Title: METHOD AND APPARATUS FOR OBJECT SIZE ADJUSTMENT ON A SCREEN

Abstract: A method and apparatus for adjusting sizes of objects displayed on a screen. The method includes recognizing one or more objects appearing on a screen. Alternatively, the method includes receiving a selection command for a region on the screen, and recognizing the selected region as an object. The method further includes displaying guides indicating the or each recognized object on the screen; receiving a selection command for at least one recognized object; receiving a size adjustment command; adjusting, upon reception of the size adjustment command, a size of the at least one selected object with respect to a first axis, or a second axis perpendicular to the first axis of the guide, associated with the at least one selected object; and displaying the size-adjusted object.

Published:

— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
Title of Invention: METHOD AND APPARATUS FOR OBJECT SIZE ADJUSTMENT ON A SCREEN

Technical Field
[1] The present invention relates to a method and an apparatus for adjusting the sizes of objects displayed on a screen.

Background Art
[2] With advances in display technology, various types of devices are equipped with display screens. In many cases, display screens are used together with traditional non-display functions. For example, in the case of a digital camera, a display screen is used together with a traditional photographing function to enable a user to preview an image before photographing the image. Most newly developed digital devices such as Portable Multimedia Players (PMPs) are equipped with display screens.

[3] If such a display screen is installed in a device, the user may use it to visually check the status of the device. That is, a display screen may significantly enhance the convenience and usefulness of a device. Hence, it is expected that display screens will be more frequently used in digital devices.

[4] Digital devices have different screen sizes. Given screen size limitations, the user of a device may have to adjust the sizes of objects on the screen in accordance with a currently used function. However, in a regular device, in order to enlarge or reduce the size of a selected object or region displayed on the screen, the user may be required to perform a multi-stage or inconvenient input procedure.

Disclosure of Invention

Technical Problem
[5] It is an aim of certain embodiments of the present invention to address at least some of the above-mentioned problems and/or disadvantages and to provide at least some of the advantages described below. Accordingly, an aim of certain embodiments of the present invention is to provide a method and apparatus wherein, for easy object size adjustment on a screen, a guide indicating an object region is displayed and the user may adjust the size of a selected object using the guide.

Solution to Problem
[6] In accordance with a first aspect of the present invention there is provided a method for object size adjustment on a screen, the method comprising: recognizing one or more objects appearing on a screen; displaying guides indicating the or each recognized object on the screen; receiving a selection command for at least one recognized object; receiving a size adjustment command; adjusting, upon reception of
the size adjustment command, a size of the at least one selected object with respect to a first axis, or a second axis perpendicular to the first axis of the guide, associated with the at least one selected object; and displaying the size-adjusted object.

[7] In accordance with a second aspect of the present invention there is provided a method for object size adjustment on a screen, the method comprising: receiving a selection command for a region on the screen; recognizing the selected region as an object; displaying a guide indicating the selected region as a recognized object on the screen; receiving a selection command for the recognized object; receiving a size adjustment command; adjusting, upon reception of the size adjustment command, a size of the selected object with respect to a first axis, or a second axis perpendicular to the first axis of the guide, associated with the selected object; and displaying the size-adjusted object.

[8] In accordance with a third aspect of the present invention there is provided an apparatus for object size adjustment on a screen, the apparatus comprising: a screen arranged to display original objects and size-adjusted objects; and a control unit arranged to: recognize one or more objects appearing on the screen; display guides indicating the or each recognized object; receive a selection command for at least one recognized object; adjust, upon reception of the size adjustment command, a size of the at least one selected object with respect to a first axis, or a second axis perpendicular to the first axis, of the guide associated with the at least one selected object; and control the screen to display the size-adjusted object.

[9] In accordance with a fourth aspect of the present invention there is provided an apparatus for object size adjustment on a screen, the apparatus comprising: a screen arranged to display original objects and size-adjusted objects; and a control unit arranged to: receive a selection command for a region on the screen; recognize the selected region as an object; display a guide indicating the recognized object on the screen; receive a selection command for the recognized object; adjust, upon reception of the size adjustment command, a size of the selected object with respect to a first axis, or a second axis perpendicular to the first axis, of the guide associated with the selected object; and control the screen to display the size-adjusted object.

[10] Another aspect of the invention provides a computer program comprising instructions arranged, when executed, to implement a method and/or apparatus in accordance with any one of the above-described aspects. A further aspect provides machine-readable storage storing such a program.

