

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2015355328 B2

(54) Title
Non-human animals having a humanized cluster of differentiation 47 gene

(51) International Patent Classification(s)
A01K 67/027 (2006.01) **G01N 33/50** (2006.01)
C07K 14/705 (2006.01)

(21) Application No: **2015355328** (22) Date of Filing: **2015.11.25**

(87) WIPO No: **WO16/089692**

(30) Priority Data

(31) Number **62/087,992** (32) Date **2014.12.05** (33) Country **US**

(43) Publication Date: **2016.06.09**
(44) Accepted Journal Date: **2022.03.10**

(71) Applicant(s)
Regeneron Pharmaceuticals, Inc.

(72) Inventor(s)
Gurer, Cagan;Ioffe, Ella;Mujica, Alexander;Thurston, Gavin

(74) Agent / Attorney
Phillips Ormonde Fitzpatrick, PO Box 323, COLLINS STREET WEST, VIC, 8007, AU

(56) Related Art
WO 2007033221 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

WIPO | PCT

(10) International Publication Number

WO 2016/089692 A1

(43) International Publication Date

9 June 2016 (09.06.2016)

(51) International Patent Classification:

A01K 67/027 (2006.01) C07K 14/705 (2006.01)
G01N 33/50 (2006.01)

(21) International Application Number:

PCT/US2015/062614

(22) International Filing Date:

25 November 2015 (25.11.2015)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/087,992 5 December 2014 (05.12.2014) US

(71) Applicant: REGENERON PHARMACEUTICALS, INC. [US/US]; 777 Old Saw Mill River Road, Tarrytown, NY 10591-6707 (US).

(72) Inventors: GURER, Cagan; c/o Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591-6707 (US). IOFFE, Ella; c/o Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591-6707 (US). MUJICA, Alexander; c/o Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591-6707 (US). THURSTON, Gavin; c/o Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591-6707 (US).

(74) Agent: GROLZ, Edward, W.; Scully, Scott, Murphy & Presser, 400 Garden City Plaza, Suite 300, Garden City, NY 11530 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))
- with amended claims (Art. 19(1))
- with sequence listing part of description (Rule 5.2(a))

WO 2016/089692 A1

(54) Title: NON-HUMAN ANIMALS HAVING A HUMANIZED CLUSTER OF DIFFERENTIATION 47 GENE

(57) Abstract: Non-human animals, and methods and compositions for making and using the same, are provided, wherein said non-human animals comprise a humanization of an endogenous cluster of differentiation (CD) gene, in particular a humanization of a CD47 gene. Said non-human animals may be described, in some embodiments, as having a genetic modification to an endogenous CD47 gene so that said non-human animals express a CD47 polypeptide that includes a human portion and a non-human portion (e.g., a murine portion).

NON-HUMAN ANIMALS HAVING A HUMANIZED CLUSTER OF DIFFERENTIATION 47 GENE

CROSS-REFERENCE TO RELATED APPLICATIONS

[001] This application claims the benefit of U.S. Provisional Patent Application Serial No. 62/087,992, filed December 5, 2014, which is incorporated herein by reference in its entirety.

INCORPORATION BY REFERENCE OF SEQUENCE LISTING

[002] The Sequence Listing in the ASCII text file, named as 32584_10108WO01_SequenceListing.txt of 96.0 KB, created on November 23, 2015, and submitted to the United States Patent and Trademark Office via EFS-Web, is incorporated herein by reference.

BACKGROUND

[003] Cancer therapy can be separated into four main categories: chemo/radio therapy, hormone therapy, targeted therapy, and immunotherapy. An intense focus of medical research and development has focused on targeted therapy and significant improvements have been made, yet cancer remains a major challenge to patients and to the healthcare industry worldwide. This major challenge is due, in part, to the ability of cancer cells to evade the monitoring mechanisms of the innate and adaptive immune systems, which is partly the result of inhibition of phagocytic clearance. Currently, no *in vivo* system exists to optimally determine the therapeutic potential of new cancer therapies that are designed to activate phagocytic clearance of cancer cells and determine the molecular aspects of how cancer cells provide inhibitory signals to macrophages and phagocytic cells. Such a system provides a source for assays in phagocytosis and macrophage functions *in vivo*, and identification of new cancer therapies that are targeted at providing an anti-tumor environment by promoting pro-phagocytic signals to the immune system.

SUMMARY

[004] The present invention encompasses the recognition that it is desirable to engineer non-human animals to permit improved systems for identifying and developing new cancer therapeutics. The present invention also encompasses the recognition that it is desirable to engineer non-human animals to permit improved engraftment of human hematopoietic stem cells. Further, the present invention also encompasses the recognition that non-human animals having a humanized CD47 gene and/or otherwise expressing, containing, or producing a human or humanized CD47 polypeptide are desirable, for example for use in identifying and developing cancer therapeutics that overcome systemic toxicity associated with blockade of CD47 and overcome CD47-mediated inhibition of phagocytosis of tumor cells, and provide a more efficient *in vivo* system for engraftment of human hematopoietic stem cells that provides an increase in homeostasis of a broader number of human cell types.

[005] In some embodiments, the present invention provides a non-human animal having a genome comprising a CD47 gene that includes genetic material from two different species (e.g., a human and a non-human). In some embodiments, the CD47 gene of the non-human animals as described herein encodes a CD47 polypeptide that contains human and non-human portions, wherein the human and non-human portions are linked together and form a functional CD47 polypeptide.

[006] In some embodiments, a non-human animal of the present invention comprises a CD47 gene that comprises an endogenous portion and a human portion, wherein the endogenous and human portions are operably linked to an endogenous promoter.

[007] In some embodiments, an endogenous portion comprises exon 1 and the exons downstream of exon 7 of an endogenous CD47 gene. In some certain embodiments, exon 1 and the exons downstream of exon 7 of an endogenous CD47 gene are at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% identical to the corresponding exon 1 and the exons downstream of exon 7 of a mouse CD47 gene that appears in Table 3. In some embodiments, exon 1 and the exons downstream of exon 7 of an endogenous CD47 gene

are identical to the corresponding exon 1 and the exons downstream of exon 7 of a mouse CD47 gene that appears in Table 3.

[008] In some embodiments, a human portion encodes amino acids 16-292 of a human CD47 polypeptide. In some embodiments, a human portion encodes amino acids 19-292 of a human CD47 polypeptide. In some embodiments, a human portion encodes amino acids 19-141 of a human CD47 polypeptide. In some embodiments, a human portion encodes amino acids 19-127 of a human CD47 polypeptide. In some embodiments, a human portion comprises exons 2-7 of a human CD47 gene.

[009] In some embodiments, exons 2-7 of a human CD47 gene are at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% identical to the corresponding exons 2-7 of a human CD47 gene that appears in Table 3. In some embodiments, exons 2-7 of a human CD47 gene are identical to the corresponding exons 2-7 of a human CD47 gene that appears in Table 3.

[010] In some embodiments, a non-human animal of the present invention expresses a CD47 polypeptide comprising an extracellular portion of a human CD47 polypeptide and an intracellular portion of an endogenous CD47 polypeptide. In some embodiments, a CD47 polypeptide comprises a transmembrane portion of a human CD47 polypeptide. In other embodiments, a CD47 polypeptide comprises a transmembrane portion of a non-human CD47 polypeptide. In some embodiments, a CD47 polypeptide is translated in a cell of a non-human animal with a non-human signal peptide. In some certain embodiments, a non-human signal peptide is a rodent (e.g., a mouse or a rat) signal peptide.

[011] In some embodiments, a CD47 polypeptide of the present invention is expressed from an endogenous non-human CD47 gene.

[012] In some embodiments, an intracellular portion of an endogenous CD47 polypeptide comprises an intracytoplasmic tail that has an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% identical to an intracytoplasmic tail of a mouse CD47 polypeptide that appears in Table 3. In some embodiments, an intracellular portion of the endogenous CD47 polypeptide comprises an intracytoplasmic tail that has an amino

acid sequence that is identical to an intracytoplasmic tail of a mouse CD47 polypeptide that appears in Table 3.

[013] In some embodiments, an extracellular portion of a human CD47 polypeptide comprises amino acids corresponding to residues 19-141 of a human CD47 polypeptide. In some embodiments, an extracellular portion of a human CD47 polypeptide comprises amino acids corresponding to residues 19-127 of a human CD47 polypeptide. In some embodiments, the extracellular portion of a human CD47 polypeptide comprises an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% identical to a corresponding amino acid sequence of an extracellular portion of a human CD47 polypeptide that appears in Table 3. In some embodiments, an extracellular portion of a human CD47 polypeptide comprises an amino acid sequence that is identical to a corresponding amino acid sequence of an extracellular portion of a human CD47 polypeptide that appears in Table 3.

[014] In some embodiments, the present invention provides a CD47 polypeptide encoded by the CD47 gene of a non-human animal as described herein. In some certain embodiments, an encoded CD47 polypeptide comprises an amino acid sequence that is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% identical to SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19 or SEQ ID NO: 20. In some certain embodiments, an encoded CD47 polypeptide comprises an amino acid sequence that is identical to SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19 or SEQ ID NO: 20.

[015] In some embodiments, the present invention provides a humanized CD47 gene comprising one or more exons of a non-human CD47 gene operably linked to one or more exons of a human CD47 gene. In some certain embodiments, a humanized CD47 gene of the present invention comprises non-human exons that encode an intracellular portion of a CD47 polypeptide and human exons that encode an extracellular portion of a human CD47 polypeptide. In some embodiments, a humanized CD47 gene also comprises human exons that encode a transmembrane portion of a human CD47 polypeptide. In some certain embodiments, a humanized CD47 gene of the present invention comprises non-human

exons that encode a signal peptide, in whole or in part, and an intracellular portion of a CD47 polypeptide, and human exons that encode an extracellular portion and optionally a transmembrane portion of a CD47 polypeptide.

[016] In some embodiments, the present invention provides an isolated cell or tissue from a non-human animal as described herein. In some embodiments, the present invention provides an isolated cell or tissue comprising a CD47 gene as described herein. In some embodiments, a cell is selected from a dendritic cell, lymphocyte (e.g., a B or T cell), macrophage and a monocyte. In some embodiments, a tissue is selected from adipose, bladder, brain, breast, bone marrow, eye, heart, intestine, kidney, liver, lung, lymph node, muscle, pancreas, plasma, serum, skin, spleen, stomach, thymus, testis, ovum, and a combination thereof.

[017] In some embodiments, the present invention provides a non-human embryonic stem cell whose genome comprises a CD47 gene as described herein. In some embodiments, a non-human embryonic stem cell is a mouse embryonic stem cell and is from a 129 strain, C57BL/6 strain or a BALB/c strain. In some embodiments, a non-human embryonic stem cell is a mouse embryonic stem cell and is from a mixture of 129 and C57BL/6 strains.

[018] In some embodiments, the present invention provides the use of a non-human embryonic stem cell as described herein to make a non-human animal. In some certain embodiments, a non-human embryonic stem cell is a mouse embryonic stem cell and is used to make a mouse comprising a CD47 gene as described herein. In some certain embodiments, a non-human embryonic stem cell is a rat embryonic stem cell and is used to make a rat comprising a CD47 gene as described herein.

[019] In some embodiments, the present invention provides a non-human embryo comprising, made from, obtained from, or generated from a non-human embryonic stem cell comprising a CD47 gene as described herein. In some certain embodiments, a non-human embryo is a rodent embryo. In some embodiments, a rodent embryo is a mouse embryo. In some embodiments, a rodent embryo is a rat embryo.

[020] In some embodiments, the present invention provides a method of making a non-human animal that expresses a CD47 polypeptide from an endogenous CD47 gene, wherein the CD47 polypeptide comprises a human sequence, the method comprising

inserting a genomic fragment into an endogenous CD47 gene in a non-human embryonic stem cell, said genomic fragment comprising a nucleotide sequence that encodes a human CD47 polypeptide in whole or in part; obtaining a non-human embryonic stem cell comprising an endogenous CD47 gene that comprises the nucleotide sequence that encodes a human CD47 polypeptide in whole or in part; and creating a non-human animal using the non-human embryonic stem cell comprising said nucleotide sequence that encodes a human CD47 polypeptide in whole or in part.

[021] In some embodiments, a human sequence comprises amino acids corresponding to residues 19-141 (or 19-292) of a human CD47 polypeptide. In some embodiments, a human sequence comprises amino acids corresponding to residues 19-127 of a human CD47 polypeptide.

[022] In some embodiments, a nucleotide sequence comprises exons 2-7 of a human CD47 gene. In some embodiments, a nucleotide sequence comprises one or more selection markers. In some embodiments, a nucleotide sequence comprises one or more site-specific recombination sites.

[023] In some embodiments, the method further comprises a step of inserting a genomic fragment into an endogenous SIRP α gene of a non-human embryonic stem cell, said genomic fragment comprising a nucleotide sequence that encodes a human SIRP α polypeptide in whole or in part (e.g., encodes an extracellular portion of a human SIRP α polypeptide). In some certain embodiments, a genomic fragment comprising a nucleotide sequence that encodes a human SIRP α polypeptide in whole or in part (e.g., encodes an extracellular portion of a human SIRP α polypeptide) is inserted into an endogenous SIRP α gene of the non-human embryonic stem cell prior to an insertion into an endogenous CD47 gene.

[024] In some embodiments, the method further comprises breeding a non-human animal comprising an endogenous CD47 gene that includes a nucleotide sequence that encodes a human CD47 polypeptide, in whole or in part, with a second non-human animal, said second non-human animal having a genome comprising a SIRP α gene that encodes a SIRP α polypeptide comprising an extracellular portion of a human SIRP α polypeptide

(e.g., amino acids corresponding to residues 28-362 of a human SIRP α polypeptide) and an intracellular portion of an endogenous SIRP α polypeptide.

[025] In some embodiments, the present invention provides a method of providing a non-human animal whose genome comprises a CD47 gene that encodes an extracellular portion of a human CD47 polypeptide linked to an intracellular portion of an endogenous CD47 polypeptide, the method comprising modifying the genome of a non-human animal so that it comprises a CD47 gene that encodes the extracellular portion of a human CD47 polypeptide linked to the intracellular portion of an endogenous CD47 polypeptide thereby providing said non-human animal. In some embodiments, a CD47 gene encodes a CD47 polypeptide that comprises an extracellular portion and a transmembrane portion of a human CD47 polypeptide linked to an intracellular portion of an endogenous non-human CD47 polypeptide. In other embodiments, a CD47 gene encodes a CD47 polypeptide that comprises an extracellular portion of a human CD47 polypeptide linked to a transmembrane portion and an intracellular portion of an endogenous non-human CD47 polypeptide.

[026] In some embodiments, the modifying the genome of a non-human animal is performed in a non-human embryonic stem cell. In some certain embodiments, the non-human embryonic stem cell is a rodent embryonic stem cell; in some embodiments, a mouse embryonic stem cell; in some embodiments, a rat embryonic stem cell.

[027] In some embodiments, the method further comprises modifying the genome of the non-human animal so that it comprises a SIRP α gene that encodes the extracellular portion of a human SIRP α polypeptide (e.g., amino acids corresponding to residues 28-362 of a human SIRP α polypeptide) linked to the intracellular portion of an endogenous SIRP α polypeptide. In some certain embodiments, the modifying the genome of the non-human animal so that it comprises a SIRP α gene that encodes the extracellular portion of a human SIRP α polypeptide (e.g., amino acids corresponding to residues 28-362 of a human SIRP α polypeptide) linked to the intracellular portion of an endogenous SIRP α polypeptide is performed prior to modifying the genome of the non-human animal so that it comprises a CD47 gene that encodes the extracellular portion and optionally a transmembrane portion

of a human CD47 polypeptide linked to the intracellular portion of an endogenous CD47 polypeptide.

[028] In some embodiments, the method further comprises breeding a non-human animal whose genome comprises a CD47 gene that encodes an extracellular portion of a human CD47 polypeptide linked to an intracellular portion of an endogenous CD47 polypeptide with a second non-human animal, said second non-human animal having a genome comprising a SIRP α gene that encodes a SIRP α polypeptide comprising an extracellular portion of a human SIRP α polypeptide (e.g., amino acids corresponding to residues 28-362 of a human SIRP α polypeptide) and an intracellular portion of an endogenous SIRP α polypeptide.

[029] In some embodiments, the present invention provides a non-human animal obtainable by methods as described herein.

[030] In some embodiments, the present invention provides a method of engrafting human cells into a non-human animal, the method comprising steps of providing a non-human animal whose genome comprises a CD47 gene that encodes the extracellular portion of a human CD47 polypeptide linked to the intracellular portion of an endogenous CD47 polypeptide; and transplanting one or more human cells into said non-human animal. In some certain embodiments, the method further comprises a step of assaying engraftment of the one or more human cells in said non-human animal. In some certain embodiments, a step of assaying comprises comparing the engraftment of the one or more human cells to the engraftment in one or more wild-type non-human animals or in one or more non-human animals whose genome does not comprise a CD47 gene that encodes the extracellular portion of a human CD47 polypeptide linked to the intracellular portion of an endogenous CD47 polypeptide.

[031] In some embodiments, human cells are hematopoietic stem cells. In some embodiments, human cells are transplanted intravenously. In some embodiments, human cells are transplanted intraperitoneally. In some embodiments, human cells are transplanted subcutaneously.

[032] In some embodiments, the present invention provides a method of assessing the therapeutic efficacy of a drug targeting human cells, the method comprising providing a

non-human animal whose genome comprises a CD47 gene that encodes an extracellular portion of a human CD47 polypeptide linked to an intracellular portion of an endogenous CD47 polypeptide; transplanting one or more human cells into said non-human animal; administering a drug candidate to said non-human animal; and monitoring the human cells in the non-human animal to determine the therapeutic efficacy of the drug candidate.

[033] In some embodiments, human cells are cancer cells and the drug candidate is an anti-cancer drug candidate. In some certain embodiments, a drug candidate is an antibody.

[034] In some embodiments, a non-human animal further comprises human immune cells. In some certain embodiments, a drug candidate is a bi-specific antibody that binds human CD47 and an antigen on transplanted human cancer cells.

[035] In some embodiments, the present invention provides a method comprising providing one or more cells whose genome includes a CD47 gene that encodes an extracellular portion of a human CD47 polypeptide linked to an intracellular portion of an endogenous CD47 polypeptide; incubating the one or more cells with a labeled substrate; and measuring phagocytosis of the labeled substrate by the one or more cells. In some embodiments, the substrate is fluorescently labeled. In some embodiments, the substrate is labeled with an antibody. In some embodiments, the substrate is one or more red blood cells. In some embodiments, the substrate is one or more bacterial cells. In some embodiments, the substrate is one or more tumor cells.

[036] In some embodiments, the present invention provides a method comprising providing a non-human animal whose genome includes a CD47 gene that encodes an extracellular portion of a human CD47 polypeptide linked to an intracellular portion of an endogenous CD47 polypeptide; exposing the non-human animal to an antigen; and measuring phagocytosis of the antigen by one or more cells of the non-human animal. In some embodiments, the step of exposing comprises exposing the non-human animal to an antigen that is fluorescently labeled. In some embodiments, the step of exposing comprises exposing the non-human animal to one or more cells that comprise the antigen. In some embodiments, the step of exposing comprises exposing the non-human animal to one or more human cells comprising the antigen or to one or more bacterial cells comprising the antigen. In some embodiments, the step of exposing comprises exposing

the non-human animal to one or more cells that have been transformed with the antigen so that the antigen is expressed on the surface of the one or more transformed cells. In some embodiments, the step of exposing comprises exposing the non-human animal to one or more tumor cells that comprise the antigen.

[037] In some embodiments, the present invention provides methods for identification or validation of a drug or vaccine, the method comprising the steps of delivering a drug or vaccine to a non-human animal whose genome includes a CD47 gene that encodes an extracellular portion of a human CD47 polypeptide linked to an intracellular portion of an endogenous CD47 polypeptide, and monitoring one or more of the immune response to the drug or vaccine, the safety profile of the drug or vaccine, or the effect on a disease or condition. In some embodiments, monitoring the safety profile includes determining if the non-human animal exhibits a side effect or adverse reaction as a result of delivering the drug or vaccine. In some embodiments, a side effect or adverse reaction is selected from morbidity, mortality, alteration in body weight, alteration of the level of one or more enzymes (e.g., liver), alteration in the weight of one or more organs, loss of function (e.g., sensory, motor, organ, etc.), increased susceptibility to one or more diseases, alterations to the genome of the non-human animal, increase or decrease in food consumption and complications of one or more diseases.

[038] In some embodiments, the present invention provides use of a non-human animal as described herein in the development of a drug or vaccine for use in medicine, such as use as a medicament.

[039] In some embodiments, the present invention provides use of a non-human animal as described herein in the manufacture of a medicament for the treatment of cancer or a neoplasm.

