.) 
primarily derived from imaging and other diagnostic test can be utilized to generate additional 
features.

[0025] The feature extraction from the medical image data for each training instance may be 
fully automated, semi-automated, manual, or a combination thereof. According to 
advantageous implementation, in a fully-automated feature extraction approach, one or more 
underlying image processing algorithms to first detect the anatomical region of interest and 
then extract the anatomical features. For example, the image-processing algorithms may 
automatically detect the stenosis, coronary vessels, coronary ostium, cardiac chambers, 
myocardium, trabeculae and papillary muscles, and aorta, and then extract all the required 
anatomical features from the medical image data in the detected regions. The automated 
feature selection can be performed using the methods described in United States Patent No. 
8,526,699, United States Published Patent Application No. 2013/0216110, United States Patent 
No. 8,582,854, and United States Patent No. 8,116,548. Under a semi-automated approach, 
some of the features may be extracted automatically, while some others may be annotated,
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edited, or corrected by a user. Under a manual approach, the features are annotated or 
measure by a user. The feature extraction step may be performed on a medical image 
scanner, or on another device, such as an imaging workstation.

[0026] Returning to FIG. 1, at step 120, a mapping between the ground truth FFR values and 
the extracted features is trained using a machine learning algorithm. Once the training 
database is assembled together with the ground-truth, the mapping between the input features 
and the ground truth FFR values is determined by using a machine learning algorithm. The 
type of machine learning algorithm used to train the mapping may be a supervised, semi­
supervised, transductive, or reinforcement based learning algorithm. According to an 
advantageous embodiment, the trained mapping is a learned empirical model that combines 
the extracted features with various learned weights.

[0027] In an advantageous embodiment, we an image-based boosting ridge regression 
method is used to train the mapping. The complexity of the output manifold relating the 
functional parameters to the input measurements can be captured by extending the image­
based boosting ridge regression (IBRR) method described in Unite States Patent No. 
7,949,173. The IBRR method is able to encapsulate the non-linear relationship between image 
features, image context information, and anatomical object parameters such as difference in 
position, orientation and scale relative to current image sample. In the present application, the 
input measurement space is extended to include parameters characterizing the geometry of 
the stenosis, morphology, geometry of the branches, geometry of the entire cardiac tree, 
cardiac anatomy and function, and/or other functional or demographic information, in addition 
to direct image-based features. The output space, in the present application, is a value for the 
hemodynamic index of interest (e.g., pressure-drop, FFR, CFR, iFR, BSR, HSR, IMR). The 
extended image-based boosting regression (EIBRR) minimizes a cost function which combines 
a regression output fidelity term (difference between predicted and ground truth output) and a 
regularization term. EIBRR uses an additive output function which aggregates a set of weak 
regression stumps combined with ridge regression (Tikhonov regularization) and an 
incremental feature selection scheme. Using the incremental feature selection scheme, EIBRR 
selects a subset of features from the available inputs that can predict the output while 
discarding features that are not relevant to the output manifold. EIBRR is able to efficiently 
model complex or non-linear manifolds.

[0028] In alternative embodiments, other machine learning algorithms may also be used to 
train the machine-learning based mapping for determining FFR or other hemodynamic indices. 
For example, machine learning algorithms, such as regression algorithms (linear, non-linear, or 
logistic), decision trees or graphs, association rule learning, artificial neural networks, support 
vector machines, inductive logic programming, Bayesian networks, instance-based learning, 
manifold learning, sub-space learning, deep learning, dictionary learning, etc., may be used to 
train the machine-learning based mapping.

[0029] EIBRR is described in greater detail below by first describing an extended image-based
boosting regression (EIBR) training method, and then describing the EIBRR training method.
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[0030] The following notation is used herein: a is a scalar, a is a column vector, and A is a 

matrix. The input is denoted by x e Fj the output by y(x) e Rq, the regression function by g(x): 

Rd Rq and the training data points by {(χη,ΥηΥη = 1,2,...,Λ/}. Further, we denote

T c II II-x Ax- |x

and

[0031] EIBR minimizes the following cost function, which combines a regression output fidelity 
term and a subspace regularization term:

j<j>= (3)
η=1:Λ’

where / is a regularization coefficient.

[0032] EIBR assumes that the regression output function g(x) takes an additive form:

gt(x) = S mW + cr/,(x) = Σα/;(Λ·), (4)
/=1:/

where each Λ/(χ): Rd Rq \s a weak learner (or weak function) residing in a dictionary set H, 

and g(x) is a strong learner (or strong function). Boosting is an iterative algorithm that 
leverages the additive nature of g(x): At iteration t, one more weak function aj/?j(x) is added to 

the target function gj(x). Accordingly,

-¾) = Χ IIIM-Kn) - »Λ(Xn)llA +A|k(xn) - (xn)||J},
Idv (5)

where ff(x)=y(x)-gM(x) and Sf(x)= μ - gt-t (x).

[0033] The optimal weak function h (dropping the subscript t for notational clarity) and its 
weight coefficient a" which maximally reduce the cost function (or boost the performance) are 
given as follows:

Λ iA(AR + 1BS)H]
h = arg maxe(A), a(h) =----------- z---------- -,

** IIWIIau« <6>
where

tr\(AR + XBS)HT}

Aft VwI+ÄiFiE ’
and the matrices RqXN, Sqx^, and HqxN are defined as: R=[r(xf),...,r(xN)], S=[r(x-|),...,r(x/v)], H= 

leading to a smooth output function:

(7)

[/?(x-i),...,/?(x/\/)], respectively. Finally, EIBR invokes shrinkage a(with the shrinkage factor <7=0.5)
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[0034] The entire input feature set is used to construct one-dimensional (1D) decision stumps 
as primitives of the dictionary set H. A 1D decision stump h(x) is associated with a feature 
index f, a feature value v(x;f), a decision threshold ε, and a binary direction indicator p, i.e., 
pe{-1,+1}. Such a 1D decision stump can be expressed as:

„ J "0 4 ”4 -- 1 Λ
r·' f --1 nfiowse

[0035] For image-based features, given a moderate image size, a large number of image 
features can be generated by varying their attributes. The number of features can be denoted 
by Μ. By adjusting the threshold ε, e.g., K evenly spaced levels, K decision stumps can be 
created per feature, such that 2KM 1D decision stumps are created.

[0036] A weak function is constructed as a q-dimensional (q-D) decision stump h(x)qx-\ that 

stacks q 1D decision stumps. This can be expressed as:

Because each hj(x;fj) is associated with a different feature, it is possible to construct a 

sufficiently large weak function set that contains (,2KM)q weak functions.

[0037] Boosting operates as a feature selector, such that at each round of boosting, the 
features that maximally decrease the cost function in Equation (5) are selected. However, to 
transform the boosting algorithm into an efficient implementation, there is computational 
bottleneck that is the maximization task in Equation (6). This maximization task necessitates a 
greedy feature selection scheme, which can be too expensive to evaluate because it involves 

evaluating (2MNK)q decision stumps for each boosting round.

[0038] EIBR utilizes an incremental feature selection scheme by breaking q-D regression 
problem into q dependent 1D regression problems. Using the incremental vector:
}J æ = pi -J , ’P-V 1X0 (-|Q)

the optimal Λ/(χ) is searched to maximize the ε(Μ), which is similarly defined in (7) but based 

on all / (fcq) dimensions processed so far. The incremental selection scheme needs to 
evaluate only 2qMNK decision stumps with some overhead computation while maintaining the 
dependence among the output dimension to some extent.

