Title: METHOD AND APPARATUS FOR AN ANTENNA MODULE

Abstract: An antenna module comprising at least two antennas in substantial close proximity and a shield configured to reduce interference between the antennas and/or to shape the antenna coverage areas is disclosed. A substantially triangular shield with antennas positioned at each of the vertices may shape the antenna coverage areas to form virtual sectors.
Title: Method and Apparatus for an Antenna Module

Inventors:  Roc Lastinger
            John Spenik
            Brian C. Woodbury

Assignee:  Rotani, Inc.

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to, and the benefit of, U.S. provisional application serial number 60/646,024 filed on January 21, 2005 and U.S. provisional application serial number 60/674,568 filed on April 25, 2005, both of which are hereby incorporated by reference in their entirety.

NOTICE OF MATERIAL SUBJECT TO COPYRIGHT PROTECTION

A portion of the material in this patent document is subject to copyright protection under the copyright laws of the United States and of other countries. The owner of the copyright rights has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the United States Patent and Trademark Office publicly available file or records, but otherwise reserves all copyright rights whatsoever. The copyright owner does not hereby waive any of its rights to have this patent document maintained in secrecy, including without limitation its rights pursuant to 37 C.F.R. § 1.14.

BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates generally to wireless communications, and more particularly, to antenna modules for wireless communication.

Description of Related Art

Antennas find uses in a variety of wireless communication applications, such as cell phones, television, radio, and access points for computers. Devices that use antennas for wireless communication may benefit from an antenna module that reduces interference between antennas in substantial close proximity and that provides shaped antenna coverage areas.
BRIEF SUMMARY OF THE INVENTION

Methods and apparatus according to various exemplary embodiments of the present invention comprise at least two antennas in substantial close proximity and a shield configured to reduce interference between the antennas and/or to shape the antenna coverage areas. In one embodiment, a substantially triangular shield with antennas positioned at each of the vertices shapes the antenna coverage areas to form virtual sectors.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in connection with the figures, wherein like reference numbers refer to similar elements throughout the figures, and:

Figure 1 is a diagram of a top view of a triangular antenna module in accordance with one embodiment of the present invention.

Figure 2 is a diagram of a perspective view of a triangular antenna module in accordance with one embodiment of the present invention.

Figure 3 is a diagram of a top view of coverage areas of a triangular antenna module in accordance with one embodiment of the present invention.

Figure 4 is a diagram of a top view of a triangular antenna module with alternate antenna positions in accordance with one embodiment of the present invention.

Figure 5 is a diagram of a top view of coverage areas of an exemplary triangular antenna module with alternate antenna positions in accordance with one embodiment of the present invention.

Figure 6 is a diagram of a top view of an extended triangular antenna module in accordance with one embodiment of the present invention.

Figure 7 is a diagram of a top view of coverage areas of an extended triangular antenna module in accordance with one embodiment of the present invention.

Figure 8 is a diagram of a top view of a parabolic antenna module with antenna spacers in accordance with one embodiment of the present invention.
Figure 9 is a diagram of a perspective view of a parabolic antenna module with antenna spacers in accordance with one embodiment of the present invention.

Figure 10 is a diagram of a top view of coverage areas of a parabolic antenna module with antenna spacers in accordance with one embodiment of the present invention.

Figure 11 is a diagram of a top view of a hexagonal antenna module in accordance with one embodiment of the present invention.

Figure 12 is a diagram of a perspective view of a hexagonal antenna module in accordance with one embodiment of the present invention.

Figure 13 is a diagram of a top view of coverage areas of a hexagonal antenna module in accordance with one embodiment of the present invention.

Figure 14 is a diagram of a side view of a rectangular antenna module with bottom angled shield in accordance with one embodiment of the present invention.

Figure 15 is a diagram of a perspective view of a rectangular antenna module with bottom angled shield in accordance with one embodiment of the present invention.

Figure 16 is a diagram of a side view of a rectangular antenna module with top and bottom angled shield in accordance with one embodiment of the present invention.

Figure 17 is a diagram of a perspective view of a rectangular antenna module with top and bottom angled shield in accordance with one embodiment of the present invention.

Figure 18 is a diagram of a perspective view of antenna covers with mounting base in accordance with one embodiment of the present invention.

Figure 19 is a diagram of a side view of antenna covers with mounting base in accordance with one embodiment of the present invention.

Figure 20 is a diagram of a side view of an antenna covers with mounting base in an upright placement with shields in accordance with one embodiment of the present invention.

Figure 21 is a diagram of a side view of an antenna covers with mounting base in an upright placement with a radio placed between with shields in accordance with one embodiment of the present invention.
Figure 22 is a diagram of a top view of a triangular antenna module with antenna spacers in accordance with one embodiment of the present invention.

Figure 23 is a diagram of a top view of coverage areas of a triangular antenna module with antenna spacers in accordance with one embodiment of the present invention.

Figure 24 is a diagram of a perspective view of a cubical antenna module with six antenna elements configured to operate as MIMO (Multiple-Input-Multiple-Output) antennas in accordance with one embodiment of the present invention.

Figure 25 is a diagram of a perspective view of a cubical antenna module with three antenna elements configured to operate as a MIMO antenna in accordance with one embodiment of the present invention.

Figure 26 is a diagram of a top view of a hexagonal antenna module with six antenna elements configured to operate as MIMO antennas in accordance with one embodiment of the present invention.

Figure 27 is a diagram of a top view of a parabolic antenna module with six antenna elements configured to operate as MIMO antennas in accordance with one embodiment of the present invention.

Figure 28 is a diagram of a top view of an extended triangular antenna module with antenna spacers and top mounted omni-directional antenna in accordance with one embodiment of the present invention.

