
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization I

International Bureau
(10) International Publication Number

(43) International Publication Date WO 2013/090699 Al
20 June 2013 (20.06.2013) P O P C T

(51) International Patent Classification: (74) Agents: DURBIN, Gregory et al; 700 West 47th Street
G06F 15/167 (2006.01) Suite 1000, Kansas City, Missouri 641 12 (US).

(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/US20 12/0697 12 kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

14 December 2012 (14. 12.2012) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

(26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

(30) Priority Data: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,

61/570,448 14 December 201 1 (14. 12.201 1) US RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,

61/570,486 14 December 201 1 (14. 12.201 1) US TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
ZM, ZW.

(71) Applicant: LEVEL 3 COMMUNICATIONS, LLC
[US/US]; 1025 Eldorado Boulevard, Broomfield, Colorado (84) Designated States (unless otherwise indicated, for every

8002 1 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

(72) Inventors: NEWTON, Christopher; 981 Via Colinas, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Westlake Village, California 91362 (US). LIPSTONE, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
Laurence; 22724 Sparrow Dell Drive, Calabasas, Califor EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
nia 9 1302 (US). CROWDER, William; 68 Marine View MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
Drive, Camarillo, California 93010 (US). ROLLER, Jef¬ TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
frey G.; 3549 Glen Abbey Lane, Oxnard, California 93036 ML, MR, NE, SN, TD, TG).
(US). FULLAGAR, David; 775 Cherryvale Road,

Published:Boulder, Colorado 80303 (US). YEVMENKIN, Maksim;
27 Sundance Street, Thousand Oaks, California 91360 — with international search report (Art. 21(3))
(US).

(54) Title: CONTENT DELIVERY NETWORK

o
©

(57) Abstract: A content delivery network (CDN) includes a control core; and a plurality of caches, each of said caches constructed
o and adapted to: upon joining the CDN, obtain global configuration data from the control core; and obtain data from other caches.

Each of the caches is further constructed and adapted to, having joined the CDN, upon receipt of a request for a particular resource:

o obtain updated global configuration data, if needed; obtain a customer configuration script (CCS) associated with the particular re
source; and serve the particular resource in accordance with the CCS.

CONTENT DELIVERY NETWORK

BACKGROUND O F THE INVENTION

COPYRIGHT STATEMENT

[0001] This patent document contains material subject to copyright protection.

The copyright owner has no objection to the reproduction of this patent document or any

related materials in the files of the United States Patent and Trademark Office, but

otherwise reserves all copyrights whatsoever.

RELATED APPLICATIONS

[0002] This Patent Cooperation Treaty ("PCT") application is related to and

claims priority from the following co-owned and co-pending U.S. provisional patent

applications, the entire contents of each of which are fully incorporated herein by

reference for all purposes: (1) U.S. Application No. 61/570,448, titled "Content Delivery

Network," filed December 14, 201 1, and (2) U.S. Application No. 61/570,486, titled

"Content Delivery Network," filed December 14, 201 1.

[0003] This application is related to the following co-owned U.S. Patents and c o

pending patent applications, the entire contents of each of which are fully incorporated

herein by reference for all purposes:

1. U.S. Patent No. 7,822,871 titled "Configurable Adaptive Global Traffic

Control And Management," filed 09/30/2002, issued 10/26/201 0

2 . U.S. Patent No. 7,860,964 titled "Policy-Based Content Delivery Network

Selection," filed 10/ 26/2007, issued 12/28/2010

3 . U.S. Patent No. 6,185,598 titled "Optimized Network Resource Location,"

filed 02/10/1998, issued 02/06/ 2001

4 . U.S. Patent No. 6,654,807 titled "Internet Content Delivery Network," filed

12/06/2001 , issued 11/25/2003

5 . U.S. Patent No. 7,949,779 titled "Controlling Subscriber Information Rates

In A Content Delivery Network," filed 10/31/2007, issued 05/24/201 1

6 . U.S. Patent No. 7,945,693 titled "Controlling Subscriber Information Rates

In A Content Delivery Network," filed 10/31/2007, issued 05/17/201 1

7 . U.S. Patent No. 7,054,935 titled "Internet Content Delivery Network," filed

03/13/2002, issued 05/30/2006

8 . U.S. Published Patent Application No. 2009-0254661 titled "Handling

Long-Tail Content In A Content Delivery Network (CDN)," filed

03/21/2009

9 . U.S. Published Patent Application No. 2010-0332595 titled "Handling

Long-Tail Content In A Content Delivery Network (CDN)," filed

09/13/2010

10 . U.S. Patent No. 8,01 5,298 titled "Load-Balancing Cluster," filed

02/23/2009, issued 09/06/201 1

11. U.S. Published Patent Application No. 201 0-0332664 titled "Load-

Balancing Cluster," filed 09/13/2010.

FIELD OF THE INVENTION

[0004] This invention relates to content delivery and content delivery networks.

More specifically, to content delivery networks and systems, frameworks, devices and

methods supporting content delivery and content delivery networks.

BRIEF DESCRIPTION O F THE DRAWINGS

[0005] Other objects, features, and characteristics of the present invention as

well as the methods of operation and functions of the related elements of structure, and

the combination of parts and economies of manufacture, will become more apparent

upon consideration of the following description and the appended claims with reference

to the accompanying drawings, all of which form a part of this specification.

[0006] FIG. 1 . shows exemplary content delivery network (CDN);

[0007] FIGS. 2 and 3 depict cache cluster sites in a CDN;

[0008] FIGS. 4 and 5 depict cache clusters in the cache cluster sites of FIGS. 2

and 3 ;

[0009] FIG. 6 depicts an exemplary cache cluster site;

[0010] FIG. 7 depicts a control core cluster of a CDN;

[0011] FIGS. 8 and 9 depict the hierarchical organization of a content delivery

network and the logical organization of caches in a CDN;

[0012] FIG. 10 shows a typical interaction between a client and a CDN;

[0013] FIG. 11 shows request-response processing in a CDN;

[0014] FIGS. 12A-1 2C show various data structures;

[0015] FIG. 13A is a logical depiction of a sequence control object;

[0016] FIGS 13B-1 3 D show examples of sequences and sequence processing;

[0017] FIG. 14A-1 4 D show examples of sequencers and handlers;

[0018] FIG. 15A is a flow chart showing a process of adding a cache server to a

CDN;

[0019] FIG. 15 B is a flow chart showing exemplary request-response processing

in a CDN;

[0020] FIG. 15C shows operation of various caches in a CDN;

[0021] FIG. 16 shows an exemplary cache server operating within a CDN;

[0022] FIG. 17 is a block diagram showing the major functional modules for

request-response processing in an exemplary cache server;

[0023] FIGS. 18 and 19 depict various tables and databases used by the CDN;

[0024] FIGS. 20A-20C is a flow chart describing an exemplary request-response

processing flow;

[0025] FIGS. 2 1A-21 H show an exemplary CDN and aspects of its operation;

[0026] FIG. 22 show interaction between components of the CDN; and

[0027] FIG. 23 shows a typical computer system; and

[0028] FIGS. 24A to 24E, and 25A to 25B and 26 describe aspects of the

Executive system.

DETAILED DESCRIPTION O F THE PRESENTLY PREFERRED EXEMPLARY EMBODIMENTS

GLOSSARY

[0029] As used herein, unless used otherwise, the following terms or

abbreviations have the following meanings:

[0030] CCS means Customer Configuration Script

[0031] CDN means Content Delivery Network;

[0032] CNAME means Canonical Name;

[0033] DNS means Domain Name System;

[0034] FQDN means Fully Qualified Domain Name;

[0035] FTP means File Transfer Protocol;

[0036] GCO means Global Configuration Object;

[0037] HTTP means Hyper Text Transfer Protocol;

[0038] HTTPS means HTTP Secure;

[0039] IP means Internet Protocol;

[0040] IPv4 means Internet Protocol Version 4 ;

[0041] IPv6 means Internet Protocol Version 6 ;

[0042] IP address means an address used in the Internet Protocol, including

both IPv4 and IPv6, to identify electronic devices such as servers and the like;

[0043] MX means Mail Exchange;

[0044] NDC means Network Data Collector;

[0045] NS means Name Server;

[0046] QoS means quality of service;

[0047] TCP means Transmission Control Protocol;

[0048] URI means Uniform Resource Identifier;

[0049] URL means Uniform Resource Locator; and

[0050] VIP address means a virtual IP address.

BACKGROUND AND OVERVIEW

[0051] The primary purpose of a content delivery network - a CDN - is to

distribute resources efficiently to client machines on behalf of one or more content

providers, preferably via a public Internet. A CDN can also provide an over-the-top

transport mechanism for efficiently sending content in the reverse direction - from the

client to the origin server. Both end-users (clients) and content providers benefit from

using a CDN. By using a CDN, a content provider is able to take pressure off its own

servers. Clients benefit by being able to obtain content with fewer delays.

Overview - structure

[0052] FIG . 1 shows an exemplary CDN 100, which includes multiple caches

102-1 , 102-2 ... 102-m (collectively caches 102, individually cache 102-/), rendezvous

mechanisms / systems 104-1 ... 104- , (collectively rendezvous mechanism(s) /

system(s) 104, made up of one or more rendezvous mechanisms 104-/), collector

mechanism /system 106 (made up of one or more collector mechanisms 106-1 ... 106-

), and a control core 108. The CDN 100 also includes various operational and/or

administrative mechanisms 109.

[0053] As shown in FIG . 2 , each CDN cache 102 may be a cache cluster site 202

comprising one or more cache clusters 204. The cache cluster site 202 may include a

routing mechanism 206 acting, inter alia, to provide data to / from the cache clusters

202. The routing mechanism 206 may perform various functions such as, e.g., load

balancing, or it may just pass data to/from the cache cluster(s) 204. Depending on its

configuration, the routing mechanism 206 may pass incoming data to more than one

cache cluster 204. FIG. 3 shows an exemplary cache cluster site 202 with p cache

clusters (denoted 204-1 , 204-2 ... 204-p).

[0054] As shown in FIG . 4 , a cache cluster 204 comprises one or more servers

208. The cache cluster preferably includes a routing mechanism 210, e.g., a switch,

acting, inter alia, to provide data to / from the servers 208. The servers 208 in any

particular cache cluster 204 may include caching servers 212 and/or streaming servers

214. The routing mechanism 210 provides data (preferably packet data) to the server(s)

208. Preferably the routing mechanism 210 is an Ethernet switch.

[0055] The routing mechanism 210 may perform various functions such as, e.g.,

load balancing, or it may just pass data to/from the server(s) 208. Depending on its

configuration, the routing mechanism 210 may pass incoming data to more than one

server 208. FIG . 5 shows an exemplary cache cluster 204' comprising k servers

(denoted 208-1 , 208-2 ... 208-) and a switch 210'.

[0056] The cache cluster site routing mechanism 206 may be integrated with

and/or co-located with the cache cluster routing mechanism 210.

[0057] FIG . 6 shows an exemplary cache cluster site 202" with a single cache

cluster 204" comprising one or more servers 208". The server(s) 208" may be caching

servers 212" and/or streaming servers 214". As shown in the example in FIG . 6 , the

cache cluster routing mechanism 210" and the cache cluster site's routing mechanism

206" are logically/functionally (and possibly physically) combined into a single

mechanism (as shown by the dotted line in the drawing).

[0058] A cache server site may be a load-balancing cluster, e.g., as described in

U.S. published Patent Application No. 201 0-0332664, filed February 28, 2009, titled

"Load-Balancing Cluster," and U.S. Patent No. 8,01 5,298, titled "Load-Balancing

Cluster," filed 02/23/2009, issued 09/06/201 1, the entire contents of each of which are

fully incorporated herein by reference for all purposes.

[0059] In presently preferred implementations, some of the cache cluster servers

208 that are connected to a particular switch 210 will share the same virtual IP (VIP)

addresses. (Each cache cluster server 208 will also preferably have a different and

unique IP address.) In these presently preferred implementations, for the purposes of

CDN control, the cache cluster routing mechanism 210 and the cache cluster site's

routing mechanism 206 are logically/functionally (and preferably physically) combined

into a single mechanism - a switch. In these implementations the cache cluster site

refers to all of the machines that are connected to (e.g., plugged in to) the switch. Within

that cache cluster site, a cache cluster consists of all machines that share the same set

of VIPs.

[0060] An exemplary cache cluster 204 is described in U.S. published Patent

Application No. 201 0-0332664, titled "Load-Balancing Cluster," filed 09/13/2010, and

U.S. Patent No. 8,01 5,298, titled "Load-Balancing Cluster," filed 02/23/2009, issued

09/06/201 1, the entire contents of each of which are fully incorporated herein for all

purposes.

[0061] With reference again to Fig. 1, as explained in greater detail below, the

rendezvous system 104 is used to direct client resource requests. The rendezvous

system 104 is preferably implemented using the DNS and comprises one or more DNS

name servers. The rendezvous mechanisms 104-/ are preferably domain name servers

implementing policy-based domain name resolution. An exemplary rendezvous system

104 is described in U.S. Patent No. 7,822,871 , titled "Configurable Adaptive Global

Traffic Control And Management," filed 09/30/2002, issued 10/26/2010, and U.S. Patent

No. 7,860,964 "Policy-Based Content Delivery Network Selection," filed 10/26/2007,

issued 12/28/2010, the entire contents of each of which are fully incorporated herein for

all purposes.

[0062] The control core mechanism 108 controls operation of the CDN and is

described in greater detail below. Physically, the control core preferably consists of a

set of geographically distributed machines, preferably connected via high-speed

communication links. E.g., five machines located in New York, San Francisco, Chicago,

London, and Frankfurt. Logically, the control core acts like a single, robust data

base/web server combination, containing configuration data. FIG. 7 shows an exemplary

control core mechanism 108 made up of five distinct components or machines (denoted

CC1, CC2, CC3, CC4, CC5 n the drawing). While shown with five components or

machines, those of skill in the art will realize and understand, upon reading this

description, that the control core could be formed of any number of components or

machines comprising the control core. Odd numbers are preferable because of the use

of voting by the components or machines. Larger numbers will make the control core

more available but respond slower. Having only one machine is a degenerate case

possibly useful in non-production situations. The components or machines forming the

control core are operated together as a single high-availability cluster, and are shown as

a single entity in most drawings. It should be understood that any particular interaction

with the control core mechanism 108 will likely take place with only one of its component

machines. The control core mechanism 108 is also referred to herein as the control core

cluster 108 or the control core 108.

[0063] Although only one control core 108 is shown in Fig. 1, it should be

appreciated that a CDN may have more than one control core, with different control

cores controlling different aspects or parts of the CDN.

[0064] The control core 108 is addressable by one or more domain names. For

the sake of this description, the domain name control.fp.net will be used for the control

core 108. In a preferred implementation the control core cluster consists of five (5)

distinct and geographically distributed control core mechanisms and is operated as a

multihomed location with five (5) IP addresses. Thus, when a client asks a DNS server

to resolve the control core's domain name (e.g., control.fp.net) the DNS server will return

one or more of the five IP addresses associated with that name. That client may then

access the control core at one of those addresses. It should be appreciated that the

DNS server(s) will provide the client with a rendezvous to a "nearby" control core server

or servers (i.e., to "best" or "optimal" control core server(s) for that client), similar to the

manner in which clients rendezvous with CDN servers. In other words, internal

components of the CDN (cache servers, control cores, etc.) may use the same

rendezvous mechanisms as are used by entities outside the CDN to rendezvous with

CDN components. In some cases the various control core mechanisms may have the

same IP address, in which cases routing tables may direct a client to a "best" or

"optimal" control core mechanism. This may also be achieved using an anycast IP

address.

Tiers and Groups

[0065] A CDN may have one or more tiers of caches, organized hierarchically.

FIG . 8 depicts a content delivery network 100 that includes multiple tiers of caches.

Specifically, the CDN 100 of FIG . 8 shows j tiers of caches (denoted Tier 1, Tier 2 , Tier 3 ,

... Tier in the drawing). Each tier of caches may comprise a number of caches

organized into cache groups. A cache group may correspond to a cache cluster site or a

cache cluster (202, 204 in FIGS . 2-5). The Tier 1 caches are also referred to as edge

caches, and Tier 1 is sometimes also referred to as the "edge" or the "edge of the CDN."

The Tier 2 caches (when present in a CDN) are also referred to as parent caches.

[0066] For example, in the CDN 100 of FIG. 8 , Tier 1 has n groups of caches

(denoted "Edge Cache Group 1", "Edge Cache Group 2", ... "Edge Cache Group n") tier

2 (the parent caches' tier) has m cache groups (the /-th group being denoted "Parent

Caches Group /'); and tier 3 has k cache groups, and so on. Preferably each tier has

the same number of cache groups, although this is not required.

[0067] FIG. 9 shows the logical organization / grouping of caches in a CDN of

FIG. 8 . In the exemplary CDN 100 of FIG. 9 , each tier of caches has the same number

(n) of cache groups. Those of skill in the art will know and understand, upon reading this

description, that each cache group may have the same or a different number of caches.

Additionally, the number of caches in a cache group may vary dynamically. For

example, additional caches may be added to a cache group to deal with increased load

on the group.

[0068] The caches in a cache group may be homogeneous or heterogeneous,

and each cache in a cache group may comprise a cluster of physical caches sharing the

same name and/or network address. An example of such a cache is described in c o

pending and co-owned U.S. published Patent Application No. 2010-0332664, titled

"Load-Balancing Cluster," filed 09/1 3/2010, and U.S. Patent No. 8,015,298, titled "Load-

Balancing Cluster," filed 02/23/2009, issued 09/06/2001 , the entire contents of which

are fully incorporated herein by reference for all purposes.

