
US 20040083481A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0083481 A1

Shultz et al. (43) Pub. Date: Apr. 29, 2004

(54) SYSTEM AND METHOD FOR (52) U.S. Cl. .. 71.9/312; 718/102
TRANSFERRING DATA BETWEEN VIRTUAL
MACHINES OR OTHER COMPUTER
ENTITIES (57) ABSTRACT

(75) Inventors: Steven S. Shultz, Endicott, NY (US); Xenia Tkatschow, Jamesville, NY (US) A method for communication between first and Second
computer programs having a shared memory. The first
computer program has a first work dispatcher for a first work

Arthur J. Samodovitz queue. The Second computer program has second work
IBM Corporation, N50/040-4 dispatcher for a Second work queue. Without causing an
1701 North Street interrupt, a message or data is written for the Second
Endicott, NY 13760 (US) program from the first program to the shared memory and

9 the Second work queue is updated with a work item indi
cating a message or data for the Second program. In asso

Correspondence Address:

(73) Assignee: International Business Machines Cor
poration, Armonk, NY ciation with the updating Step, it is determined if the second

program is currently busy. If So, the Second program is not
interrupted regarding the message or data. When the Second

(21) Appl. No.: 10/280,987 program Subsequently becomes not busy, the Second pro
(22) Filed: Oct. 24, 2002 gram receives, without an interrupt, and executes the work

item to receive the message or data. If the Second program
Publication Classification was not currently busy, the Second program is interrupted to

process the message or data on its work queue. This imposes
(51) Int. Cl. G06F 17/00; G06F 9/46 a minimal burden on the Second program.

Write Message/Data
to Shared Memory

BO

Add Work Element to
Work Queue of
Recipient(s)

B2

Are
Recipient(s)

de?
34

Yes

End of Write Message/Data
to Shared Memory

36

issue Interrupt
to Recipient

End Of Write
Message/Data to
Shared Memory

90

US 2004/0083481 A1

Luonoun? peal , ez»

[" OIH

Patent Application Publication Apr. 29, 2004 Sheet 1 of 6

VN
VN O O D - d H L n. X- O - O C -

US 2004/0083481 A1 Patent Application Publication Apr. 29, 2004 Sheet 2 of 6

Z * OIH

US 2004/0083481 A1 Patent Application Publication Apr. 29, 2004 Sheet 3 of 6

£ º OIH

US 2004/0083481 A1 Patent Application Publication Apr. 29, 2004 Sheet 4 of 6

Tuonoun, peº||–ozwu

O O. d ?h C H L 4 C >- C/O - O CC -

0A. A.

US 2004/0083481 A1

S º OIH

Patent Application Publication Apr. 29, 2004 Sheet 5 of 6

US 2004/0083481 A1

9 · OIH

Patent Application Publication Apr. 29, 2004 Sheet 6 of 6

US 2004/0083481 A1

SYSTEMAND METHOD FORTRANSFERRING
DATA BETWEEN VIRTUAL MACHINES OR

OTHER COMPUTER ENTITIES

BACKGROUND OF THE INVENTION

0001. The invention relates generally to computer sys
tems and deals more particularly with an efficient technique
for transferring messages and data between Virtual
machines, logical partitions or application programs.
0002 There are many computer environments in which
two or more computer entities need to exchange messages or
data. Such computer entities include Virtual machines, logi
cal partitions and applications running on a unitary operating
system such as Unix or Windows NT.
0003) A virtual machine operating system is well known
today and comprises a common base portion and Separate
user portions. In an IBM z/VM operating system, the
common base portion is called the “Control Program” or
“CP” and each user portion is called a “virtual machine” or
"guest'. Many applications can run on each virtual machine.
Each virtual machine has its own work dispatcher (and
associated work queue) and appears to the user and his or her
applications as a personal operating System. Each virtual
machine executes commands on behalf of the applications
they Support. The different virtual machines can communi
cate with each other through the common base portion. The
communications between the different Virtual machines via
CP may be in the form of messages conveyed by virtualized
communication devices Such as Guest Lan or IBM propri
etary protocols Such as IUCV. Though these communica
tions are conveyed by a variety of protocols, all of these
communication mechanisms have at least four common
properties:

0004) a) Message data is first written into the send
er's virtual address Space.

0005 b) An interrupt is generated for each message
in each of the receivers virtual machines. This
invokes interrupt handling in each receiver virtual
machine.

0006 c) CP must be invoked in order to accomplish
the communication.

0007 d) CP copies message data from the sender's
Virtual address Space to all of the receivers virtual
address Spaces.