Figure 29 is a diagram of a perspective view of an extended triangular antenna module with antenna spacers and top mounted omni-directional antenna in accordance with one embodiment of the present invention.

Figure 30 is a diagram of a top view of coverage areas of an extended triangular antenna module with antenna spacers and top mounted omni-directional antenna in accordance with one embodiment of the present invention.

Figure 31 is a flow diagram of a method for adjusting antenna coverage area shape in accordance with one embodiment of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
The accompanying drawings show exemplary embodiments by way of illustration and best mode. While these exemplary embodiments are described, other embodiments may be realized and changes may be made without departing from the spirit and scope of the invention. Thus, the detailed description is presented for purposes of illustration only and not of limitation. For example, the steps recited in any of the method or process descriptions may be executed in any suitable order and are not limited to the order presented.

This application incorporates by reference U.S. utility application serial number 10/869,201 filed on June 15, 2004, and U.S. utility application serial number 10/880,387 filed on June 29, 2004 in their entirety for the teachings taught therein. Moreover, for the sake of brevity, conventional data networking, wireless technology, antenna operation, electronic capabilities, application development and other functional aspects of the systems (and components of the individual operating components of the systems) may not be described in detail herein. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. The present invention may be embodied as a customization of an existing system, an add-on product, or a distributed system.

The present invention is described partly in terms of functional components and various methods. Such functional components may be realized by any number of components configured to perform the specified functions and achieve the various results. For example, the present invention may employ various types of antennas, such as, directional, omni-directional, high Q, low Q, patch, quadrifilar helix, adaptive array, MIMO (Multiple-Input-Multiple-Output), beam-forming, and any other type of antenna suitable for the environment or application. Shields may be made of any material suitable for the environment, the antenna type, and the application. For example, a shield may be made of aluminum, steel, copper, plastic, plastic coated with a metallic layer, foam, metal mesh, and any other suitable material and/or combination of materials. Shields may substantially and/or partially absorb
and/or reflect radio waves. Shields may have any shape suitable to reduce
interference and/or to produce a desired coverage area pattern. For example,
shields may be triangular, triangular with concave cavities, triangular with
extended vertices, parabolic, hexagonal, substantially similar to an I-beam,
and any other shape suitable for the environment or application. Antennas
may be placed anywhere on the shield and may be attached to the shield in
any suitable manner. Antenna spacers may be used to connect the antennas
to the shield. Antenna spacers may be of any material, size, and shape.
Antennas may interface with the device using the antenna in any suitable
manner.

In addition, the present invention may be practiced in conjunction with
any number of applications and environments, and the systems described are
merely exemplary applications of the invention. Further, the present invention
may employ any number of conventional or custom techniques for
manufacture, testing, connecting, mounting, and communicating with wireless
devices.

Methods and apparatus according to various exemplary embodiments
of the present invention comprise at least two antennas and a shield. The
shield may reduce the near-field interference between antennas in substantial
close proximity; reduce coupling between antennas in substantial close
proximity; shield the antennas from noise generated by system electronics,
interference from other system, radios, and/or external noise sources; and
shape the coverage area of each of the antennas. The effects of near-field
interference and detuning may be reduced by antenna position on the shield,
the type of antenna, antenna orientation, the quality of antenna, the types of
materials selected for the shield, and antenna spacers. Sources of near-field
interference may include, for example, the near field generated by other
antennas in substantial close proximity. The shape of the shield and antenna
spacers may affect the shape of each antenna’s coverage area and how the
individual antenna coverage areas overlap. Overlapping coverage areas from
different antennas form virtual sectors. Limiting the overlap of one antenna’s
coverage area over another antenna’s coverage area may reduce
interference.
In particular, referring to Figures 1 – 3, an antenna module 10, in accordance with one embodiment of the invention, comprises three omni-directional antennas 14, 16, and 18 and a shield 12. The shield 12, from the top view referring to Figure 1, is substantially triangular in shape. Each antenna 14, 16, and 18 is placed substantially at one of the triangle vertices. The size of the shield 12, and therefore the distance between antennas, may be such that the near-field interference between the antennas 14, 16, 18 is reduced. The shape of the shield and the offset of each antenna relative to the shield may form coverage areas 20, 22, and 24 for antennas 14, 16, and 18, respectively, such that the coverage area from any antenna does not substantially interfere with any other antenna.

The antennas may be of any type and/or configuration. The term antenna is not limited to a single antenna element, but may be a collection and/or array of antennas elements designed to operate in a coordinate manner. Arrays of antennas may use electronic circuits that may process the signals coming from each antenna element to form a signal that may be similar to the signal from an antenna that has a single antenna element. The present invention may employ various types of array antennas, for example, adaptive array, MIMO, and other antennas having multiple antenna elements.

For example, in one embodiment, referring to Figure 4, antenna 16 may be an antenna with at least two antenna elements such as an array antenna. The antenna elements of antenna 16 may interface with a single radio. In another embodiment, referring to Figure 4, antennas 14, 16, and 18 may each have a single antenna element, but they may each interface to a single radio and may collectively operate as a MIMO antenna. In another embodiment, referring to Figure 2, antenna 16 is a MIMO antenna comprising three separate antenna elements. Each antenna element of the MIMO antenna 16 may be placed on the forward edge of the same triangle vertex. Each antenna element may be spaced along the vertex edge at an appropriate distance for each antenna element to operate in a suitable manner. In another embodiment, referring to Figure 4, the antenna elements of MIMO antenna 16 may be spaced along the edge of the triangular shield 12. Use of arrays of antenna elements, as opposed to antennas with a single antenna element, may require shields of larger dimensions to accommodate the
antenna elements in an operational manner. A shield, as discussed below, may be used to shape the coverage area of an antenna, whether the antenna has a single antenna element or multiple antenna elements. Antennas with multiple antenna elements may provide additional control over the antenna coverage area in addition to the shield. For example, a beam forming antenna array may be used in conjunction with a shield.

