Office de la Propriete Canadian CA 2859932 A1 2008/03/13

Intellectuelle Intellectual Property
du Canada Office (21) 2 859 932
v organisme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
13) A1
(22) Date de depot/Filing Date: 2007/09/05 (51) CLInt./Int.Cl. GO6F 271/30(2013.01)
(41) Mise a la disp. pub./Open to Public Insp.: 2008/03/13 (71) Demandeur/Applicant:

MICROSOFT CORPORATION, US

(62) Demande originale/Original Application: 2 657 400
Ly e (72) Inventeurs/Inventors:

(30) Priorité/Priority: 2006/09/08 (US11/530,438) DILLAWAY BLAR B. US:

BECKER, MORITZ, Y., US;

GORDON, ANDREW, D., US;

FOURNET, CEDRIC, US

(74) Agent: SMART & BIGGAR

(54) Titre : DEMANDES D'AUTORISATION DE SECURITE
54) Title: SECURITY AUTHORIZATION QUERIES

Assertion Level

602

Assertion Assertion Assertionm Assertion
606 606 606 606

{ Negations Not Allow Syntactic Validator
in Security Assertions

Query Level 604

)

Asserted (|aAND|| Asserted |[|aND||NOT|| Asserted

Fact Fact Fact
610 610(| 812 || gos

———— —_—reeerr —j
{ wﬂﬂﬁd—lﬂ } Examp|e

Authorization Queries Authorization Query

Bifurcate rit heme 60

- - — ——— —— ——

(57) Abréegée/Abstract:

In an example implementation, a bifurcated security scheme has a first level that does not allow usage of negations and a second
level that does permit usage of negations. In another example implementation, an authorization query table maps respective
resourced specific operations to respective associated authorization queries. In yet another example implementation, authorization
gueries are permitted to have negations, but individual assertions are not.

e

T N §.
.l.!.\‘\-c.c..--.
. T

3 '_{,-.T'l'.
o~

‘ l an a d a http:/opic.ge.ca + Ottawa/Gatineau K1A 0C9 - hmp./cipo.ge.ca o p1C
OPIC - CIPO 191

CA 02859932 2014-08-20

51018-148D1

ABSTRACT

In an example implementation, a bifurcated security scheme has a first level
that does not allow usage of negations and a second level that does permit usage of negations.
In another example implementation, an authorization query table maps respective resource-
specific operations to respective associated authorization queries. In yet another example
implementation, authorization queries are permitted to have negations, but individual

assertions are not.

CA 02859932 2014-08-20

51018-148D1

Security Authorization Queries

This application is a divisional of Canadian Patent Application No. 2,657,400
filed September 5, 2007.

BACKGROUND

[0001] Computers and other electronic devices are pervasive in the

professional and personal lives of people. In professional settings, people
exchange and share confidential information during project collaborations. In

personal settings, people engage in electronic commerce and the transmission

of private information. In these and many other instances, electronic security 1s

deemed to be important.

[0002] Electronic security paradigms can keep professional information
confidential and personal information private. Electronic security paradigms

may involve some level of encryption and/or protection against malware, such

as viruses, worms, and spyware. Both encryption of information and protection

from malware have historically received significant attention, especially in the

last few years.

[0003] However, controlling access to information is an equally

important aspect of securing the safety of electronic information. This 1S
particularly true for scenarios in which benefits are derived from the sharing
and/or fransferring of electronic information. In such scenarios, certain people
are to be granted access while others are to be excluded.

[0004] Access control has been a common feature of shared computers'
and application servers since the early time of shared systems. There are a

number of different approaches that have been used to control access to

information. They share a common foundation in combining authentication ot

10

15

20

29

CA 02859932 2014-08-20

>1018-148D1

the entity requesting access to some resource with a mechanism of authorizing the allowed
access. Authentication mechanisms include passwords, Kerberos, and x.509 certificates.
Their purpose is to allow a resource-controlling entity to positively identify the requesting

entity or information about the entity that it requires.

[0005] Authorization examples include access control lists (ACLs) and policy-based
mechanisms such as the eXtensible Access Control Markup Language (XACML) or the
PrivilEge and Role Management Infrastructure (PERMIS). These mechanisms define what
entities may access a given resource, such as files in a file system, hardware devices, database
information, and so forth. They perform this authorization by providing a mapping between

authenticated information about a requestor and the allowed access to a resource.

[0006] As computer systems have become more universally connected over large
networks such as the Internet, these mechanisms have proven to be somewhat limited and
inflexible 1n dealing with evolving access control requirements. Systems of geographically
dispersed users and computer resources, including those that span multiple administrative
domains, 1n particular present a number of challenges that are poorly addressed by currently-

deployed technology.
SUMMARY

[0006a] According to one aspect of the present invention, there is provided a computer-
implemented method comprising: receiving a request for access to a resource; applying a
multi-level security scheme to the request for access, the multi-level security scheme
including an assertion level and a query level, wherein the assertion level disallows an
assertion containing a negation, and wherein the query level permits an authorization query

containing at least one negation; and determining an authorization result for the request, based -

at least on the application of the multi-level security scheme.

[0006D] According to another aspect of the present invention, there is provided a
system, comprising: one or more processors; and one or more security components executed
by the one or more processors to implement a multi-level security scheme that includes an

assertion level and a query level, wherein the one or more security components perform
2

10

15

CA 02859932 2014-08-20

>1018-148D1

actions including: receiving a request to access a resource; forming an assertion context at the
assertion level, including disallowing an assertion containing a negation; ascertaining an
authorization query at the query level, based at least on an authorization query table; and
employing the authorization query and the assertion context to produce an authorization

decision for the request to access the resource.

[0006c¢] According to still another aspect of the present invention, there is provided one
or more computer-readable storage media, storing instructions that, when executed, configure
one or more processors to perform actions comprising: receiving a request to access a
resource, wherein the request includes a security token with one or more token assertions;
applying a multi-level security scheme to the request for access, the multi-level security
scheme including a first level and a second level; determining an assertion context at the first
level, based on the one or more token assertions; employing syntactic validation to disallow
an assertion containing a negation, at the first level; ascertaining an authorization query at the
second level; and employing the authorization query and the assertion context to produce an

authorization decision for the request to access the resource.

[0007] In an example implementation, a bifurcated security scheme has a first level
that does not allow usage ot negations and a second level that does permit usage of negations.

In another example implementation, an

2a

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

authorization query table maps respective resource-specific operations to
respective associated authorization queries. In yet another example
implementation, authorization queries are permitted to have negations, but
individual assertions are not.

[0008] This Summary 1s provided to introduce a selection of concepts in
a stmplified form that are further described below in the Detailed Description.
This Summary 1s not intended to identify key features or essential features of
the claimed subject matter, nor 1s 1t intended to be used as an aid in determining
the scope of the claimed subject matter. Moreover, other method, system,
scheme, apparatus, device, media, procedure, API, arrangement, protocol, etc.

implementations are described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The same numbers are used throughout the drawings to reference
like and/or corresponding aspects, features, and components.

[0010] FIG. 1 1s a block diagram illustrating an example general
environment in which an example security scheme may be implemented.

[0011] FIG. 2 1s a block diagram illustrating an example security
environment having two devices and a number of example security-related
components.

[0012] FIG. 3 1s a block diagram illustrating the example security
environment of FIG. 2 in which example security-related data 1s exchanged
among the security-related components.

(0013} FIG. 4 1s a block diagram of an example device that may be used

for security-related implementations as described herein.

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

[0014] FIG. 5 is a block diagram 1llustrating an example assertion format
for a general security scheme.

[0015] FIG. 6 1s a block diagram illustrating an example bifurcated
security scheme having a first level and a second level.

[0016] FIG. 7 1s a general block diagram illustrating an example
authorization query ascertainment and an example authorization query
evaluation.

[0017] FIG. 8 1s a more-specific block diagram illustrating an example
authorization query ascertainment that 1s responsive to a resource access
request.