[0069] Caches in the same tier and the same group may be referred to as peers

or peer caches. In general, for each Tier , the caches in Tier may be peers of each

other, and the caches in Tier j+1 may be referred to as parent caches. In some cases,

caches in different groups and/or different tiers may also be considered peer caches. It

should be appreciated that the notion of peers is flexible and that multiple peering

arrangements are possible and contemplated herein.

[0070] A typical CDN has only one or two tiers of caches. A CDN with only one

tier will have only edge caches, whereas a CDN with two tiers will have edge caches and

parent caches. (At a minimum, a CDN should have at least one tier of caches - the

edge caches.)

[0071] The grouping of caches in a tier may be based, e.g., on one or more of

their physical or geographical location, network proximity, the type of content being

served, the characteristics of the machines within the group, etc. For example, a

particular CDN may have six groups - four groups of caches in the United States, group

1 for the West Coast, group 2 for the mid-west, Group 3 for the northeast and Group 4

for the south east; and one group each for Europe and Asia.

[0072] Those of skill in the art will realize and understand, upon reading this

description, that cache groups may correspond to cache clusters or cache cluster sites.

[0073] A particular CDN cache is preferably in only one cache group.

[0074] In general, some or all of the caches in each tier can exchange data with

some or all of the caches in each other tier. Thus, some or all of the parent caches can

exchange information with some or all of the edge caches, and so on. For the sake of

simplicity, in the drawing (FIG. 8), each tier of caches is shown as being operationally

connectable to each tier above and below it, and Tier 3 is shown as operationally

connected to Tier 1 (the Edge Tier). In some CDNs, however, it may be preferable that

the caches in a particular tier can only exchange information with other caches in the

same group (i.e., with peer caches) and/or with other caches in the same group in a

different tier. For example, in some CDNs, the edge caches in edge cache group k , can

exchange information with each other and with all caches in parent cache group k , and

so on.

[0075] A content provider's / customer's server (or servers) are also referred to

as origin servers. A content provider's origin servers may be owned and/or operated by

that content provider or they may be servers provided and/or operated by a third party

such as a hosting provider. The hosting provider for a particular content provider may

also provide CDN services to that content provider. With respect to a particular

subscriber / customer resource, a subscriber / customer origin server is the authoritative

source of the particular resource. More generally, in some embodiments, with respect to

any particular resource (including those from elements/machines within the CDN), the

authoritative source of that particular resource is sometimes referred to as a co-server.

[0076] A CDN may also include a CDN origin/content cache tier which may be

used to cache content from the CDN's subscribers (i.e., from the CDN subscribers'

respective origin servers). Those of skill in the art will know and understand, upon

reading this description, that a CDN can support one or more content providers or

subscribers, i.e., that a CDN can function as a shared infrastructure supporting

numerous content providers or subscribers. The CDN origin tier may also consist of a

number of caches, and these caches may also be organized (physically and logically)

into a number of regions and/or groups. The cache(s) in the CDN origin tier obtain

content from the content providers' / subscribers' origin servers, either on an as needed

basis or in advance or an explicit pre-fill.

Overview - operation

[0077] FIG . 10 shows a typical interaction between a client 110 and a CDN 100.

In this case the CDN 100 serves content (resources) on behalf of the content provider

112. As described above, the CDN includes multiple locations (e.g., cache sites not

shown in the drawing) from which content may be provided/served to clients. The

process of associating a particular client (or client request) with a particular location in

the CDN is referred to as a rendezvous process. When a particular client (e.g., client

110) wants to obtain some content (e.g., a particular resource), that client is typically

directed to a "best" (or "optimal") location (via some rendezvous mechanism 104). As

used here, a location may be, e.g., a server, a server site, a region of servers, a cache

cluster, a cache cluster site, etc. The location may even be another CDN or network or

a server outside the CDN 100. With reference to FIGS . 1-7, the "best" or "optimal"

location may be, without limitation, a cache cluster site, a cache cluster, a group, a tier,

or some combination thereof.

[0078] Those of skill in the art will realize and understand, upon reading this

description, that the notion of a "best" or "optimal" location is dependent on multiple

factors, including, without limitation, some or all of the following: network load, load on

the CDN servers and other components, location of the client computer, etc. The notion

of a "best" or "optimal" location may vary by time of day, type of content, content provider

policies, CDN policies, etc. The invention is not to be limited in any way by the manner

in which a "best" or "optimal" location in the CDN is determined.

[0079] A "best" or "optimal" server may be selected by a server selection

mechanism such as described in U.S. Patents Nos. 6,185,598; 6,654,807; 7,949,779;

7,945,693; and 7,054,935, the entire contents of each of which are fully incorporated

herein for all purposes. In a presently preferred implementation, the server selection

mechanism is part of and/or uses the DNS system.

[0080] In a presently preferred implementation, the rendezvous system 104 uses

and is integrated into the DNS system, as described in U.S. Patent No. 7,822,871 , filed

09/30/2002, issued 10/26/201 0 , and U.S. Patent No. 7,860,964, filed 10/26/2007,

issued 12/28/2010, the entire contents of each of which are fully incorporated herein for

all purposes. The client 110's DNS system 114 interacts with the CDN's rendezvous

mechanism 104 in order to associate a particular client request for a resource with a

particular location, preferably in the CDN 100, from which that requested resource will be

served to the client. The "best" or "optimal" location may be provided by the rendezvous

mechanism 104 as one or more IP addresses or a CNAME (domain name)

corresponding to one or more locations in the CDN or to a different CDN or network.

[0081] With reference to FIG. 10 , an exemplary use of the CDN 100 (in which the

client 110 wants to obtain a particular resource) is as follows:

[0082] The client computer 110 interacts with the rendezvous mechanism 104 in

order to determine the "best" location from which to obtain the particular resource (at

51) . When the rendezvous mechanism 104 is integrated into the DNS system, the

client's DNS system 114 interacts with the CDN's rendezvous mechanism 104 to direct

the client to a location, preferably in the CDN 100, from which the client can obtain (or try

to obtain) the resource. When the rendezvous mechanism 104 is integrated into the

DNS system, this request (at S1) may be part of a request to resolve a domain name

associated with the particular resource, and the rendezvous mechanism may provide the

client with one or more IP addresses or CNAME of one or more locations in the CDN (at

52) . If the rendezvous mechanism provides more than one IP address (corresponding

to more than one "best" location), the client may select which of those addresses to use.

[0083] Having obtained a "best" location from which to obtain the particular

resource, the client computer 110 then requests the particular resource from the location

in the CDN 100 (at S3a). The CDN 100 may already have a copy of that particular

resource at that location, in which case it provides (serves) the resource to the client

computer 110 (at S3b). If the CDN did not already have a copy of that particular

resource at that location, then it tries to obtain a copy at that location (either from

another location in the CDN or from the content provider 112 (at S4a, S4b)). Having

obtained the resource (either from another location in the CDN or from a the content

provider 112), the CDN 100 provides (serves) the resource to the client computer 110 (at

S3b). It should be appreciated that in some cases the response could be generated

within the CDN as opposed to fetched. This may occur, e.g., in the case of a conversion

from an existing resource (such as a compression/transcoding) or completely generated

by a script/process (either previously pulled from the content providers origin server, or

provided from the control core as part of the property configuration.

[0084] The CDN may also provide information (e.g., logs and performance data)

to content providers regarding resources delivered on their behalf. Thus, as shown in

FIG. 10 , the CDN 100 may provide information to the content provider 112 (at S5).

[0085] To simplify the above explanation, FIG. 10 shows only one client computer

110 , one content provider 110 and one CDN 100. Those of skill in the art will realize and

understand, upon reading this description, that a typical CDN may provide content on

behalf of multiple content providers to multiple client computers. Those of skill in the art

will also realize and understand, upon reading this description, that the system may

include multiple CDNs, and that the rendezvous mechanism 104 may cause client

requests to be directed to different ones of the CDNs. An exemplary rendezvous

mechanism 104 is described, e.g., in U.S. Patents Nos. 7,822,871 and 7,860,964, the

entire contents of each of which are fully incorporated herein by reference for all

purposes.

[0086] As used herein, the terms "resource" and "content" refer, without any

limitations, to any and all kinds of resources and/or content that may be provided to

client computers via CDNs. Resources and/or content may be any static or dynamic

data item comprising an arbitrary sequence of bits, regardless of how those bits are

stored or transmitted, and regardless of what those bits represent. A resource provided

by a CDN may comprise data representing some or all of another resource, including

some or all of: a file, a portion of a file, a digital message, a portion of a digital message,

a digital image, a portion of a digital image, a video signal, a portion of a video signal, an

audio signal, a portion of an audio signal, a software product, a portion of a software

product, a page in memory, a web page; a movie, and a portion of a movie. This list is

given by way of example, and is not intended to be in any way limiting.

[0087] FIG. 10 shows the client 110 as separate from the CDN. As will be

explained in detail below, the inventors realized that the various components of the CDN

could themselves act as clients with respect to the CDN in order to obtain CDN related

resources. Therefore the client may be a CDN element or component, e.g., a cache.

Similarly, FIG. 10 shows the content provider 112 as separate from the CDN. As will be

explained in detail below, the inventors realized that the various components of the CDN

could themselves act as content providers with respect to the CDN in order to provide

CDN related resources to other CDN components. Thus, e.g., as will be explained

further below, with reference to FIG. 1, when a collector mechanism 106 obtains

information from a cache 102, that collector mechanism 106 is acting as a client, while

the cache 102 is a content provider.

[0088] The CDN has been described thus far in terms of its separate and distinct

components. It should be understood, however, that within the CDN each object (e.g.,

all data that is to be moved between CDN components) is treated as a web object or

resource, with, e.g. the control core acting as the "origin tier" for such objects. That is,

each CDN object has a URL (or whatever address is used by the CDN), and each CDN

object can be requested, filled, invalidated, refreshed, etc. Each cache has the

knowledge (information) it needs to obtain and provide CDN objects. This approach

allows all data transfers within the CDN to use the CDN itself. The CDN can thus use its

own mechanisms to deal with CDN control and/or management-related information (e.g.,

control core data). Thus, e.g., any CDN component can obtain CDN data using the

CDN.

REQUEST-RESPONSE PROCESSING

[0089] In operation, the various CDN components (e.g., caches) receive

requests for resources, processes those requests, and provide responses (which may

include, e.g., the requested resources, error messages, or directions to find the

resources elsewhere).

[0090] Fig. 11 shows the request-response operation of an exemplary CDN

component 1102. Although component 1102 is denoted "Server" in the drawing, it

should be appreciated that component 1102 may be a cache server or any other

component of the CDN that performs request-response processing. As shown in the

drawing, client 1103 makes a request for a resource of server 1102, and receives a

response to that request. In processing that request, as explained below, the server

1102 may obtain information from one or more other data sources 1110 . Some of these

data sources 1110 may be other CDN components (e.g., caches 1112 or control core(s)

1116) . The data sources 1110 may also include origin server(s) 1114 that may or may

not be part of the CDN. It should be appreciated that the client 1103 may be another

CDN component (e.g., a cache) or it may be a client entity that is external to the CDN.

[0091] The server 1102 preferably supports HTTP/1 .0, and HTTP/1 .1, and

HTTPS requests, although it is not limited to those protocols or to any particular version

of any protocol. HTTP/1 . 1 is defined in Network Working Group, Request for

Comments: 261 6 , June 1999, "Hypertext Transfer Protocol - HTTP/1 . 1 ," the entire

contents of which are fully incorporated herein by reference for all purposes. HTTPS is

described in Network Working Group, Request for Comments: 2818, May 2000, "HTTP

Over TLS," the entire contents of each of which are fully incorporated herein by

reference for all purposes. Unless specifically stated otherwise, "HTTP" is used in this

description to refer to any version or form of HTTP request, including HTTP and HTTPS

requests. Those of skill in the art will realize and understand, upon reading this

description, that HTTPS may be preferred in situations where additional security may be

required. It should also be appreciated that when an HTTP request is referred to herein,

some other protocols, including possibly proprietary protocols, may be used while still

leveraging the CDN and using URLs to name the objects.

[0092] The server 1102 includes a request / response mechanism 1104

(preferably implemented by software in combination with hardware on the server 1102).

The request / response mechanism 1104 listens for requests on multiple configured

addresses/ports, including port 1106.

[0093] When a request is made, the request / response mechanism 1104 tries to

identify a customer associated with that request. As used here, a "customer" is an entity

that is authorized to have its content served by the server 1102. The customer may be

an external entity such as, e.g., a subscriber to the CDN, or the customer may be

another CDN component. In order to determine whether or not the request is associated

with a customer of the CDN (or the CDN itself), the server 1102 needs at least some

information about the CDN's customers. This information may be stored as global data

1108 in a database 1106 on the server 1102. The global data 1108 should include

sufficient data to allow the server 1102 to either reject the request (in the case of a

request for a resource that is not associated with a customer), or to serve the requested

resource to the client 1103, or to direct the client to another source from which the

requested resource can be served. If the server 1102 does not have the required global

data 1108 at the time of the client request, it may obtain the needed global data 1108

from a data source 1110, preferably from a control core 1116 or from another cache. In

effect, for internal CDN data, the control core is considered an origin server or coserver.

[0094] As explained below, the request / response mechanism 1104 may

perform customer-specific processing as part of the request/response processing. In

order to perform customer-specific processing, the request / response mechanism needs

certain customer-specific data 1 1 10. If current customer-specific data 1110 are not

available in the request / response mechanism's database 1106, the server 1102 may

obtain the needed customer-specific data from a data source 1110, preferably from a

control core 1116 (although customer-specific data may also be obtained from another

cache 1112 in the CDN).

Objects, Sequencers and Handlers

[0095] The processing performed by request / response mechanism 1104 uses

various kinds of objects, including a Notes Object, a Session Object (sxn), and a

Transaction Object (txn). With reference to Fig. 12A, a Notes Object 1204 is a

generalized string key / value table. Figs. 12B-12C show a Session Object (sxn 1206)

and a Transaction Object (txn 1208), respectively. A session object 1206 contains

information about a particular client session, e.g., a client connection or an internally

launched (or spawned) session. A Session Object 1206 may contain allocation context

information for a session. A Transaction Object (txn 1208) is usually associated with a

session and contains information about an individual request. During a session, multiple

transactions may be performed, and information about each transaction is carried in a

transaction object. E.g., a transaction object carries the request to be satisfied, room for

the response, information about where the response body is coming from (e.g.,

response channel id), etc.

[0096] A sequencer is essentially a task. A sequencer uses a sequence control

object made up of an ordered list of one or more handlers and handler argument(s).

Fig. 13A shows an exemplary sequence control object 1301 comprising handler(s) 1302

and handler argument(s) 1304. The handler(s) 1302 comprise the ordered lists of

handlers 1302-1, 1302-2 ... 1302-n. It should be appreciated that not all handlers

require arguments, and that some handlers may obtain some or all of their arguments

from other locations. It should also be appreciated that a sequence control object may

have only a single handler and/or no arguments.

[0097] When running, a sequencer invokes its handlers (essentially, processing

modules) in order. By default, sequencers are bidirectional, so that the sequencer's

handlers are called (invoked) in order on the way "in" and in reverse order on the way

"out". Handlers can modify the sequence, thereby providing flexibility. Fig. 13B shows

the execution of the sequence of handlers 1302 from sequence control object 1301 (of

Fig. 13D). As shown in Fig. 13B, the sequencer invokes the handlers in the order

"Handler # 1 ," "Handler #2," ... "Handler #n" into the sequence and then in the reverse

order out of the sequence. So "Handler #1" makes a request of "Handler #2", and so on,

until "Handler #n", and then results are passed back, eventually from "Handler #2" to

"Handler # 1" .

[0098] Handlers may be synchronous or blocking. Handlers may inspect and

modify the sequence to which they belong, and handlers may launch their own

sequencers. There are two forms of this process: one is where a handler launches a

"subsequence". That subsequence runs in the same sequencer as the handler and the

sequence the handler is in is suspended until the subsequence is complete. Another

example is where a handler launches a complete sequencer. In that case, the

sequencer is a separate, independent task. A powerful aspect of that model is that a

handler could launch such a sequence on the way in to the sequence, allow processing

to continue, and then pick up the result (waiting if necessary) on the way out of the

sequence. Fig. 13C shows an example of a first sequence ("Sequence 1") in which a

handler (Handler #2, 1302-2) launches (or spawns) another sequence ("Sequence 2",

consisting of Handler #2,1 1302-2.1 ... Handler #2,k 1302-2.k). If Sequence 2 runs in

the same sequence as the handler #2, then handler #3 (of sequence 1) will not begin

until sequence 2 is complete (i.e., until handler #2,k is done). If, on the other hand,

sequence 2 is launched as an independent and separate task, sequence 1 can continue

with handler #3, etc. without waiting for sequence 2 to complete.

[0099] Fig. 13D shows an example of a first sequence ("Sequence 1") in which a

handler (#2) launches two other sequences (Sequence #2,1 , and Sequence #2,2). The

Sequence #2,2 launches a subsequence #2,2.1 .

[00100] A handler's behavior may be classified into three broad groups (or types):

• One-shot: The handler is removed from sequence when done.

• Intelligent: The handler may manipulate sequence.

• Persistent: The handler is called on the way "in" and "out".

[00101] These labels are used as descriptive shorthand for basic types of handler

behavior, and it should be appreciated that this type is not used by the sequencer, and

nothing needs to enforce a handler's "type," and a handler may act differently depending

on circumstances.

[00102] Handlers may be named (e.g.: "ssl", "http-conn", "http-session", "strip-

query", "proxy-auth", etc.) to correspond to the functions that they are to perform.

[00103] A sequence control object may be stored in compiled form for re-use, so

there is no need to constantly look up handler names.