0008. With the foregoing communication methods there
is significant overhead associated with invoking CP, gener
ating interrupts, processing interrupts, and copying the mes
Sage data from the Sender's virtual address Space to the
Virtual address Space of each of the receivers.
0009. The following is a more detailed description of
IUCV. IUCV is an IBM proprietary point-to-point protocol.
A point-to-point protocol transferS data from one Sender to
one receiver. To communicate via IUCV, a sender first
invokes CP indicating the identity of the intended receiver of
communication. CP generates an interrupt to the receiver
and if the receiver agrees to communicate, CP provides the
receiver with a communication path id. CP also then inter
rupts the Sender and provides the Sender with the commu
nication path id. To send data, the sender invokes CP
indicating the previously obtained path id and the data to be

Apr. 29, 2004

sent. CP uses the path id to identify the receiver and
generates an interrupt to the receiver. The receiver responds
to the interrupt by invoking CP to receive the data. CP then
copies the data from the Sender's virtual address Space to the
receiver's virtual address Space and generates an interrupt to
the Sender indicating that the data has been transferred.
0010. The following is a more detailed description of
Guest Lan. Guest Lan is a virtualized communication device
using local area network (LAN) protocol. Lan protocol
allows communication between a Sender and multiple
receiverS Simultaneously. To communicate via a Guest Lan,
both sender and receivers invoke CP indicating that they
wish to participate in the Guest Lan. To Send data, the Sender
invokes CP indicating the data to be sent and which receiv
erS should get the data. CP generates an interrupt for each
identified receiver. The receivers each respond by invoking
CP to receive the data. CP then copies the data from the
Sender's virtual address Space to the Virtual address Spaces
of each of the receivers. Once all receivers have received the
data, CP generates an interrupt to the Sender indicating that
the data has been transferred to all receivers.

0011) A logical partition environment is also well known
today. A logical partition is a logical division of resources of
a single computer System, which division is accomplished
by Software and microcode. Each logical partition is defined
by a respective configuration of CPU(s), memory and
peripheral devices. An operating System running in a logical
partition views its logical partition as nearly indistinguish
able from a real computer, although the logical partition may
provide Some additional Services not available on a real
machine. Therefore, the operating System is largely unaware
that it is running in a logical partition, and is largely unaware
of other logical partitions of the same real computer. Each
logical partition also has its own dispatcher, and uses inter
rupts to communicate messages/data from one logical par
tition to another as in the virtual machine environment.

0012. There are other known techniques for one applica
tion to communicate with another application when both
applications are running on the same operating System, Such
as Windows NT or Unix. In this environment, the operating
System utilizes the Same dispatcher for both applications.
According to these known communication techniques, when
application “A” wants to communicate with application “B”,
application A calls/notifies the Supervisor within the oper
ating System. The call includes the address of the message/
data in memory accessible by application A. In response, the
Supervisor copies the message/data to a location that appli
cation B can access. Next, the Supervisor puts a work
element on the dispatch queue. The work element identifies
application B as the recipient, and includes a command to
fetch the message/data. Then, the dispatcher dispatches the
work element to application B at a time consistent with the
dispatching Strategy of the operating System and the relative
priorities of the work elements. The following are some of
the possible, known dispatching Strategies. If application B
is not currently busy, then the message/data work element is
dispatched to application B when the processor becomes
free and/or is not occupied with processing higher priority
work elements (for any application). If application B is
currently busy with another, lower priority work item, then
the dispatcher may Substitute the message/data work item
when the lower priority work item completes its allotted
processor time slice or makes a call to the operating System.

US 2004/0083481 A1

But, it would not be appropriate to “interrupt” the operating
System to convey the message/data to application B because
of the overhead involved. The sharing of the dispatcher
makes this unnecessary. AS noted above, Virtual machine,
logical partition and other environments do not have a
common dispatcher.
0013 An object of the present invention is to provide an
efficient method for communication/data transfer between
(a) two different Virtual machines running on the same base
operating System, (b) two logical partitions of the same
computer or (c) two applications running on the same
computer but having different dispatchers.
0.014) An object of the present invention is to provide an
efficient method for communication/data transfer from (a)
one virtual machine to two or more other virtual machines
all running on the same base operating System, (b) from one
logical partition to two or more other logical partitions of the
same computer or (c) one application to two or more other
applications running on the same computer but having
different dispatchers.

