PCT

WORLD INTELLECTUAL PROPER
Intemnational Bun

INTERNATIONAL APPLICATION PUBLISHED UNDER * WO 9606393A1
(51) International Patent Classification 6 : (11) International Publication Number: WO 96/06393
Al
GOGF 9/44, 13/10 (43) International Publication Date: 29 February 1996 (29.02.96)
(21) International Application Number: PCT/US95/10763 | (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH,

(22) International Filing Date: 24 August 1995 (24.08.95)

(30) Priority Data:

08/294,974 us

24 August 1994 (24.08.94)
(71) Applicant: ARCADA SOFTWARE, INC. [US/US]; Suite
1101, 37 Skyline Drive, Lake Mary, FL 32746 (US).

(72) Inventor: ROSSI, Robert, P.;
Longwood, FL 32779 (US).

1551 Monica Joy Circle,

(74) Agents: FLIESLER, Martin, C. et al.; Fliesler, Dubb, Meyer
and Lovejoy, Suite 400, Four Embarcadero Center, San
Francisco, CA 94111-4156 (US).

CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE,
KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, 8D, SE, SG, §I,
SK, TI, T™M, TT, UA, UG, UZ, VN, European patent (AT,
BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD,
Sz, UG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and 1o be republished in the event of the receipt of
amendments.

(54) Title: APPLICATION PROGRAM INTERFACE (API) FOR A MEDIUM CHANGER

(87) Abstract

An application program interface (API) which interfaces one
or more applications programs with one or more media changer
devices having a plurality of addressable physical elements, including
a plurality of API calls for obtaining information about parameters
of any of the devices, and for moving a medium from one of the
elements to another, in which one of the calls has a data structure
storing, among other information, the features parameters of a given
medium changer device and another of the calls has a data structure
storing, among other information, the status of the elements of the
devices.

28 —1_Changer API_

VSD
Database
42

Codes used to identify States party to the PCT on the front
applications under the PCT.

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria
Benin

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark

Spain

Finland

France

Gabon

GB
GE
GN
GR
HU
IE

IT

Jp

KE
KG
KP
KR
Kz
LI

LK
LU
LV
MC
MD
MG
ML
MN

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

FOR THE PURPOSES OF INFORMATION ONLY

pages of pamphlets publishing international

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan

Trinidad and Tobago
Uknaine

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

WO 96/06393

-1-

APPLICATION PROGRAM INTERFACE (APT)
FOR A MEDIUM CHANGER

Inventor(s): Robert P. Rossi

FIELD QF THE INVENTION

This invention relates generally to an
applications program interface for interfacing an
applications program with a medium changer and, more
particularly, to an applications program interface for
interfacing any applications program that may control
any type of tape medium changer.

BACKGRQUND OF THE INVENTION
An applications program or software is, generally,

a program that is written to cause a device such as a
computer or any of its computer peripherals to perform
a specific task. For example, an applications program
may cause the computer to perform data management or
word processing functions. The applications program
also may be written to cause the computer to control
and/or obtain status information about a peripheral
device such as a medium changer which can move any one
or more data storage media into and out of a drive for
reading or writing data on the medium.

A medium changer is a device that mechanizes the
movement of media to and from a media drive such as a
disk or tape drive and between other locations within
the range of the medium changer device. Each of the
medium changer devices that may be coupled to a
computer or be a component of a computer network may
have its own characteristics and capabilities; however,
they all have one or more instances of at least three
common physical elements. These are (1) a storage
element which is a location within the medium changer
device to hold a unit of media while it is not in some

PCT/US95/10763

10

15

20

25

30

35

WO 96/06393

-2-

other type of element, (2) a drive or data transfer
element which is a location of the drive that is
capable of reading or writing the medium, and (3) a
transport element which is a location that a given
medium occupies while it is being moved from one
element address to another within or about the medium
changer device. Optionally, the medium changer device
has one or more instances of (4) an import/export
element which is a location for inserting and removing
media from the medium changer device (which may be
referred to as a portal). To the computer, each of
these four elements is viewed as a unique addressable
element having its own element address.

Standards known as small computer system interface
(SCSI) specifications have been published by which
manufacturers of products such as disk drives, tape
drives, printers and medium changers can design their
products. The published SCSI standards include command
sets for these products. Most medium changer devices
are designed to support the set of commands currently
known as SCSI-2 to provide a way to get information
about the available elements and a method to move the
media from one element to another, and may have some of
their own unique additional commands to which they
respond. For a more detailed explanation of medium
changer devices and the SCSI-2 commands, reference
should be made to the standards set forth in
Information Technology - SCSI-2 X3T9.2, Project 375R,
Revision 10k, dated April 28, 1993, and, in particular,
to Chapter 17 relating to medium changer devices 3,
which is incorporated by reference herein in its
entirety.

Applications program interfaces (API) are
available for interfacing an applications program with
a given medium changer device. There are two typical

PCT/US95/10763

10

15

20

25

30

35

WO 96/06393

-3-

types of conceptual interface boundaries that are
utilized for medium changer device APIs. One
conceptual interface boundary is a 1low level I/O
Control Code (IOCTL) kernel API. The other is an
abstract high level API which hides the IOCTL API. An
IOCTL is a mechanism for user-mode (application level
code) to communicate with kernel-mode (device driver
level code).

An applications program using the low level IOCTL
kernel API as its interface boundary between the
application and kernel 1level 1is going to, by
definition, be forced to handle most non-standard
medium changer device issues in the application. This
is because it is not easy to expand the low level IOCTL
kernel API, or add more APIsS without extensive work if
such a non-standard device needs to be supported but
cannot fit within the existing definitions of the
JOCTLs. For example, adding a new IOCTL would
typically require every device driver to be altered to
handle and return gracefully from an IOCTL request,
even though only one device may really have any true
use for it.

And, handling device specific problems in the
application has other disadvantages. The application
should only see the changer device as an "object", not
as a specific physical product, e.g. one having a
particular model number, and made by a specific
company, e.g., company XYZ. With the low level IOCTL
kernel API, as the code in the application grows so as
to handle new devices and their specific problems, the
application becomes more prone to bugs and more
difficult to maintain.

The more abstract, high level API which hides the
IOCTL API has its own problems. A basic problem with
this approach is that much is typically hidden below

PCT/US95/10763

10

15

20

25

30

WO 96/06393

-4-

the API to truly satisfy its definition as an API.
When devices that need to be supported are far from
standardized, such as SCSI-2 medium changers, setting
the conceptual interface at a high abstract level is a
risky choice at best. Depending on the definition,
there may be no way to have a given device supported by
that API and, just as importantly, there may be no way
to know that until it is too late, so that the API
and/or the application code would have to be hacked to
make the non-standardized device work.

For example, assume an API call MountMedia
(MEDIA_ID). This API's definition would be that when
called the media with media code MEDIA ID must be
located in the changer, and put or mounted into any
available drive. However, suppose the media with
MEDIA_ID is found in the portal, having been manually
placed there by the user. There then may have to be
multiple commands issued to the device to satisfy this
API call. For example, one command would cause the
portal to be closed, another command would cause all
the drive elements to be scanned to find an available
drive, and yet another command would cause the media to
be moved into the drive. And, while responding to
these commands, checks would have to be performed to be
sure the device has not errored, or is busy servicing
another initiator. This example assumed that the
particular changer had media code ("bar code") scanning
ability to get the media ID, but if it did not then
multiple problems arise. Thus, there simply is too
much occurring underneath the call MountMedia
(MEDIA_ID) to safely set the conceptual interface
boundary at the high, abstract level, particularly when
trying to support changers which, more often than not,
are different from one to the next.

PCT/US95/10763

10

15

20

25

30

35

WO 96/06393

-5-

SUMMARY OF THE INVENTION

It is an object of the present invention to
provide an API which is flexible and expandable so as
to interface with any number of different types of
medium changer devices.

