(54) 发明名称
可变磁场辅助电化学复合加工装置

(57) 摘要
本发明涉及一种磁场复合电化学加工方法和装置，属于非传统机械加工-电化学加工技术领域。设计了一种可以产生旋转、脉冲、交变、恒定等多种磁场形态的外部装置，和脉冲电解加工部分配合使用。特定形态的磁场不仅可以提高加工区电解液离子浓度，增大离子迁移速率，加速电解产物扩散，而且还能活化电极表面，改变离子运动轨迹，综合改善电化学加工区域的理化特性，从而有效提高电解加工效率，提高表面质量和零件加工精度。
1. 可变磁场辅助电化学复合加工方法，其特征在于：采用磁感应强度连续可调、方向恒定的单一磁场和方向可变的旋转磁场，改善电解液中带电离子及铁磁性电解产物的微观路径，活化电解离子，提高电化学加工的效率和精度，其中旋转磁场在电化学反应进行的三维空间按照设定的规律旋转，其磁感应强度和旋转速度二者交互影响电加工效果，合理的配置磁场三维分布、磁感应强度、旋转速度是可变磁场辅助电化学加工方法的关键。

2. 可变磁场辅助电化学复合加工装置，其特征在于：采用对称布置的可变磁场强度的电磁线圈，通过单片机预设程序、控制电路和功率驱动电路，实现不同形式的磁场励磁场；装置由底板平台上对称布置的四个电磁线圈、纵向微调杆、阴极、导磁板、铜座等组成，以实现必要的绝缘和保证良好的导电性；旋转磁场系通过两组对称线圈产生的两路幅值相同、相位相差 90 度的正弦交变磁信号的合成来实现。

3. 根据权利 1 要求的可变磁场辅助电化学复合加工方法，其特征在于：在脉冲电化学加工方法的基础上，引入磁场辅助电化学加工方法，同时考虑选择磁场的特殊作用机理，将加工区域的稳恒磁场以一定的旋转磁场替换，磁场对加工区域的作用机理也相应有了“旋转效应”，对一个特定加工点来说，磁场作用机理呈现一定的脉冲效应机理。

4. 根据权利 2 要求的可变磁场辅助电化学复合加工装置，其特征在于：在前期脉冲电化学的装置的基础上，设计相应的导磁磁路，合理布局线圈，从而构成磁场发生装置。其中工件卡具部分和磁场发生部分有机结合，最终实现为加工区域施加磁感应强度连续可调，方向按照预设参数旋转的可变磁场电化学复合加工装置。
可变磁场辅助电化学复合加工装置

技术领域
[0001] 本发明涉及电磁场辅助电化学复合加工技术，利用外部装置产生的旋转、脉冲、恒定等多功能磁场作用于电化学加工区域。特定情况的磁场不但可以提高加工区电解液离子浓度，增加离子转移速率，加速电解产物扩散，而且还能活化电极表面，改变离子运动轨迹，综合改善电化学加工区域的物理特性，从而有效提高电解加工效率，提高表面质量和零件加工精度。该技术用于非传统机械加工领域的电化学加工技术分支。

背景技术
[0002] 上世纪九十年代出现了高频脉冲电化学加工，将传统直流和低频交流电化学加工技术提高到一个新的水平，加工精度和表面质量较以前大大提高。在这之后，磁场被引用到电解加工中。初步研究发现磁场的引入能活化电流需要，磁场的洛伦兹力能够改变离子的微观路径；伴随脉冲电产生的脉冲效应机理强化电流的非线性特性曲线，改善电解加工加工中的阴极电位特性，使加工区域各种物理场特性趋于均匀化。以上种种结论都说明将磁场引入电解加工中能大大提高加工效率，改善加工效果。但目前将磁场引入电解加工的装置都是单一的使用了恒磁、旋转磁、交变磁中的一种情况，且多为使用水磁体产生的磁场，工艺参数不可调或控制，对于不同材料和不同工作，难以实现较好的加工效果。现有研究通过为绕制的定子通三相交流电产生旋转磁场，分析可以知道，这类磁场都存在诸多不足，如一般设备比较笨重，绝缘成本高，难以改变交变磁场频率等。目前尚无针对高频脉冲电化学磁场复合加工的设计出现。