[0018] FIG. 9 1s a more-specific block diagram illustrating an example
authorization query evaluation given an assertion context.

[0019] FIG. 10 1s a flow diagram that illustrates an example of a method

for ascertaining and evaluating an authorization query.

DETAILED DESCRIPTION

EXAMPLE SECURITY ENVIRONMENTS
[0020] FIG. 1 1s a block diagram illustrating an example general
environment in which an example security scheme 100 may be implemented.
Security scheme 100 represents an integrated approach to security. As
illustrated, security scheme 100 includes a number of security concepts:
security tokens 100(A), security policies 100(B), and an evaluation engine
100(C). Generally, security tokens 100(A) and security policies 100(B) jointly

provide inputs to evaluation engine 100(C). Evaluation engine 100(C) accepts

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

the inputs and produces an authorization output that indicates 1f access to some
resource should be permitted or denied.

[0021] In a described implementation, security scheme 100 can be
overlaid and/or integrated with one or more devices 102, which can be
comprised of hardware, software, firmware, some combination thereof, and so
forth. As illustrated, “d” devices, with “d” being some integer, are
interconnected over one or more networks 104. More specifically, device
102(1), device 102(2), device 102(3) ... device 102(d) are capable of
communicating over network 104.

10022] Each device 102 may be any device that 1s capable of
implementing at least a part of security scheme 100. Examples of such devices
include, but are not limited to, computers (e.g., a client computer, a server
computer, a personal computer, a workstation, a desktop, a laptop, a palm-top,
etc.), game machines (e.g., a console, a portable game device, etc.), set-top
boxes, televisions, consumer electronics (e.g., DVD player/recorders,
camcorders, digital video recorders (DVRs), etc.), personal digital assistants
(PDAs), mobile phones, portable media players, some combination thereot, and

so forth. An example electronic device 1s described herein below with

particular reference to FIG. 4.

[0023] Network 104 may be formed from any one or more networks that
are linked together and/or overlaid on top of each other. Examples of networks
104 include, but are not limited to, an internet, a telephone network, an
Ethernet, a local area network (LAN), a wide area network (WAN), a cable
network, a fibre network, a digital subscriber line (DSL) network, a cellular

network, a Wi-Fi® network, a WIMAX" network, a virtual private network

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

(VPN), some combination thereof, and so forth. Network 104 may include
multiple domains, one or more grid networks, and so forth. Each of these
networks or combination of networks may be operating in accordance with any
networking standard.

[0024] As illustrated, device 102(1) corresponds to a user 106 that 1s
interacting with it. Device 102(2) corresponds to a service 108 that is
executing on 1t. Device 102(3) 1s associated with a resource 110. Resource
110 may be part of device 102(3) or separate from device 102(3).

[0025] User 106, service 108, and a machine such as any given device
102 form a non-exhaustive list of example entities. Entities, from time to time,
may wish to access resource 110. Security scheme 100 ensures that entities
that are properly authenticated and authorized are permitted to access resource
110 while other entities are prevented from accessing resource 110.

[0026] FIG. 2 is a block diagram illustrating an example security
environment 200 having two devices 102(A) and 102(B) and a number of
example security-related components. Security environment 200 also includes
an authority 202, such as a security token service (STS) authority. Device
102(A) corresponds to an entity 208. Device 102(B) 1s associated with
resource 110. Although a security scheme 100 may be implemented in more
complex environments, this relatively-simple two-device security environment
200 1s used to describe example security-related components.

[0027] As illustrated, device 102(A) includes two security-related
components: a security token 204 and an application 210. Security token 204
includes one or more assertions 206. Device 102(B) includes five security-

related components: an authorization context 212, a resource guard 214, an

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

audit log 216, an authorization engine 218, and a security policy 220. Security
policy 220 includes a trust and authorization policy 222, an authorization query
table 224, and an audit policy 226.

[0028] Each device 102 may be configured differently and still be
capable of implementing all or a part of security scheme 100. For example,
device 102(A) may have multiple security tokens 204 and/or applications 210.
As another example, device 102(B) may not include an audit log 216 or an
audit policy 226. Other configurations are also possible.

[0029] In a described implementation, authority 202 1ssues security
token 204 having assertions 206 to entity 208. Assertions 206 are described
herein below, including in the section entitled “Security Policy Assertion
Language Example Characteristics”. Entity 208 ts therefore associated with
security token 204. In operation, entity 208 wishes to use application 210 to
access resource 110 by virtue of security token 204.

[0030] Resource guard 214 receives requests to access resource 110 and
effectively manages the authentication and authorization process with the other
security-related components of device 102(B). Trust and authorization policy
222, as its name 1mplies, includes policies directed to trusting entities and
authorizing actions within security environment 200. Trust and authorization
policy 222 may include, for example, security policy assertions (not explicitly
shown in FIG. 2). Authorization query table 224 maps requested actions, such
as access requests, to an appropriate authorization query. Audit policy 226
delineates audit responsibilities and audit tasks related to implementing

security scheme 100 1n security environment 200.

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/0°77641

[0031] Authorization context 212 collects assertions 206 from security
token 204, which is/are used to authenticate the requesting entity, and security
policy assertions from trust and authorization policy 222. These collected
assertions in authorization context 212 form an assertion context. Hence,
authorization context 212 may include other information in addition to the
various assertions.

[0032] The assertion context from authorization context 212 and an
authorization query from authorization query table 224 are provided to
authorization engine 218. Using the assertion context and the authorization
query, authorization engine 218 makes an authorization decision. Resource
guard 214 responds to the access request based on the authorization decision.
Audit log 216 contains audit information such as, for example, 1dentification of
the requested resource 110 and/or the algorithmic evaluation logic performed
by authorization engine 213.

[0033] FIG. 3 i1s a block diagram illustrating example security
environment 200 in which example security-related data 1s exchanged among
the security-related components. The security-related data 1s exchanged in
support of an example access request operation. In this example access request
operation, entity 208 wishes to access resource 110 using application 210 and
indicates its authorization to do so with security token 204. Hence, application
210 sends an access request™® to resource guard 214. In this description ot FIG.
3, an asterisk (i.e., “*”) indicates that the stated security-related data 1s
explicitly indicated 1n FIG. 3.

[0034] In a described implementation, entity 208 authenticates™ itself to

resource guard 214 with a token*, security token 204. Resource guard 214

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

forwards the token assertions™ to authorization context 212. These token
assertions are assertions 206 (of FI1G. 2) of security token 204. Security policy
220 provides the authorization query table* to resource guard 214. The
authorization query table dertves from authorization query table module 224.
The authorization query table sent to resource guard 214 may be confined to
the portion or portions directly related to the current access request.

[0035] Policy assertions are extracted from trust and authorization policy
222 by security policy 220. The policy assertions may include both trust-
related assertions and authorization-related assertions. Security policy 220
forwards the policy assertions*® to authorization context 212. Authonzation
context 212 combines the token assertions and the policy assertions into an
assertion context. The assertion context®* is provided from authorization
context 212 to authorization engine 218 as indicated by the encircled “A”.
[0036] An authorization query 1s ascertained from the authorization
query table. Resource guard 214 provides the authorization query (auth.
query*) to authorization engine 218. Authorization engine 218 uses the
authorization query and the assertion context in an evaluation algorithm to

produce an authorization decision. The authorization decision (auth. den.*®) is

returned to resource guard 214. Whether entity 208 1s granted access* to
resource 110 by resource guard 214 1s dependent on the authorization decision.
It the authorization decision 1s affirmative, then access 1s granted. If, on the

other hand, the authorization decision 1ssued by authorization engine 218 is

negative, then resource guard 214 does not grant entity 208 access to resource

110.

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

[0037] The authorization process can also be audited using semantics
that are complementary to the authorization process. The auditing may entail
monitoring of the authorization process and/or the storage of any intermediate
and/or final products of, e.g., the evaluation algorithm logically performed by
authorization engine 218. To that end, security policy 220 provides to
authorization engine 218 an audit policy™ from audit policy 226. At least when
auditing 1s requested, an audit record* having audit information may be
forwarded from authorization engine 218 to audit log 216. Alternatively, audit
information may be routed to audit log 216 via resource guard 214, for
example, as part of the authorization decision or separately.