Additionally, different antenna types may be used at each position on a shield. For example, referring to Figure 6, antenna 14 is an omni-directional antenna that has a single antenna element, antenna 16 is an adaptive array composed of multiple antenna elements, and antenna 18 is a directional antenna that has a single antenna element. Any combination of antenna types may be used in conjunction with a shield. Additionally, each antenna may operate at a frequency that may be different from the frequency used by the other antennas. Furthermore, the communication protocol and/or channel used by each antenna may be different. In one embodiment, referring to Figure 6, antennas 14, 16, and 18 each use the same communication protocol, but use the different channels provided by the protocol.

Associated with each antenna is a coverage area. The coverage area is the area in which the antenna may receive a transmitted signal or transmit a signal with strength sufficient to be received by another device. In the absence of interference, the shape of the coverage area depends on the type of antenna. For example, the coverage area of an omni-directional antenna is substantially spherical. The coverage area of a directional antenna is substantially a fraction of a sphere. The shield may alter the shape of the coverage area. In one embodiment, referring to Figure 3, antenna 14 is an omni-directional antenna. In the absence of interference and before antenna 14 is placed proximate to shield 12, the coverage area of antenna 14, in two-dimensions, is substantially circular. Placing antenna 14 in proximity with shield 12, decreases the coverage area of antenna 14 from being substantially circular to covering approximately 270 degrees as shown by coverage area 20. In three dimensions, coverage area 20 is represented as a sphere with a wedge removed. A shield may also limit the coverage area of a directional antenna. In another embodiment, referring to Figures 8 – 10, antennas 14, 16, and 18 are directional antennas with a coverage area of
approximately 240 degrees. Placing antennas 14, 16, and 18 in parabolic shield 40 limits the antenna coverage areas to approximately 180 degrees with side lobes, as shown in Figure 10.

The overlap of two coverage areas from different antennas forms virtual sectors. Referring to Figures 3, 5, 7, 10, 13, 23, and 30, the overlap of coverage areas 20 and 22 form virtual sector 26, the overlap of coverage areas 22 and 24 form virtual sector 28, and the overlap of coverage areas 24 and 20 form virtual sector 30. Virtual sectors are not limited to the overlap of two substantially adjacent coverage areas. In one embodiment, referring to Figures 28 – 30, antenna spacer 82 and antenna 80 are placed on top of shield 40 in addition to antennas 14, 16 and 18. In this embodiment, antenna 80 is an omni-directional antenna whose area of coverage is represented in two-dimensions by circle 84. Virtual sectors 26, 28, and 30 still exist; however, the overlap of coverage area 84 with coverage areas 20, 22, and 24 also form virtual sectors that are substantially the size of areas of coverage 20, 22, and 24. Clients in coverage area 20 may be serviced by either antenna 14 and/or antenna 80, clients in coverage area 22 may be serviced by antenna 16 and/or antenna 80, and so forth. Additionally, clients in virtual sector 26 may be serviced by antennas 14, 16, and/or 80. Antenna 80 serves any desired purpose or performs any type of communication task. In one embodiment, antenna 80 serves clients. In another embodiment, antenna 80 communicates with, for example, other antenna modules, substantially adjacent wireless cells, and wireless cells that form a wireless mesh network. In another embodiment, antenna 80 does not transmit signals, but is used solely to detect possible noise sources or other sources of interference.

Virtual sectors may represent areas of high interference or where wireless devices may be serviced by more than one antenna. For example, referring to Figures 1 – 3, suppose that antenna module 10 supports the I.E.E.E. 802.11a/b/g wireless communication protocols. On one hand, setting the radios attached to antennas 14 and 16 to operate on the same channel may result in high levels of interference in virtual sector 26. Transmissions from antenna 14 may interfere in the operation of antenna 16 and visa versa. On the other hand, setting the radios attached to antennas 14 and 16 to different, minimally interfering channels, may allow a wireless client located in
virtual sector 26 to communicate with either antenna 14 on one channel
and/or antenna 16 on a different channel. In an exemplary embodiment,
referring to Figures 1 – 3, antennas 14, 16, and 18 each operate on a
different, minimally interfering channel.

When antennas 14, 16, and 18 operate simultaneously, shields 12, 36,
40, and 44 of Figures 4, 6, 8, and 11, respectively, reduce antenna coupling
and/or near-field interference between antennas, thereby permitting the
antennas to be placed in closer proximity to each other than if a shield were
not used. Shield 12 with antenna placement as shown in Figure 1 may be
less effective at reducing antenna coupling and/or near-field interference
between antennas 14, 16, and 18 because the shield provides less isolation
between the antennas.

Antennas and/or antenna modules may also be placed under a
protective cover. Referring to Figure 18, antenna cover 54 may be formed of
any material that does not substantially interfere with antenna operation, for
example, foam, plastic, cloth, glass, and any other suitable material. The
antenna cover 54 may be used with any antenna type and/or antenna module.
The antenna cover 54 may serve secondary functions such as, for example,
facilitating mounting of the antenna and/or antenna module. The antenna
covers 54 may be fastened to a mounting base 56 to form an antenna module
that may be use in a variety of circumstances. The mounting base 56 may be
used to mount the antennas and/or antenna modules in addition to the
antenna covers 54.