It is another object of the present invention to
provide an API which interfaces with many different
applications programs such that the API allows each
such applications program to tailor itself to the
characteristics and parameters of any type of medium
changer device without the programmer requiring special
knowledge of what kind of physical medium changer
device is being used. That is, from the applications
program viewpoint, it’s accessing a changer object via
a handle (described below), and performs functions
based on what the features parameter and status
parameter say the changer object is capable of.

It is yet another object of the present invention
to provide an API for a medium changer device that is
device centric, meaning the definition of the API, as
it pertains to a medium changer object, directly
reflects the functions and capabilities of a physical
medium changer device. Furthermore, the API is such
that it is layered between the high level (abstract)
and low level (IOCTL) interface layers described above.

It is still another object of the present
invention to provide an API that allows for all
functionality defined by the SCSI-2 specifications for
medium changer devices, as well as other functions
which are not defined by such SCSI-2 specifications,
such as media or bar code scanning, and control of the
portal.

These and other objects of the present invention
are obtained with an applications program interface for

interfacing one or more applications programs with one

PCT/US95/10763

10

15

20

25

30

35

WO 96/06393

-6-

or more medium changer devices, in which the API has a
plurality of API calls for obtaining information about
the status parameters of the elements of a given medium
changer device and the features parameters of any such
device, and for moving the medium supported by the
device from one of the elements to another, and wherein
one of the calls has a data structure including a
plurality of data structure members in which one of the
members can store information about the status
parameters of the elements of the device, and another
one of the calls has a data structure including a
plurality of data structure members in which one of the
members can store information indicating one or more
features that the device supports.

In another aspect, the present invention is a
method for interfacing any of a plurality of
applications programs with any of a plurality of medium
changer devices supporting a set of SCSI commands,
using an API, comprising the API receiving from the
applications program a pointer to a data structure
storing device parameters from which the applications
program can configure itself to utilize a given medium
changer device, getting information about the vendor of
the device, the specific device itself and the features
supported by the device, and building an inventory in
the database of the information.

In yet another aspect the present invention
constitutes a multilayered software architecture for
supporting one or more different medium changer
devices, including (a) an applications program; (b) an
applications program interface layered beneath the
applications program; (c) an I/O manager of an
operating system layered beneath the applications
program interface; (d) a plurality of different vendor
specific drivers layered beneath the I/O manager; (e)

PCT/US95/10763

10

15

20

25

30

WO 96/06393

-7-

a SCSI changer driver layered beneath the plurality of
vendor specific drivers for driving the one or more
medium changer drivers; and (f) a database used by the
applications program to specify supported changers and
by the SCSI changer driver to load the correct VSDs.

Consequently, the API of the present invention,
among other advantages described throughout this
specification, has the advantage of supporting many
different medium changer device vendors and status
parameters and products, as well as any particular
features (up to 32 in the specific embodiment described
below) that a particular changer device may have. This
allows the applications program to tailor itself to any
given medium changer device, thereby making use of the
flexibility and expandability of the API.

BRIEF DESCRI N OF THE DRAWIN

FIGURE 1 is a perspective view of one example of
a medium changer device having instances of the basic
four types of elements defined by the SCSI-2
specifications.

FIGURE 2 illustrates the multilayered architecture
of a software system in which the API of the present
invention is layered.

FIGURES 3A and 3B illustrate data structures of
the API of the present invention useable in a computer
system.

FIGURE 4 1is a flow diagram of the overall
procedure of the API of the present invention.

FIGURE 5 is a flow diagram illustrating the
procedure in which the API of the present invention
initializes a medium changer device.

FIGURE 6 is a flow diagram showing the procedure
in which the API of the present invention performs
medium changer device functions.

PCT/US95/10763

10

15

20

25

30

WO 96/06393

-8-

FIGURE 7 1is a flow diagram illustrating the
procedure in which the API of the present invention
performs de-initialization of the medium changer
device.

DETAILED DE PTION OF THE DRAW

Fig. 1 illustrates a representative example of a
medium changer device 10 that has a set of four classes
or types of discrete physical elements defined by SCSI-
2 specifications. In this particular example, the
medium changer device 10 is a tape medium changer 12,
although the principles of the API of the present
invention apply to other media and media changer
devices such as disk and CD-ROM. Instances of four
elements are illustrated as (1) one or more storage
elements 14 storing a plurality of tape cassette media
16, (2) one or more drive elements 18 for reading and
writing one of the loadable tape media 16, (3) a
transport element 20 which is the location of a given
tape medium 16 while the medium is being moved to
another element such as the drive element 18, and (4)
an import/export element or portal 22 showing the
location for inserting and removing media 16 from the
tape medium changer 12. Each of these elements is an
addressable element having, for example, a unique 16-
bit address.

Fig. 2 illustrates the multi-layered software
architecture 24 of the present invention. As shown, at
the highest layer is a given applications program 26
which has been written to, among many other things,
cause the medium changer 12 to perform one or more
functions. A medium changer API 28 is layered directly
beneath the applications program 26 and interfaces the
applications program 26 with a medium changer 12. This
API 28 is neither a high level, highly abstract API

PCT/US95/10763

10

15

20

25

30

WO 96/06393

-9.

such as MountMedia (MEDIA_ID), nor is it defined at the
IOCTL level, such that the API may require new
application-level code be written for each new medium
changer 12 (only one changer 12 shown in Fig. 2) added
to a computer or a computer network system (not shown).

The API 28 communicates with the next layer of the
architecture 24 which is an I/O manager 30 of a given
operating system via a line 32 transferring API IOCTLs.
The API 28 can interface with any type of operating
system; however, for each 0.S., there will typically be
unique methods of obtaining a "handle" to a given
medium changer device 10, as well as a way to associate
which drives belong within the scope of that desired
medium changer device 10. A "handle" is a variable
that identifies an object; an indirect reference to an
operating system resource.

For example, under the 0.S. known as Windows NT
written and sold by bﬁcroéoft Corporation, Redmond,
Washington, the CreateFile () API would be called to
obtain a handle to a given medium changer device, while
the registry would be used to obtain SCSI bus
information to aid in making the associations as to
what drives belong in the scope of the medium changer,
and which drive element maps to which physical device.

The I/0 manager 30 interfaces with and selects any
of a plurality of vendor specific drivers 34 (VSDs)
over respective lines 36. In the particular example
shown, there are three VSDs 34a, 34b and 34c each of
which communicates with the I/0 manager 30 over a
respective line 36a, 36b and 36c. Vendor specific
processing occurs at the layer of each VSD 34. When an
API is executed, the I/O manager 30 uses the changer
handle to route the request to a proper VSD 34 and
process it.

PCT/US95/10763

10

15

20

25

30

35

WO 96/06393

-10-

The next layer of the software architecture 24 is
a conventional SCSI-2 compliant changer driver 38 which
interfaces with the VSDs 34 over lines 40 shown
respectively as 40a, 40b and 40c. The changer driver
38 is the layer that communicates with a SCSI
port/miniport driver(s) 41 which interacts with the
SCSI bus host adapter to drive the medium changer 12.

SCSI changer driver 38 will see what medium
changer or changers 12 are being supported by looking
at a VSD Load Table Database 42. The VSD Database 42
is used as the communication hub Dbetween the
applications program and the SCSI changer driver 38.
It contains Vendor and Product ID and the associated
VSD name for each device 12 the applications program 26
wishes to support, and for which there exists a VSD for
the SCSI changer drive 38 to load. Under the above-
mentioned Windows NT operating system, the registry
would be used for the VSD Database 42.