[11] Other aspects, advantages, and salient features of the invention will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses exemplary embodiments of the invention.
Advantageous Effects of Invention

In exemplary embodiments of the present invention, the user may adjust the size of a selected object in a more convenient manner without performing a multi-stage or cumbersome input procedure.

Brief Description of Drawings

FIG. 1 is a block diagram of an apparatus for object size adjustment according to an exemplary embodiment of the present invention;

FIG. 2 is a flowchart of a method for object size adjustment according to an exemplary embodiment of the present invention;

FIG. 3 is screen representations illustrating enlargement of an object region with respect to the vertical axis of a guide according to an exemplary embodiment of the present invention;

FIG. 4 is screen representations illustrating enlargement of an object region with respect to the horizontal axis of a guide according to an exemplary embodiment of the present invention;

FIG. 5 shows an illustration for enlargement of an object region if two or more objects are selected according to an exemplary embodiment of the present invention;

FIG. 6 shows another illustration for enlargement of an object region if two or more objects are selected according to an exemplary embodiment of the present invention;

FIG. 7 is a flowchart of a procedure for object region enlargement regarding a selected region as a single object according to an exemplary embodiment of the present invention;

FIG. 8 shows an illustration for enlargement of an object region according to an exemplary embodiment of the present invention; and

FIG. 9 shows an illustration for object region enlargement regarding a selected region as a single object according to an exemplary embodiment of the present invention.

Throughout the drawings, it should be noted that like reference numbers are used to depict the same or similar elements, features, and structures.

Mode for the Invention

The following description with reference to the accompanying drawings is provided to assist in a comprehensive understanding of exemplary embodiments of the invention as defined by the claims. It includes various specific details to assist in that understanding but these are to be regarded as merely exemplary. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope of the invention. In addition, descriptions of well-known functions and constructions may be omitted for clarity and conciseness.
The terms and words used in the following description and claims are not limited to the bibliographical meanings, but, are merely used by the inventor to enable a clear and consistent understanding of the invention. Accordingly, it should be apparent to those skilled in the art that the following description of exemplary embodiments of the present invention is provided for illustration purpose only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.

It is to be understood that the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a component surface" includes reference to one or more of such surfaces.

In the following description, an "object" refers to a distinguishable thing or entity on the screen. An object may be independent of another object. For example, a face and a vehicle may be objects. A distinguishable region or area on the screen may also be an object. For example, an icon or a frame on a browser screen may be an object.

A "guide" includes one or more marks indicating an object region. A guide may be displayed, for example, in the form of a corner bracket, a solid line, a dotted line, a rectangle, a square, or a circle, so as to demarcate a region or area.

"Size adjustment" refers to enlargement or reduction of the size of an object.

FIG. 1 is a block diagram of an apparatus for object size adjustment according to an exemplary embodiment of the present invention.

Referring to FIG. 1, an apparatus 100 for adjusting the sizes of objects on a screen may include a key input unit 110, a touchscreen 120, and a control unit 130.

The key input unit 110 generates an input signal for controlling the apparatus 100 in response to key manipulation by a user, and sends the input signal to the control unit 130. The key input unit 110 may include a keypad including hard or soft numeric and direction keys, and function keys attached to the apparatus 100. In an exemplary embodiment, the key input unit 110 may receive user input to select a particular object or region. If the apparatus 100 can be operated by using only the touchscreen 120, then the key input unit 110 may be excluded.

The touchscreen 120 includes a touch sensor 121 and a display unit 122. The touch sensor 121 detects a touch input by the user and the location of the touch input. The touch sensor 121 may be realized, for example, by using a capacitive, resistive, infrared, or pressure sensor. Any sensor capable of detecting contact or pressure may be utilized as the touch sensor 121. The touch sensor 121 generates a touch signal corresponding to the user's touch and sends the touch signal to the control unit 130. The touch signal includes coordinate data of the touch point. If the user makes a touch-point move gesture, the touch sensor 121 generates a touch signal including coordinate data describing the path of the touch-point move, and forwards the generated touch signal to the control unit 130.
In particular, the touch sensor 121 may detect a type user input (for example, touch, multi-touch, or drag) for selecting an object or region. This is described in more detail later.

The display unit 122 may be realized using Liquid Crystal Display (LCD) devices, Organic Light Emitting Diodes (OLED), or Active Matrix OLED (AMOLED). The display unit 122 may display various information such as menus, input data and function-setting data to the user in a visual format. In particular, the display unit 122 may display original images and size-adjusted images.

