(51) International Patent Classification:
A24C 5/34 (2006.01)

(21) International Application Number:
PCT/EP2016/053432

(22) International Filing Date:
18 February 2016 (18.02.2016)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
15001217.7 23 April 2015 (23.04.2015) EP

(71) Applicant: FONTEM HOLDINGS 1 B.V. [NL/NL]; Barbara Strozzilaan 101, 12th Floor, 1083 HN Amsterdam (NL).

(72) Inventors: BORKOVEC, Vaclav; c/o Reemtsma Cigarettenfabriken GmbH, Albert-Einstein-Ring 7, 22761 Hamburg (DE); GONZALES, Diego; c/o Jorge Gonzalez Gonzalez, Karl-Marx-Allee 57, 10243 Berlin (DE).

(74) Agent: GULDE & PARTNER PATENT- UND RECHTSANWALTSKANZLEI MBB; Wallstr. 58/59, 10179 Berlin (DE).

(54) Title: PROCESS OF TESTING AN ELECTRONIC SMOKING DEVICE

(57) Abstract: In a process of testing an electronic smoking device, in particular an electronic cigarette, an electronic smoking device (2) to be tested is mounted at an inlet port (12) of a smoking apparatus (10). The smoking apparatus (10) repeatedly exerts puffs at the electronic smoking device (2), wherein each puff is defined by a puff sequence comprising an inhalation period and an exhalation period. Optical properties of aerosol (22) deriving from the electronic smoking device (2) are measured in an optical measurement device (20). The actual mass of the electronic smoking device (2) is repeatedly determined, preferably during each puff, by means of an automatic transport and weighing system (30), wherein the electronic smoking device (2) is removed from the inlet port (12) after the inhalation period of a puff has ended, is transported to a precision balance (32), is weighed by means of the precision balance (32), is transported back to the inlet port (12), and is mounted back at the inlet port (12) before the inhalation period of the next puff starts.
The invention relates to a process of testing electronic smoking devices, in particular electronic cigarettes.

An electronic smoking device, such as an electronic cigarette, usually has a housing accommodating an electric power source (e.g., a battery or a rechargeable battery), an electrically powered atomizer adapted to atomize a liquid supplied from a reservoir in order to provide an aerosol exiting from the atomizer, and control electronics which controls the activation of the atomizer. The requirement to generate an aerosol is indicated or signalled to the control electronics by an aerosol initiation unit, which is typically designed as a puff detector which detects a user puffing on the device (e.g., by sensing an under-pressure or an air flow pattern through the device) or as a simple push button pressed by the user. When the requirement to generate a puff is signalled to the control electronics by the aerosol initiation unit, the atomizer is powered, which causes the creation of aerosol. This action of the atomizer is referred to "atomization" or "atomizing" and the related product is called "aerosol", irrespective of its composition, which might include gaseous and smoke constituents.

In such devices liquid to be atomized may be contained in a reservoir, which may be designed as a capsule containing the liquid. In some devices, the reservoir is included in a cartridge which also contains the atomizer. Such combination is sometimes called a "cartomizer".

The development of an electronic smoking device requires much testing. Conventional tobacco cigarettes can be tested by a smoking machine, which mimics users inhaling puffs and sucks
up the aerosol emerging from the cigarettes mounted at an entrance port of the machine. In principle, a smoking machine for testing conventional tobacco cigarettes could also be used in testing electronic smoking devices.

Weight loss testing is the current standard for a quick evaluation of the performance of an electronic cigarette regarding the quantity of aerosol produced or dosed to the consumer. Weight loss is not synonymous with aerosol density (vapour density) due to the possible distributions of particle sizes in the aerosol in the visible and non-visible range, but the weight loss occurring during the course of aerosol production can be used to distinguish between good and bad performance within the tolerances of a single product.

Currently, the weight loss due to the aerosol emerging from an electronic smoking device is measured largely manually, which is very time-consuming and labour-intensive. An operator is required to supervise a smoking machine smoking an electronic cigarette while recording the weight (mass) of the electronic cigarette, in the ideal case, after every puff. However, because of the high labour and rapid response required to deal with the settling time of a precise scale, it is virtually impossible to determine the weight after every puff and within a puff duration of 30 s, as stipulated by CORESTA guidelines. Instead of that, the electronic cigarette is usually weighed after a certain number of puffs, and the resulting weight loss is then divided by this number. Typically, blocks of 10, 25 or 50 puffs are used, depending on the capacity of the set-up and on what resolution the results are required to show.