As already mentioned, the applications program
uses the VSD Database 42 as a method to tell the SCSI
changer driver 38 what changers it wants support for.
This Database 42, described more fully below, is
created by the applications program at installation
time on a computer system (not shown), and devices may
be added or deleted as desired at a later time.
Depending on the 0.S., changes to the VSD Database 42,
might not be recognized until the drivers are re-
loaded, or the operating system re-booted.

Since the SCSI-2 specification may be open for
individual interpretation, and it only requires one
functional changer command, i.e., Move Medium, most all
changer manufacturers are producing a different device
from the perspective of the SCSI command interface and
the data pages that are returned from the device.
Thus, the VSDs 34 are important in the architecture of

PCT/US95/10763

WO 96/06393 PCT/US95/10763

-11-

this invention. A given VSD 34 should make any
digressions from the SCSI-2 specification transparent
at the API level, and the VSD 34 should take advantage
of any vendor unique commands that make compliance to
the rules of the API easier.

The API 28 of the present invention has ten calls
1-10 for any applications program 26 utilizing the
medium changer 12. These are defined generally as
follows and thereafter in full detail:

10

15

20

WO 96/06393 PCT/US95/10763

-12-

API 28 Definitiong:

1. Changer_ Get_Element_Status

Returns the current status of a given element 14,
18, 20 and 22 in a given medium changer 12.

2. Changer_ Get_Parameters

Returns the capabilities of a given medium changer
12,

3. Changer_Get_Status
Returns the status of a given medium changer 12.

4, Changer_Initialize_ Element_Status
Resets the status of given elements 14, 18, 20 and
22 in a given medium changer 12, and initializes
the changer with the status of those elements.

5. Changer_ Manual_ Access
Locks/unlocks a given medium changer 12,
preventing/allowing the user manual access to
media 16.

6. Changer_Move_Medium

Moves media 16 in a given medium changer 12.

7. Changer_ Portal_Operation

10

15

20

25

WO 96/06393 PCT/US95/10763

-13-

Opens or closes a given portal 22 in a given
medium changer 12, enabling/disabling the user
from inserting/removing media wvia the given
portal.

8. Changer_Position_Transport

Positions a given transport 20 to a given element
address.

9. Changer_ Reserve_Release

Reserves/Releases given elements 14, 18, 20 and 22
in a given medium changer 12 for the current

initiator.

10. Changer_Scan_Media_Code

Scans the media code on media 16 at given element
addresses.

A more detailed description of each call 1-10 will
be given with reference to call parameters and data
structures which are members or fields. There are
various types of parameters which have symbols in the
detailed description, as follows:

Symbol Type
boolean
character
short
dw double word
h handle (0S specific)

P pointer

10

15

20

25

30

35

WO 96/06393

-14-

For example, if a given parameter has the symbol
pdw, that is a pointer to a double word.

Each detailed definition of a <call 1lists
information about parameters that are input by the
applications program 26 to the API 28, followed by a
description of the data structure member associated
with that call. For example, for the call Changer_Get
Element_Status there is a listing:

IN DWORD dwElementAddress;
which is a double word identifying the address of an
element 14, 18, 20 or 22 where status is to be
reported.

An example of a data structure member for that
call Changer_Get_Element_Status is listed as:

dwSourceAddress
which is the source address a medium 16 at
dwElementAddress (another parameter) was moved from.

Fig. 3A and 3B illustrate, as examples, two
respective data structures whose members are used in
connection with two calls. These are the calls Changer
Get__Element__Status and Changer Get_ Parameters. As
shown in Fig. 3A, and with reference to the detailed
definition of this call given below, this data
structure has several members or fields which include
a source address (SA), primary media code (PMC),
alternate media code (AMC), and element status (ES).
The field ES is, for example, a 32-bit field in which
a "1" in a particular bit position represents a defined
condition as specified in the detailed listing below.
For example, a "1" in the bit position identified in
the detailed 1listing ELEMENT__ACCESS means that the
transport element(s) 20 is currently allowed access to
an element at the parameter dwElementAddress (which is
the address of the element whose status is to be
reported) .

PCT/US95/10763

10

15

20

WO 96/06393

-15-

As shown in Fig. 3B, the data structure member has
several members or fields which include a vendor ID
field (VID), a product ID field (PID)... and a features
field FTRs. The field VID contains information about
the specific vendor of a given tape medium changer 12
as returned by a SCSI-2 command and the field PID
contains information about the specific medium changer
12 as returned by a SCSI-2 command. The field FTR is
a 32-bit field in which a "1" in a given bit position
indicates that the corresponding feature is supported.
For example, a "1" in the bit position Move_Drive_To
Drive means that the medium changer 12 requires only
one changer move medium command to move media between
drive elements 18.

Thus, these 32-bit features parameters and status
parameters provide for an API 28 that is flexible and
expandable by being able to store up to 32 features and
status information, respectively.

The detailed definitions of the API calls 1-10,
therefore, are as follows:

PCT/US95/10763

10

15

20

25

30

WO 96/06393

PCT/US95/10763

-16-

(1) Changer_Get_Element_Status

DWORD ChangerGetElementStatus(hDevice, dwElement Address,
pdwBufferSize, peiElementInformation)

IN HANDLE
IN DWORD
IN PDWORD
IN PELEMENT_ INFORMATION

hDevice;
dwElementAddress;
pdwBufferSize;
peiElementInformation;

Parameter Description

hDevice Handle of the medium changer device on
which to obtain an element’s status.

dwElementAddress Address of the element whose status will
be reported.

pdwBufferSize Pointer to a dword that should have the

peiElementInformation

Member

size, in bytes, of the buffer specified
by peiElementInformation. If the buffer
is too small, the dword receives the
required size.

Pointer to a structure containing the
status information of the element at
dwElementAddress. The following
describes the structure members:

Degcription

dwSourceAddress

cPrimaryMediaCode [n]

The source address the media at
dwElementAddress was last moved £from.
Valid only if media is present at
dwElementAddress, and the SOURCE_ADDRESS
VALID status is set.

Null-terminated string containing the
media code of the media at
dwElementAddress, accessible via a
ChangerMoveMedium command without the

10

15

WO 96/06393

cAlternateMediaCode [n]

dwElementStatus

PCT/US95/10763

-17-

invert bit set. Valid only if the device
has media code scanning capabilities, and
media is present at dwElementAddress.

Null-terminated string containing the
media code of the media at
dwElementAddress, accessible via a
ChangerMoveMedium command with the invert
bit set (the other side of the media).
Valid only if the device has media code
scanning capabilities, inverting media is
supported, and media is present at
dwElementAddress.

Contains supported information about the
element at dwElementAddress. A value of
1 in the proper bit-field represents a
given condition. The following describes
the element status:

10

15

20

25

30

35

WO 96/06393

Value (1 in proper
EXPORT_PORTAL_ACCESS

ELEMENT_ACCESS

IMPORT_PORTAL_ACCESS

INVERTING_TRANSPORT

LAST_PORTAL_ACCESS

MEDIA_INVERTED

i

PCT/US95/10763

-18-

fiel Description
The changer currently allows exporting

media out of the scope of the medium
changer device via the portal at
dwElementAddress. valid only if
dwElementAddress is a portal element
address.

The transport element(s) are currently
allowed access to the element at
dwElementAddress. Vvalid only if
dwElementAddress is a portal element
address, storage element address, or
drive element address.

The changer currently allows importing
media into the Bcope of the medium
changer device via the portal at
dwElementAddress. valid only if
dwElementAddress is a portal element
address.

The element at dwElementAddress allows
media to be inverted with a
ChangerMoveMedium command. Valid only if
dwElementAddress is a transport element
address.

Indicates the media at dwElementAddress
was placed there by an operator.
Otherwise, the media was placed there by
a transport element. Valid only if
dwElementAddress is a portal element
address, and the MEDIA_PRESENT status is
set.

