

United States Patent [19]

Mulligan

[11] 3,803,822

[45] Apr. 16, 1974

[54] RADIATION SENSITIVE ENDS DOWN
DETECTING APPARATUS AND METHOD

3,523,413 8/1970 Ford et al. 57/81
3,523,414 8/1970 Black et al. 250/219 S X

[75] Inventor: William L. Mulligan, Charlotte,
N.C.

Primary Examiner—Ronald L. Wibert

Assistant Examiner—Orville B. Chew

Attorney, Agent, or Firm—Parrott, Bell, Seltzer, Park
& Gibson

[73] Assignee: Parks-Cramer Company, Fitchburg,
Mass.

[22] Filed: Dec. 14, 1970

[57] ABSTRACT

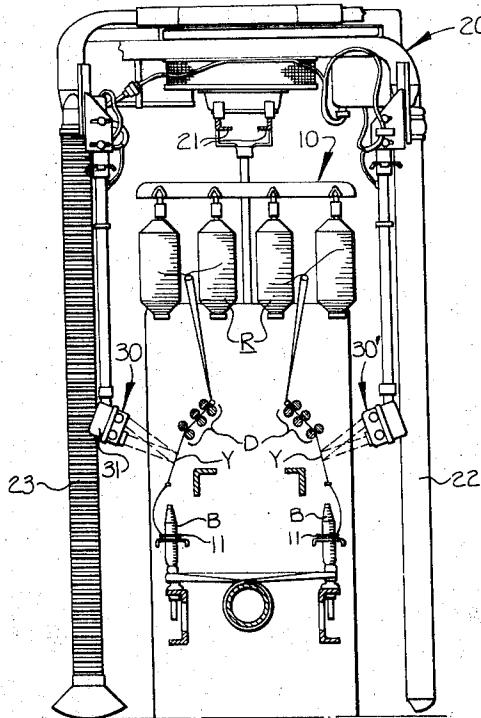
[21] Appl. No.: 97,521

An apparatus and method for detecting ends of yarn
on a textile yarn forming machine such as a spinning
machine wherein radiation source and radiation detec-
tor mounted on and movable with a traveling unit di-
rect radiation toward ends of yarn and respond to ra-
diation reflected therefrom, the impingement of radia-
tion onto the detector being amplified at a low signal
to noise ratio through concentration of reflected radia-
tion by a static reflector.