By weighing in blocks, any puff-by-puff variation is not visible in the results, which means that uniformity of dose (aerosol-per-puff delivery) cannot be measured precisely. There is
also a lot of variation with human-operated procedures in general, which might impede the reproducibility of the results.

The object of the invention is an improvement in the process of testing electronic smoking devices, in particular electronic cigarettes, so that the weight loss of an electronic smoking device in the course of smoking can be monitored in an easy and precise way and can be evaluated with respect to other properties of the electronic smoking device.

This object is achieved by the process of testing an electronic smoking device according to claim 1. Advantageous versions of the invention follow from the dependent claims.

In the process of testing an electronic smoking device (in particular an electronic cigarette), an electronic smoking device to be tested is mounted at an inlet port of a smoking apparatus. The smoking apparatus repeatedly exerts puffs at the electronic smoking device, wherein each puff is defined by a puff sequence comprising an inhalation period and an exhalation period. In an optical measurement device, optical properties (i.e., at least one optical property) of aerosol deriving from the electronic smoking device are measured. The actual mass of the electronic smoking device is repeatedly determined by means of an automatic transport and weighing system, wherein the electronic smoking device is removed from the inlet port after the inhalation period of a puff has ended, is transported to a precision balance, is weighed by means of the precision balance, is transported back to the inlet port, and is mounted back at the inlet port before the inhalation period of the next puff starts.

The automatic transport and weighing system allows the quasi continuous monitoring of the mass of the electronic smoking device during the course of smoking. In particular, it is pos-
sible that the actual mass of the electronic smoking device is determined for each puff. The puff sequence, which usually consists of the inhalation period, a hold period, the exhalation period, and a pause, may have a total duration, for one puff, in the range of from 15 s to 60 s, preferably in the range of from 20 s to 40 s or of from 25 s to 35 s. This includes a duration of 30 s, as stipulated in CORESTA guidelines.

Within the period starting at the end of the inhalation period and ending at the end of the pause (or with the beginning of the inhalation period of the next puff), the automatic transport and weighing system is able to remove the electronic smoking device from the inlet port, transport it to the precision balance, weigh it, and bring it back and mount it at the inlet port. The weighing time also involves some time (typically about 5 s) in order to wait until the precision balance has settled after the electronic smoking device has been placed on the balance and a precise reading is possible. It may totally take about 15 s in order to transport the electronic smoking device back and forth. Thus, the total time required for the inhalation period and for transporting and weighing the electronic smoking article may be less than, e.g., 30 s, which permits the determination of mass for each puff and, consequently, a precise testing.

A suitable precision balance is commercially available. It may indicate the weighing results, e.g., with four significant figures or with an accuracy of 1 mg or even better. The weighing results may be transmitted, in digital form, to a data processing system.

The optical measurement device may be arranged between the inlet port and an intake chamber of the smoking apparatus so that the optical measurement device is passed by the aerosol.
Apart from the optical measurement device, the smoking apparatus can be a conventional smoking apparatus, a modified conventional smoking apparatus, or a custom-made smoking apparatus. The volume of the intake chamber may be changed (e.g., by means of a reciprocating piston) in synchronisation with the puff sequence.

In the process of testing an electronic smoking device, measured optical properties of aerosol can be correlated to the loss of mass of the electronic smoking device occurring between subsequent determinations of the actual mass of the electronic smoking device. For example, it may be desirable to produce as much visible aerosol as possible from a given amount (mass) of liquid to be atomized, i.e. the ratio of visible aerosol to mass loss is to be optimised. This ratio depends on the size, concentration and distribution of the aerosol particles, which is complex and expensive to measure using conventional methods. To find an appropriate liquid or appropriate operating conditions for the atomizer of the electronic cigarette, the electronic cigarette has to be extensively tested while parameters as, e.g., the composition of the liquid or the temperature of the atomizer are varied. Applying the process according to the invention, such measurements can be automatically and easily performed, wherein the visibility of the aerosol created in a puff can be estimated via optical properties of the aerosol, and the loss of mass due to liquid consumption and aerosol creation can be determined by weighing, e.g. for each individual puff.