[040] In some embodiments, the present invention provides use of a non-human animal as described herein to assess the efficacy of a therapeutic drug targeting human cells. In various embodiments, a non-human animal of the present invention is transplanted with human cells and a drug candidate targeting said human cells is administered to the animal. In some embodiments, efficacy of the drug is determined by monitoring the human cells in the non-human animal after the administration of the drug.

[041] In some embodiments, the present invention provides a non-human animal or cell as described herein for use in the development and/or identification of a drug (e.g., an antibody) for therapy or diagnosis.

[042] In some embodiments, the present invention provides a non-human animal or cell as described herein for use in the development and/or identification of a drug (e.g., an antibody) for the treatment, prevention or amelioration of cancer or a neoplasm.

[043] In some embodiments, the present invention provides a method of assessing the pharmacokinetics of a drug targeting human CD47, the method comprising the steps of administering the drug to a non-human animal as described herein, and performing an assay to determine one or more pharmacokinetic properties of the drug targeting human CD47.

[044] In some embodiments, the present invention provides a method of assessing the on-target toxicity of a drug targeting human CD47, the method comprising the steps of administering the drug to a non-human animal as described herein, and performing an assay for one or more parameters associated with on-target toxicity of a drug.

[045] In some embodiments, the present invention provides a method of assessing the off-target toxicity of a drug targeting human CD47, the method comprising the steps of administering the drug to a non-human animal as described herein, and performing an assay for one or more parameters associated with off-target toxicity of a drug.

[046] In many embodiments, a non-human animal as described herein is a rodent whose genome includes a CD47 gene that encodes an extracellular portion of a human CD47 polypeptide linked to an intracellular portion of an endogenous CD47 polypeptide; in some embodiments, a rodent is a mouse; in some embodiments, a rodent is a rat.

[047] In some embodiments, a drug targeting human CD47 is a CD47 antagonist. In some certain embodiments, a CD47 antagonists is an anti-CD47 antibody. In some embodiments, a drug targeting human CD47 is a CD47 agonist.

[048] In various embodiments, a CD47 gene of the present invention includes a CD47 gene as described herein. In various embodiments, a CD47 polypeptide of the present invention includes a CD47 polypeptide as described herein.

[049] In various embodiments, a non-human animal of the present invention does not detectably express a full-length endogenous non-human CD47 polypeptide. In various embodiments, a non-human animal of the present invention does not detectably express an extracellular portion of an endogenous CD47 polypeptide. In various embodiments, a non-human animal of the present invention does not detectably express an extracellular portion of both an endogenous CD47 polypeptide and an endogenous SIRP α polypeptide.

[050] In various embodiments, an extracellular portion of a human CD47 polypeptide comprises amino acids corresponding to residues 19-141 of a human CD47 polypeptide as described herein.

[051] In various embodiments, an N-terminal immunoglobulin V domain of a human CD47 polypeptide comprises amino acids corresponding to residues 19-127 of a human CD47 polypeptide as described herein.

[052] In various embodiments, non-human animals, cells, tissues, embryonic stem cells and/or embryos of the present invention have a genome that further comprises a SIRP α gene that encodes a SIRP α polypeptide comprising an extracellular portion of a human SIRP α polypeptide (e.g., amino acids corresponding to residues 28-362 of a human SIRP α polypeptide) and an intracellular portion of an endogenous SIRP α polypeptide.

[053] In various embodiments, a non-human animal of the present invention is a rodent; in some embodiments, a mouse; in some embodiments, a rat.

[054] As used in this application, the terms “about” and “approximately” are used as equivalents. Any numerals used in this application with or without about/approximately are meant to cover any normal fluctuations appreciated by one of ordinary skill in the relevant art.

[055] Other features, objects, and advantages of the present invention are apparent in the detailed description that follows. It should be understood, however, that the detailed description, while indicating embodiments of the present invention, is given by way of illustration only, not limitation. Various changes and modifications within the scope of the invention will become apparent to those skilled in the art from the detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[056] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

[057] The Drawings included herein, which are composed of the following Figures, are for illustration purposes only and not for limitation.

[058] *Figure 1* shows a diagram, not to scale, of the genomic organization of a non-human (e.g., mouse) and human Cluster of Differentiation 47 (CD47) genes. Exons are numbered beneath each exon.

[059] *Figure 2* shows a diagram, not to scale, of an exemplary method for humanization of a non-human Cluster of Differentiation 47 (CD47) gene.

[060] *Figure 3* shows a diagram, not to scale, of the genomic organization of a mouse and human Cluster of Differentiation 47 (CD47) genes. Locations of probes used in an assay described in Example 1 are indicated.

[061] *Figure 4* shows an exemplary histogram of CD47 expression in red blood cells from humanized CD47 mice detected by anti-CD47 antibodies. Ab A, Ab B, Ab C, Ab D and Ab E: anti-CD47 antibodies; hIgG4s: human IgG4 of irrelevant specificity with modified Fc region that has reduced effector function; hIgG4: human IgG4 antibody of irrelevant specificity.

[062] *Figure 5* shows exemplary hemagglutination of mouse red blood cells from wild-type (n=2) and humanized CD47 (n=2) mice by anti-CD47 antibodies. WT: wild-type; HuCD47: humanized CD47; Ab A, Ab B, Ab C, Ab D and Ab E: anti-CD47 antibodies; hIgG4s: human IgG4 of irrelevant specificity with modified Fc region that has reduced effector function; hIgG4: human IgG4 antibody of irrelevant specificity.

[063] *Figure 6* shows exemplary pharmacokinetic profiles of anti-CD47 antibodies in humanized CD47 mice represented as antibody concentration (in μ g/mL, y-axis) over time (in days, x-axis); Ab F, Ab G, Ab H and Ab I: anti-CD47 antibodies; hIgG4s: human IgG4 antibody of irrelevant specificity with modified Fc region that has reduced effector function.

[064] *Figure 7* shows exemplary pharmacokinetic profiles of anti-CD47 antibodies in humanized CD47/SIRP α mice (CD47^{hu/hu}SIRP α ^{hu/hu}) represented as antibody concentration (in mcg/mL, y-axis) over time (in days, x-axis). Ab J, Ab F, Ab G and Ab I: anti-CD47 antibodies; hIgG4s: human IgG4 antibody of irrelevant specificity with modified Fc region that has reduced effector function.

[065] *Figure 8* shows exemplary pharmacokinetic profiles of anti-CD47 antibodies in humanized CD47/SIRP α mice (CD47^{hu/hu}SIRP α ^{hu/hu}) represented as antibody concentration (in mcg/mL, y-axis) over time (in days, x-axis). Ab J, Ab F: anti-CD47 antibodies; Ab Fs: Ab F with modified Fc region that has reduced effector function; Ab Fmono: monovalent version of Ab F; hIgG4s: human IgG4 antibody of irrelevant specificity with modified Fc region that has reduced effector function.

[066] *Figure 9* shows exemplary pharmacokinetic profiles of anti-CD47 antibodies in wild type mice represented as antibody concentration (in mcg/mL, y-axis) over time (in days, x-axis). Mice demonstrating mouse anti-human antibody response (MAHA) were excluded. Ab J, Ab F, Ab I and Ab G: anti-CD47 antibodies; hIgG4s: human IgG4 antibody of irrelevant specificity with modified Fc region that has reduced effector function (star: all points after 15 days were excluded from hIgG4s treatment group due to MAHA); Ab J F(ab')₂: F(ab')₂ fragment of Ab J.

DEFINITIONS

[067] This invention is not limited to particular methods and experimental conditions described herein, as such methods and conditions may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention is defined by the claims.

[068] Unless defined otherwise, all terms and phrases used herein include the meanings that the terms and phrases have attained in the art, unless the contrary is clearly indicated or clearly apparent from the context in which the term or phrase is used. Although any methods and materials similar or equivalent to those described herein can be used in the

practice or testing of the present invention, particular methods and materials are now described. All publications mentioned herein are hereby incorporated by reference.

[069] The term "*approximately*", as applied herein to one or more values of interest, refers to a value that is similar to a stated reference value. In certain embodiments, the term "*approximately*" or "*about*" refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).

[070] The term "*biologically active*", as used herein, refers to a characteristic of any agent that has activity in a biological system, *in vitro* or *in vivo* (e.g., in an organism). For instance, an agent that, when present in an organism, has a biological effect within that organism, is considered to be biologically active. In particular embodiments, where a protein or polypeptide is biologically active, a portion of that protein or polypeptide that shares at least one biological activity of the protein or polypeptide is typically referred to as a "*biologically active*" portion.

[071] The term "*comparable*", as used herein, refers to two or more agents, entities, situations, sets of conditions, etc. that may not be identical to one another but that are sufficiently similar to permit comparison there between so that conclusions may reasonably be drawn based on differences or similarities observed. Those of ordinary skill in the art will understand, in context, what degree of identity is required in any given circumstance for two or more such agents, entities, situations, sets of conditions, etc. to be considered comparable.

[072] The term "*conservative*", as used herein to describe a conservative amino acid substitution, refers to substitution of an amino acid residue by another amino acid residue having a side chain R group with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of interest of a protein, for example, the ability of a receptor to bind to a ligand. Examples of groups of amino acids that have side chains with similar chemical properties include: aliphatic side chains such as glycine, alanine, valine,

leucine, and isoleucine; aliphatic-hydroxyl side chains such as serine and threonine; amide-containing side chains such as asparagine and glutamine; aromatic side chains such as phenylalanine, tyrosine, and tryptophan; basic side chains such as lysine, arginine, and histidine; acidic side chains such as aspartic acid and glutamic acid; and, sulfur-containing side chains such as cysteine and methionine. Conservative amino acids substitution groups include, for example, valine/leucine/isoleucine, phenylalanine/tyrosine, lysine/arginine, alanine/valine, glutamate/aspartate, and asparagine/glutamine. In some embodiments, a conservative amino acid substitution can be a substitution of any native residue in a protein with alanine, as used in, for example, alanine scanning mutagenesis. In some embodiments, a conservative substitution is made that has a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet *et al.* (1992) Exhaustive Matching of the Entire Protein Sequence Database, *Science* 256:1443-45, hereby incorporated by reference. In some embodiments, the substitution is a moderately conservative substitution wherein the substitution has a nonnegative value in the PAM250 log-likelihood matrix.

[073] The term “*control*”, as used herein, refers to the art-understood meaning of a “control” being a standard against which results are compared. Typically, controls are used to augment integrity in experiments by isolating variables in order to make a conclusion about such variables. In some embodiments, a control is a reaction or assay that is performed simultaneously with a test reaction or assay to provide a comparator. As used herein, a “*control*” may refer to a “*control animal*”. A “*control animal*” may have a modification as described herein, a modification that is different as described herein, or no modification (i.e., a wild-type animal). In one experiment, the “test” (i.e., the variable being tested) is applied. In the second experiment, the “control,” the variable being tested is not applied. In some embodiments, a control is a historical control (i.e., of a test or assay performed previously, or an amount or result that is previously known). In some embodiments, a control is or comprises a printed or otherwise saved record. A control may be a positive control or a negative control.

[074] The term “*disruption*”, as used herein, refers to the result of a homologous recombination event with a DNA molecule (e.g., with an endogenous homologous sequence such as a gene or gene locus. In some embodiments, a disruption may achieve or

represent an insertion, deletion, substitution, replacement, missense mutation, or a frame-shift of a DNA sequence(s), or any combination thereof. Insertions may include the insertion of entire genes or fragments of genes, e.g., exons, which may be of an origin other than the endogenous sequence (e.g., a heterologous sequence). In some embodiments, a disruption may increase expression and/or activity of a gene or gene product (e.g., of a protein encoded by a gene). In some embodiments, a disruption may decrease expression and/or activity of a gene or gene product. In some embodiments, a disruption may alter sequence of a gene or an encoded gene product (e.g., an encoded protein). In some embodiments, a disruption may truncate or fragment a gene or an encoded gene product (e.g., an encoded protein). In some embodiments, a disruption may extend a gene or an encoded gene product; in some such embodiments, a disruption may achieve assembly of a fusion protein. In some embodiments, a disruption may affect level but not activity of a gene or gene product. In some embodiments, a disruption may affect activity but not level of a gene or gene product. In some embodiments, a disruption may have no significant effect on level of a gene or gene product. In some embodiments, a disruption may have no significant effect on activity of a gene or gene product. In some embodiments, a disruption may have no significant effect on either level or activity of a gene or gene product.

[075] The terms “*determining*”, “*measuring*”, “*evaluating*”, “*assessing*”, “*assaying*” and “*analyzing*” are used interchangeably herein to refer to any form of measurement, and include determining if an element is present or not. These terms include both quantitative and/or qualitative determinations. Assaying may be relative or absolute. “*Assaying for the presence of*” can be determining the amount of something present and/or determining whether or not it is present or absent.

[076] The phrase “*endogenous locus*” or “*endogenous gene*”, as used herein, refers to a genetic locus found in a parent or reference organism prior to introduction of a disruption, deletion, replacement, alteration, or modification as described herein. In some embodiments, the endogenous locus has a sequence found in nature. In some embodiments, the endogenous locus is a wild type locus. In some embodiments, the reference organism is a wild-type organism. In some embodiments, the reference organism

is an engineered organism. In some embodiments, the reference organism is a laboratory-bred organism (whether wild-type or engineered).

[077] The phrase "*endogenous promoter*" refers to a promoter that is naturally associated, e.g., in a wild-type organism, with an endogenous gene.

[078] The term "*heterologous*", as used herein, refers to an agent or entity from a different source. For example, when used in reference to a polypeptide, gene, or gene product or present in a particular cell or organism, the term clarifies that the relevant polypeptide, gene, or gene product: 1) was engineered by the hand of man; 2) was introduced into the cell or organism (or a precursor thereof) through the hand of man (e.g., via genetic engineering); and/or 3) is not naturally produced by or present in the relevant cell or organism (e.g., the relevant cell type or organism type).

[079] The term "*host cell*", as used herein, refers to a cell into which a heterologous (e.g., exogenous) nucleic acid or protein has been introduced. Persons of skill upon reading this disclosure will understand that such terms refer not only to the particular subject cell, but also is used to refer to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "*host cell*" as used herein. In some embodiments, a host cell is or comprises a prokaryotic or eukaryotic cell. In general, a host cell is any cell that is suitable for receiving and/or producing a heterologous nucleic acid or protein, regardless of the Kingdom of life to which the cell is designated. Exemplary cells include those of prokaryotes and eukaryotes (single-cell or multiple-cell), bacterial cells (e.g., strains of *E. coli*, *Bacillus* spp., *Streptomyces* spp., etc.), mycobacteria cells, fungal cells, yeast cells (e.g., *S. cerevisiae*, *S. pombe*, *P. pastoris*, *P. methanolica*, etc.), plant cells, insect cells (e.g., SF-9, SF-21, baculovirus-infected insect cells, *Trichoplusia ni*, etc.), non-human animal cells, human cells, or cell fusions such as, for example, hybridomas or quadromas. In some embodiments, the cell is a human, monkey, ape, hamster, rat, or mouse cell. In some embodiments, the cell is eukaryotic and is selected from the following cells: CHO (e.g., CHO K1, DXB-11 CHO, Veggie-CHO), COS (e.g., COS-7), retinal cell, Vero, CV1, kidney (e.g., HEK293, 293 EBNA, MSR 293, MDCK, HaK, BHK), HeLa, HepG2, WI38,

MRC 5, Colo205, HB 8065, HL-60, (e.g., BHK21), Jurkat, Daudi, A431 (epidermal), CV-1, U937, 3T3, L cell, C127 cell, SP2/0, NS-0, MMT 060562, Sertoli cell, BRL 3A cell, HT1080 cell, myeloma cell, tumor cell, and a cell line derived from an aforementioned cell. In some embodiments, the cell comprises one or more viral genes, e.g., a retinal cell that expresses a viral gene (e.g., a PER.C6™ cell). In some embodiments, a host cell is or comprises an isolated cell. In some embodiments, a host cell is part of a tissue. In some embodiments, a host cell is part of an organism.

[080] The term "*humanized*", is used herein in accordance with its art-understood meaning to refer to nucleic acids or proteins whose structures (i.e., nucleotide or amino acid sequences) include portions that correspond substantially or identically with structures of a particular gene or protein found in nature in a non-human animal, and also include portions that differ from that found in the relevant particular non-human gene or protein and instead correspond more closely with comparable structures found in a corresponding human gene or protein. In some embodiments, a "*humanized*" gene is one that encodes a polypeptide having substantially the amino acid sequence as that of a human polypeptide (e.g., a human protein or portion thereof – e.g., characteristic portion thereof). To give but one example, in the case of a membrane receptor, a "*humanized*" gene may encode a polypeptide having an extracellular portion having an amino acid sequence as that of a human extracellular portion and the remaining sequence as that of a non-human (e.g., mouse) polypeptide. In some embodiments, a humanized gene comprises at least a portion of a DNA sequence of a human gene. In some embodiment, a humanized gene comprises an entire DNA sequence of a human gene. In some embodiments, a humanized protein comprises a sequence having a portion that appears in a human protein. In some embodiments, a humanized protein comprises an entire sequence of a human protein and is expressed from an endogenous locus of a non-human animal that corresponds to the homolog or ortholog of the human gene.

[081] The term "*identity*", as used herein in connection with a comparison of sequences, refers to identity as determined by a number of different algorithms known in the art that can be used to measure nucleotide and/or amino acid sequence identity. In some embodiments, identities as described herein are determined using a ClustalW v. 1.83

(slow) alignment employing an open gap penalty of 10.0, an extend gap penalty of 0.1, and using a Gonnet similarity matrix (MACVECTOR™ 10.0.2, MacVector Inc., 2008).

[082] The term "*isolated*", as used herein, refers to a substance and/or entity that has been (1) separated from at least some of the components with which it was associated when initially produced (whether in nature and/or in an experimental setting), and/or (2) designed, produced, prepared, and/or manufactured by the hand of man. Isolated substances and/or entities may be separated from about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% of the other components with which they were initially associated. In some embodiments, isolated agents are about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% pure. As used herein, a substance is "*pure*" if it is substantially free of other components. In some embodiments, as will be understood by those skilled in the art, a substance may still be considered "*isolated*" or even "*pure*", after having been combined with certain other components such as, for example, one or more carriers or excipients (e.g., buffer, solvent, water, etc.); in such embodiments, percent isolation or purity of the substance is calculated without including such carriers or excipients. To give but one example, in some embodiments, a biological polymer such as a polypeptide or polynucleotide that occurs in nature is considered to be "*isolated*" when: a) by virtue of its origin or source of derivation is not associated with some or all of the components that accompany it in its native state in nature; b) it is substantially free of other polypeptides or nucleic acids of the same species from the species that produces it in nature; or c) is expressed by or is otherwise in association with components from a cell or other expression system that is not of the species that produces it in nature. Thus, for instance, in some embodiments, a polypeptide that is chemically synthesized or is synthesized in a cellular system different from that which produces it in nature is considered to be an "*isolated*" polypeptide. Alternatively or additionally, in some embodiments, a polypeptide that has been subjected to one or more purification techniques may be considered to be an "*isolated*" polypeptide to the extent that it has been separated

from other components: a) with which it is associated in nature; and/or b) with which it was associated when initially produced.

[083] The phrase "*non-human animal*", as used herein, refers to any vertebrate organism that is not a human. In some embodiments, a non-human animal is acyclostome, a bony fish, a cartilaginous fish (e.g., a shark or a ray), an amphibian, a reptile, a mammal, or a bird. In some embodiments, a non-human mammal is a primate, a goat, a sheep, a pig, a dog, a cow, or a rodent. In some embodiments, a non-human animal is a rodent such as a rat or a mouse.