Although the apparatus 100 for adjusting object sizes is depicted as having a touchscreen capability, the present exemplary embodiment may be applied to an apparatus for adjusting object sizes with or without a touchscreen capability. If the present exemplary embodiment is applied to an apparatus for adjusting object sizes without a touchscreen capability, the function of the touchscreen 120 may be limited to that of the display unit 122.

The control unit 130 controls overall operations of individual components of the apparatus 100. In particular, the control unit 130 controls a process of recognizing objects on the screen, displaying guides indicating object regions, receiving a command for object selection, receiving a command for size adjustment, adjusting the size of a selected object region with respect to at least a first axis or a second axis of the corresponding guide (where the first axis is perpendicular to the second axis), and displaying the size-adjusted object region. To achieve this, the control unit 130 includes an object recognizer 131 and an object size adjuster 132.

The object recognizer 131 may recognize one or more objects appearing on the display unit 122. In the present exemplary embodiment, an object may be any distinguishable thing or entity on the display unit 122, and an object may be independent of another object. For example, a face and a vehicle may be objects. A distinguishable region or area on the screen may also be an object. For example, an icon or a frame on a browser screen may be an object.

In an exemplary embodiment, the object recognizer 131 may recognize an object in various ways. The object recognizer 131 may recognize things or faces appearing in images or moving images being displayed on the screen as objects. If the apparatus 100 is attached to or includes a digital camera, the object recognizer 131 may recognize a subject on which the digital camera is focused as an object. If the apparatus 100 is used as a webpage browser, the object recognizer 131 may recognize frames in the webpage as objects. That is, the object recognizer 131 may recognize a distinguishable region or area on the screen as an object. In addition, if a region on the screen is selected by a command from the key input unit 110 or touch sensor 121, the object recognizer 131 may recognize the selected region as an object.
[39] If an object is recognized by the object recognizer 131, the object size adjuster 132 may control an operation to display a guide indicating a region of the recognized object. In the present exemplary embodiment, a guide includes one or more marks indicating an object region. A guide may be displayed, for example, in the form of a corner bracket, a solid line, a dotted line, a rectangle, a square, or a circle, so as to demarcate a region or area. Here, a region or area may have a first length in a first axis direction and a second length in a second axis direction, where the first axis is perpendicular to the second axis.

[40] The object size adjuster 132 may receive an object selection command from the key input unit 110 or the touch sensor 121. If the touch sensor 121 is used, the object size adjuster 132 may receive various touch events such as touch, multi-touch, and drag, as an object selection command.

[41] If a size adjustment command is received, the object size adjuster 132 may control an operation to adjust the size of a region of the selected object with respect to the first axis or the second axis of the guide, and display the adjusted object region. In the present exemplary embodiment, size adjustment refers to an enlargement or a reduction of the size of an object. In most cases, the first axis and second axis of a guide are parallel with boundary lines of the display unit 122. That is, as the screen of the display unit 122 is typically rectangular, the first axis corresponds to one of the horizontal axis and the vertical axis, and the second axis corresponds to the other axis.

[42] Assuming that the longer axis is the reference axis, the object size adjuster 132 may enlarge the size of a region in accordance with the length of the display unit 122 in the direction of the reference axis. The object size adjuster 132 may also enlarge the size of a region while maintaining the width-to-height ratio of the corresponding guide.

[43] If a selection command selecting two or more objects is received, the object size adjuster 132 may treat the two or more selected objects as a single combined object and display a guide indicating the region of the combined object.

[44] If an adjustment cancel command is received from the key input unit 110 or touch sensor 121, the object size adjuster 132 may restore an original size of a size-adjusted region and display the region at the original size.

[45] In the above description, although the control unit 130, the object recognizer 131 and the object size adjuster 132 are treated as separate entities having different functions, they need not necessarily be separate entities. For example, the control unit 130 may directly perform the functions of the object recognizer 131 and object size adjuster 132.

[46] In the following description, for ease of description, it is assumed that functions of the object recognizer 131 and object size adjuster 132 are directly performed by the control unit 130.
FIG. 2 is a flowchart of a method for object size adjustment according to an exemplary embodiment of the present invention.

Referring to FIG. 2, the control unit 130 of the object size adjustment apparatus 100 recognizes objects appearing on the screen in step 210. Still or moving images may be displayed on the screen. Here, an object may be any distinguishable thing or entity on the screen, and may be independent of another object. For example, a face and a vehicle may be objects. A distinguishable region or area on the screen may also be an object. For example, an icon or a frame on a browser screen may be an object.