The optical measurement device may comprise a light source, e.g. a laser or an LED source, and at least one detector arranged for measuring the attenuation and/or scattering of light emitted from the light source and passing through the aerosol (or part of the aerosol). For example, a first detector may be arranged opposite to the light source and a second
detector may be arranged at an angle to the line connecting the light source and the first detector, e.g. at an angle representing a scattering angle of 90° or another scattering angle. In this case, the first detector can be used to measure the attenuation (absorption) caused by the aerosol, and in the absence of aerosol it provides a measure for the intensity of the light source. Measuring the intensity of the light source by means of the first detector is generally more precise than assuming a certain intensity based on power input values. The second detector is not hit by directly emitted light but by light scattered by the aerosol particles. The signal of the second detector provides a measure for the visibility of the aerosol. The optical measurement device may be designed as a modular device.

More generally, as an optical property, a signal at the second detector may be determined. In this context, the term "signal" is to be understood in a broad sense. It also relates to, e.g., a noise-corrected signal (e.g. obtained by subtracting, from the signal measured at the second detector with aerosol present in the optical measurement device, a background signal measured at the second detector without aerosol) and/or to a signal normalised to a signal representing the intensity of the light source (the latter obtained, e.g., by means of the first detector when no or only very little aerosol is present in the optical measurement device). Or an actual detector output can be integrated over a given time interval. Other options include the selection of certain frequency ranges, e.g. by optical filters in front of the detectors or in front of the light source. The light source preferably emits light at visible frequencies and/or in the infrared range. A person skilled in the art knows how to obtain meaningful data signals.
It is useful to have a calibration step between each puff, which re-defines the maximum signal at the first detector (light source on, no aerosol). Similarly, a minimum signal at the first detector can be measured (light source off, no aerosol) to determine when the optical measurement device needs to be cleaned from condensation that can occur on the light source or on the detectors. This allows the calculation of a "calibration coefficient" as the difference between the maximum signal and the minimum signal. When the calibration coefficient falls below a certain value, the optical measurement device must be cleaned. The calibration coefficient can also serve as a measure of reproducibility.

The optical measurement device may be prone to becoming coated in condensate during intensive use. This can be counteracted by a quick-cleaning step using a vacuum pump to clear away lingering aerosol in the optical measurement device, for example during the hold period of the puff sequence if there are no optical measurements performed.

Thus, the results of the optical measurements can provide a measure for the actual aerosol density, which then can be correlated with the actual weight loss (i.e. the mass of the aerosol of the actual puff) determined by means of the precision balance to give information about what influences the particle size distribution depending on the design of the electronic smoking device. This knowledge can be used to modify the visible characteristics of the aerosol, as well as the nicotine uptake efficiency.

Optical measurements can be performed, using the optical measurement device, on aerosol exiting from the electronic smoking device during the inhalation period of a puff. Moreover, optical measurements can be performed, using the optical measurement device, on aerosol exiting from the intake chamber during...
the exhalation period of a puff. The presence of the aerosol in the intake chamber roughly mimics the presence of aerosol in, e.g., a human mouth. To this end, it will be advantageous if the temperature in the intake chamber is controlled, e.g. to be maintained at about 37°C. In the intake chamber, part of the aerosol decays through coagulation and condensation so that the ratio of an "inhale signal" (e.g., a signal at the second detector, see above, measured during the inhalation period) to an "exhale signal" (e.g., a signal at the second detector, see above, measured during the exhalation period) provides a meaningful information, designated as vapour decay coefficient.

The smoking apparatus can also comprise further measurement equipment like sensors, detectors or other devices. If a conventional smoking apparatus is used, such equipment can be mounted in the apparatus or as attachments.

The transporting means of the automatic transport and weighing system can be designed in various different ways. For example, a robotic arm having various degrees of freedom and comprising a grasper may be used, controlled by a computer system and optionally involving sensor signals.

In other embodiments, the automatic transport and weighing system comprises at least two slides moving along axes arranged transversely to each other, preferably perpendicularly to each other. One of the slides may comprise a support for an electronic smoking device, which moves downwardly for placing the electronic smoking device onto the precision balance before weighing and moves upwardly for taking up the electronic smoking device from the precision balance after weighing. A holding device may hold the electronic smoking device when the electronic smoking device is removed from and mounted back at the inlet port and may release the electronic smoking device.
when the electronic smoking device is placed on the precision balance.