[0039] The EIBR described above has two drawbacks. First, it is restrictive to use the 
subspace regularization term

IIa-AX
in (3), which amounts to a multivariate Gaussian assumption about the output variable that 
often manifests a non-Gaussian structure for real data. As a result, the generalization 
capability is hampered. Second, the weak function h(x) can be too "weak" as it consists of 
several 1D binary decision stumps fy(x) sharing the same weight coefficient a. Consequently,
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the training procedure can take a long time, and the trained regression function uses too many 
weak functions, which can affect the running speed. EIBRR, which is descried in detail below, 
overcomes the drawbacks of EIBR by replacing the subspace regularization and enhancing the 
modeling strength of the weak function.

[0040] Instead of using the 1D decision stumps as primitives, the EIBRR method uses 
regression stumps. A regression stump h(x;f) is defined as:
ί X t '

A (11)

where [.] is an indicator function, v(x;f) is the feature value with index f, and {R^ k=1,2,...,/<} are 

evenly spaced intervals. In Equation (11), all the weights are compactly encoded by a 

weight vector w^xi = [vv-|,W2,...,WK]rand the vector e(x;f) is some column of the identity matrix: 

only one element is one and all others are zero. Similarly, the weak function h(x)qx-\ is 

constructed by stacking q different 1D regression stumps, i.e.,

* (12)

where wj is the weight vector for the jth regression stump fy(x; fj). The weights belonging to all 

regression stumps can be further encoded into a weight matrix W^xq = [vv-|,W2,...,Wg]. Since we 

now use the weights, we drop the common coefficient a in the regression output function 
defined in Equation (4), and instead express the regression function as follows: 
g„ _{(x) 4-00) *= 5 0(X<.

.... . Ä (13)

[0041] It is easy to verify that a regression stump can be formed by combining multiple 
decision stumps. Such a combination strengthens the modeling power of weak functions and 
consequently accelerates the training process. Empirical evidence shows that the training time 
is almost inversely proportional to the number of levels used in the weak function. Although 
using the regression stump brings the risk of overfitting, this risk can be ameliorated by 
considering the model complexity of the regression stump.

[0042] Ridge regression, also known as Tikhonov regularization, is a method of regularization 
for an ill-conditioned system of linear equations. Ridge regression principles are adopted into a 
boosting framework in order to train a regression function using EIBRR. The model complexity 
of the regression output function gjx) depends on its weight matrices {W-\,W2,...,Wt}. Because 

boosting regression proceeds iteratively, at the 1th boosting iteration, the following ridge 
regression task is performed that only involves the weight matrix Wt (dropping the subscript t 

for notational clarity):
.(Au rtx,J +

(14)
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[0043] Because the weight vectors {wi,W2,...,wq} in the weight matrix Ware associated with q 

different local rectangle features, the optimization in (14) implies two subtasks:

1.1. Given a set of q features with selector indices fi,...,fq, respectively, find the optimal 

matrix W(f-\,...,fq) and the minimum cost J(fi,...,fq); and

2. 2. Find the optimal set of q features with respective selector indices attributes fi,...,fq that 

minimizes the minimum cost J(f-\,...,fq). This corresponds to feature selection.

[0044] The optimization in (14) necessitates a greedy feature selection that may be 
computationally unmanageable. Accordingly, it may be advantageous to resort to a suboptimal, 
yet computationally amenable, incremental feature selection method. Accordingly, we introduce 
the following "incremental" vectors and matrices:

X ··.
ί h;"' 1

, Ε' -
r'! 1

I

[0045] Assuming that features have been selected up to /-1, that is the incremental vector h'~ 

1(x,'fi,...,tø) and the weight vectors wi,...,Wj_i are known, the IBRR method aims to find the 

weak function /7/_1(x;fj)=ej(x;fj)TWj that minimizes the following ridge regression cost J'(fj,Wj) 

(referred to herein as the EIBRR cost function):

Ffi, ø = Σ (ik'Xn) - h‘(xn,)||2; + λ|Μ||).
<15)

It can be derived that, for a fixed fj, the optimal weight vector is:

Wi(fi) = 1)(/)0,//,(^ /), (16)

where

r.cfi) = λβ + £ k,(xn; W; Y; Ζ/Ι· (17)

γ'·=Σ (ø'fej-F'tai/F1+nuÄ). (18)
n=l:N

Accordingly, the EIBRR method searches for the optimal fj to minimize the IBRR cost function 

0/)-,^-(/)-)).

[0046] When A=B=lq, the incremental feature selection gives the optimal solution. In this case,

the optimal weight wj for the j® weak function is the weighted average:
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X rj(xn)[f(xn-fj)e Rk]
n=l

W/,* “-------- ---------------------------- ’

)(+2 1/(00/)5¾] (19)
?i=l

[0047] The order of the dimension of the output variable can be randomly permutated in order 
to improve robustness and remove bias. It is also possible to improve efficiency by randomly 
sampling the dictionary set, i.e., replacing M with a smaller M', and randomly sampling the 
training data set, i.e., replacing Λ/with a smaller Ν'.

[0048] FIG. 4 illustrates an algorithm for training a machine-learning based mapping using 
EIBRR according to an embodiment of the present disclosure. At 402, the IBRR tuning 
parameters are initialized. In particular, the normalization matrices A and B, the regularization 
coefficient λ, and the shrinkage factor η are set. These may be set automatically or manually 
by a user. Stopping criteria, such as a maximum number of iterations Tmax and a minimum 

cost function value Jm/n are also set. Initial values for t=0, go(x)=O, and r"o(x)=y(x) are also set.

[0049] At 404, an optimal weak function is determined based on a set of image features. The 
optimal weak function is determined to minimize the EIBRR cost function (15). Step 404 is 
described in greater detail in FIG. 5.

[0050] At 406, the regression function is updated based on the optimal weak function 
determined in 404. As shown in (13) the regression function is updated at each iteration by 
adding the optimal weak function for that iteration to the prior regression function, such that the 
final regression function is the sum of the weak functions for all of the iterations. Accordingly, 
when the weak function is determined, it is added to the prior regression function.

[0051] At 408, the approximation error and EIBRR cost function are evaluated based on the 
updated regression function. The approximation error tests the regression function by 
comparing difference vector based on input training data resulting from the regression function 
to the known output training data. The EIBRR cost function is expressed in (15).

[0052] At step 410, it is determined whether the IBRR method has converged. In order for the 
method to converge, it is determined whether a stop condition is met. For example, 
convergence can be achieved if the cost function is less than the minimum cost function Jmjn. It 

is also possible that convergence is achieved when the maximum number of iterations Tmax 

has occurred, when the approximation error q(x) is less than a certain threshold, when the 

difference between the cost function at the previous step and the current step is less than a 
certain threshold, or when the difference between the approximation error at the previous step 
and the current step is less than a certain threshold. If the EIBRR algorithm has not converged 
at 410, the algorithm returns to step 404 and repeats steps 404, 406, and 408 until 
convergence is achieved. If the EIBRR algorithm has converged at step 510, the trained 
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regression function is stored or output. The trained regression function resulting from the 
method can be stored in a memory or storage of a computer system or output for use in 
determining hemodynamic indices, such as FFR, in new patient datasets.