[00104] The following is an example of a sequence specification for an HTTP

listener:

[00105] In this example, the handlers are "http-conn" and "http-session", and the

parameters are "address = '* .80"'. This listener task provides a bare TCP or cleartext

connection. The first handler ("http-conn") is a one-shot handler which creates an HTTP

connection from a cleartext connection. The second handler ("http-session") is an

intelligent handler that takes the HTTP connection (as already created by the "http-conn"

handler), creates a session object and handles the entire session. It should be

appreciated that the listener is just providing the communication channel to the client,

and the same basic listener code could be used with different handlers to implement

protocols other than HTTP (e.g., FTP).

[00106] As another example, the following sequence specifies a general SSL

listener:

[00107] In this example, the handlers are "ssl", "http-conn" and "http-session", and

the parameters are "address = '* .443"'. This sequence is similar to the HTTP listener

(above), except that the SSL handler first creates an SSL channel on the bare

(encrypted) connection, suitable for the http-conn handler. Although the SSL handler is

a "one-shot" handler, it needs to block since it must perform the SSL negotiation. That

is, the "ssl" handler must complete before the next handler can begin. The SSL handler

is responsible for instantiating an SSL channel. It should be appreciated that although

the ssl channel is persistent, the handler which sets it up does not need to be persistent.

The "ssl" handler instantiates an SSL channel on top of the cleartext channel. ..Once that

is done, the SSL channel (which does the decryption and encryption) persists until the

connection is finished, even though the "ssl" handler itself is gone from the sequence.

So the "ssl" handler is not performing the SSL operations itself, it is just enabling them

by instantiating the necessary channel.

[00108] FIGS . 14A-14D show examples of sequencers and handlers.

[00109] As shown above, a sequence may be is used to interpret a request and

get to the point that a response is available to be pumped. Te same basic sequencing

mechanism can be used to implement a programmable pump/filter, although of course

the handlers themselves are now performing a different task. FIG . 14A shows a

bidirectional sequence that is part of a pump/filter. The pump task uses "direct delivery"

requests, e.g., sendfileQ, because it does not need to see the data itself. It should be

appreciated that sendfileQ is not the request, it is just one way a direct delivery request

may be implemented by the channel involved. The delivery sequence consists of two

handlers:

• delivery-monitor (account bytes, monitors performance); and

• chan-submit (submits request to a channel, waits for response). The

channel may be, e.g., an object channel, downstream channel, etc.

[00110] If the process requires, e.g., computation of an MD5 of the pumped data,

the sequencer can be set up with an MD5 handler in the path (e.g., as shown in FIG.

14B). The MD5 handler can snoop the data as it passes.

[00111] An example of a self-modifying sequence is shown in FIG . 14C. The

pump task is using direct delivery requests, so the data is not available in user space.

The MD5 handler sees the request on the way "in" to the sequence and inserts a new

handler ("direct-to-buffered") handler to the "left" of the MD5 handler so that it runs

before the MD5 handler. The "direct-to-buffered" handler translates direct delivery to

buffered read/write.

[00112] A sequence can be modified to change direction of the order of

operations. For example, in a case where direct delivery requests can be too large for a

single buffered read/write, the "direct-to-buffered" handler can change the sequence

direction to perform multiple operations on one side of the sequence (e.g., as shown in

FIG . 14D). Handlers to the left of the "direct-to-buffered" handler still see what they

expect to see, while handlers to the right of the "direct-to-buffered" handler perform

multiple operations.

Scripts and Customer-Specific Control

[00113] As noted, the request / response mechanism 1104 (Fig. 11) may perform

customer-specific processing as part of the request/response processing. The request /

response mechanism needs certain customer-specific data 1 1 10 in order to perform the

customer-specific processing.

[00114] The request / response mechanism 1104 may allow customer-specific

handlers (or sequences) to be included at various locations (or hooks) during request /

response processing. These customer-specific handlers may perform operations on the

request and/or response paths. The customer-specific scripts that are to be used to

process a customer's requests are referred to as Customer Configuration Scripts

(CCSs), and are associated with the customers, e.g., via customer ids. Preferably the

system has a default mode in which it will perform request/response processing without

any customer-specific handlers. That is, preferably customer-specific handlers are

optional.

[OOOl] It should be appreciated that scripts are not the same as sequences. A

script is used to specify the sequences to be used to handle requests for a particular

customer. The script may perform whatever operations it needs (including making its

own HTTP requests, etc.) to determine what the sequences should be. For example, a

script may also use a different sequence depending on the local environment. However,

once the script has done that job, the resulting sequences are used (without rerunning

the script) until something happens (e.g., the script is invalidated and reloaded) which

indicates different sequences are now needed. Note, however, that a given handler may

be implemented as a request/response script in the same language as the configuration

script, but performing a different job.

[00115] Customers may provide handlers, parameters for existing handlers, or

routines to be invoked by handlers at certain stages of the processing.

[00116] It should be appreciated that since, as noted, the client 1103 may itself be

another component of the CDN (e.g., a cache or a control core, etc.), the CDN itself may

have CCSs associated therewith. That is, from the point of view of request / response

processing, the CDN may be considered to be a customer of itself.

[00117] With reference again to Fig. 11, the server 1102 will need the CCS for the

customer associated with the request from the client 1103. The CCS is stored in the

database 1106, in the customer-specific data 1110. If the server does not have that

customer's CCS stored locally at the time it is processing the client's request, the server

1102 will attempt to obtain the CCS from another data source 1110, typically from a

control core 1116. If a CCS is found, any customer-specific handlers (or sequences)

specified in the CCS will be included in the appropriate locations (hooks) during

request/response processing. In summary, the CCS generally is run once. It sets up

the customer-specific sequences, which are then cached in their compiled form. If those

sequences are present and valid, they are used without re-running the CCS (see the

"Valid sequences?" decision in the flow chart in Fig. 20A).

Adding a new cache to the CDN

[00118] When a new cache machine is to be added to the CDN, the control core

needs to get information about that new cache (e.g., what group/region it is in, its IP

address, its VIP, some capacity information, etc.). Similarly, in order to operate within

the CDN, the new cache machine needs to get the current customer configuration data

and other configuration data from the control core. A new cache can be pre-configured

so that when it connects to the network (e.g., to the Internet) it sends a request to the

control core for the resources that it needs. These requests can be made of the control

core using standard HTTP requests. The new cache may, e.g., request a single

configuration object from the control core, and that configuration object may, itself,

include the URLs of other configuration objects needed by the cache. The control core

may be configured to similarly request configuration data from the new cache, also in the

form of one or more HTTP requests, although preferably the new cache provides

needed information to the control core as part of one of its requests. It should be

understood that appropriate security and encryption may be used to prevent

unauthorized connection to the CDN. Once it has sufficient customer data (global data

1108), the new cache machine can then begin to function as a CDN cache machine. In

some cases the new cache machine may go through a warming phase in which it may

query its neighbors and preemptively pull the GCO and some CCS data (e.g., of popular

customers at the neighbor) before accepting any incoming client connections. The

cache may, in some cases, pre-fetch popular content. In some cases the new cache

machine may also influence local load balancing, so that for a period of time it gets less

traffic than other members of the cluster (e.g., until its cache miss rate is substantially

the same as the rest of the cluster of which it is a member).

[00119] The addition of a cache to a CDN is summarized with reference to the

flow charts in Fig. 15A. With reference to Fig. 15A, a cache newly added to the CDN

preferably first registers with the control core (at 1502). The cache is preferably

configured with a hostname of the control core (e.g. control.fp.net), and upon being

connected to a network (e.g., the Internet), the cache contacts the control core and

performs some initial registration. This process allows the control core to determine

whether the cache is authorized to participate in and be a part of the CDN. The

registration process is preferably automated and performed by programs running on the

cache and on the control core. Those of skill in the art will realize and understand, upon

reading this description, that a new cache may be one that has never been connected to

the CDN before or one that has been disconnected for some reason.

[00120] Once registered, the cache obtains configuration data from the control

core (at 1504). The cache may request the configuration data using one or more HTTP

requests. In some cases, e.g., as noted above, the new cache may request a single

configuration object from the control core, and that configuration object may, itself,

include the URLs of other configuration objects needed by the cache.

[00121] It should be appreciated that the registration (at 1502) may be combined

with the process of obtaining the configuration data (at 1504).

[00122] Some of the configuration data obtained during this process may

correspond to the global data 1108 in Fig. 1 1 , and preferably include the GCO. Since

the CDN components essentially serve content to each other (e.g., the control core

serves CDN configuration content to the new cache (and vice versa)), from the point of

view of the CDN components, as noted, the CDN may sometimes be considered a

customer. As such, the CDN may itself have one or more CCSs associated therewith.

Preferably the configuration data obtained from the control core by the cache (at 1504)

includes one or more CCSs associated with the CDN. These CDN CCSs will allow the

cache to perform the appropriate processing when serving CDN content to other CDN

components.

[00123] The control core may obtain data from the new cache (at 1506). While

the cache may provide some information to the control core during the initial registration

process, the control core may also obtain additional information from the new cache

after registration. This information may include information, e.g., relating to the capacity

and type of the new cache.

[00124] The new cache will also preferably verify that it is up to date as far as

system/application software. This may require a bootstrap process to pull new software

packages, e.g., in the form of RPMs from caches/control core, verifying them, installing

them and restarting (up to and including rebooting the server to pick up new operating

system components for instance).

[00125] At this time the new cache is ready to begin serving content on behalf of

the CDN. However, it may be desirable in some cases for the new cache to "warm up"

by obtaining information from other caches (at 1508) . In particular, the new cache may

obtain customer data (e .g., CCSs) from nearby caches in anticipation of serving content

on behalf of those customers. Preferably the new cache will query members of the

cluster to obtain the popular CCSs and popular content.

[00126] It should be appreciated that since the cache is using a hostname to

connect to the control core, the CDN rendezvous mechanism can rendezvous the cache

to a control core machine that is "best" or "optimal" for that cache. In some cases, once

the cache has discovered (or been told) which other caches are members of its cluster

and its peers, it may issue requests destined for the control core to them instead. This

will reduce direct load on the control core and accelerate retrieval of such data.

[00127] A CDN component's handling of a resource request is described with

reference to the flowchart in Fig. 15B. It should be appreciated that the CDN

component may be a cache (e.g., an edge cache, a parent cache, an origin cache, a

control core, etc.), and the requested resource may be any resource, including

resources requested by clients external to the CDN on behalf of customers or

subscribers to the CDN and those resources that are requested by other CDN

components and comprise CDN data (e .g., log files and the like).

[00128] First, the cache obtains a resource request (at 15 10). The request may

be using an HTTP request, and include information in an HTTP header. The cache

needs the GCO in order to determine whether the requested resource can be served.

The GCO includes information that will allow the cache to determine whether the

requested resource corresponds to a resource of a customer of the CDN (or to a CDN

resource) . The cache therefore obtains a current version of the GCO (at 15 12) and

determines (at 15 14) whether or not the resource can be served. If the cache needs the

GCO or other information from the control core, the cache can request that information

using appropriate HTTP (or FTP) requests, and the cache may obtain the GCO and/or

other needed information from other caches or other locations in the CDN. For example,

FIG . 15C shows various caches (102) pulling data from the control core 108 using an

HTTPS pull. In order to initiate such a pull, a cache would make an HTTPS request for

the data (using a URL of that data) and identifying the control core 108 as the source of

the data.

[00129] The cache server should serve a particular customer's resource to a

client in accordance with the processing requirements (e .g., scripts, etc.) set by that

particular customer, the cache therefore needs the CCS (if any) associated with that

customer. Accordingly, at 1516, the cache server obtains the CCS (if any) associated

with the requested resource (i.e., with the customer on behalf of whom the requested

resource is being served). It should be appreciated that the CCS should be pulled prior

to obtaining the resource (since the CCS may influence where/how to retrieve the

resource).

[00130] If the cache determines (at 1514) that the requested resource can be

served (i.e., that the cache is authorized to serve the resource), the cache may need to

obtain a copy of the resource (at 1518). The CCS (and possibly information associated

with the request, e.g., HTTP header information) provides the cache with sufficient

information for it to locate a copy of the resource, if needed. The cache server may

obtain the requested resource from another cache or from an origin server. In some

embodiments the cache server may redirect the client to another location from which to

obtain the content.

[00131] Having obtained the appropriate CCS (if one exists), the cache server

then serves the resource (at 1520) using information in the CCS. As explained, the CCS

runs before the cache even obtains the resource to serve, since the CCS may program

handlers at hook points which affect the request itself, and therefore which affect which

resource is going to be served.

Example

[00132] FIG . 16 shows an exemplary cache (or streaming) server 1608 operating

within a CDN 100. In operation, the server 1608 may obtain resources from one or more

origin servers, using, e.g., the HTTP, FTP, or HTTPS protocols. These origin servers in

Fig. 16 correspond to the origin server(s) 1 1 14 in Fig. 11. These resources may be

resources to be served to clients (not shown). In addition, the server 1608 may obtain

resources from other caches (corresponding to the cache(s) 1112 in Fig. 11), e.g., from

peer caches (e.g., using the HTTP protocol). The server 1608 may generate log

information, and the collector may obtain that log information and other information from

the server 1608. The collector may obtain the log information using, e.g., HTTP, and

request that log information using an appropriate URL that identifies the log information

on the server 1608. Essentially the server 1608 serves the log information as a resource

to the collector.

[00133] The server 1608 needs certain information in order to function properly

within the CDN. In particular, the server 1608 may need information about other servers

(e.g., its peers, parents, etc.); it needs information about content providers (e.g.,

subscribers or CDN customers) on behalf of whom it may serve content; it needs

information about invalid (e.g., stale) content, load information, etc. As to the load

information, it should be appreciated that a regular cache does not need load info from

the control core - it would send it to a control core (NDC). A cache could, however,

make use of load info from the other machines in the cluster. The server 1608 obtains

the required information using one or more HTTP requests from the control core 108 or

other locations in the CDN (e.g., peer caches). This information corresponds, at least in

part, to the global data 1108 and / or the customer-specific data 1110 shown in Fig. 11

and described above.

[00134] Since the control core has at least one domain name associated

therewith (e.g. control.fp.net), each object/resource that the server 1608 needs from the

control core 108 can be named with a URL and can be requested from the control core

108 using that URL and an appropriate protocol (e.g., HTTP). As the control core 108 is

preferably a distributed system consisting of more than one machine, the server 1608

will be directed (e.g., by the DNS system) to one of the machines that comprise the

control core 108, preferably to a "best" or "optimal" control core machine for the cache

server 1608. The server 1608 can then request the control information it needs from the

control core 108 using an HTTP request. As is well known, and as shown in the

drawing, HTTP, HTTPS, and FTP use the following well-known port numbers: 80 for

HTTP; 443 for HTTPS; and 2 1 for FTP. Those of skill in the art will realize and

understand, upon reading this description, that different and/or additional ports may be

used. It should be appreciated that the selection of the "best" or "optimal" control core

component to serve the cache server 1608 may be made with the same rendezvous and

selection mechanism(s) used to direct client requests to servers in the CDN.

[00135] As shown in FIG. 1 , a CDN 100 includes operation / measurement /

administration mechanisms 109. These include mechanisms to obtain and measure

load on the caches 102 and other system components and to measure and maintain

information about the state of the network. Some of this information is used, e.g., to

generate tables and other data that are used to determine a "best" or "optimal" location

for resource requests. A measurement mechanism 16 10 measures and collects load

and other information from the cache 1608 and provides that information to a table

generation mechanism. Measurement mechanism 16 10 may use dynamic and static

measurement tests, including ping, traceroute, and the like. An exemplary table

generation mechanism is described in U.S. Patent No. 6,185,598, the entire contents of

which have been fully incorporated herein for all purposes.

[00136] As noted above, from the point of view of a client (any entity that wishes

to access the control core cluster 108 or information in the control core cluster), the

control core 108 is considered a single entity accessible, e.g., by its domain name (e.g.,

control.fp.net). While a particular client is likely to always get content from the same

control core cluster component, there is no requirement for that to occur. For example, if

there are five control core cluster components and one of the five control core cluster

components fails or is otherwise unavailable, a client will access the control core

transparently at one of the other control core components. Those of skill in the art will

realize and understand, upon reading this description, that, as used herein, the term

"client" refers to any entity trying to obtain a resource from the control core 108, and, as

such, a client may be a cache 102 or some other component of the CDN 100.

Additionally, as with content from content-providers' origin servers, resources that

originate at the control core may be served to a cache by a peer or parent rather than

requiring that each cache pulls directly from the control core 108. (The control core may

be considered to be an "origin server" for the content for which it is authoritative, e.g., for

CDN control and configuration data.)

Control Core

[00137] The control core 108 (Fig. 1) keeps the authoritative database of the

current CDN configuration. Data are replicated across all machines in the cluster, and

the cluster uses a method such as voting to ensure updates and queries are consistent.

In the presently preferred implementation (with a cluster of five machines), the commits

only occur if three of the five cluster machines agree to commit, and queries only return

an answer if three of the five cluster machines agree on the answer. The use of voting

is given as an exemplary implementation, and those of skill in the art will realize and

understand, upon reading this description, that different techniques may be used in

conjunction with or instead of voting on queries. For example, techniques such as using

signed objects to detect corruption/tampering may be adequate. In some cases, e.g.,

the system may determine that it can trust the answer from a single server without the

overhead of voting.

[00138] The control core 108 comprises multiple databases that are used and

needed to control and operate various aspects of the CDN 100. These databases

include databases relating to: (i) system configuration; and (ii) the CDN's

customer/subscribers. The control core data are described in greater detail below.

[00139] Information in these databases is used/needed by the caches in order to

serve resources on behalf of content providers. E.g., each cache needs to know when

content is still valid and where to go to get requested content that it does not have, and

the rendezvous mechanism needs data about the state of the CDN (e.g., cluster loads,

network load, etc.) in order to know where to direct client requests for resources.

[00140] In some embodiments the control core 108 uses a distributed consensus

algorithm - an approach for achieving consensus in a network of essentially unreliable

processors.