The set-up for running the process according to the invention may also comprise a manual-button activation device such that manually operated electronic cigarettes requiring a push-button to activate the atomizer can be tested automatically by the set-up. This activation device may include a magnetically driven rod which pushes against the push-button while a robotic gripper immobilises the electronic cigarette at the inlet port. To improve stability, a sleeve may be used which encases the electronic cigarette and distributes the force of the rod against the push-button. This would also allow to work with push-buttons coated in a soft rubber-like material.

The process according to the invention can be controlled by a computer system having a user interface. Generally, this easily permits modifications in the process. Preferably, the data or part of the data acquired in the process is stored, e.g. in the computer system used for controlling the process or elsewhere.

The optical measurement device can also be used in a testing apparatus which does not comprise an automatic transport and weighing system, because scattering measurements on aerosol produced by an electronic smoking device provide valuable information, even without a correlation to the weight loss of the electronic smoking device.

To this end, in a process of testing an electronic smoking device, an electronic smoking device to be tested is mounted at an inlet port of a testing apparatus. Puffs are exerted at the electronic smoking device, using the testing apparatus, where-in each puff is defined by a puff sequence comprising an inhalation period and an exhalation period. At least one optical
property of aerosol deriving from the electronic smoking device is measured in an optical measurement device, which is part of the testing apparatus. The optical measurement device comprises a light source, preferably a laser or an LED source, and at least one detector arranged for measuring the scattering of light emitted from the light source and passing through the aerosol. This detector is arranged at a scattering angle with respect to a straight light path from the light source, e.g., a scattering angle in the range of from 60° to 120°, but other scattering angles are possible as well. As an optical property, a signal at this detector is determined.

In this context, the testing apparatus may comprise a smoking apparatus and may also comprise an automatic transport and weighing system. On the other hand, the testing apparatus may essentially consist of the optical measurement device and related components (like external electronics and/or pumping devices) only. In the latter case, a testing person can exert puffs so that aerosol enters the optical measurement device, where it is analysed by scattering of light. Preferably, the optical measurement device is modular and designed in such a way that it can be easily removed from the rest of any apparatus so that it can also be used as a stand-alone device.

The detector arranged at a scattering angle corresponds to the second detector described further above. It is possible that several detectors are used for measuring scattered light, e.g. detectors mounted at different scattering angles and/or detectors which are sensitive at different wavelength ranges.

The optical measurement device may further comprise a detector arranged opposite to the light source, in the straight light path, which is arranged for measuring the attenuation of light emitted from the light source and passing through the aerosol.
This detector corresponds to the first detector described above.

As explained before, optical measurements can be performed, using the optical measurement device, on aerosol exiting from the electronic smoking device during the inhalation period of a puff and/or on aerosol entering the optical measurement device during the exhalation period of a puff.

Generally, the light source of the optical measurement device can be arranged so that it is removable, preferably easily removable. This enables an easy replacement or exchange of the light source. In particular, the light source can be selected depending on the desired wavelengths of the light emitted.

When investigating an aerosol, light of wavelengths similar to the size of the droplets present in the aerosol is particularly useful because it is relatively strongly scattered. For example, assuming an average droplet size in the order of 500 nm, wavelengths ranging from about 400 nm to 900 nm would be appropriate. In this case, an easily available LED light source of 850 nm may be used. In an aerosol having different droplet sizes, a different light source might be more appropriate.

In the following, the invention is further explained by means of an embodiment. The drawings show in

Figure 1 a schematic diagram illustrating an embodiment of a set-up used for running the process according to the invention,

Figure 2 a schematic cross section through an optical device included in the set-up of Figure 1, in a plane indicated by axis I-I in Figure 1, and
Figure 3 a schematic three-dimensional visualisation of an automatic transport and weighing system used in the set-up of Figure 1.

In Figure 1, an embodiment of a set-up 1 used for running the process of testing an electronic cigarette 2 is illustrated in a schematic diagram.