[0053] FIG. 5 illustrates a feature selection algorithm according to an embodiment of the 
present disclosure. This method corresponds to step 404 of FIG. 4. At 502, the dimension of 
the weak function is set. As described above, the dimension of the weak function can be 
permutated in order to improve robustness and remove bias. The dimension of the weak 
function determines how many image features are used to determine each weak function.

[0054] At 504, an image feature is selected to minimize the EIBRR cost function (15). The 
image feature is selected by looping over each of the image features in the feature dictionary 
set M to find the feature that most minimizes the IBR cost function (15). As shown at 503 of 
FIG. 5, it is possible that a reduced dictionary set M' be sampled from the dictionary set M and 
used in place of M for feature selection in order to improve computational efficiency. Also, as 
shown at 503 of FIG. 5, a reduced set Ν' of training data may be sampled from the training set 
N in order to improve computational efficiency.

[0055] At step 506, the weak function is updated. As described above, the weak function is 
constructed by stacking q different 1 D regression stumps. Each of the regression stumps uses 
an image feature. Once an image feature is selected at step 504, the weak function augments 
the current feature to previously selected features in an incremental fashion. As shown in FIG. 
5, steps 504 and 506 are iterated over the dimension q. That is the algorithm repeats steps 
504 and 506 until q image features have been selected for the weak function. Once q image 
features have been selected, the weak function is output or stored. The weak function resulting 
from the combination of the selected features can be output for continued use in the EIBRR 
method of FIG. 4. The weak function may be stored in memory or storage of a computer 
system. The weak functions stored in each iteration of the EIBRR method of FIG. 5 can be 
combined to generate the trained regression function.

[0056] Once the machine-learning based mapping is trained, the trained mapping is stored in 
a memory or storage of a computer system and is then used to determine an FFR value (or 
other hemodynamic index value) for new patients. FIG. 6 illustrates a method for determining 
FFR for a patient using a trained machine-learning based mapping according to an 
embodiment of the present invention.

[0057] At step 602, a patient dataset including a stenosis of interest is received. The patient 
dataset includes medical image data of a patient. The medical image data can include medical 
images from any medical imaging modality, such as Computed Tomography (CT), X-ray 
angiography, Magnetic Resonance Imaging (MRI), Ultrasound, Intra-Vascular Ultrasound 
(IVUS), Optical Coherence Tomography (OCT), etc. The medical image data can be received 
by obtaining the medical image data using an image acquisition device, receiving the medical 
image data directly from an image acquisition device, or loading stored medical image data for 
the patient. The patient dataset can also include functional data, such as functional
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measurements (e.g., blood pressure, heart rate, ECG, etc.), and demographic data, as well as 
any other types of data from which features can be extracted. In some cases, the patient 
dataset may include multiple stenoses of interest.

[0058] At step 604, features are extracted from the patient dataset for the stenosis of interest. 
When there are multiple stenoses of interest, a respective set of features is extracted for each 
stenosis of interest. In particular, the same feature are extracted for the stenosis of interest as 
those extracted for each training instance in the training data. These features are described 
above with respect to step 110 of FIG. 1. According to advantageous implementation, a fully- 
automated feature extraction approach can be used to extract the features. For example, one 
or more underlying image processing algorithms can be used to first detect each anatomical 
region of interest and then extract the anatomical features. For example, the image-processing 
algorithms may automatically detect the stenosis, coronary vessels, coronary ostium, cardiac 
chambers, myocardium, trabeculae and papillary muscles, and aorta, and then extract all the 
required anatomical features from the medical image data in the detected regions. In one 
embodiment, coronary stenoses of interest are first automatically detected in the medical 
image data, and then a respective feature set is automatically detected for each stenosis of 
interest. The automated feature extraction can be performed using the methods described in 
United States Patent No. 8,526,699, United States Published Patent Application No. 
2013/0216110, United States Patent No. 8,585,854, and United States Patent No. 8,116,548. 
According to other possible implementations, some of the features may be extracted semi- 
automatically or manually by a user. The feature extraction step may be performed on a 
medical image scanner, or on another device, such as an imaging workstation.

[0059] At step 606, an FFR value is determined for the stenosis of interest based on the 
extracted features using a trained machine-learning based mapping. In particular, the 
machine-learning based mapping trained based on the training data using the method of FIG. 
1 is used to calculate the FFR value for the stenosis of the patient based on the extracted 
features. According to an advantageous embodiment, the trained mapping is a learned 
empirical model that combines the extracted features with various learned weights. As 
described above, the trained machine-learning based mapping may be a regression function 
trained using image-based boosting ridge regression, for example using the extended image­
based boosting ridge regression (EIBRR) method illustrated in FIGS. 4 and 5. If there is 
multiple stenoses of interest in the patient dataset, a respective FFR value is determined for 
each stenosis of interest using the respective set of features extracted for each stenosis of 
interest. In a possible implementation, the trained mapping can calculate the FFR value 
together with a confidence interval.

[0060] At step 608, the FFR value is output. For example, the FFR value can be displayed on 
a display device of a computer system. The FFR value can also be stored on a memory or 
storage of a computer system.

[0061] In a possible embodiment, a user can utilize the method of FIG. 6 to analyze the effect
of different treatment scenarios, by appropriately changing the value of some features to
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reflect the post-treatment scenario. In this case, once the FFR value is output at step 608, a 
user input changing one or more features to reflect a treatment scenario is received from the 
user, and the FFR value is re-calculated based on the modified features using the trained 
machine-learning based mapping.

[0062] FIGS. 7, 8, and 9 illustrated various scenarios for implementing the method of FIG. 6. 
As shown in FIG. 7, in on embodiment, a scanner 700 (image acquisition device) is used for 
image acquisition 702, and the images are transferred from the scanner 700 to a workstation 
710. The workstation 710 then performs the feature extraction 704 and FFR calculation 706 
steps, resulting in the predicted FFR value. As shown in FIG. 8, in another embodiment, a 
scanner 800 performs the image acquisition 802 and feature extraction 804 and only the 
extracted image features are transferred from the scanner 800 to the workstation 810. The 
workstation then performs the subsequent FFR calculation 806, resulting in the predicted FFR 
value. As shown in FIG. 9, in another embodiment the scanner 900 performs the image 
acquisition 902, feature extraction 904, and the FFR calculation 906, resulting in the predicted 
FFR value.

[0063] As more data is collected, the training database containing the anatomical, 
physiological, and demographic measurements and/or features together with the ground truth 
invasive FFR measurements may grow in size. The updated database may then be used to re­
train the machine-learning based mapping periodically. The new instances in the training 
database may be from unseen cases (i.e., cases that have not been used for either training or 
prediction in the past) or from cases which were used for prediction in the past, but now have 
invasive FFR measurements available. The training database may be either a central 
database of a local database for a particular institution. In a possible embodiment, instead of 
invasively hemodynamic quantities (such as FFR), the ground-truth values in the training 
database can be substituted by computational surrogates. For example, the ground truth FFR 
values for the training data may be replaced or complemented by an FFR value numerically 
computed using a mechanistic modeling approach.