The media at dwElementAddress has been
inverted by a ChangerMoveMedium command
since the media was last at
dwElementAddress. Valid only if the
MEDIA_ INVERTED_VALID status is set.

WO 96/06393 PCT/US95/10763

-19-
MEDIA_INVERTED_VALID Indicates the MEDIA__INVERTED status is
valid.
MEDIA_PRESENT Media is currently present at
dwElementAddress. valid only if
supported.

SOURCE_ADDRESS_VALID Indicates that dwSourceAddress is valid.

Returns If the function is successful, the return
value is COMPLETE_SUCCESS. Otherwise it

is an error code.

10

15

20

25

WO 96/06393 PCT/US95/10763

-20-

(2) Changer_Get_Parameters

DWORD ChangerGetParameters(hDevice, pdwBufferSize,
pciChangerInformation)

IN HANDLE hDevice;
IN PDWORD pdwBufferSize;
IN PCHANGER_INFORMATION pciChangerInformation;

Parameter Description
hDevice Handle of the medium changer device from

which to return device capabilities.

pdwBufferSize Pointer to a dword that should have the
size, in bytes, of the buffer specified
by pciChangerInformation. If the buffer
is too small, the dword receives the
required size.

pciChangerInformation Pointer to an information structure from
which the application can configure
itself to utilize the medium changer
driver to its fullest capabilities. The
following describes the structure

members:
Member Description
cVendorID (] Null-terminated string containing the

vendor information as returned by a SCSI-
2 inquiry command.

cProductID([] Null-terminated string containing the
product information as returned by a
SCSI-2 inquire command.

dwNumTransportElements Number of transport elements in the
medium changer device.

10

15

20

25

30

WO 96/06393

dwFirstTransportAddress

dwNumDriveElements

dwPirstDriveAddress

dwNumStorageElements

dwFirstStorageAddress

dwNumPortalElements

PCT/US95/10763

-21-

Element address of the first transport

element in the medium changer device.

Number of drive elements in the medium

changer device.

Element address of the first drive
element in the medium changer device.

Number of storage elements in the medium
changer device.

Element address of the first storage
element in the medium changer device.

Number of import/export elements in the
medium changer device.

dwFirstPortalAddress Element address of the first
import/export element in the medium
changer device.

dwFeatures Changer features. A value of 1 in the
proper bit field indicates a supported
feature. The following pages describe
the features:

Val 1l in pr r bit £3i D ription

EJECT_MEDIA_ BEFORE_INITIALIZE The device requires that in a drive

EJECT_MEDIA_BEFORE_MOVE

element be ejected (unloaded)
b e £f or e callimng
ChangerlInitializeElementStatus to
initialize that drive element.

The device requires that media in a
given drive element be ejected
(unloaded) before calling
ChangerMoveMedium with that drive
element or the source element
address.

10

15

20

25

30

WO 96/06393

INITIALIZE_BY_ ELEMENT

INITIALIZE_SCANS_MEDIA_CODE

MOVE_DRIVE_TO_DRIVE

MOVE_STORAGE_TO_STORAGE

MOVE_TRANPORT_TO_TRANSPORT

PORTAL_OPERATION_REQUIRED

PORTALS_PRESENT

PORTAL_ELEMENTS_AS_STORAGE

PCT/US95/10763

-22-

Supports initializing a single
given element via
ChangerInitializeElementStatus.

ChangerInitializeElementStatus also
automatically scans the code of the
media at the specified element(s).

The device supports moving media
between drive elements: You can
specify both the source and
destination element address to be
that of drive elements in a
ChangerMoveMedium command.

The device supports moving media
between storage elements: You can
specify both the source and
destination element address to be
that of storage elements in a
ChangerMoveMedium command.

The device supports moving media
between transport elements: You
can specify both the source and
destination element address to be
that of transport elements in a
ChangerMoveMedium command.

The portal (s) must be opened/closed
each time media is to be moved
into/out of the scope of the medium
changer device.

The medium changer device has
import/export portal(s).

The portal element(s}) can be used
to (temporarily) store media. A
portal must be closed to be used as
a (temporary) storage location.

WO 96/06393 PCT/US95/10763

-23-

POSITION_TRANSPORT The medium changer device supports
positioning the transport elements.

PREVENT_MANUAL_ACCESS Supports locking the device,

preventing the user from manual

5 operation of panel controls and
media.

REPORT_MEDIA_PRESCENCE The medium changer device has the

ability to report the prescence of
media at all of its element
10 addresses.

RESERVE_RELEASE_DEVICE Supports reserving/releasing all
elements in the medium changer
device at once.

RESERVE_RELEASE_ELEMENTS Supports reserving/releasing
15 specified elements in the medium
changer device.

SCAN_MEDIA_CODE_ALL_ELEMENTS Supports scanning the media code of
all the -elements at once via

ChangerScanMediaCode.
20 SCAN_MEDIA_CODE_BY_ELEMENT Supports scanning the media code of
a single given element via

ChangerScanMediaCode.
TRANSPORT_ELEMENT_ ILLEGAL It is illegal to &specify a

transport element address as a
25 source or destination element
address in a ChangerMoveMedium
command . The command expects the
source and destination element
addresses to be element addresses
30 of one of the other valid element

types.

TRANSPORT ELEMENT REQUIRED It is required for every
ChangerMoveMedium command, either
the source or destination element

WO 96/06393 PCT/US95/10763

-24-

address must be the element address
of the transport element.

Returns If the function is successful, the return value is
COMPLETE_SUCCESS. Otherwise it is an error code.

WO 96/06393 PCT/US95/10763

-25-

(3) Changer_Get_Status

DWORD ChangerGetStatus(hDevice)

IN HANDLE hDevice;
Parameter Description
5 hDhevice Handle of the medium changer device on

which to get the status.

Returns If the device is ready to accept a
command without returning an error, the
return value is COMPLETE SUCCESS.

10 Otherwise, it is an error code.

10

15

20

WO 96/06393 PCT/US95/10763

-26-

(4) Changer_Initialize_Element_Status

DWORD ChangerInitializeElementStatus(hDevice, dwElementAddress,

dwSpecialInitialize)

IN HANDLE hDevice

IN DWORD dwElementAddress;

IN DWORD dwSpecialInitialize;

Parameter Description

hDevice Handle of the medium changer device to
initialize/reset element status.

dwElementAddress Address of the element to be initialized.
Valid only if supported. Ignored if the
INITIALIZE__ ALL_ELEMENTS bit is set in
dwSpeciallInitialize.

dwSpecialInitialize If non-zero, indicates a special function
of the initialize process. The following
describes the special initialize.

Vval b o r i ion

INITIALIZE_ALL_ ELEMENTS Initialize all elements in the medium
changer device.

Returns If the function is successful, the return
is COMPLETE_SUCCESS. Otherwise it is an
error code based on the first error
encountered.

WO 96/06393 PCT/US95/10763

-27-

(5) Changer Manual_Access

DWORD ChangerManualAccess (hDevice, bPreventAllow)

IN HANDLE hDevice;

IN BOOL bPreventAllow;

Parameter Description

hDevice Handle of the medium changer device on

which to prevent/allow manual operation
of panel control (s) and media.

bPreventAllow If TRUE, prevents the user from manual
operation of panel control(s) (eject,
move, etc...) and media. If FALSE,
allows the user manual operation of panel
control (s) and media.

Returns If the function is successful, the return
value ig COMPLETE_SUCCESS. Otherwise it
is an error code.