SUMMARY OF THE INVENTION

0.015 The invention resides in a method for communi
cation between first and Second computer programs having
a shared memory. The first computer program has a first
work dispatcher for a first work queue. The Second computer
program has a Second work dispatcher for a Second work
queue. A message or data is written for the Second program
from the first program to the shared memory and the Second
work queue is updated with a work item indicating a
message or data for the Second program. In association with
the updating Step, it is determined if the Second program is
currently busy. If So, the Second program is not interrupted
regarding the message or data. When the Second program
Subsequently becomes not busy, the Second program
receives, without an interrupt, and executes the work item to
receive the message or data. If the Second program was not
currently busy, the Second program is interrupted to proceSS
the message or data on its work queue. (This imposes a
minimal burden on the Second program.)
0016. According to another feature of the present inven
tion, there is a method for communication between first and
Second virtual machines having a shared memory and a
common base operating System. The first virtual machine
has a first work dispatcher for a first work queue. The Second
Virtual machine has a Second work dispatcher for a Second
work queue. The first and Second work queues reside in
memory shared by both the first and second virtual
machines. Without invoking the common base operating
System, a message or data is written for the Second Virtual
machine from the first Virtual machine to the shared memory
and the Second work queue is updated with a work item
indicating a message or data for the Second virtual machine.
Subsequently, the Second virtual machine program reads the
message or data from the Shared memory.

BRIEF DESCRIPTION OF THE FIGURES

0017 FIG. 1 is a block diagram of a virtual machine
operating System according to the present invention.
0.018 FIG. 2 is a flow chart illustrating a process imple
mented by a virtual machine of FIG. 1 to receive a message
or data from another virtual machine, according to the
present invention.

Apr. 29, 2004

0019 FIG. 3 is a flow chart illustrating a process imple
mented by a virtual machine of FIG. 1 to send a message or
data to another virtual machine, according to the present
invention.

0020 FIG. 4 is a block diagram of a logically partitioned
computer System according to the present invention.
0021 FIG. 5 is a flow chart illustrating a process imple
mented by a logical partition of the computer system of FIG.
4 to receive a message or data from another logical partition,
according to the present invention.
0022 FIG. 6 is a flow chart illustrating a process imple
mented by a logical partition of FIG. 5 to send a message or
data to another logical partition, according to the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0023 Referring now to the figures in detail, wherein like
reference numbers indicate like elements throughout, FIG.
1 illustrates a virtual machine operating System generally
designated 10 according to the present invention. By way of
example, virtual machine operating system 10 can be IBM
Z/VM version 4.2.0 or 4.3.0 operating system although the
present invention can be incorporated into other virtual
machine and non Virtual machine operating Systems as well.
The details of the Z/VM 4.2.0 operating system are disclosed
in IBM publication “Z/VM 4.2.0 General Information”
(Document Number: GC24-5991-03) which is available
from International Business Machines Corp. at PO Box
29570, IBM Publications, Raleigh, N.C. 27626-0570 or on
the WWW at www.IBM.com/shop/publications/order. This
publication is hereby incorporated by reference as part of the
present disclosure. Operating System 10 executes in a physi
cal computer 11 Such as an IBM zSeries mainframe although
the present invention can be implemented in other Server
computers or personal computers as well. Operating System
10 comprises user portions 12, 14, 16 . . . (called “virtual
machines” or “guest virtual machines” in the Z/VM operat
ing system) and common base portion 20 (called “CP" in the
Z/VM operating system). Each user portion 12 and 14
provides Standard operating System functions Such as I/O,
communication, etc. Each user portion 12, 14 and 16 is
capable of concurrently executing a number of different
applications Such as applications 32, 34 and 36 as shown. By
way of examples, applications 32, 34 and 36 can be TEL
NET, FTP and PING (and use the present invention instead
of the prior art communication mechanisms). In the Z/VM
4.2.0 and 4.3.0 operating systems, the Linux (TM of Linus
Torvalds) operating System can also run on each virtual
machine 12, 14 and 16, although Some of the operating
system functions of virtual machines 12, 14 or 16 are not
needed by the Linux operating System as they are currently
provided by the Linux operating System. Although not
shown, typically there are many other virtual machines and
asSociated operating Systems which also share common base
portion 20. Also, there can be multiple applications execut
ing on each virtual machine. Base portion 20 includes
known functions Such as virtualized memory, Virtualized
devices, and virtualized CPUs.
0024 Computer 11 also includes memory area 21 which
is shared by all of the virtual machines 12, 14, 16 etc. Being
“shared each Virtual machine can directly address and

US 2004/0083481 A1

access the shared memory area 21 to read data therefrom or
write data thereto. For data requested by an application or
generated by an application, the application makes the read
or write request to the respective virtual machine on which
it is running. This respective Virtual machines accesses the
shared memory on behalf of the application as explained
below with reference to FIGS. 2 and 3. In one (of many)
embodiments of the present invention, the shared memory
21 is part of a Discontiguous Saved Segment (“DCSS)
portion of the base portion 20. DCSS is a special form of
shared memory that can be dynamically loaded and
unloaded. It can Survive virtual machine termination and
even CP termination, and can contain executable code.
However, functions other than shared memory within DCSS
are not needed for the present invention, So the present
invention is not limited to implementations involving DCSS
or its equivalents.