[00141] As described in U.S. Patent No. 7,921 , 1 69 to Jacobs et al.:

In a Paxos algorithm, one example of a distributed consensus

algorithm, a server can be selected to act as a host or lead server by a

network server, the network server leading a series of "consensus

rounds." In each of these consensus rounds, a new host or lead server is

proposed. Rounds continue until one of the proposed servers is accepted

by a majority or quorum of the servers. Any server can propose a host or

lead server by initiating a round, although a system can be configured

such that a lead server always initiates a round for a host server

selection. Rounds for different selections can be carried out at the same

time. Therefore, a round selection can be identified by a round number or

pair of values, such as a pair with one value referring to the round and

one value referring to the server leading the round. The steps for one

such round are as follows, although other steps and/or approaches may

be appropriate for certain situations or applications. First, a round can be

initiated by a leader sending a "collect" message to other servers in the

cluster. A collect message collects information from servers in the cluster

regarding previously conducted rounds in which those servers

participated. If there have been previous consensus rounds for this

particular selection process, the collect message also informs the servers

not to commit selections from previous rounds. Once the leader has

gathered responses from at least half of the cluster servers, for example,

the leader can decide the value to propose for the next round and send

this proposal to the cluster servers as a "begin" message. In order for the

leader to choose a value to propose in this approach, it is necessary to

receive the initial value information from the servers. Once a server

receives a begin message from the leader, it can respond by sending an

"accept" message, stating that the server accepts the proposed host/lead

server. If the leader receives accept messages from a majority or quorum

of servers, the leader sets its output value to the value proposed in the

round. If the leader does not receive majority or quorum acceptance

("consensus") within a specified period of time, the leader can begin a

new round. If the leader receives consensus, the leader can notify the

cluster or network servers that the servers should commit to the chosen

server. This notification can be broadcast to the network servers by any

appropriate broadcasting technology, such as through point-to-point

connections or multicasting. The agreement condition of the consensus

approach can be guaranteed by proposing selections that utilize

information about previous rounds. This information can be required to

come from at least a majority of the network servers, so that for any two

rounds there is at least one server that participated in both rounds. The

leader can choose a value for the new round by asking each server for

the number of the latest round in which the server accepted a value,

possibly also asking for the accepted value. Once the leader gets this

information from a majority or quorum of the servers, it can choose a

value for the new round that is equal to the value of the latest round

among the responses. The leader can also choose an initial value if none

of the servers were involved in a previous round. If the leader receives a

response that the last accepted round is x , for example, and the current

round is y, the server can imply that no round between x and y would be

accepted, in order to maintain consistency.

[00142] In presently preferred implementations, the core control cluster uses the

Paxos algorithm of Lamport and Gray as its distributed consensus algorithm.

Implementations of this distributed consensus algorithm are described, e.g., in one or

more of: U.S. Patent No. 7,856,502, titled "Cheap Paxos," U.S. Patent No. 7,797,457,

titled "Leaderless Byzantine Consensus," U.S. Patent No. 7,71 1,825, titled "Simplified

Paxos," U.S. Patent No. 7,698,465, titled "Generalized Paxos," U.S. Patent No.

7,620,680, titled "Fast Byzantine Paxos," U.S. Patent No. 7,565,433, titled "Byzantine

Paxos," U.S. Patent No. 7,558,883, titled "Fast Transaction Commit," U.S. Patent No.

7,555,51 6 , titled "Fast Paxos Recovery," U.S. Patent No. 7,249,280, titled "Cheap

Paxos," U.S. Patent No. 6,463,532, titled "System And Method For Effectuating

Distributed Consensus Among Members Of A Processor Set In A Multiprocessor

Computing System Through The Use Of Shared Storage Resources," the entire

contents of each of which are hereby incorporated herein for the purpose of describing

the Paxos algorithm.

[00143] Various commercial implementations of the Paxos algorithm exist and are

available. For example, Google uses the Paxos algorithm in their Chubby distributed

lock service (see, e.g., The Chubby lock service for loosely-coupled distributed systems,

Burrows, M., OSDI'06: Seventh Symposium on Operating System Design and

Implementation, Seattle, WA, November, 2006) in order to keep replicas consistent in

case of failure. Chubby is used by Google's Bigtable (Bigtable: A Distributed Storage

System for Structured Data, Chang, F. et al, in OSDI'06: Seventh Symposium on

Operating System Design and Implementation, Seattle, WA, November, 2006) and other

products. Microsoft Corporation uses Paxos in the Autopilot cluster management

service from its Bing product. Keyspace, an open-source, consistently replicated key-

value store uses Paxos as its basic replication primitive.

[00144] Those skilled in the art will realize and understand, upon reading this

description, that other approaches and algorithms may be used instead of or in

conjunction with the Paxos algorithm.

Logging

[00145] Caches may write their logs to files on their machines. Logs may also be

streamed from the caches in addition to or instead of being kept as journal-style

resources. The inventors realized that logs can be treated as ordinary cache resources,

retrievable via HTTP or HTTPS using a standard URL. Thus caches may save logs

using the same mechanisms they would use to save any cached resource, with the

difference being that the source of the data is internal rather than external.

[00146] The logging system uses the hierarchical network data collector to gather,

sort and efficiently merge logs.

[00147] Logs are internally generated resources that are cached and pinned until

released. Logs are preferably stored in a format that is space-efficient and easy to parse

and interpret. They are also preferably stored in a way or on a device that is suitably

fault tolerant. Log access is by normal HTTP requests to the caches, so that the CDN

can be used to collect logs from the caches.

[00148] Different views and subsets of the same log data are possible, based on

the request. For efficiency, generated responses can be cached for a short time.

[00149] Logs are collected as necessary by the network data collector (NDC). In

case of crashes, logs are accessible using a general offline cache content access

mechanism. It should be appreciated that this may lead to a QoS issue, in that some

data are more valuable than others and may require different retention mechanisms. For

instance, data that are sourced locally may not be re-constructible in case of loss (as

opposed to a publisher's resource, which may be able to be reloaded). So log data may

be considered more valuable than a publisher's resource. Billing data (a specialized

version of a log file) is likely most valuable. In some cases, log data may be sacrificed for

space reasons, but billing data should persist until pulled.

Network Data Collector (NDC)

[00150] The network data collector (NDC) is essentially a reverse CDN. It

preferably uses the normal HTTP or HTTPS channels, with one key extension: a single

request may result in multiple fills that get merged. Flexible fan-in and merge options

are supported. The fan-in and merge operations are defined by a script. The script is

itself a resource. The script is an example of the Executable Resource mechanism

described below. The root of each collection operation in the NDC is a single "origin

client," analogous to an origin server in the CDN.

Component Roles

[00151] Certain components of the CDN system may act as clients of the CDN

and/or as content providers to the CDN. For example, as noted above, the core control

cluster maintains information used/needed by the caches in order for them to deliver

content to clients. When caches obtain control-related content (resources) from the

control core cluster, the control core cluster is acting as a content provider and the

caches are acting as clients. Similarly, when a collector mechanism obtains log and

other information from a cache cluster, the collector mechanism is acting as a client and

the cache cluster is acting as a content provider. And when the control core cluster

obtains information from a collector mechanism, the control core cluster is acting as a

client and the collector mechanism is acting as a content provider. When content is

being delivered by the CDN to clients on behalf of a content provider, the caches obtain

that content from origin server sites associated with the content provider. In some

cases, as noted above, a cache server site may try to obtain requested content from

another cache server site (e.g., from a peer cache server site or from a parent cache

server site). In those cases the peer (or parent) cache server sites are acting as content

providers.

Hierarchy

[00152] The CDN preferably uses tree-like hierarchical communication structures

to pull data from the control core and origin servers to the edge, and to pull data from the

edge to specialized gatherers and monitors. These tree-like structures are preferably

dynamic, i.e., they can change with time, requirements and circumstances. These

structures are preferably also customized, i.e., different communication operations can

use different hierarchies, and different instances of a communication operation may use

a different hierarchy (e.g., different parents for different origin servers).

[00153] For pulling data to the edge, each node needs to know its parent or

parents. For pulling data to the root, each node needs to know its children. Lists of

parents or children can themselves be resources. Using domain names instead of IP

addresses for parents and children allows the rendezvous system to be leveraged.

Executable Resources, Customization Hooks and scripts

[00154] Caches 102 in the CDN 100 are able to process and deliver (serve)

executable resources, and CDN users (e.g., content providers, the CDN itself) are able

to provide extensions to resources via these executable resources. Executable

resources provide a general and useful extension that may replace and/or enhance

several ad hoc mechanisms and HTTP extensions in a CDN. Executable resources

allow suitably authenticated HTTP servers to respond to an HTTP request with a new

type of reply (possibly identified by an extension status code such as "600 Exec" or a

new Content-Type, e.g., say "application/x-fp-exec"). The contents of such a reply are a

script to be executed by an interpreter in the response path of the cache, in order to

generate the actual reply. Examples of things the interpreter may do are:

• Fill the request from an alternate location.

• Fill the request from multiple locations and merge the results.

• Perform authentication.

• Pre-fill one or more other resources.

• Perform manipulations on the body of a resource (e.g., compression,

transcoding, segmentation, etc.)

[00155] If the reply is cacheable, it may be retained by the cache, and executed

each time the resource is requested.

[00156] The NDC may use this feature to gather logs.

[00157] The system provides a way to distinguish between requesting the script

itself, and requesting the result of executing the script. Scripts are subject to pinning,

expiration, invalidation and revalidation just like any other resources.

[00158] Customer-specific code can be added at numerous hook points in the

processing. Such customer-specific code may be used, e.g., for:

• request manipulation after parsing;

• calculation of cache key for index lookup;

• coarse and fine details of authentication;

• content negotiation choices, variants, and encodings;

• policies for range handling;

• deciding which peers to contact or migrate to;

• which host(s) to contact for fills;

• contents of fill request;

• manipulation of fill response;

• handling of origin server errors;

• caching policy;

• manipulation of response to client;

• logging effects.

[00159] A wide variety of hook points enable CDN users (customers) to modify

existing algorithms; pre- or post-process algorithms; and/or completely replace

algorithms. In a presently preferred embodiment, these are the customer-specific

sequences which are set at various hook points by the CCS.

[00160] In a present implementation, scripts can be used for:

• Configuration

• Customer-specific event handling and HTTP rewriting

• Network Data Collection operations

• Rapid prototyping of new features

[00161] Scripts are preferably cached objects (like other objects in the CDN).

They are preferably compiled into byte code and executed in a sandbox by a virtual

machine. Scripts are preferably measured for CPU usage and are effectively

preemptible.

[00162] In a presently preferred implementation scripts are implemented using the

Lua scripting language. Lua compiles into bytecodes for a small register virtual

machine. Lua's primary data type is a table (which is implemented as a hybrid between

a hash table and an array) , but it also has other types (string , number, Boolean, etc.).

Lua's interface to the rest of the system is via various function bindings which are a

means for a Lua function call to cause a system function (instead of another Lua

function) to be called. The details of a particular binding , including the data it operates

on and the results it returns to the Lua script, are specific to the binding in question and

may involve tables (e .g., hash table objects) or other types of objects.

[00163] Those of skill in the art will realize and understand, upon reading this

description , that a different scripting language could be used. However, it should be

appreciated that any scripting language should run (e .g., be interpreted) quickly with a

small interpreter, have a relatively small implementation , (be lightweight - have a small

memory footprint and be easily sandboxed for secure execution) and provide sufficient

control to allow customer-derived scripts to be used. It should be noted that "script" does

not necessarily imply interpreted at run time, but rather it is used in a broader sense to

mean loadable code.

[00164] It should be appreciated that basic cache functionality requires no scripts,

and the CDN will operate without them to serve content. Hooks allow script execution

at various points in the cache's processing path and may be used (if permitted) to

enhance and modify content delivery.

[00165] Hooks may be either:

• Customer-visible. Monitored, accounted, billable.

• Ops-visible. Monitored.

• Development-visible. Minimally restricted.

[00166] At hook points, one can specify either:

• A canned (predefined) algorithm name; or

• An expression (e .g., an in-line script or an expression in the script

language) ; or

A handler or series of handlers; or

The name of a script

[00167] In some implementations, scripts used in request processing may:

Inspect the request

Modify the request

Generate a response (including replacing an already generated

response)

Provide a short static body

Provide a function to incrementally generate longer response body

Provide a function to filter a response body

Inspect an already generated response

Modify an already generated response

Launch any number of helper requests

o Synchronously - wait for and inspect response

o Asynchronously - "fire and forget"

o Cacheable or non-cacheable

[00168] Configuration variables similarly support script execution, e.g., a variable

can have an immediate value, be a parameter reference, or determined by an inline

expression. For example, the variable fill_host \s shown here with different types of

values:

• fill. host

• fill. host

• fill. host

• fill- host

reference to a script

[00169] It should be appreciated that these values are given only by way of

example of the type of values. These expressions will preferably be in the script

language (e.g., Lua).

Cache Organization

[00170] FIG . 17 is a block diagram showing the major functional modules

(collectively 1700) in an exemplary cache. These modules include Executive 1704,

manifest channel 1706, global strategizer 1708, outgoing connection manager 1710, fill

manager 1712, HTTP parsers 1714, 1715, HTTP formatters 1716, 1717, incoming

connection manager 1718, rewriter 1720, index 1722, store manager 1724, peer

manager 1726, IO 1728, intercache transport protocol 1730, and rulebase 1732. These

modules and their operational connectivity are shown by way of example, and it should

be appreciated that a cache may include different and/or additional modules, and that

the modules in a cache may have different operational connectivity.

[00171] The Executive 1704 is the basic executive controlling all activities within

the cache. The Executive's responsibility is to maintain a prioritized list of runnable

tasks, and execute them in a priority order. A high-priority "system" task repeatedly

checks for ready file descriptors, and moves their waiting "user" tasks onto the run list.

The Executive may also support abstracting a task or group of tasks as an

asynchronous service called a channel, and may provide a clean way for tasks and

channels to communicate. Cache subsystems discussed below are implemented as

tasks and channels.

[00172] When a new client connection is detected on one of the listener file

descriptors, the Incoming Connection Manager 1718 assigns a client task to handle it,

and coordinates the process of accepting the connection, completing any TLS

(Transport Layer Security) handshake, and assigning a priority and connection-level

policy. The Incoming Connection Manager 1718 continues to monitor and manage the

connection throughout its lifetime.

[00173] Although the Incoming Connection Manager 1718 is described here as a

single component, it should be appreciated that this is merely one logical depiction of

functionality in the cache. E.g., in a present implementation there is a listener task

which, after receiving a new connection, runs a sequence of handlers which are

configured for that particular listener. Those handlers may apply policies, perform a TLS

upgrade if appropriate, etc.

[00174] The client task invokes the HTTP Parser 1715 to read data from the

connection, locate the message boundaries, and parse the HTTP into a request object

with a convenient internal format. Messages remain in this internal format as long as

they are within the cache system (the CDN), even if they are migrated to another cache.

It should be appreciated that cache-to-cache messages may be in other formats, e.g., in

some cases, messages may be sent from cache-to-cache in their standard text format.

[00175] The request object may next be processed by the rulebase 1732, to

assign customer-specific handling policies and normalize the URL associated with the

request. The policy might indicate, e.g., that the request requires manipulation by a

customer-defined script. In that case, the request rewriter 1720 executes the script. In a

present implementation a table (the GCO) is used which, in conjunction with the

apparent target of the request, to decide whether or not it is worth it to continue further

processing at all (i.e., whether the request is associated with a valid customer). At this

point, the system checks whether there is a programmed sequence of handlers

appropriate for that customer. If not, the system retrieves and runs the Customer

Configuration Script, whose function it is to program the sequence of handlers. Then the

handlers are run to process the request.

[00176] The next step is to determine if the cache has any information about the

requested object. The request is presented to a manifest channel which then inspects

the request and uses the information it has internally (a manifest) to determine how best

to handle the request, including by providing a reference to a cached object, requesting

a fill or a refresh, etc. The manifest channel maintains the manifest data and also

provides the intelligence to use the manifest data. The URL is looked up in the cache

index 1722, which is essentially a database listing the objects already in the cache. The

result of the index lookup is either null, or a manifest listing all the data, metadata and

ongoing activities that might be relevant in responding to the request.

[00177] At this point, the request processing engine has a set of request-specific

information, comprising the parsed request, a set of policies for handling the request,

and a manifest of pertinent cache information. As noted, a manifest channel 1706 is

responsible for determining how to respond to the request. In general, the decision will

depend on the request-specific information, the object-specific information, the current

state of the machine, the global state of the CDN, and the set of capabilities

implemented in the cache. There may be one strategizer instance running for each

actively referenced manifest in the cache, and that strategizer handles all clients and

activities referencing that manifest. In a current implementation the strategizer is the

manifest channel.

[00178] The manifest channel 1706 has at its disposal a variety of modules,

implementing services, the services including the storage service, fill service and peering

service. Other modules may be available for error message generation, authentication,

logging, throttling, etc. The role of the strategizer is to orchestrate these services to

construct a reply to the request, and preferably to fully process the request (since

logging is part of the processing but not necessarily part of the reply).

[00179] The manifest channel 1706 contains much of the intelligence in the

cache. New capabilities may be added and special handling provided in the manifest

channel 1706 for new classes of resources. For this reason, the architecture is designed

to provide clean separation of mechanism and policy. Machinery/mechanisms

implementing individual services are encapsulated into separate modules, and the

manifest channel 1706 essentially acts as a conductor, supervising the construction of a

response.

[00180] The most common scenario is expected to be a simple cache hit, where

the cache has an easily accessible copy of the requested object. In this case, the

manifest channel 1706 invokes the storage service (store manager 1724) to retrieve the

object, which may be in memory, or on solid-state or hard disk (generally denoted 1734).

In the process, the manifest channel 1706 may also provide guidance to the storage

service (store manager 1724) on what type of future access is expected, so that the

object can be optimally placed in the appropriate type of store.