[084] The phrase "*nucleic acid*", as used herein, in its broadest sense, refers to any compound and/or substance that is or can be incorporated into an oligonucleotide chain. In some embodiments, a "*nucleic acid*" is a compound and/or substance that is or can be incorporated into an oligonucleotide chain via a phosphodiester linkage. As will be clear from context, in some embodiments, "*nucleic acid*" refers to individual nucleic acid residues (e.g., nucleotides and/or nucleosides); in some embodiments, "*nucleic acid*" refers to an oligonucleotide chain comprising individual nucleic acid residues. In some embodiments, a "*nucleic acid*" is or comprises RNA; in some embodiments, a "*nucleic acid*" is or comprises DNA. In some embodiments, a "*nucleic acid*" is, comprises, or consists of one or more natural nucleic acid residues. In some embodiments, a "*nucleic acid*" is, comprises, or consists of one or more nucleic acid analogs. In some embodiments, a nucleic acid analog differs from a "*nucleic acid*" in that it does not utilize a phosphodiester backbone. For example, in some embodiments, a "*nucleic acid*" is, comprises, or consists of one or more "*peptide nucleic acids*", which are known in the art and have peptide bonds instead of phosphodiester bonds in the backbone, are considered within the scope of the present invention. Alternatively or additionally, in some embodiments, a "*nucleic acid*" has one or more phosphorothioate and/or 5'-N-phosphoramidite linkages rather than phosphodiester bonds. In some embodiments, a "*nucleic acid*" is, comprises, or consists of one or more natural nucleosides (e.g., adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine). In some embodiments, a "*nucleic acid*" is, comprises, or consists of one or more nucleoside analogs (e.g., 2-aminoadenosine, 2-

thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, C-5 propynyl-cytidine, C-5 propynyl-uridine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, O(6)-methylguanine, 2-thiocytidine, methylated bases, intercalated bases, and combinations thereof). In some embodiments, a “*nucleic acid*” comprises one or more modified sugars (e.g., 2'-fluororibose, ribose, 2'-deoxyribose, arabinose, and hexose) as compared with those in natural nucleic acids. In some embodiments, a “*nucleic acid*” has a nucleotide sequence that encodes a functional gene product such as an RNA or protein. In some embodiments, a “*nucleic acid*” includes one or more introns. In some embodiments, a “*nucleic acid*” is prepared by one or more of isolation from a natural source, enzymatic synthesis by polymerization based on a complementary template (*in vivo* or *in vitro*), reproduction in a recombinant cell or system, and chemical synthesis. In some embodiments, a “*nucleic acid*” is at least 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 20, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000 or more residues long. In some embodiments, a “*nucleic acid*” is single stranded; in some embodiments, a “*nucleic acid*” is double stranded. In some embodiments, a “*nucleic acid*” has a nucleotide sequence comprising at least one element that encodes, or is the complement of a sequence that encodes, a polypeptide. In some embodiments, a “*nucleic acid*” has enzymatic activity.

[085] The phrase “*operably linked*”, as used herein, refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner. A control sequence “*operably linked*” to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequences. “*Operably linked*” sequences include both expression control sequences that are contiguous with the gene of interest and expression control sequences that act in trans or at a distance to control the gene of interest. The term “*expression control sequence*”, as used herein, refers to polynucleotide sequences, which are necessary to effect the expression and processing of coding sequences to which they are ligated.

“*Expression control sequences*” include: appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (i.e., Kozak consensus sequence); sequences that enhance protein stability; and when desired, sequences that enhance protein secretion. The nature of such control sequences differs depending upon the host organism. For example, in prokaryotes, such control sequences generally include promoter, ribosomal binding site, and transcription termination sequence, while in eukaryotes, typically, such control sequences include promoters and transcription termination sequence. The term “*control sequences*” is intended to include components whose presence is essential for expression and processing, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.

[086] The term “*polypeptide*”, as used herein, refers to any polymeric chain of amino acids. In some embodiments, a polypeptide has an amino acid sequence that occurs in nature. In some embodiments, a polypeptide has an amino acid sequence that does not occur in nature. In some embodiments, a polypeptide has an amino acid sequence that contains portions that occur in nature separately from one another (i.e., from two or more different organisms, for example, human and non-human portions). In some embodiments, a polypeptide has an amino acid sequence that is engineered in that it is designed and/or produced through action of the hand of man.

[087] The term “*recombinant*”, as used herein, is intended to refer to polypeptides (e.g., CD47 polypeptides as described herein) that are designed, engineered, prepared, expressed, created or isolated by recombinant means, such as polypeptides expressed using a recombinant expression vector transfected into a host cell, polypeptides isolated from a recombinant, combinatorial human polypeptide library (Hoogenboom H. R., (1997) *TIB Tech.* 15:62-70; Azzazy H., and Highsmith W. E., (2002) *Clin. Biochem.* 35:425-445; Gavilondo J. V., and Larrick J. W. (2002) *BioTechniques* 29:128-145; Hoogenboom H., and Chames P. (2000) *Immunology Today* 21:371-378), antibodies isolated from an animal (e.g., a mouse) that is transgenic for human immunoglobulin genes (see e.g., Taylor, L. D., *et al.* (1992) *Nucl. Acids Res.* 20:6287-6295; Kellermann S-A., and Green L. L. (2002)

Current Opinion in Biotechnology 13:593-597; Little M. *et al.* (2000) *Immunology Today* 21:364-370; Murphy, A.J.,*et al.* (2014) *Proc. Natl. Acad. Sci. U. S. A.* 111(14):5153-5158) or polypeptides prepared, expressed, created or isolated by any other means that involves splicing selected sequence elements to one another. In some embodiments, one or more of such selected sequence elements is found in nature. In some embodiments, one or more of such selected sequence elements is designed *in silico*. In some embodiments, one or more such selected sequence elements result from mutagenesis (e.g., *in vivo* or *in vitro*) of a known sequence element, e.g., from a natural or synthetic source. For example, in some embodiments, a recombinant polypeptide is comprised of sequences found in the genome of a source organism of interest (e.g., human, mouse, etc.). In some embodiments, a recombinant polypeptide has an amino acid sequence that resulted from mutagenesis (e.g., *in vitro* or *in vivo*, for example in a non-human animal), so that the amino acid sequences of the recombinant polypeptides are sequences that, while originating from and related to polypeptides sequences, may not naturally exist within the genome of a non-human animal *in vivo*.

[088] The term "*replacement*" is used herein to refer to a process through which a "*replaced*" nucleic acid sequence (e.g., a gene) found in a host locus (e.g., in a genome) is removed from that locus, and a different, "*replacement*" nucleic acid is located in its place. In some embodiments, the replaced nucleic acid sequence and the replacement nucleic acid sequences are comparable to one another in that, for example, they are homologous to one another and/or contain corresponding elements (e.g., protein-coding elements, regulatory elements, etc.). In some embodiments, a replaced nucleic acid sequence includes one or more of a promoter, an enhancer, a splice donor site, a splice receiver site, an intron, an exon, an untranslated region (UTR); in some embodiments, a replacement nucleic acid sequence includes one or more coding sequences. In some embodiments, a replacement nucleic acid sequence is a homolog of the replaced nucleic acid sequence. In some embodiments, a replacement nucleic acid sequence is an ortholog of the replaced sequence. In some embodiments, a replacement nucleic acid sequence is or comprises a human nucleic acid sequence. In some embodiments, including where the replacement nucleic acid sequence is or comprises a human nucleic acid sequence, the replaced nucleic acid

sequence is or comprises a rodent sequence (e.g., a mouse or rat sequence). The nucleic acid sequence so placed may include one or more regulatory sequences that are part of source nucleic acid sequence used to obtain the sequence so placed (e.g., promoters, enhancers, 5'- or 3'-untranslated regions, etc.). For example, in various embodiments, the replacement is a substitution of an endogenous sequence with a heterologous sequence that results in the production of a gene product from the nucleic acid sequence so placed (comprising the heterologous sequence), but not expression of the endogenous sequence; the replacement is of an endogenous genomic sequence with a nucleic acid sequence that encodes a protein that has a similar function as a protein encoded by the endogenous sequence (e.g., the endogenous genomic sequence encodes a CD47 protein, and the DNA fragment encodes one or more human CD47 proteins). In various embodiments, an endogenous gene or fragment thereof is replaced with a corresponding human gene or fragment thereof. A corresponding human gene or fragment thereof is a human gene or fragment that is an ortholog of, or is substantially similar or the same in structure and/or function, as the endogenous gene or fragment thereof that is replaced.

[089] The phrase "*cluster of differentiation 47 protein*" or "*CD47 protein*", as used herein, refers to a multi-pass transmembrane protein that belongs to the immunoglobulin superfamily and has an extracellular amino-terminal immunoglobulin V domain, five transmembrane domains and a short carboxyl-terminal intracellular tail. CD47 is expressed on the cell surface and is involved in interactions between membrane surface proteins such as, for example, integrins, SIRP α and thrombospondin-1 (TSP-1). CD47 is expressed in normal tissues and up-regulated in many human cancers. CD47 has been shown to be involved in several cellular processes such as, for example, apoptosis, proliferation, adhesion and migration. Several alternatively spliced CD47 isoforms have been identified between mouse and man. By way of illustration, nucleotide and amino acid sequences of mouse and human CD47 genes are provided in Table 3. Persons of skill upon reading this disclosure will recognize that one or more endogenous CD47 genes in a genome (or all) can be replaced by one or more heterologous CD47 genes (e.g., polymorphic variants, subtypes or mutants, genes from another species, humanized forms, etc.).

[090] A "CD47-expressing cell", as used herein, refers to a cell that expresses a CD47 transmembrane protein. In some embodiments, a CD47-expressing cell expresses a CD47 transmembrane protein on its surface. In some embodiments, a CD47 protein expressed on the surface of the cell in an amount sufficient to mediate cell-to-cell interactions via the CD47 transmembrane protein expressed on the surface of the cell. Exemplary CD47-expressing cells include neurons, immune cells, keratinocytes, and circulating cells. CD47-expressing cells regulate the interaction of immune cells and circulating cells to regulate various cellular processes such as adhesion, cell proliferation and/or apoptosis, angiogenesis and inflammation. In some embodiments, non-human animals of the present invention demonstrate regulation of various cellular processes (as described herein) via humanized CD47 proteins expressed on the surface of one or more cells of the non-human animal.

[091] The term "*reference*" is used herein to describe a standard or control agent, cohort, individual, population, sample, sequence or value against which an agent, animal, cohort, individual, population, sample, sequence or value of interest is compared. In some embodiments, a reference agent, cohort, individual, population, sample, sequence or value is tested and/or determined substantially simultaneously with the testing or determination of the agent, cohort, individual, population, sample, sequence or value of interest. In some embodiments, a reference agent, cohort, individual, population, sample, sequence or value is a historical reference, optionally embodied in a tangible medium. In some embodiments, a reference may refer to a control. As used herein, a "*reference*" may refer to a "*reference animal*". A "*reference animal*" may have a modification as described herein, a modification that is different as described herein or no modification (i.e., a wild-type animal). Typically, as would be understood by those skilled in the art, a reference agent, animal, cohort, individual, population, sample, sequence or value is determined or characterized under conditions comparable to those utilized to determine or characterize the agent, animal (e.g., a mammal), cohort, individual, population, sample, sequence or value of interest.

[092] The term "*substantially*", as used herein, refers to the qualitative condition of exhibiting total or near-total extent or degree of a characteristic or property of interest.

One of ordinary skill in the biological arts will understand that biological and chemical phenomena rarely, if ever, go to completion and/or proceed to completeness or achieve or avoid an absolute result. The term “*substantially*” is therefore used herein to capture the potential lack of completeness inherent in many biological and chemical phenomena.

[093] The phrase “*substantial homology*”, as used herein, refers to a comparison between amino acid or nucleic acid sequences. As will be appreciated by those of ordinary skill in the art, two sequences are generally considered to be “*substantially homologous*” if they contain homologous residues in corresponding positions. Homologous residues may be identical residues. Alternatively, homologous residues may be non-identical residues will appropriately similar structural and/or functional characteristics. For example, as is well known by those of ordinary skill in the art, certain amino acids are typically classified as “*hydrophobic*” or “*hydrophilic*” amino acids, and/or as having “*polar*” or “*non-polar*” side chains. Substitution of one amino acid for another of the same type may often be considered a “*homologous*” substitution. Typical amino acid categorizations are summarized in Table 1 and 2.

TABLE 1

Alanine	Ala	A	Nonpolar	Neutral	1.8
Arginine	Arg	R	Polar	Positive	-4.5
Asparagine	Asn	N	Polar	Neutral	-3.5
Aspartic acid	Asp	D	Polar	Negative	-3.5
Cysteine	Cys	C	Nonpolar	Neutral	2.5
Glutamic acid	Glu	E	Polar	Negative	-3.5
Glutamine	Gln	Q	Polar	Neutral	-3.5
Glycine	Gly	G	Nonpolar	Neutral	-0.4
Histidine	His	H	Polar	Positive	-3.2
Isoleucine	Ile	I	Nonpolar	Neutral	4.5
Leucine	Leu	L	Nonpolar	Neutral	3.8
Lysine	Lys	K	Polar	Positive	-3.9
Methionine	Met	M	Nonpolar	Neutral	1.9
Phenylalanine	Phe	F	Nonpolar	Neutral	2.8
Proline	Pro	P	Nonpolar	Neutral	-1.6
Serine	Ser	S	Polar	Neutral	-0.8

Threonine	Thr	T	Polar	Neutral	-0.7
Tryptophan	Trp	W	Nonpolar	Neutral	-0.9
Tyrosine	Tyr	Y	Polar	Neutral	-1.3
Valine	Val	V	Nonpolar	Neutral	4.2

TABLE 2

Ambiguous Amino Acids	3-Letter	1-Letter
Asparagine or aspartic acid	Asx	B
Glutamine or glutamic acid	Glx	Z
Leucine or Isoleucine	Xle	J
Unspecified or unknown amino acid	Xaa	X

[094] As is well known in this art, amino acid or nucleic acid sequences may be compared using any of a variety of algorithms, including those available in commercial computer programs such as BLASTN for nucleotide sequences and BLASTP, gapped BLAST, and PSI-BLAST for amino acid sequences. Exemplary such programs are described in Altschul *et al.* (1990) Basic local alignment search tool, *J. Mol. Biol.*, 215(3): 403-410; Altschul *et al.* (1997) *Methods in Enzymology*; Altschul *et al.*, "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", *Nucleic Acids Res.* 25:3389-3402; Baxevanis *et al.* (1998) *Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins*, Wiley; and Misener *et al.* (eds.) (1999) *Bioinformatics Methods and Protocols (Methods in Molecular Biology*, Vol. 132), Humana Press. In addition to identifying homologous sequences, the programs mentioned above typically provide an indication of the degree of homology. In some embodiments, two sequences are considered to be substantially homologous if at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more of their corresponding residues are homologous over a relevant stretch of residues. In some embodiments, the relevant stretch is a complete sequence. In some embodiments, the relevant stretch is at least 9, 10, 11, 12, 13, 14, 15, 16, 17 or more residues. In some

embodiments, the relevant stretch includes contiguous residues along a complete sequence. In some embodiments, the relevant stretch includes discontinuous residues along a complete sequence. In some embodiments, the relevant stretch is at least 10, 15, 20, 25, 30, 35, 40, 45, 50, or more residues.

[095] The phrase “*substantial identity*”, as used herein, refers to a comparison between amino acid or nucleic acid sequences. As will be appreciated by those of ordinary skill in the art, two sequences are generally considered to be “*substantially identical*” if they contain identical residues in corresponding positions. As is well known in this art, amino acid or nucleic acid sequences may be compared using any of a variety of algorithms, including those available in commercial computer programs such as BLASTN for nucleotide sequences and BLASTP, gapped BLAST, and PSI-BLAST for amino acid sequences. Exemplary such programs are described in Altschul *et al.* (1990) Basic local alignment search tool, *J. Mol. Biol.*, 215(3): 403-410; Altschul *et al.*, *Methods in Enzymology*; Altschul *et al.* (1997) *Nucleic Acids Res.* 25:3389-3402; Baxevanis *et al.* (1998) *Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins*, Wiley; and Misener *et al.*, (eds.) (1999) *Bioinformatics Methods and Protocols (Methods in Molecular Biology*, Vol. 132), *Humana Press*. In addition to identifying identical sequences, the programs mentioned above typically provide an indication of the degree of identity. In some embodiments, two sequences are considered to be substantially identical if at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more of their corresponding residues are identical over a relevant stretch of residues. In some embodiments, the relevant stretch is a complete sequence. In some embodiments, the relevant stretch is at least 10, 15, 20, 25, 30, 35, 40, 45, 50, or more residues.

[096] The phrase "targeting vector" or "targeting construct", as used herein, refers to a polynucleotide molecule that comprises a targeting region. A targeting region comprises a sequence that is identical or substantially identical to a sequence in a target cell, tissue or animal and provides for integration of the targeting construct into a position within the genome of the cell, tissue or animal via homologous recombination. Targeting regions that target using site-specific recombinase recognition sites (e.g., *loxP* or *Fr*t sites) are also

included. In some embodiments, a targeting construct of the present invention further comprises a nucleic acid sequence or gene of particular interest, a selectable marker, control and or regulatory sequences, and other nucleic acid sequences that allow for recombination mediated through exogenous addition of proteins that aid in or facilitate recombination involving such sequences. In some embodiments, a targeting construct of the present invention further comprises a gene of interest in whole or in part, wherein the gene of interest is a heterologous gene that encodes a protein, in whole or in part, that has a similar function as a protein encoded by an endogenous sequence. In some embodiments, a targeting construct of the present invention further comprises a humanized gene of interest, in whole or in part, wherein the humanized gene of interest encodes a protein, in whole or in part, that has a similar function as a protein encoded by the endogenous sequence.

[097] The term “*variant*”, as used herein, refers to an entity that shows significant structural identity with a reference entity, but differs structurally from the reference entity in the presence or level of one or more chemical moieties as compared with the reference entity. In many embodiments, a “*variant*” also differs functionally from its reference entity. In general, whether a particular entity is properly considered to be a “*variant*” of a reference entity is based on its degree of structural identity with the reference entity. As will be appreciated by those skilled in the art, any biological or chemical reference entity has certain characteristic structural elements. A “*variant*”, by definition, is a distinct chemical entity that shares one or more such characteristic structural elements. To give but a few examples, a small molecule may have a characteristic core structural element (e.g., a macrocycle core) and/or one or more characteristic pendent moieties so that a variant of the small molecule is one that shares the core structural element and the characteristic pendent moieties but differs in other pendent moieties and/or in types of bonds present (single vs. double, E vs. Z, etc.) within the core, a polypeptide may have a characteristic sequence element comprised of a plurality of amino acids having designated positions relative to one another in linear or three-dimensional space and/or contributing to a particular biological function, a nucleic acid may have a characteristic sequence element comprised of a plurality of nucleotide residues having designated positions relative to one another in linear

or three-dimensional space. For example, a “*variant polypeptide*” may differ from a reference polypeptide as a result of one or more differences in amino acid sequence and/or one or more differences in chemical moieties (e.g., carbohydrates, lipids, etc.) covalently attached to the polypeptide backbone. In some embodiments, a “*variant polypeptide*” shows an overall sequence identity with a reference polypeptide that is at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, or 99%. Alternatively or additionally, in some embodiments, a “*variant polypeptide*” does not share at least one characteristic sequence element with a reference polypeptide. In some embodiments, the reference polypeptide has one or more biological activities. In some embodiments, a “*variant polypeptide*” shares one or more of the biological activities of the reference polypeptide. In some embodiments, a “*variant polypeptide*” lacks one or more of the biological activities of the reference polypeptide. In some embodiments, a “*variant polypeptide*” shows a reduced level of one or more biological activities as compared with the reference polypeptide. In many embodiments, a polypeptide of interest is considered to be a “*variant*” of a parent or reference polypeptide if the polypeptide of interest has an amino acid sequence that is identical to that of the parent but for a small number of sequence alterations at particular positions. Typically, fewer than 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2% of the residues in the variant are substituted as compared with the parent. In some embodiments, a “*variant*” has 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 substituted residue as compared with a parent. Often, a “*variant*” has a very small number (e.g., fewer than 5, 4, 3, 2, or 1) number of substituted functional residues (i.e., residues that participate in a particular biological activity). Furthermore, a “*variant*” typically has not more than 5, 4, 3, 2, or 1 additions or deletions, and often has no additions or deletions, as compared with the parent. Moreover, any additions or deletions are typically fewer than about 25, about 20, about 19, about 18, about 17, about 16, about 15, about 14, about 13, about 10, about 9, about 8, about 7, about 6, and commonly are fewer than about 5, about 4, about 3, or about 2 residues. In some embodiments, the parent or reference polypeptide is one found in nature. As will be understood by those of ordinary skill in the art, a plurality of variants of a particular polypeptide of interest may commonly be found in nature, particularly when the polypeptide of interest is an infectious agent polypeptide.

[098] The term “*vector*”, as used herein, refers to a nucleic acid molecule capable of transporting another nucleic acid to which it is associated. In some embodiment, vectors are capable of extra-chromosomal replication and/or expression of nucleic acids to which they are linked in a host cell such as a eukaryotic and/or prokaryotic cell. Vectors capable of directing the expression of operatively linked genes are referred to herein as “*expression vectors*.”

[099] The term “*wild-type*”, as used herein, has its art-understood meaning that refers to an entity having a structure and/or activity as found in nature in a “*normal*” (as contrasted with mutant, diseased, altered, etc.) state or context. Those of ordinary skill in the art will appreciate that wild-type genes and polypeptides often exist in multiple different forms (e.g., alleles).

DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

[0100] The present invention provides, among other things, improved and/or engineered non-human animals having humanized genetic material encoding a cluster of differentiation 47 (CD47) gene for determining the therapeutic efficacy of CD47 antagonists (e.g., an anti-CD47 antibody) for the treatment of cancer, and assays in transplant engraftment, activation and phagocytosis and signal transduction. It is contemplated that such non-human animals provide an improvement in determining the therapeutic efficacy of CD47 antagonists and their potential for CD47 blockade. It is also contemplated that such non-human animals provide an improvement in transplant engraftment of human cells. Therefore, the present invention is particularly useful for the development of anti-CD47 therapies for the treatment of various cancers, as well as for maintaining human hematopoietic cells in non-human animals. In particular, the present invention encompasses the humanization of a murine CD47 gene resulting in expression of a humanized CD47 protein on the surface of cells of the non-human animal. Such humanized CD47 proteins have the capacity to provide a source of human CD47⁺ cells for determining the efficacy of anti-CD47 therapeutics to activate phagocytosis of tumor cells. Further, such humanized CD47 proteins have the capacity to recognize engrafted human cells via engagement of other cell surface proteins and ligands present on the surface of the

engrafted human cells (e.g., SIRP α). In some embodiments, non-human animals of the present invention are capable of activating phagocytosis via blockade of CD47 signaling through the humanized CD47 protein expressed on the surface of cells of the non-human animal. In some embodiments, non-human animals of the present invention are capable of receiving transplanted human hematopoietic cells; in some embodiments, such non-human mammals develop and/or have an immune system comprising human cells. In some embodiments, humanized CD47 proteins have a sequence corresponding to the N-terminal immunoglobulin V domain of a human CD47 protein. In some embodiments, humanized CD47 proteins have a sequence corresponding to an N-terminal portion of a human CD47 protein that comprises an extracellular portion and a transmembrane portion of a human CD47 protein, wherein the extracellular portion includes the N-terminal immunoglobulin V domain of the human CD47 protein and the transmembrane portion includes the five transmembrane domains of the human CD47 protein. In some embodiments, humanized CD47 proteins have a sequence corresponding to the intracytoplasmic tail of a non-human (e.g., murine) CD47 protein. In some embodiments, humanized CD47 proteins have a sequence corresponding to amino acid residues 19-292 (or 19-141, or 19-127) of a human CD47 protein. In some embodiments, non-human animals of the present invention comprise an endogenous CD47 gene that contains genetic material from the non-human animal and a heterologous species (e.g., a human). In some embodiments, non-human animals of the present invention comprise a humanized CD47 gene, wherein the humanized CD47 gene comprises exons of a human CD47 gene that encode an extracellular portion including the N-terminal immunoglobulin V domain of a human CD47 gene. In some embodiments, the humanized CD47 gene comprises human CD47 exons, e.g., exons 2-7, encoding an N-terminal portion of a human CD47 protein that comprises an extracellular portion and a transmembrane portion of a human CD47 protein, wherein the extracellular portion includes the N-terminal immunoglobulin V domain of the human CD47 protein and the transmembrane portion includes the five transmembrane domains of the human CD47 protein. In some embodiments, the humanized CD47 gene comprises non-human CD47 exons that encode the signal peptide, in whole or in part, and the intracytoplasmic tail of a non-human CD47 protein. In some embodiments, the

humanized CD47 gene comprises non-human CD47 exon 1 and exon(s) downstream of exon 7 that encode the intracytoplasmic tail and the 3' UTR. Depending on the isoforms, there may be one or more exons downstream of exon 7, with the stop codon and the 3' UTR being present in the last exon for all isoforms. For example, isoform 2 of both mouse and human CD47 shown in Table 3 have two exons downstream of exon 7, designated as exon 8 and 9.

[0101] Various aspects of the invention are described in detail in the following sections. The use of sections is not meant to limit the invention. Each section can apply to any aspect of the invention. In this application, the use of “or” means “and/or” unless stated otherwise.

Cluster of Differentiation 47 (CD47) Gene

[0102] CD47, originally named integrin-associated protein (IAP) for its role in signal transduction from integrins on immune cells, is a transmembrane protein that includes an N-terminal immunoglobulin V (IgV) domain, five transmembrane domains, and a short C-terminal intracytoplasmic tail. The intracytoplasmic tail differs in length according to four alternatively spliced isoforms that have been identified. CD47 (or IAP) was initially described as being expressed on all tissues (isoform 2), neurons (isoform 4) and keratinocytes and macrophages (isoform 1; see Reinhold *et al.* (1995) *J. Cell Sci.* 108:3419-3425). Little is known about isoform 3 despite this form having the second longest intracytoplasmic tail among the four isoforms. In addition to integrins, CD47 is known to interact with several other cell surface proteins such as, for example, thrombospondin and members of the SIRP family. Most notably, CD47 interacts with SIRP α and leads to bidirectional signaling that regulates a variety of cell-to-cell responses such as, for example, inhibition of phagocytosis and T cell activation. Indeed, CD47-SIRP α interaction has come into focus in recent years for its role in providing tumor cells with the capacity to evade immune surveillance. CD47 binding to SIRP α normally provides protection through anti-phagocytic signals (“don’t eat me”) for normal cells. However, it has been discovered that tumors also express anti-phagocytic signals, including CD47, to evade destruction by phagocytosis. Interestingly, CD47 is known to be

upregulated in several hematologic cancers and contribute to both the growth and dissemination of tumors (Chao *et al.* (2012) *Curr Opin Immunol.* 24(2): 225–232).

[0103] The complete effects of targeting CD47 and the CD47-SIRP α pathway as a new treatment for cancer are unknown and some possible toxicities have been explored. A more thorough and detailed understanding of CD47 signaling and the CD47-SIRP α pathway is needed to develop better targeted therapies for cancer treatment of the future.

CD47 Sequences

[0104] Exemplary CD47 sequences for mouse and human are set forth in Table 3. For mRNA sequences, bold font indicates coding sequence, and consecutive exons, where indicated, are separated by alternating underlined text. For mouse and human protein sequences, signal peptides are underlined, extracellular sequences are bold font and intracytoplasmic sequences are italicized. For humanized protein sequences, non-human sequences are indicated in regular font, human sequences are indicated in bold font, and signal peptides are underlined. As shown, the isoforms differ in the number of exons. For example, isoforms 1-4 of the human CD47 gene have a total of 8, 9, 10 and 11 exons, respectively, with exons 2-7 of each isoform encoding the extracellular domain and the five transmembrane domains.

TABLE 3

Mouse CD47 mRNA isoform 1 (XM_006521810.1)

GCCTACACCGGGAGAGCAGGGAGGAGGAGTTGGACTGAGGTTGGCGGCTC
 CGAGGTCCAGGGCGAGCTTGGCCAGAGGGAGTAGAGAGAGCAGCGGGCTGC
 GCAGGGACGCGTGCCGTGAGTTCCGGTGAGCGTGTGTCCCATGCTCCCGT
 CTTTCAGGCCGCCAGGACACGAAGCCGGAAGAGAGCTGGCTGGAGGGAC
 GGGGGCCGTGAGCAGAGACTGCAACCCCGCGCAGCCCCGGGACAGGCTGA
 TTCTTGGCGCTCTCCGCCGGAGCCTGCCAGGGCTGGTGTGAGGCTGGCGT
 CACGTCAACGAGCAGAGGCCAGGCAGCGGGCGAGTGCAGCGTGCAGGG
 GCGGCAGCACGCGCGCGCGCACCCCCGGGAGCCTGGCGGGCGCTCC
 TGCCTGTCAGTGCAGCGCTGCTGGTCGGTCTGGCTGGCTGGGCTCTGCT
 GCAGGAGATGTGGCCCTTGGCGGGCGCTGTTGCTGGGCTCTGCTGGCT
 GCGGTTCAACTGCTCAACTGTTAGTAACGTCAACTCCATAGAGTTCAC
 TTCATGCAATGAAACTGTGGTCATCCCTGCATCGTCCGTAATGTGGAG
 GCGCAAAGCACCGAAGAAATGTTGTGAAGTGGAAAGTGAACAAATCG
 TATATTTCATCTATGATGGAAATAAAATAGCACTACTACAGATCAA

ACTTTACCAGTGCAAAATCTCAGTCTCAGACTTAATCAATGGCATTGC
 CTCTTGAAAATGGATAAGCGCGATGCCATGGTGGAAACTACACTTGC
 GAAGTGACAGAGTTATCCAGAGAAGGCAAAACAGTTATAGAGCTGAAA
 AACCGCACGGCCTCAACACTGACCAAGGATCAGCCTGTTCTACGAGG
 AGGAGAAAGGAGGTTGCAAATTAGTTCGTGGTTCTCCAAATGAAAAA
 GATCCTCATTGTTATTTCCTAATTGGCTATACTCCTGTTCTGGGAA
 AGTTGGTATTAAACACTCAAATATAAATCCAGCCATACGAATAAGAG
 AATCATTCTGCTGCTGCCGGCTGGTGCTCACAGTCATCGTGGTT
 GTTGGAGCCATCCTCTCATCCCAGGAGAAAAGCCCCTGAAGAATGCTT
 CTGGACTTGGCCTCATTGTAATCTACGGGGATATTAATACTACTTCA
 GTACAATGTGTTATGACAGCTTTGGAATGACCTCTTCAACCATTGCC
 ATATTGATCACTCAAGTGCTGGGTACGTCTTGCTTGTCGGCTGT
 GTCTCTGCATCATGGCATGTGAGCCAGTGCACGGCCCCCTTGATTTC
 AGGTTGGGGATCATAGCTCTAGCAGAACTACTTGGATTAGTTATATG
 AAGTTGTCGAATAGGTGAAGGGAAGTGACGGACTGTAACCTGGAAGTCA
 GAAATGGAAGAATACAGTTGCTAAGCACCAGGTCTCACGACTCACAGCT
 GGAAGGAACAGACAACAGTAACACTGACTTCCATCCAGGAAAACATGTCACAT
 AAATGATTACTAAGTTATATTCAAAGCAGCTGTACTTACATAAATAAAAAA
 AATATGATGTGCTGTAACCAATTGGAATCCCATTTCATTGTTCTACT
 CAACTAGGGCAAACGTTCAAGGGCAACTTCCAAGAATGATGCTGTTAG
 ATCCTAGAGTCTGAACACTGAGTTAAATTGATTCCGAGTGAGACTCGCC
 AAGCACTAACCTGAGGGTTAGTTACCCAGAGATACCTATGAAAAACAGTGG
 TATCCAGCAAGCCTAGTAAACTCAGGTTGCCAGCAGCTTGCCACTCCGC
 TGCTAGCTGAATAACAAGACTGCCACTTCTGGTCATAGTGTAGAGACTG
 AAGTAGAAAAACGAATGTGGTTGGGCAAATCCCGTGTGGCCCCCTGTGTG
 CTATGATATTGATGGCACTGGTGTCTCATCTTGGGGTTGCCATCATTAC
 ACACACCCCTTGACATACAGTCACCCCCAGTTGAATACATTGCA
 CCCTGTCCCGTTCTGCTACTTGATTGCGTTATGATATATATATATAT
 AATACCTTCTCCTCTTAAACATGGCCTGTGACACAATAGTCAGTGCA
 GAAAGGAGCCAGACTTTCGCAAAGCACTGTGCTCAAACCTTCAGAAAA
 AAAGGAAAAAAAGCTATAGTTGTAACATATGTATTCCAGACCTCT
 GGTTAAAGGCAAAGAAAAAAATCTACAGTGTCTCATGTTCTG
 ATCGGAGGCATGACAAAGCAAGACTGAAATCTGAACACTGTGTCTGCATG
 GCAACACGTGTCTCCGTCAAGGCCCTCGCAAGGCCGGGAGGGGGTTCTAC
 GCCTCTGTCTCTTGTGATGTAACACTCATCGCCTCCTACTGTATCC
 TGCCTCCTGCAGCCTCCCTTCCCTCTTCCCTCTTCCCTCTTCC
 TCCTCCTCCTTCCCAAGTTGAAAGGTCAAACAAAACCTACCAACATTCC
 CTACCCAGTTAGAAGAAAACCACCGTCTGACAGTTGTGATCGCATGGAGT
 ACTTTAGATTATTAGCACCTGTTTACCTCGTTGTGGCGTGTGTTGATG
 TGCACATGTATGAAAGTCGGCACATGCACCTCTGTATGGCAGAGCGTGG
 CATCTACAGAAGAGCAGATGCCAACTTGTGCTTTAGTGAATACATTAAAA
 AAAAAAAACCAACGGTCCTTATTGAGTGGAAATTCTATTGATGCAAATATT
 GAGCTCTTAAGACTTAAAAGATAATGTGCCAAGCTTTAGGACTGCT
 CACCAGTGCCCTCTGAAGAAACACCAGTACTTTCTGTTGTGTAATAAA
 GGCATATTGTATTGTTGATCACTAATGGTTATTCTTCTTAGTCCAC

TGAATGTTCCATGTGCCTCTCGTATGCCAAACTTTGTCATCTTCATGTG
GGGACCAAATGGTTGTCTGTGGCAAACCTAAACCTATGACCTGCTGAGGCC
TCTCAGAAAACGTACCAAGATAGTACTTCGCAAAGAAAAGTAG
GTTCCCTCCCTGGTTGTAGCTGTGCCAATATTAGCGTAATTCCAAGGAG
CTGAACGCCTTATATAATCTGATGGCACCTGATGCTTAGTTCTGAAAAA
TATTACACTCGGATCATGTTGTTGATGACTAAACAAAGTTGATGAAGA
GAGCAAAAAAAAGCAGGTGGATTGGAACAGTTCAAGGTTTTGTT
TTTGTGTTTGTGTTTGTGTTTATTTGTTCTGTTCTGTTAG
AAAAGTCAGGTGTTCTGTCAAGGCTATCTTATAGTCATTTTACGAA
CTAAAGTAGTACCTTAATATGAGTCACGCCCTGTGCTGGGTTCAAG
TTTGGGTCTAACCAAGCTGTCACTGTTCTATGCTGCCACTGAGGCA
CTGAGTGCCCTAGACAGTCCCCTCGGTAGCCAGGGAAACGAAAGACGA
ACTCAACTCTGCTCTAATAATCAACTCTGTATGAAGGATGGCAGCATT
AAGAGTCCTCCTGCCCTGGCATTATTGGGCCAGTCACCCCTTTAAATCAA
ACCCGAGTGGCTCCCAGTCTCGTCCCCTCAGATTAAATTGCTAACAGTA
TGGGGGGCACCACGCATCTGTTGCTCCACAATGCGTTCTCTCCAAA
TCCCGATTCTGCTGTCAAGCCTCTATTCAATTGTTATTGTCTGCCCTC
CACTTATACAATCGTAGAGAGCAATGCCATTGTCACTTCTGCAACAGTT
TTGAGCCTTATGGCTGAATCCCATTCTCTCTTCAAACGTGTTGCTCC
ATTGCTCCTCCCGCACGGCTGTCCGTACAGTCATCCCCTCCATCTGGGGGCC
TCTTCATCTCACCCTCCTGGTGTGGACTCTGCTTACCTCTGTG
GGTTTTTTTTTTTGACTTATTCTCTCACTGGACTTAAGATTACTTC
CACAGCGAAAGTGCTGCCCTCCCTGTGGCAGTGTCTGCGTACTTTA
GATACTACTCAGTGTGACATTGATGGAAAAGTTGCCCTGCACTAAATT
CTCTTTAAATAGGGTGAACCTAGAGTTGGAGTTTTCTCTTTCTCTTT
CT
CCTCCCTCCCTCCCTCCCTCTCTCTCTCTCTCTCTCTCTCTCTCT
TTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCT
GAATTATAAAAGGTGACAGTCACCTGAAAATCACAGGTCTGGTGTAA
ATTGTTGAGAAATATCCGATTAAGTCTGTGGCTGTCTTAATAGGCTC
TCTTCAGGACGTTGAGTCATAGAGTGAGCTGAACCATACTGAGTTATA
AAGCTAAAAACTGATGCACCCACTGCTATTACGTGTTAGTAAGAGTC
AGCTGTATATCATTGCTAGGTTATCTGCTCTACAGTGGGTATTCAAATAT
GGCCACCAGAGGATATGTGAAATATAAGCACCTGTATTGCCCTGTTGA
GAAGTGGAGGGAAAACAAAAATGTCTGGCAACCCTTGCCTTTAACCGT
AATTAAATTGACAGTTATTAGAGATAAGAGTTCAAAAATCTCTTAACG
CCACAACCCACAGAGGGCTTGTGTTGCCATCTCAGTGGCTCACAGATATG
ATCCAAGTTAACTGAAAGAGATGAGCAGTACCCAGGAAATTGCTGCCTT
TAACCTGGCTGTCTTAATTATGACTGTTAATGCTGAATTTCATCCGTC
TAGTGTGTTGAGGGTAAAGAAAAGCCTTTAAATAAGTATTCTGTTAAC
GGCATCGGTGGGATCTCTGTGTTGCTATCACGGGTGAAAGAGGGAAACAT
TTCTTATTAAATTAGCAGAGCATTATTACAGAAAGCCATTGTTGAGAATT
AGTTCCCACATCATATAAATATCCATTAAACCATTCTAAATTGTAAGAGAACT
CCAGTGTGCTATGCACAAGGAACCTCTCTGGGGCCTTTTGCATAGCA
ATTAAAGGTATGCTATTGTCAGTAGCCATTGTCAGTGAATTAAAGACC

AAAGTTTTACAGCTGTACCCTAAAGGTTTTTATGTATTAAA
 TCAATTATCACTGTTGAAGCTTGAATACCTGCAATCTTGCCAAGATACT
 TTTTATTAACAAACTGTGTAATATTACCTGTAATATTATATAC
 TTAATAAAACATTTAAGCTA (SEQ ID NO: 1)

Mouse CD47 amino acid isoform 1 (XP_006521873.1)

MWPLAAALLGSCCGSAQLLFSNVNSIEFTSCNETVVIPIRVNVEAQSTEE
MFVKWKLNKSYIFIYDGNKNSTTDQNFTSAKISVSDLINGIASLKM
KRDA MVGNYTCEVTELSREGKTVIELKNRTAFNTDQGSACSYEEKGGCKLV
SW FSPNEKILIVIFPILAILFWGKFGILTLYKSSHTNKRI
LLL VAGLVLTVIVVVG AILLIPGEKPVKNASGLGLIVISTGIL
LLQYNVFMTAFGMTSFTIAILITQVLGVV LALVGLCLCIMACEPVHG
PLLISGLGIIALAELLGLVYMFVE(SEQ ID NO: 2)

Mouse CD47 mRNA isoform 2 (XM_006521811.1)

GCCTACACCGGGAGAGCAGGGAGGAGTTGGACTGAGGTTGGCGGCTC
 CGAGGTCCAGGGCGAGCTTGGCCAGAGGGAGTAGAGAGCAGCGGGCTGC
 GCAGGGACGCGTGCCGTGAGTTCCGGTGAGCGTGTGTCCCATGCTCCCGT
 CTTTCAGGCCGCCAGGACACGAAGCCGAAGAGAGCTGGCTGGAGGGAC
 GGGGCCGTGAGCAGAGAGTGCAACCCCGCGCAGCCCCGGGACAGGCTGA
 TTCTGGCGCTCTCCGCCGGAGCCTGCCAGGGCTGGGTGTGAGGCTGGCGT
 CACGTCAACGAGCAGAGGCCAGGCGGGAGTGGCGTGCCTGGCG
 GCGCGAGCACGCGCGCGCACCCCCGGCAGCCTGGCGGCCGCTCC
 TGCCTGTCAGTGCCTGGCGCTGCTCAGACACCTGGCGCGACCCCCGGCG
 CGGAGATGTGGCCCTTGGCGCGCTGTTGCTGGCTCCTGCTGCT
 GCGGTTCAGCTCAACTACTGTTAGTAACGTCAACTCCATAGAGTTCAC
 TTCATGCAATGAAACTGTGGTCATCCCTGCATCGTCCGTAAATGTGGAG
 GCGCAAAGCACCGAAGAAATGTTGTGAAGTGGAAAGTTGAACAAATCG
 TATATTTCATCTATGATGGAAATAAAATAGCACTACTACAGATCAA
 ACTTACCAAGTGCAAAATCTCAGTCTCAGACTTAATCAATGGCATTGC
 CTCTTGAAAATGGATAAGCGCGATGCCATGGTGGAAACTACACTTGC
 GAAGTGACAGAGTTATCCAGAGAAGGAAAACAGTTAGAGCTGAAA
 AACCGCACGGTTCTGGTTCTCAAATGAAAAGATCCTCATTGTTA
 TTTTCCCAATTTGGCTATACTCCTGTTCTGGGAAAGTTGGTATTTA
 ACACTCAAATATAATCCAGGCCATCGAATAAGAGAATCATTCTGCTGC
 TCGTTGCCGGCTGGTGCACAGTCATCGTGGTTGGAGGCCATCCT
 TCTCATCCCAGGAGAAAAGCCCGTGAAGAATGCTCTGGACTTGGCCTC
 ATTGTAATCTCTACGGGATTAATACTACTTCAGTACAATGTGTTAT
 GACAGCTTTGGAATGACCTCTTCACCATTGCCATATTGATCACTCAA
 GTGCTGGCTACGTCCTGCTTGGTCGGCTGTGTCTGCATCATGG
 CATGTGAGCCAGTGCACGGCCCCCTTGATTCAGGTTGGGATCAT
 AGCTCTAGCAGAACTACTGGATTAGTTATATGAAGTTGTCGCTTCC
 AACCAAGAGGACTATCCAACCTCTAGGAATAGGTGAAGGGAAAGTGACGG
 ACTGTAATTGGAAGTCAGAAATGGAAGAATACAGTTGTCAGCACCAGG
 TCTTCACGACTCACAGCTGGAAGGAACAGACAACAGTAACTGACTTCCATC