0.025. Each virtual machine 12, 14, and 16 includes a
respective read function 42a, 42b, and 42c, a respective
write function 33a, 33b and 33c and a respective dispatcher
22a, 22b and 22c. The virtual machine calls the write
function when it encounters a write command in the appli
cation it is executing. The write function is Standing by, So
no queue is required for the write function tasks. The write
function writes data from a virtual machine to the shared
memory. A write operation does not invoke CP. The virtual
machine calls the read function when it encounters a read
command in the application it is executing. The read func
tion is Standing by, So no queue is required for the read
function tasks. The read function reads data from the shared
memory. Thus, the data is not copied from the writer's
Virtual address Space to the reader's virtual address Space.
Also, CP is not invoked to read from shared memory, and
this reduces overhead. Each Virtual machine calls/invokes its
dispatcher when it completes a work item and therefore,
needs another work item, if any. In response to the call, the
dispatcher checks for work items on its respective queue
26a, 26b or 26c within shared memory 21.

0026. A table 24 is also stored in shared memory 21. The
table indicates the status of each virtual machine 12, 14, 16.
Each virtual machine 12, 14 and 16 also includes a respec
tive Work Queue Management Function (“WQMF) 81a,
81b or 81c which adds work items to work queues when they
arise and updates the Status of each virtual machine as "idle’
or “not idle' as described below. Table 24 includes an
identity of each virtual machine and an indication whether or
not the respective virtual machine is idle. Table 24 also
includes for each virtual machine, a pointer to the respective
work queue 26a, 26b or 26c. Table 24 changes as the status
changes. In the example illustrated in FIG. 1, currently
Virtual machine 12 is not idle, i.e. it is currently executing
another work item/task. However, virtual machine 12 cur
rently has nothing in its work queue 26a to do after com
pleting its current work item. Virtual machine 14 is currently
idle, but has a work item in its queue 26b. The work item in
queue 26b is to read the contents of the shared memory
beginning at location 24D00 and extending for the specified
length. (The word “null” following the work item indicates
that there are no further work items in the queue.) Virtual
machine 16 currently is not idle, and has a work item in its
queue 26c. The work item in queue 26c is to read the
contents of the shared memory beginning at location 24D00
and extending for the Specified length.

Apr. 29, 2004

0027 FIG. 2 is a flow chart illustrating operation of each
of the dispatchers, i.e. each of the dispatchers implements
the steps of FIG. 2 separately from the other dispatchers.
After a virtual machine completes each work item/task it
invokes its dispatcher to look for a new work item to
perform (decision 48). In response, the dispatcher within the
Virtual machine checks the respective work queue (work
queue 26a for dispatcher 22a, work queue 26b for dispatcher
22b and work queue 26c for dispatcher 26c) for a work item
(step 50). If there is a work item in the queue (decision 52),
then the dispatcher parses the work item to determine its
nature and what function to call to perform the work item.
In the case of a read request, the dispatcher calls the read
function to read the message/data at the location indicated
by the work item. Thus, this read can be accomplished
without the generation of an interrupt and without invoking
interrupt handling. Then, the dispatcher loops back to deci
Sion 52 to check the work queue again. If during any
iteration of decision 52, there is no work item in the work
queue, then the dispatcher Sets the Status field in the table 24
as "idle” for the respective virtual machine (step 60). Then,
the dispatcher notifies the virtual machine to enter into a wait
State (step 62). In this wait State, the virtual machine is in a
“sleeping or "idle' mode where it is not executing any work
items for an application or itself. The virtual machine will
remain in this wait State until receiving an interrupt indica
tive of a new work item in its work queue (decision 66).
When such an interrupt is received, the WQMF for the
virtual machine sets the status field in the table 14 as “non
idle” for the respective virtual machine (step 68). Next, the
dispatcher loops back to decision 52 to check the work
queue for a work item. At this time, there should be a work
item in the work queue.