[0064] According to a possible embodiment, instead of using patient-specific geometries 
during the training phase to compute the computational surrogates for FFR, synthetically 
generated geometries that are not based on patient-specific data can be used. Such 
geometries may be generated by varying the shape, severity, location, and number of 
stenoses, together with the radius and locations of main and side branches in a generic model 
of a coronary artery vessel tree. As a simplest example of a synthetically generated geometry, 
one can use a straight tube with a narrowing to represent the stenosis. Multiple CFD 
simulations can be performed by varying the synthetic geometry (e.g., minimum radius of the 
stenosis, entrance angle, exit angle) and varying the inflow or outflow boundary conditions to 
compute the FFR value. One advantage of using synthetically generated geometries is that it 
does not require the collection and processing of patient-specific data for completing the 
training phase, thereby saving both time and cost. Further, there is no limit on the type of 
synthetic geometries that can be generated, thereby covering a wide spectrum of vessel 
shapes and topology. Using this approach, the entire training phase can be performed without



DK/EP 3057510 T3

any patient-specific geometry or image data. United States Published Patent Application No. 
2014/0024932 describes examples of CFD simulations on synthetically generated stenosis 
shapes.

[0065] As described above, various features can be extracted and used to train a machine­
learning based mapping and to determine the FFR value. It is to be understood that the 
method described above is adaptive to patient features that are available and more or less 
features can be used. The methodology described above can be similarly used for other 
applications as well, such as determining the severity of other vascular stenosis, such as renal 
artery stenosis, aortic stenosis, peripheral artery stenosis, etc., determining the rupture risk for 
aneurysms, such as cerebral aneurysms, abdominal aortic aneurysms, etc., and classifying 
heart failure patients as a likely responder or non-responder to Cardiac Resynchronization 
Therapy (CRT).

[0066] According to the present invention, instead of extracting features from the medical 
image data, a machine learning algorithm is applied directly on the image voxels (or sets of 
voxels or volume patches) to learn the association between those voxels and the 
hemodynamic quantity of interest (e.g., FFR). In this embodiment, the problem of calculating 
FFR (or other hemodynamic quantities of interest can be solved in two phases. In the first 
phase, anatomically significant image patches are localized in an input 3D medical image. The 
image patches of interest can be localized using Marginal Space Deep Learning (MSDL) or 
Marginal Space Deep Regression (MSDR), which are machine learning methods that train a 
series of deep neural networks to detect the image patches of interest in a series of marginal 
parameter spaces with increasing dimensionality. In the second phase, for each image patch 
containing a stenosis along with other overlapping patches containing the rest of the coronary 
anatomy, a regressor trained using a deep neural network is used to computer an FFR value 
specific to that stenosis. The process is then repeated for each stenosis within the coronary 
tree as necessary.

[0067] FIG. 10 illustrates a method for determining FFR using trained deep neural networks 
applied directly to medical image data of the patient. Referring to FIG. 10, at step 1002, 
medical image data of the patient is received. In an advantageous implementation, the medical 
image data is a 3D medical image, but the present invention is not limited thereto. The medical 
image data can include medical images from any medical imaging modality, such as Computed 
Tomography (CT), X-ray angiography, Magnetic Resonance Imaging (MRI), Ultrasound, Intra- 
Vascular Ultrasound (IVUS), Optical Coherence Tomography (OCT), etc. The medical image 
data can be received by obtaining the medical image data using an image acquisition device, 
receiving the medical image data directly from an image acquisition device, or loading stored 
medical image data for the patient.

[0068] At step 1004, image patches corresponding to the stenosis and the coronary tree of the
patient are detected in the medical image data. According to an advantageous implementation,
a set of image patches are localized to signify all stenotic regions (image patches of a certain
size surrounding each stenosis), coronary ostia (image patches centered around each ostium),



DK/EP 3057510 T3

coronary vessels (image patches around tubular coronary structures), and coronary bifurcation 
and trifurcations.

[0069] According to an advantageous embodiment, the image patches of interest can be 
detected using Marginal Space Deep Learning (MSDL) or Marginal Space Deep Regression 
(MSDR) applied directly to the voxels of the 3D medical image, which are machine learning 
methods that train a series of deep neural networks to detect the image patches of interest in a 
series of marginal parameter spaces with increasing dimensionality. MSDL and MSDR utilize 
deep learning to automatically learn high-level domain-specific image features directly from the 
medical image data.

[0070] In both MSDL and MSDR, in order to detect an object, the parameter space of the 
target object is divided into a series of marginal search spaces with increasing dimensionality 
and a respective deep multi-layer neural network is trained for each marginal search space. In 
MSDL, each trained deep neural networks is discriminative, in that it calculates, for a given 
hypothesis in the search space, a probability that the hypothesis in the search space is correct. 
In MSDR, each trained deep neural network provides a regression function (regressor) that 
calculates, for each hypothesis in the search space, a difference vector from that hypothesis to 
predicted pose parameters of the object in the search space.

[0071] The deep neural networks are trained using a database of training images. In order to 
train the deep neural networks, given a database of training images with the target object 
annotated in all or a subset of the training images, the object location (pose) is parameterized 
and the marginal spaces hierarchy is established. For example a set of parameters for the 
object location can be the rigid translation (position) (x,y,z), rotation (orientation) (dx,dy,dz), 

and scale (sx,sy,sz), and the marginal spaces can be translation, translation+rotation, and 

translation+rotation+scale. The range of the parameterized spaces is determined from the 
annotated training image subset. Next, hypotheses are generated in the current search space. 
For the first search space, the hypotheses are generated directly from the current range, and 
for the other search spaces, the hypotheses are generated from the current hypotheses set 
augments with additional parameters which are sampled from the current corresponding 
range. Given the set of hypotheses for the current search space, a deep multi-layer neural 
network is trained having as input the sub-image parameterized by the corresponding 
hypothesis parameters and as output the difference between the current parameters and the 
target or ground truth parameters for the current search space. FIG. 11 illustrates training a 
deep multi-layer neural network regressor for a particular parameter space. As shown in FIG. 

11, P is the current parameter space (marginal space), p(2) is the parameters of a hypothesis 

in the parameter space, from which an image is generate from the ith image Ι,(ρ(2)) in the 

image space I. The parameterized image is used as input to a multi-layer deep neural network 

1100 and the supervised output is given by the parameter difference dp(2) between the 

hypothesis parameters p(2) and the ground truth parameters p(1) in the current parameter 

space P and optionally a confidence measure. The deep neural network 1100 can be trained
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directly on the difference to the ground truth (in which case p(1) is the annotated parameter 

set) or the deep neural network 1100 can be trained on a displacement towards ground truth.

[0072] For the deep neural network architecture and training, various types of neural networks 
can be used, such as convolutional neural networks (CNN), stacked restricted Boltzmann 
machine (RBM), or stacked auto-encoders (AE). In the case of RBM or AE, we can pre-train 
the networks in an unsupervised manner using all of the available images (not annotated) to 
determine the representative features that characterize the class of data from a large 
database, prior to supervised training using the subset of annotated training images. In an 
advantageous embodiment, the deep neural network is trained using a stacked denoising 
auto-encoder (DAE) in two stages. The first stage is unsupervised where each layer of the 
multi-layer deep neural network is trained to reconstruct the input. In this stage, a virtual layer 
similar to the input is added to the output and the error to the input is minimized in this virtual 
layer. The second stage is supervised and the whole network error is minimized relative to the 
output training data starting from the pre-trained network weights. One characteristic of the 
DAE is that it randomly drops a certain percentage (up to 50%) of the inputs during training, 
which significantly increases the robustness of the resulting regressor. The output parameter 
space can be either directly regressed using a linear function or it can be discretized relative to 
the parameter range as solved as a multi-class classification problem. The second formulation 
has an advantage that it can directly encode the output probability and can generate multiple 
hypotheses.