10

15

20

25

WO 96/06393

-28-

(6) Changer_Move_Medium

DWORD ChangerMoveMedium { hDevice, dwTransportAddress,
dwSourceAddress, dwDestinationAddress, dwSpecialMove)

IN HANDLE hDevice;

IN DWORD dwTransportAddress;

IN DWORD dwSourceAddress;

IN DWORD dwDestinationAddress;

IN DWORD dwSpecialMove;

Parameter Description

hDevice Handle of the medium changer device on

which to perform a move medium command.
All portal elements must be closed before
a move can be performed.

dwTransportAddress Element address of the transport to
perform the move.

dwSourceAddress Source element address.

dwDestinationAddress Destination element address.

dwSpecialMove If non-zero, indicates a special function
of the move process. The following

describes the special moves:

Vvalue (1 in proper bit field) Description
INVERT_MEDIA Invert (flip) the media prior to moving

to the destination element address.

Returns If the function is successful, the return value is
COMPLETE__SUCCESS. Otherwise it is an error code.

PCT/US95/10763

10

15

20

PCT/US95/10763

WO 96/06393
-29-
(7) Changer_Portal_Operation
DWORD ChangerPortalOperation (hbevice, dwPortalAddress,

dwTransportAddress, bOpenClose)

IN HANDLE hDevice;

IN DWORD dwPortalAddress;

IN DWORD dwTransportAddress;

IN BOOL bOpenClose;

Param r Description

hDevice Handle of the medium changer device on
which to open/close the portal at
dwPortalAddress.

dwPortalAddress Element address of the portal element to
open/close.

dwTransportAddress Element address of the transport to be
associated with the portal operation. If
there is only one transport element in
the device, then the element address of
that transport should be used.

bOpenClose Indicates open or close operation: TRUE
open the portal, FALSE close the portal.

Returns If the function is successful, the return value is

COMPLETE_SUCCESS. Otherwise it is an exrror code.

* Manual access to the device must be enabled before calling this

API.

10

15

20

25

WO 96/06393

-30-

{8) Changer_Position_Transport

DWORD ChangerPositionTransport(hDevice, dwTransportAddress,
dwDestinationAddress, dwSpecialPosition)

IN HANDLE hDevice;

IN DWORD dwTransportAddress;

IN DWORD dwDestinationAddress;

IN DWORD dwSpecialPosition;

Param r Description

hDevice Handle of the medium changer device on
which to position a given transport
element.

dwTransportAddress Element address of the transport to
position.

dwbDestinationAddress Destination element address. Must be the
address of a drive, storage, or portal
element only.

dwSpecialPosition If non-zero, indicates a special function
of the position process. The following
describes the special positions:

Value 1l in proper bit field Description

INVERT_TRANSPORT Invert (flip) the transport element while
positioning to the destination element
address.

Returns If the function is successful, the return value is

COMPLETE__SUCCESS. Otherwise it is an error code.

PCT/US95/10763

10

15

20

25

30

WO 96/06393

PCT/US95/10763

-31-

(9) Changer_Reserve_Release

DWORD ChangerReserveRelease(hDevice, 8ID, dwStartingAddress,

dwRange, dwOperation)

IN HANDLE hDevice;

IN SHORT sID;

IN DWORD dwStartingAddress

IN DWORD dwRange ;

IN DWORD dwOperation;

Parameter Description

hDevice Handle of the medium changer device on
which to Reserve/Release elements.

8ID The ID to be associated with the
element (s8) to be Reserved, or the ID of
the element(s) to be Released. For a
Reserve operation, the ID is an arbitrary
value in the range 0-255. 1Ignored if the
Reserve/Release operation is of
RESERVE/RELEASE_DEVICE type.

dwStartingAddress The starting element of a specific
element-type to be Reserved. Ignored
unless RESERVE_ELEMENTS operation. Valid
only if supported.

dwRange Number of elements from
dwStartingBElementAddress to be reserved.
Ignored unless RESERVE ELEMENTS
operation. Non-zero values are valid
only if reserving specified elements is
supported.

dwOperation Type of Reserve/Release operation to

perform.

Value (One of the following) Degcription

10

WO 96/06393

PCT/US95/10763

-32-

RESERVE_ELEMENTS Reserve

element -

RELBEASE_ELEMENTS Release

element -

RESERVE_DEVICE Reserve

changer
RELEASE_DEVICE Release
changer

If the function is
COMPLETE__ SUCCESS.

Returns

specified elements of a specific
type.

specified elements of a specific
type.

all elements in the medium
device.

all elements in the medium
device.
successful, the return value is

Otherwise it is an error code.

10

15

20

25

WO 96/06393

-33-

(10) Changer_Scan_Media_Code

DWORD ChangerScanMediaCode (hDevice, dwElementAddress,
dwTransportAddress, dwSpecialScan)

IN HANDLE hDevice;

IN DWORD dwElementAddress;

IN DWORD dwTransportAddress;

IN DWORD dwSpecialScan;

Parameter Description

hDevice Handle of the medium changer device on

which to scan media codes.

dwElementAddress Address of the element to be scanned.
Valid only if supported. 1Ignored if the
SCAN___ALL ELEMENTS bit is set in
dwSpecialScan.

dwTransportAddress Element address of the transport to be
associated with the scan operation. If
there is only one transport element in
the device, then the element address of
that transport should be used.

dwSpecialScan If non-zero, indicates a special function
of the scan process. The £following

describes the special scan:

Value 1l in proper bit fiel D ription
SCAN_ALL_ELEMENTS Scan media at all elements in the medium
changer device.

Returns If the function is successful, the return value is
COMPLETE SUCCESS. Otherwise it is an error code
based on the first error encountered.

PCT/US95/10763

10

15

20

25

30

35

WO 96/06393

-34-

Fig. 4 is a flow diagram used to explain one
manner in which the API 28 of the present invention may
be used on a computer system (not shown) together with
the execution of components of the software shown in
Fig. 2. On start-up, the API 28 will perform medium
changer initializations (block 52). If the
initializations are successful (block 54), then the API
28 will cause performance of the requested changer
functions (block 56) as will be further described. The
primary functions that may be performed are for the
medium changer 12 to move a medium 16, position the
transport, do a portal operation, scan the media and/or
get the status of a given element 16. Once the changer
functions are successfully completed, the de-
initialization of the changer 12 occurs (block 58) and
the program is done (block 60). If the changer
initializations are not successful (block 54) then the
program is done (block 60).

Fig. 5 is a flow diagram showing in more detail
the initializations that are performed by the API 28 of
the present invention with reference to a number of the
calls (1)-(10). The first step is to obtain a handle
for the changer (block 62). Next is the call of
Changer_Get_Status which returns the status of medium
changer 12 (block 64). If there is no error (block
66), the next call is Changer_Get__Parameters (block
68), which returns the capabilities of medium changer
12. If there is no error (block 70), the next call is
Changer_Reserve_Release (block 72), to reserve elements
14, 18, 20 and 22 in the medium changer 12 for the
initiator being accessed by one of the applications
program 26 that may be on a network and which may be
initiating this request. Next, if there is no error
(block 74), call Changer_Manual__Access (block 76) is
executed, which locks up the changer 12 and prevents

PCT/US95/10763

10

15

20

25

30

35

WO 96/06393

-35-

manual access to the media 16. Then, if there is no
error (block 78), all the elements of medium changer 12
are initialized by calling Changer_Initialize_Element
Status (block 80). If there is no error (Block 82),
the application may then enter a loop (Blocks 84, 86,
87, 88) obtaining information about each element by
calling Changer_Get_Element_Status (Block 84). If
media is present at a particular element, and the
device supports scanning the media code ("bar code"),
Change_Scan_Media_Code may then be called (Block 84) to
get the media code. The information returned from
these calls may be used at this time to build (Block
87) or if persistent, verify the Internal Inventory.
If the status of all the elements has been obtained
(block 88), then the initializations have been
successfully performed and this program is done (block
90).