[0038] FIG. 4 1s a block diagram of an example device 102 that may be
used for security-related implementations as described herein. Multiple
devices 102 are capable of communicating across one or more networks 104.
As illustrated, two devices 102(A/B) and 102(d) are capable of engaging in
communication exchanges via network 104. Although two devices 102 are
specifically shown, one or more than two devices 102 may be employed,
depending on the implementation.

[0039] Generally, a device 102 may represent any computer or

processing-capable device, such as a client or server device; a workstation or
other general computer device; a PDA; a mobile phone; a gaming platform; an
entertainment device; one of the devices listed above with reterence to FIG. 1;
some combination thereof: and so forth. As illustrated, device 102 includes
one or more put/output (I/0) interfaces 404, at least one processor 406, and

one or more media 408. Media 408 include processor-executable instructions

410.

10

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

[0040] In a described implementation of device 102, I/0 interfaces 404
may include (1) a network interface for communicating across network 104, (i1)
a display device interface for displaying information on a display screen, (1i1)
one or more man-machine intertaces, and so forth. Examples of (1) network
interfaces include a network card, a modem, one or more ports, and so forth.
Examples of (11) display device interfaces include a graphics driver, a graphics
card, a hardware or software driver for a screen or monitor, and so forth.
Printing device interfaces may similarly be included as part of 1/O interfaces
404. Examples of (111) man-machine interfaces include those that communicate
by wire or wirelessly to man-machine interface devices 402 (e.g., a keyboard, a
remote, a mouse or other graphical pointing device, etc.).

[0041] Generally, processor 406 1s capable of executing, performing,
and/or otherwise effectuating processor-executable instructions, such as
processor-executable instructions 410. Media 408 1s comprised of one or more
processor-accessible media. In other words, media 408 may include processor-
executable instructions 410 that are executable by processor 406 to effectuate
the performance of functions by device 102.

[0042] Thus, realizations for security-related implementations may be
described 1n the general context of processor-executable instructions.
Generally, processor-executable instructions include routines, programs,
applications, coding, modules, protocols, objects, components, metadata and
definitions thereof, data structures, application programming interfaces (APIs),
schema, etc. that perform and/or enable particular tasks and/or implement

particular abstract data types. Processor-executable instructions may be located

11

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

in separate storage media, executed by different processors, and/or propagated
over or extant on various transmission media.

[0043] Processor(s) 406 may be implemented using any applicable
processing-capable technology. Media 408 may be any available media that 1s
included as part of and/or accessible by device 102. It includes volatile and
non-volatile media, removable and non-removable media, and storage and
transmission media (e.g., wireless or wired communication channels). For
example, media 408 may include an array of disks/flash memory/optical media
for longer-term mass storage of processor-executable instructions 410, random
access memory (RAM) for shorter-term storing of instructions that are
currently being executed, link(s) on network 104 for transmitting
communications (e.g., security-related data), and so forth.

[0044] As specifically 1illustrated, media 408 comprises at least
processor-executable instructions 410. Generally, processor-executable
instructions 410, when executed by processor 406, enable device 102 to
perform the various functions described herein, including those actions that are
illustrated in the various flow diagrams. By way of example only, processor-

executable instructions 410 may include a security token 204, at least one of 1ts

assertions 206, an authorization context module 212, a resource guard 214, an
audit log 216, an authorization engine 218, a security policy 220 (e.g., a trust
and authorization policy 222, an authorization query table 224, and/or an audit
policy 226, etc.), some combination thereof, and so forth. Although not
explicitly shown in FIG. 4, processor-executable instructions 410 may also

include an application 210 and/or a resource 110.

12

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

SECURITY POLICY ASSERTION LANGUAGE
EXAMPLE CHARACTERISTICS

[0045] This section describes example characteristics of an
implementation of a security policy assertion language (SecPAL). The
SecPAL implementation of this section 1s described in a relatively informal
manner and by way of example only. It has an ability to address a wide
spectrum of security policy and security token obligations involved in creating
an end-to-end solution. These security policy and security token obligations
include, by way of example but not limitation: describing explicit trust
relationships; expressing security token issuance policies; providing security
tokens containing identities, attributes, capabilities, and/or delegation policies;
expressing resource authorization and delegation policies; and so forth.

[0046] In a described implementation, SecPAL 1s a declarative, logic-
based language for expressing security in a flexible and tractable manner. It
can be comprehensive, and it can provide a uniform mechanism for expressing
trust relationships, authorization policies, delegation policies, identity and
attribute assertions, capability assertions, revocations, audit requirements, and

so forth. This uniformity provides tangible benefits in terms of making the

security scheme understandable and analyzable. The uniform mechanism also
improves security assurance by allowing one to avoid, or at least significantly

curtail, the need for semantic translation and reconciliation between disparate
security technologies.

[0047] A SecPAL implementation may include any of the following
example features: [1] SecPAL can be relatively easy to understand. It may use

a definitional syntax that allows its assertions to be read as English-language

13

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

sentences. Also, 1ts grammar may be restrictive such that it requires users to
understand only a few subject-verb-object (e.g., subject-verb phrase) constructs
with cleanly defined semantics. Finally, the algorithm for evaluating the
deducible facts based on a collection of assertions may rely on a small number
of relatively simple rules.

[0048] [2] SecPAL can leverage industry standard infrastructure in its
implementation to ease i1ts adoption and integration into existing systems. For
example, an extensible markup language (XML) syntax may be used that i1s a
straightforward mapping from the formal model. This enables use of standard
parsers and syntactic correctness validation tools. It also allows use of the
W3C XML Digital Signature and Encryption standards for integrity, proof of
origin, and confidentiality.

[0049] 3] SecPAL may enable distributed policy management by
supporting distributed policy authoring and composition. This allows flexible
adaptation to different operational models governing where policies, or
portions of policies, are authored based on assigned administrative duties. Use
of standard approaches to digitally signing and encrypting policy objects allow

for their secure distribution. [4] SecPAL enables an efficient and safe

evaluation. Simple syntactic checks on the inputs are sufficient to ensure
evaluations will terminate and produce correct answers.

[0050] 5] SecPAL can provide a complete solution for access control
requirements supporting required policies, authorization decisions, auditing,
and a public-key infrastructure (PKI) for identity management. In contrast,
most other approaches only manage to focus on and address one subset of the

spectrum of security 1ssues. [6] SecPAL may be sufficiently expressive for a

14

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

number of purposes, including, but not limited to, handling the security issues
for Grid environments and other types of distributed systems. Extensibility is
enabled 1in ways that maintain the language semantics and evaluation properties
while allowing adaptation to the needs of specific systems.

[0051] FIG. 5 1s a block diagram 1llustrating an example assertion format
500 for a general security scheme. Security scheme assertions that are used in
the implementations described otherwise herein may differ from example
assertion format 500. However, assertion format 500 is a basic illustration of
one example format for security scheme assertions, and it provides a basis for
understanding example described implementation of various aspects of a
general security scheme.

[0052] As 1llustrated at the top row of assertion format 500, an example
assertion at a broad level includes: a principal portion 502, a says portion 504,
and a claim portion 506. Textually, the broad level of assertion format 500
may be represented by: principal says claim.

[0053] At the next row of assertion format 500, claim portion 506 is
separated 1nto example constituent parts. Hence, an example claim portion 506
includes: a fact portion 508, an if portion 510, “n” conditional fact, , portions
508(1...n), and a ¢ portion 512. The subscript “n” represents some integer
value. As indicated by legend 524, ¢ portion 512 represents a constraint
portion. Although only a single constraint is illustrated, ¢ portion 512 may
actually represent multiple constraints (e.g., ¢y, ..., ¢,,). The set of conditional
fact portions 508(1...n) and constraints 512(1...m) on the right-hand side of if

portion 510 may be termed the antecedent.