The set-up 1 comprises a smoking apparatus 10 including an inlet port 12. At the inlet port 12, the electronic cigarette 2 can be mounted in the area of its mouth-sided end so that it is safely supported. A gasket (or an array of gaskets) at the inlet port 12 prevents aerosol exiting from the electronic cigarette 2 from escaping to the environment. The smoking apparatus 10 includes an intake chamber 14, the volume of which can be changed (increased and decreased) by means of a piston 16.

An optical measurement device 20 is arranged between the inlet port 12 and the intake chamber 14. By definition, the optical measurement device 20 is regarded as a part of the smoking apparatus 10. Alternatively, it could be considered as a separate component operated in conjunction with a smoking apparatus, e.g. a conventional smoking apparatus.

Figure 2 shows the optical measurement device 20 in a schematic cross-sectional view, in a plane indicated in Figure 1 by the axis I-I and perpendicular to the plane of the paper in Figure 1. Aerosol 22 emerging from the mouth-sided end of the electronic cigarette 2 and passing through the inlet port 12 (or returning from the intake chamber 14 into the optical measurement device 20, see below) spreads inside the casing of the optical measurement device 20. Light emitted by a light source 24 (preferably a laser or an LED, e.g. working in the visible or infrared wavelength range) is partially absorbed by
the aerosol, which can be sensed by a first detector 26 mounted opposite to the light source 24. The first detector 26 can also be used for measuring the intensity of the light source 24, in particular when no or only very little aerosol 22 is present in the optical measurement device 20. Moreover, the aerosol scatters light out of this direct light path so that the scattered light can be detected under an angle relative to the straight light path by a second detector 28. In the embodiment, the second detector 28 is mounted at a scattering angle of 90°, but it may also be adapted to be fixed in different positions in order to measure scattered light at different scattering angles.

In the embodiment, the inlet port 12 is connected to the optical measurement device 20 via a short piece of silicone tubing, which runs through the actuator area of a first pinch valve (not shown in the figures). During the control of the process, the first pinch valve is operated to open and close the inlet of the optical measurement device 20. A second pinch valve acting onto another silicon tube is mounted at the casing of the optical measurement device 20 to permit a controlled exhaust of the aerosol. A vacuum pump can be used to remove the rests of the aerosol and to keep the set-up 1 clean from aerosol or its remnants.

Moreover, the set-up 1 comprises an automatic transport and weighing system 30, see Figure 1 and in particular Figure 3. This system 30 is able to transfer the electronic cigarette 2 from the inlet port 12 to a precision balance 32, where the actual mass of the electronic cigarette 2 is determined, and to bring the electronic cigarette 2 back to the smoking apparatus 10 and re-mount the electronic cigarette 2 to the inlet port 12. To facilitate the handling of the electronic cigarette 2 in the process, it can be partially surrounded by a sleeve device adapted in shape to the particular design of the
In the state shown in Figure 3, a weighing tray 34 of the precision balance 32 is surrounded by a support 36 which safely holds the electronic cigarette 2 by means of two notches (not shown in the figure). An adjustable backstop 38 can be moved in x direction, back and forth. It serves to ensure a correct position of the electronic cigarette 2 in x direction.

The support 36, which is designed as a slide, is mounted at a slide 40 so that it can be moved up and down, in z direction. In the embodiment, the support 36 is not moved in y direction because the center of the weighing tray 34 is aligned with the inlet port 12 along the x axis. In other designs, an additional degree of freedom for movement in y direction may be useful, however. When the support 36 is moved upwardly, it finally arrests the electronic cigarette 2 by means of two prongs 42 which, e.g., may enter into indents of the sleeve device mentioned above. In this state, the center axis of the electronic cigarette 2 aims at the center of the inlet port 12. The slide 40 can be moved in parallel to the x axis. To this end, it is arranged at a guide 44.

The set-up 1 is controlled by a computer system 50 having a user interface, which also includes a data storage, see Figure 1.

To run a process of testing an electronic cigarette, the electronic cigarette 2 can be initially mounted at the inlet port 12 by inserting the mouth-sided end of the electronic cigarette 2 into the gasket provided at the inlet port 12. This step can be performed by placing the electronic cigarette 2 on the support 36 and operating components of the automatic transport and weighing system 30, see above. Before initially
mounting the electronic cigarette 2 at the inlet port 12, it is also possible to determine its mass by means of the precision balance 32, in an analogous way as described below in detail.