0028 FIG. 3 illustrates operation of one of the virtual
machines, for example virtual machine 12 when it desires to
Send a message/data to another of the Virtual machines, for
example virtual machine 14. In step 80, virtual machine 12
calls its write function 33a to write data to the shared
memory 21. AS explained above, each of the Virtual
machines has direct access to the shared memory by pro
Viding the appropriate address. So, the write function 33a of
virtual machine 12 writes the data to the shared memory by
Specifying the address to be written and furnishing the data
to be written. Next, Work Queue Management function
(“WOMF) 81a within virtual machine 12 adds a work item
to the work queue 26b of virtual machine 14, by writing the
work item onto the work queue (step 82). Because the work
queue is in shared memory, this does not require invocation
of CP. Next, WOMF 81a determines if virtual machine 14 is
currently idle by checking the table 24 (decision 84). If not,
then Virtual machine 12 does nothing further to complete
this communication and CP is not invoked at any point in the
communication process (termination step 86). In accordance
with the present invention, Virtual machine 12 does not
interrupt virtual machine 14 because of the overhead
involved in interrupting the virtual machine. AS explained
above with reference to FIG. 2, when virtual machine 14
completes its current work item, it will automatically
invoke/call its dispatcher to check its work queue for another
work item (decision 48 and step 50). At that time it will see
the work item from Virtual machine 12. Referring again to
decision 84, if virtual machine 14 is idle, then in accordance
with the present invention, Virtual machine 12 issues a
“wakening” type of interrupt to virtual machine 14 (step 88).

US 2004/0083481 A1

This requires invocation of CP. The wakening type of
interrupt alerts/invokes virtual machine 14 that there is a
work item in its queue 26b. With the issuance of this
interrupt, Virtual machine 12 has completed its part of the
data communication. The “wakening interrupt automati
cally causes virtual machine 14 to activate its dispatcher 22b
(decision 48 of FIG. 2) to check its work queue for a work
item. Dispatcher 22b then implements the Steps illustrated in
FIG.2 to check its work queue 26b (step 50 and decision 52)
and then read the data with read function 42(b) (step 54).
0029 FIG. 3 also illustrates operation of one of the
Virtual machines, for example virtual machine 12 when it
desires to communicate with two or more other virtual
machines, for example virtual machines 14 and 16. In Step
80, virtual machine 12 calls its write function 32a to write
data to the shared memory 21. So, virtual machine 12 writes
the data to the shared memory by Specifying the address to
be written and furnishing the data to be written. In the
example illustrated in FIG. 1, the data was written to shared
memory locations beginning at address 24D00. Next,
WOMF 81a within virtual machine 12 adds a work item to
the work queues 26b and 26c of virtual machines 14 and 16,
by writing the work item, data address and data length onto
the work queues (step 82). Next, WQMF 81a within virtual
machine 12 determines if virtual machines 14 and 16 are
currently idle by checking the table 24 (decision 84). In the
example illustrated in FIG. 1, virtual machine 14 is idle but
virtual machine 16 is busy. So, for virtual machine 16 which
is busy, Virtual machine 12 does nothing further to complete
the communication (termination step 86). In accordance
with the present invention, Virtual machine 12 does not
interrupt the busy virtual machine 16 because of the over
head involved in interrupting a virtual machine. AS
explained above with reference to FIG. 2, when the busy
virtual machine 16 completes its current work item, it will
automatically check its work queue for another work item
(decision 48 and step 50). At that time it will see the work
item from virtual machine 12 and the communication will be
completed without invocation of CP. Referring again to
decision 84, because virtual machine 14 is idle, then in
accordance with the present invention, Virtual machine 12
issues a “wakening' type of interrupt to the idle Virtual
machine 14 (step 88). The wakening type of interrupt
alerts/invokes the idle virtual machine 14that there is a work
item in its queue. With the issuance of this interrupt, Virtual
machine 12 has completed its part of the data communica
tion. The “wakening interrupt automatically causes the idle
virtual machine 14 to invoke/call its dispatcher 22b to check
its work queue for a work item. Dispatcher 22b then
implements the steps illustrated in FIG. 2 to check its work
queue 26b (decision 52) and then read the data (step 54).
0030 FIG. 4 illustrates a logically partitioned computer
System generally designated 110 according to the present
invention. System 110 is a logical partition of a physical
computer 111 Such as an IBM zSeries mainframe although
the present invention can be implemented in other Server
computers or personal computers as well. System 110 com
prises logical partitions 112, 114, 116. Each logical partition
112, 114 and 116 provides standard operating system func
tions Such as I/O, communication, etc. to its applications.
Each logical partition 112, 114 and 116 is capable of
concurrently executing a number of different applications
such as applications 132,134 and 136 as shown. By way of
examples, applications 132,134 and 136 can be Telnet, FTP