[52] U.S. Cl. 57/34 R, 250/219 S

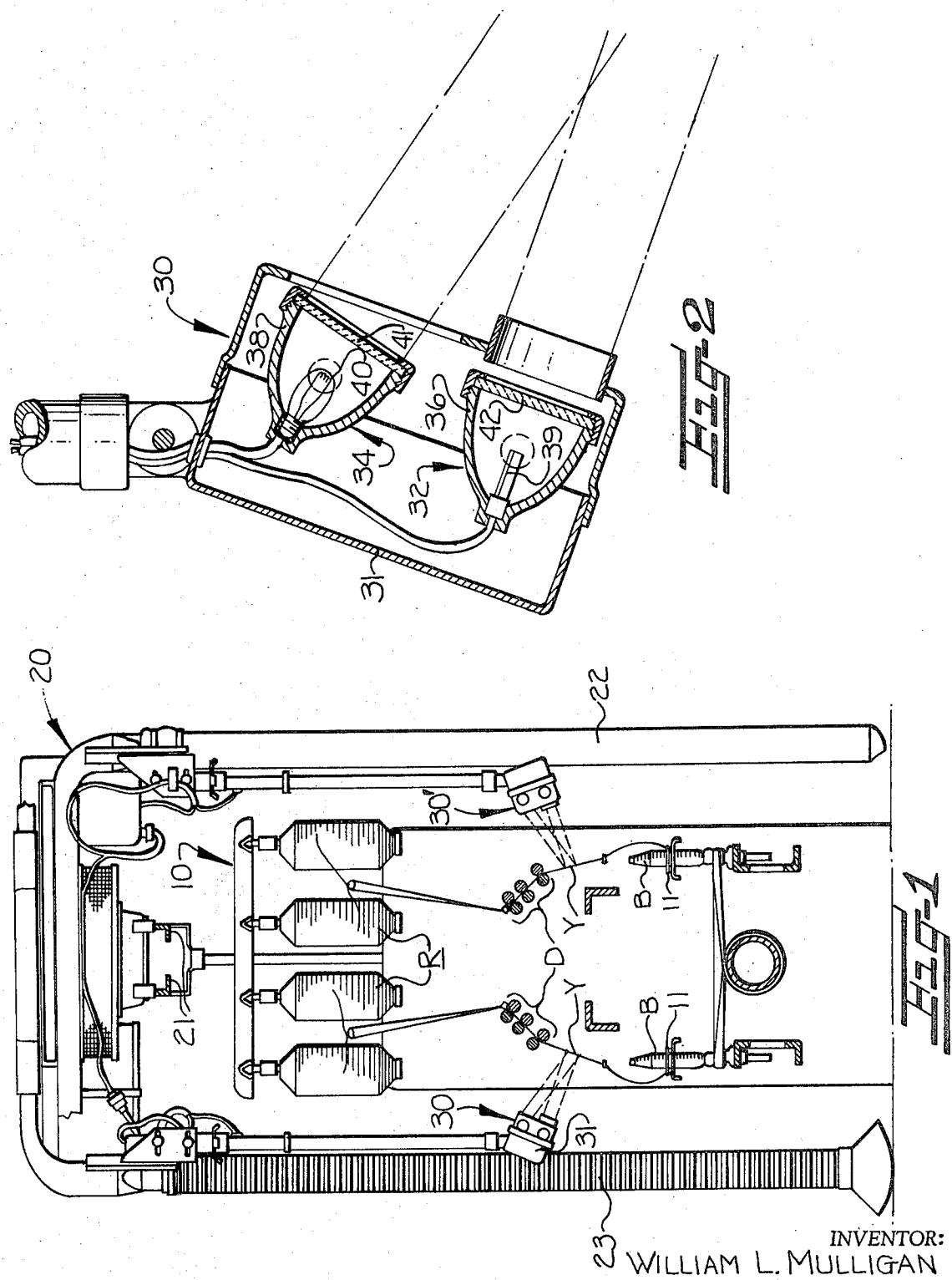
[51] Int. Cl. D01h 13/16

[58] Field of Search..... 356/199, 200, 238;


250/219 S; 57/81, 34 R

[56] References Cited

UNITED STATES PATENTS


3,391,840 7/1968 King 250/219 S

1 Claim, 2 Drawing Figures

PATENTED APR 16 1974

3,803,822

INVENTOR:
WILLIAM L. MULLIGAN

BY *Parrott, Bell, Seltzer, Park & Gibson*
ATTORNEYS

RADIATION SENSITIVE ENDS DOWN DETECTING APPARATUS AND METHOD

This invention is related to inventions owned in common with the present invention and disclosed in patents and applications entitled "Apparatus and Method for Detecting, Piecing-Up and Reporting Ends Down on Spinning Machines," U.S. Pat. No. 3,486,319 issued Dec. 30, 1969; "Apparatus and Method For Detecting and Reporting Ends Down on Textile Machines," U.S. Pat. No. 3,523,413 issued Aug. 11, 1970; and "Electric Circuit Means For Textile Strand Ends Down Detecting Apparatus," filed Oct. 1, 1970 under Ser. No. 77,101, now U.S. Pat. No. 3,659,409 issued May 2, 1972.

It has previously been proposed that the efficiency of textile machine operators, and particularly of spinners working in the spinning room of a textile mill, may be improved by providing apparatus including a detector mounted on or traveling with a traveling unit such as a pneumatic cleaner, for patrolling textile yarn forming machines as the traveling unit traverses the same and for providing an indication of those textile machines or sides of machines in need of correction of improper conditions, that is in need of the putting up of ends down. Such apparatus and components of circuitry therefor are the subject matter of the aforementioned related patents and application.

Operating apparatus in accordance with the teachings of the aforementioned related patents and application have been constructed in which radiation in the form of visible light from a source such as an incandescent lamp is directed toward ends of yarn on a textile yarn forming machine and visible light reflected from the ends of yarn is detected by a photomultiplier tube of conventional construction. While such operating embodiments are successful in determining the absence and presence of yarns formed on a traversed machine, certain difficulties have been encountered in maintaining an accurate determination of the presence and absence of ends of yarn under certain adverse conditions.

More particularly, the amount of visible light reflected from the ends of yarn is relatively small and substantial amplification is required to raise any related electrical signal to the level needed for distinguishing between the presence and absence of ends of yarn at the yarn forming locations. In prior operating embodiments, such amplification has been successfully accomplished through the use of photoemissive devices, and particularly photomultipliers as mentioned above. Photomultipliers are known to have tremendous amplification capability, and rely upon secondary electron emission in responding to low light levels. One substantial disadvantage of the photomultiplier is that thermionic emission originating within the photomultiplier is amplified together with any light initiated signal and appears as a significant noise component in the resultant total signal where high sensitivity is sought. The presence of such noise is often further complicated by the relatively high ambient levels of visible light typically found in a textile mill room where the apparatus is operating. High ambient illumination levels and high signal to noise ratios have, in particularly severe circumstances, combined with other factors in the overall apparatus arrangement to bring about unacceptable inac-

curacies in determination of the presence and absence of yarn.