CAGGAAAACATGTCACATAAATGATTACTAAGTTATATTCAAAGCAGCTGT
ACTTTACATAATAAAAAAAATGATGTGCTGTGTAACCAATTGGAATCCA
TTTTCTATTGTTCTACTCAACTAGGGCAAACGTTCAGGGGCAACTCCA
AGAATGATGCTTGTAGATCCTAGAGTCTCTGAACACTGAGTTAAATTGAT
TCCGAGTGAGACTGCCAAGCACTAACCTGAGGGTAGTTACCCAGAGATA
CCTATGAAAAACAGTGGTATCCAGCAAGCCTAGTAAACTCAGGTTGCCAG
CAGCTTGCCACTTCCGCTGCTAGCTGAATAACAAGACTGCCACTCTGGGT
CATAGTGATAGAGACTGAAGTAGAAAAACGAATGTGGTGGCAAATCCCG
TGTGGCCCTCTGTGCTATGATATTGATGGCACTGGTGTCTTCATTCTGG
GGGTGCCATCATTACACACACACCCCTTGACATACAGTGCACCCAGTTT
GAATACATTTTTTGCACCCGTCCGTTGCTACTTGATTGCGTTATG
ATATATATATATATATAACCTTTCTCCTCTTAAACATGGCCTGTGA
CACAATAGTCAGTGCAGAAAGGAGCCAGACTTATCGCAAAGCACTGTGC
TCAAACCTTCAGAAAAAAAGGAAAAAAAGCTATAGTTGTAACAT
ATGTATTCCAGACCTCTGGTTAAAGGCAAAAGAAAAAAATCTACAGTGT
TTCTCTCATGTTCTGATCGGAGGCATGACAAAGCAAGACTGAAATCTGA
ACTGTGTCTCCTGCATGGCAACACACGTGTCTCCGTCAAGGCCCTCGCAAGGCC
GGGGAGGGGGTCTACGCCCTTGCTCTTGTGCATGCTGAACACTCATC
GCCTCCTACTGTATCCTGCCTCCTGCAGCCTCCCTTCCCTCCTCCT
CTCCTCCTCTCCTCCTCCTCCTCCAAGTTGAAAGGTCAAAC
AAAACACCACATTCCCTACCCAGTTAGAAGAAAACCACCGCCTGACAGTT
GTGATCGCATGGAGTACTTTAGATTATTAGCACCTGTTTACCTCGTTGT
GGCGTGTGTTGTATGTGCACATGTATGAAGTCGGCACATGCACCTCTGTAT
GGCAGAGGCCTGGCATCTACAGAAGAGCAGATGCCAACCTTGCTGTTTA
GTGAATACATTAAAAAAACCAACGGCCTTATTGAGTGGAAATTCTA
TTTGATGCAAATATTGAGCTTTAAGACTTAAACACTAGATAATGTGCCA
AGCTTTAGGACTGCTACCAAGTGCCTCTGAAGAAAACACCAAGTACTTTTC
CTGTTGTGAATAAAGGCATATTGTATTGTGTTGCATCACTAATGGTTA
TTTCTCTTAGTCCACTGAATGTTCCATGTGCCTCTCGTATGCCAAACTTT
TGTCACTTTCATGTGGGACCAATGGTTGTCTGTGGCAAACCTAAACCT
ATGACCTGCTGAGGCCTCTCAGAAAACGTGACCAAGTACCAAGATAGTACT
TCGCAAAGAAAAGTAGGTTCCCTCCCTGGTTTAGCTGTCGCCAATATTA
GCGTAATTCCAAGGAGCTGAACGCCCTTATATAATCTGATGGCACCTGATG
CTTTAGTTCTGAAAATATTACACTCGGATCATGTTGATGACTAAACA
AAGTTTGATGAAGAGAGCAAAAAAAAGCAGGTGGATTGGAACAGTTTC
AGGGTTTTTTGTTTTGTTTTGTTTTGTTTTGTTTTTTTATTGTT
TTCTGTTCTGTAGAAAAGTCAGGTGTTCTGTCAGGCTATCTTATAGT
CAATTTTTTACGAACTAAAGTAGTACCTTTAATATGTAGTCAACGCCCT
CTGCTCGGGGTTCAGTTGGTCTAACCAAGCTGTCATGTTCTATGCTGC
CTGCCACTTGAGGCACTGAGTGCCTAGACAGTCCCACGGTGGTAGCCAG
GGAAACGAAAGACGAACCTCAACTCTGCTCTAACCAACTCTGTATG
AAGGATGGCAGCATTAAAGAGTCCTCCTGCCTGGCATTATTGGGCCAGTTCA
CCCTCTTAAATCAAACCCGAGTGGCTCCAGTTCTCGTCCATCAGATT
AAATTGCTAACAGTATGGGGGCACCAACGCATCTGTTGTCCCACAATGCG
CTTTCTCTCCAAATCCCATTCTGCTGTCATAGCCTCTATTCAATTAT

TTATTGTCTGCCCTCCACTTATACAATCGTAGAGAGCAATGCCATTGTCACT
 TTCTGCAACAGTTTGAGCCTTATGGCTGAATCCCATTTCCTCTTTCA
 AAACTGTTGCTCCATTGCTCCTCCCGACGGCTGCGTACAGTCATCCCCT
 CCATCTGGGGGCCTCTTCATCTCACCCTCCTGGTCTCGTGGATCTCT
 GCTTACCTCTGTGGTTTTTTTTGACTTATTCTCTCACTGGACT
 TTAAGATTACTTCCACAGCGAAAGTGCTGCCTCCCTTCTGCCCGCAGTGTT
 CTGCGTACTTTAGATACTACTCAGTGCTGACATTGATGGAAAAGTTGCCT
 GCACCTAAATTCTCTTTAATAGGGTGAACTAGAGTTGGAGTTTTCTC
 TTTTTCTCTTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT
 CCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCTCTCTCTCTCTCTCT
 TTTCTTCTTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCT
 CACAGGCTTGAGAATTATAAAAGGTGACAGTTCACCTGAAAATCACAGGT
 CTGGTCTGTTAAATTGTTGAGAAATATCCGATTAAAGTCTTGTGGCTGTG
 TCCTAATAGGCTCTTCAGGACGTTAGTCAATAGAGTTGGCTGAACCAT
 ACTTGAGTTATAAAGCTAAAAACTGATGCACCCACTCTGCTATTATCGTG
 TTAGTAAGAGTTCAAGCTGTATATCATTGTCTAGGTTATCTTGTCTTACAGTG
 GGTATTCAAATATGCCACCAAGAGGATATGTGTAATATAAGCACCTGTATT
 TGCCTGTTGAGAACTGGAGGGAAAACAAAAAATGTCTGGCAACCCCTT
 GCCTTTTAACCGTAATTAAATTGACAGTTATTAGAGATAAGAGTTTCAA
 AAATCTCTTAACGCCACAACCCACAGAGGGCTTGTCTTGCCTCTTCAGT
 GGCTCACAGATATGATCCAAGTTAACTTGAAAGAGATGAGCAGTACCCAGG
 AAATTGTCCTGCCTTAACCTGGCTGCTTAATTATGACTGTTAATGCTG
 AATTTCATCCGTCTAGTGTGAGGGTAAAGAAAAGCCTTTAAATAA
 GTATTCTGAAAACGGCATCGGTGGATCTCTGTGCTATCACGGTG
 AAAGAGGGAAACATTCTTATTAAAGCAGAGCATTATTACAGAAAG
 CCATTGTTGAGAATTAGTCCCACATCATATAAAATCCATTAACCATTCTA
 AATTGTAAGAGAACTCCAGTGTGCTATGCACAAGGAACCTCCTGGGGC
 CTTTTTGCATAGCAATTAAAGGTATGCTATTGTCAGTAGCCATTGGC
 AGTATTAAAGACCAAAGTTGTTACAGCTGTGTTACCCCTAAAGGTTT
 TTTTTATGTTAAATCAATTACTGTTGAAGCTTGAATACCTGCAA
 TCTTGCCAAGATACTTTTATTAAAAAAATACTGTGTAATATTACCC
 GTAATATTATATACTTAATAAAACATTAAAGCTA (SEQ ID NO: 3)

Mouse CD47 amino acid isoform 2 (XP_006521874.1)

MWPLAAALLGSCCGSAQLLFSNVNSIEFTSCNETVVIPICIVRNVEAQSTEE
MFVKWKLNKSYIFIYDGNKNSTTDQNFTSAKISVSDLINGIASLKM**DKRDA**
MVGNYTCEVTELSREGKTIELKNRTVSWFSPNEKILIVIFPILAILLFWGKFG
 ILTLKYKSSHTNKRIILLVAGLVLTIVVVGAILIPIGEKPVKNASGLGLIVISTG
 ILILLQYNVFMTAFGMTSFTIAILITQVLGYVLALVGLCLCIMACEPVHGPLLISG
 LGIIALAEELLGLVYMKFVASNQRTIQPPRNR(SEQ ID NO: 4)

Mouse CD47 mRNA isoform 3 (XM_006521807.1)

GCCTACACCGGGAGAGCAGGGAGGGAGGAGTTGGACTGAGGTTGGCGGCTC
 CGAGGTCCAGGGCGAGCTTGGCCAGAGGGAGTAGAGAGAGCAGCGGGGCTGC
 GCAGGGACCGTGCCTGAGTCCGGTGAGCGTGTGTCCCAGTCTCCGT

CTTCAGGCCGCCAGGACACGAAGCCGGAAGAGAGCTGGCTGGAGGGAC
GGGGGCCGTGAGCAGAGAGTGCAACCCGCGCAGCCCCGGGACAGGCTGA
TTCTGGCGCTCTCCGCCGGAGCCTGCCAGGGCTGGGTGTGAGGCTGGCGT
CACGTCAACGAGCAGAGGCCAGGCGGGCGAGTGCCTGCGCTGCCGG
GCAGCGAGCACGCCGCCGCACCCCCGGCAGCCTGGCGGCCGCTCC
TGCCTGTCAGTGCCTGCCAGGCGCTGCCAGGGCTGGTGTGCTGCCCTGAAGGCAGCA
GCAGGAGGCCGGCTGCTCCAGACACCTGCCGCCGACCCCCGGCG
CGGAGATGTGGCCCTGGCGGGCGCTGTTGCTGGGCTCCTGCTGCT
GCGGTTCACTGCTCAACTACTGTTAGTAACGTCAACTCCATAGAGTTCAC
TTCATGCAATGAAACTGTGGTCATCCCTGCATCGTCCGTAATGTGGAG
GCGCAAAGCACCGAAGAAATGTTGTGAAGTGAACAAATCG
TATATTTCATCTATGATGAAATAAAATAGCACTACTACAGATCAA
ACTTACCACTGCAAAATCTCAGTCTCAGACTTAATCAATGGCATTGC
CTCTTGAAAATGGATAAGCGCGATGCCATGGTGGAAACTACACTTGC
GAAGTGACAGAGTTATCCAGAGAAGGCAAAACAGTTAGAGCTGAAA
AACCGCACGGCCTCAACACTGACCAAGGATCAGCCTGTTACGAGG
AGGAGAAAGGAGGGTTGCAAATTAGTTGCTGGTTCTCCAAATGAAAA
GATCCTCATTGTTTTCCAATTGGCTATACTCCTGTTCTGGGAA
AGTTGGTATTTAACACTCAAATATAAATCCAGCCATACGAATAAGAG
AATCATTCTGCTGCTCGTGGCCGGCTGGTGCTCACAGTCATCGTGGTT
GTTGGAGCCATCCTCTCATCCCAGGAGAAAAGCCGTGAAGAATGCTT
CTGGACTTGGCCTATTGTAATCTACGGGGATATTAATACTACTTCA
GTACAATGTGTTATGACAGCTTGGAAATGACCTCTTCAACCATTGCC
ATATTGATCACTCAAGTGCCTGGCTACGTCCTGCTTGGCTGGCTGT
GTCTCTGCATCATGGCATGTGAGCCAGTGCACGGCCCCCTTGATTTC
AGGTTGGGATCATAGCTCTAGCAGAACTACTTGGATTAGTTATATG
AAGTTGTCGCTTCAACCAACAGAGGACTATCCAACCTCTAGGAAAGCTG
TAGAGGAACCCCTTAACGAATAGGTGAAGGGAAAGTGACGGACTGTAACCT
GGAAGTCAGAAATGGAAGAATAACAGTTGCTAAGCACCAGGTCTCACGAC
TCACAGCTGGAAGGAACAGACAACAGTAACGTGACTTCACTCCAGGAAAACA
TGTACACATAATGATTACTAAGTTATATTCAAAGCAGCTGTACTTACATA
ATAAAAAAAATATGATGTGCTGTAAACCAATTGGAATCCCATTTCATT
GTTTCTACTCAACTAGGGCAAACGTTCAAGGGCAACTTCCAAGAATGATG
CTTGTAGATCCTAGAGTCTCTGAACACTGAGTTAAATTGATTCCGAGTGA
GACTGCCAAGCACTAACCTGAGGGTTAGTTACCCAGAGATACCTATGAAA
AACAGTGGTATCCAGCAAGCCTAGTAAACTCAGGTTGCCAGCAGCTTGC
ACTTCCGCTGCTAGCTGAATAACAAGACTGCCACTCTGGGTCTAGTATA
GAGACTGAAGTAGAAAAACGAATGTGGTTGGCAAATCCCGTGTGGCC
CTGTGTGCTATGATATTGATGGCACTGGTGTCTCATTCTGGGGTTGCC
CATTACACACACACCCCTTGACATACAGTGCACCCAGTTGAATACATT
TTTTGCACCCCTGTCCGTTCTGCTACTTGATTGCGTTATGATATATAT
ATATATATAATACCTTTCTCCTCTTAAACATGGCCTGTGACACAATAGTC
AGTTGCAGAAAGGAGGCCAGACTTACCGAAAGCACTGTGCTCAAACACTTC
AGAAAAAAAGGAAAAAAAGCTATAGTTGTAACATATGTATTCCAG
ACCTCTGGTTAAAGGCAAAAGAAAAAAATCTACAGTGTGTTCTCTCATGT

TTTCTGATCGGAGGCATGACAAAGCAAGACTGAAATCTGAACGTGTCTCCT
GCATGGCAACACGTGTCTCCGTCAAGGCCCTCGCAAGGCCGGGGAGGGGGT
TCTACGCCTTGTCTTTGTCATGCTGAACACTCATCGCCTCCTACTG
TATCCTGCCTCCTGCAGCCTCCCTTCCTCCTCCTCCTCCTCCTCCT
CCTCCTCCTCCTCCTCCTCCAAGTTGAAAGGTCAAACAAAACCTACCAC
ATTCCCTACCCAGTTAGAAGAAAACCACCGTCCTGACAGTTGTGATCGCATG
GAGTACTTTAGATTATTAGCACCTGTTTACCTCGTTGTGGCGTGTGTTG
TATGTGCACATGTATGAAGTCGGCACATGCACCTCTGTATGGCAGAGGGG
TGGCATCTACAGAAGAGCAGATGCAACTTGTGCTTTAGTGAATACATTA
AAAAAAAAAAACCAACGGCCTTATTGAGTGGATTCTATTGATGCAAAT
ATTGAGCTTTAAGACTTAAAAGATAATGTGCCAAGCTTGTAGGAC
TGCTCACCAAGTGCCCTCTGAAGAAACACCAAGTACTTTCTGTTGTGAAT
AAAGGCATATTGTATTGTGTTGCATCACTAATGGTTATTCTCTTAGTC
CACTGAATGTTCCATGTGCCCTCTGTATGCCAAACTTTGTATCTTCAT
GTGGGGACCAAAATGGTTGTCTGTGGCAAACCTAACCTATGACCTGCTGAG
GCCTCTCAGAAAACGTACCCACAGTACCAAGATAGTACTTCGCAAAGAAAAG
TAGGTTCCCTCCCTGGTTGTAGCTGTCGCCAATATTAGCGTAATTCCAAG
GAGCTGAACGCCTTATATAAAATCTGATGGCACCTGATGCTTTAGTCTGA
AAATATTACACTCGGATCATGTTGTTGACTAAACAAAGTTGATGTA
AGAGAGCAAAAAAAAGCAGGTGGATTGGAACAGTTCAGGGTTTTTT
GTTTTTGTGTTTTGTTTTGTTTTTTTATTGTTCTGTTCTCTG
TTAGAAAAGTCAGGTGTTCTGTCAAGGCTATCTTATAGTCATTTC
CGAACTAAAGTAGTACCTTTAATATGTAGTCAACGCCCTGCTCGGGGT
TCAGTTGGGTCTAACCAAGCTGTCACTGTTCTCTGCTGCCACTTGA
GGCACTGAGTGCCTAGACAGTCCCACGGTGGTAGCCAGGGAAACGAAAG
ACGAACACTCAACTCTGCTCCAATAATCAACTCTGTATGAAGGATGGCAG
CATTAAGAGCTCCTGCCTGGCATTATTGGCCAGTCACCCCTTTAAA
TCAAACCCGAGTGGCTCCAGTCTCGTCCCATCAGATTAAATTGCTAAC
AGTATGGGGGGCACCACGCATCTGTTGTCCTCTGCTGCAAC
CAAATCCCAGTTCTGCTGTCAAGCCTCTATTCAATTTCATTGCTG
CCCTCCACTTACAATCGTAGAGAGCAATGCCATTGTCACCTCTGCAAC
AGTTTTGAGCCTTATGGCTGAATCCCATTTCCTCTCTTCAAACGTT
GCTCCATTGCTCCTCCGCACGGCTGTCCGTACAGTCATCCCACCATCTGG
GGGCCTCTTCATCTCACCCCTGGTGTGGATCTCTGCTTACCT
CTGTGGGTTTTTTTTGACTTATTCTCTCACTGGACTTAAGATT
ACTTCCACAGCGAAAGTGCTGCCTCCCTTCTGCCGCAGTGTCTGCGTA
CTTAGATACTACTCAGTGTCACATTGATGGAAAAGTGCCTGCACTTA
AATTCTCTTTAATAGGGTGAACAGAGTTGGAGTTTTCTCTTTCT
CTTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCCCT
CCCTCCCTCCCTCCCTCCCTCTCTCTCTCTCTCTCTCTCTCTCT
TTCT
TTGAGAATTATAAAAGGTGACAGTCACCTGAAAATCACAGGTCTGGTCTG
TTAAATTGTTGAGAAATATCGATTAAAAGTCTGTGGCTGTGCTTAATA
GGCTCTCTTCAGGACGTTGAGTCACAGAGTGGCTGAACCACACTGAGT
TTATAAAAGCTAAAAACTGATGCACCCACTCTGCTATTATCGTGTAGTAAG

AGTCAGCTGTATATCATTGTCTAGGTTATCTTGCCTACAGTGGGTATTCA
 AATATGGCCACCAGAGGATATGTGTAAATATAAGCACCTGTATTGCCTGTT
 GTTGAGAACTGGAGGGAAAACAAAAATGTCTGGCAACCCTTGCCCTTTA
 ACCGTAATTAAATTGACAGTTATTAGAGATAAGAGTTCAAAAATCTCTT
 AACTGCCACAACCCACAGAGGGCTTGTGCCCCATCTCAGTGGCTCACAG
 ATATGATCCAAGTTAACTTGAAAGAGATGAGCAGTACCCAGGAAATTGTCC
 TGCCTTAACCTCTGGCTGTCTTAATTATGACTGTTAATGCTGAATTTC
 TCCGCTAGTGTGAGGGTAAAGAAAAGCCTTTAAATAAGTATTCTG
 TAAAACGGCATCGGTGGGATCTCTGTGCTATCACGGGTGAAAGAGGG
 AACATTCTTATTAAAGCAGAGCATTATTACAGAAAAGCCATTGTT
 GAGAATTAGTTCCCACATCATATAAAATCCATTACCCATTCTAAATTGTA
 GAGAACTCCAGTGTGCTATGCACAAGGAACCTCTCTGGGGCCTTTTG
 CATAGCAATTAAAGGTATGCTATTGTCAGTAGCCATTGCACTGAGTGA
 AAAGACCAAAGTTGTTTACAGCTGTGTTACCCCTAAAGGTTTTTATG
 TATTAAATCAATTACTGTTGAAGCTTGAATACCTGCAATCTTGCCA
 AGATACTTTTATTAAAAAAATAACTGTGTAAATATTACCCGTAAATT
 TATATACTTAATAAAACATTAAAGCTA (SEQ ID NO: 5)