[0073] The set of current hypotheses are then propagated through the trained deep neural 
network, and in a possible embodiment, the new set of hypotheses can be iteratively refined 
using the same deep neural network or through a newly trained deep neural network. This 
iterative process can eliminate samples far from the solution (non-overlapping) and generate 
samples closer to the true position to improve precision. The new set of hypotheses is 
augmented with new parameters from the subsequent marginal space and the process is 
repeated for the subsequent marginal space. This results in a respective trained deep neural 
network (regressor or discriminative deep neural network) for each of the marginal spaces.

[0074] FIG. 12 illustrates a method of training series of deep neural networks for object 
detection according to an embodiment of the present invention. The method of FIG. 12 can be 
used to train deep neural networks for detecting the image patches corresponding to the 
stenosis and coronary tree anatomy. Referring to FIG. 12, at step 1202, training images are 
received. In particular, a plurality of training images are loaded from a database. At least a 
subset of the training images are annotated with the pose (position, orientation, and scale) of 
the object of interest. The training images may also include non-annotated images as well.

[0075] At step 1204, a first deep neural network is trained to detect position candidates. In a
possible implementation, the first deep neural network may be a discriminative deep neural
network that inputs voxels of an image as hypotheses and for each voxel calculates a
probability that an image patch centered at the voxel is the object of interest. In another
possible implementation, the first deep neural network may train a regressive function that
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inputs voxels of an image as hypotheses calculates a difference vector for each input resulting 
in a predicted position calculated for each input voxel. At step 1206, training samples are 
passed through the trained first deep neural network and a number of best position candidates 
are kept.

[0076] At step 1208, the position candidates are augmented with orientation parameters to 
generate hypotheses in the position-orientation search space. For example, a plurality of 
position-orientation hypotheses can be generated for each position candidate by rotating each 
image patch centered at a position candidate to a plurality of possible rotations. The range of 
these rotations can be determined by the range of orientations of the ground truth objects in 
the annotated training data.

[0077] At step 1210, a second deep neural network is trained to detect position-orientation 
candidates. In a possible implementation, the second deep neural network may be a 
discriminative deep neural network that inputs image patches of an image corresponding to the 
hypotheses in the position-orientation search space and for each image patch calculates a 
probability that the image patch is the object of interest. In another possible implementation, 
the second deep neural network may train a regressive function that inputs image patches of 
an image corresponding to the hypotheses in the position-orientation search space and 
calculates a difference vector in the position-orientation parameter space for each input 
resulting in a predicted position and orientation and a corresponding image patch in the image. 
At step 1212, the position-orientation hypotheses are passed through the trained second deep 
neural network and a number of best position-orientation candidates are kept.

[0078] At step 1214, the position-orientation candidates are augmented with scale parameters 
to generate hypotheses in the position-orientation-scale search space. For example, a plurality 
of position-orientation-scale hypotheses can be generated for each position-orientation 
candidate by scaling each image patch corresponding to a position-orientation candidate to a 
plurality of possible scales. The range of these scales can be determined by the range of 
scales of the ground truth objects in the annotated training data.

[0079] At step 1216, a third deep neural network is trained to detect a full parameter set 
(position-orientation-scale) of the object of interest. In a possible implementation, the third 
deep neural network may be a discriminative deep neural network that inputs image patches of 
an image corresponding to the hypotheses in the position-orientation-scale search space and 
for each image patch calculates a probability that the image patch is the object of interest. In 
another possible implementation, the third deep neural network may train a regressive function 
that inputs image patches of an image corresponding to the hypotheses in the position- 
orientation-scale search space and calculates a difference vector in the position-orientation- 
scale parameter space for each input resulting in a predicted position, orientation, and scale 
and a corresponding image patch in the image.

[0080] In step 1004 of FIG. 10, when an input medical image of a patient is received, the
trained deep neural networks are used to detect the image patches corresponding to the
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stenosis and coronary tree anatomy. The process for detecting the target object parameters is 
similar to the training process. The set of generated hypotheses is propagated through the 
trained deep neural networks and iteratively refined through the marginal spaces, resulting in 
position, orientation, and scale parameters defining each target image patch.

[0081] Returning to FIG. 10, at step 1006, an FFR value is determined for the stenosis by 
applying a trained deep neural network regressor directly to the detected image patches. The 
machine learning algorithm in this case is directly applied on the detected image patches, 
which contain the original structure of the medical image along with the associated label from 
step 1004. In training the deep neural network regressor used in step 1006, the goal is to learn 
the association between those image patches and the hemodynamic quantity of interest for 
specific stenosis (e.g., FFR or pressure drop). Using such an approach, it is not necessary to 
first extract anatomical features (such as radius of the stenosis, length of the stenosis, etc.) 
from the images.

[0082] FIG. 13 illustrates applying a trained deep neural network regressor to image patches 
to determine an FFR value for a stenosis according to an embodiment of the present invention. 
As shown in FIG. 13, a deep neural network 1300 inputs the DICOM data (raw voxels) from the 
detected image patches 1302. The deep neural network is a multi-layer neural network with 
three layers 1304, 1306, and 1308 of latent variables, and a fourth layer 1310 that outputs a 
stenosis specific FFR value. Weights are learned to map the input voxels 1302 to the first set 
of latent variables 1304, the first set of latent variables 1304 to the second set of latent 
variables 1306, the second set of latent variables 1306 to the third set of latent variables 1308 
and the third set of latent variables 1308 to the stenosis specific FFR value 1310. It is to be 
understood that the present invention is not limited to the specific number of layers shown in 
FIG. 13.

[0083] According to an advantageous embodiment, the deep neural network regressor for 
determining the FFR value of a stenosis can be trained as follows: (1) Collect a large set of 
trained image patches from medical images (e.g., Cardiac CT images) of various patients 
(e.g., 500+), but no matching FFR values (Dataset A). (2) Collect a large set of trained image 
patches from medical images (e.g., Cardiac CT images) of various patients (e.g., 200+) with 
identified stenosis image patches and corresponding FFR values. (Dataset B). (3) Set up the 
network by selecting the number of layers, the number of units per layer, the learning rate, and 
the initial random weights. These settings of the deep neural network can be determined 
experimentally. (4) Use Dataset A to train (i.e., tune) the weights of the deep neural network 
layer by layer using restricted Boltzmann machines (RBM) contrastive divergences, or Auto­
encoders algorithms. No training is performed on the last layer in this step. (5) Use Dataset B 
to refine the weights of all layers (including the last layer) using a gradient descent back- 
propagation algorithm. During this step, L1 or L2 regularization can be used on the weights to 
avoid over-fitting.

[0084] In step 1006 of FIG. 10, once the image patches are detected in step 1004, the trained
deep neural network regressor is applied directly to the detected image patches, which results
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in a stenosis specific FFR value for each stenosis.

[0085] Returning to FIG. 10, at step 1008, the FFR value is output. For example, the FFR 
value can be displayed on a display device of a computer system. The FFR value can also be 
stored on a memory or storage of a computer system.