The control unit 130 may recognize an object in various ways. For example, the control unit 130 may recognize things or faces appearing in still images or in moving images displayed on the screen as objects. If the apparatus 100 is attached to or includes a digital camera, the control unit 130 may recognize a subject on which the digital camera is focused as an object. If the apparatus 100 is used as a webpage browser, the control unit 130 may recognize frames in the displayed webpage as objects. That is, the object recognizer 131 may recognize a distinguishable region or area on the screen as an object.

The control unit 130 displays guides for the recognized objects in step 220. Here, a guide is one or more marks indicating an object region. A guide may be displayed, for example, in the form of a corner bracket, a solid line, a dotted line, a rectangle, a square, or a circle so as to demarcate a specific region or area.

The control unit 130 receives an object selection command in step 230. The control unit 130 determines whether two or more objects are selected in step 240. If no more than a single object is selected, the control unit 130 proceeds to step 270, and if two or more objects are selected, the control unit 130 proceeds to step 250.

The control unit 130 may receive an object selection command from the key input unit 110 or the touch sensor 121. If the touch sensor 121 is used, the control unit 130 may receive various touch events such as touch, multi-touch, and drag, as an object selection command. This is described in more detail later.

If two or more objects are selected, the control unit 130 treats the selected objects as one combined object in step 250, and displays a guide indicating the region of the combined object in step 260.

The control unit 130 receives a size adjustment command from the key input unit 110 or the touch sensor 121 in step 270, and adjusts the size of the region of the selected object with respect to the first axis or second axis in step 280. In most cases, the first axis and second axis are parallel with boundary lines of the display unit 122. That is, as the screen of the display unit 122 is typically rectangular, the first axis corresponds to one of the horizontal axis and the vertical axis, and the second axis corresponds to the other axis.
The control unit 130 may enlarge, assuming that the longer axis is the reference axis, the object region in accordance with the length of the display unit 122 in the direction of the reference axis. The control unit 130 may also enlarge the object region while maintaining the width-to-height ratio of the corresponding guide.

Thereafter, if an adjustment cancel command is received from the key input unit 110 or the touch sensor 121, the control unit 130 may restore the original size of the adjusted object region and display the region at the original size (not shown).

FIG. 3 comprises screen representations illustrating enlargement of an object region with respect to the vertical axis of a guide according to an exemplary embodiment of the present invention.

Referring to screen representation (a) of FIG. 3, the control unit 130 recognizes faces appearing in the displayed image as objects 301, 302 and 303, and displays guides made of, for example, dotted lines and corner bracket marks. Guides may be displayed in various forms, and may be made of one of dotted lines and corner bracket marks.

Referring to screen representation (b) of FIG. 3, the control unit 130 receives a selection command and a size adjustment command for the rightmost object 303. Size adjustment is an enlargement or a reduction of an object. In this example, two touch inputs occurred on the object 303: the first touch input was a selection command for the object 303, and the second touch input was a size adjustment command. The selection command and size adjustment command may also be generated via the key input unit 110 or by other types of touch gestures.

Referring to screen representations (c), (d), and (e) of FIG. 3, assume that the first axis of the guide associated with the object 303 is the vertical direction and the second axis is the horizontal direction. Then, as the first axis is longer, it becomes the reference axis. The first axis of the guide may be the same as a longer axis of the display, but this is not required. Hence, the object 303 is enlarged with respect to the first axis (in the vertical direction) in accordance with the screen size and is enlarged along the second axis (in the horizontal direction) according to the guide ratio so that the aspect ratio of the object 303 is maintained.

Referring to screen representation (e) of FIG. 3, if an adjustment cancel command, such as a touch on the outside of the guide, is received, the control unit 130 may restore the original size of the adjusted region and display the readjusted region at the original size (not shown).

FIG. 4 is screen representations illustrating enlargement of an object region with respect to the horizontal axis of a guide according to an exemplary embodiment of the present invention.

Referring to screen representation (a) of FIG. 4, the control unit 130 recognizes cars appearing in the displayed image as objects 401, 402, 403, and 404, and displays
guides made of, for example, dotted lines and corner bracket marks. Guides may be displayed in various forms, and may be made of one of dotted lines and corner bracket marks. In screen representation (b) of FIG. 4, the control unit 130 receives a selection command and a size adjustment command for the bottom-middle object 403. Two touch inputs occurred on the object 403: the first touch input was a selection command for the object 403; and the second touch input was a size adjustment command therefor.