With respect to multiple antenna elements which form MIMO (Multiple-
Input-Multiple-Output) antennas, in general, a MIMO antenna is comprised of
at least two antenna elements that interface with the same radio and function
in a coordinated manner. As described above, referring to Figure 4, antennas
14, 16, and 18 may each have a single antenna element, but they may
interface together and function in a coordinated manner to form a MIMO
antenna. The individual antennas that comprise a MIMO antenna may be of
any type, for example, omni-directional, directional, patch, whip, helical, and
yagi. The antennas that comprise the MIMO antenna may operate as
transmit only, receive only, or transmit/receive antennas. Any combination of
transmit only, receive only, and transmit/receive antennas may be used to
form a MIMO antenna. In an exemplary embodiment, referring to Figure 4, antennas 14 and 18 transmit and receive, while antenna 16 receives only. In another embodiment, referring to Figure 25, antennas 70 and 76 transmit and receive while antenna 72 receives only. The signals received through and transmitted from antennas 14, 16, and 18 may be used in any manner, singly or in combination, to improve reception and/or transmission in a coverage area.

A shield may support any number of MIMO antennas. For example, referring to Figure 25, in a situation where antennas 70, 72, and 76 each have a single antenna element, any two antennas may form a MIMO antenna. In an exemplary embodiment, antennas 70 and 72 form a MIMO antenna that interfaces to a first radio while antenna 76 interfaces to a second radio. In another embodiment, antennas 72 and 76 form a MIMO antenna that interfaces to a first radio while antenna 70 interfaces to a second radio. In a third embodiment, antennas 70, 72, and 76 form a MIMO antenna and interface with the same radio. Increasing the number of single element antennas associated with a shield increases the number of possible combinations for forming MIMO antennas. For example, referring to Figure 24, any two antennas selected from the group of antennas 68, 70, 72, 74, 76, and 78 may operate as a MIMO antenna and interface to a radio. In one embodiment, antennas 68 and 76 operate as a MIMO antenna and interface to a first radio. Antenna pairs 70, 78 and 72, 74 also operate as MIMO antennas and each pair interface with a second and third radio, respectively. This embodiment pairs antennas that are positioned orthogonally to each other.

In another embodiment, referring to Figures 26 - 27, any two antennas may be used to form a MIMO antenna. In one embodiment, referring to Figure 24, antenna pairs 68 and 70, 72 and 74, 76 and 78 each form MIMO antennas and interface to a first, second and third radio respectively. In another embodiment, the antenna pairs 68 and 74, 70 and 76, 72 and 78 form MIMO antennas. More than two antennas may operate together to form a MIMO antennas. In an exemplary embodiment, referring to Figure 24, antennas 68, 72, and 76 operate as one MIMO antenna while antennas 70, 72 and 74 operate as another MIMO antenna. In this embodiment, each
antenna of each MIMO combination is orthogonal to each other. The antennas shown in Figures 26 – 27 may also be divided into groups of three to form separate MIMO antennas. In one embodiment, antennas 68, 72, and 76 form one MIMO antenna and antennas 70, 74, and 78 form another MIMO antenna. More than three antennas may form a MIMO antenna. Each antenna used to form a MIMO antenna may have at least one of transmit and receive, transmit only, and receive only mode of operation.

Referring again to Figure 25, in a situation where each antenna has at least two antenna elements capable of operating as a MIMO antenna, each antenna 70, 72, and 76 may separately operate as a MIMO antenna and interface with separate radios.

With respect to shields, as mentioned above, a shield may reduce coupling and/or near-field interference between antennas in substantial close proximity, shield the antennas from noise generated by system electronics, and shape the coverage area of each of the antennas. Antennas may be considered to be in substantial close proximity to each other when, referring to Figure 4, distance 64 between the antennas is less than about two times the length of the frequency used by the antennas. Use of a shield to reduce interference between antennas improves antenna performance and may reduce the distance required between antennas for a desired level of performance. The shape of some shields may be better adapted to reduce near-field interference and/or coupling between antennas in substantial close proximity. For example, referring to Figure 1, antennas 14, 16, and 18 are positioned linearly with little shield isolation between the antennas. The shield shape when combined with the antenna placement may be less able to block near-field interference between antennas. The shape of shield 12 with antennas positioned at the vertices may be best adapted to shape the coverage areas, but be less effective at reducing near-field interference and/or coupling between antennas.

Referring to Figure 1, near-field interference and/or coupling between the antennas of antenna module 10 may be reduced by spacing the antennas farther from each other; however, the distance required between the antennas to provide a substantial reduction in near-field interference and/or coupling may result in an antenna module, wherein the antennas are not in substantial
close proximity to each other. Shield 12 is used to reduce near-field interference and/or coupling between antennas by modifying the antenna positions relative to the antenna. Referring to Figure 4, positioning antennas 12, 14, and 16 on the sides of shield 12 places a substantial portion of the shield between the antennas. The shield between the antennas may block and/or reduce near-field interference and/or coupling between antennas, thereby reducing interference between antennas in substantial close proximity. Shields 36, 40, 44, 48, and 52 of Figures 6, 8, 11, 14, and 16 respectively reduce near-field interference and/or coupling between antennas in substantial close proximity because the shield provides a measure of isolation between the antennas.

The shape of the shield may modify the shape of the antenna coverage areas, as described above. A shield may be constructed of any material that attenuates near-field interference and/or coupling between antennas.

Additionally, the thickness, height, and shape of the shield may be modified to further reduce near-field interference and/or coupling between antennas. A shield may have any material composition, for example, a shield may be solid, hollow, or substantially solid with cavities. Radios and/or system electronics may be placed and/or anchored in a shield hollow and/or cavity. Shields may be formed of any material or combination of materials suitable for the application.