15

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

[0054] Textually, claim portion 506 may be represented by: fact if fact,,
... , fact,, c. Hence, the overall assertion format 500 may be represented
textually as tollows: principal says fact if fact,, ... , fact,, c. However, an
assertion may be as simple as: principal says fact. In this abbreviated, three-
part version of an assertion, the conditional portion that starts with if portion
510 and extends to ¢ portion 512 1s omitted.

[0055] Each fact portion 508 may also be further subdivided into its
constituent parts. Example constituent parts are: an e portion 514 and a verb
phrase portion 516. As indicated by legend 524, e portion 514 represents an
expression portion. Textually, a fact portion 508 may be represented by: e
verbphrase.

[0056] Each e or expression portion 514 may take on one of two
example options. These two example expression options are: a constant 514(c)
and a variable 514(v). Principals may fall under constants 514(c¢c) and/or
variables 514(v).

[0057] Each verb phrase portion 516 may also take on one of three
example options. These three example verb phrase options are: a predicate

portion 518 followed by one or more e, , portions 514(1...n), a can assert
portion 520 followed by a fact portion 508, and an alias portion 522 followed
by an expression portion 514. Textually, these three verb phrase options may
be represented by: predicate e, ... e,, can assert fact, and alias e, respectively.

The 1nteger “n” may take different values for facts 508(1...n) and expressions
514(1...n).
[0058] Generally, SecPAL statements are in the form of assertions made

by a security principal. Security principals are typically identified by

16

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

cryptographic keys so that they can be authenticated across system boundaries.
In their simplest form, an assertion states that the principal believes a fact is
valid (e.g., as represented by a claim 506 that includes a fact portion 508).
They may also state a fact 1s valid if one or more other facts are valid and some
set of conditions are satisfied (e.g., as represented by a claim 506 that extends
from a fact portion 508 to an if portion 510 to conditional fact portions

508(1...n) to a ¢ portion 512). There may also be conditional facts SO8(1...n)

without any constraints 512 and/or constraints 512 without any conditional
facts 508(1...n).

[0059] In a described implementation, facts are statements about a
principal. Four example types of fact statements are described here in this
section. First, a fact can state that a principal has the right to exercise an

3

action(s) on a resource with an “action verb”. Example action verbs include,
but are not limited to, call, send, read, list, execute, write, modify, append,
delete, nstall, own, and so forth. Resources may be identified by universal
resource indicators (URISs) or any other approach.

[0060] Second, a fact can express the binding between a principal
identifier and one or more attribute(s) using the “possess” verb. Example
attributes include, but are not limitéd to, email name, common name, group
name, role title, account name, domain name server/service (DNS) name,
internet protocol (IP) address, device name, application name, organization
name, service name, account identification/identifier (ID), and so forth. An

example third type of fact 1s that two principal identifiers can be defined to

represent the same principal using the “alias’ verb.

17

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

[0061] “Qualifiers” or fact qualifiers may be included as part of any of
the above three fact types. Qualifiers enable an assertor to indicate
environmental parameters (e.g., time, principal location, etc.) that it believes
should hold 1t the fact 1s to be considered valid. Such statements may be
cleanly separated between the assertor and a relying party’s validity checks
based on these qualifier values.

[0062] An example fourth type of fact is defined by the “can assert”
verb. This “can assert” verb provides a flexible and powerful mechanism for
expressing trust relationships and delegations. For example, 1t allows one
principal (A) to state 1ts willingness to believe certain types of facts asserted by
a second principal (B). For instance, given the assertions “A4 says B can assert
fact0” and “B says fact0”, 1t can be concluded that A believes fact0 to be valid
and theretfore 1t can be deduced that “A says fact(”.

[0063] Such trust and delegation assertions may be (1) unbounded and
transitive to permit downstream delegation or (11) bounded to preclude
downstream delegation. Although qualifiers can be applied to “can assert” type
facts, omitting support for qualifiers to these “can assert” type facts can
significantly simplify the semantics and evaluation safety properties of a given
security scheme.

[0064] In a described implementation, concrete facts can be stated, or
policy expressions may be written using variables. The variables are typed and
may either be unrestricted (e.g., allowed to match any concrete value of the
correct type) or restricted (e.g., required to match a subset of concrete values

based on a specified pattern).

18

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

[0065] Security authorization decisions are based on an evaluation
algorithm (e.g., that may be conducted at authorization engine 218) of an
authorization query against a collection of assertions (e.g., an assertion context)
from applicable security policies (e.g., a security policy 220) and security
tokens (e.g., one or more security tokens 204). Authorization queries are
logical expressions, which may become quite complex, that combine facts
and/or conditions. These logical expressions may include, for example, AND,
OR, and/or NOT logical operations on facts, either with or without attendant
conditions and/or constraints.

[0066] This approach to authorization queries provides a flexible
mechanism for defining what must be known and valid before a given action is
authorized. Query templates (e.g., from authorization query table 224) form a
part of the overall security scheme and allow the appropriate authorization
query to be declaratively stated tor ditfferent types of access requests and other

operations/actions.

EXAMPLE IMPLEMENTATIONS FOR
SECURITY AUTHORIZATION QUERIES
[0067] Existing security policy languages follow one of two approaches.
Some prevent the use of negations in all ways and at all times. This approach
does reduce the attendant inconsistencies and uncertainties that can arise from
negations. However, it 1s also limiting mnasmuch as many security scenarios
are rendered far more difficult to handle and some security scenarios simply
cannot be handled at all. The other approach places no limitations on the use of
negations. Although this approach i1s more flexible, 1t presents the possibility

of establishing security policies that are convoluted or even nondeterministic.

19

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

[0068] In contrast, a described implementation creates a security scheme
with multiple levels. In a bifurcated security scheme implementation, for
example, there are two levels. A first level forbids the use of negations. This
can be enforced using, for example, validations on syntax. A second level
permits the use of negations. This bifurcated security scheme combines the
safety and certainty of ensuring that security assertions are tractable and
determinable with the flexibility of handling exclusionary security rules.

[0069] FIG. 6 1s a block diagram illustrating an example bifurcated
security scheme 600 having a first level and a second level. As illustrated, the
first level comprises an assertion level 602, and the second level comprises a
query level 604. Assertion level 602 includes multiple assertions 606 and a
syntactic validator 614. Query level 604 includes an example authorization
query 616 having multiple parts. Examples for these multiple parts include, but
are not limited to, asserted facts 608 and logical operators 610 and 612.

[0070] In a described implementation, assertion level 602 is populated
with assertions 606. Assertions 606 may be any type of declarative security
statement at the assertion level. Examples of assertions 606 include, but are
not limited to, token assertions and policy assertions. (These two assertion
types are illustrated separately and explicitly in FIG. 7.) Negations are not
allowed within security assertions 606. Syntactic validator 614 analyzes each
assertion 606 to check 1f a negation 1s present. If a negation 1s present within a
given assertion 606, then the given assertion 606 is rejected or disallowed.
[0071] Query level 604 1s populated with authorization queries such as
example authorization query 616. Authorization queries of query level 606 are

permitted to include negations, such as NOT operator 612. Authorization

20

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

queries may be structured in any manner. Although not specifically shown in
FIG. 6, authorization queries may in general include one or more logical
constraints.

[0072] In example authorization query 616, the query is structured as a
Boolean logical operation. Such Boolean logical operations may include any
number of asserted facts 608, any number of logical operators, and so forth.
The asserted facts, logical operators, etc. may be combined 1in any manner.
Example logical operators include, but are not limited to, AND, OR, NOT, and
so forth. As 1llustrated, example authorization query 616 includes: three
asserted facts 608, two AND operators 610, and one NOT operator 612.