Referring to screen representations (c) and (d) of FIG. 4, assume that the first axis of the guide associated with the object 403 is the vertical direction and the second axis is the horizontal direction. Then, as the second axis is longer, it becomes the reference axis. Hence, the object 403 is enlarged with respect to the second axis (in the horizontal direction) in accordance with the screen size and is enlarged along the first axis (in the vertical direction) according to the guide ratio. In screen representation (d) of FIG. 4, if an adjustment cancel command such as a touch on the outside of the guide is received, the control unit 130 may restore the original size of the adjusted region and display the readjusted region at the original size (not shown).

FIG. 5 shows an illustration for enlargement of an object region if two or more objects are selected according to an exemplary embodiment of the present invention.

Referring to screen representation (a) of FIG. 5, the control unit 130 recognizes faces appearing in the displayed image as objects 501, 502, and 503, and displays guides made of dotted lines and corner bracket marks.

Referring to screen representation (b) of FIG. 5, the control unit 130 receives a selection command for the middle object 502 and the right object 503. Two touch inputs occurred to select the two objects: one touch input was a selection command for the object 502, and another touch input was a selection command for the object 503. Multiple objects may be selected together in various ways. For example, two or more objects may be selected at once through the key input unit 110 or through a multi-touch gesture. Use of other exemplary touch inputs is described further in connection with FIG. 6.

In response to selection of multiple objects in screen representation (b) of FIG. 5, the control unit 130 treats the selected multiple objects as a single combined object as shown in screen representation (c) of FIG. 5. A translucent box 504 in screen representation (c) of FIG. 5 is merely a visual indicator for the description of the combining process, and thus may be displayed but is not required in practice.

Referring to screen representation (d) of FIG. 5, the control unit 130 controls the display unit 122 to display a guide indicating the region of the combined object 505. If a touch input occurs on the combined object 505, the control unit 130 enlarges the combined object 505 as in screen representation (e) of FIG. 5. Assume that the first
axis of the guide associated with the combined object 505 is the vertical direction and the second axis is the horizontal direction. Then, as the second axis is longer, it becomes the reference axis. Hence, the combined object 505 is enlarged with respect to the second axis (the horizontal direction) in accordance with the screen size and is enlarged along the first axis (the vertical direction) according to the guide ratio. In screen representation (d) of FIG. 5, if an adjustment cancel command such as a touch on the outside of the guide is received, the control unit 130 may restore the original size of the adjusted region and display the readjusted region at the original size (not shown).

FIG. 6 shows an illustration for enlargement of an object region if two or more objects are selected according to an exemplary embodiment of the present invention.

Referring to FIG. 6, two or more objects are selected in a way different from that in FIG. 5. In screen representation (a) of FIG. 6, the control unit 130 recognizes faces appearing in the displayed image as objects 601, 602, and 603, and displays guides made of dotted lines and corner bracket marks.

Referring to screen representation (b) of FIG. 6, the middle object 602 and the right object 603 are simultaneously selected by the user performing a touch input drawing a shape surrounding the middle object 602 and the right object 603, in a manner different from that of FIG. 5 where two objects were selected by consecutive touches.

In response to the selection of multiple objects, in the same manner as in FIG. 5, the control unit 130 treats the selected multiple objects as a single combined object 604 and controls the display unit 122 to display a guide indicating the region of the combined object 604 as shown in screen representation (c) of FIG. 6. The combined object 604 is according to the objects that were included in the circle, rather than the circle itself. If a touch input occurs on the combined object 604, the control unit 130 enlarges the combined object 604 as in screen representation (d) of FIG. 6.

Unlike the case of FIG. 5, if a shape is drawn so as to enclose multiple objects as in FIG. 6, as it is determined that selection is complete, it is possible to directly perform size adjustment without a separate size adjustment command. Although FIGs. 3 to 6 illustrate object enlargement only, it is also possible to perform object reduction in a similar way. The size of objects may thus be adjusted to be larger or smaller.

FIG. 7 is a flowchart of a procedure for object region enlargement regarding a selected region as a single object according to an exemplary embodiment of the present invention.