Antenna performance may also be negatively impacted by detuning an antenna. Generally, antennas have a center frequency and a range around the center frequency at which they function efficiently. An antenna becomes detuned when its center frequency and the range around the center frequency shift to a higher or a lower frequency and/or when the center frequency remains unaffected, but the bandwidth around the center frequency decreases. Antennas may become detuned when placed in close proximity with materials that detune that type of antenna. For example, placing an omni-directional antenna close to metal may detune the antenna. Placing a mobile phone antenna close to the human body may detune the antenna. The detuning effect of a shield on an antenna may be reduced by, for example, designing an antenna that requires proximity to the shield to become tuned, forming the shield from a material that does not detune the
antenna, and/or offsetting the antenna from the shield with an antenna spacer. In one embodiment, the antenna performance characteristics are selected such that when the antenna is used in close proximity to the shield, the antenna operates at the desired center frequency with the desired bandwidth, but when the antenna is used apart from the shield, it does becomes detuned. In an exemplary embodiment, referring to Figure 8, antennas 14, 16 and 18 are offset from the shield using antenna spacers 62. The size of the antenna spacer 62 and the amount of the offset may be selected to reduce the amount of detuning to a desire level.

As discussed above, a shield may also alter the shape of an antenna’s coverage area. The shield may alter the shape of an antenna’s area of coverage in any manner suitable for the environment or application. For example, in an exemplary embodiment, referring to Figures 1 – 3, antenna module 10 comprises three antennas 14, 16, and 18, and a substantially triangular shaped shield 12. Each antenna is positioned at a vertex of the shield 12. Antennas 14, 16, and 18 may connect directly to shield 12 and/or to antenna spacers. When antennas 14, 16, and 18 are omni-directional antennas, shield 12 reduces each coverage area 20, 22, and 24 of antennas 14, 16, and 18 respectively to an area less than substantially spherical. The coverage areas 20, 22, and 24, referring to Figure 3, may be representative of the shape of the resulting coverage areas in two dimensions. The coverage areas may overlap to form virtual sectors 26, 28, and 30.

In another embodiment, referring to Figure 4, antenna module 32 comprises antennas 14, 16, and 18, and substantially triangular shaped shield 12. In this embodiment, each antenna is positioned along an edge of the shield 12. Antennas 14, 16, and 18 may be mounted directly to shield 12 and/or to antenna spacers. When antennas 14, 16, and 18 are omni-directional antennas, shield 12 reduces each coverage area 20, 22, and 24 of antennas 14, 16, and 18 respectively to an area less than substantially spherical. Referring to Figure 5, the coverage areas 20, 22, and 24 may be representative of the shape of the resulting coverage areas in two dimensions. The coverage areas may overlap to form virtual sectors 26, 28, and 30.
In another embodiment, referring to Figure 6, antenna module 34 comprises antennas 14, 16, and 18, and shield 36. The shape of shield 36 is substantially triangular with the vertices extended and enlarged. Each antenna 14, 16, and 18 is positioned along an edge of the shield 36. Antennas 14, 16, and 18 may be mounted directly to shield 36 and/or to antenna spacers. When antennas 14, 16, and 18 are omni-directional antennas, shield 36 reduces each coverage area 20, 22, and 24 of antennas 14, 16, and 18, respectively, to an area less than substantially spherical. The coverage areas 20, 22, and 24, referring to Figure 7, may be representative of the shape of the resulting coverage areas in two dimensions. The coverage areas may overlap to form virtual sectors 26, 28, and 30.

In another embodiment, referring to Figures 8 – 10, antenna module 38 comprises antennas 14, 16, and 18, and shield 40. The shape of shield 40 is substantially parabolic on the inner curves. The antennas 14, 16, and 18 are positioned in the parabolic curves of the shield 40. Antennas 14, 16, and 18 may be mounted to shield 40 using antenna spacer 62 and/or directly to shield 40. When antennas 14, 16, and 18 are omni-directional antennas, shield 40 reduces each coverage area 20, 22, and 24 of antennas 14, 16, and 18, respectively, to an area less than substantially spherical. Referring to Figure 10, the coverage areas 20, 22, and 24 may be representative of the shape of the resulting coverage areas in two dimensions. The shape of the parabolic inner curve of shield 40 and offset of the antenna spacer may determine whether coverage areas 20, 22, and 24 overlap to form virtual sectors. In one embodiment, the parabolic curves of shield 40 are sufficiently steep to substantially reduce overlap between the coverage areas. In another embodiment, the parabolic curves of shield 40 are sufficiently shallow that coverage areas 20, 22, and 24 overlap and form virtual sectors. The shape of the coverage areas may also be modified by adjusting the size of the antenna spacer.

In another embodiment, referring to Figures 11 – 13, antenna module 42 comprises antennas 14, 16, and 18, and shield 44. The shape of shield 44 is substantially hexagonal. Each antenna 14, 16, and 18 is positioned substantially in the center of a non-adjacent face of the shield 44. Antennas 14, 16, and 18 may be mounted directly to shield 44 and/or to antenna
spacers. When antennas 14, 16, and 18 are omni-directional antennas, shield 44 reduces each coverage area 20, 22, and 24 of antennas 14, 16, and 18 respectively to an area less than substantially spherical. The coverage areas 20, 22, and 24, referring to Figure 13, may be representative of the shape of the resulting coverage areas in two dimensions. The coverage areas may overlap to form virtual sectors 26, 28, and 30.

In another embodiment, referring to Figures 14 – 15, antenna module 46 comprises antennas 14, and 16, and shield 48. The shape of shield 48 is substantially rectangular with an angled shield along the bottom. Each antenna 14, and 16 is positioned on a face of the shield 48. Antennas 14 and 16 may be mounted directly to shield 48 and/or to antenna spacers. When antennas 14 and 16 are omni-directional antennas, shield 48 reduces the coverage area of each antenna 14 and 16 to an area less than substantially spherical. The angled shield along the bottom additionally reduces the lower part of the coverage area and may reduce interference from system electronics and/or radios mounted below the antenna assembly. The invention contemplates any number of antennas that may be mounted to shield 48. In one embodiment, four antennas, two on each side, are mounted to shield 48. The angled shield along the bottom may also improve mechanical system stability.