[00181] Another common scenario involves a dynamically-generated response,

such as a response to a control command, a statistics report, or an error message.

[00182] When a request is received, an initial sequence of handlers is assembled

to handle the request (based on the target of the request and the listener it came in on).

The handlers either generate a response because the request is directed at them, add

some value by performing a request or response manipulation, or take themselves out of

that instance of the sequence because they are not relevant to the request at hand. A

handler may be a script handler, and that script can perform any number of functions (as

outlined previously) to generate a response or to manipulate a request or response. The

"manifest channel" is one component used by a series of handlers, but it is concerned

with dealing with cachable resources. It is generally not involved in determining

whether, e.g.,, pre-authentication needs to be performed (which could be handled by a

handler in the cli-req hook or similar).

[00183] As noted earlier, an important aspect of the architecture is that essentially

all data items, including machine configuration, customer policies, logs, billing data and

statistics, are simply web objects, which appear in the index and are retrieved through

the strategizer just like customer web resources. As critical resources, they do have

policies engaging specific authentication, persistence and prefilling services, but the

machinery of these services is also available to ordinary resources when necessary.

[00184] A feature of Unix file I/O is that read and write operations on standard

files are synchronous, and will block the calling thread if the data needs to be physically

retrieved from or written to disk. Since the cache likely has plenty of other work to do

while disks are being accessed, the 10 library 1728 provides a way for the cache to hand

off disk I/O to a separate thread that can block without holding up the cache activities. In

addition, the IO library 1728 provides a richer, more efficient API to the physical disks

than the normal open/read/write/close interface.

[00185] If the request is not a cache hit, the manifest channel 1706 will typically

invoke the peering service (peer manager 1726) to see if a nearby cache has the

requested object. Since other services may also need to communicate with neighboring

caches, and it is inefficient to open or operate multiple TCP connections to multiple

neighbors, an intercache transport protocol module 1730 multiplexes various types of

intercache communication over a single general-purpose link. For instance, the peering

service might offer to migrate the client connection to a neighbor that has the resource;

the strategizer could choose to use this option, in which case it would invoke the

migration service, which would use the intercache transport protocol to transfer the client

connection state. As before, it should be appreciated that one or more handlers perform

this function.

[00186] If the request is not a hit, or internally serviced or migrated, the resource

needs to be fetched via the network, and the fill service (fill manager 1712) is invoked.

The fill manager's role is to balance and prioritize the outgoing network activity between

all strategizers, and operate protocol handlers for the supported set of protocols. In

particular, for HTTP fills, the strategizer will create an HTTP fill request in internal format,

and the fill service will format that request using the HTTP formatter 1716, send it to the

appropriate target host, and manage the data transfer. For efficiency, connections are

created and managed by an outgoing connection manager 1710, which maintains a pool

of connections to frequently accessed hosts, tracks responsiveness, implements traffic

shaping, etc. In a current implementation, the manifest channel creates the fill request.

[00187] Some fill operations will be peer fills from other caches, and these likely

constitute the main class of intercache communication not using the Intercache

Transport Protocol. Such fills may use the internal message format and bypass

unnecessary HTTP formatting and parsing steps.

[00188] Fill responses arriving from the network are handed back to the manifest

channel 1706, which decides whether to cache the object, and how to process it before

replying to waiting clients.

[00189] It should be appreciated that the manifest channel 1706 would not invoke

a "reply rewriter." Rather, such a rewriter (if any) would exist at one of the hook points

on the response path, e.g., client-resp, and would be used regardless of whether a

manifest channel was involved in generating the response. Such a rewriter may inspect

the response to determine if it came from cache, however it is not up to the manifest

channel to invoke this rewriter. The manifest channel would not generally be involved in

a request which was a priori known to be non-cacheable. On the other hand, a "reply

rewriter" may well be involved in such a request.

[00190] As on the input path, the manifest channel 1706 invokes appropriate

services to do the actual work, and supports optional processing by a reply rewriter 1720

just prior to final formatting and output to the client. Those of skill in the art will realize

and understand, upon reading this description, that this type of processing (final

formatting, etc.) is performed by one or more handlers on the way "out" of the processing

sequence.

[00191] The manifest channel 1706 is responsible for handling a single URL, and

optimizing the experience of the clients currently requesting the resource associated with

that URL. The global strategizer 1708 is responsible for optimizing the overall cache

behavior, and the behavior of the CDN as a whole. The global strategizer 1708

comprises a set of permanently running background tasks and services that monitor and

manage the cache, performing operations such as discarding old objects, prefetching

latency-sensitive objects, and enforcing quotas. Like the manifest channel, global

strategizer is preferably architected to cleanly separate policy and mechanisms, thereby

allowing for future enhancement and adjustment.

[00192] The global strategizer 1708 influences the manifest channel 1706 by

adjusting a variety of modes and levels which the manifest channels consult when

making their decisions. In turn, the global strategizer monitors the effects of the mode

and level changes, and adjusts them as necessary to achieve the desired global

conditions. Thus, the global strategizer is the module in charge of the various feedback

loops in the cache. For instance, by adjusting the maximum allowed object age, it can

control the amount of data in the cache, and by adjusting the maximum size of objects

allowed in the memory store, it can influence the amount of memory in use. In some

implementations there may be no global strategizer and the storage system will manage

its own resources, etc.

[00193] Implementations and embodiments of various components are described

in greater detail below. Those skilled in the art will realize and understand, upon

reading this description, that the details provided below are exemplary and are not

intended to limit the scope of the invention.

The manifest channel 1706

[00194] The manifest channel 1706 handles issues related to a single resource.

Its job is to deliver an optimal response to each client based on various factors such as,

e.g., request details, policy settings, cache contents, state of devices, peer caches,

origin server, network, etc. The manifest channel 1706 consists of an extensible

collection of efficient mechanisms, e.g., for retrieval from disk; connection migration;

filling from origin; checking peers, etc. A control module orchestrates the mechanisms,

using canned algorithms for common situations and providing hooks for introducing

variations to these canned algorithms. The Manifest channel 1706 may be completely

scriptable, if necessary. The manifest channel 1706 may provide clean separation of

mechanism and policy and may be more general than a pipeline. In a present

implementation, the manifest channel 1706 is sequence (a pipeline of sorts), although

each of the steps of the sequence may be arbitrarily intelligent (including being a script).

[00195] At any moment, there is one instance of the manifest channel 1706

running for each manifest being actively accessed. The role of the manifest channel is to

coordinate all activities associated with the manifest, ensure that each client requesting

the object is sent an individualized response meeting the policy constraints, and that this

is done as efficiently as possible and without violating other constraints imposed by the

global strategizer.

[00196] The manifest channel 1706 preferably includes a set of mechanisms with

associated logic to perform some or all of the following (this is essentially a potential list

of "handlers."):

Mechanism Functionality

Mechanism Functionality

Authentication Performs authentication handshakes with the client and queries

internal databases or external servers as necessary for permission

to serve the resource to the client. These are typically synchronous

operations. Internal databases are cached web objects, and may

also need to be refreshed periodically.

Referer Checking Handles cases where the reply depends on the HTTP referer

header. General functions in the rulebase and rewriter will classify

the referrer, and this module implements the consequences of that

classification (this is essentially an example of authentication)

Browser Handles cases where the reply depends on the HTTP User-Agent
Identification

header and potentially on other headers.

Hot Store Allow objects to be identified as high-popularity and worth keeping

in fast storage such as application memory, the OS page cache or

solid-state disks, and for communicating that fact to the storage

manager.

Cold Store Allow objects to be identified as low-popularity and suitable for

archiving to more extensive but higher latency un-indexed mass

storage.

Peering Checking for information about which peers are likely to have an

object, and for directly querying peers via the peering service.

Migration Deciding when to migrate a connection to a neighboring cache,

and for marshalling the state to be transferred.

Connection Handling non-cacheable traffic such as POST requests, by
Splicing

delegating further interaction with the client to the operating

system, so that it can efficiently relay raw data between the client

and the remote server. Also monitor the progress of such relays for

logging and diagnostic purposes.

Longtail Dealing with resources making up working sets that exceed the

size of the cache. The module includes counters for determining

the popularity of such resources, and support for special types of

filling and redirection that allow the CDN to handle them efficiently.

Mechanism Functionality

Fill Target Support for filling resources in a flexible way, e.g., from load
Selection

balanced clusters, from various locations, or with a variety of

protocols.

Range Dealing with range requests, for deciding whether it is worth

fetching the entire object, and for formatting HTTP Partial Content

(206) replies.

Partial Object Assembling separately-fetched parts of the same object into a
Handling

complete object, either logically or physically.

Error Message Formatting of informative and appropriate HTTP error messages
Construction

for the client when the request fails in some way.

Redirection Efficiently redirecting clients to other locations.

Command Acting upon requests to the command, monitoring and logging
Handling

subsystems, and for constructing a variety of internally generated

responses.

Vary Content negotiation is defined in Network Working Group, Request

for Comments 2616, Hypertext Transfer Protocol - HTTP/1 . 1

(hereinafter "RFC2616"), the entire contents of which are fully

incorporated herein by reference for all purposes.

The Vary field value indicates the set of request-header fields that

fully determines, while the response is fresh, whether a cache is

permitted to use the response to reply to a subsequent request

without revalidation. For uncacheable or stale responses, the Vary

field value advises the user agent about the criteria that were used

to select the representation. A Vary field value of "* " implies that a

cache cannot determine from the request headers of a subsequent

request whether this response is the appropriate representation.

RFC2616 section 13.6 describes the use of the Vary header field

by caches. According to RFC2616, an HTTP/1 . 1 server should

include a Vary header field with any cacheable response that is

subject to server-driven negotiation. Doing so allows a cache to

properly interpret future requests on that resource and informs the

user agent about the presence of negotiation on that resource.

Mechanism Functionality

According to RFC26 16 , a server may include a Vary header field

with a non-cacheable response that is subject to server-driven

negotiation, since this might provide the user agent with useful

information about the dimensions over which the response varies

at the time of the response. According to RFC261 6 , a Vary field

value consisting of a list of field-names signals that the

representation selected for the response is based on a selection

algorithm which considers only the listed request-header field

values in selecting the most appropriate representation . According

to RFC261 6 , a cache may assume that the same selection will be

made for future requests with the same values for the listed field

names, for the duration of time for which the response is fresh.

The field-names given are not limited to the set of standard

request-header fields defined by the RFC261 6 specification. Field

names are case-insensitive and, according to RFC261 6 , a Vary

field value of "*" signals that unspecified parameters not limited to

the request-headers (e .g., the network address of the client), play a

role in the selection of the response representation. According to

RFC26 16 , the "*" value must not be generated by a proxy server; it

may only be generated by an origin server.

In some cases it may be desirable to have a communication

channel between the CDN and the origin server, in order to ingest

policy information about variant selection performed at the origin so

that the same can be directly replicated within the CDN rather than

being inferred from a series of responses from the origin .

Content Content negotiation as defined in RFC261 6 .
Encoding
Transforms Converting from one content encoding to another within the cache,

as a service to customers.

Logging Controlling the amount and type of logging information generated

by the request processing , and for saving that information in

internally generated objects for later retrieval by special HTTP

requests and/or remote logging .

Mechanism Functionality

Tracing Enabling diagnostic tracing of the processing, either globally or for

a specifiable subset of requests or resources.

Billing Collecting a variety of billing-related information while the request

is being processed.

Throttling Allow certain types of actions to be delayed based on advice from

the global strategizer.

Keepalive Checking various factors that influence the decision to allow

connections to persist, and methods for conveying or delegating

the final decision to the connection manager.

Transfer Deciding what transfer encoding to apply, and for applying it.
Encoding
Shaping Deciding on what bandwidth to allocate to a network activity, and

for conveying this information to the connection managers.

Prefetch Allows a request for one resource to trigger prefetching of other

resources, from disk, peers or the origin.

Refresh Implementation of the HTTP "GET If-Modified-Since" etc., and "304

Not Modified" mechanism, as well as the background refresh

feature.

Retry and Allow failed fills to be retried from the same or a different fill target.
Failover
Cachability Decides if, where and for how long an object should be cached by

the Storage Service.

Script execution Execute requests and replies that are CDN internal scripts.

Replacement Decide which objects in the manifest are no longer sufficiently

useful and can be destroyed.

Global Strategizer 1708

[00197] The global strategizer 1708 is the subsystem responsible for overseeing

the operation of the cache as a whole, and the cache's relationship to other parts of the

CDN. The global strategizer is preferably running at all times, and keeps track of

extrinsic parameters such as the amount of storage used, the number of clients, etc. In

turn, it controls operation of the cache by adjusting intrinsic parameters like the LRU

(Least Recently Used) Aggression and the listener poll and accept rates.

[00198] Invalidation. The global strategizer is responsible for fetching, preferably

roughly once per second, updates to the primary invalidation journal from the CDN

control core, fetching updates to any secondary journals that the primary indicates have

changed, and invalidating the resources that the secondary journals indicate have been

invalidated. It should be appreciated that the control core for customer invalidations may

not be the same control core as used for configuration data (and invalidations associated

with it). Different groups of customers may be put onto different such control cores for

invalidation.

[00199] Automatic Refresh. This mechanism allows selected resources to be

refreshed even when they are not being requested externally, so that they are always up

to date. The invalidation journal mechanism is essentially a special case of this.

[00200] Load Metrics. The global strategizer is in charge of measuring the total

load on the machine, and responding to requests for load status.

[00201] Platform Configuration and Control. Mechanism to act upon

configuration information from the control core.

[00202] Listener and 10 Event Rate Control. Controls the rate at which new

connections are accepted, and the rate at which file descriptors are polled for readiness.

[00203] As with the other components / mechanisms described herein, the

functions described here are not necessarily performed by a single entity or mechanism

but by multiple tasks or sequences. However, those of skill in the art will realize and

understand, upon reading this description, that the set of tasks which perform these

functions could be considered as making up the "global strategizer."

CONTROL CORE DATA

[00204] As noted above, the control core 108 maintains the authoritative database

of the current CDN configuration and of information needed to operate the CDN. The

database includes various interconnected tables that are used to describe and/or

manage the CDN. With reference to FIGS. 18-1 9 , the database includes system

configuration objects 1802, customer configuration objects 1804, a customer invalidation

journal 1806, and a master journal 1808. Those of skill in the art will realize and

understand, upon reading this description, that different and/or other objects may be

maintained in the database.

[00205] In a presently preferred implementation, the control core 108 maintains

and stores some or all of the following information (as part of the system configuration

objects 1802 or customer configuration objects 1804), some of which may be used for

rendezvous, and some of which is used by cache machines:

Global Configuration Object (GCO) (1912)

[00206] The GCO is described in connection with request response processing.

Customer Configuration Scripts (CCSs)

[00207] Customer Configuration Scripts are described in connection with request

response processing.

HostTable (1902)

[00208] The HostTable 1902 is a list of all machines in the network. This list is

maintained in a table (HostTable) that includes, for each machine, its network address

(IP address), and preferably its bandwidth capacity.

[00209] The HostTable preferably stores a Bandwidth Capacity value (BWcap). A

BWCap value is also stored in the cluster table, described below. An actual value for

Bandwidth Capacity value is derived from these two values according to the following

table in which clusterBW represents the bandwidth capacity value set on the cluster,

hostBW represents the bandwidth capacity value set on the cache and nhosts

represents the number of machines in the cluster:

[00210] While it should be sufficient to use just one of these tables to set

BandwidthCapacity, as described here, this is not always the correct approach.

Specifically, the calculated BandwidthCapacity variable is preferably not used by the

server selector (SS) mechanism (of the rendezvous mechanism), rather the server

selector directly uses the value from the ClusterTable for shedding based on cluster-total

bandwidth, and the value from the HostTable for shedding based on per-host bandwidth.

The BandwidthCapacity is set in both tables, since the HostTable entry tracks the uplink

from host to switch whilst the BandwidthCapacity at the cluster is the uplink from switch

into the network fabric.

[00211] The reason that the server selector does not use the calculated per-host

BandwidthCapacity is that it is generally wrong for purposes of controlling shedding to

avoid saturating a per-host uplink. That is, if BandwidthCapacity is set only in the

ClusterTable, then the system calculates a per-host value as clusterBW/nhosts (see

above table). But e.g., if there are twenty machines sharing a 10G uplink, that value is

0.5G, which is too small: each machine should be able to individually burst to 1G (or

higher, depending on the connection from each server to the switch) before causing

shedding (assuming the overall cluster uplink is not saturated, i.e., not all machines

using 1G at the same time). Or, e.g., if there are five machines sharing a 10G uplink, the

system would calculate 2G, which would be too large if the individual machines only

have a 1G link.

[00212] Therefore the BWcap values should generally be set both in the

HostTable and ClusterTable.

[00213] As there should be an entry in the HostTable for every machine in the

network, non content serving machines should have their BWCap value set to zero.

[00214] Each type of machine at a location should be grouped into one or more

clusters, with a corresponding entry in the ClusterTable (1904).

SMED Table (1908)

[00215] The SMED Table 1908 is a list of "measurement equivalent" caches in a

table (SMEDTable). In practice, this list equates to a rack of hardware; i.e., the set of

machines plugged into a single router. Each entry includes one or more clusters.

Cluster Table (1904)

[00216] The Cluster Table 1904 describes each cluster. Recall that a cluster is

not the same as a site (all of the machines that are plugged into a given switch), but the

subset of those machines that share the same set of VIPs. As such, there may be

multiple ClusterTable entries for a given site. The Cluster Table stores information about

the region(s) that each cluster is in.

[00217] Each cluster contains a number of HostTable entries, one for each

physical machine, and one or more VIPs (each of which is represented by an entry in the

VIPTable).

[00218] All machines on the network should be represented in this ClusterTable

(and directly in the HostTable). To be able to identify which are content serving

machines, there is a flavor column in the ClusterTable.