[0003] 为了深入研究磁场参数对电解加工精度和质量的影响规律，亟需设计出能方便地产生多种磁场的电化学加工辅助机构，为定性、定量地准确研究磁场参数对电解加工精度和质量的影响提供技术支持。

[0004] 本发明提供的可变磁场辅助电化学加工装置目前还未见类似的研究成果，可以完成的主要功能如下：

[0005] 1. 磁场可以进行多种变化，根据加工要求，设置恒强恒向场，恒强旋转场，脉冲场，渐变场，叠加场等，磁场强度从0-1000高斯连续可调（需要时换线圈磁场强度可更大）；

[0006] 2. 可加工多种形状的异型孔，如圆孔、三角孔、方孔，微齿轮孔，其外接直径为 φ18mm及以下尺寸；

[0007] 3. 可实现加工阴极的快速更换，加工间隙使用干分杆微调，精度为1um。

发明内容
[0008] 本发明的目的在于为定性和定量分析各种形式磁场对电化学加工精度和质量影响提供便利的试验装置。本发明主要由电加工机械结构部分、可变磁场的线圈配置及驱动电路、电解液喷射系统等几个部分组成。
[0009] 机械结构的组成与连接：
装置机械结构部分主要采用了有机玻璃和铝青铜两种材料。机构的底板与角型支块部分采用有机玻璃材料，以保证良好的绝缘性能和可加工性。磁场的产生靠环形布置于底板上的两对螺线管，线圈以导磁性能好的硅钢机加出的铁芯，端部配置了相应的导磁块，导磁块采用退火后的A3钢材料，导磁性能好，且小尺寸的导磁块可以布置得离加工区很近，减小了大磁阻的空气隙。

具体连接关系如图1所示：零件1为有机玻璃材料底板，绝缘性能比较好且适于机加工；相当于“床台”。零件2为圆柱支架，材料为铝青铜，抗腐蚀性能好且磁阻大不影响整体磁场配置。零件3为阴极连接套，铝青铜材料，抗腐蚀。零件4为有机玻璃材料的角型块，主要用于定位支撑工具阴极，使用绝缘材料再次避免了加工中短路的发生。零件5为垫块，用于装配分调节杆（零件6直接采用外购件，成本低精度容易保证）。支撑板7用于连接角型块与底板。零件8为阴极头，采用铝青铜材料，整体形状简单容易保证加工精度，可以实现快速简单更换。零件9为产生磁场的线圈，采用硅钢机加工出结构形状后在空腔中缠绕线圈而成，零件10为A3钢材料的导磁头。零件11为铜件，其上端面钻出凹孔用于放置待加工试件，可加工直径为19mm及其以下尺寸，采用侧面的紧定螺钉固定。简单方便。

磁力线及驱动电路：

附图1中的零件9为磁化线圈，前面已作介绍此处不再赘述。可变磁场控制发生电路原理如图2，驱动电路以ATMEL公司的52单片机控制为核心，驱动芯片采用UDN2981芯片，其可同时实现八路驱动八个一级继电器。另外，控制电路板上设置了八路选择开关用于选择控制加工区的磁场动作方式，电路板上还增设了1个双段数码管用于显示磁场当前的工作情况。需要说明的是此控制电路板上的继电器为一级继电器，继电器的触点并不直接接入驱动磁场产生的线圈中，而是先驱动二级控制继电器，双级继电器控制有效地避免了模拟电路对数字电路的冲击影响，保证控制准确无误。

可变磁场发生线圈驱动原理如图3。这部分电路比较简单，主要是通过继电器的动作实现各个线圈的配合反正向通电及快速更换。图中的八个继电器都为原理图2中提到的二级继电器，均由一级继电器控制其动作。

