发明名称
硅基二氧化硅波导和探测器垂直耦合结构及其制备方法

摘要
本发明属于光电集成以及光电探测技术领域，公开了一种硅基二氧化硅波导和探测器垂直耦合结构，包括：衬底、波导、上包层和探测器，衬底为硅衬底，其上形成波导，波导上形成上包层，上包层上通过形成凹陷，凹陷内形成波导本体电极，探测器光敏面使用导电树脂层与波导耦合，波导中光的传输方向与探测器光的引出方向垂直，探测器电极与波导本体电极通过导电树脂层相连。本发明通过采用树脂粘接的方式，替代了传统光电集成方法所使用的半导体工艺，制作成本降低，同时垂直耦合方法使用波导上表面探测光强，探测距离长，耦合精度要求较小；相对于扁平面探测的方案，将光电子集成器件从平面结构升级为三维结构，并且耦合可靠性更高。
1. 一种硅基二氧化硅波导和探测器垂直耦合结构，其特征在于，包括：衬底(1)、波导(2)、上包层(3)和探测器(4)；所述衬底(1)为硅衬底，其上形成波导(2)，波导(2)上形成上包层(3)，上包层(3)上形成探测器(4)的位置通过去薄上包层(3)而形成凹陷，凹陷内形成波导本体电极(5)，探测器(4)光敏面使用导电树脂层(6)与波导(2)耦合，波导(2)中光的传输方向与探测器(4)光的引出方向垂直，探测器电极与波导本体电极(5)通过导电树脂层(7)相连。

2. 如权利要求1所述的硅基二氧化硅波导和探测器垂直耦合结构，其特征在于，所述波导本体电极(5)上通过金丝压焊将探测器探测信号引出到管脚或者放大电路。

3. 如权利要求1所述的硅基二氧化硅波导和探测器垂直耦合结构，其特征在于，所述波导(2)和探测器(4)分别独立制作，通过导电树脂和导电树脂实现耦合。

4. 如权利要求1所述的硅基二氧化硅波导和探测器垂直耦合结构，其特征在于，所述衬底(1)包括硅衬底和形成在硅衬底上方的二氧化硅缓冲层，波导(2)形成在二氧化硅缓冲层上方。

5. 如权利要求1所述的硅基二氧化硅波导和探测器垂直耦合结构，其特征在于，所述上包层(3)去薄需满足：当需要将光全部引出时，则将上包层去除至波导深度，如需要部分光引出时，则去除上包层的部分厚度。

6. 一种硅基二氧化硅波导和探测器垂直耦合结构的制备方法，其特征在于，包括以下步骤：

 步骤一：制作硅基二氧化硅波导；

 步骤二：制作光电探测器；

 步骤三：在波导本体上需要耦合探测器的位置局部去除波导上包层，形成凹陷；

 步骤四：在去除上包层后形成的凹陷中制作波导本体电极；

 步骤五：在波导本体的波导位置涂覆导电树脂层，在电极位置涂覆导电树脂层，放置探测器，使导电树脂层与光敏区相连，导电树脂层与探测器电极相连；

 步骤六：固化导电树脂层与导电树脂层，完成整个垂直耦合结构的制作。

7. 如权利要求6所述的硅基二氧化硅波导和探测器垂直耦合结构的制备方法，其特征在于，所述步骤一中，制作硅基二氧化硅波导的制程为：先制作硅衬底，再在硅衬底上方制作二氧化硅缓冲层，随后沉积波导，波导上方沉积上包层。

8. 如权利要求6所述的硅基二氧化硅波导和探测器垂直耦合结构的制备方法，其特征在于，所述步骤三中，去除波导上包层的厚度需满足：需要将光全部引出时，则将上包层去除至波导深度，如需要部分光引出时，则去除上包层的部分厚度。
硅基二氧化硅波导和探测器垂直耦合结构及其制备方法

技术领域
【0001】本发明属于光电集成以及光电探测技术领域，涉及一种硅基二氧化硅波导和探测器垂直耦合结构及其制备方法。

背景技术
【0002】集成光路在光通讯领域有广泛应用。通常情况下，为对波导内光强进行探测，需要利用光纤或透镜等结构，从波导出光面处耦合出光信号并使其进入探测器组件。
【0003】使用分立波导与探测器的方法集成度低，容易带来可靠性问题和体积问题。为解决上述问题，有相关的光电集成方法面世。如专利200410040306.6，给出了一种单片集成光电回路的制作方法，该方法在同一基片上同时制作光回路与探测器部分，再利用有机材料填充方法将光信号引出到探测器端。专利200910147801.X给出了一种利用绝缘体上硅制作相似光电集成结构的技术。上述光电集成方法解决了分立探测元件的可靠性问题，但成本较高，生产效率低。
【0004】上述光电集成方法将光从波导出光面耦合，该类方法存在如下不足：1. 出光面连接的光纤或透镜增大了器件体积；2. 出光面只能作为波导终端，使用该类耦合方法无法探测波导中传输光的信号。