Apr. 29, 2004

and Ping (and use the present invention instead of the prior
art communication mechanisms). Base portion 120 partici
pates in the actual logical partitioning of the computer 111
and its resources, i.e. partitions the CPU(s), partitions
memory, partitions I/O, etc. The functions of one example of
base portion 120 and logical partitions 112, 114 and 116,
aside from the present invention, are described in a docu
ment entitled “Enterprise System/9000 9221 Processors:
Operating Your System-Volume 2 (Logically Partitioned
Mode)", Publication # SA24-4351-02, which document is
available International Business Machines at PO Box 29570,
IBM Publications, Raleigh, N.C. 27626-0570 or on the
WWW at www.IBM.com/shop/publications/order.
0031 Computer 111 also includes memory area 121
which is shared by all of the logical partitions 112, 114, 116
etc. Being “shared each logical partition can directly
address and access the Shared memory area 121 to read data
therefrom or write data thereto. For data requested by an
application or generated by an application, the application
makes the read or write request to the respective logical
partition on which it is running. This respective logical
partition accesses the shared memory on behalf of the
application as explained below with reference to FIGS. 5
and 6.

0032 Each logical partition 112, 114, and 116 includes a
respective read function 142a, 142b, and 142c, a respective
write function 133a, 133b and 133c and a respective dis
patcher 122a, 122b and 122c. The logical partition calls the
write function when it encounters a write command in the
application it is executing. The write function is standing by,
So no queue is required for the write function tasks. The
write function writes data from a logical partition to the
shared memory, and therefore does not invoke base portion
120. The logical partition calls the read function when it
encounters a read command in the application it is execut
ing. The read function is Standing by, So no queue is required
for the read function tasks. The read function reads data from
the shared memory, and therefore does not invoke base
portion 120. Also, the data is not copied from the writer's
Virtual address Space to the reader's virtual address Space.
Each logical partition calls/invokes its dispatcher when it
completes a work item and therefore, needs another work
item, if any. In response to the call, the dispatcher checks for
work items on its respective queue 126a, 126b or 126c
within shared memory 121.
0033. A table 124 is also stored in shared memory 121.
The table indicates the Status of each logical partition 112,
114, 116. Each logical partition 112, 114 and 116 also
includes a respective WQMF 181a, 181b or 181c which
adds work items to work queues when they arise and updates
the status of each logical partition as "idle' or “not idle' as
described below. Table 124 includes an identity of each
logical partition and an indication whether or not the respec
tive logical partition is idle. Table 124 also includes for each
logical partition, a pointer to the respective work queue
126a, 126b or 126c. Table 124 changes as the status changes.
In the example illustrated in FIG. 4, currently logical
partition 112 is not idle, i.e. it is currently executing another
work item/task. However, logical partition 112 currently has
nothing in its work queue 126a to do after completing its
current work item. Logical partition 114 is currently idle, but
has a work item in its queue 126b. The work item in queue
126b is to read the contents of the Shared memory beginning

US 2004/0083481 A1

at location 24D00 and extending for the specified length.
(The word “null” following the work item indicates that
there are no further work items in the queue.) Logical
partition 116 currently is not idle, and has a work item in its
queue 126c. The work item in queue 126c is to read the
contents of the shared memory beginning at location 24D00
and extending for the Specified length.
0034 FIG. 5 is a flow chart illustrating operation of each
of the dispatchers, i.e. each of the dispatchers implements
the steps of FIG. 5 Separately from the other dispatchers.
After a logical partition completes each work item/task it
invokes its dispatcher to look for a new work item to
perform (decision 148). In response, the dispatcher within
the logical partition checks the respective work queue (work
queue 126a for dispatcher 122a, work queue 126b for
dispatcher 122b and work queue 126c for dispatcher 126c)
for a work item (step 150). If there is a work item in the
queue (decision 152), then the dispatcher parses the work
item to determine its nature and what function to call to
perform the work item. In the case of a read request, the
dispatcher calls the read function to read the message/data at
the location indicated by the work item. Thus, this read can
be accomplished without the generation of an interrupt and
without invoking interrupt handling. Then, the dispatcher
loops back to decision 152 to check the work queue again.
If during any iteration of decision 152, there is no work item
in the work queue, then the dispatcher Sets the Status field in
the table 124 as "idle” for the respective logical partition
(step 160). Then, the dispatcher notifies the logical partition
to enter into a wait state (step 162). In this wait state, the
logical partition is in a "sleeping or "idle' mode where it is
not executing any work items for an application or itself. The
logical partition will remain in this wait State until receiving
an interrupt indicative of a new work item in its work queue
(decision 166). When such an interrupt is received, the
WQMF for the logical partition sets the status field in the
table 114 as “non idle' for the respective logical partition
(step 168). Next, the dispatcher loops back to decision 152
to check the work queue for a work item. At this time, there
should be a work item in the work queue.
0.035 FIG. 6 illustrates operation of one of the logical
partitions, for example logical partition 112 when it desires
to Send a message/data to another of the logical partition, for
example logical partition 114. In Step 180, logical partition
112 calls its write function 133a to write data to the shared
memory 121. AS explained above, each of the logical
partitions has direct access to the Shared memory by pro
Viding the appropriate address. So, the write function 133a
of logical partition 112 writes the data to the shared memory
by Specifying the address to be written and furnishing the
data to be written. Next, WQMF 181a within logical parti
tion 112 adds a work item to the work queue 126b of logical
partition 114, by writing the work item onto the work queue
(step 182). Next, WQMF 181a determines if logical parti
tion 114 is currently idle by checking the table 124 (decision
184). If not, then the logical partition does nothing further to
complete this communication and the base portion 120 is not
invoked at any point in the communication process (termi
nation Step 186). In accordance with the present invention,
logical partition 112 does not interrupt logical partition 114
because of the overhead involved in interrupting the logical
partition. As explained above with reference to FIG. 5, when
logical partition 114 completes its current work item, it will
automatically invoke/call its dispatcher to check its work