[0073] Whether or not an asserted fact 608 1s true depends on whether or
not a valid matching assertion 606 can be deduced. After this matching
determination procedure 1s completed, the resulting logical Boolean operation
1s evaluated. In the case of example authorization query 616, NOT operator
612 1s applied to the TRUE/FALSE determination of the far right asserted fact
6038 prior to applying AND operators 610. If the overall Boolean operation 1s
evaluated to TRUE, then the authorization decision i1s affirmative. If the
overall evaluation of the Boolean operation 1s FALSE, then the authorization
decision is negative.

[0074] An example interrelationship between assertions 606 and
authorization queries (e.g., example authorization query 616) is presented
below 1n the description of FIGS. 7-10. An authorization query 1s ascertained

responsive to a request, which may include or otherwise be associated with one

or more assertions 606. The authorization query is then evaluated in

21

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

conjunction with an overall assertion context, which includes assertions 606.
The assertion context typically includes token assertions and policy assertions.
[0075] FIG. 7 1s a general block diagram 700 illustrating an example
authorization query ascertainment and an example authorization query
evaluation. Block diagram 700 includes a number of the security-related
components from FIGS. 2 and 3. As 1llustrated, it includes an authorization
context 212, a resource guard 214, an authorization engine 218, and a security
policy 220. Security policy 220 contains an authorization query table 224.
Authorization engine 218 includes an evaluation algorithm 708.

[0076]} In a described implementation, authorization context 212
includes an assertion context 702. Assertion context 702 is a collection of
assertions 606. Specifically, assertion context 702 includes token assertions
606T and policy assertions 606P. Token assertions 606T derive from a
security token (e.g., security token 204 of FIGS 2 and 3). The security token
may be passed as part of and/or along with a resource access request. Policy
assertions 606P dertve from a trust and authorization policy (e.g., a trust and
authorization policy 222 module (of FIG. 2) of security policy 220).

[0077} Assertion context 702 1s forwarded to resource guard 214. A
request 704 1s presented to resource guard 214, Request 704 is a request to
access some resource. Resource guard 214 translates the request into an
operation. The operation 1s provided to authorization query table 224.
Authorization query table 224 maps resource-specific operations to
authorization queries. In an example implementation, each operation is
associated with a single authorization query. In response to the provided

operation, security policy 220 ascertains the associated authorization query 706

22

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

and returns authorization query 706 to resource guard 214. Ascertaining
authorization query 706 using an authorization query table 224 1s described
further herein below with particular reterence to FI1G. 8.

[0078] Hence, resource guard 214 includes both assertion context 702
and authorization query 706. Resource guard 214 forwards assertion context
702 and authorization query 706 to evaluation algorithm 708 of authorization
engine 218. Evaluation algorithm 708 comprises logic that 1s capable of
evaluating authorization query 706 in conjunction with assertion context 702.
The logic may be implemented with hardware, software, firmware, some
combination thereof, and so forth.

[0079] Thus, assertion context 702 1s applied to authorization query 706
in evaluation algorithm 708. After a logical analysis, evaluation algorithm 708
produces an authorization decision 710. Evaluating an authorization query 706
in conjunction with an assertion context 702 1s described further herein below
with particular reference to F1G. 9.

[0080] Generally, a security language having the characteristics as
described herein makes complex access control criteria relatively simple to
write in a declarative manner and relatively simple to understand. It 1s
compatible with any authorization algorithm that exposes a set of valid facts
deduced based on an input policy and authenticated requestor data. As
described further herein, it is based on the concept of an authorization query
that is combined with an authorization decision algorithm in conjunction with
an assertion context.

[0081] In a described implementation generally, an authorization query

includes a set of asserted facts along with a constraint. The asserted facts are of

23

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

the form “A says fact”. They express a requirement that a matching valid
assertion can be deduced (e.g., from the assertion context). If such a matching
valid assertion 1s known, then the asserted fact 1s satisfied and evaluates to the
Boolean wvalue True; otherwise, 1t evaluates to False. (In some
implementations, the assertor of the fact may be known implicitly based on the
evaluation context. In these cases, it may be omitted.) A constraint is an
expression that returns a Boolean value. This may include variables used in the
asserted facts as well as references to environmental values (e.g., time,
location, etc.). The constraint 1s typically used to express variable equalities
and 1nequalities.

[0082] There 1s at least one asserted fact in each query. If multiple
asserted tacts are present, they may be combined using logical operators such
as AND, OR, and NOT. The optional constraint 1s logically ANDed with the
asserted facts.

[0083] A consequence of this approach is that the basic access control
policy may be written 1n terms of positive statements about the access each
principal 1s authorized without concern for the higher level structural
requirements. Thus, in multiple principal policies, one can write each policy
stating what rights to a resource each principal should potentially have. Such
security policies are monotonic in the sense that the addition of new policy
statements does not remove any existing access right. Moreover, one can write
positive access policies indicating what rights a principal has to a set of
resources without worrying about potential conflicts or inconsistencies. The
authorization query provides the higher level semantics for combining these

access control rules.

24

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

[0084] For example, if one required (1) a user with a “fabrikam.com”
email address and (11) the application with code digest value “ABC” to grant
read access to “Foo”, the access control rules may be written as follows:
A says p read Foo 1if p possess r{(emailName,
*(@fabrikam.com)}
A says p read Foo 1f p possess r{digest, ABC}
To ensure both a user and an application are authenticated requestors, an
example authorization query 1s:
A says vl read Foo AND A says vl possess
r{(emailName,*)} AND A says v2 read Foo AND A4
says vZ2 possess {(digest,™)}
[0085] Similarly, to require two authorized principals with
“fabrikam.com” email addresses to have requested access to “Foo”, the
following security policy may be written:
A says p read Foo 1if p possess r{(emailName,
*@fabrikam.com)} ,
and 1t may be combined with the following authorization query:

A say pl read Foo AND A says p2 read Foo AND (pl =
p2e) -
In the above authorization query, the portion indicating that the “p1” variable
cannot equal the “p2” variable is a constraint.
[0086] Denies or exclusions may be appropriately handled using this

approach. For example, it is given that members of group 4 have read access

to Foo and members of group B have read access to Bar, but simultaneous

235

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

access is not allowed. One can enable the desired access with a security policy
having two policy assertions written as follows:

A says p read Foo 1if p possess r{(group, A)}

A says p read Bar if p possess r{(group, B)} .
The exclusion can then be enforced using the following authorization query:

(4 says v read Foo OR A says v read BAR) AND NOT (4

says v read Foo AND A says vread BAR) .

In a similar manner, one can exclude being in two roles at the same time,
having multiple access rights (e.g., both read and delete) to a given resource at
the same time, and so forth.
[0087] FIG. 8 is a more-specific block diagram illustrating an example
authorization query ascertainment 800 that 1s responsive to a resource access
request 704. As illustrated, authorization query ascertainment 800 includes a
request 704 having an identified resource 802, a translation function 304, an
operation 806, an authorization query table 224, and an authorization query
706. Authorization query ascertainment 800 involves receiving a request 704

as input and producing an associated authorization query 706 as output.
[0088] In a described implementation, request 704 1s a request to access

some identified resource 802. Request 704 is translated via a translation
function 804 into a resource-specific operation 806. This translation function
804 may be performed by, for example, resource guard 214 (ot FIG. 7).
Examples of resource-specific operations include, by way ot example but not
limitation, (i) reading and/or writing a file, (11) sending data through a
communications port, (ii1) utilizing a processor, (1v) executing an application,

and so forth.

26

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

[0089] Generally, operation 806 is provided to authorization query table
224. Security policy 220, for example, may be responsible for applying
operation 806 to authorization query table 224 and retrieving the associated
authorization query 706. Authorization query 706 is produced as a result and
returned to resource guard 214.

[0090] More specifically, authorization query table 224 includes
multiple fields 808. Each field 808 maps a resource-specific operation to an
associated authorization query template. As illustrated, there are “f”, with “t”
being some integer, fields 808(1), 808(2) ... 808(f) in authorization query table
224. A retrieved authorization query template 1s returned to resource guard
214. Resource guard 214 then performs a substitution procedure to produce
authorization query 706. In other words, to create authorization query 700,
resource guard 214 substitutes the actual requesting principal, the actual
requested resource, etc. into predetermined corresponding slots of the
associated authorization query template.