[0086] The above-described methods for training a machine-learning based mapping for 
determining FFR and determining FFR for a patient using a trained machine-learning based 
mapping can be implemented on a computer using well-known computer processors, memory 
units, storage devices, computer software, and other components. A high-level block diagram 
of such a computer is illustrated in FIG. 14. The scanner and workstation of FIGS. 7, 8, and 9 
can be implemented using the computer of FIG. 14. Computer 1402 contains a processor 
1404, which controls the overall operation of the computer 1402 by executing computer 
program instructions which define such operation. The computer program instructions may be 
stored in a storage device 1412 (e.g., magnetic disk) and loaded into memory 1410 when 
execution of the computer program instructions is desired. Thus, the steps of the methods of 
FIGS. 1,4, 5, 6, 10, and 12 may be defined by the computer program instructions stored in the 
memory 1410 and/or storage 1412 and controlled by the processor 1404 executing the 
computer program instructions. An image acquisition device 1420, such as an MR scanning 
device, Ultrasound device, etc., can be connected to the computer 1402 to input image data to 
the computer 1402. It is possible to implement the image acquisition device 1420 and the 
computer 1402 as one device. It is also possible that the image acquisition device 1420 and 
the computer 1402 communicate wirelessly through a network. The computer 1402 also 
includes one or more network interfaces 1406 for communicating with other devices via a 
network. The computer 1402 also includes other input/output devices 1408 that enable user 
interaction with the computer 1402 (e.g., display, keyboard, mouse, speakers, buttons, etc.). 
Such input/output devices 1408 may be used in conjunction with a set of computer programs 
as an annotation tool to annotate volumes received from the image acquisition device 1420. 
One skilled in the art will recognize that an implementation of an actual computer could contain 
other components as well, and that FIG. 14 is a high level representation of some of the 
components of such a computer for illustrative purposes.

[0087] The foregoing Detailed Description is to be understood as being in every respect 
illustrative and exemplary, but not restrictive, and the scope of the invention disclosed herein is 
not to be determined from the Detailed Description, but rather from the claims as interpreted 
according to the full breadth permitted by the patent laws. It is to be understood that the 
embodiments shown and described herein are only illustrative of the principles of the present 
invention and that various modifications may be implemented by those skilled in the art without 
departing from the scope of the invention. Those skilled in the art could implement various 
other feature combinations without departing from the scope of the invention.

[0088] In the following, some cases of other possible embodiments of the present disclosure
are presented.
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1. 1. A method for determining fractional flow reserve (FFR) for a stenosis of interest for a 
patient, comprising:

o receiving medical image data of the patient including the stenosis of interest;
o extracting a set of features for the stenosis of interest from the medical image 

data of the patient; and
o determining a FFR value for the stenosis of interest based on the extracted set of 

features using a trained machine-learning based mapping.
2.2. The method of case 1, wherein the trained machine-learning based mapping is 

trained based on ground truth FFR values and features extracted from a set of training 
data.

3. 3. The method of case 1, wherein the trained machine-learning based mapping is an 
empirical learned model that combines features from the set of features with respective 
learned weights.

4.4. The method of case 1, wherein the trained machine-learning based mapping is a 
regression function trained using image-based boosting ridge regression.

5. 5. The method of case 1, wherein extracting a set of features for the stenosis of interest 
from the medical image data of the patient comprises:

extracting a plurality of features characterizing geometry of the stenosis of interest.

6. 6. The method of case 5, wherein the features characterizing the geometry of the 
stenosis of interest include proximal and distal reference diameters, minimal lumen 
diameter, lesion length.

7. 7. The method of case 6, wherein the features characterizing the geometry of the 
stenosis of interest further include entrance angle, entrance length, exit angle, exit 
length, percentage of diameter blocked by the stenos is, and percentage of the area 
blocked by the stenosis.

8. 8. The method of case 5, wherein extracting a set of features for the stenosis of interest 
from the medical image data of the patient further comprises:

extracting one or more features characterizing morphology of the stenosis.

9. 9. The method of case 5, wherein extracting a set of features for the stenosis of interest 
from the medical image data of the patient further comprises:

extracting one or more features characterizing geometry of a coronary artery branch in 
which the stenosis of interest is located.

10. 10. The method of case 5, wherein extracting a set of features for the stenosis of 
interest from the medical image data of the patient further comprises:

extracting one or more features characterizing geometry of an entire coronary artery 
tree of the patient.

11. 11. The method of case 5, wherein extracting a set of features for the stenosis of interest 
from the medical image data of the patient further comprises:
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extracting one or more features characterizing coronary anatomy and function.

12. 12. The method of case 1, further comprising:
o receiving functional measurements of the patient;
o extracting one or more features from the functional measurements of the patient; 

and
o including the one or more feature extracted from the functional measurements of 

the patient in the set of features used for determining the FFR value.
13. 13. The method of case 1, further comprising:

o receiving demographic of the patient;
o extracting one or more features from the demographic information of the patient; 

and
o including the one or more feature extracted from the demographic information of 

the patient in the set of features used for determining the FFR value.
14. 14. The method of case 5, wherein extracting a set of features for the stenosis of 

interest from the medical image data of the patient further comprises:

extracting one or more features characterizing in-vitro blood tests.

15. 15. The method of case 1, further comprising:
o receiving a user input modifying one or more features in the set of features, 

resulting in a modified set of features reflecting a treatment scenario; and
o determining the FFR value for the stenosis of interest based on the modified set of 

features using the trained machine-learning based mapping.
16. 16. The method of case 1, wherein the trained machine-learning based mapping is 

trained based on FFR values computed using a mechanistic model to simulate blood 
flow in a set of training data.

17. 17. The method of case 1, wherein the trained machine-learning based mapping is 
trained based on geometric features extracted from synthetically generated stenosis 
geometries and FFR values corresponding to the synthetically generated stenosis 
geometries computed using computational fluid dynamics (CFO) simulations performed 
on the synthetically generated stenosis geometries

18. 18. An apparatus for determining fractional flow reserve (FFR) for a stenosis of interest 
for a patient, comprising:

means for receiving medical image data of the patient including the stenosis of interest;

means for extracting a set of features for the stenosis of interest from the medical image 
data of the patient; and

means for determining a FFR value for the stenosis of interest based on the extracted 
set of features using a trained machine-learning based mapping.

19. 19. The apparatus of case 18, wherein the trained machine-learning based mapping is a 
regression function trained using image-based boosting ridge regression.

20. 20. The apparatus of case 18, wherein the means for extracting a set of features for the
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stenosis of interest from the medical image data of the patient comprises:

means for extracting a plurality of features characterizing geometry of the stenosis of 
interest.

21.21. The apparatus of case 20, wherein the means for extracting a set of features for the 
stenosis of interest from the medical image data of the patient further comprises: 

means for extracting one or more features characterizing morphology of the stenosis.

22. 22. The apparatus of case 20, wherein the means for extracting a set of features for the 
stenosis of interest from the medical image data of the patient further comprises:

means for extracting one or more features characterizing geometry of a coronary artery 
branch in which the stenosis of interest is located.

23. 23. The apparatus of case 22, wherein the means for extracting a set of features for the 
stenosis of interest from the medical image data of the patient further comprises:

means for extracting one or more features characterizing geometry of an entire coronary 
artery tree of the patient.

24. 24. The apparatus of case 20, wherein the means for extracting a set of features for the 
stenosis of interest from the medical image data of the patient further comprises:

means for extracting one or more features characterizing coronary anatomy and 
function.

25. 25. The apparatus of case 18, wherein the trained machine-learning based mapping is 
trained based on geometric features extracted from synthetically generated stenosis 
geometries and FFR values corresponding to the synthetically generated stenosis 
geometries computed using computational fluid dynamics (CFO) simulations performed 
on the synthetically generated stenosis geometries.