In another embodiment, referring to Figures 16 – 17, antenna module 50 comprises antennas 14, and 16, and shield 52. The shape of shield 52 is substantially rectangular with an angled shield along the top and bottom. Each antenna 14, and 16 is positioned on a face of the shield 52. Antennas 14 and 16 may be mounted directly to shield 52 and/or to antennas spacers. When antennas 14 and 16 are omni-directional antennas, shield 52 reduces the coverage area of each antenna 14 and 16 to an area less than substantially spherical. The angled shields along the top and the bottom reduce the top and the bottom part of the coverage area respectively and may reduce interference from system electronics and/or radios positioned above and/or below antenna module 50. The invention contemplates any number of antennas that may be mounted to shield 52. In one embodiment, four antennas, two on each side, are mounted to shield 52. The angled top and bottom of shield 52 may be used in conjunction with shields having other
shapes, for example, shields 12, 36, 40, and 44 of Figures 4, 6, 8, and 11 respectively.

In another embodiment, the antenna shield may be an integral part of the case used to enclose the radio and/or other system electronics.

With respect to antenna spacers, an antenna may be mounted directly to a shield or it may be offset from the shield. An antenna spacer may be used to offset an antenna and/or the active element of an antenna away from the shield. The antennas may be offset from the shield for any reason and to achieve any result such as, for example, to reduce detuning, to reduce near-field interference between antennas, to reduce coupling between antennas, to achieve a desired distance between antennas, and/or to adjust antenna coverage area. In one embodiment, referring to Figure 4, antennas 14, 16, and 18, are mounted directly to the shield 12. In other embodiments, referring to Figures 8 and 22, antennas 14, 16, and 18, are mounted to an antenna spacer 62 and the antenna spacer 62 is mounted to the shield.

The antenna spacer 62 may be formed of any material, have any shape, and be of any size. In one embodiment, referring to Figure 22, the antenna spacer 62 material is selected to have a minimal detuning effect on antennas 14, 16, and 18. The size of antenna spacer 62 is selected to position antennas 14, 16, and 18 at a sufficient distance to decrease the detuning effect the material of shield 40 may have on antennas 14, 16, and 18. Antenna spacer 62 may also be used to increase the distance between antennas 14, 16 and 18 to reduce the effects of near-field interference and/or coupling between antennas. In one embodiment, the size of antenna spacer 62 is adjusted to position each antenna away from any other antenna a distance of about 1.25 times the wavelength of the frequency used by the antennas. The size of antennas spacer 62 may also be adjusted to alter the shape of the antenna coverage area and/or virtual sector size. In one embodiment, referring to Figures 4 – 5, the shape of coverage areas 20, 22, 24 and virtual sectors 26, 28, 30 may be represented by Figure 5 when antennas 14, 16, 18 are mounted directly to shield 12. In another embodiment, referring to Figures 22 – 23, the addition of antenna spacers 62 to offset antennas 14, 16, and 18 from shield 12 increases each antenna coverage area 20, 22, 24 and the size of virtual sectors 26, 28, and 30.
Antenna spacers 62 may be formed of any material, for example, metal, plastic, resin, wood, paper, foam, and any other suitable material. Referring to Figure 22, antenna spacer 62 may connect to shield 40 in any suitable manner. Antennas 14, 16, and 18, may connect to antenna spacer 62 in any suitable manner. Antenna spacers 62 may have any material structure, for example, hollow, solid, a honeycomb structure, and any other material structure suitable for the application and environment. Antennas having multiple antenna elements may use a separate antenna spacer 62 for each antenna element. Antenna spacer 62 may be used with any antenna type or shield shape.

With respect to antenna covers, an individual antenna and/or antenna module may be positioned relative to each other and protected by an antenna cover. Referring to Figure 18, a mounting base 56 may be used to mount and retain antenna cover 54 in position. Mounting base 56 may be of any material suitable for the application or environment. For example, mounting base 56 may be formed of metal, wood, plastic, foam, and any other suitable material. In an exemplary embodiment, the mounting base is made of plastic. The antenna cover 54 may be of any size or shape suitable for the application or environment. In an exemplary embodiment, the antenna cover 54 is substantially rectangular and made of plastic. In another embodiment, the antenna cover may be approximately a quarter of a sphere in shape. The antenna cover may be made of any material and/or be open at any part of the antenna cover 54. In an exemplary embodiment, antenna cover 54 is enclosed on all sides but one and is made of a plastic that does not interfere with antenna transmission and reception. Antennas inside the antenna cover 54 may be mounted to the antenna cover 54 and/or the mounting base 56.

The antenna cover 54 and the mounting base may form an antenna module suitable for use in a variety of situations. In an exemplary embodiment, referring to Figure 19, antennas are mounted to mounting base 56 and covered by antenna covers 54. The resulting module is placed on top of a radio 58. In another embodiment, the antennas inside the antenna covers 54 are omni-directional and the radio 58 may be encased in metal and act as a shield between the antennas that shapes their coverage areas. In another embodiment, referring to Figure 20, the antennas inside the antenna
covers 54 are omni-directional and at least one shield 60 is mounted to the mounting base 56 between the antenna covers 54. Shield 60 shapes the coverage areas of the antennas inside antenna covers 54. The resulting module is placed on top of radio 58. The mounting base 56 may be made of material that reflects radio signals if shielding between the antennas and the radio is desirable. In another embodiment, referring to Figure 21, the radio is placed in between two shields 60 positioned between antennas covers 54.