发明内容
【0005】(一)要解决的技术问题
【0006】本发明要解决的技术问题是：提供一种硅基二氧化硅波导和探测器垂直耦合结构及其制备方法，实现耦合结构的体积较小，且其出光面不仅能够作为波导终端，还能够探测波导中传输光的信号。
【0007】(二)技术方案
【0008】为了解决上述技术问题，本发明提供一种硅基二氧化硅波导和探测器垂直耦合结构，其包括：衬底1、波导2、上包层3和探测器4；所述衬底1为硅衬底，其上形成波导2，波导2上形成上包层3，上包层3上形成探测器4的位置通过波上包层3而形成凹陷，凹陷内形成波导本体电极5，探测器4光敏面使用导光树脂层6与波导2耦合，波导2中的光的传输方向与探测器4光的传输方向垂直，探测器电极与波导本体电极5通过导电树脂层7相连。
【0009】其中，所述波导本体电极5上通过金丝压焊将探测器探测信号引出到管脚或者放大电路。
【0010】其中，所述波导2和探测器4分别独立制作，通过导光树脂和导电树脂实现耦合。
【0011】其中，所述衬底1包括硅衬底和形成在硅衬底上方的二氧化硅缓冲层，波导2形成在二氧化硅缓冲层上方。
【0012】其中，所述上包层3去薄需满足：当需要将光全部引出时，则将上包层去除至波导深度，如需要部分光引出时，则去除上包层部分厚度。
【0013】本发明还提供了一种硅基二氧化硅波导和探测器垂直耦合结构的制备方法，其包
括以下步骤：

[0014] 步骤一：制作硅基二氧化硅波导；
[0015] 步骤二：制作光电探测器；
[0016] 步骤三：在波导本体上需要耦合探测器的位置局部去除波导上包层，形成凹陷；
[0017] 步骤四：在去除包层后形成的凹陷中制作波导本体电极；
[0018] 步骤五：在波导本体的波导位置涂覆导光树脂层，在电极位置涂覆导电树脂层，放置探测器，使导光树脂层与光敏区相连，导电树脂层与探测器电极相连；
[0019] 步骤六：固化导光树脂层与导电树脂层，完成整个垂直耦合结构的制作。
[0020] 其中，所述步骤一中，制作硅基二氧化硅波导的过程为：先制作硅衬底，再在硅衬底上方制作二氧化硅缓冲层，随后沉积波导，波导上方沉积上包层。
[0021] 其中，所述步骤三中，去除波导上包层的厚度需满足：需要将光全部引出时，则将上包层去除至波导深度，如需要部分光引出，则只去除上包层的部分厚度。
[0022] （三）有益效果
[0023] 上述技术方案所提供的硅基二氧化硅波导和探测器垂直耦合结构及其制备方法，通过采用树脂粘接的方式，替代了传统光电集成方法所使用的半导体工艺，制作成本降低；同时垂直耦合方法使用波导上表面探测光强，探测距离长，耦合精度要求较小，相对于出光面探测的方案，将光电子集成器件从平面结构升级为三维结构，并且耦合可靠性更高。

附图说明
[0024] 图1为本发明实施例硅基二氧化硅波导和探测器垂直耦合结构的整体结构示意图；
[0025] 图2为本发明实施例硅基二氧化硅波导和探测器垂直耦合结构的中心部位剖面图；
[0026] 图3为本发明实施例硅基二氧化硅波导和探测器垂直耦合结构的中心部位剖面图局部放大图；
[0027] 图4为本发明实施例硅基二氧化硅波导和探测器垂直耦合结构在耦合探测器前的波导本体部分。
[0028] 图中：1—衬底；2—波导；3—上包层；4—探测器；5—波导本体电极；6—导光树脂层；7—导电树脂层。