[0091] FIG. 9 is a more-specific block diagram illustrating an example
authorization query evaluation 708* given an assertion context 702*. As

described generally above with reference to FIG. 7, evaluation algorithm 708

receives an authorization query 706 and an assertion context 702. In the

specific example authorization evaluation 708* of FIG. 9, a specific example
authorization query 706* is evaluated in conjunction with a specific example

assertion context 702*. Actual assertion contexts 702, authorization queries
706, and evaluation algorithms 708 may differ from these examples.
[0092] As illustrated, example authorization query evaluation 708%

includes an example assertion context 702*, an example authorization query

27

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

706*, a resulting Boolean operation 910, and an answer 912. Assertion context
702* 1ncludes (1) three token assertions 606T-1, 606T-2, and 606T-3 and (11)
two policy assertions 606P-1 and 606P-2. Example authorization query 706*
includes three asserted facts 608-1, 608-2, and 608-3; two AND operators 610;
one NOT operator 612; and one constraint 902.

[0093] During an evaluation, authorization engine 218 (of FIG. 7)
attempts to determine 1f a valid matching assertion 606 can be deduced for each
asserted fact 608 of authorization query 706*. This matching determination
process may be iterative, recursive, and/or branching as one valid assertion
leads to another possibly-valid assertion. After some definite period of time,
the matching determination process converges.

[0094] Example authorization query evaluation 708* of FIG. 9 illustrates
a simplified evaluation algorithm to facilitate a general understanding of the
conceptual underpinnings of evaluating an authorization query. A more
specific and technically accurate explanation 1s presented below after the
description of FIG. 9. Moreover, a relatively-rigorous, logical description of an

example implementation 1s presented herein below after the description of FIG.
10.

[0095] In example authorization query evaluation 708%*, 1t 1s determined
by authorization engine 218 that token assertion 606T-2 1s valid and matches
904 asserted fact 608-1. It 1s also determined that policy assertion 606P-2 is
valid and matches 906 asserted fact 608-2 and that token assertion 606T-3 1s
valid and matches 908 asserted fact 608-3. Although token assertion 606T-1
and policy assertion 606P-1 do not explicitly match a particular asserted fact

608, they may have been used in the matching determination process.

28

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

Additionally, a TRUE/FALSE determination is made with respect to constraint
902.

[0096] After and/or during the matching determination process, a
TRUE/FALSE replacement process is carried out to create a Boolean operation
910. If a particular asserted fact 608 has a matching valid assertion 606, the
particular asserted fact 608 is replaced with “TRUE”. If not, the particular
asserted fact 608 is replaced with “FALSE”. Any constraints 902 are likewise
replaced with their determined “TRUE” or “FALSE” status. Although not
specifically shown with authorization query 706*, constraints 902 are logically
ANDed to the remainder of the authorization query.

[0097] For example authorization query evaluation 708*, authorization
query 706* may be textually indicated as follows: asserted fact 608-1, AND
operator 610, asserted fact 608-2, AND operator 610, NOT operator 612,
asserted fact 608-3, and constraint 902. After the replacement process, the
resulting Boolean operation may be textually indicated as follows: TRUE AND
TRUE AND NOT TRUE AND TRUE. This reduces to: TRUE AND TRUE
AND FALSE AND TRUE, which 1s logically FALSE.

[0098] Consequently, answer 912 for Boolean operation 910 1s
“FALSE”. Hence, authorization decision 710 is to deny the request. If, on the
other hand, there had not been, for example, a matching 908 assertion 606 for
asserted fact 608-3, Boolean operation 910 would have reduced to: TRUE
AND TRUE AND TRUE AND TRUE, which is logically TRUE. In this case,
answer 912 would be “TRUE”, and authorization decision 710 would be to
permit the request. Although not explicitly shown or described, there are other

permutations in which Boolean operation 910 would evaluate to being logically

29

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

FALSE (e.g., if 1t were determined that there 1s no valid and matching 906
assertion 606 for asserted fact 608-2).

[0099] A more technically accurate example 1mplementation {for
evaluating an authorization query is described here. Firstly, the asserted facts
inside an authorization query are evaluated one at a time, and not necessarily
all at once prior to a complete replacement process. Secondly, the evaluation
of a single asserted fact inside an authorization query returns a set of variable
substitutions that make the asserted fact true. Thus, 1n general, the returned
value 1s not immediately a TRUE/FALSE status because facts are actually
denoted as having a TRUE/FALSE status with respect to a given variable
substitution.

[0100] If the connective between two asserted facts 1nside an
authorization query 1s AND (as 1s the case in the example of FIG. 9), the
returned value (1.e., the set of substitutions) of the fact on the left hand side 1s
applied to the fact on the right hand side. Afterwards, the fact on the right hand
side 1s evaluated as necessary. The resulting sets of substitutions are then

combined by substitution composition. A result of evaluating the entire
authorization query is a set of substitutions, each substitution of the set of
substitutions capable of making the authorization query true.

[0101] FIG. 10 1s a flow diagram 1000 that illustrates an example of a

method for ascertaining and evaluating an authorization query. Flow diagram

1000 includes eleven (11) blocks 1002-1022. Although the actions of flow
diagram 1000 may be performed in other environments and with a variety of
hardware/software/firmware combinations, some of the features, components,

and aspects of FIGS. 1-9 are used to illustrate an example of the method. For

30

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

example, a resource guard 214, an authorization query table 224, and/or an
authorization engine 218 may separately or jointly implement the actions of
flow diagram 1000.

[0102] In a described implementation, at block 1002, a request to access
a resource 1s received. For example, a request 704 that identifies a resource
802 may be recetved. At block 1004, the request 1s translated to an operation
on resource. For example, a resource guard 214 may translate 804 request 704
Into a resource-specific operation 806.

[0103] At block 1006, the operation 1s provided to an authorization
query table. For example, resource-specific operation 806 may be provided to
authorization query table 224. At block 1008, an authorization query that 1s
associated with the operation is ascertained. For example, a field 808 that
includes resource-specific ;operation 806 may be located. The associated
authorization query may then be retrieved from the located field 806.

[0104] More specifically, the retrieved authorization query may
comprise an authorization query template. The associated authorization query
template 1s converted into the authorization query by substituting actual
principals, resources, etc. into predetermined corresponding slots of the
authorization query template based on the security tokens provided by the
requestor. In an example implementation, resource guard 214, which knows
the actual vanable information from request 704, performs this conversion by
substitution.

[0105] At block 1010, an assertion context and the authorization query

are combined in an evaluation algorithm. For example, an assertion context

31

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

702 and authorization query 706 may be jointly submutted to evaluation
algorithm 708.

[0106] At block 1012, the valid assertions of the assertion context are
matched to asserted facts of the authorization query in a matching
determination process. For example, one or more token assertions 606T and/or
policy assertions 606P, which are deducible from assertion context 702 (1.e.,
originally present therein and/or otherwise derivable there from), that are found
to be valid may be attempted to be matched 904/906/908 to asserted facts 608
in a matching determination process. Any constraint portions 902 of
authorization query 706 are also analyzed to determine whether they are TRUE
or FALSE. As noted above in the technical description, each assertion may be
analyzed separately and/or sequentially.

[0107] At block 1014, a TRUE/FALSE replacement into the
authorization query 1s performed responsive to the matching determination
process. For example, asserted facts 608 that are determined to have a valid
matching assertion 606 may be replaced with TRUE, and asserted facts 608
that are not determined to have a valid matching assertion 606 may be replaced
with FALSE 1n a Boolean operation 910. It should be understood that the
action(s) of block 1014 may be performed in a manner that 1s fully or partially
overlapping with the performance of the action(s) of block 1012.