Any of the above components may be used to implement any of the methods discussed herein. Alteration of an antenna's coverage area may be accomplished in any manner; for example, the shape, size, and overlap of coverage areas may be modified by adjusting shield shape, shield size, antenna position, and antenna spacer size. A shield may have any shape to produce a desired coverage area pattern. Exemplary shield shapes are shown in Figures 1, 6, 8, 11, 15, 17, and 21. The coverage areas that may result are shown in Figures 3, 5, 7, 10, 13, and 23. The exemplary embodiments demonstrate that shield shape may modify antenna coverage areas and form virtual sectors. Shield shape is not limited to being symmetrical. For example, one side of a three sided shield may have a parabolic indentation, another side may be flat and a third side may be flat with top and bottom angled shields. Shield size may be consider an aspect if its shape. Just as the invention contemplates any shape of a shield, the size of a shield may be adjusted to achieve the desired shape of antenna coverage areas.

Antennas may be position at any location on a shield and at any location relative to another antenna to attain the desired coverage pattern. The effects of different antenna positions relative to a shield of substantially similar shape are illustrated by exemplary embodiments in Figures 1 – 3 and Figures 4 – 5. Moving antennas 14, 16, and 18 from the vertices of shield 12, as shown in Figure 1, to the sides of shield 12, as shown in Figure 4, results in reduced coverage areas. Coverage areas 20, 22, and 24 as shown in Figure 3 are reduced in area to the coverage areas 20, 22, and 24 shown in Figure 5 when antennas 14, 16, and 18 are moved from the vertices of shield 12 to the sides of shield 12. Referring to Figures 8 and 22, an antenna is mounted away from a shield using an antenna spacer 62 of any size. An
antenna spacer 62 may connect to the shield at any angle and may be of any length, size, and shape. Modifying the size of the antenna spacer 62 and/or the resulting offset of the antennas from the shield may alter the area of coverage of the antenna which is connected to the antenna spacer. In one embodiment, referring to Figure 4, mounting antennas 14, 16, and 18 to shield 12 with no or very short antenna spacers 62 may result in the coverage areas 20, 22, and 24 shown in Figure 5. Adding antenna spacers 62 or increasing the length of the antenna spacers 62, referring to Figure 22, increases coverage areas 20, 22, and 24 and the size of virtual sectors 26, 28 and 30.

Referring to Figure 31, an exemplary embodiment of a method for altering the shape of an antenna’s coverage area includes selecting the desired coverage area shape, an antenna and a shield (step 86). An antenna spacer having a length, a size, and a shape is selected (steps 88 – 92). All possible mounting positions on the shield are marked as being untested (step 94). The antenna is connected to the antenna spacer and the antenna spacer is mounted to the shield at a position not previously tested (step 96). Once the antenna spacer is mounted, the shape of the antenna coverage area is compared to the desired coverage area shape (step 100). If the antenna coverage area shape is substantially the same as the desired coverage area shape, altering the shape of the antenna’s coverage area is successful (step 98). If the antenna coverage area shape is not substantially the same as the desired coverage area shape, the method cycles through changing mounting positions (step 102), selecting antenna spacers of different shapes (step 104), selecting antenna spacers of different sizes (step 106), and selecting antenna spacers of different lengths (step 110). Once all available mounting positions, antenna spacer shapes, sizes, and lengths have been tried without achieving a substantial match between the antenna coverage area shape and the desired coverage area shape, the algorithm signals that the shape has not been achieved (step 108), and terminates.

Although the description above contains many details, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the exemplary embodiments of this invention. The scope of the present invention fully encompasses other embodiments, and is accordingly to be limited by nothing other than the appended claims, in which
reference to an element in the singular is not intended to mean "one and only
one" unless explicitly so stated, but rather "one or more." All structural,
chemical, and functional equivalents to the elements of the above-described
exemplary embodiments are expressly incorporated by reference and are
intended, unless otherwise specified, to be encompassed by the claims.
Moreover, it is not necessary for a device or method to address each and
every problem sought to be solved by the present invention for it to be
encompassed by the present claims. Furthermore, no element, component,
or method step in the present disclosure is intended to be dedicated to the
public regardless of whether the element, component, or method step is
explicitly recited in the claims. No claim element is to be construed under the
provisions of 35 U.S.C. 112, sixth paragraph, unless the element is expressly
recited using the phrase "means for." The terms "comprises," "comprising," or
any other variation, are intended to cover a non-exclusive inclusion, such that
a process, method, article, or apparatus that comprises a list of elements
does not include only those elements but may include other elements not
expressly listed or inherent to such process, method, article, or apparatus.
What is claimed is:

1. An antenna module comprising:
   at least two antennas in substantial close proximity, each of the
   antennas having a coverage area; and,
   a shield having a shape, wherein each of the antennas connect to the
   shield, and wherein the shield forms the coverage area of each antenna.
2. The antenna module of claim 1, wherein the shape of the shield is
   substantially at least one of triangular, triangular with vertices extended and
   enlarged, parabolic on the inner curves, hexagonal, rectangular, rectangular
   with bottom angled shield, rectangular with top and bottom angled shield, and
   cubical.
3. The antenna module of claim 1, wherein at least one of the antennas is
   at least one of omni-directional, directional, patch, yagi, dish, beam, whip, and
   parabolic antennas.
4. The antenna module of claim 1, wherein at least one of the antennas is
   adapted for at least one of IEEE 802.11, Bluetooth, ultra-wideband, IEEE
   802.15, and IEEE 802.16 communication protocols.
5. The antenna module of claim 1, comprising three antennas and the
   shape of the shield is substantially triangular.
6. The antenna module of claim 1, comprising three antennas, the shape
   of the shield is substantially triangular with vertices extended and enlarged,
   and each antenna is positioned about mid-way between two vertices.
7. The antenna module of claim 1, comprising three antennas, the shape
   of the shield is substantially parabolic on the inner curves, and each antenna
   is positioned about in the center of a parabolic curve.
8. The antenna module of claim 1, comprising three antennas, the shape
   of the shield is substantially hexagonal, and each antenna is positioned about
   on non-adjacent sides of the hexagon.
9. The antenna module of claim 1, comprising two antennas, the shape of
   the shield is substantially rectangular with a bottom angled shield, and each
   antenna is positioned on a side of the rectangle above the bottom angled
   shield.
10. The antenna module of claim 1, comprising two antennas, the shape of the shield is substantially rectangular with a top and bottom angled shield, and each antenna is positioned on a side of the rectangle substantially between the top and bottom angled shields.