Referring to FIG. 7, the control unit 130 receives a selection command for a region on the screen through the key input unit 110 or the touch sensor 121 in step 710. The control unit 130 recognizes the selected region as an object in step 720. Here, the selected region may be a distinguishable region having lengths in first and second axis
directions. The size of a region may be adjusted with respect to a first axis or a second
axis perpendicular to the first axis. Here, an object may be any distinguishable thing or
entity on the screen, and may be independent of another object. For example, a face
and a vehicle may be objects. A distinguishable region or area on the screen may also
be an object. For example, an icon or a frame on a browser screen may be an object.

The control unit 130 may recognize an object in various ways. For example, the
control unit 130 may recognize things or faces appearing in still images or in moving
images displayed on the screen as objects. If the apparatus 100 is attached to or
includes a digital camera, the control unit 130 may recognize a subject on which the
digital camera is focused as an object. If the apparatus 100 is used for a webpage
browser, the control unit 130 may recognize frames in the displayed webpage as
objects. That is, the object recognizer 131 may recognize a distinguishable region or
area on the screen as an object.

Thereafter, the control unit 130 displays a guide for the recognized object in step
730. Here, a guide is one or more marks indicating an object region. A guide may be
displayed, for example, in the form of a corner bracket, a solid line, a dotted line, a
rectangle, a square, or a circle, so as to demarcate a specific region or area.

The control unit 130 receives an object selection command in step 740. The control
unit 130 determines whether two or more objects are selected in step 750. If no more
than a single object is selected, the control unit 130 proceeds to step 780 and if two or
more objects are selected, the control unit 130 proceeds to step 760.

The control unit 130 may receive an object selection command through the key input
unit 110 or touch sensor 121. If the touch sensor 121 is used, the control unit 130 may
receive various touch events, such as touch, multi-touch, and drag, as an object
selection command.

If two or more objects are selected, the control unit 130 treats the selected objects as
one combined object in step 760, and displays a guide indicating the region of the
combined object in step 770.

The control unit 130 receives a size adjustment command from the key input unit 110
or touch sensor 121 in step 780, and adjusts the size of the region of the selected object
with respect to the first axis or second axis in step 790.

Thereafter, if an adjustment cancel command is received from the key input unit 110
or the touch sensor 121, the control unit 130 may restore the original size of the
adjusted object region and display the region at the original size (not shown).

An exemplary embodiment is described with reference to FIGs. 8 and 9, in which
web browser screens are used.

FIG. 8 shows an illustration for enlargement of an object region according to an
exemplary embodiment of the present invention. In FIG. 8, the control unit 130
recognizes a specific region as an object without explicit reception of a selection
command.

Referring to screen representation (a) of FIG. 8, the control unit 130 recognizes a
frame in the displayed webpage as an object 801 and displays a guide made of a solid
line. A guide may be displayed in various forms. The control unit 130 receives a
selection command and a size adjustment command for the object 801. Size adjustment
may be enlargement or reduction of an object. In this example, a single touch input of a
size adjustment command for object 801 is also recognized as the selection command.
The selection command and the size adjustment command may also be generated by
the key input unit 110 or by other types of touch gestures.

Referring to screen representations (b) and (c) of FIG. 8, assume that the first axis of
the selected object 801 is in the vertical direction and the second axis is in the
horizontal direction. Then, as the second axis is longer, it becomes the reference axis.
Hence, the object 801 is enlarged with respect to the second axis (in the horizontal
direction) in accordance with the screen size and is enlarged along the first axis (in the
vertical direction) according to the guide ratio.

FIG. 9 shows an illustration for object region enlargement regarding a selected region
as a single object according to an exemplary embodiment of the present invention.

Referring to screen representation (a) of FIG. 9, the control unit 130 receives a touch
input as a selection command for a region in the displayed webpage. Then, the control
unit 130 recognizes the selected region as an object.

Referring to screen representation (b) of FIG. 9, the control unit 130 displays a guide
made of a solid line for the recognized object 901. A guide may be displayed in
various forms. The control unit 130 receives a selection command and a size adjustment
command for the object 901. Size adjustment is enlargement or reduction of an object. Two touch inputs occurred on the object 901. For example, the first touch input was a selection command for the object 901, and the second touch input was a
size adjustment command. The selection command and size adjustment command may
also be generated by the key input unit 110 or by other types of touch gestures.

As described above, a specific region may be recognized as an object without an
explicit selection command, and the size of the recognized object may be directly
adjusted in response to a size adjustment command.

In exemplary embodiments of the present invention, the user may adjust the size of a
selected object in a more convenient manner without performing a multi-stage or
cumbersome input procedure.