[0108] At block 1016, the authorization query is logically evaluated. For
example, Boolean operation 910 may be logically evaluated as part of

evaluation algorithm 708 to determine 1if its answer 1s TRUE or FALSE. It

should be understood that a result of Boolean operation 910 may be

32

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

determinable, and indeed may be determined, without replacing each asserted
fact 608 and/or constraint 902 with a TRUE or FALSE status.

[0109] At block 1018, 1t 1s determined 1f the authorization query
logically evaluates to “TRUE”. If so, the authorization decision at block 1020
1s that the request 1s granted. If, on the other hand, i1t 1s determined that the
authorization query logically evaluates to “FALSE”, the authorization decision
at block 1022 1s that the request 1s denied. It should be understood that an
algorithmic evaluation of an authorization query that may have a “TRUE”
status may return a set of variables that renders the authorization query
“TRUE”.

[0110] Security authorization queries may also be described from a
relatively-rigorous, logical perspective. In a described logical implementation
of security authorization queries, authorization requests are decided by
querying an assertion context, which contains local as well as i1mported
assertions. In an example implementation, an authorization query may
comprise a collection of atomic queries of the form A says fact and constraints
c¢. These atomic queries and constraints are combined by logical connectives,

including negation. Example logical connectives include the following:

g == e says fact
| 41,92
| ¢ 01 g>
| not(q)
| C
[0111] The resulting query language is more expressive than in other

logic-based languages where only atomic queries are considered. For example,

33

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

separation of duties, threshold, and denying policies can be expressed by
composing atomic queries with negation and constraints. Negation 1s not
allowed at the assertion level of the language because coupling negation with a
recursive language results in semantic ambiguities, and often to higher
computational complexity or even undecidability. By restricting the use of
negation to the level of authorization queries (rather than adding these features
to the assertion language proper), the negation is effectively separated from
recursion, thereby circumventing the problems usually associated with
negation.

[0112] The semantics of queries are defined by the relation AC,0 |- g. In
the following, let AC be an assertion context. Also, let & be a substitution, and
let ¢ be the empty substitution. Let Dom(6) be the domain of the substitution 6.
It X 1s a phrase of syntax, let Vars(X) be the set of variables occurring in X. An

example formal semantics for authorization queries 1s as follows:

AC.6 I— e says fact it el says fact@ 1s deducible from AC,
and Dom(6) < Vars(e says fact)
ACH,0> Fq1, ¢ if AC,0) | ¢, and AC,6, | ¢.6,
AC6 }-ql or ¢ 1f AC.6 l—ql or AC,H |'Q2
AC e I- not(¢q) 1f AC e I—q does not hold and Vars(qg) = ¢
ACe }e if Vars(c)= 0 and c is valid .
[0113] Given a query ¢ and an authorization context AC, an

authorization algorithm returns the set of substitutions # such that AC,8 } g. If
the query 1s ground, the answer set 1s either empty (meaning “no” the request 1s

denied) or a singleton set containing the empty substitution ¢ (meaning “yes”

34

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

the request 1s granted). If the query contains variables, then the substitutions in
the answer set are the variable assignments that make the query true.
[0114] With regard to authorization query tables, they may be part of the
local security policy and may be kept separate from imperative code. The table
provides an interface to authorization queries by mapping parameterized
method names to queries. Upon a request, the resource guard calls a method
(e.g., 1nstead of 1ssuing a query directly) that gets mapped by the table to an
authorization query, which 1s then used to query the assertion context.
[0115] For example, an authorization query table may contain the
following example mapping:

canAuthorizePayment(requester, payment) :

Admin says requester possesses BankManagerID id,
not(Admin says requester has initiated payment) .

It Alice attempts to authorize the payment Payment47, tor instance, the
resource guard calls canAuthorizePayment(Alice, Payment47), which triggers
the following query:

Admin says Alice possesses BankManagerID id,

not(Admin says Alice has initiated Payment47).
The resulting answer set (e.g., either an empty set if the request should be
denied or a variable assignment for id) 1s returned to the resource guard, which
can then enforce the policy.
[0116] The formal evaluation of security authorization queries may also
be described from a relatively-rigorous, logical perspective. The following
description assumes the existence of another algorithm that returns the set of

substitutions for which a given statement of the form *“e says fact” 1s deducible

35

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

from an authorization context AC. Such an algorithm may, for example, rely
on translating AC into another logical language such as Datalog. The function

AuthAns 4 1s defined on authorization queries as follows:

AuthAnsc(e says fact) = {0 | el says factf 1s deducible from AC

and Dom(6) < Vars(e says fact)}
AuthAnsac(q,, q>) = {6,056, € AuthAns,c(q;) and 8> € AuthAns.c(q-> 6;)}

AuthAns,c(q; or q>) AuthAns o(q>)) AuthAns o(q-)

AuthAns o(not(q)) = { ¢} if Vars(q)= 0 and AuthAns,o(q)= 0
= 0 it Vars(q)= 0 and AuthAns,o(qg)+ 0
= undefined otherwise

AuthAns c(c) = {e} if Vars(c)= 0 and c 1s valid
= 0 it Vars(c)= 0 and c is not valid
= undefined otherwise
[0117] The following theorem shows that AuthAns,c 1s an algorithm for

evaluating safe authorization queries. This theorem represents the finiteness,
soundness, and completeness of authorization query evaluations: For all safe

assertion contexts 4C and safe authorization queries ¢,

1. AuthAns,c(q) 1s defined and finite, and

2. AC, 0 }qiff Oc AuthAnsc (q).

[0118] The devices, actions, aspects, features, functions, procedures,

modules, data structures, protocols, components, etc. of FIGS. 1-10 are

36

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

1llustrated 1n diagrams that are divided into multiple blocks. However, the
order, interconnections, interrelationships, layout, etc. in which FIGS. 1-10 are
described and/or shown are not intended to be construed as a limitation, and
any number of the blocks can be modified, combined, rearranged, augmented,
omitted, etc. in any manner to implement one or more systems, methods,
devices, procedures, media, apparatuses, APIs, protocols, arrangements, etc. for
security authorization queries.

[0119] Although systems, media, devices, methods, procedures,
apparatuses, mechanisms, schemes, approaches, processes, arrangements, and
other implementations have been described in language specific to structural,
logical, algorithmic, and functional features and/or. diagrams, 1t 1S to be
understood that the invention defined in the appended claims is not necessarily
limited to the specific features or acts described above. Rather, the specific
features and acts described above are disclosed as example forms of

implementing the claims.

37

10

15

20

CA 02859932 2014-08-20

51018-148D1

CLAIMS:

1. A computer-implemented method comprising:

receiving a request for access to a resource;

applying a multi-level security scheme to the request for access, the multi-level
security scheme including an assertion level and a query level, wherein the assertion level
disallows an assertion containing a negation, and wherein the query level permits an

authorization query containing at least one negation; and

determining an authorization result for the request, based at least on the

application of the multi-level security scheme.

2. The method of claim 1, further comprising ascertaining the authorization query

by applying an authorization query table to the request.

3. The method of claim 1, wherein the authorization query is an English-language
eXpression.
4. The method of claim 1, further comprising:

translating the request for access to an operation to be performed on the

resource; and

ascertaining the authorization query associated with the operation, based on an

authorization query table included in the multi-level security scheme.

5. The method of claim 4, wherein the authorization query table maps one or

more resource-specific operations to one or more associated authorization queries.

6. The method of claim 1, further comprising auditing the determination of the

authorization result, based on an audit policy.

7. The method of claim 1, wherein the assertion level includes a syntactic

validator for disallowing the assertion containing the negation.
38

10

15

20

CA 02859932 2014-08-20

51018-148D1

8. The method of claim 1, wherein the authorization query is a logical operation.
9. A system, comprising:
one or more processors; and

one or more security components executed by the one or more processors to
implement a multi-level security scheme that includes an assertion level and a query level,

wherein the one or more security components perform actions including:
recelving a request to access a resource;

forming an assertion context at the assertion level, including disallowing an

assertion containing a negation;

ascertaining an authorization query at the query level, based at least on an

authorization query table; and

employing the authorization query and the assertion context to produce an

authorization decision for the request to access the resource.