In view of the above, it is an object of the present invention to avoid the introduction of noise into a signal indicative of radiation reflected from an end of yarn being formed on a textile yarn forming machine, through amplification at a low signal to noise ratio. In accomplishing this object of the present invention, reliance is placed upon a static, radiation concentrating

means which gathers and concentrates reflected radiation without introducing extraneous emissions such as occur in a photomultiplier. As will be recognized from the disclosure which follows, the use of a static means for amplification of the effect of radiation reflected from ends of yarn eliminates the possibility of noise introduction by thermionic emission or similar effects as is common with any active amplification means such as the photomultipliers used in prior related developments.

Some of the objects and advantages of the invention having been stated, others will appear as the description proceeds, when taken in connection with the accompanying drawings, in which:

FIG. 1 is an end elevation view, in partial section, of an apparatus in accordance with the present invention shown during traversal of a textile yarn forming machine; and

FIG. 2 is an enlarged elevation, in section, through a detector head forming a portion of the apparatus of FIG. 1, illustrating more particularly the arrangement of radiation source and radiation detector in accordance with the present invention.

Referring to the drawings, the apparatus of the present invention is there disclosed in operating relation to a textile yarn forming machine, namely a ring spinning frame 10. While only a single spinning frame 10 is illustrated, it is to be understood that the frame 10 may be of one of a substantial number of spinning machines arranged in rows in a spinning room, in patterns which are substantially conventional. A traveling unit, here illustrated as a pneumatic cleaner 20, is supported above the textile machine 10 for traversing the same along a predetermined path of travel. The specific apparatus chosen for illustration in the drawings is substantially identical to the fourth embodiment of the traveling pneumatic cleaner disclosed in U.S. Pat. No. 3,304,571 issued on Feb. 21, 1967 and owned in common with the present invention, but it must be understood at the outset that a wide variety of other patrolling devices are contemplated as useful in the combination of this invention and that the invention is accordingly not to be limited solely to traveling cleaners.

The traveling cleaner 20 is supported for movement along a track 21 extending above the spinning frame 10 and includes blowing and sucking air sleeves 22 and 23 depending on either side of the spinning frame 10 from a main fan housing, for removing lint and the like from the spinning frame 10 and the floor by currents of air. As is disclosed more fully in the aforementioned patent directed to the cleaner structure, drive means and a fan are provided for inducing the flow of currents of air for such cleaning. While the traveling cleaner 20 may be arranged to traverse a plurality of textile machines such as the spinning frame 10, the present invention contemplates also that the traveling cleaner 20 or the manner in which the cleaner is supported and arranged for traversing a textile machine may be changed in

varying ways, including limiting the path of travel of the cleaner to traversal of a single machine only.

Conventional ring spinning frames in wide use in the textile industry of the world at the present time include a creel portion wherein a plurality of bobbins of roving R are suspended, drafting systems D to which the roving is supplied, and spindles equipped with bobbins B on which spun yarn is wound. In spinning the yarn Y in conventional manner and packaging the yarn onto bobbins B mounted on the spindles of the spinning machine 10, roving passes through the drafting systems D to travelers mounted on spinning rings 11 encircling each of the plurality of spindles driven in rotation from the center shaft or tape drum of the machine. In passing between the drafting systems and the travelers, the yarn Y is exposed to detection by means mounted within a detector head 30 as will now be described.

The detector head 30 depends from the traveling cleaner 20, between the blowing and sucking air sleeves thereof, and includes a casing 31 which encloses a radiation detector generally indicated at 32 and a radiation source generally indicated at 34. As proposed in the aforementioned related patents and application, the traveling cleaner 20 mounts two of such detector heads 30, 30', for monitoring both sides of the spinning frame 10 during traversal thereof by the traveling cleaner 20. For purposes of the present disclosure, discussion will be directed particularly to one detector head 30, with it being understood that both of the detector heads 30, 30' are identical in structure and operation.

The radiation detector 32 will be noted as including a detector casing 36 having a sensing element 39 disposed therewithin. Desirably, the sensing element 39 is a photoconductive element such as a sulfide resistor conducting a flow of electrical current which is dependent upon impingement of radiation. Through provision of the element 39, the radiation detector 32 is rendered responsive by electrical variation to radiation such as is reflected from the ends of yarn Y normally being formed at locations along the spinning frame 10.

In accordance with the present invention, static, reflective radiation concentrating means is mounted in predetermined relation to the sensing element 39 for amplifying at a low signal to noise ratio the impingement thereonto of radiation reflected from ends of yarn Y. Desirably, the concentrating means is defined by a parabolic internal surface of the detector casing 36 reflective as to radiation emitted by the radiation source 34, with the sensing element 39 having its active portion lying at the focus of the parabolic surface (FIG. 2). As will be understood, the internal surface of the casing 36 concentrates onto the sensing element 39 radiation which reaches the detector 32 from within a predetermined, generally right circular cylindrical, field of view (illustrated by phantom lines in the drawing).