具体实施方式
[0029] 为使本发明的目的、内容和优点更加清楚，下面结合附图和实施例，对本发明的具体实施方式作进一步详细描述。
[0030] 在本发明的描述中，需要说明的是，术语“上”、“下”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系，仅是为了便于描述本发明和简化描述，而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作，因此不能理解为对本发明的限制。此外，术语“第一”、“第二”、“第三”仅用于描述目的，而不能理解为指示或暗示相对重要性。
[0031] 在本发明的描述中，需要说明的是，除非另有明确的规定和限定，术语“安装”、“连
接”应做广义理解，例如，可以是固定连接，也可以是可拆卸连接，或一体地连接；可以是机械连接，也可以是电连接；可以是直接连接，也可以是通过中间媒介间接连接，可以是两个元件内部的连通。对于本领域的普通技术人员而言，可以视具体情况理解上述术语在本发明中的具体含义。

【0032】此外，在本发明的描述中，除非另有说明，“多个”的含义是两个或两个以上。

【0033】本发明的目的是减小器件体积增强可靠性，同时规避单片光电集成成本过高的问题，相应地，本发明的整体结构如图1所示，局部结构如图2至图4所示，其中二氧化硅波导2制作在衬底1上，波导2上形成上包层3，上包层3对波导光起到束缚作用，减小损耗并保护波导。

【0034】制作垂直耦合结构需要在适当位置去除上包层3，以形成凹陷，随后在去除上包层3后形成的凹陷中制作波导本体电极5，利用半导体工艺制作探测器4并将探测器4放置在去除上包层3形成的凹陷中，探测器4的敏感面使用导电树脂层6与波导2耦合，波导2中的光的传输方向与探测器光的引出方向垂直，实现两者的垂直耦合，探测器电极与波导本体电极5使用导电树脂层7相连。在波导本体电极5上利用金丝焊接，可将探测器探测信号引出到管脚或者放大电路，实现对波导内传输光的探测。在图3的局部放大剖面图中，可以较为清晰的看到波导2以及导电树脂层6和导电树脂层7的位置。

【0035】本实施例中，相对于其他光电集成方法，波导本体和探测器是分别制作的，再利用粘接树脂将二者连接；相对于其他耦合方法，波导光是从上表面耦合出并通过导电树脂进入探测器光敏面的；波导本体制作电极如图1，探测器4反扣在波导本体上，通过波导本体电极5将信号引出。

【0036】本实施例硅基二氧化硅波导和探测器垂直耦合结构的制作过程如下：

【0037】（1）制作硅基二氧化硅波导，常用的波导制作工艺有PECVD等。由于硅衬底1折射率较高，故在使用前在其上方制作二氧化硅缓冲层。随后沉积波导2，利用掺杂的方法调节波导2的折射率，随后沉积上包层3起到对光的束缚作用，减小损耗。

【0038】（2）利用常规半导体工艺制作光电探测器。光电探测器光敏区应能够覆盖波导区域，探测器电极均与光敏区位于同一平面。

【0039】（3）在波导本体上需要耦合探测器的位置局部去除波导上包层3，该过程可采用反应等离子刻蚀工艺（RIE）等方法，其核心在于控制去除厚度。如需要将光全部引出，则将上包层去除至波导深度，如需要部分光引出，则只需去除上包层的部分厚度。

【0040】（4）在去除上包层后形成的凹陷中制作波导本体电极。具体方法是，利用光刻制作研磨后镀钛金层，电极形状与位置需与探测器电极相匹配。

【0041】（5）根据需要选择导光树脂，如需要将光全部引出，则首先依照步骤（3）所述去除波导上包层，随后选择折射率为0.8的树脂作为导光树脂。如需要引出部分光，则首先依照步骤（3）所述去除波导上包层，随后选择折射率与波导2相近的树脂以形成耦合模式。

【0042】（6）在波导本体的波导2位置涂覆导光树脂层6，在电极位置涂覆导电树脂层7，放置探测器4，使导光树脂层6与光敏区相连，导电树脂层7与探测器电极相连。在探测器4背面施以一定的压力，该力起到保证探测器位置不变的作用，同时该力不应过大，避免导光树脂层6与导电树脂层7混合。

【0043】（7）保持压力的条件下固化导光树脂层6与导电树脂层7，完成整个垂直耦合结构
的制作。
【0044】由上述技术方案可以看出，本发明通过本发明通过采用树脂粘接的方式，替代了传统光电集成方法所使用的半导体工艺，制作成本降低。同时垂直耦合方法使用波导上表面探测光强，探测距离长，耦合精度要求较小。相对于出光面探测的方案，将光电子集成器件从平面结构升级为三维结构，并且耦合可靠性更高。
【0045】以上所述仅是本发明的优选实施方式，应当指出，对于本技术领域的普通技术人员来说，在不脱离本发明技术原理的前提下，还可以做出若干改进和变形，这些改进和变形也应视为本发明的保护范围。