As shown on the right side of the flow diagram of
Fig. 5, a series 92 of error recovery procedures will
occur in connection with each call. For example, if
there is an error (block 66) during or on the
completion of the call Changer_Get_Status (block 64),

then an error handler is invoked (block 94). If the
error is recoverable (block 96), then the call (block
64), 1is executed again. If the error is not

recoverable (block 96), then initialization has failed
and this program is done (block 98). As can be seen in
Fig. 5, a similar error handler procedure for each call
can be executed.

If all the initializations have been performed as
illustrated in Fig. 5, then the calls shown in Fig. 6
for performing the requested changer functions (block
56) are executed. First, the call Changer_Get_Status
(block 100) is executed. If there is no error (block
102), then any one of five functions being requested is

PCT/US95/10763

10

15

20

25

30

35

WO 96/06393

-36-

executed (block 104). These functions can be carried
out by the calls Changer_Move_Medium, which moves media
16 in the medium changer 12, Changer_Position_Transport
which positions the element 20 to a given element
address, Changer_Portal_Operation which opens or closes
portal element 22 to enable or disable a user from
inserting or removing media 16 into the scope of the
changer, Changer_Scan_Medium_Code to scan media code at
a given element address, or Changer_Get_Element_Status
which returns the status of a given element of medium
changer 12. If there is no error (block 106), then the
Internal Inventory (described more fully below) is
updated, if necessary (Block 107), and the changer
function has been completed (block 108). Again, a
simple error handle procedure 92 similar to that as was
shown in Fig. 5 is used as shown for each call (block
100) and (block 104).

Fig. 7 illustrates the flow for performing changer
de-initialization (block 58). First, the call Changer
Manual_Access (block 110) is executed to allow manual
access to the medium changer 12. If there is no error
(block 112) then the call Changer__Reserve__Release
(block 114) is executed to release any lock on the
changer so it may be then used by other initiators. If
there is no error (block 116) then de-initialization is
done (block 118). RAgain, as shown to the right of Fig.
7, a simple error handle 92 procedure is invoked at
each call.

With respect to the Internal Inventory (Block 107
of Fig. 6) and the VSD Load Table Database 42, there is
a difference between the two. The Internal Inventory
is an internal database, stored in the computer system
(not shown), unique to each changer that the
applications program 26 has the option of generating.
It will contain information about the elements in the

PCT/US95/10763

10

15

20

25

30

35

WO 96/06393

-37-

changer 12 such as (i) are they full of media, (ii) if
so, what is the media code of that media, (iii) is this
one or two sided media, (iv) where was the media last
moved from, etc... This Internal Inventory is then
updated when required after performing certain changer
functions such as Changer Move_Medium. This Internal
Inventory also has the option of being persistent, or
being generated every time at initialization of the
programs application. The persistent Internal Inventory
is especially useful in very large changers 12, where
numerous media and drive elements exist, and
initialization of every element would take a long
period of time. Should for some reasons the
applications program shut down, it can be re-started,
and the persistent Internal Inventory can be used to
continue operations. The applications program would
also have the option of calling certain changer API’s,

‘and comparing the results to its Internal Inventory to

detect problems, discrepancies, or possible wuser
tampering inside the changer 12 while the applications
program 26 was down.

Another advantage to building and maintaining an
Internal Inventory (persistent or not) is increased
performance and reliability. Since the changer APIs
require communication with the changer, it is more time
consuming than looking up the desired information in
the Internal Inventory. Also, most of the information
returned from the changer APIs is obtained from the
changer’s firmware, which is equally prone to bugs as
software.

More specifically, the Internal Inventory, whether
it is a temporary or persistent database, contains
information about the media, relative to the elements
in a changer. The applications program can continually
access this database to verify user’'s requests are

PCT/US95/10763

10

15

20

25

30

WO 96/06393

-38-

valid, or to report back information to the user. It
can be used to determine error or inconsistencies with
what the APIs are reporting back as well. An advantage
to a persistent inventory is the increased ability to
recover from power-failures, one of storage management
applications’ biggest nightmares. In such a situation
a changer device’s firmware may be reset, such that it
cannot provide reliable information regarding its
elements relative to the state it was in prior to the
power-outage. But if a persistent Internal Inventory
(database) is used, the applications program could
reference that, and most likely figure out the state it
was in when it was last shut-down, and continue with
operations, reporting any necessary errors/warnings to
the user. Not only does this persistent Internal
Inventory help with regards to the changer, but to the
devices IN the changer. If there is media in the
drives, and there is a power outage, then when the
applications program starts back up, it may be in an
error state relative to those drives because it was not
expecting media to be in them at start-up. The
Internal Inventory could then be used to tell the
applications program what storage elements those tapes
came from, and decide how to recover, whether to
continue drive operations, or move them back to their
original storage element.

If the Internal Inventory method is chosen, as
indicated above a unique Internal Inventory Database is
required for each changer the applications program 26
wishes to concurrently access through the changer APIs.

PCT/US95/10763

10

15

20

25

WO 96/06393

-39-

PCT/US95/10763

Examples of the VSD Load Table Database 42 and the
Internal Inventory database are given below.

VSD Load Table Database example:

Vendor Product VSD Name Comment

Exabyte EXB-120 EXB120.VSD Exabyte 120 changer

L}

[J

[]

Archive Python DIAMDBAK.VSD Conner Diamondback
changer.

Internal Inventory Database example for a given

changer:

(May contain more or less fields of information, at the

discretion of the application developer)

Element Element Media Pri. Media | Alt. Media | Media | Current | Address
Type Address Present | Code Code Two Media Media
Sided? | Side Last

Moved
From

Drive 116 Y "842C..." na N Front 0

Drive 117 N na na na na na

Drive 118 Y “942D..." na N Front 85

Drive 119 Y "345C..." na N Front 32

Storage 0 N na na na na na

[] L)

[] L]

[*

Storage 115 y "539D..." na N Front 116

Portal 120 N na na na na na

10

15

20

25

30

WO 96/06393 PCT/US95/10763

-40-

II Transport | 121 N na na na na na

na = not available

The API 28 allows for not just one, but two
different approaches in its use. One is an interactive
approach where the APIs are called every time
information is needed about an element or prior to
performing an operation. This approach relies on the
device’s ability to report the information based on the
devices firmware, which is the origin of the
information that is reported back through the APIs.

The second approach is to initially call the
information APIs (i.e. ChangerGetElementStatus) to
build the Internal Inventory, and then use that
inventory whenever possible to obtain information. The
changer APIs then only to need to be called for
functional requests. The information in the Internal
Inventory can also be used to check against an
informational API, or to recover from an error state.

In summary, the conceptual definition of the
changer API of the present invention is different than
that of the low level IOCTL kernel API and abstract
high level API described above. The changer API of the
present invention is defined such that it creates a
very device-centric view of a changer object so that
the applications program can tailor itself to use the
different physical changers 12 in a more organized
fashion without actually knowing what the make and
model of changer 12 it is using. The API 28 is a layer
over the IOCTL API to hide the exact driver/device
protocols, making the API 28 more 1like what
applications programmers are used to interfacing with.

Properly implemented there will be far less

10

15

20

25

30

35

WO 96/06393

-41-

coding, testing, and bugs in an application using the
API 28 of the present invention. If a given device 12
has some kind of new feature, it can be added to the 32
bit features word (Fig. 3B), without breaking the
syntax of the API 28. Then, minimal lines of code
would typically be needed to recognize and act on that
feature. And other previously developed device drivers
34 do not need to be altered because they do not return
that feature, so the applications program 26 will never
enter a code path assuming that feature for those
devices 12.