11. An antenna module comprising:

at least two antennas in substantial close proximity, each of the antennas having a coverage area;

an antenna spacer connected to each of the antennas; and,

a shield having a shape, wherein each of the antenna spacers are

connected to the shield, wherein each antenna is offset from the shield, and wherein the shield forms the coverage area of each antenna.

12. The antenna module of claim 11, wherein the shape of the shield is substantially at least one of triangular, triangular with vertices extended and enlarged, parabolic on the inner curves, hexagonal, rectangular, rectangular with bottom angled shield, rectangular with top and bottom angled shield, and cubical.

13. The antenna module of claim 11, wherein at least one of the antennas is at least one of omni-directional, directional, patch, yagi, dish, beam, and parabolic antennas.

14. The antenna module of claim 11, wherein at least one of the antennas is adapted for at least one of IEEE 802.11, Bluetooth, ultra-wideband, IEEE 802.15, and IEEE 802.16 communication protocols.

15. The antenna module of claim 11, comprising three antennas and the shape of the shield is substantially triangular.

16. The antenna module of claim 11, comprising three antennas, the shape of the shield is substantially triangular with vertices extended and enlarged, and each antenna is positioned about mid-way between two vertices.

17. The antenna module of claim 11, comprising three antennas, the shape of the shield is substantially parabolic on the inner curves, and each antenna is positioned about in the center of a parabolic curve.

18. The antenna module of claim 11, comprising three antennas, the shape of the shield is substantially hexagonal, and each antenna is positioned substantially on non-adjacent sides of the hexagon.

19. An antenna module comprising:
a mounting base;

at least two antennas in substantial close proximity, wherein each of
the antennas is connected to the mounting base;

an antenna cover associated with each of the antennas, wherein each
antenna cover is connected to the mounting base and substantially covers the
antenna.

20. The antenna module of claim 19, additionally comprising a substantially
rectangular shield, wherein the shield is connected to the mounting base and
is positioned between at least two antennas.

21. A method for adjusting an area of coverage shape, said method
comprising:

determining a desired coverage area shape;

selecting an antenna having a coverage area;

selecting a shield having a plurality of mounting positions and
configured to alter the shape of the antenna coverage area;

selecting an antenna spacer having a length, size, and shape;

connecting the antenna to the antenna spacer;

mounting the antenna spacer to the shield at a mounting position;

comparing the altered antenna coverage area shape to the desired
coverage area shape;

adjusting at least one of mounting position, antenna spacer length,
antenna spacer size, and antenna spacer shape;

repeating the mounting, comparing, and adjusting steps until the
altered antenna coverage area shape is substantially the same as the desired
coverage area shape.

22. An antenna module comprising:

at least two antennas in substantial close proximity, wherein the
antennas are organized into at least one group of at least two antennas in
each of the groups, and wherein the antennas of each group are configured
as at least one of a MIMO, an array, and an adaptive array antenna; and,

a shield having a shape, wherein each of the antennas are connected
to the shield.

23. The antenna module of claim 22, wherein the shape of the shield is
substantially at least one of triangular, triangular with vertices extended and
enlarged, parabolic on the inner curves, hexagonal, rectangular, rectangular with bottom angled shield, rectangular with top and bottom angled shield, and cubical.

24. The antenna module of claim 22, wherein at least one of the antennas is at least one of omni-directional, directional, patch, yagi, dish, beam, and parabolic antennas.

25. The antenna module of claim 22, wherein at least one of the antennas is adapted for at least one of IEEE 802.11, Bluetooth, ultra-wideband, IEEE 802.15, and IEEE 802.16 communication protocols.

26. The antenna module of claim 22, wherein the number of groups is at least one of two, three, four, and five, and wherein the number of antennas in each group is at least one of two, three, four, and five.

27. The antenna module of claim 22, comprising six antennas organized into three groups of two antennas in each group, and the shape of the shield is selected from the group of cubical and hexagonal, wherein each antenna is positioned on a different face of the shield.

28. The antenna module of claim 22, comprising six antennas organized into two groups of three antennas in each group, and the shape of the shield is substantially parabolic on the inner curves, wherein each antenna is positioned about in the center of a different parabolic curve.
Fig. 24

Fig. 25

Fig. 26

Fig. 27
11/11

Determining a desired coverage area shape.
Selecting an antenna.
Selecting a shield.

Marking all antenna spacer lengths as untested.
Selecting an untested antenna spacer length.

Marking all antenna spacer sizes as untested.
Selecting an untested antenna spacer size.

Marking all antenna spacer shapes as untested.
Selecting an untested antenna spacer shape.

Marking all mounting positions as untested.
Connecting the antenna to the selected antenna spacer.
Mounting the antenna spacer to the shield at an untested position.

Is the antenna coverage area shape substantially the same as the desired coverage area shape?
Yes → Done

No

Mark the current mounting position as tested.
Have all mounting positions been tested?
Yes

Mark the current antenna spacer shape as tested.
Have all antenna spacer shapes been tested?
Yes

Mark the current antenna spacer size as tested.
Have all antenna spacer sizes been tested?
Yes

Mark the current antenna spacer length as tested.
Have all antenna spacer lengths been tested?
Yes → Desired shape not achieved.