With the first pinch valve open and the second pinch valve closed, the piston 16 is moved to increase the volume of the intake chamber 14, and a puff detector included in the electronic cigarette 2 senses the resulting vacuum and initiates the creation of aerosol by operating an atomizer inside the electronic cigarette 2. The liquid used for generating the aerosol is supplied from a cartridge arranged in the electronic cigarette 2. If the electronic cigarette 2 comprises a manually actutable switch for initiating the creation of aerosol instead of a puff detector, this switch can be operated by, e.g., a magnetically driven actuator mounted at the set-up 1.

The aerosol passes through the optical measurement device 20, where it can be investigated by means of the first detector 26 and the second detector 28, as outlined before and further described below.

After the aerosol has entered the intake chamber 14, the piston 16 stops so that the inhalation period of the puff ends. Now the first pinch valve is closed and the aerosol stays for some time (hold period) inside the intake chamber 14 so that aerosol particles can settle and the density of the aerosol may change. In the embodiment, the temperature of the intake chamber 14 is maintained at about 37°C.

At the end of the hold period, the second pinch valve opens and the piston 16 starts to decrease the volume of the intake chamber 14 so that the residual aerosol is expelled from the intake chamber 14 and re-enters the optical measurement device 20, where its properties can be measured by means of the first
detector 26 and the second detector 28. After removing the rests of the aerosol by means of a vacuum pump (not shown in the figures), the second pinch valve is closed. Prior to the inhalation period of the next puff, a pause can be provided.

It may be advantageous if a vacuum pump is used during the hold period in order to remove lingering aerosol from the optical measuring device 20 to prevent condensate from building up in the optical measurement device 20. In this case, the intake chamber 14 has to be separated from the optical measurement device 20, during the hold period, by an additional valve or shutter.

So far, the operation of the smoking apparatus 10 including the optical measurement device 20 has been considered. When the inhalation period ends, however, it is not required that the electronic cigarette 2 remains in a state mounted at the inlet port 12. During the rest of the puff sequence, i.e. during the hold period, the exhalation period and the pause, it can be remote from the inlet port 12 and can be weighed to determine its actual mass. This is performed by the automatic transport and weighing system 30.

To this end, the electronic cigarette 2 being held between the support 36 and the prongs 42 is pulled out of the gasket of the inlet port 12. The support 36 is moved in x direction towards the precision balance 32 where it is lowered until the electronic cigarette 2 rests on the weighing tray 34. Now the electronic cigarette is supported by the weighing tray 34 only so that its mass can be determined by the precision balance 32. In the embodiment, this takes about five seconds, including the settling time of the precision balance 32. The measured mass is transmitted to the computer system 50.
Thereafter, the height in z direction of the support 36 is increased again until the electronic cigarette 2 (or its sleeve device) rests against the prongs 42, and the electronic cigarette 2 is transferred back to the inlet port 12 by moving the support 36 and the slide 40.

In practice, the accuracy of the precision balance 32 is high enough to reliably determine the mass of the aerosol consumed during the puff considered by taking the difference of the masses of the electronic cigarette 2 before and after the puff in question. It is assumed that a user typically puffs every 30 seconds. The time required for moving the electronic cigarette 2 and the settling of the precision balance 32 is about 20 seconds. That means, after the inhalation period, there is sufficient time for transporting and weighing the electronic cigarette 2 during the hold period, the exhalation period, and a pause. Thus, the set-up 1 is able to determine the actual mass of the electronic smoking device for each puff so that the cycle described so far can be repeated many times. The mass data can be correlated with the data achieved by the optical measurements and optionally with other data.

Of course, the computer system 50 may also control the set-up 1 so that the electronic cigarette 2 is weighed for every second puff only, or in a different manner. Generally, the process is very versatile.

A meaningful optical property representing the visibility of the aerosol is the signal received at the second detector 28, which may be corrected and normalised for achieving a higher precision. In the embodiment, the output signal of the second detector 28, a voltage, is digitalised by means of an analogue-to-digital converter and integrated over a pre-selected period of time. When aerosol is present in the optical measurement device 20, the result represents the scattering, but
it may also include some noise. A noise correction can be obtained by subtracting, from the above result, a background signal measured at the second detector 28 after the aerosol has been removed from the optical measurement device 20 (again digitalised and integrated over the same period of time). The noise-corrected result can be normalised to a signal (digitalised and integrated over some period of time) measured by the first detector 26 after the aerosol has been removed, in order to cancel out any long-term drift in the intensity of the light source 24.