[00219] As with the HostTable, non content serving clusters should have BWCap

set to zero. Having these machines represented in these tables allow for infrastructure

components such as the measurement components to make use of processes on non-

content serving machines.

VIP Table 1906

[00220] A V IP is the locally load-balanced address, handed out as the target of

rendezvous. If this V IP is used for secure traffic, it contains a reference to a node in the

SSLTable, otherwise the sslKey is set to NULL (indicating HTTP traffic).

[00221] As such, there is one entry for each V IP address in the network. Non

content-serving clusters do not need to have V IPs defined.

SSL Table 19 10

[00222] An entry in the SSLTable describes one "secure" property; it identifies the

mapping between super-name and certificate.

Flavors Table 19 12

[00223] The Flavors Table 19 12 describes characteristics that are shared by all

machines of a certain flavor (e .g., content serving) . The term "flavor" is used here to

distinguish between machines that perform different functions within the CDN (e .g.,

content serving , etc.).

CoServers Table 19 16

[00224] As used herein , a co-server, with respect to a particular resource, is an

origin server - the authoritative source of the particular resource. The CoServers Table

contains descriptions of all CoServers (origin servers) and Alias Nodes defined in the

system. This table holds information about all customer origin servers registered with

the CDN. This table is used to associate incoming requests to these entries, and

describes how, and from where, the resource needed to satisfy that request is to be

retrieved. Note that as CDN objects are also handled by the CDN, some CDN servers

may function , at times, as co-servers.

[00225] Alias Nodes are associated with a Base CoServer, and provide a way to

separately report and log traffic associated with a particular alias attached to a CoServer

without needing to cache the same resource multiple times.

[00226] The CoServers table preferably includes the following fields:

Field Description

CSWFIags A list of CoServer-Wide Flags that specify properties or

configuration options that apply to the CoServer as a whole.

IsCoserver A Boolean flag (1 or 0) which indicates whether or not this entry

is a CoServer. This flag may be combined with IsAlias into a

single flag since only one of these two flags can be set.

Protocol Which protocol to use when contacting the origin server

associated with this entry. In presently preferred implementation,

options are 'HTTP', 'HTTPS' and 'FTP'.

AliasList A list of aliases associated with this entry. An incoming request is

compared to the list of these aliases when determining which

entry is associated with that request. As such, each alias needs

to be unique, and so these form an additional key.

SeqNum As for all transaction tables, this indicates the table sequence

number which last updated this row.

Subscriber Table 1818

[00227] The Subscriber Table 1818 includes information about subscribers to the

CDN (e.g., the CDN's customers).

Aliases

[00228] An Alias is a name by which a CoServer is known to the network, and is

used to identify that CoServer during request processing. The term alias can refer to

both the format of this identifier, as well as certain attributes of the identifier. A list of

ways that the term is used follows:

Term Meaning

some cases this may include an arbitrary amount of path.

Wildcard the initial element of the hostname portion of an alias can be a'* ' in which
Alias

case it will match any subdomains. e.g., * .example.com will match

fp.example.com and fp.subdir.example.com, as well as the unadorned

example.com.

Note: that a Wildcard Alias may also be an Extended Alias; e.g.,

* .example.com/dir.

The wildcard character has to be a complete hostname element; i.e., it is

not possible to have * fp.example.com.

Primary The first alias in the list associated with a given CoServer. Any request
Alias

using a Secondary Alias is rewritten early on in request processing so

that it seems to the system that it was actually using the Primary Alias.

As such, if the Primary Alias is a Wildcard Alias, then there cannot be any

Secondary Alias.

Also, each matching Host: header presented will cause a separate

resource to be resource (i.e., the system will behave as if all the

resources for that CoServer included a Vary: Host).

Secondary Any non-Primary Alias on the list associated with a given CoServer.
Alias

When a request is received that matches a Secondary Alias, the URL is

internally converted so that it seems that the request was requested

using the Primary Alias instead. This means that the list of Secondary

Aliases is treated as synonyms of the Primary Alias. See also AltID

Aliases below.

AltID Aliases A Secondary Alias (qv) that is associated with an alias node, this allows

traffic received over specific Secondary Aliases to be tracked (for both

logging and reporting/billing purposes) separately. The Alt ID reErs to the

ID number of the alias node under which the request should be

logged/tracked.

Alias Node This is an additional entry in the ReflectorTable that is associated with a

given CoServer (which is then referred to as the Alias Node's Base

CoServer). This must belong to the same Subzone as the Base

CoServer, and should be configured to have the same hostname, etc.

Term Meaning

The CoServer ID associated with this Alias Node is then used when

logging/tracking traffic for this AltID Alias. The Primary Alias of the Alias

Node should be set to the same value as the AltID Alias of the Base

CoServer (but without the AltID itself). This value is used as the

Nickname when displaying data for this alias in the Reporting Portal

Request The complete set of active aliases (i.e., those associated with active
Processing

CoServers), be they Simple, Extended, AltID, Primary or Secondary, are

used to populate a hash table within the agents of the network. This hash

table provides a mapping from each alias to the CoServer ID associated

with that alias.

When a request is received, the first path element of the request is joined

to the value of the Host: header, and a lookup into this hash table

performed. If no match is found, a second lookup is performed of just the

Host: If a match is then found, processing completes since the

appropriate CoServer has then been found. In some embodiments the

initial lookup is done with the Host: header only, and if an extended alias

exists, a flag is set that indicates so and then a second lookup performed.

If no match is found, then a second hash table is inspected, which

contains down cased versions of the directory element of each extended

alias (the Host: value always being processed down case). If a match is

then found, and this CoServer has the ncurl= CSWFIag set, then a match

is declared, and processing completes.

If however no match is yet found, a search for a possible Wildcard Alias

match then begins. The most significant two hostname elements (e.g.,

example.com) are looked for in another hash table; if an entry there

exists, then the next hostname element is added and another check

performed. This continues until an entry marked with an hasWildcard flag

is set, indicating that a matching Wildcard Alias exists.

If the matching entry is marked as having a directory extension, then a

check of the top-level path element from the URL is then made, similar to

the processing for a normal Extended Alias. If no such match is found,

then a match on the Wildcard Alias is only declared if a Simple Wildcard

Alias is defined.

Request-Response Processing

[00229] FIG . 13 showed the logical structure of a cache and its various

components. The processing performed by some or all of these components may be

performed by sequencers. A sequencer uses a sequence control object which is made

up of an ordered list of handlers. In a presently preferred implementation, a sequencer

is an Executive task (preferably a channel), and the handlers associated with a

sequencer (task) are implemented by events. It is necessary for the task to be an

Executive channel so that it can use the submit (potentially asynchronous) model.

Request-Response Processing Flow

[00230] Request-response processing flow is described now with reference to

FIGS . 20A-20C. For the purposes of this description, assume that the processing is

being handled by a cache server such as server 1102 (Fig. 11) in a CDN.

[00231] The cache server obtains data (an incoming connection) at a port and

parses sufficient incoming data (at 2002) to determine that the data correspond to an

appropriate type of request (e.g., HTTP). The incoming data will include sufficient

information to allow the cache to determine whether or not it can serve the requested

resource. E.g., in the case of an HTTP request, the incoming data will include HTTP

header information, including (a version of) the URL that was used to make the request.

[00232] In order to determine whether or not it can serve the request, the cache

server needs to compare information associated with the request with information in the

global configuration object (GCO). The cache server therefore needs to determine

whether it has a valid GCO (at 2004). If necessary, the GCO is retrieved by the cache

from the control core (at 2006). If the current GCO is valid then it can be used,

otherwise the GCO must be validated or a new one obtained. It should be appreciated

that if the if the cache is unable to obtain a valid GCO after some predetermined number

of tries then it should not serve the requested content and should fail (and take itself out

of rotation for selection until it is able to retrieve a valid GCO).

[00233] In a current implementation the GCO acts as a "white list" carrying valid

protocols, hostnames and path prefixes. In some cases, for certain reseller properties,

customer identification can also be performed based on the VIP on which the request

came in. Such a technique may also be used to provide a simple transparent proxy

implementation. The GCO maps the protocol, hostname and path prefix to a customer

identifier (Customer ID). The following table shows an example GCO (the numbers in

the left column are provided for purposes of description, and are not intended to be

limiting in any way.)

[00234] The string in a GCO is some or all of a URL. Wildcards may be used, but

are limited. Recall that (for the purposes of this description) a URL has the form:

«protocol»://«domain»/«path»

where «protocol» may be, e.g., "http", "https", "ftp", and so on; «domain> is a domain

name and path specifies a location. A formal URL description is given in RFC 1738,

Uniform Resource Locators (URL), by T. Berners-Lee et al., URIs are described in

Network Working Group RFC 2396, "Uniform Resource Identifiers (URI): Generic

Syntax," by T. Berners-Lee et al., August, 1998, the entire contents of each of which are

fully incorporated herein for all purposes.

[00235] The "protocol" may be replaced with a label for the listener the on which

the request came in. The reason is that a given customer may have a dedicated SSL

listener which presents their server certificate, so the cache will only want to satisfy

requests for that particular customer on that listener. In that case, the GCO may have,

e.g., "https-CUST" (e.g., if CUST is a customer with a customer SSL VIP) as the

"protocol."

[00236] In the GCO, the protocol may be replaced by an "* " (a wildcard

character), indicating all supported protocols map to the same Customer ID (see, e.g.

no. 13 in the table above). A wildcard character (e.g., "* "). may also be used as first

component (only) of hostname (e.g., nos. 3 , 4 , 5). Thus, "http://a1 .customer3.com" and

"http://a2.customer3.com" will both match entry number 3 in the table above. In order to

simplify the rules for resolving ambiguities, in some implementations wildcards may not

be used anywhere else.

[00237] Having completed the raw parse (at 2002), the cache knows the URL that

was used to make the request.

[00238] Once the cache has a valid GCO it tries to find a match for the input URL

in the GCO (at 2008). Preferably a "Best match wins" strategy is used. The hostname is

checked first, and an exact match wins, otherwise, a wildcard match is used with

greatest number of literal matches wins. For example, for customer3.com: the string

"special.images.customer3.com" maps to 3.2 (more literal matches than 3.3);

images.customer3.com maps to 3.4 (exact match). Next the port and protocol are

looked up, then, longest path prefix wins.

[00239] The flow chart in FIGS 20A-20C shows a potential loop from the GCO-

Exception hook if no response is generated. To prevent a loop from occurring the

system may only try the GCO lookup a limited number of times, e.g., up to two times.

The point of the GCO-Exception hook is to allow inspection/correction of the request

such that it can be found in the GCO. However, the system preferably only gets one

shot at correction.

[00240] Each customer may have corresponding scripts (sequences) that are to

be used to process that customer's requests. These Customer Configuration Scripts

(CCSs) are associated with the customer ids, and, if the request (the URL) relates to a

valid customer (at 1610) (based on the lookup in the GCO), then processing continues to

determine whether there are CCS (Customer Configuration Scripts) corresponding to

that customer. The CCS is checked for validity and a new CCS is fetched (from the

control core) if needed. As noted previously, the CCS is used to assemble sequences,

which are then cached and used until they become invalid (due, e.g., to a new CCS

being retrieved). It should be appreciated that scripts and sequences are not the same

thing, although as mentioned previously, a particular handler may invoke a script to

perform its function.

[00241] In presently preferred implementation the CCS is a Lua script retrieved

from the Control Core. The name of the script may be based on the customer's ID, e.g.,

for Customer ID 4.2 the script may be obtained at:

https://core.fp.net/ccs/ccs-4.2.luac

[00242] The script sets up customer-specific subsequences at various hook points

in the main processing sequence. Results of setup are preferably cached, and the CCS

is not run on every request. It is re-run if the script is reloaded or if conditions change.

For example, if results of script are cached persistently, then agent revision could

change. The compiled script is an object consumed by the caches, but the script itself is

generated from customer configuration description in a database.

[00243] Once the CCS is configured (loaded and validated), processing continues

with a hook (denoted "cli-req" - client request) to handle any corresponding custom

processing. That is, "cli-req" is a hook point where a subsequence of customer-specific

handlers (which may include a script) is inserted. As an example, suppose that a certain

customer requires:

■ Set www.customer1.com as canonical hostname

■ Strip sessionid parameter from all query strings

[00244] These actions may be taken in cli-req (client request) hook, for which

exemplary CCS source would be:

hook["cli-req"].add("set-host('www.customer1.com')")

hook["cli-req"].add("strip-query('sessionid')")

where both set-host and strip-query are simple one-shot handlers, inserted into a larger

sequence.

[00245] As another example, suppose the customer has the same client-side

requirements as above, but also wants to set the fill target to be origin.customer1.com

[00246] The corresponding CCS source would be:

hook["cli-req"].add("set-host('www.customer1.com')")

hook["cli-req"].add("strip-query('sessionid')")

hook["fill-req"].add("set-target('origin.customer1 .com')")

where set-host, strip-query, and set-target are simple one-shot handlers, inserted into a

larger sequence.

[00247] This CCS adds an action to the fill-req (fill request) hook.

[00248] As another example of a configuration script, suppose that a customer

requires proxy authentication using auth.customer1 .com for remote authentication.

The customer's CCS would include:

[00249] hook["cli-req"].add("proxy-auth('auth.customer1.com')")

[00250] The proxy-auth handler launches a sequence of its own to perform the

actual authentication request and waits for the response. This is an example of a

blocking handler which launches a helper request. Based on the response to the

authentication request, the proxy-auth handler may generate a 401 response

immediately or allow processing to continue.

[00251] Another way to handle this with CCS (if a native proxy-auth handler is

not always available) may be:

if handlers["proxy-auth"] == nil then

hook["cli-req"].add(

"lua-txn('proxy-auth.luac', 'auth.customerl .com')")

else

hook["cli-req"].add(

"proxy-auth('auth.customerl.com')")

end

[00252] This logic is part of CCS builder, not the configuration writer. A single

network-wide CCS can make these decisions based on local environment. CCS can

use arbitrarily complex logic to assemble the building blocks for the customer, including

making additional requests, etc. "Native" handlers could also be built-in scripts behind

the scenes, but preferably native handlers are expected to be efficient C code. It should

be appreciated that the CCS is a per-customer object. It should also be appreciated that

a human configuration writer does not need to deal with this detail; they just need to

know that they want authentication.

[00253] In addition, it should be appreciated that the CCS is not necessarily run

on every request. Rather, the CCS is used to configure the agent to handle a given

customer's requests by setting up the appropriate handlers at the various hook points.

Those handlers themselves may invoke a script or scripts, but they do not have to and it

is expected that a typical customer's requests will be handled without using scripts (e .g.,

Lua) at all in the main request processing path. The fact that the CCS is a script rather

than a simple list of handlers to install at hook points means it can be flexible in

inspecting its surroundings to determine the proper handlers for the environment

(software revision, region, etc.) in which it is running.

[00254] As can be seen from the flow diagram in FIGS. 20A-20C, hooks are

available at numerous points in the processing sequence. In a present implementation

there are hooks available for, amongst other things:

• client requests

• cache fills

• GCO exceptions

• cache misses

• fill responses

• fill pump

• client responses

• client pump

[00255] Those of skill in the art will realize and understand, upon reading this

description , that different and/or additional hooks may be available and used in a

particular implementation .

[00256] As noted earlier, default processing is available, and the cache will

service requests without any customer-specific sequences, provided the customer is

valid (e .g., found in the GCO) and requires no customer-specific processing .

[00257] As the various elements of the CDN are themselves potential clients (and

sources of resources) , the CDN may provide a CCS for CDN resources. From an

implementation perspective, the CDN may be treated as a customer, with entries in the

GCO and with its own CCS.

EXAMPLE

[00258] FIG . 2 1A depicts an exemplary CDN, including multiple caches

(corresponding to the caches 102 in FIG . 1) , forming a cache cloud, and associated

components (collectively 116). Each cache (e .g., a cache cluster site) is depicted by a

shaded circle in the drawing in FIG . 2 1A . Other components of the CDN system /

framework are shown , including core control mechanisms (denoted by pentagon shapes

in the drawing , corresponding , collectively, to control core 108 in FIG . 1) , collector

mechanisms (denoted by triangle shapes in the drawing and corresponding to collectors

106 in FIG . 1) , and origin servers / server sites (denoted by black circles in the drawing).

While the various components are shown in FIG . 2 1A , by way of example, overlaying

maps of the United States and Europe, those of skill in the art will realize and

understand, upon reading this description, that these overlays are merely exemplary and

are not intended to limit the actual locations of components or the number of

components.

[00259] With reference to FIG . 2 1B (and again to FIG . 2 1A), the caches (which

correspond, e.g., to the caches 102 in FIG . 1) correspond to locations in the CDN 100

from which client 110 can obtain resources that the CDN is providing (e.g., serving) on

behalf of content providers (such as content provider 112). The origin servers / server

sites correspond to locations from which the CDN cache servers / server sites can obtain

content provider content. The origin servers / server sites may be part of the CDN (e.g.,

if content provider content is preloaded into the CDN by content providers), or they may

be operated by the content providers independently of the CDN.

[00260] The collector mechanisms (denoted with triangles in the drawing and

corresponding to the collectors 106 in FIG . 1) are distributed around the system and

collect information regarding resources delivered on behalf of content providers (e.g.,

logs and performance data) from the caches. The collector mechanisms may provide

the collected information (in a raw or processed form) to content providers regarding

resources delivered on their behalf. Information provided to content providers may be

provided through a separate administrative entity that collects and maintains data

collected by the collector mechanisms.