For purposes of minimizing the maintenance required by the radiation detector 32, and for other reasons which will be brought out more fully hereinafter, it is preferred that the radiation to which the detector 32 responds be radiation in the range of wavelengths known as infrared and that the sensing element 39 be a lead sulfide resistor. Where infrared radiation is employed, the reflective surface of the detector casing 32 which functions as the static, reflective radiation concentrating means and which amplifies the impingement

of radiation onto the sensing element 39 may be a polished metal surface which need not be silvered or otherwise specially treated. Polished metal surfaces having characteristics of reflectivity for infrared radiation more readily maintain a high reflectivity under textile mill operating conditions than do those surfaces which are highly reflective at wavelengths visible to the human eye. As is known, the concentrating and amplifying effects of a parabolically curved surface may be employed for substantially all wavelengths of radiation, including light visible to the human eye, but the difficulty of maintaining a highly reflective surface for visible light renders the choice of visible light as the radiation used less than wholly desirable where a static, radiation concentrating means as contemplated by this invention is used.

Radiation reaching the detector 32 from ends of yarn Y, for concentration onto the sensing element 39, originates from a radiation source 34 including a source casing 38 within which is mounted a suitable means for emitting radiation, such as a suitable incandescent lamp 40. Desirably, the housing 38 includes a generally parabolic interior surface wall reflective for radiation of the type to which the detector 32 responds, and the filament of the incandescent lamp 40 is positioned generally at the focal point of the parabolic surface. Where infrared radiation is employed, the incandescent lamp 40 is selected to be a type emitting radiation rich in infrared wavelengths and a screening filter 41 is positioned to ensure that radiation directed outwardly of the source 34 is of a desirable wavelength characteristic. Tuning of the detector 32 and source 34 to a common band of infrared radiation is accomplished by the provision of a corresponding filter 42 in the radiation detector 32.

It is to be noted that the infrared radiation source 34 and infrared radiation detector 32 are mounted within the detector head 30 so that the generally right circular cylindrical fields thereof intersect in an elongate zone spaced forwardly of the detector head 30 (dotted lines in FIGS. 1 and 2). As will be understood, the "tunnel" field of view available to the infrared radiation detector 32, being substantially right circular cylindrical throughout its extent, ensures proper response of the infrared radiation detector to infrared radiation emitted from the source 34 and reflected from an end of yarn Y at any point within the intersecting zone of the fields of the source 34 and detector 32 even should that zone be displaced toward or away from the spinning frame 10. By this means, incorrect responses otherwise possibly introduced by sway or deflection of the detector head 30 due to movement of the traveling cleaner 20 are minimized.

The adoption of the infrared band of wavelengths as the radiation to which the source 34 and detector 32 are tuned provides other and further benefits, in the combination of this invention, in that infrared detectors having the characteristics described above are more rugged than photomultipliers and thus more easily withstand any rough usage occurring in a textile mill application. Further, such infrared detectors operate at lower voltage levels than photomultipliers and are available at lower cost, thereby opening possibilities for more economical construction and maintenance for the combination of the present invention. Finally, the ambient level of infrared radiation in a textile mill room is quite low, as compared to visible light, so as to facil-

tate reliance on the static, radiation concentrating means of this invention in obtaining the needed amplification of radiation reflected from ends of yarn.

What is claimed is:

1. In an apparatus for monitoring ends of yarn normally being formed at locations along a textile yarn forming machine and including a traveling unit movable relative to the yarn forming locations, a radiation source mounted on the traveling unit and moving therewith for directing radiation toward ends of yarn being formed at the yarn forming locations, a radiation detector mounted on the traveling unit and moving therewith and having a sensing element for responding by an electrical variation to radiation impinging thereon, and electronic circuitry operatively connected with the detector for distinguishing between electrical variations of said sensing element indicative of the presence and absence of ends of yarn at the yarn forming locations, that improvement which comprises first

casing means enclosing said radiation source and defining a parabolic surface for reflecting radiation emitted therefrom into a collimated beam, filter means on said first casing means for tuning radiation projected therefrom to a predetermined range of infrared radiation wavelengths; second casing means enclosing said sensing element and defining a parabolic surface lying in predetermined relation to said sensing element for concentrating the impingement onto said sensing element of radiation reflected from ends of yarn being formed at the yarn forming locations, said parabolic surface concentrating onto said sensing element radiation projected from said first casing means and reflected to said sensing element from within a predetermined field of view, and filter means on said second casing means for limiting radiation reaching said parabolic surface thereof to said predetermined range of wavelengths.

* * * * *

20

25

30

35

40

45

50

55

60

65