The frequency range of the light source may be selected in relation to the expected range of sizes of the aerosol particles in order to optimise the scattering signal. The light source 24 may emit light at visible frequencies and/or in the infra-red range.

It is useful to have a calibration step between subsequent puffs, which re-defines the "maximum signal" at the first detector 26 (light source on, no aerosol). Similarly, a "minimum signal" at the first detector 26 can be measured (light source off, no aerosol) to determine when the optical measurement device 20 needs to be cleaned from condensation that can occur on the light source 24 or on the detectors 26, 28. This allows the calculation of a calibration coefficient as the difference between the maximum signal and the minimum signal. When the calibration coefficient falls below a certain value, the optical measurement device 20 must be cleaned. The calibration coefficient can also serve as a measure of reproducibility.

Thus, the results of the optical measurements can provide a measure for the actual aerosol visibility, which then can be correlated with the actual weight loss (i.e. the mass of the aerosol of the actual puff) determined by means of the precision balance 30.
Moreover, as seen above, optical measurements can be performed both during the inhalation period and during the exhalation period of a puff. In the intake chamber 14, part of the aerosol decays so that the ratio of the respective inhale signal to the respective exhale signal ("vapour decay coefficient") provides compact information on the decay process.

From this description, it is evident how the optical measurement device 20 can be used in general, also independent of the set-up 1, e.g. as a stand-alone device for performing measurements on light scattered from aerosol present in the optical measurement device 20, as outlined further above.
Claims

1. A process of testing an electronic smoking device, comprising:

- mounting an electronic smoking device (2) to be tested at an inlet port (12) of a smoking apparatus (10),
- repeatedly exerting puffs at the electronic smoking device (2) by means of the smoking apparatus (10), each puff being defined by a puff sequence comprising an inhalation period and an exhalation period,
- measuring optical properties of aerosol (22) deriving from the electronic smoking device (2) in an optical measurement device (20), and
- repeatedly determining the actual mass of the electronic smoking device (2) by means of an automatic transport and weighing system (30), wherein the electronic smoking device (2) is removed from the inlet port (12) after the inhalation period of a puff has ended, is transported to a precision balance (32), is weighed by means of the precision balance (32), is transported back to the inlet port (12), and is mounted back at the inlet port (12) before the inhalation period of the next puff starts.

2. The process of claim 1, wherein the optical measurement device (2) is arranged between the inlet port (12) and an intake chamber (14) of the smoking apparatus (10) and is passed by the aerosol (22), and wherein the volume of the intake chamber is changed in synchronisation with the puff sequence.

3. The process of claim 1 or 2, wherein measured optical properties of aerosol are correlated to the loss of mass of the electronic smoking device (2) occurring between subsequent determinations of the actual mass of the electronic smoking device (2).
4. The process of any one of claims 1 to 3, wherein the optical measurement device (20) comprises a light source (24), preferably a laser or an LED source, and at least one detector (26, 28) arranged for measuring the attenuation and/or scattering of light emitted from the light source (24) and passing through the aerosol (22).

5. The process of claim 4, wherein the optical measurement device (20) comprises a first detector (26) arranged opposite to the light source (24) and a second detector (28) arranged at an angle to the line connecting the light source (24) and the first detector (26), preferably at an angle representing a scattering angle of 90°.

6. The process of claim 5, wherein, as an optical property, a signal at the second detector (28) is determined.

7. The process of any one of claims 1 to 6, wherein optical measurements are performed, using the optical measurement device (20), on aerosol (22) exiting from the electronic smoking device (2) during the inhalation period of a puff.

8. The process of any one of claims 1 to 7, wherein optical measurements are performed, using the optical measurement device (20), on aerosol (22) exiting from the intake chamber (14) during the exhalation period of a puff.

9. The process of any one of claims 1 to 8, wherein the automatic transport and weighing system (30) comprises at least two slides (36, 40) moving along axes arranged transversely to each other, preferably perpendicularly to each other.
10. The process of claim 9, wherein one of the slides comprises a support (36) for an electronic smoking device, moves downwardly for placing the electronic smoking device (2) onto the precision balance (32) before weighing and moves upwardly for taking up the electronic smoking device (2) from the precision balance (32) after weighing.