10. The system of claim 9, wherein the one or more security components include

an audit component that audits the operation of at least one of the other security components.

11. ' The system of claim 9, wherein the actions further include permitting at least

one negation within the authorization query, at the query level.

12. The system of claim 9, wherein the request includes a security token that
includes one or more token assertions, and wherein the actions further include combining the

one or more token assertions with one or more policy assertions to form the assertion context

at the assertion level.

13. The system of claim 9, wherein disallowing the assertion containing the

negation is performed using syntactic validation at the assertion level.

39

10

- 15

20

CA 02859932 2014-08-20

5>1018-148D1

14, The system of claim 9, wherein the authorization query is a logical operation

that includes at least one asserted fact and at least one logical operator.
15. The system of claim 9, wherein the actions further include:
translating the request into an operation to be performed on the resource;

providing the operation to the authorization query table that maps one or more

resource-specific operations to one or more associated authorization queries; and

retrieving the authorization query associated with the operation, based on the

mapping included in the authorization query table.

16. One or more computer-readable storage media, storing instructions that, when

executed, configure one or more processors to perform actions comprising:

recelving a request to access a resource, wherein the request includes a security

token with one or more token assertions;

applying a multi-level security scheme to the request for access, the multi-level

security scheme including a first level and a second level;

determining an assertion context at the first level, based on the one or more

token assertions;

employing syntactic validation to disallow an assertion containing a negation,

at the first level:
ascertaining an authorization query at the second level; and

employing the authorization query and the assertion context to pfoduce an

authorization decision for the request to access the resource.

17. The one or more computer-readable storage media of claim 16, wherein the

actions further comprise auditing one or more of the actions based on an audit policy.

40

CA 02859932 2014-08-20

51018-148D1

18. The one or more computer-readable storage media of claim 16, wherein
determining the assertion context includes combining the one or more token assertions with

one or more policy assertions to form the assertion context.

19. The one or more computer-readable storage media of claim 18, wherein the
one or more policy assertions include at least one of a trust-related assertion and an

authorization-related assertion.

20. The one or more computer readable storage media of claim 16, wherein the

second level permits at least one negation within the authorization query.

41

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

Device
Device 102(d)
102(1)

‘ P

Service Device
108 102(2) Device Resource
102(3 110

———______—__—_——————————————-—_____#

po———— N o ——— ot g ——— N
| Security | | Security | | Evaluation |
| Tokens | | Policies | | Engine |
l
: 100(A) : : 100(B) : : 100(C) |
— e — o wn o’ —— e e — — . — — o o
Security Scheme 100
. e e e e e e e e e o e - — — — — — — — — — — — — — — — — /

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

2/10

Authority
(Security Token

Device 102(A
Service (STS))

202

Security Token

204
Issues

Assertion(s)

206

Application
210

Device 102(B)

Authorization Context Security Policy

212 220
Trust &
Authorization
Policy
Resource Resource Guard .
llQ 21_4 -
Authorization
Audit Log Query Table

216 224

Authorization Engine

218

200 FIG. 2

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

3/10

Device 102(A)

Authority

Security Token Issuance (STS)

204

202

Application

210

Access { Authenticate
Request i wi/ Token
Token

;| Assertions
Resource A B = » AC (A)
o S,
Policy
AcCcess ' A Auth. Query Assertions
Granted DL::t:_. éltjg;y Table
? SP
AE Audit Policy 220
218
&
oo Contrt
AL
216

Device 102(B)

FIG. 3

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

4/10

Network
104

Man-Machine
Interface
Devices

402
(E.g., Keyboard,

Device 102(A/B

Remote, Etc.) lqgrgrfoa lét;)SUt 404 Device
102(d)

Processor(s)

Processor-
Executable 410
Instructions

Security Token 204 Assertion(s) 206

Authorization Context
212

Audit Log
216

Security Policy

Trust &

Authorization Authorization

Query Table
224

FIG. 4

Policy
222

WO 2008/030876

principal
202

principal
202

constant

514(c)

variable

214(v)

500 J

says
504

says
904

rn
- D

CA 02859932 2014-08-20

PCT/US2007/077641
5/10
claim
006
if fact, fact, C
200
510 508(1) 908(n) 512
i Legend 24

verbphrase
216

predicate
218

can assert fact
220 208

alias ¢
1

e — expression
¢ — constraint

'.--.'..-.-.... £

4
‘wereevessessesacncncsnasccsovane?

Example
Assertion

Format

LR B R R § 3 N %L X B N _J

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

Assertion Level 602
Assertion Assertion Assertion Assertion
606 606 606 606
Syntactic Validator
614

Negatlons Not Allowed
in Security Assertions

W_—_m

Query Level
Asserted |1aAND|| Asserted [[ANDII NOT || Asserted
Fact Fact Fact
608 || &2 608
uthorlzatlon Authorization Queries Authorization Query
616
Bifurcated Security Scheme 60
e e e e . . —— — — — — — —— —— — — — . — o — — — — /

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

7110

Auth. Context 212

Assertion
Context

Token
Assertions

Policy
Assertions

6061

606P

{ Assertion
Context }

702

Resource Guard
214

Security Policy 220

Request Operation

Authorization
224

Authrztn.
Query

106

{ Assertion Authorization Engine
Context } 218

702 Assertion Context

Authrztn.Query I

Authrztn.
Query

706

Evaluation
Algorithm

Authrzin.

708

Decision
710

700_f FIG 7 Example Authorization Que

Ascertainment and Evaluation

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

8/10
Request 704
ldentified
Resource
802 N\
Translation
804
(E.g., by
| Resource Guard)
Operation 806
ldentified
Resource
802
Authorization Query Table 22

Operation «— Autho;rezr?]t;?:t;)uery 808(1)

Operation -« A“thoTrZr?]tF')‘l’:tguery 808(2)

Authorization Query

Operation < —) Template 808(f)

Authorization
Query Example
706 Ascertainment
of

800J Authorization
F I G . 8 Query

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

9/10

Policy

Token Assertion

Assertion

Token 606T-3 e
Assertion
Assertion
Context 0611
. Policy
702" Assertion
P-2 908
Token b2
Assertion
606T-2
906
Author-
ization AND|| Asserted [[AND|] NOT || Asserted c
Query Fact Fact
010 | e08-2 |/&10|| €12 || 608-3 902
706"

Boolean
Operation TRUE |HAND|| TRUE [||AND}| NOT TRUE ||AND{| TRUE
910 608-1 |l 610 || 608-2 |[610| 612 || 608-3 || 610 || 902

Authorization
Decision:
Deny
Request
708*J 10
Example
Authorization Query
Evaluation F I G . 9

CA 02859932 2014-08-20

WO 2008/030876 PCT/US2007/077641

10/10
1002

Receive request to access resource e

1004 1010

Combine assertion context (AC) and
authorization query in evaluation
algorithm

Translate request to operation on
resource

1006

Match valid assertions of AC to
asserted facts of authorization query

Provide operation to authorization
query table

1008 1014

Perform TRUE/FALSE replacement
Into authorization query responsive to
matching determination process

Ascertain authorization query

associated with operation

1016

Logically evaluate authorization query

1022 1018

Authorization query
logically evaluate
to TRUE ?

Authorization Decision: No

Deny Request

Yes

1020

Authorization Decision:

Authorization Grant Request
Quegy
Ascertainment

and
Evaluation

FIG. 10 o

Assertion LN 602
| Assertion Assertion Assertion Assertion
606 606 606 606

{ Negations Not Allow Syntactic Validator
in Security Assertions
814

60

Query Level

—

Asserted {(anD|| Asserted [|anD|INOT || Asserted

Fact Fact Fact
810 608 610 |1 612 808

{ Authorization Queries

Example
Authorization Query

gl1o

I e T —

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - abstract drawing