Apr. 29, 2004

queue for another work item (decision 148 and step 150). At
that time it will see the work item from logical partition 112.
Referring again to decision 184, if logical partition 114 is
idle, then in accordance with the present invention, logical
partition 112 issues a “wakening type of interrupt to logical
partition 114 (step 188). The wakening type of interrupt
alerts/invokes logical partition 114 that there is a work item
in its queue 126b. With the issuance of this interrupt, logical
partition 112 has completed its part of the data communi
cation. The “wakening interrupt automatically causes logi
cal partition 114 to activate its dispatcher 122b (decision 148
of FIG. 5) to check its work queue for a work item.
Dispatcher 122b then implements the steps illustrated in
FIG. 5 to check its work queue 126b (step 150 and decision
152) and then read the data with read function 142(b) (step
154).
0036 FIG. 6 also illustrates operation of one of the
logical partitions, for example logical partition 112 when it
desires to communicate with two or more other logical
partitions, for example logical partitions 114 and 116. In Step
80, logical partition 112 calls its write function 132a to write
data to the Shared memory 121. So, logical partition 112
writes the data to the shared memory by Specifying the
address to be written and furnishing the data to be written.
In the example illustrated in FIG. 4, the data was written to
shared memory locations beginning at address 24D00. Next,
WQMF 81a within logical partition 112 adds a work item to
the work queues 126b and 126c of logical partitions 114 and
116, by writing the work item, data address and data length
onto the work queues (step 182). Next, WQMF 181a within
logical partition 112 determines if logical partitions 114 and
116 are currently idle by checking the table 124 (decision
184). In the example illustrated in FIG. 4, logical partition
114 is idle but logical partition 116 is busy. So, for logical
partition 116 which is busy, logical partition 112 does
nothing further to complete the communication (termination
Step 186). In accordance with the present invention, logical
partition 112 does not interrupt the busy logical partition 116
because of the overhead involved in interrupting a logical
partition. As explained above with reference to FIG. 5, when
the busy logical partition 116 completes its current work
item, it will automatically check its work queue for another
work item (decision 148 and step 150). At that time it will
See the work item from logical partition 112 and the com
munication will be completed without invocation of base
portion 120. Referring again to decision 184, because logical
partition 114 is idle, then in accordance with the present
invention, logical partition 112 issues a “wakening' type of
interrupt to the idle logical partition 114 (step 188). The
wakening type of interrupt alerts/invokes the idle logical
partition 114 that there is a work item in its queue. With the
issuance of this interrupt, logical partition 112 has com
pleted its part of the data communication. The “wakening”
interrupt automatically causes the idle logical partition 114
to invoke/call its dispatcher 122b to check its work queue for
a work item. Dispatcher 122b then implements the steps
illustrated in FIG. 5 to check its work queue 126b (decision
152) and then read the data (step 154).

1. A method for communication between first and Second
computer programs having a shared memory, Said first
computer program having a first work dispatcher for a first

US 2004/0083481 A1

work queue, Said Second computer program having a Second
work dispatcher for a Second work queue, Said method
comprising the Steps of:

Writing a message or data for Said Second program from
Said first program to Said shared memory and updating
Said Second work queue with a work item indicating a
message or data for Said Second program;

in association with Said updating Step, determining if Said
Second program is currently busy, and
if So, not interrupting Said Second program regarding

Said message or data, and
if not, interrupting Said Second program to process Said

message or data on its work queue.
2. A method as set forth in claim 1 wherein when said

Second program Subsequently becomes not busy, Said Sec
ond program receiving, without an interrupt, and executing
Said work item to receive Said message or data.