It will be appreciated that embodiments of the present invention can be realized in
the form of hardware, software or a combination of hardware and software. Any such
software may be stored in the form of volatile or non-volatile storage, for example a
storage device like a ROM, whether erasable or rewritable or not, or in the form of memory, for example RAM, memory chips, device or integrated circuits or on an optically or magnetically readable medium, for example a CD, DVD, magnetic disk or magnetic tape or the like. It will be appreciated that the storage devices and storage media are embodiments of machine-readable storage that are suitable for storing a program or programs comprising instructions that, when executed, implement embodiments of the present invention.

Accordingly, embodiments provide a program comprising code for implementing apparatus or a method as claimed in any one of the claims of this specification and a machine-readable storage storing such a program. Still further, such programs may be conveyed electronically via any medium, for example a communication signal carried over a wired or wireless connection and embodiments suitably encompass the same.

Throughout the description and claims of this specification, the words "comprise" and "contain" and variations of the words, for example "comprising" and "comprises", means "including but not limited to", and is not intended to (and does not) exclude other components, integers or steps.

Features, integers or characteristics described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith.

It will be also be appreciated that, throughout the description and claims of this specification, language in the general form of "X for Y" (where Y is some action, activity or step and X is some means for carrying out that action, activity or step) encompasses means X adapted or arranged specifically, but not exclusively, to do Y.

While the invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention as defined by the appended claims.
Claims

[Claim 1] A method for object size adjustment on a screen, the method comprising:
recognizing one or more objects appearing on a screen;
displaying guides indicating the or each recognized object on the screen;
receiving a selection command for at least one recognized object;
receiving a size adjustment command;
adjusting, upon reception of the size adjustment command, a size of the at least one selected object with respect to a first axis, or a second axis perpendicular to the first axis of the guide, associated with the at least one selected object; and
displaying the size-adjusted object.

[Claim 2] The method of claim 1, further comprising:
determining if two or more objects are selected by the selection command;
grouping the two or more selected objects into one combined object; and
displaying a guide indicating the combined object.

[Claim 3] A method for object size adjustment on a screen, the method comprising:
receiving a selection command for a region on the screen;
recognizing the selected region as an object;
displaying a guide indicating the selected region as a recognized object on the screen;
receiving a selection command for the recognized object;
receiving a size adjustment command;
adjusting, upon reception of the size adjustment command, a size of the selected object with respect to a first axis, or a second axis perpendicular to the first axis of the guide, associated with the selected object; and
displaying the size-adjusted object.

[Claim 4] The method of claim 3, wherein the selected region is a distinguishable region having a length in the first axis direction and a length in the second axis direction.

[Claim 5] The method of any one of the preceding claims, wherein adjusting a size of the at least one selected object comprises enlarging, after treating
a longer one of the first axis and the second axis as a reference axis, the object in accordance with the screen size in the direction of the reference axis.

[Claim 6] The method of any one of the preceding claims, wherein adjusting a size of the at least one selected object comprises enlarging the object while maintaining a width-to-height ratio of the corresponding guide.

[Claim 7] The method of any one of the preceding claims, further comprising: receiving an adjustment cancel command after display of the size-adjusted object; restoring an original size of the size-adjusted object in response to the adjustment cancel command; and displaying the object at the original size.

[Claim 8] An apparatus for object size adjustment on a screen, the apparatus comprising:

a screen arranged to display original objects and size-adjusted objects and

a control unit arranged to:
recognize one or more objects appearing on the screen;
display guides indicating the or each recognized object;
receive a selection command for at least one recognized object;
adjust, upon reception of the size adjustment command, a size of the at least one selected object with respect to a first axis, or a second axis perpendicular to the first axis, of the guide associated with the at least one selected object; and
control the screen to display the size-adjusted object.

[Claim 9] The apparatus of claim 8, wherein the control unit is further arranged to:
determine if two or more objects are selected by the selection command, an operation;

group the two or more selected objects into one combined object; and
control the screen to display a guide indicating the combined object.

[Claim 10] An apparatus for object size adjustment on a screen, the apparatus comprising:
a screen arranged to display original objects and size-adjusted objects; and

a control unit arranged to:
receive a selection command for a region on the screen;
recognize the selected region as an object;
display a guide indicating the recognized object on the screen;
receive a selection command for the recognized object;
adjust, upon reception of the size adjustment command, a size of the
selected object with respect to a first axis, or a second axis perpendicular to the first axis, of the guide associated with the selected object; and
control the screen to display the size-adjusted object.