26. 26. A non-transitory computer readable medium storing computer program instructions 
for determining fractional flow reserve (FFR) for a stenosis of interest for a patient, the 
computer program instructions when executed on a processor cause the processor to 
perform operations comprising:

receiving medical image data of the patient including the stenosis of interest;

extracting a set of features for the stenosis of interest from the medical image data of 
the patient; and

determining a FFR value for the stenosis of interest based on the extracted set of 
features using a trained machine-learning based mapping.

27. 27. The non-transitory computer readable medium of case 26, wherein the trained 
machine-learning based mapping is a regression function trained using image-based 
boosting ridge regression.
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28. 28. The non-transitory computer readable medium of case 26, wherein extracting a set 
of features for the stenosis of interest from the medical image data of the patient 
comprises:

extracting a plurality of features characterizing geometry of the stenosis of interest.

29. 29. The non-transitory computer readable medium of case 28, wherein extracting a set 
of features for the stenosis of interest from the medical image data of the patient further 
comprises:

extracting one or more features characterizing morphology of the stenosis.

30. 30. The non-transitory computer readable medium of case 28, wherein extracting a set 
of features for the stenosis of interest from the medical image data of the patient further 
comprises:

extracting one or more features characterizing geometry of a coronary artery branch in 
which the stenosis of interest is located.

31.31. The non-transitory computer readable medium of case 30, wherein extracting a set 
of features for the stenosis of interest from the medical image data of the patient further 
comprises:

extracting one or more features characterizing geometry of an entire coronary artery 
tree of the patient.

32. 32. The non-transitory computer readable medium of case 28, wherein extracting a set 
of features for the stenosis of interest from the medical image data of the patient further 
comprises:

extracting one or more features characterizing coronary anatomy and function.

33. 33. The non-transitory computer readable medium of case 26, wherein the trained 
machine-learning based mapping is trained based on geometric features extracted from 
synthetically generated stenosis geometries and FFR values corresponding to the 
synthetically generated stenosis geometries computed using computational fluid 
dynamics (CFO) simulations performed on the synthetically generated stenosis 
geometries.
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Patentkrav

1. Computerimplementeret fremgangsmåde til bestemmelse af en fraktional 

flowreserve (FFR) for en stenose, som er interessant for en patient, omfattende:

- modtagelse (1002) af et før-erhvervet medicinsk billede af patienten omfat­

tende den interessante stenose,

- registrering (1004) af billedområder (1302), som svarer til den interessante 

stenose, og et coronartræ i patienten og kendetegnet ved

- bestemmelse (1006) af en (FFR)-værdi for den interessante stenose ved 

brug af en trænet dybneural netværks- (1100,1300) regresser påført direkte 

de registrerede billedområder (1302).

2. Fremgangsmåde ifølge krav 1, hvorved registrering (1004) af billedområder 

(1302) svarende til den interessante stenose og patientens coronartræ omfatter:

registrering af billedområder (1302), som svarer til den interessante stenose, 

coronar ostia, coronarkar og coronarbifurkation og -trifurkationer.

3. Fremgangsmåde ifølge krav 1, hvorved registrering (1004) af billedområder 

(1302) svarende til den interessante stenose og patientens coronartræ omfatter:

registrering af billedområderne (1302) i en række af marginale parameter­

områder ved brug af et respektivt trænet dybneuralt netværk (1100, 1300) 

for hver af de marginale parameterrum ved brug af et respektivt trænet dyb­

neuralt netværk (1100, 1300) for hvert af de marginale parameterrum, 

især hvorved rækkerne af marginale parameterrum omfatter et positionspa­

rameterrum, et positionsorienterings-parameterrum og et positionsoriente- 

rings-skalaparameterrum.

4. Fremgangsmåde ifølge krav 3, hvorved det respektive trænede dybneurale 

netværk (1100, 1300) for hvert af de marginale parameterrum omfatter en dyb­

neural netværks- (1100, 1300) regresser, som er trænet i at indføre hypoteser i
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det respektive parameterrum og for hver hypotese udsender en forskydningsvek­

tor, som tilvejebringer en forudsigelse for et billedområde (1302) i det respektive 

parameterrum,

eller

hvorved det respektive trænede dybneurale netværk (1100, 1300) for hvert af de 

marginale parameterrum omfatter et diskriminativt dybneuralt netværk (1100, 

1300), som indfører hypoteser i det respektive parameterrum, og for hver hypo­

tese udsender en sandsynlighed for billedområdet (1302) svarende til hypotesen, 

eller

hvorved det respektive dybneurale netværk (1100,1300) for hver af de marginale 

parameterrum er et dybt flerlaget neuralt netværk, som er trænet ved brug af et 

snoet neuralt netværk (CNN), en stablet begrænset Boltzmann maskine (RBM) 

eller en stablet auto-koder (AE).

5. Fremgangsmåde ifølge krav 1, hvorved den trænede dybneurale netværks­

il 100, 1300) regresser er et dybneuralt netværk (1100, 1300) med et antal lag 

(1304,1306,1308), og et endeligt lag (1310) beregner en stenosespecifik (FFR)- 

værdi.

6. Fremgangsmåde ifølge krav 5, hvorved det trænede dybneurale netværk 

(1100, 1300) trænes ved indstilling af vægte for hvert lag (1304, 1306, 1308) 

bortset fra det endelige lag (1310) ved brug af et første sæt af træningsbilleder 

uden tilsvarende (FFR)-værdier og derefter forfine vægtene for hvert lag (1304, 

1306, 1308, 1310) inklusive det endelige lag (1310) baseret på et andet sæt af 

træningsbilleder med tilsvarende (FFR)-værdier ved brug af gradientnedstig- 

nings-ryg-propagation.

7. Apparat (1402) til bestemmelse af en fraktional flowreserve (FFR) for en ste­

nose, som er interessant for en patient, hvilket apparat omfatter:

- midler til modtagelse (1002) af et erhvervet medicinsk billede af patienten 

omfattende den interessante stenose,
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- midler til registrering (1004) af billedområder (1302), som svarer til den in­

teressante stenose, og et coronartræ i patienten og kendetegnet ved, at 

apparatet yderligere omfatter

- midler til bestemmelse (1006) af en (FFR)-værdi for den interessante ste­

nose ved brug af en trænet dybneural netværks- (1100, 1300) regresser på­

ført direkte de registrerede billedområder (1302).

8. Apparat (1402) ifølge krav 7, hvorved midlerne til registrering (1004) af bil­

ledområder (1302) svarende til den interessante stenose og patientens coronar­

træ omfatter:

midler til registrering (1004) af billedområder (1302), som svarer til den inte­

ressante stenose, coronar ostia, coronarkar og coronarbifurkation og -trifur- 

kationer.

9. Apparat (1402) ifølge krav 7, hvorved midlerne til registrering (1004) af bil­

ledområder (1302) svarende til den interessante stenose og patientens coronar­

træ omfatter:

midler til registrering (1004) af billedområderne (1302) i en række af margi­

nale parameterområder ved brug af et respektivt trænet dybneuralt netværk 

(1100,1300) for hver af de marginale parameterrum ved brug af et respektivt 

trænet dybneuralt netværk (1100, 1300) for hvert af de marginale parame­

terrum,

især hvorved rækkerne af marginale parameterrum omfatter et positionspa­

rameterrum, et positionsorienterings-parameterrum og et positionsoriente- 

rings-skalaparameterrum.