11. The process of claim 10, wherein a holding device (36, 42) holds the electronic smoking device (2) when the electronic smoking device (2) is removed from and mounted back at the inlet port (12) and releases the electronic smoking device (2) when the electronic smoking device (2) is placed on the precision balance (32).

12. The process of any one of claims 1 to 11, wherein the actual mass of the electronic smoking device (2) is determined for each puff.

13. The process of any one of claims 1 to 12, wherein the puff sequence consists of the inhalation period, a hold period, the exhalation period, and a pause.

14. The process of any one of claims 1 to 13, wherein the puff sequence has a total duration, for one puff, in the range of from 15 s to 60 s, preferably in the range of from 25 s to 35 s.

15. The process of any one of claims 1 to 14, wherein the temperature in the intake chamber (14) is controlled, preferably to be maintained at about 37°C.

16. The process of any one of claims 1 to 15, wherein the process is controlled by a computer system (50) having a user interface.
17. A process of testing an electronic smoking device, comprising:
 - mounting an electronic smoking device (2) to be tested at an inlet port (12) of a testing apparatus (20; 10),
 - exerting puffs at the electronic smoking device (2), using the testing apparatus, each puff being defined by a puff sequence comprising an inhalation period and an exhalation period,
 - measuring at least one optical property of aerosol (22) deriving from the electronic smoking device (2) in an optical measurement device (20), which is part of the testing apparatus,
 - wherein the optical measurement device (20) comprises a light source (24), preferably a laser or an LED source, and at least one detector (28) arranged for measuring the scattering of light emitted from the light source (24) and passing through the aerosol (22), said detector (28) being arranged at a scattering angle with respect to a straight light path from the light source (24), the scattering angle preferably being in the range of from 60° to 120°, and
 - wherein, as an optical property, a signal at said detector (28) is determined.

18. The process of claim 17, wherein the optical measurement device (20) further comprises a detector (26) arranged opposite to the light source (24), in the straight light path, which is arranged for measuring the attenuation of light emitted from the light source (24) and passing through the aerosol (22).

19. The process of claim 17 or 18, wherein optical measurements are performed, using the optical measurement device (20), on aerosol (22) exiting from the electronic smoking device (2) during the inhalation period of a puff.
20. The process of any one of claims 17 to 19, wherein optical measurements are performed, using the optical measurement device (20), on aerosol (22) entering the optical measurement device (20) during the exhalation period of a puff.

21. The process of any one of claims 4 to 6 or 17 to 20, wherein the light source (24) is removable and is selected depending on the wavelengths of the light emitted.

22. The process of any one of claims 1 to 21, wherein the optical measurement device (20) is modular and removable from the rest of the apparatus (10).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A24C5/34

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A24C A24F

Documented searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2014/300480 AI (XIANG ZHIYONG [CN]) 9 October 2014 (2014-10-09) the whole document</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>US 4 980 571 A (MCRAE DOUGLAS D [US] ET AL) 25 December 1990 (1990-12-25) the whole document</td>
<td>1-16</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent published on or after the international filing date
 L document which may throw doubts on priority claim(s) one of which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 S document member of the same patent family

Date of the actual completion of the international search

6 May 2016

Date of mailing of the international search report

22/08/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040;
Fax: (+31-70) 340-3016

Authorized officer

Cardan, Cosmin
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

 see additional sheet

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

 1-16

Remark on Protest

□ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

□ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

□ No protest accompanied the payment of additional search fees.
This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-16

 the method of the first group of inventions relates to determining the usage of liquid during smoking of an e-cigarette

2. claims: 17-22

 the method of the second group of inventions relates to determining the quantity/quality of the vapour produced by an e-cigarette

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2014300480 A</td>
<td>09-10-2014</td>
<td>CN 105122039 A</td>
<td>02-12-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016521356 A</td>
<td>21-07-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014300480 A</td>
<td>09-10-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014161190 A</td>
<td>09-10-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4980571 A</td>
<td>25-12-1990</td>
</tr>
<tr>
<td>US 4184360 A</td>
<td>22-01-1980</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>