[00261] FIG . 2 1C shows an exemplary logical organization of a portion of CDN

caches shown in FIGS . 2 1A and 2 1B . As shown in FIG . 2 1C , the CDN caches may be

arranged in one or more tiers (denoted in the drawing as "Edge Tier", "Cluster Tier",

"Rack Tier", and "Region Tier"). These tiers correspond to the "Edge Tier," "Parent Tier

(tier 2)", "Tier 3," and so on in FIG. 8 . The caches in the so-called "Edge Tier" are

preferably "closest" to clients (by some measure(s) of network distance), and so

resources served to clients from caches in the edge tier will likely provide the most

efficient delivery of those resources to those clients. A particular CDN may have only

one tier. From the point of view of caches in any tier, the caches in the next inner tier

are considered their parent caches. So, e.g., in the example in FIG . 2 1C , the caches in

the cluster tier are parent caches to the caches in the edge tier. Similarly, the caches in

the region tier are parent caches to the caches in the rack tier. In general, if there are n

tiers denoted to T„, with T being the outermost or edge tier, the caches in tier T, are

parents of the caches in tier T +i . Caches in the same tier are referred to as peer

caches.

[00262] In the example in FIG . 2 1C , the tiers are as follows:

[00263] Organization of the caches into tiers may correspond to physical aspects

of the caches, including , e .g., their relative locations, how they are connected to the

network and to other networks, their speeds, capacities, types, etc.

[00264] The caches may also be organized into one or more regions (denoted

"Region 1" , "Region 2," etc. in the drawing). The regions in FIG. 2 1C correspond to the

groups in FIG. 9 . Regional/group organization may also be made based on physical

aspects of the caches (e .g., the geographical locations), but it may be made for other

organizational reasons (e .g., to implement policies). While six exemplary and distinct

regions / groups are shown in the drawing , those of skill in the art will realize and

understand, upon reading this description, that any number of regions / groups may be

used, including overlapping regions. Those of skill in the art will also realize and

understand, upon reading this description, that regions may be of different sizes and that

some regions may not include caches in all tiers.

[00265] For example, the caches in a particular country may be treated as being

in a region in order to implement content delivery policies for that country. Those caches

may also be treated as being in one or more regions in order to implement content

delivery policies on behalf of content providers. These regions (country regions and

content provider regions) may overlap.

[00266] FIG. 2 1 D shows various components of the CDN system of FIG. 2 1A

operating in their various roles. FIG. 2 1D includes the rendezvous mechanisms (denoted

using stars in the drawing). As noted earlier, the presently preferred rendezvous

mechanism is implemented using the DNS system , and preferably acts to select or

identify a "best" or "optimal" cluster from which to serve a given client. Preferably "best"

cache selection happens at DNS lookup time. FIG. 2 1 D shows three typical operations

occurring in the CDN. On the left side of the drawing (and shown in greater detail in FIG.

2 1 E) , the control core cluster performs distribution of control data to various cache

clusters (preferably in response to an hierarchical pull of the data from the cache

clusters). On the top right of the drawing(and shown in greater detail in FIG. 2 1 F), cache

clusters are performing content delivery. On the bottom of the drawing (and shown in

greater detail in FIG. 2 1G), the collector mechanism is collecting information from cache

clusters.

[00267] FIG. 2 1 H shows the hierarchical operation of caches (A00, A02, AOS) in

the edge tier, pulling resources from the origin servers and control / traffic data from the

control core via caches in the CDN hierarchy. Similarly, the collectors pull traffic

(essentially in the other direction) from the edge caches, via the CDN hierarchy.

[00268] FIG. 10 showed the general process of content delivery to clients outside

the CDN. FIG. 22 shows the same process within the CDN. As can be seen, and as

was noted above with respect to FIG. 10 , the processing of resource requests is the

same inside and outside the CDN. A client 221 0 (which could be any CDN component,

including a cache, a collector, the control core, etc.) wants an object from a source

(which could also be any CDN component, including a cache, a collector, the control

core, etc.). The client request is directed to a location in the CDN that should have that

resource. That location could also be any CDN component, including a cache, a

collector, the control core, etc. If that location does not have the requested resource, it

gets a copy from the co-server for that resource (i.e., from the authoritative source for

that resource).

[00269] While the client 221 0 and the co-server 221 2 are shown outside the box

labeled CDN 100, in this example they are within that box (they are shown outside to aid

in the description).

COMPUTING

[00270] The operations and acts shown and described above are implemented, at

least in part, by software running on one or more computers of CDN 100.

[00271] One of ordinary skill in the art will readily appreciate and understand,

upon reading this description, that the various processes described herein may be

implemented by, e.g., appropriately programmed general purpose computers, special

purpose computers and computing devices. One or more such computers or computing

devices may be referred to as a computer system (as noted above, FIG. 23 illustrates a

typical computer).

[00272] A computer 2302 includes one or more processors 2306, memory 2308,

storage (e.g., disk storage) 231 0 connected via bus 231 6 or the like. The computer

2302 may also include peripheral devices 231 4 such as a keyboard, display monitor,

printer and the like. The computer 2302 can connect to a network or other computers or

devices via network interface(s) 231 2 .

[00273] As used herein , a "processor" means one or more microprocessors,

central processing units (CPUs), computing devices, microcontrollers, digital signal

processors, or like devices or any combination thereof, regardless of their architecture.

An apparatus that performs a process can include, e.g., a processor and those devices

such as input devices and output devices that are appropriate to perform the process.

[00274] The various programs described herein will typically reside as programs

2320 in the memory/memories 2308 of one or more computers.

[00275] Programs that implement such methods (as well as other types of data)

may be stored and transmitted using a variety of media (e .g., computer readable media)

in a number of manners. Hard-wired circuitry or custom hardware may be used in place

of, or in combination with , some or all of the software instructions that can implement the

processes of various embodiments. Thus, various combinations of hardware and

software may be used instead of software only.

[00276] As used herein , the term "computer-readable medium" refers to any

medium, a plurality of the same, or a combination of different media, which participate in

providing data (e.g., instructions, data structures) which may be read by a computer, a

processor or a like device. Such a medium may take many forms, including but not

limited to, non-volatile media, volatile media, and transmission media. Non-volatile

media include, for example, optical or magnetic disks and other persistent memory.

Volatile media include dynamic random access memory 2308, which typically constitutes

the main memory of the computer. Transmission media include coaxial cables, copper

wire and fiber optics, including the wires that comprise a system bus coupled to the

processor. Transmission media may include or convey acoustic waves, light waves and

electromagnetic emissions, such as those generated during radio frequency (RF) and

infrared (IR) data communications. Common forms of computer-readable media include,

for example, a disk, magnetic tape, any other magnetic medium , a CD-ROM, DVD, any

other optical medium, any other physical medium with patterns of holes, a RAM, a

PROM, an EPROM, a FLASH-EEPROM, any other memory chip or cartridge, a carrier

wave as described hereinafter, or any other medium from which a computer can read.

[00277] Various forms of computer readable media may be involved in carrying

data (e .g. sequences of instructions) to a processor. For example, data may be (i)

delivered from RAM to a processor; (ii) carried over a wireless transmission medium ; (iii)

formatted and/or transmitted according to numerous formats, standards or protocols;

and/or (iv) encrypted in any of a variety of ways well known in the art.

[00278] A computer-readable medium can store (in any appropriate format) those

program elements which are appropriate to perform the method.

[00279] One of ordinary skill in the art will readily appreciate and understand,

upon reading this description, that embodiments of an apparatus may include a

computer/computing device operable to perform some (but not necessarily all) of the

described process.

[00280] Embodiments of a computer-readable medium storing a program or data

structure include a computer-readable medium storing a program that, when executed,

can cause a processor to perform some (but not necessarily all) of the described

process.

[00281] Where a process is described herein, those of skill in the art will

appreciate that the process may operate without any user intervention. In another

embodiment, the process includes some human intervention (e.g., a step is performed

by or with the assistance of a human).

The Executive

[00282] It is anticipated that in a CDN a cache machine with a 10 Gb/sec link,

serving about 1 Mb/second per client, should be able to serve on the order of 10,000

concurrent clients, with about ten (10) activities per client. This requires on the order of

100,000 concurrent activities. The inventors realized that in order for a cache machine

(and thus a CDN) to operate efficiently and to take advantage of new multi-core

computer architectures, the cache machine would have to implement some efficient form

of concurrency.

[00283] More specifically, and based on their experience with CDNs, the inventors

realized and understood that network applications (e.g., serving and distributing content

in a CDN) typically involved long wait periods. They therefore realized that it would be

useful to perform many small jobs in order to be efficient (i.e., in the case of a CDN

cache, it would be beneficial to do tens or even hundreds of thousands of things

concurrently). They also realized that it would be useful and beneficial to keep all

processors (CPUs) active simultaneously. The inventors realized that the handling of an

individual request in this type of application generally consists of small amounts of

computation separated by relatively long wait times (long here being relative to the

speed of modern CPUs). Therefore, while requests are in the waiting stage, other

requests can be in the compute stage, thereby keeping the CPUs busy. However, the

inventors also realized, based on their experience with CDNs, that not all requests

required long wait times, and that a concurrency scheme that assumed that there would

always be long wait times would disadvantage those requests where there were no long

wait times.

[00284] The inventors also realized that a concurrency scheme used in caches

could take advantage of the type of work that caches were expected to perform in order

to improve performance. For example, most network applications have similar structure

and most network operations take on the order of milliseconds. A cache could perform

useful operations while waiting for relatively slower network operations or disk

operations to complete. (Disk operations sometimes take longer than milliseconds.) In

addition, networking (and the timing in large networks such as the Internet) is inherently

and largely unpredictable and unreliable. To deal with these aspects, a preferred

concurrency scheme should support asynchrony (to deal with unpredictable timing) and

organized exception handling (to deal with lots of potential failure modes and unreliability

of networks).

[00285] The inventors considered approaches such as one thread per client to be

too limiting for challenges of real-world caches in operational CDNs. In a thread-per-

client model each client consumes an inordinate amount of system resources while

spending most of their time waiting (for network or disk I/O). A thread-per-client

approach has other drawbacks. E.g., pthreads require a minimum 16 KB stack per

thread, implying 1.6 GB used for an anticipated 10,000 concurrent clients.

[00286] Those of skill in the art will realize and understand, upon reading this

description, that these other approaches to concurrency may work for smaller caches or

CDNs, but they do not scale well. Thus, while the disclosed executive approach is

preferred, other approaches are contemplated and may be used.

[00287] The presently preferred version of the Executive assumes a 64-bit CPU

with 64-byte cache lines. Basic data structures are all cache-line sized and aligned.

While this approach improves efficiency with respect to retrieving data, moving it around,

and storing it, it may force some overloading of data fields within data structures. Those

of skill in the art will realize and understand, upon reading this description, that other

implementations may be used.

Tasks, events, and vcores

[00288] The basic objects in the Executive are tasks, events, and vcores (Virtual

CPU cores). FIGS . 24A-24B show relationships between the Executive's tasks, events

and vcores.

[00289] A virtual CPU core or vcore may be considered, in some aspects, to be

like a pthreadw ' some data. There may be any number of vcores, although the

Executive is expected to be most efficient when there is one vcore per physical core,

with each vcore bound to or associated with a fixed physical core.

[00290] In order to support synchronization, each vcore is assigned a vcore

identifier (vid), and each task has a vid field that specifies the vcore to which that task

belongs.

[00291] Each task has a corresponding input event list. For example, as shown in

FIG . 24A, the task block 7 has a list of three events (denoted E 1 , E2, E3 in the drawing).

[00292] Each vcore has a prioritized list of tasks called its run queue. E.g., FIG.

24B shows vcore no. 2 with a run queue comprising a number of tasks (denoted T 1, T2,

T3), each with a corresponding event list (E1 1 for task T 1 , E21 and E22 for task T2, and

E31 for task T3). One task (T4) is currently running, and a number of tasks (T5 ... T6)

are waiting. The task block in FIG . 24A is shown with VID = 2 (i.e., that task is

associated with vcore no. 2).

[00293] An Executive task is described by a function pointer (/), a data pointer (d),

and some other (e.g., task accounting) information. A task may be run by invoking the

function on the data (e.g., f(d)). Each task has a task identifier or handle (tid). With

reference to the exemplary task structure in FIG . 24C, preferably a task is packed into a

128-byte structure, and is identified by a 4-byte integer task handle ("tid' or task id).

[00294] Channels are a special type of Executive task. A channel task contains

pointer to "Channel Information Block" (chib). Each chib is channel-type-specific, and

contains methods for:

• dropoff (asynchronous), submission (maybe synchronous) and return

(deliver) of events (where the events being returned are being

returned to a channel from another channel)

• timeout

• close, destroy

• migrating

• create entry point

• and various others.

[00295] Channels have flags set and wake/chib points to a chib. User tasks have

no flags, wake/chib points to wakeup predicate (this is an example of the field

overloading referred to earlier). Prio determines where a task gets placed on the run

queue.

[00296] The following channel types are presently supported:

• Network
o serv passive listener
o conn active connection
o udp datagram
o resolv DNS resolver

• Async I/O
o aios aio slave
o aio aio master

• HTTP
o fpnsh connHTTP parser and formatter

• Application Specific, e.g., for cache:
o the sequencer channel (manages running of handlers)
o various Lua-related channels (handle dealing with Lua engines and

running them)

[00297] In some embodiments, the Async 10 channels may be performed by the

10 library. A aios and aio may not be used, and a separate non-Executive library

(libfpio) will handle asynchronous I/O.

[00298] As used herein "cid" refers to a "channel id" and "tid" means a "task id".

In practice, the "cid" field may be used as the "to" address and the "tid" field is used as

the from address of an event. There are cases of both task-to-task and channel-to-

channel communication where a "cid" may actually be a task id, and vice versa.

[00299] The task structure is preferably cache aligned. In the drawing, the

function pointer is denoted func. A task structure has an additional 64 bytes for use as

scratch space. There are 48+64 bytes free for task use, although a given task is always

free to allocate more memory for itself and keep track of it by placing a pointer in the

task structure.

[00300] Every task contains a reference counter (refs), and a task dies if it is

dispatched with its reference counter set to zero (refs == 0). A reference (also known as

"cid" or channel id, also known as "tid") is a copy of the integer id of a task and is created

when the task is created, or when a task itself calls ns_tid_alloc(). A reference is

destroyed when returned to task during close or discard or the task itself calls

ns_tid_free().

[00301] Reference are capabilities that should not be duplicated or destroyed and

should be carefully tracked. They are used in tid and cid fields of events.

[00302] The Executive uses counting references to prevent stale references (they

are an Executive analog of locks).

[00303] An event is a message block (preferably 128 bytes, including 64 bytes for

scratch space) and contains two task references (two tids), one for the initiator task (tid)

and the other for the target task (cid). The 64-byte scratch space may be divided into

internal and external scratch space. Events may be linked.

[00304] In operation, each vcore thread runs an endless loop and:

• retrieves (e.g., pops) the highest priority task from its run queue;

• calls t->f(t);

• calls ns_dispatch(t) to requeue, destroy or abandon the task t .

[00305] The following two rules should ensure memory consistency:

• Access rule: If another task has the same vid as you, you can safely

access its data.

• Migration rule: Only vcore n can change a vid value to or from n.

[00306] The Executive is started on a host by creating an appropriate number of

vcores for that host and then starting the first task. E.g., to start the Executive with n

vcores, call:

ns_begin(first_task_func, n);

The first task creates and launches more tasks and channels, e.g., as follows:

first_task_func()

{
t = ns_task();

nsjaunch(t);
cidl = ns_chan(foospec, 0);

}

[00307] Tasks and channels create events and communicate with each other:

e = ns_event()
e->cid = cidl
ns_dropoff(e)

[00308] Tasks, channels and events are created and die as necessary.

ns_task(); ns_chan(); ns_event(); return ns_die();

[00309] In a preferred implementation, the Executive will exit when the last task

exits.

[00310] There are two styles of communication within the Executive, namely

guaranteed asynchronous communication and potentially asynchronous communication.

[00311] Guaranteed asynchronous communication puts an event on the input

queue of a destination task, and wakes the destination task, i.e., puts it on the run

queue. The destination task runs (later) and an event arrives back on the input queue of

the source task. It should be appreciated that the source task may choose to send the

event "anonymously" (that is, without a tid), in which case no response will return.

Another option is for the source task to provide the /' of some third task to which the

event will be delivered once the destination task is done with it. This type of

communication is lightweight and non-blocking. E.g., ns_event_dropoff(e) uses e->cid as

destination; ns_event_deliver(e) uses e->tid as destination. Basically, ns_event_dropoff

is used by tasks to drop an event off to a channel, and ns_event_deliver is used by tasks

to return events to whoever sent them.

[00312] Potentially asynchronous communication is invoked, e.g., by

e = submit(e).

[00313] This approach works as follows:

returning null pointer in step S4, and delivering event later.

[00315] Communication reverts to asynchronous if, e.g., the destination task is

not on the same vcore, or there is too much work to do in one run, or the task needs to

wait for internal asynchronous operations.

[00316] The destination does not know/care if it was called via dropoffQ (i.e., as

Guaranteed asynchronous) or submitQ (i.e., as Potentially asynchronous). Events

always arrive on the input queue, which is accessed via ns_next_event(). Events are

returned by channels using ns_event_deliver(). If the destination is a channel, it can

know whether an event was dropped off or submitted, since these are separate chib

entry points which can be overridden.

[00317] Events can be transferred, e.g., using the following code:

ns_event_t *e = ns_event();
e->tid = ns_tid();
e->cid = some_cid;
some_cid = 0 ;

e->opcode = Executive_OP_READ_BUFFER;
e->timeout = 5.0;
e->ns_buf_arg = malloc(1024);
e->ns_buf_count = 1024;
e = ns_submit(e);

[00318] This example demonstrates care about reference counting. Since

some_cid represents a reference and that reference has been transferred to e->cid, the

value of some_cid gets zeroed.