Mouse CD47 amino acid isoform 3 (XP_006521870.1)

MWPLAAALLGSCCCGSAQLLFSNVNSIEFTSCNETVVI**P**IVRNVEAQSTEE
MFVKWKLNKSYIFIYDGNKNSTTDQNFTSAKISVSDLINGIASLKM**D**KRDA
MVGNYTCEVTELSREGKTIELKNRTAFNTDQGSACSYEEKGGCKLVSW
FSPNEKILIVIFPILAILFWGKFGILTLYKSSHTNKRI~~LLL~~VAGLVLTVIVVVG
 AILLIPGEKPVKNASGLGLIVISTGIL~~LLL~~QYNVFMTAFGMTSFTIA~~LL~~ITQVLGYV
 LALVGLCLCIMACEPVHGPLLISGLGI~~LL~~ALAE~~LL~~GLVYMKFVASNQRTI~~Q~~PPRKAV
 EEPLNE(SEQ ID NO: 6)

Mouse CD47 mRNA isoform 4 (XM_006521808.1)

GCCTACACCGGGAGAGCAGGGAGGAGGTGGACTGAGGTTGGCGGCTC
 CGAGGTCCAGGGCGAGCTTGGCCAGAGGGAGTAGAGAGAGCAGCGGGCTGC
 GCAGGGACCGTGCCTGAGTTCCGGTGAGCGTGTGTCCCAGTCTCCCGT
 CTTTCAGGCCGCCAGGACACGAAGCCGAAGAGAGCTGGCTGGAGGGAC
 GGGGCCGTGAGCAGAGAGTGCAACCCCGCGCAGCCCCGGGACAGGCTGA
 TTCTTGGCGCTCTCCGCCGGAGCCTGCCAGGGCTGGGTGTGAGGCTGGCGT
 CACGTCAACGAGCAGAGGCCAGGCGGGAGTGCCTGCGCGCAGGGCG
 GCGCGAGCACGCCGCCGCCACCCCCGGGAGCCTGGCGGCCGCTCC
 TGCCTGTCAGTGCCTGCGCTGCTGGTCGGCTTCCCTGAAGGCAGCA
 GCGGAGGCCGGCTGCTCCAGACACCTGCCTGCGCGCAGCCCCGGCG
 CGGAGATGTGGCCCTGGCGGGCGCTGTTGCTGGGCTCCTGCTGCT
 GCGGTTCAACTACTGTTAGTAACGTCAACTCCATAGAGTTCAC
 TTCATGCAATGAAACTGTGGTCATCCCTGCATCGTCCGTAATGTGGAG
 GCGCAAAGCACC~~GA~~AGAAATGTTGTGAAGTGAAGTGAACAAATCG
 TATA~~TTT~~CATCATGATGGAAATAAAATAGCACTACTACAGATCAA
 ACTTTACCAAGTGCAAAATCTCAGTCTCAGACTTAATCAATGGCATTGC
 CTCTTGAAAATGGATAAGCGCAGGCCATGGTGGGAAACTACACTTGC

GAAGTGACAGAGTTATCCAGAGAAGGCAAAACAGTTAGAGCTGAAA
AACCGCACGGTTCTGGTTCTCCAAATGAAAAGATCCTCATTGTTA
TTTCCCAATTTGGCTATACTCCTGTTGGGGAAAGTTGGTATTTA
ACACTCAAATATAAACTCAGCCATACGAATAAGAGAATCATTCTGCTGC
TCGTTGCCGGCTGGTGCACAGTCATCGTGGTTGGAGGCCATCCT
TCTCATCCCAGGAGAAAAGCCCGTGAAGAATGCTTCTGGACTGGCCTC
ATTGTAATCTCTACGGGGATATTAATACTACTTCAGTACAATGTGTTAT
GACAGCTTTGGAATGACCTCTTCACCATTGCCATATTGATCACTCAA
GTGCTGGGCTACGTCCTGCTTGGCTGGCTGTGTCTGCATCATGG
CATGTGAGCCAGTGCACGGCCCCCTTGATTCAGGTTGGGATCAT
AGCTCTAGCAGAACTACTGGATTAGTTATATGAAGTTGTCGCTTCC
AACCAAGAGGACTATCCAACCTCTAGGAAAGCTGTAGAGGAACCCCTTA
ACGCATTTAAAGAGTCAAAAGGAATGATGAATGACGAATAGGTGAAGGG
AAAGTGACGGACTGTAACCTGGAAGTCAGAAATGGAAGAATACAGTTGTCTA
AGCACCAAGGTCTCACGACTCACAGCTGGAAGGAACAGACAACAGTAAC
ACTTCCATCCAGGAAAACATGTCACATAAAATGATTACTAAAGTTATATTCAA
AGCAGCTGTACTTACATAATAAAAAAAATATGATGTGCTGTAAACCAATT
GGAATCCCATTTCATTGTTCTACTCAACTAGGGGCAAACGTTCAAGGG
GCAACTCCAAGAATGATGCTTGTAGATCCTAGAGTCTCTGAACACTGAGT
TTAAATTGATTCCGAGTGAGACTCGCCAAGCAACTAACCTGAGGGTTAGTTAC
CCAGAGATACTATGAAAAACAGTGGTATCCAGCAAGCCTAGTAAACTCA
GGTTGCCAGCAGCTTGCACCTCCGCTGCTAGCTGAATAACAAGACTGCCA
CTTCTGGGTCAAGTGATAGAGACTGAAGTAGAAAAACGAATGTGGTTGGG
CAAATCCCAGTGTGGCCCCCTGTGTGCTATGATATTGATGGCACTGGTGTCT
TCATTCTGGGGTTGCCATCATTCACACACACCCCTTGACATACAGTGCA
CCCCAGTTGAATACATTTCAGCACCCTGTCCGTTCTGCTACTTGATT
TGCAGTATGATATATATATATATAACCTTTCTCCTCTTAAACATG
GTCCTGTGACACAATAGTCAGTTGCAGAAAGGAGGCCAGACTTATTGCAAA
GCACTGTGCTCAAACCTTCAGAAAAAAAGGAAAAAAAGCTATAG
TTGTAACATATGATTCCAGACCTCTGGTTAAAGGCAAAAGAAAAAAAT
CTACAGTGTCTTCTCATGTTCTGATGGAGGCATGACAAAGCAAGACT
GAAATCTGAACTGTGTCTCGATGGCAACACAGTGTCTCCGTAGGGCCCTC
GCAAGGCCGGGGAGGGGGTTCTACGCCTCTGTCTCTTGTGCACTGCTGA
ACACTCATGCCCTCCTACTGTATCCTGCCTCCTGCAGCCTCCCTTCC
TCCTCTCCTCTCCCTCTCCTCTCCTCTCTCTCCCAAGTTGAA
AGGTCAAACAAAATACACCACATTCCCTACCCAGTTAGAAGAAAACCACCGT
CCTGACAGTGTGATGCATGGAGTACTTTAGATTATTGACACCTGTTTA
CCTCGTTGTGGCGTGTGATGTGCACATGTATGAAGTCGGCACATGCA
CCTTCTGTATGGCAGAGGCGTGGCATCTACAGAAGAGCAGATGCCAACTT
TGTGCTTTAGTGAATACATTAAAAAAACCAACGGCTTATTGAGT
GGAATTCTATTGATGCAAATATTGAGCTTTAAGACTTTAAACTAGAT
AATGTGCCAAGCTTTAGGACTGCTACCAAGTGCCTCTGAAGAAACACCAG
TACTTTCTGTTGTGTAATAAAGGCATATTGTATTGTTGCATCAC
TAATGGTTATTCTTAGTCCACTGAATGTTCCATGTGCCCTCGTATGC
CAAACTTTGTATCTTCATGTGGGGACCAAATGGTTGTCTGTGGCAAA

CCTAAACCTATGACCTGCTGAGGCCTCTCAGAAAATGACCACAGTACCAA
GATAGTACTTCGAAAGAAAAGTAGGTTCCCTCCCTGGTTTAGCTGTCG
CCAATATTAGCGTAATTCCAAGGAGCTGAACGCCTTATATAATCTGATGG
CACCTGATGCTTTAGTTCTGAAAATATTACACTCGGATCATGTTGTTGATG
ACTTAAACAAAGTTGATGAAGAGAGCAAAAAAAAGCAGGTGGATTGG
AACAGTTCAAGGTTTTTGTGTTTTGTTGTTGTTGTTTTTTTTTT
ATTTTGTGTTCTGTTCTGTTAGAAAAGTCAGGTGTTCTGTCAGGCTA
TCTTATAGTCAATTTCAGAAGTACCTTAAACTGAGTACCTTTAATATGAGT
CAACGCCCTCTGCTCGGGTCAGTTGGTCTAACAGCTGTCACTGTT
TCTATGCTGCCGCACTTGAGGCAGTGAGTGCCTAGACAGTCCCCTCGGT
GGTAGCCAGGGAAACGAAAGACGAACACTCAACTCTGCTCCTAATAATCAAC
TCTCTGTATGAAGGATGGCAGCATTAAAGAGTCCTCCTGCCTGGCATTATTG
GCCAGGTTCAACCTCTTAAATCAAACCCGCAGTGGCTCCAGTTCTCGTCC
CATCAGATTAAATTGCTAACAGTATGGGGGGCACCACGCATCTGTTGTC
CCACAATGCGCTTTCTCCTCCAAATCCCGATTCTGCTGTCAAGCCTCTAT
TCAATTTTATTATTGTCTGCCCTCCACTTATACAAATCGTAGAGAGCAATGC
CATTGTCACTTCTGCAACAGTTTGAGCCTTATGGCTGAATCCCATT
TTCTCTCTTCAAACACTGTTGCTCCATTGCTCCTCCGCACGGCTGTCCGTA
CAGTCATCCCATCCATCTGGGGCCTCTTCATCTCACCCTCCGGTGC
TCGTGGATCTGCTTACCTCTGTGGTTTTTTTTTTTGACTTATTCTT
CTCACTGGACTTAAGATTACTCCACAGCGAAAGTGCTGCCTCCCTTCTG
CCCGCAGTGGCTGCGTACTTAGATACTACTCAGTGCTGACATTGATGGC
AAAAGTTGCCTGCACTTAAATTCTCTTTAAATAGGGTGAACTAGAGTTGG
AGTTTTCTCTTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT
CTCTCTCTCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCTCT
TTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTT
TTGACAAATCTCACAGGCTTGAGAATTAAAAGGTGACAGTTCACCTGA
AAATCACAGGTCTGGTCTGTTAAATTGTTGAGAAATATCCGATTAAAGTC
TTGGCTGTCCTAATAGGCTCTTCAAGGACGTTGAGTCAATAGAGT
GGCTGAACCATACTGAGTTATAAGCTAAAAACTGATGCACCCACTCTG
CTATTATCGTGTAGTAAGAGTTAGCTGTATATCATTGTCTAGGTTATCTT
GTCCTACAGGGTATTCAAATATGCCACAGAGGATATGTGAAATATA
AGCACCTGTATTGCCTGTTGAGAACTGGAGGGAAAACAAAAATGTC
TGGCAACCCCTTGCCTTTAACCGTAATTAAATTGACAGTTATTAGAGATA
AGAGTTTCAAAATCTCTTAACCTGCCACAACCCACAGAGGGCTTGTTG
CCATCTTCAGTGGCTCACAGATATGATCCAAGTTAACTGAAAGAGATGAGC
AGTACCCAGGAAATTGCCTGCCTTAACCTGGCTGCTTAATTATGACT
GTTAATGCTGAATTTCATCCGCTAGTGGTTGAGGGTAAAGAAAAGCCT
TTTTAAATAAGTATTCTGAAACGGCATCGTGGGATCTCTGTGTTGCT
ATCACGGGTGAAAGAGGGAAACATTCTTATTAAAGCAGAGCATTAT
TTACAGAAAGCCATTGTTGAGAATTAGTCCCACATCATATAAATATCCATT
AACCATCTAAATTGTAAGAGAACTCCAGTGGCTATGCACAAGGAACCT
CCTGGGGCCTTTTGCAAGCAATTAAAGGTATGCTATTGTCAGTAGC
CATTGTTGCAGTGATTAAAGACCAAAGTTGTTACAGCTGTGTTACCCCT
AAAGGTTTTTTATGTATTAAATCAATTACTGTTGAAGCTTGAA

TACCTGCAATCTTGCCAAGATACTTTTATTTAAAAAAATAACTGTGTAA
ATATTACCTGTAATATTATATACTTAATAAAACATTTAAGCTA (SEQ ID NO: 7)

Mouse CD47 amino acid isoform 4 (XP_006521871.1)

MWPLAAALLGSCCGSAQLLFSNVNSIEFTSCNETVVIPCIVRNVEAQSTEE
MFVKWKLNKSYIFIYDGKNNSTTDQNFTSAKISVSDLINGIASLKMDFRDA
MVGNYTCEVTELSREGKTVIELKNRTVSWFSPNEKILIVIFPILAILFWGKFG
ILTLKYKSSHTNKRILLLVAGLVLTIVVVGAILLIPGEKPVKNASGLGLIVISTG
ILILLQYQNVFMTAFGMTSFTIAILITQVLGYVLALVGLCLCIMACEPVHGPLLISG
LGIIALAEELLGLVYMKFVASNQRTIQPPRKAVEEPLNAFKESKGMMNDE (SEQ ID NO: 8)

Human CD47 mRNA isoform 1 (XM_005247909.1)

AGTGGGAGCGCGCGTGCAGCGCGCCGTGCAGCCTGGCAGTGGGTCCTGCC
TGTGACGCGCGCGCGCGCGTGCCTGCCTGTAACGGCGCGCGCGCTGCT
GCTCCGGACACCTGCAGCGCGCGCGACCCCGCGCGCGGGCGCGGAGAT
GTGGCCCTGGTAGCGGGCGCTGTTGCTGGCTCGGCGTGCTCGGGATC
AGCTCAGCTACTATTAATAAAACAAAATCTGAGAATTACACGTTTGT
ATGACACTGTCGTATTCCATGCTTGTACTAATATGGAGGCACAAA
CACTACTGAAGTATACGTAAGTGGAAATTAAAGGAAGAGATATTAC
ACCTTTGATGGAGCTCTAAACAAAGTCCACTGTCCCCACTGACTTTAGTA
GTGAAAAATTGAAGTCTCACAATTACTAAAAGGAGATGCCTCTTGAA
GATGGATAAGAGTGATGCTGTCTCACACACAGGAAACTACACTGTGAA
GTAACAGAATTAAACCAGAGAAGGTGAAACGATCATCGAGCTAAATAC
GTGTTGTTCATGGTTTCTCCAAATGAAAATTCTTATTGTTATTTC
CCAATTGGCTATACTCCGTCTGGGACAGTTGGTATTAAAACAC
TTAAATATAGATCCGGTGGTATGGATGAGAAAACAATTGCTTACTTGT
TGCTGGACTAGTGATCACTGTCATTGTCATTGTTGGAGGCCATTCTTTC
GTCCCAGGTGAATTACATTAAAGAATGCTACTGGCCTGGTTAATTG
TGACTTCTACAGGGATATTAATATTACTCACTACTATGTGTTAGTACA
GCGATTGGATTAAACCTCCTCGTCATTGCCATTGGTTATTCAAGGTGA
AGCCTATATCCTCGCTGGTGGACTGAGTCCTGTATTGCCCGTG
TATACCAATGCATGGCCCTCTGATTTCAGGTTGAGTATCTAGCT
CTAGCACAAATTACTGGACTAGTTATAAGAAAATTGTTGGAAATAACTGAA
GTGAAGTGATGGACTCCGATTGGAGAGTAGTAAGACGTGAAAGGAATACA
CTTGTGTTAACGACCATGGCCTGATGATTCACTGTTGGGAGAAGAAACA
AGAAAAGTAACTGGTTGTACCTATGAGACCCCTACGTGATTGTTAGTTAAG
TTTTATTCAAAGCAGCTGTAATTAGTTAATAAAATAATTATGATCTATGTT
GTTTGGCCATTGAGATCCAGTTTTGTTATTAAATCAATTAGGGC
AATAGTAGAATGGACAATTCCAAGAATGATGCCATTAGGTCTAGGGCCT
CTGGCCTCTAGGTAAACCAGGTTAAATTGGTTCAGGGTGATAACTACTAGCA
CTGCCCTGGTGAATTACCCAGAGATATCTATGAAAACCAAGTGGCTCCATCAA
ACCTTGCCAACTCAGGTTCACAGCAGCTTGGGCAGTTATGGCAGTATGGC
ATTAGCTGAGAGGTGTCTGCCACTTCTGGGTCAATGGAATAATAATTAAAGT

ACAGGCAGGAATTGGTGGGAGCATCTGTATGATCTCCGTATGATGTGAT
ATTGATGGAGATAGTGGCCTCATTCTGGGGTTGCCATTCCCACATTCCC
CCTTCAACAAACAGTGTACAGGCCTCCAGATTAGGGTACTTTATTG
ATGGATATGTTTCCTTTATTCACATAACCCCTGAAACCCGTCTGTCCT
CCTGTTACTTGCTCTGCTGTACAAGATGTAGCACCTTCTCCTCTTGAAC
ATGGTCTAGTGACACGGTAGCACCAGTTGCAGGAAGGAGCCAGACTTGTTC
TCAGAGCACTGTGTTCACACTTCAGCAAAAATAGCTATGGTGTAAACATA
TGTATTCCCTCCTCTGATTGAAGGCAAAAATCTACAGTGTTCCTCACTC
TTTCTGATCTGGGCATGAAAAAGCAAGATTGAAATTGAACTATGAGTC
TCCTGCATGGCAACAAAATGTGTGTCACCACAGGCCAACAGGCCAGGCCCT
GAATGGGGATTATTACTGTTGATCTATGTTGCATGATAAACATTCATCAC
CTTCCTCCTGTAGTCCTGCCTCGTACTCCCCCTCCCTATGATTGAAAAGTAA
ACAAAACCCACATTCCATCCTGGTTAGAAGAAAATTAAATGTTCTGACAGT
TGTGATCGCCTGGAGTACTTTAGACTTTAGCATTGTTTACCTGTTG
TGGATGTGTGTTGATGTGCATACGTATGAGATAGGCACATGCATCTCTG
TATGGACAAAGGTGGGGTACCTACAGGAGAGCAAAGGTTAATTGTTGCTT
TTAGTAAAACATTAAATACAAAGTTCTTATTGGGTGGAATTATATTGA
TGCAAATATTGATCACTAAAACCTTAAACTCTAGGTAATTGCCACG
CTTTTGACTGCTACCAATACCCTGAAAAATACGTAATTCTCCTGTTGT
GTAATAAGATATTCATATTGTTAGTTGCATTAATAATAGTTATTCTTAGTCC
ATCAGATGTTCCCGTGTGCCCTTTATGCCAAATTGATTGTCATAATTGATG
TTGGGACCAAGTAGTTGCCATGGCAAACCTAAATTATGACCTGCTGAGG
CCTCTCAGAAAACGTGAGCATACTAGCAAGACAGCTCTCTGAAAAAA
ATATGTATACACAAATATAACGTATATCTATATAACGTATGTATACAC
ACATGTATATTCTCCTGATTGTTAGCTGCTCCAAAATAAAACATATATA
GAGGGAGCTGTATCCCTTATACAAATCTGATGGCCTCGCAGCACCTTC
CTTCTGAAAATATTACATTGCTAACCTAGTTGTTACTTAAAAATCAGT
TTTGATGAAAGGAGGGAAAAGCAGATGGACTTGAAAAAGATCCAAGCTCCT
ATTAGAAAAGGTATGAAAATCTTATAGTAAAATTTTATAAAACTAAAGTT
GTACCTTTAATATGTTAGTAAACTCTCATTATTGGGCTCGCTTGGATC
TCATCCATCCATTGTTCTCTTAATGCTGCCCTGCTTGGAGCATTCACT
GCCCTAGACAATGCCACCAGAGATAGGGGGAAATGCCAGATGAAACCAA
CTCTGCTCTCACTAGTTGTCAGCTCTCTGGATAAGTGACCACAGAAGCAG
GAGTCCTCCTGCTGGCATCATTGGGCCAGTCCCTCTTTAAATCAGATT
TGTAATGGCTCCAAATTCCATCACATCACATTAAATTGCAGACAGTGT
TGCACATCATGTATCTGTTGCCCATAATTGCTTTACTCCCTGATCCC
AGTTCTGCTGTTGACTCTTCATTCAAGTTTATTATTGTGTTCTCACAGT
GACACCATTGCTCTTCTGCAACAAACCTTCCAGCTACTTTGCCAAATT
TATTGTCCTCTCCTCAAAACATTCTCCTTGCAGTTCCCTTCATCTGTGA
GCTGCTCTTGTCTCTTAACCTACCATCCTAAGTACTTATGCATCTCTG
TTAGTTCTATTAGTTTGGCCTGCTCTCTCCTGATTAAAATTCTTC
TATAGCTAGAGCTTTCTTCTTCATTCTCTCTGCAAGTGTGTTGCATAC
ATCAGAAGCTAGGTACATAAGTAAATGATTGAGAGTTGGCTGTATTAGAT
TTATCACTTTAATAGGGTGAGCTGAGAGTTTCTTCTGTTTTTTT
TTTGTTTTTTTTTTTTTTTTTTTTTTTTTTTTGACTAATTACATGCTCT