10. Apparat (1402) ifølge krav 9, hvorved det respektive trænede dybneurale 

netværk (1100, 1300) for hvert af de marginale parameterrum omfatter en dyb­

neural netværks- (1100, 1300) regresser, som er trænet i at indføre hypoteser i



DK/EP 3057510 T3

5

10

15

20

25

30

4

det respektive parameterrum og for hver hypotese udsender en forskydningsvek­

tor, som tilvejebringer en forudsigelse for et billedområde (1302) i det respektive 

parameterrum,

eller

hvorved det respektive trænede dybneurale netværk (1100, 1300) for hvert af de 

marginale parameterrum omfatter et diskriminativt dybneuralt netværk (1100, 

1300), som indfører hypoteser i det respektive parameterrum, og for hver hypo­

tese udsender en sandsynlighed for billedområdet (1302) svarende til hypotesen, 

eller

hvorved det respektive dybneurale netværk (1100,1300) for hver af de marginale 

parameterrum er et dybt flerlaget neuralt netværk, som er trænet ved brug af et 

snoet neuralt netværk (CNN), en stablet begrænset Boltzmann maskine (RBM) 

eller en stablet auto-koder (AE).

11. Apparat (1402) ifølge krav 7, hvorved den trænede dybneurale netværks­

il 100, 1300) regresser er et dybneuralt netværk (1100, 1300) med et antal lag 

(1304,1306,1308), og et endeligt lag (1310) beregner en stenose specifik (FFR)- 

værdi.

12. Apparat (1402) ifølge krav 11, hvorved det trænede dybneurale netværk 

(1100, 1300) trænes ved indstilling af vægte for hvert lag (1304, 1306, 1308) 

bortset fra det endelige lag (1310) ved brug af et første sæt af træningsbilleder 

uden tilsvarende (FFR)-værdier og derefter forfine vægtene for hvert lag (1304, 

1306, 1308, 1310) inklusive det endelige lag (1310) baseret på et andet sæt af 

træningsbilleder med tilsvarende (FFR)-værdier ved brug af gradientnedstig- 

nings-ryg-propagation.

13. Ikke-transitorisk computerlæsbart medium, som lagrer computerprogramin­

struktioner til bestemmelse af fraktional flowreserve (FFR) for en stenose af inte­

resse for en patient, hvilke computerprograminstruktioner bevirker, når de ud­

øves ved hjælp af en processor (1404), at processoren (1404) udøver operatio­

ner omfattende:
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- modtagelse (1002) af et medicinsk billede af patienten omfattende den in­

teressante stenose,

- registrering (1004) af billedområder (1302), som svarer til den interessante 

stenose, og et coronartræ i patienten og kendetegnet ved

- bestemmelse (1006) af en (FFR)-værdi for den interessante stenose ved 

brug af en trænet dybneural netværks- (1100,1300) regresser påført direkte 

de registrerede billedområder (1302).

14. Ikke-transitorisk computerlæsbart medium ifølge krav 13, hvorved registre­

ring (1004) af billedområder (1302) svarende til den interessante stenose og pa­

tientens coronartræ omfatter:

registrering (1004) af billedområder (1302), som svarer til den interessante 

stenose, coronar ostia, coronarkar og coronarbifurkation og -trifurkationer.

15. Ikke-transitorisk computerlæsbart medium ifølge krav 13, hvorved registre­

ring (1004) af billedområder (1302) svarende til den interessante stenose og pa­

tientens coronartræ omfatter:

registrering (1004) af billedområderne (1302) i en række af marginale para­

meterområder ved brug af et respektivt trænet dybneuralt netværk (1100, 

1300) for hver af de marginale parameterrum ved brug af et respektivt trænet 

dybneuralt netværk (1100, 1300) for hvert af de marginale parameterrum, 

især hvorved rækkerne af marginale parameterrum omfatter et positionspa­

rameterrum, et positionsorienterings-parameterrum og et positions-oriente- 

rings-skalaparameterrum.

16. Ikke-transitorisk computerlæsbart medium ifølge krav 15, hvorved det re­

spektive trænede dybneurale netværk (1100, 1300) for hvert af de marginale pa­

rameterrum omfatter en dybneural netværks- (1100,1300) regresser, som er træ­

net i at indføre hypoteser i det respektive parameterrum, og for hver hypotese 

udsender en forskydningsvektor, som tilvejebringer en forudsigelse for et billed- 

område (1302) i det respektive parameterrum,
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eller

hvorved det respektive trænede dybneurale netværk (1100, 1300) for hvert af de 

marginale parameterrum omfatter et diskriminativt dybneuralt netværk (1100, 

1300), som indfører hypoteser i det respektive parameterrum og for hver hypo­

tese udsender en sandsynlighed for billedområdet (1302) svarende til hypotesen, 

eller

hvorved det respektive dybneurale netværk (1100,1300) for hver af de marginale 

parameterrum er et dybt flerlaget neuralt netværk, som er trænet ved brug af et 

snoet neuralt netværk (CNN), en stablet begrænset Boltzmann maskine (RBM) 

eller en stablet auto-koder (AE).

17. Ikke-translatorisk computerlæsbart medium ifølge krav 13, hvorved den træ­

nede dybneurale netværks- (1100, 1300) regresser er et dybneuralt netværk 

(1100, 1300) med et antal lag (1304, 1306, 1308), og et endeligt lag (1310) be­

regner en stenose specifik (FFR)-værdi.

18. Ikke-translatorisk computerlæsbart medium ifølge krav 17, hvorved det træ­

nede dybneurale netværk (1100, 1300) trænes ved indstilling af vægte for hvert 

lag (1304, 1306, 1308) bortset fra det endelige lag (1310) ved brug af et første 

sæt af træningsbilleder uden tilsvarende (FFR)-værdier og derefter forfine væg­

tene for hvert lag (1304, 1306, 1308, 1310) inklusive det endelige lag (1310) ba­

seret på et andet sæt af træningsbilleder med tilsvarende (FFR)-værdier ved brug 

af gradientnedstignings-ryg-propagation.
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/- 1. Initialization t=0.
(a) Set the fixed A and B (the normalization matrices), λ (the regularization coefficient), and η (the shrinkage 

factor).
(b) Set the values related to the stopping criteria: Fmax (the maximum number of iterations) and (the 

minimum cost function).
< (c) Set initial values for t - 0: gg(x) = 0 and rg(x) = y(x).

2. Iteration t= 1,..., Tmax
(a) Find the optimal h[ using the feature selection algorithm in Figure 2.
(b) Form the new function gt(x) = gt-1 (x) + ηϋί(χ)·
(c) Evaluate the approximation error rt(x) = y(x) - gt(x) and the cost function J(gt).
(d) Check convergence, e.g., see if J(gt) < Jmjn·

FIG. 4
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1. Initialization.
Create a random permutation of {1 yielding {[1], [2],..,[q]}.

2. Interation over the dimension of the output variable ί = 1,2,...,q

503
(optional) Sample M' features from the dictionary set and form the reduced set of weak functions H'. 
(optional) Sample Ν' data points from the training set.
Loop over the feature = 1,2,...,M' to find ftp] = arg min/j J[i](fj,wj(fj)).
Form the new vector hPl = [hP-ψ. hp]]T.

FIG. 5
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