The task of making the API 28 conform to its
definition takes place under the API before making the
IOCTL call, or in the drivers. The application no
longer needs to be altered every time a device 12 that
needs special treatment to meet the definition of the
changer API 28 is to be supported. In the rare
instance when additional code is required in the
applications program 26, it is clearly defined and
organized, and once put in place, will work for every
device 12 that requires the support of that new code.
Aiding in accomplishing this is the design of the
VSD/SCSI Changer Driver architecture of Fig. 2 lends
itself to better organization, separation, and ease of
adding new device support at the driver 1level than
traditional class or filter driver architectures. Only
VSDs 34 should have to be added/altered, not the SCSI
changer driver 38.

None of this precludes an applications programmer
from wrapping a higher level API around the portions of
the API 28 of the present invention to help abstract
the changer operations. But if properly defined and
implemented, this higher level API wrapper would not
have the risks discussed above associated with actually
defining the device interface at that higher, more

PCT/US95/10763

10

15

20

25

30

35

WO 96/06393

-42-

abstract level. This illustrates the flexibility of
changer APIs 28.

Furthermore, because of the design of the API 28,
the applications program 26 views a medium changer 10
as an object with a handle, which lends itself to be
easily utilized using object-oriented program
methodologies. For example, a C** class "wrapper" can
be placed around the API to create a medium changer
"class", which when instantiated, would become a medium
changer object.

Finally, previously there was described an error
handling procedure 92 for various API calls. Below is
a set of medium changer API error possibilities,
together with unrecoverable and recoverable errors,
that the API can return. These are a very robust set
of error codes, including many that are not implied in
the SCSI-2 specification, such as errors related to
portals, media code scanning, current device modes and
firmware update warnings.

TQTAL MEDIUM CHANGER API ERROR PQSSIBILITIES

COMPLETE_SUCCESS
MCERROR_HARDWARE
MCERROR_DEVICE_BUSY
MCERROR_BUS_WAS_RESET
MCERROR_INSUFFICIENT_MEMORY
MCERROR_INVALID_REQUEST
MCERROR_NO_SUCH_DEVICE
MCERROR_DRIVER_TIMEOUT
MCERROR_INCORRECT_BUFFER_SIZE
MCERROR_MEDIA_NOT_EJECTED
MCERROR_INVALID_ELEMENT_ADDRESS
MCERROR_DESTINATION_ELEMENT FULL
MCERROR_SOURCE_ELEMENT EMPTY
MCERROR_NOTHING_MOVED
MCERROR_DISCONNECTED_DURING_CMD
MCERROR_TRANSPORT_PREVIOUSLY_FULL
MCERROR_DRIVE_DOOR_CLOSED

PCT/US95/10763

10

15

20

25

30

35

40

WO 96/06393

-43-

MCERROR_DEVICE_LOCKED
MCERROR_INVALID_RANGE
MCERROR_DOOR_IS_OPEN
MCERROR_DOOR_WAS_OPENED
MCERROR_PORTAL_IS_OPEN
MCERROR_PORTAL_WAS_OPENED
MCERROR_MAGAZINE_CHANGED
MCERROR_MAGAZINE_NOT_PRESENT
MCERROR_DRIVE_NOT_PRESENT
MCERROR_DRIVE_MEDIA_LOAD_FAILED
MCERROR_INCOMPATIBLE_MEDIA
MCERROR_INVENTORY_MAY_BE_CORRUPT
MCERROR_CANNOT_READ_LABEL
MCERROR_INCORRECT_MODE
MCERROR_MODE_WAS_CHANGED
MCERROR_FIRMWARE_WAS_CHANGED
MCERROR_RESERVATION_CONFLICT
MCERROR_VSD_DRIVER_CALL_FAILED
MCERROR_SCSI_CHANGER_INTERNAL
MCERROR_UNRECOGNIZED_STATUS

UNRECOVERABLE ERRORS:
MCERROR_HARDWARE
MCERROR_INSUFFICIENT_MEMORY
MCERROR_DRIVER_TIMEOUT
MCERROR_ INVALID_REQUEST
MCERROR_NO_SCH_DEVICE
MCERROR_VSD_DRIVER_CALIL_FAILED
MCERROR_SCSI_CHANGER_INTERNAL
MCERROR_UNRECOGNIZED_STATUS

RECOVERABLE ERRORS:

Common to all medium changer APIg:
MCERROR_DEVICE_BUSY

MCERROR_BUS_WAS_RESET
MCERROR_DISCONNECTED_DURING_CMD
MCERROR_DOOR_IS_OPEN
MCERROR_DOOR_WAS_OPENED
MCERROR_PORTAL_WAS_OPENED
MCERROR_MAGAZINE_CHANGED
MCERROR_INCOMPATIBLE_MEDIA
MCERROR_RESERVATION_CONFLICT

PCT/US95/10763

10

15

20

25

30

WO 96/06393 PCT/US95/10763

-44-
ChangerGetElementStatus () additional error posgibilitieg:

MCERROR_INVENTORY_MAY_BE_CORRUPT
MCERROR_MAGAZINE_NOT_PRESENT
MCERROR_CANNOT_READ_LABEL

h ba Par s itional error ibili
ChangerGetStatus () additional error poggibilitiesg:

ChangerInitializeElementStatus() additional error pogsibilities:

MCERROR_INVALID_ELEMENT_ADDRESS
MCERROR_INVALID_RANGE

ChangerManualAccess () additional error possibilities;

ChangerMoveMedium() additional error poggibilities:
MCERROR_MEDIA_NOT_EJECTED
MCERROR_INVALID_ELEMENT_ADDRESS
MCERROR_DESTINATION_ELEMENT_ FULL
MCERROR_SOURCE_ELEMENT EMPTY
MCERROR_NOTHING_MOVED
MCERROR_TRANSPORT_PREVIOUSLY_FULL
MCERROR_MAGAZINE_NOT_PRESENT
MCERROR_DRIVE_NOT_PRESENT
MCERROR_DRIVE_DOOR_CLOSED
MCERROR_DRIVE_MEDIA_LOAD_FAILED

ChangerPortalOperation() additional error poggibilities:

MCERROR_INVALID_ELEMENT_ADDRESS
MCERROR_DEVICE_LOCKED

ChangerPositionTransport () additional error possibilities:

MCERROR_INVALID_ELEMENT ADDRESS
MCERROR_DRIVE_NOT_PRESENT

MCERROR_MAGAZINE_NOT_PRESENT

h rR rveRele itional error ibilitiesg:
MCERROR_INVALID_ELEMENT_ADDRESS

MCERROR_INVALID_RANGE

WO 96/06393 PCT/US95/10763

-45-

MCERROR_INVALID_ELEMENT_ADDRESS
MCERROR_SOURCE_ELEMENT_EMPTY

10

15

WO 96/06393

-46-

The foregoing description of preferred embodiments
of the present invention has been provided for the
purposes of illustration and description. It is not
intended to be exhaustive or to limit the invention to
the precise forms disclosed. Obviously, many
modifications and wvariations will be apparent to
practitioners skilled in this art. The embodiments
were chosen and described in order to best explain the
principles of the invention and its practical
application, thereby enabling others skilled in the art
to understand the invention for various embodiments
said with various modifications as are suited to the
particular use contemplated. It is intended that the
scope of the invention be defined by the following
claims and their equivalents.

PCT/US95/10763

10

15

20

25

30

WO 96/06393

-47-
CLATMS
1. An applications program interface (API) for use in

a computer system for interfacing one or more
applications programs with one or more medium changer
devices, each one of the medium changer devices having
a plurality of addressable physical elements and being
capable of supporting at least one data storage medium,
comprising:

(a) a plurality of applications program
interface (API) calls for obtaining information
about the status of the elements of any of the
medium changer devices and the parameters of any
of the devices, and for moving the medium from one
of the elements to another of the elements of any
one of the devices; and

(b) wherein one of said calls has a data
structure including a plurality of first members,
one of said first members being for storing
information about the status of the elements, and
another of said calls has a data structure
including a plurality of second members, one of
said second members being for storing information
indicating one or more features that any one of
the devices supports.