电解液喷射系统：

电解液系统是电加工装置的重要组成部分，其作用是将电解液以给定的压力、流量供给加工间隙区，并不断净化电解液，滤掉产生的加工残余物，避免发生短路。本装置的特别之处在于设计为开放式喷淋，电解液由喷枪喷头射向加工区，并迅速收集循环过滤，克服了以往设计密闭喷淋装置体积大，不便布置电磁的缺点，附图4为电解液系统原理图。

有益效果

本发明的可变磁场辅助电化学复合加工装置可加工型孔样式多，工具阴极替换简单方便，加工间隙可精确调节，配置的磁场复杂多变，集恒强恒向场、恒强旋转场、脉冲场、渐变场、叠加场等多种常用磁场于一体，磁场强度可调范围宽，其变化频率可定量调节，操作方便。适合用于磁场辅助电化学加工实验室研究及工业应用模型。

附图说明

图1为可变磁场辅助电化学加工装置结构及线圈配置图
图2为可变磁场控制发生电路板原理图
[0021] 图 3 为可变磁场发生线圈驱动原理图
[0022] 图 4 为电解液循环系统原理图
[0023] 图 1 中，各序号所标注的零件依次为：1-底板，2-线圈支架，3-阴极连接套，4-角型块，5-垫块，6-千分微调杆，7-支架，8-阴极，9-线圈，10-导磁块，11-铜座。
[0024] 具体工作原理
[0025] 下面结合附图对本发明做进一步描述：
[0026] 本发明主要由电加工机械结构部分、可变磁场的线圈配置及驱动电路、可变磁场控制发生电路板、电解液喷射系统等几个部分组成，是一个机电液磁多种技术相互结合的实用产品。其中加工阴极多样性可实现快速方便更换，加工间隙调节简单且可精确控制。产生磁场的线圈采用继电器控制 24 伏可调直流电供电，双级继电器控制有效的避免了模拟电路对数字电路的冲击影响，控制准确无误。
[0027] 加工工件时，将待加工工件放置于图 1 中零件 11 上端面的工件放置孔中，再旋紧铜座侧面的紧定螺钉紧待加工工件，工件定位完毕。定位工件后，根据芯轴调节杆上的刻度值调节加工间隙为预定值。加工时为防止短路出现，应首先开启电解液喷射系统，保证加工间隙内有高速流动的电解液存在，及时带走可能引起短路的电解产物。第一步，开启多变磁场控制发生电路板上的 5V 的控制电源，然后设置磁场的相关参数为需要的数值。第二步，调节线圈供电电压，供电方式，设定完毕后开启为线圈供电的 24V 可调直流电，加工区域磁场配置完毕。第四步，调节加工区域的电化学加工脉冲电源相关参数后开启电源按钮，电加工开始进行，加工计时开始。加工完成后，应及时关闭加工区域的电场，磁场，关机顺序与开启的顺序恰好相反。即，首先关断超高频脉冲电源，然后关断磁场的 24V 供电电源，再关断可变磁场控制发生电路板上的 5V 的控制电源，最后才能关系电解液喷射系统。此处需要注意的是，电源的开启应先弱电后强电，先控制电源后功率电源；电源的关断应先关功率电源后控制电源，先强电后弱电的顺序。而为了避免短路的发生，电解液应该最先开启，最后关闭。若电加工连续进行，为了提高加工效率，更换工件过程中可以只关闭功率电源，保持控制电源处于待机状态。整个操作复合电气系统相关操作规程。
[0028] 以上所述仅为本发明的较佳实例而已，并不用以限制本发明，凡在本发明的精神和原则之内，所作的任何修改、等同替换、改进等，均应包含在本发明的保护范围之内。
图2
图3

图4

粗过滤器
泵
溢流阀
压力计
精过滤器

加工区

电解液槽
滤网