AAAAACCTCAAAGGTGATTATTTCTCCTGGAAACTCCAGGTCCATTCTG
TTTAAATCCCTAAGAACATGTCAGAATTAAAATAACAGGGCTATCCCGTAATTG
GAAATATTCTTTTCAGGATGCTATAGTCATTAGTAAGTGACCACCAA
ATTGTTATTGCACTAACAAAGCTAAAACACGATAAGTTACTCCTCCATC
TCAGTAATAAAAATTAAAGCTGAATCAACCTCTAGGTTCTTGTCTTAA
AATGGGTATTCAAAAATGGGGATCTGTTGTATGTATGGAAACACATACT
CCTTAATTACCTGTTGGAAACTGGAGAAATGATTGTCGGGCAACCGTT
TATTTTATTGTATTGTTGGGATTTTTATAAACAGTTTACT
TGTGTCATATTAAAATTACTAACGCCATCACCTGCTGGGTCCTTGT
GGTCATTTCAGTGACTAATAGGGATAATCCAGGTAACCTTGAAAGAGATGA
GCAGTGAGTGACCAAGGCAGTTCTGCCTTAGCTTGACAGTTCTAATT
AGATCATTGAAGACCAAGCTTCTCATAAATTCTCTTTGAAAAAAAAGAAA
GCATTGTACTAACGCTCTGTAAGACAACATCTAAATCTAAAAGTGT
GTTATCATGACTGGTGAGAGAAGAAAACATTGTTTATTAAATGGAGCA
TTATTACAAAAAGCCATTGTTGAGAATTAGATCCCACATCGTATAAAATAC
TATTAACCATTCTAAATAAGAGAACTCCAGTGTGCTATGTGCAAGATCCT
CTCTGGAGCTTTGCATAGCAATTAAAGGTGTGCTATTGTCAGTAGCC
ATTTTTGCAGTGATTGAAGACCAAAGTTGTTACAGCTGTGTTACCGTT
AAAGGTTTTTTTATATGTATTAAATCAATTACTGTTAAAGCTTT
GAATATCTGCAATTGCAAGGTACTTTTATTAAACACATAAC
TTTGTAAATATTACCTGTAATTATATACTTAATAAAACATTAAAGCT
A(SEQ ID NO: 9)

Human CD47 amino acid isoform 1 (XP_005247966.1)

MWPLVAALLGSACCGSAQLLFNKT**K**VEFTFCNDTVVIPC**F**VTNMEAQNT
TEVYVKWF**K**GRDIYTFDGALNK**S**TVPTDFSSAKIEVSQL**L**KGDASLKM**D**
SDA**V**SHTGNYTCEVTEL**T**REGETIIELKYRVV**W**FSPNENILIVIFPI**I**LLFW
GQFGIKTLKYRSGGMDEKT**I**LLVAGL**V**ITVIVIVGAILFVPGEYSLKNATGL**G**
LI**V**TSTGILILLHYYFSTAIGLTSFVIAILVIQVIA**Y**ILA**V**VGLSLCIAACIPMHG**P**LLI
SGLSILALAQLLGLVYMF**V**E
(SEQ ID NO: 10)

Human CD47 mRNA isoform 2 (NM_198793.2)

GGGGAGCAGGC**G**GGGGAGCGGGGGAGCGGGCGGGAGCAGTGGGAGCGCGCGTGC**G**CG
CGGCCGTGCAGC**C**CTGGCAGTGGG**C**CTGCCTGTGAC**C**CGCGCCGCGCG**G**GT
GGTCCTGCCTGTAAC**C**GGCGGC**G**GGCGGGCTGCTGCTCCAGACACCTGCGGCG
CGGC**G**CGAC**CCC**CGCGGGCGCGAGATGTGGCCC**T**GGTAGCGGCG
CTGTTGCTGGCTCG**G**GTGCTGCGGATCAGCTCAGCTACTATT**A**TA
AAACAAAATCTG**T**AGAATT**C**ACGTTTGT**A**ATGACACTGT**C**TCATT**C**
ATGCTTGT**T**ACTAATATGGAGGCAC**AAA**ACACTACTG**A**AGT**TACGT**
AAGTGGAA**AT**TTAAAGGAAGAGAT**TT**ACAC**CTT**GATGGAGCT**CTAA**
ACAAGTCC**ACTG**CCCCACTGACT**TT**AGTAGTG**C**AAA**ATTG**AAAGT**CTC**
ACA**AA**TTACTAAAAGGAGAT**G**CCTTTGAAGATGGATAAGAGT**G**ATG**G**CT
GTCTCACACACAGGAA**ACTAC**ACTTG**GAAGTAAC**AGAATTAAACCAGAG
AAGGTGAAACGATCATCGAGCT**AAA**ATCGT**GTT**CTGG**TTTC**

TCCAAATGAAAATATTCTTATTGTTATTTCCCAATTTGCTATACTCC
TGTTCTGGGGACAGTTGGTATTAAAACACTAAATATAGATCCGGTGG
TATGGATGAGAAAACAATTGCTTACTTGTGCTGGACTAGTGATCACT
GTCATTGTCATTGTTGGAGCCATTCTTCGTCCCAGGTGAATATTCA
 AAAGAATGCTACTGGCCTGGTTAATTGTGACTTCTACAGGGATATTA
 ATATTACTCACTACTATGTGTTAGTACAGCGATTGGATTAACCTCCTT
CGTCATTGCCATATTGGTTATTCAAGGTGATAGCCTATATCCTCGCTGTG
GTTGGACTGAGTCTCTGTATTGGCGGTGTATACCAATGCATGGCCCTC
 TTCTGATTCAGGTTGAGTATCTAGCTCTAGACAATTACTGGACTA
GTTTATATGAAATTGTTGGCTTCCAATCAGAAGACTATACAACCTCCTA
GGAATAACTGAAGTGAAGTGATGGACTCCGATTGGAGAGTAGTAAGACG
 TGAAAGGAATACACTGTGTTAACGCACCATGGCCTGATGATTCACTGTTG
 GGGAGAAGAAAACAAGAAAAGTAACGGTTGTACACCTATGAGACCCCTACGT
 GATTGTTAGTTAACGTTTATTCAAAGCAGCTGTAATTAGTTAATAAAAATA
 ATTATGATCTATGTTGTTGCCAATTGAGATCCAGTTTTGTTGTTATTTT
 AATCAATTAGGGCAATAGTAGAATGGACAATTCCAAGAATGATGCCTT
 CAGGTCTAGGGCCTCTGGCCTCTAGGTAAACCAAGTTAAATTGGTTCAAGGGT
 GATAACTACTTAGCACTGCCCTGGTATTACCCAGAGATATCTATGAAAACC
 AGTGGCTCCATCAAACCTTGCCTACTCAGGTTCACAGCAGCTTGGCAG
 TTATGGCAGTATGGCATTAGCTGAGAGGTGTCTGCCACTTCTGGGTCAATGG
 AATAATAAAATTAAAGTACAGGCAGGAATTGGTTGGGAGCATCTGTATGATC
 TCCGTATGATGTGATATTGATGGAGATAGTGGCCTCATTCTGGGGTTGC
 CATTCCCACATTCCCCCTCAACAAACAGTGTAAACAGGTCTTCCCAGATT
 AGGGTACTTTATTGATGGATATGTTCTTATTACATAACCCCTTGAA
 ACCCTGTCTTCCTCTGTTACTGCTCTGCTGTACAGGTACAGCCTT
 TTCTCCTCTTGAACATGGCTAGTGCACACGGTAGCACCAGTTGCAGGAAGG
 AGCCAGACTGTTCTCAGAGCACTGTGTCACACTTCAAGCAAAATAGCT
 ATGGTTGTAACATATGTATTCCCTCTGATCTGGGCATGAAAAAGCAAGATTGAA
 TTTGAACATGAGTCTCCTGCATGGCAACAAATGTGTGTCACCATCAGGCC
 AACAGGCCAGCCCTGAATGGGATTATTACTGTTGTTCTATGTTGCATG
 ATAAACATTCATCACCTCCTCTGATCTGGGACTACGTACAGGAGAGCAAAG
 ATGATTGAAAAGTAAACAAACCCACATTCTCTATCCTGGTTAGAAGAAAA
 TTAATGTTCTGACAGTTGTGATGCCCTGGAGTACTTTAGACTTTAGCATTC
 GTTTTACCTGTTGTGGATGTGTTGTATGTGCATACGTATGAGATAGG
 CACATGCATCTCTGTATGGACAAAGGTGGGGTACCTACAGGAGAGCAAAG
 GTTAATTGCTTGTGTTAGTAAAACATTAAATACAAAGTTCTTATTGGGT
 GGAATTATATTGATGCAAATATTGATCACTAAAACCTTAAACTCTA
 GGTAATTGCCACGCTTGTGACTGCTCACCAATACCCGTAAAAACACGTA
 ATTCTCCTGTTGTGTAATAAGATATTGATCTTGTGCTCTTATGCCAAATTGA
 GTTATTCTTAGTCCATCAGATGTTCCGTGTGCCTCTTATGCCAAATTGA
 TTGTCATATTGATGTTGGACCAAGTAGTTGCCATGGCAAACCTAAATT
 TATGACCTGCTGAGGCCTCTCAGAAAAGTGCATACAGCAAGACAGCTC
 TTCTGAAAAAAATATGTATACACAAATATACGTATATCTATATATA
 CGTATGTATACACACATGTATATTCTCCTGATTGTGAGCTGTCCAAAA

TAATAACATATATAAGGGGAGCTGTATCCCTTATACAAATCTGATGGCTCC
TGCAGCACTTTCCCTCTGAAAATATTACATTTGCTAACCTAGTTGTTA
CTTAAAAATCAGTTGATGAAAGGAGGGAAAAGCAGATGGACTTGAAAAA
AGATCCAAGCTCCTATTAGAAAAGGTATGAAAATCTTATAGTAAAATT
TATAAACTAAAGTTGACCTTTAATATGTAGTAAACTCTCATTATTGGGG
TTCGCTCTGGATCTCATCCATTGTTCTCTTAATGCTGCCTGCCTT
TGAGGCATTCACTGCCCTAGACAATGCCACCAGAGATAGTGGGGGAAATGC
CAGATGAAACCAACTCTGCTCACTAGTTGTCAGCTCTGGATAAGTG
ACCACAGAAGCAGGAGTCCTCCTGCTGGCATCATTGGCCAGTCCTCT
CTTAAATCAGATTGTAATGGCTCCAAATTCCATCACATCACATTAAATT
GCAGACAGTGTGACATCATGTATCTGTTGCCCCATAATATGCTTTT
ACTCCCTGATCCCAGTTCTGCTGACTCTCCATTCACTTTATTATTGT
GTGTTCTCACAGTGACACCATTGCTTCTCCTCAAAACATTCTCCTTGAGTC
TTTGCCAAATTCTATTGCTTCTCCTTAACCTACCTCCTATAGTACTT
CTTCATCTGTAGCTGCTCTTGTCTCTTAACCTACCTCCTATAGTACTT
TATGCATCTGCTTAGTTCTATTAGTTTTGGCCTGCTCTCCTTGATT
TTAAAATTCCCTCTATAGCTAGAGCTTTCTTCATTCTCTCCTGCA
GTGTTTGACATCACAGAACGCTAGGTACATAAGTAAATGATTGAGAGTG
GCTGTATTAGATTACCTTTAAATAGGGTGAGGCTGAGAGTTTCTTC
TTCTGTTTTTTTTGTTTTTTTTTTTTTTTTTTTTTTTTGACTA
ATTCACATGCTCTAAACCTCAAAGGTGATTATTTCTCCTGGAAACTC
CAGGTCCATTCTGTTAAATCCCTAAGAATGTCAGAATTAAACAGGGC
TATCCCGTAATTGGAAATATTCTTCTCAGGATGCTATAGTCATTTAGTA
AGTGACCACCAAATTGTTATTGCACTAACAAAGCTCAAAACACGATAAGTT
TACTCCTCCATCTCAGTAATAAAATTAGCTGTAATCAACCTCTAGGTT
CTCTGTCTAAATGGGTATTCAAAATGGGATCTGTTGAGGGATTTTTATA
AAACACATACTCCTTAATTACCTGTTGGAAACTGGAGAAATGATTGTC
GGGCAACCCTTATTGTTATTGTTATTGTTATTGAGGGATTTTTATA
AACAGTTTACTGTGTCAATTAAATTACTAACGCTCACCTGCTGG
GGTCCTTGTAGGTCAATTCTCAGTGACTAACAGGATAATCCAGGTAACCT
TGAAGAGATGAGCAGTGAGTGACCAGGCAGTTCTGCCTTAGCTTGAC
AGTTCTTAATTAAAGATCATTGAAGACCAGCTTCTCATAAATTCTCTT
AAAAAAAGAAAGCATTGTACTAACGCTCTGTAAGACAACATCTTAAAT
CTTAAAGTGTGTTATCATGACTGGTAGAGAGAAGAAAACATTGTTTTA
TTAAATGGAGCATTATTACAAAAGCCATTGTTGAGAATTAGATCCCACAT
CGTATAAAATCTATTAAACCATTCTAAATAAAGAGAACTCCAGTGTGCTAT
GTGCAAGATCCTCTTGGAGCTTTGCAAGCAATTAAAGGTGTGCTAT
TTGTCAGTAGCCATTGTTGCAAGTGATTGAAGACCAAGTTGTTACAGC
TGTGTTACCGTTAAAGGTTTTTTTATATGTATTAAATCAATTATCACT
GTTAAAGCTTGAATATGCACTTTGCCAAGGTACTTTTATTAA
AAAAACATAACTTGTAAATATTACCCCTGTAATATTATATACTTAATAAA
ACATTAAAGCTATTGTTGGGCTATTCTATTGCTGCTACAGCAGACCACA
AGCACATTCTGAAAAATTAAATTAAATGTATTAAAGTTGCTTATATT
CTAGGTAACAATGTAAGAATGATTAAATTAATTATGAATTGAG
TATAATACCAATAAGCTTTAATTAGAGCAGAGTTAATTAAAGTTTA

AATCAGTC
(SEQ ID NO: 11)

Human CD47 amino acid isoform 2 (NP_942088.1)

MWPLVAALLGSACCGSAQLLFNKTSVEFTCNDTVVIPCFVTNMEAQNT
TEVYVKWFKGRDIYTFD GALNKSTVPTDFSSAKIEVSQLLKGDA
SLKMDK SDAVSHTGNYTCEVTELREGETIIELKYRVVWFSPNENILIVIFPIFAILLFW
GQFGI KTLKYRSGGMDEKTIA
LLVAGLVITVIVVGAILFVPGEYSLKNATGLGLI
VTSTGILILLHYYVFSTAIGLTSFVIALVIQVIA
YILAVVGLSLCIAACIPMHGPLLI
SGLSILALAQLLGLVY
MFKVASNQKTIQPPRNN(SEQ ID NO: 12)

Human CD47 mRNA isoform 3 (XM_005247908.1)

AGTGGGAGCGCGCGTGC
GCGCGCCGTGCAGCCTGGCAGTGGGCCTGCC
TGTGACGCGCGCGCGCGTGC
CGTGCCTGTAACGGCGCGCGCTGCT
GCTCCGGACACCTGCGGCGGCGAC
CCCCGCGCGGGCGAGAT
GTGGCCCTGGTAGCGGCGCTGTTGCTGGGCTCGCGTGCTGCGGATC
AGCTCAGCTACTATTTAATAAAACAAAAATCTGTAGAATTCACGTTTGTA
ATGACACTGTCGTATTCCATGCTTGTACTAATATGGAGGCACAAA
CACTACTGAAGTATACGTAAAGTGGAAATTAAAGGAAGAGAATATTAC
ACCTTTGATGGAGCTCTAAACAAGTCCACTGTCCCCACTGACTTTAGTA
GTGCAAAAATTGAAGTCTCACAAATTACTAAAAGGAGATGCCTCTTGAA
GATGGATAAAGAGTGATGCTGTCTCACACACAGGAAACTACACTTGTGAA
GTAACAGAATTAAACCAGAGAAGGTGAAACGATCATCGAGCTAAATATC
GTGTTGTTCATGGTTCTCCAAATGAAAATATTCTTATTGTTATTTC
CCAATTTTGCTATACTCCTGTTCTGGGACAGTTGGTATTAAAACAC
TTAAATATAGATCCGGTGGTATGGATGAGAAAACAATTGCTTACTTGT
TGCTGGACTAGTGATCACTGTCATTGTCATTGTGGAGCCATTCTTC
GTCCCCAGGTGAATATTCAATTAAAGAATGCTACTGGCCTTGGTTAATTG
TGACTTCTACAGGGATATTAAATATTACTTCACTACTATGTGTTAGTACA
GCGATTGGATTAACCTCCTCGTCATTGCCATTGGTTATTCAAGGTGA
TAGCCTATATCCTCGCTGTGGTTGGACTGAGTCTCTGTATTGCGGGCGTG
TATACCAATGCATGGCCCTCTCTGATTTCAGGTTGAGTATCTAGCT
CTAGCACAAATTACTGGACTAGTTATATGAAATTGTTGGCTTCCAATC
AGAAGACTATACAACCTCTAGGAAAGCTGTAGAGGAACCCCTTAATGA
ATAACTGAAGTGAAGTGATGGACTCCGATTGGAGAGTAGTAAGACGTGAA
AGGAATACACTTGTGTTAACGACCATGGCCTTGATGATTCACTGTTGGGA
GAAGAAAACAAGAAAAGTAACTGGTTGTCACCTATGAGACCCCTACGTGATT
GTTAGTTAAGTTTATTCAAAGCAGCTGTAATTAGTTAATAAAAATAATTAT
GATCTATGTTGTTGCCAATTGAGATCCAGTTTTGTTATTAAATC
AATTAGGGCAATAGTAGAATGGACAATTCCAAGAATGATGCCATTCAAGG
TCCTAGGGCCTCTGGCCTCTAGGTAACCAGTTAAATTGGTTCAGGGTGATA
ACTACTTAGCACTGCCCTGGTGATTACCCAGAGATATCTATGAAAACCAGTG
GCTTCCATCAAACCTTGCCA
ACTCAGGTTCACAGCAGCTTGGCAGTTAT
GGCAGTATGGCATTAGCTGAGAGGTGTC
GCCACTTCTGGGTCAATGGAATA
ATAAAATTAAAGTACAGGCAGGAATTGGTTGGGAGCATCTGTATGATCTCCG