3. A method as set forth in claim 1 wherein said first
program is a first Virtual machine and Said Second program
is a Second virtual machine.

4. A method as set forth in claim 1 wherein said first and
Second work queues reside in a memory shared by Said first
and Second computer programs.

5. A method as set forth in claim 1 wherein said first and
Second work queues reside in Said shared memory.

6. A method as set forth in claim 5 wherein said shared
memory is set up by a common base portion of a virtual
machine operating System Such that Said shared memory
resides Simultaneously in both Virtual machines.

7. A method as set forth in claim 1 wherein said first
computer program is a first logical partition of a computer
System, and Said Second computer System is a Second logical
partition of Said computer System.

8. A method as set forth in claim 7 further comprising a
base operating System common to Said first and Second
logical partitions, and Said writing and updating Steps do not
require invocation of Said base operating System.

9. A method as set forth in claim 1 further comprising the
Step of Said Second computer program reading Said message
or data from Said shared memory.

10. A method as set forth in claim 9 wherein said message
or data is written only once, into Said shared memory, when
being communicated from Said first computer program to
Said Second computer program.

11. A System for communication between first and Second
computer programs having a shared memory, Said first
computer program having a first work dispatcher for a first
work queue, Said Second computer program having a Second
work dispatcher for a Second work queue, Said System
comprising:

means for writing a message or data for Said Second
program from Said first program to Said shared memory
and updating Said Second work queue with a work item
indicating a message or data for said Second program;

in association with Said updating Step, means for deter
mining if Said Second program is currently busy, and
if So, not interrupting Said Second program regarding

Said message or data, and
if not, interrupting Said Second program to process Said

message or data on its work queue.

Apr. 29, 2004

12. A computer program product for communication
between first and Second computer programs having a
shared memory, Said first computer program having a first
work dispatcher for a first work queue, Said Second computer
program having a Second work dispatcher for a Second work
queue, Said program product comprising:

a computer readable medium;
program instruction means for writing a message or data

for Said Second program from Said first program to Said
shared memory and updating Said Second work queue
with a work item indicating a message or data for Said
Second program;

in association with Said updating Step, means for deter
mining if Said Second program is currently busy, and
if So, not interrupting Said Second program regarding

Said message or data, and
if not, interrupting Said Second program to proceSS Said

message or data on its work queue, and wherein
Said program instruction means is recorded on Said

medium.
13. A method for communication between first and second

Virtual machines having a shared memory and a common
base operating System, said first Virtual machine having a
first work dispatcher for a first work queue, Said Second
Virtual machine having a Second work dispatcher for a
Second work queue, Said first and Second work queues
residing in memory shared by both Said first and Second
Virtual machines, said method comprising the steps of:

without invoking Said common base operating System,
Writing a message or data for Said Second virtual
machine from Said first virtual machine to Said shared
memory and updating Said Second work queue with a
work item indicating a message or data for Said Second
Virtual machine.

14. A method as set forth in claim 13 wherein in asso
ciation with Said updating Step and without invoking Said
common base operating System, determining if Said Second
Virtual machine is currently busy, and

if So, not interrupting Said Second program regarding Said
message or data, and

if not, interrupting Said Second program to process Said
message or data on its work queue.

15. A method as set forth in claim 14 wherein said
interrupting Step requires invocation of Said common base
operating System.

16. A method as set forth in claim 13 wherein said first
dispatcher resides in Said first Virtual machine and Said
Second dispatcher resides in Said Second virtual machine.

17. A method as set forth in claim 13 further comprising
the Step of Said Second Virtual machine program reading Said
message or data from Said shared memory.

18. A method as set forth in claim 17 wherein said
message or data is written only once, into Said shared
memory, when being communicated from Said first Virtual
machine to Said Second virtual machine.

19. A method for communication between first and second
computer programs having a shared memory and a common
base operating System, said first computer program having a
first work dispatcher for a first work queue, Said Second
computer program having a Second work dispatcher for a

US 2004/0083481 A1

Second work queue, Said first and Second work queues
residing in memory shared by both Said first and Second
computer programs, Said method comprising the Steps of:

without invoking Said common base operating System,
Writing a message or data for said Second computer
program from Said first computer program to Said
shared memory and updating Said Second work queue
with a work item indicating a message or data for Said
Second computer program.

Apr. 29, 2004

20. A method as set forth in claim 19 wherein said first
computer program is a first logical partition and Said Second
computer program is a Second logical partition.

21. A method as set forth in claim 19 wherein said first and
Second work queues reside in a memory or memories
common to both Said first and Second computer programs.