2. An applications program interface (API) according
to Claim 1, wherein another of said plurality of calls
provides the applications program with the ability to
initialize the status of one or more of the elements of

one of the devices, element-by-element.

3. An applications program interface (API) according
to Claim 1, wherein another of said calls provides the
applications program with the ability to move the

PCT/US95/10763

WO 96/06393 PCT/US95/10763

-48-

medium, including inverting the medium prior to moving

the medium.

4. An applications program interface (API) according
to Claim 1, wherein said second members of said another
of said calls are for storing information about a
vendor of any one of the devices and about the device
itself.

5. An applications program interface (API), according
to Claim 1, wherein said another of said calls may
return information in addition to information
identified in SCSI-2 specifications.

6. An applications program interface (API) according
to Claim 5, wherein said additional information
includes PORTALS PRESENT and EJECT MEDIA BEFORE MOVE.

7. A method in a computer system for interfacing any
of a plurality of applications programs with any of a
plurality of medium changer devices supporting a set of
SCSI commands, using an applications program interface
(API), comprising:

(a) receiving from the applications program
a pointer to a data structure storing changer
device parameters from which the applications
program can configure itself to utilize a given
medium changer device;

(b) getting information about the vendor of
the device, the specific device itself, and the
features supported by the changer; and

(c) building an inventory as a database of
the information obtained from the API.

10

15

20

WO 96/06393

-49-

8. A multilayered software architecture for use in a
computer system for supporting one or more medium
changer devices comprising:

(a) an applications program;

(b) an applications program interface layered
beneath said applications program;

(¢) an I/0 manager of an operating system layered
beneath said applications program interface;

(d) a plurality of different vendor specific
drivers layered beneath said I/0O manager;

(e) a SCSI changer driver layered beneath said
plurality of vendor specific drivers for driving the
one or more medium changer drivers; and

(f) a database interfacing with said applications
program and said SCSI changer driver for storing

information.

9. A multilayered software architecture according to
Claim 8 wherein said applications program interface is
structured such that said applications program views
each of the medium changer devices as an object with a
handle.

PCT/US95/10763

WO 96/06393 PCT/US95/10763

1/8

10
\‘ /12
14/22
Door . —E | -;>16
- |-
‘ m.—
SjNNES — 20
i
THTTHTTITATIT]

FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 96/06393 PCT/US95/10763

2/8

Application 24

26 /

28 Changer API

ARCADA IOCTL

VSD
Database
42

0.S. I/0O Manager 30

VSD VSD VSD
34— 34a 34b 34c

SCSI
Changer
Driver 38

40

SCSI
Port/Miniport

Ll
SCS| Bus

FIG. 2

SCSI
Changer
12

SUBSTITUTE SHEET (RULE 26)

WO 96/06393 PCT/US95/10763

3/8

Alternate
Media
Code

Elem.
Status

1 2 32

SUBSTITUTE SHEET (RULE 26)

WO 96/06393 PCT/US95/10763

4/8

Perform Changer
Initializations
52

Perform Changer
Functions 56

Perform Changer
De-Initialization
58

INVOKE ERROR HANDLER{may or may not notify the user of the error.

FIG.4

SUBSTITUTE SHEET (RULE 26)

5/8

WO 96/06393
52 Perform Changer
Initializations
Get_Changer_Handle g2

Changer_Get_Status

64

Changer_Reserve_Release

(Reserve Device)

72

PCT/US95/10763

FIG.5A =

96

Error
Recoverable?

‘ Invoke Error Handler I

| Invoke Error Handler I

SUBSTITUTE SHEET (RULE 26)

WO 96/06393 PCT/US95/10763

6/8

Changer_|Initialize_Element_Status
(Initialize all Elements)

82 v
@ I Invoke Error Handler I
84

- N
Changer_Scan_Media_Code
Changer_Get_Element_Status

80

86

Build
Internal
Inventory

Invoke Error Handler

Add Information to
Internal Inventory

87

Done, Failed

88 Initialization 98

Done
All Elements?

Y

Done, Perform Changer
Initializations Successfully J~ 90

SUBSTITUTE SHEET (RULE 26)

WO 96/06393 PCT/US95/10763

7/8

Perform Changer
Functions gg

Changer_Get_Status

Y | Invoke Error Handler I
N

Changer_Move_Medium
Changer_Position_Transport
104 =7 Changer_Portal_Operation

Changer_Scan_Media_Code
Changer_Get_Element_Status

100

If Necessary, Update

Internal Inventory 107

Done, Perform

108 Changer Functions

6

SUBSTITUTE SHEET (RULE 26)

WO 96/06393 ' PCT/US95/10763
8/8

Perform Changer
De-Initialization 5g

Error
Recoverable?

110 Changer_Manual_Access

Changer_Reserve_Release Error N
(Release) 114 Recoverable?

116
Y
@ | Invoke Error Handler |
N
Done, Perform Changer
De-Initialization 118

FIG. 7

SUBSTITUTE SHEET (RULE 26)

—

INTERNATIONAL SEARCH REPORT

Inter. nal Applicanon No

PCT/US 95/10763

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 GO6F9/44 GO6F13/10

According to [nternatonal Patent Classificaton (IPC) or to both natonal claswificaton and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classificanon system followed by classificaton symbols)

Documentation searched other than miimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the internauonal search (name of data base and, where pracucal, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citaton of document, with indication, where appropnate, of the relevant passages

Retevant to claim No.

figures 1-4

pages 462-471,
GALBREATH ET AL
Parallel I/0'

pages 483-486,

see the whole document

A EP,A,0 371 941 (IBM) 6 June 1990
see column 6, line 1 - column 10, line 50;

A PROCEEDINGS SUPERCOMPUTING 1993,
15 - 19 November 1993 PORTLAND, US,

'"Applications-Driven

see page 464, right column, paragraph 5 -
page 468, left column, paragraph 2; figure
1

A IBM TECHNICAL DISCLOSURE BULLETIN,
vol. 37, no. 8, August 1994 NEW YORK US,
'Message Logging Services
for Personal Computer Systems'

1,7,8

1,7,8

1,7,8

D Further documents are listed in the continuaton of box C.

E Patent family members are listed tn annex.

° Speaal categones of ated documents :

"A" document defining the general state of the art which 1s not
conadered to be of parucular relevance

“E” earlier document but published on or after the internatonal
filing date

“L* document which may throw doubts on pnonty claimys) or
whuch 15 aited to establish the publicanon date of another
atauon or other speaal reason (as specified)

‘0" document referning to an oral disclosure, use, exhubition or
other means

‘P° document published pnior to the international filing date but
later than the pnonty date claimed

T

-x*

v

later document published after the international filing date
or prionty date and not in conflict with the applicaton but
ated to understand the pnnciple or theory underiying the
invention

document of parucular relevance; the claimed 1nvenuon
cannot be connidered novel or cannot be considered o
involve an inventve step when the document 1s taken alone

document of parucular relevance; the claimed 1nventon
cannot be considered to involve an inventve step when the
document 1S combined with one or more other such docu-
ments, such combination being obvious to a person sialled
in the art.

" document member of the same patent famuly

Date of the actual compleuon of the internauonal search

14 November 1995

Date of mailing of the internatonal search report

27.12.95

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3016

Authonzed officer

Gill, S

Form PCT/ISA 210 (second sheat) (July 1992)

—)

INTERNATIONAL SEARCH REPORT

. iformaton on patent family members

Inten aal Applicaton No

PCT/US 95/10763

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A-371941 06-06-90 US-A- 5097533 17-03-92

JP-A- 2201653 09-08-90

Form PCT/ISA/210 (patent family annex) (July 1992}

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