[Claim 11] The apparatus of claim 10, wherein the selected region is a distinguishable region having a length in the first axis direction and a length in the second axis direction.

[Claim 12] The apparatus of any one of claims 8 to 11, wherein the control unit is further arranged to:
adjust a size of the at least one selected object by enlarging, after treating a longer one of the first axis and second axis as a reference axis, the object in accordance with the screen size of the display unit in the direction of the reference axis.

[Claim 13] The apparatus of any one of claims 8 to 11, wherein the control unit is further arranged to adjust the size of the at least one selected object by enlarging the object while maintaining a width-to-height ratio of the corresponding guide.

[Claim 14] The apparatus of any one of claims 8 to 13, wherein the control unit is further arranged to:
receive an adjustment cancel command after display of the size-adjusted object;
restore an original size of the size-adjusted object in response to the adjustment cancel command; and
display the object at the original size.
[Fig. 2]

START

RECOGNIZE OBJECTS APPEARING ON THE SCREEN

DISPLAY GUIDES

RECEIVE OBJECT SELECTION COMMAND

TWO OR MORE OBJECTS SELECTED?

NO

RECEIVE SIZE ADJUSTMENT COMMAND

ADJUST SIZE OF REGION WITH RESPECT TO FIRST AXIS OR SECOND AXIS

END

YES

TREAT TWO OR MORE OBJECTS AS ONE COMBINED OBJECT

DISPLAY GUIDE
[Fig. 7]

START

SELECT A REGION ON THE SCREEN 710

RECOGNIZE SELECTED REGION AS OBJECT 720

DISPLAY GUIDE 730

RECEIVE OBJECT SELECTION COMMAND 740

TWO OR MORE OBJECTS SELECTED? 750

YES

TREAT TWO OR MORE OBJECTS AS ONE COMBINED OBJECT 760

DISPLAY GUIDE 770

NO

RECEIVE SIZE ADJUSTMENT COMMAND 780

ADJUST SIZE OF REGION WITH RESPECT TO FIRST AXIS OR SECOND AXIS 790

END
A. CLASSIFICATION OF SUBJECT MATTER

G06F 3/048(2006.01)i, G06F 3/14(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G06F 3/048; G06F 3/14; H04N 5/225; H04N 101/00; G06K 1/02; H04N 5/228; G06T 7/00; G09G 5/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: adjust size, object, region, screen, guide, border, group, touch

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2011-211757 A (PANASONIC CORP) 20 October 2011; and figures 1-3, 8-9</td>
<td>1,3,8,10</td>
</tr>
<tr>
<td>Y</td>
<td>US 2010-0083111 AI (AUGUST DE LOS REYES) 01 April 2010; and figures 1-2, 4-5</td>
<td>2,9</td>
</tr>
<tr>
<td>KR 10-2010-0075167 A (SAMSUNG ELECTRONICS CO., LTD.) 02 July 2010; and figures 1-4</td>
<td>1-5,8-13</td>
<td></td>
</tr>
<tr>
<td>US 2011-0273474 AI (NAOMI IWAYAMA) 10 November 2011; and figures 5A-5C, 7</td>
<td>1-5,8-13</td>
<td></td>
</tr>
<tr>
<td>US 2012-0013645 AI (CHEN-YANG HU) 19 January 2012; and figures 1, 6-7</td>
<td>1-5,8-13</td>
<td></td>
</tr>
<tr>
<td>US 2011-0141492 AI (KAZUHISA EBUCI) 16 June 2011; and figures 4-7</td>
<td>1-5,8-13</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.
See patent family annex.

Date of the actual completion of the international search
24 June 2013 (24.06.2013)

Date of mailing of the international search report
25 June 2013 (25.06.2013)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City,
302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer
LEE, Dong Yun

Telephone No. 82-42-481-8734

Form PCT/ISA/210 (second sheet) (July 2009)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☒ Claims Nos.: 6-7, 14
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

1. ☑ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☑ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. ☑ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest:
- ☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- ☐ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- ☒ No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 2011-211757 A</td>
<td>20.10.2011</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US 2010-0083111 Al</td>
<td>01.04.2010</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>KR 10-2010-0075167 A</td>
<td>02.07.2010</td>
<td>US 2010-0157129 Al</td>
<td>24.06.2010</td>
</tr>
</tbody>
</table>