[00319] This event transfer may be wrapped in a function, e.g., as:

ns_event_t *e = ns_event();
e->tid = ns_tid();
e->cid = some_cid;
e = ns_submit_1k_read(e, 1024);

Event Driven programs

[00320] The following code shows a basic "loop-switch" skeleton for an Executive

task function presented in a ' like language:

task func(t)

{
while((e = ns_next_event())) {

switch(event_type(e)) {

case TYPEO:

break;

case TYPEn:

break;

}
ns_return(e);

}
return ns_wait();

}

[00321] The following example code shows a basic "loop-switch" skeleton for an

Executive task function with submitQ:

task func(t)

{
e = 0 ;

while(e | | (e = ns_next_event())) {
switch(event_type(e)) {

case TYPEO:

e = submit(e);

continue;

case TYPEn:

break;

}
ns_return(e);

}
return ns_wait();

}

[00322] FIGS . 25A-25B compare the Executive stack of the Executive submit

operation to that for C procedure calls. The Executive Submit operation (e = submit(e))

is analogous to a C procedure call, with the important difference that there is the option

to go asynchronous when an event is submitted. The Executive's task blocks are

analogous to C stack frames. The Executive's event blocks are analogous to C's arg

and return address areas; and the Executive's tid & tag are analogous to C's return

address.

[00323] However, in the Executive multiple calls can be active simultaneously and

frames can live on after the call. This allows writing a potentially asynchronous hook,

e.g.,

e = submit_op_foo(e, args);

[00324] Channels may be created using a parameter block called a spec, e.g.:

ns_foo_t *spec = ns_foo(); /* create spec for foo channel */

spec->param1 = vail ; /* set parameter */
spec->param2 = val2; /* set parameter */
cid = ns_chan(spec, 5); /* create foo chan, return 5 refs*/
ns_foo_(spec); /* destroy spec */

[00325] A channel may be closed by returning the refs, e.g.:

ns_close_cid(cid, 4);/* Explicit close, 1 + 4 refs */
ns_discard_cid(cid, 1);/* Return 1 + 1 refs */
ns_discard_cid(cid, 2);/* Return 1 +2 refs, implicit close */

[00326] A channel will not be destroyed until all refs have been returned.

[00327] A global exchange (see FIG . 26) may be used to transfer pointer

ownership between vcores. Typed pointers are packed into cache lines which are used

to transfer the pointers efficiently, via mutex-protected queues. While various

techniques are used to make the global exchange efficient, e.g., amortization of lock

cost by transferring multiple messages with a single lock transaction, lock-free inspection

of a queue to see if there may be data (only need the lock if data is seen), etc, it should

be appreciated that a "direct exchange" is preferable, and that the queues involved may

be created using lock-free techniques.

[00328] The following example shows synchronization in task migration. In this

example, task wants to migrate from vid = 2 to vid = 3 .

• Initially t->vid = 2 .

• t tunc sets t->vid = 1003 and returns Executive_RUN.

• ns-dispatch() notices t->vid != 2 and puts (t, RUN, 3) on global exchange.

• Global exchange transfers the triple to vcore 3 .

• Vcore 3 sets \->vid = 3 and adds task to its run queue.

[00329] Note that t->vid is set to 1003.

[00330] The Executive provides a multi-core solution in which each processor

(CPU) has a queue of tasks which can run on that processor (in a vcore - virtual core on

that processor). Processes can check if other processes are running on the same core

and then determine/share information with those processes.

[00331] In prior concurrency/parallel processing systems, tasks or processes get

spawned off and return when they are complete. An important aspect of cache

processing, especially in the context of a CDN, is that some tasks may be able to

complete right away. In those cases there is no reason to delay the return. In other

words, if we know that a task might complete its processing right away (i.e., relatively

quickly), we can have that task provides its result without delay.

[00332] One example of the use of this technique is when a Lua script is

executed: in many cases, the script may perform such a small operation that it can

complete essentially right away, which saves the overhead of needing to schedule it as a

task unless that becomes necessary. Another example of this technique is in the

sequencer channel: If a series of handlers runs quickly, then calling the sequencer is

essentially a function call. Only if a handler needs to wait for data or if too much

computation needs to get done will the sequencer become a scheduled task.

[00333] This may be achieved by the following:

if(event = submit(event)) == null)
return ns_wait() ;
// if non-null then done, otherwise wait.

[00334] This approach (do it right away if you can, otherwise give me the answer

later) provides a potentially asynchronous solution to cache specific problems.

[00335] Additionally, programming in a "potentially asynchronous" style means

that if it is later determined that some feature or aspect (which was synchronous

previously) needs to go asynchronous, this can be done without having to rewrite other

code. Those of skill in the art will realize and understand, upon reading this description,

that there are costs/risks to this approach, e.g., if only the synchronous path is taken in a

given situation, the asynchronous path may be untested or the performance of the

application may degrade if a previously synchronous operation becomes asynchronous.

However, these risks can be mitigated, e.g., by forcing everything to be asynchronous

for testing purposes.

[00336] In some preferred embodiments, the Executive is implemented using a

system sometimes referred to as Shell or NetShell. It should be appreciated that the

Executive and NetShell described herein are unrelated to any products or tools of any

other entity. In particular, as used herein NetShell does not refer to Microsoft

Corporation's scriptable command-line tool, nor does executive or NetShell refer to a

Unix shell-like user interface.

[00337] While the invention has been described in connection with what is

presently considered to be the most practical and preferred embodiments, it is to be

understood that the invention is not to be limited to the disclosed embodiment, but on the

contrary, is intended to cover various modifications and equivalent arrangements

included within the spirit and scope of the appended claims.

WHAT IS CLAIMED :

1. A content delivery network (CDN) comprising:

(a) a control core; and

(b) a plurality of cache servers, each particular cache server of said plurality

of cache servers being constructed and adapted to:

(b)(1) upon joining the CDN,

(b)(1)(1) obtain global configuration data from the control core; and

(b)(2) having joined the CDN,

(b)(2)(1) obtain updated global configuration data, if needed; and

(b)(2)(2) obtain customer configuration information associated with at

least one customer of the CDN;

(b)(2)(3) serve a particular resource associated with a particular

customer of the CDN in accordance with (i) the global configuration data, and (ii)

customer configuration information obtained in (b)(2)(2) and associated with the

particular customer.

2 . The CDN of claim 1 wherein each particular cache server of said plurality

of cache servers is constructed and adapted to, upon joining the CDN,

(b)(1)(2) obtain data from one or more other locations in the CDN.

3 . The CDN of claim 1 wherein processing by a cache server in (b)(2)(2) to

obtain customer configuration information associated with a specific customer occurs

upon receipt of a request for a resource associated with the specific customer.

4 . The CDN of claim 1 wherein processing by a cache server in (b)(2)(2) to

obtain customer configuration information associated with a specific customer occurs

prior to receipt of a request for a resource associated with the specific customer.

5 . The CDN of claim 1 wherein customer configuration information

associated with the particular customer comprises one or more scripts to be used by the

particular cache server to process requests for resources associated with the particular

customer.

6 . The CDN of claim 1 wherein the customer configuration information

comprises at least one CDN resource.

7 . The CDN of claim 1 wherein the customer configuration information

associated with the particular customer comprises at least one customer configuration

script (CCS) associated with the particular customer.

8 . The CDN of claim 1 wherein the customer configuration information

associated with the particular customer specifies customer-specific processing

requirements for resources served on behalf of that customer.

9 . The CDN of claim 1 wherein the global configuration data comprises at

least one CDN resource.

10 . The CDN of claim 9 wherein the global configuration data comprises

global configuration object (GCO).

11. The CDN of claim 2 wherein the one or more other locations in the CDN

comprise at least one location selected from: a cache server, a cache server site, a

region of cache servers, a cache cluster, and a cache cluster site.

12. The CDN of claim 11 wherein the one or more other locations in the CDN

comprise at least one peer location.

13. The CDN of claim 2 wherein the particular cache server determines said

one or more other locations using said information in said global configuration data.

14. The CDN of claim 1 wherein said particular cache server obtains said

updated global configuration data from one or more locations in the CDN.

15. The CDN of claim 14 wherein the one or more locations in the CDN

comprise one or more locations selected from: (i) the control core; and (ii) one or more

locations in selected from: a cache server, a cache server site, a region of cache

servers, a cache cluster, and a cache cluster site.

16. The CDN of claim 1 wherein the control core comprises a distributed

system consisting of a plurality of machines.

17 . The CDN of claim 16 wherein the control core uses a distributed

consensus algorithm to achieve consensus among the plurality of machines.

18. The CDN of claim 1 wherein each particular cache server of said plurality

of cache servers is further constructed and adapted to:

determine validity of a version of global configuration data stored on said

particular cache server, and wherein said particular cache server obtains updated global

configuration data in (b)(2)(1) when said particular cache server determines that said

version of said global configuration data stored on said particular cache server is invalid.

19. The CDN of claim 1 wherein each particular cache server of said plurality

of cache servers is further constructed and adapted to:

determine validity of a version of particular customer configuration information

associated with a particular customer and stored on said particular cache server, and

wherein said particular cache server obtains customer configuration information in

(b)(2)(2) when said particular cache server determines that said version of said particular

customer configuration information stored on said particular cache server is invalid.

20. The CDN of claim 19 wherein said particular cache server is constructed

and adapted to determine said validity of said version of particular customer

configuration information stored on said particular cache server in response to a request

to serve content associated with said particular customer.

2 1 . The CDN of claim 1 further comprising:

(c) at least one rendezvous mechanism.

22. The CDN of claim 1 further comprising:

(d) a collector system comprising one or more collector mechanisms, each of

said collector mechanisms being constructed and adapted to:

(d)(1) obtain information from at least one cache server.

23. The CDN of claim 22 wherein each particular cache server of said

plurality of cache servers is further constructed and adapted to:

(b)(3) generate information; and

(b)(4) provide at least some of said generated information to said collector

system.

24. The CDN of claim 2 1 wherein each particular cache server of said

plurality of cache servers provides at least some of said generated information in (b)(4)

by streaming said at least some of said generated information to one or more collector

mechanisms in said collector system.

25. The CDN of claim 1 wherein the CDN has customer configuration

information associated therewith, and wherein each particular cache server serves CDN

resources in accordance with the global configuration data and the customer

configuration information associated with the CDN.

26. The CDN of claim 1 wherein at least one cache server of said plurality of

cache servers comprises an executive system supporting concurrent processing of tasks

on said at least one cache server.

27. A computer-implemented method, operable in a content delivery network

(CDN) comprising: (a) a control core; and (b) a plurality of cache servers, the method

comprising, by hardware and software on a particular cache server of said plurality of

cache servers:

(A) obtaining global configuration data from the control core;

(B) selectively obtaining updated global configuration data; and

(C) obtaining customer configuration information associated with a particular

customer of the CDN;

(D) serving a particular resource associated with the particular customer in

accordance with (i) the global configuration data; and (ii) the customer configuration

information associated with the particular customer.

28. The method of claim 27 further comprising:

(A)(2) obtaining data from one or more other locations in the CDN.

29. The method of claim 27 wherein the obtaining of said customer

configuration information in (C) occurs upon receipt of a request of said particular cache

server for a resource associated with the particular customer.

30. The method of claim 27 wherein the obtaining of said customer

configuration information in (C) occurs prior to receipt of a request of said particular

cache server for a resource associated with the particular customer.

3 1 . The method of claim 27 wherein the customer configuration information

comprises one or more scripts to be used by the particular cache server to process

requests for resources associated with the particular customer.

32. The method of claim 27 wherein the customer configuration information

comprises at least one CDN resource.

33. The method of claim 27 wherein the customer configuration information

comprises at least one customer configuration script (CCS) associated with the

particular customer.

34. The method of claim 27 wherein the customer configuration information

associated with the particular customer specifies customer-specific processing for

resources served on behalf of that customer.

35. The method of claim 27 wherein the global configuration data comprises

at least one CDN resource.

36. The method of claim 35 wherein the global configuration data comprises

global configuration object (GCO).

37. The method of claim 28 wherein the one or more other locations in the

CDN comprise at least one location selected from: a cache server, a cache server site, a

region of cache servers, a cache cluster, and a cache cluster site.

38. The method of claim 37 wherein the one or more other locations in the

CDN comprise at least one peer location.

39. The method of claim 28 wherein the particular cache server determines

said one or more other locations using said information in said global configuration data.

40. The method of claim 27 wherein said particular cache server obtains said

updated global configuration data in (B) from one or more locations in the CDN.

4 1 . The method of claim 40 wherein the one or more locations in the CDN

comprise one or more locations selected from: (i) the control core; and (ii) one or more

locations in selected from: a cache server, a cache server site, a region of cache

servers, a cache cluster, and a cache cluster site.

42. The method of claim 27 wherein the control core comprises a distributed

system consisting of a plurality of machines.

43. The method of claim 42 wherein the control core uses a distributed

consensus algorithm to achieve needed consensus among the plurality of machines.

44. The method of claim 27 further comprising, by said particular cache

server:

(F) determining validity of a version of global configuration data stored on

said particular cache server, and wherein said particular cache server obtains updated

global configuration data in (B) when said particular cache server determines that said

version of said global configuration data stored on said particular cache server is invalid.

45. The method of claim 27 further comprising, by said particular cache

server:

(G) determining validity of a version of particular customer configuration

information associated with the particular customer and stored on said particular cache

server, and wherein said particular cache server obtains customer configuration

information in (C) when said particular cache server determines that said version of said

particular customer configuration information stored on said particular cache server is

invalid.

46. The method of claim 45 wherein said particular cache server determines

validity of said version of particular customer configuration information in (G) in response

to a request to serve content associated with said particular customer.

47. The method of claim 27 wherein the CDN further comprises: (d) a

collector system comprising one or more collector mechanisms, each of said collector

mechanisms being constructed and adapted to obtain information from at least one

cache server, the method further comprising, by said particular cache server:

(E) generating information; and

(F) providing at least some of said generated information to said collector

system.

48. The method of claim 47 wherein said providing in (F) comprises:

(F)(1) streaming said at least some of said generated information to one or

more collector mechanisms in said collector system.

49. The method of claim 27 further comprising, by said particular cache

server of said plurality of cache servers:

(E) obtaining second customer configuration information associated with a

second customer of the CDN, said second customer being distinct from said particular

customer; and

(F) serving a second particular resource associated with the second

customer in accordance with (i) the global configuration data, and (ii) the second

customer configuration information associated with the second customer.

50. The method of claim 27 wherein the CDN has customer configuration

information associated therewith, and wherein the particular cache server serves CDN

resources in accordance with the global configuration data and the customer

configuration information associated with the CDN.

INTERNATIONAL SEARCH REPORT International application No.

PCT/US 12/69712

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - G06F 15/1 67 (201 3.01)
USPC - 709/214

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC(8): G06F 15/167 (2013.01)
USPC: 709/21 4

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
IPC(8): G06F 15/167 (2013.01); USPC: 709/213, 214, 218, 249 (keyword limited; terms below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PatBase; Google Scholar; Google Patents; FreePatentsOnline. Search terms used: content-deliver CDN distribute-resources distribute-
content, core control-core central-server central-host server host, cache-server edge-server edge-cache join-CDN join-network join-
distribute join-deliver cache-join-network cache-join-distribute cache-join-deliver etc.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, o f the relevant passages Relevant to claim No.

US 2005/0010653 A1 (MCCANNE) 13 January 2005 (13.01.2005) entire document, especially 1 - 50
Abstract; para [0022], [0026], [0029], [0085], [0087], [0088], [0098], [0104], [0105], [0179],
[0182], [0183], [0193], [0195], [0197], [0224]

US 201 1/0099290 A1 (SWILDENS et al.) 28 April 201 1 (28.04.201 1) entire document, 1 - 50
especially Abstract; Fig. 9; para [001 1], [0048], [0091], [01 15]-[01 19], [0307], [0320], [0347],
[0357], [0383], [0458]-[0469]

US 2006/01 12176 A1 (LIU et al.) 25 May 2006 (25.05.2006) entire document, especially 10, 36
Abstract; para [0022], [0079]

US 2002/0174168 A1 (BEUKEMA et al.) 2 1 November 2002 (21 .1 1.2002) entire document, 17, 43
especially Abstract; para [001 1], [0022]

US 2010/0257258 A 1 (LIU et al.) 07 October 2010 (07.10.2010) entire document 1 - 50

US 2004/0162871 A 1 (PABLA et al.) 19 August 2004 (19.08.2004) entire document 1 - 50

US 2003/01401 11 A 1 (PACE et al.) 24 July 2003 (24.07.2003) entire document 1 - 50

US 2002/0184357 A 1 (TRAVERSAT e t al.) 05 December 2002 (05.12.2002) entire document 1 - 50

US 2002/0010798 A 1 (BEN-SHAUL et al.) 24 January 2002 (24.01 .2002), entire document 1 - 50

Further documents are listed in the continuation o f Box C . | |

Special categories of cited documents: " ' later document published after the international filing date orpriority
document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

earlier application or patent but published on or after the international "X document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
document which may throw doubts on priority c!aim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
document published prior to the international filing date but later than &" document member of the same patent family

Date of the actual completion o f the international search Date of mailing of the international search report

27 January 2013 (27.01.2013) 2 0 FEB 2013
Name and mailing address of the ISA/US Authorized officer:

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents Lee W. Young
P.O. Box 1450, Alexandria, Virginia 22313-1450

PCT Helpdesk: 5 - 72-4300
Facsimile No. 571-273-3201 PCTOSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US 12/69712

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, o f the relevant passages Relevant to claim No.

KOSTADINOVA."Peer-to-Peer Video Streaming" [online]. Dated 2008. [retrieved on 25 1 - 50
January 201 3 (25.01 .201 3)] Retrieved from the Internet <URL:
http «w.ee.kth.se/php/modules/publications/reports/2008/XR-EE-LCN_2008_004.pdf>,
especially section 5.4.1

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

	abstract
	description
	claims
	drawings
	wo-search-report