TATGATGTGATATTGATGGAGATAGTGGTCCTCATTCTGGGGTTGCCATT
CCCACATTCCCCCTCAACAAACAGTGTAAACAGGTCCCTCCCAGATTAGGG
TACTTTATTGATGGATATGTTCTTATTACATAACCCCTGAAACCC
TGTCTTGTCTCCTGTTACTGCTCTGCTACAAGATGTAGCACCTTCT
CCTCTTGAACATGGCTAGTGACACGGTAGCACCAGTTGCAGGAAGGAGC
CAGACTTGTCTCAGAGCACTGTGTCACACTTCAGCAAAATAGCTATG
GTTGTAACATATGTATTCCCTCCTGATTGAAGGCAAAATCTACAGTG
TTTCTCACTCTTCTGATCTGGGCATGAAAAAAGCAAGATTGAAATT
GAACATGAGTCTCCTGCATGGCAACAAATGTGTGTCACCATCAGGCCAA
CAGGCCAGCCCTGAATGGGGATTATTACTGTTGATCTATGTTGCATGAT
AAACATTCATCACCTCCTCCTGAGTCCTGCCTCGTACTCCCCTCCCCTAT
GATTGAAAAGTAAACAAACCCACATTCTATCCTGGTTAGAAGAAAATT
AATGTTCTGACAGTTGTGATGCCCTGGAGTACTTTAGACTTTAGCATTG
TTTTACCTGTTGTGGATGTTGTTGATGTGCATACGTATGAGATAGGCA
CATGCATCTCTGTATGGACAAAGGTGGGTACCTACAGGAGAGCAAGGT
TAATTTGTGCTTTAGAAAAACATTAAATACAAAGTTCTTATTGGGTGG
AATTATATTGATGCAAATATTGATCACTAAAACCTTTAAACTTCTAGGT
AATTGCCACGCTTTGACTGCTACCAATACCTGTAAAAACCGTAATT
CTTCCTGTTGTGAATAAGATATTGATATTGTTGCTATTAAATAGTT
ATTTCTTAGTCCATCAGATGTTCCCGTGTGCCTCTTTATGCCAAATTGATTG
TCATATTGATGTTGGACCAAGTAGTTGCCATGGCAAACCTAAATTAT
GACCTGCTGAGGCCTCTCAGAAAAGTGGACATACTAGCAAGACAGCTCT
TGAAAAAAAATATGTATACACAAATATACGTATATCTATATACGTA
TGTATATACACACATGTATATTCTCCTGATTGTGAGCTGTCCAAAATAAT
AACATATATAGAGGGAGCTGTATTCTTATACAAATCTGATGGCTCCTGCA
GCACTTTCTCTGAAAATATTACATTGCTAACCTAGTTGTTACTTT
AAAAATCAGTTGATGAAAGGAGGGAAAAGCAGATGGACTTGAAGAAAAGA
TCCAAGCTCCTATTAGAAAAGGTATGAAAATCTTATAGTAAAATTTTTAT
AAACTAAAGTTGACCTTTAATATGTAGTAAACTCTCATTATTGGGGTTTC
GCTCTGGATCTCATCCATCATTGTTCTCTTAAATGCTGCCTGCCCTTGT
AGGCATTCACTGCCCTAGACAATGCCACCAGAGATAGTGGGGAAATGCCA
GATGAAACCAACTCTGCTCTCACTAGTTGTCAGCTCTGGATAAGTGAC
CACAGAAGCAGGAGTCCTCTGCTGGCATCATTGGGCCAGTTCTTCT
TTAAATCAGATTGTAATGGCTCCAAATTCCATCACATCACATTAAATTG
CAGACAGTGTGACATCATGTATCTGTTGCTCCATAATATGCTTTA
CTCCCTGATCCCAGTTCTGCTGTTGACTCTCCATTCAAGTTTATTGTTG
TGTTCTCACAGTGACACCATTGCTCTCTGCAACAAACCTTCCAGCTACT
TTGCCAAATTCTATTGCTCTCCTCAAAACATTCTCCTTGCAAGTTCCT
TTCATCTGTGAGCTGCTCTTGTCTCTTAACCTACCATTCTATAGTACTTT
ATGCATCTCTGCTTAGTTCTATTAGTTTGGCCTGCTCTCCTTGATT
TAAAATTCTCTATAGCTAGAGCTTTCTTCTTCAATTCTCTCTGCAAG
TGTTTGCAACATCAGAAGCTAGGTACATAAGTTAAATGATTGAGAGTTGG
CTGTATTAGATTACTTAAATAGGGTGAGCTGAGAGTTTCTTCT
TTCTGTTTTTTTTGTTTTTTTTTTTTTTTTTTTTTTGACTAA
TTTCACATGCTCTAAAACCTCAAAAGGTGATTATTCTCCTGGAAACTCC

AGGTCCATTCTGTTAAATCCCTAAGAATGTCAGAATTAAAATAACAGGGCT
ATCCCGTAATTGGAAATATTCTTTTCAGGATGCTATAGCAATTAGTAA
GTGACCACCAAATTGTTATTGCACTAACAAAGCTCAAAACACGATAAGTTT
ACTCCTCCATCTCAGTAATAAAAATTAAAGCTGAATCAACCTCTAGGTTTC
TCTTGTCTTAAATGGGTATTCAAAAATGGGATCTGTGGTGTATGTATGGA
AACACATACTCCTTAATTACCTGTTGGAAACTGGAGAAATGATTGTCG
GGCAACCAGTTATTTTTATTGTATTGTTAGGGATTTTATAA
ACAGTTTACTTGTGTCATATTAAAATTACTAACGCCATCACCTGCTGGG
GTCCTTGTAGGTCACTTCAGTGAUTAGGGATAATCCAGGTAACCTT
GAAGAGATGAGCAGTGAGTGACCAGGCAGTTTCTGCCTTAGCTTGACA
GTTCTTAATTAAAGATCATTGAAGACCAGCTTCTCATAAATTCTCTTTGA
AAAAAAGAAAGCATTGACTAACGCTCTGTAAAGACAAACATCTTAAATCT
AAAAAGTGTGTTATCATGACTGGTGAGAGAAGAAAACATTGTTTTATT
AAATGGAGCATTATTACAAAAAGCCATTGTTGAGAATTAGATCCCACATCG
TATAAATATCTATTAACCATTCTAAATAAAAGAGAACTCCAGTGTGCTATGT
GCAAGATCCTCTTGGAGCTTTGCATAGCAATTAAAGGTGTGCTATT
GTCAGTAGCCATTTCAGTGATTGAAGACCAAGTTGTTTACAGCT
GTGTTACCGTTAAAGGTTTTTTATATGTATTAAATCAATTATCACTG
TTTAAAGCTTGAATATCTGCAATCTTGCCAAGGTACTTTTATTAAAAAA
AAAACATAACTTGTAAATATTACCCGTAAATTATATATACTTAATAAAA
CATTAAAGCTA(SEQ ID NO: 13)

Human CD47 amino acid isoform 3 (XP_005247965.1)

MWPLVAALLLGSACCGSAQLLFNKT**K**SVEFTFCNDTVVIPCFTVNMEAQNT
TEVYVKWF**K**GRDIYTFDGALNKSTVPTDFSSAKIEVSQ**L**KG**D**ASL**K**MD**K**
SDAVSHTGNYTCEVTEL**R**EGET**I**IEL**K**YRVVSWFSPNENILIVIFPIFAILLFW
GQFGIKTL**K**YRSGGM**D**EKT**I**ALL**V**AGL**V**IV**V**IV**G**AIL**F**VP**G**E**S**LN**K**AT**GL**GL**I**
VTSTGILILLHYYVFSTAIGLTSFVIAILVIQVIA**Y**IL**A**V**V**GL**S**LCIAACIPMHG**P**LLI
SGSILALAQLLGLVYMKFVASNQ**K**TI**Q**PPRK**A**VE**E**PL**N**E(SEQ ID NO: 14)

Human CD47 mRNA isoform 4 (NM_001777.3)

GGGGAGCAGGC**G**GGGGAGCAGGGCGGGAGCAGTGGAGCGCGCGTGC**G**
CGGCCGTG**C**AGC**C**TTGGCAGTGG**T**C**C**TGC**G**CTG**A**CG**C**CG**G**CG**G**CG**G**
GGT**C**CTGC**C**GT**A**CG**G**CG**G**CG**G**CTG**C**GT**C**CCAGACAC**C**CTGC**G**CG**G**
CGC**G**CG**G**AC**CC**CG**G**CG**G**CG**G**AG**A**GT**T**GG**CC**CT**GG**TAG**C**GG**G**
CTG**T**GT**G**CT**GG**CT**GG**CG**T**GT**G**CG**G**AT**C**AG**C**TC**A**G**C**T**A**CT**A**TT**A**ATA
AAACAAAATCTGTAGAATT**C**AC**G**TT**T**GT**A**AT**G**AC**A**CT**G**TC**G**T**C**ATT**C**
ATG**C**TT**G**TT**A**CT**A**AT**GG**AG**G**CA**AA**AC**A**CT**A**CT**G**AA**G**T**A**T**A**CG**T**A
AAG**T**GG**AA**ATT**T**AA**AG**GA**AG**GA**AT**TT**A**CC**TT**GT**A**GG**G**AG**C**T**C**AA
ACAAG**T**CC**A**CT**G**T**CC**CC**A**CT**G**ACT**T**TAG**T**GT**C**AA**AA**ATT**G**AA**G**T**C**T**C**
ACA**A**TT**A**CT**AA**AG**G**AG**A**GT**G**C**T**CT**TT**GA**AG**AT**GG**AT**A**AG**A**GT**G**T**G**CT**G**
GT**T**TC**A**C**A**CA**C**AG**G**AA**AC**TA**C**AC**T**GT**G**AA**G**TA**A**CA**G**AA**T**TA**A**CC**A**GA**G**
AAG**GT**GA**AA**AC**G**AT**C**AT**CG**AG**C**TA**AA**AT**CG**T**G**TT**C**AT**GG**TT**T**TC
T**C**CA**AA**AT**G**AA**AA**AT**T**T**C**T**A**T**G**TT**A**TT**TT**CC**A**AT**TT**T**G**CT**A**ACT**C**C
T**G**TT**C**T**GG**GG**A**C**G**TT**GG**T**A**TT**AA**AC**A**CT**T**AA**AA**AT**A**GA**T**CC**GG**T**GG**

TATGGATGAGAAAACAATTGCTTACTTGTGCTGGACTAGTGATCACT
GTCATTGTCATTGTTGGAGCCATTCTTCGTCCCAGGTGAATATTCAATT
AAAGAATGCTACTGGCCTGGTTAATTGTGACTTCTACAGGGATATTAA
ATATTACTCACTACTATGTGTTAGTACAGCGATTGGATTAACCTCCTT
CGTCATTGCCATATTGGTATTCAAGGTGATAGCCTATATCCTCGCTGTG
GTTGGACTGAGTCTCTGTATTGCCCGTGTATACCAATGCATGGCCCTC
TTCTGATTCAGGTTGAGTATCTAGCTCTAGCACAAATTACTTGGACTA
GTTATATGAAATTGTTGGCTTCCAATCAGAAGACTATACAACCTCCTA
GGAAAGCTGTAGAGGAACCCCTTAATGCATTCAAAGAATCAAAGGAAT
GATGAATGATGAATAACTGAAGTGAAGTGATGGACTCCGATTGGAGAGT
AGTAAGACGTGAAAGGAATACACTTGTGTTAACGACCATGGCCTGATGA
TTCACTGTTGGGAGAAGAAAACAAGAAAAGTAACTGGTTGTCACCTATGAG
ACCCTTACGTGATTGTTAGTTAAGTTTATTCAAAGCAGCTGTAATTAGTT
AATAAAATAATTATGATCTATGTTGTTGCCAATTGAGATCCAGTTTTGT
TGTTATTTTAATCAATTAGGGCAATAGTAGAATGGACAATTCCAAGAAT
GATGCCTTCAGGTCTAGGGCCTCTGGCCTCTAGGTAACCAGTTAAATTG
GTTCAGGGTGATAACTACTTAGCACTGCCCTGGTATTACCCAGAGATATCT
ATGAAAACCACTGGCTCCATCAAACCTTGCCTACTCAGGTTCACAGCAGC
TTTGGGCAGTTATGGCAGTATGGCATTAGCTGAGAGGTGTCGCCACTTCTG
GGTCAATGGAATAATAAAATTAAAGTACAGGCAGGAATTGGTTGGGAGCATT
TTGTATGATCTCCGTATGATGTGATTGATGGAGATAGGGTCCTCATTCTT
GGGGGTTGCCATTCCCACATTCCCCCTCAACAAACAGTGTAAACAGGTCTT
CCCAGATTAGGGTACTTTATTGATGGATATGTTCCCTTTATTCACATAA
CCCCTGAAACCCCTGTCTTGCCTCTGTACTGCTCTGCTGTACAAGATG
TAGCACCTTCTCCTCTTGAAACATGGCTAGTGACACGGTAGCACCAGTT
GCAGGAAGGAGCCAGACTTGTCTCAGAGCACTGTGTTCACACTTTCAGCA
AAAATAGCTATGGTGTAAACATATGTTATTCCCTCTGTATTGAAGGCAA
AAATCTACAGTGTTCCTCACTTCTTCTGATCTGGGCATGAAAAAAAGCA
AGATTGAAATTGAACATATGAGTCTCCTGCATGGCAACAAAATGTGTCAC
CATCAGGCCAACAGGCCAGCCCTGAAATGGGATTATTACTGTTGATCTA
TGTTGCATGATAAACATTCATCACCTCCTCTGTAGTCCTGCCTCGTACTCC
CCTTCCCTATGATTGAAAAGTAAACAAAACCCACATTCCATCCTGGTTA
GAAGAAAATTAAATGTTCTGACAGTTGTGATGCCCTGGAGTACTTTAGACTT
TTAGCATTGTTTACCTGTTGATGGACAAAGGTGGGGTACCTACAGG
AGAGCAAAGGTTAATTGCTTGTGTTAGTAAAAACATTAAATACAAAGTTC
TTTATTGGGTGAAATTATTTGATGCAAATATTGATCACTAAAACATTAA
AAACTCTAGGTAATTGCCACGCTTGTGACTGCTCACCAATACCCTGTAA
AAATACGTAATTCTCCTGTTGTGTAATAAGATATTCAATTGTTGCA
TTAATAATAGTTATTCTTAGTCCATCAGATGTTCCGTGTCCTTTATG
CCAAATTGATTGTCATATTCACTGTTGGACCAAGTAGTTGCCCATGGCAA
ACCTAAATTATGACCTGCTGAGGCCTCTCAGAAAACGTGAGCATACTAGCAA
GACAGCTCTTGTGAAAAAAATATGTATACACACATGTATTCTCCTTGATTGTAGCT
TATATACGTATGTATACACACATGTATTCTCCTTGATTGTAGCT
GTCCAAAATAAACATATAGAGGGAGCTGATTCTTATACAAATCTG

ATGGCTCCTGCAGCACTTTCTTCTGAAAATATTACATTTGCTAACCTA
 GTTGTTACTTAAAAATCAGTTGATGAAAGGAGGGAAAAGCAGATGGA
 CTTGAAAAAGATCCAAGCTCTATTAGAAAAGGTATGAAAATCTTATAGTA
 AAATTTTATAAAACTAAAGTGTACCTTTAATATGTAGTAAACTCTCATT
 ATTTGGGGTCGCTCTGGATCTCATCCATCCATTGTGTTCTTTAATGCTG
 CCTGCCTTGGAGGCATTCACTGCCCTAGACAATGCCACCAGAGATAGTGGG
 GGAAAATGCCAGATGAAACCAACTCTGCTCTCACTAGTTGTCAGCTCTG
 GATAAGTGACCACAGAAGCAGGAGTCCTCTGCTGGCATCATTGGCCA
 GTTCCTCTTTAAATCAGATTGTAATGGCTCCAAATTCCATCACATCAC
 ATTTAAATTGCAGACAGTGTGTCACATCATGTATCTGTTGTCAGTTT
 ATGCTTTTACTCCCTGATCCCAGTTGCTGTTGACTCTCCATTCACTT
 ATTTATTGTGTTCTCACAGTGACACCATTGTCCTTCTGCAACAACCTT
 TCCAGCTACTTTGCCAAATTCTATTGTCCTCTCCTTCAAAACATTCTCCTT
 GCAGTTCCTCTTCATCTGTAGCTGCTCTTGTCTTAACCTACCATTCT
 ATAGTACTTATGCATCTGCTTAGTTCTATTAGTTTGGCCTGCTCTC
 TCCTTGATTTAAAATTCTCTATAGCTAGAGCTTCTTCTTCAATTCT
 CTTCCTGCAGTGTGTCATACATCAGAAGCTAGGTACATAAGTTAAATGAT
 TGAGAGTTGGCTGTATTAGATTACATTAAATAGGGTGAGCTGAGA
 GTTTCTTCTTCTGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
 TTTGACTAATTTCACATGCTCTAAACCTTCAAAGGTGATTATTCTCC
 TGGAAACTCCAGGTCCTGTTAAATCCCTAAGAATGTCAGAATTAAAA
 TAACAGGGCTATCCCGTAATTGAAATATTCTTTCAAGGATGCTATAGT
 CAATTAGTAAGTGACCACAAATTGTTATTGCACTAACAAAGCTAAAAC
 ACGATAAGTTACTCCCTCATCTCAGTAATAAAATTAAAGCTGTAATCAACC
 TTCTAGGTTCTTGTCTTAAATGGGTATTCAAAATGGGATCTGTGGT
 GTATGTATGAAACACATACTCCTTAATTACCTGTTGGAAACTGGAGA
 AATGATTGTCGGGCAACCGTTATTGTTATTGTATTGTTGGTGGAGGGA
 TTTTTTATAAACAGTTTACTTGTGTCATTAAATTACTAACCTGCCAT
 CACCTGCTGGGTCCTTGTAGGTCAATTCTAGTACTAACAGGATAATC
 CAGGTAACCTTGAAAGAGATGAGCACTGAGTGACCAAGCAGTTCTGCCTT
 TAGCTTGACAGTTCTTAATTAAAGATCATTGAAGACCAGCTTCTCATAAAT
 TTCTTTGAAAAAAAGAAAGCATTGTTACTAACGCTCTGTAAAGACAA
 CATCTTAAATCTTAAAGTGTGTTATCATGACTGGTGGAGAGAAGAAAACAT
 TTTGTTTATTAAATGGAGCATTATTACAAAAAGCCATTGTTGAGAATTA
 GATCCCACATCGTATAAATATCTATTAAACCATTCTAAATAAGAGAACTCCA
 GTGTTGCTATGTGCAAGATCCTCTTGGAGCTTTTGCAAGCAATTAAA
 GGTGTGCTATTGTCAGTAGCCATTGTCAGTGATTGAAGACCAAGT
 TGTTTACAGCTGTGTTACCGTTAAAGGTTTTTTATATGTATTAAATC
 AATTATCACTGTTAAAGCTTGAATATCTGCAATCTTGCCAAGGTACTTT
 TTTATTAAAAAAACATAACTTGTAAATATTACCCCTGTAATATTATAT
 ACTTAATAAAACATTAAAGCTATTGTTGGGCTATTCTATTGCTGCTACA
 GCAGACCACAAGCACATTCTGAAAAATTAAATTATTAATGTATTAAAG
 TTGCTTATATTCTAGGTAACAATGTAAGAATGATTAAATATTAAATT
 AATTGAGTATAATACCAATAAGCTTTAATTAGAGCAGAGTTAATT
 AAAAGTTTAAATCAGTC(SEQ ID NO: 15)

Human CD47 amino acid isoform 4 (NP_001768.1)

MWPLVAALLGSAQQLLFNKT^SEFTFCNDTVVIPC^FVTNMEAQNT
 TEVYVWKFKGRDIYTFD^GALNKSTVPTDFSSAKIEVSQLLKGDASLKMDK
 SDAVSHTGNYTCEVTEL^TREGETIIELKYRVVWFSPNENILIVIFPIFAILLFW
 GQFGI^KTLKYRSGGMDEKT^IALLVAGL^VITVIVVGAILFVPGEYSLKNATGLLI
 VTSTGILILLHYYVFSTAIGLTSFVIAILVIQVIA^YILA^VVGLSLCIAACI^PMHG^PLLI
 SG^SILALAQLLGLVY^MKFVASNQ^KT^IQPPRK^AVEEPLNAFKESKGMMNDE(SEQ
 ID NO: 16)

Humanized CD47 amino acid isoform 1

MWPLAAALLGSCCCGSAQLLFNKT^SEFTFCNDTVVIPC^FVTNMEAQNT
 TEVYVWKFKGRDIYTFD^GALNKSTVPTDFSSAKIEVSQLLKGDASLKMDK
 SDAVSHTGNYTCEVTEL^TREGETIIELKYRVVWFSPNENILIVIFPIFAILLFW
 WGQFGI^KTLKYRSGGMDEKT^IALLVAGL^VITVIVVGAILFVPGEYSLKNAT
 GLGLIVTSTGILILLHYYVFSTAIGLTSFVIAILVIQVIA^YILA^VVGLSLCIAACI
 PMHG^PLLISGLSILALAQLLGLVY^MKFVE(SEQ ID NO: 17)

Humanized CD47 amino acid isoform 2

MWPLAAALLGSCCCGSAQLLFNKT^SEFTFCNDTVVIPC^FVTNMEAQNT
 TEVYVWKFKGRDIYTFD^GALNKSTVPTDFSSAKIEVSQLLKGDASLKMDK
 SDAVSHTGNYTCEVTEL^TREGETIIELKYRVVWFSPNENILIVIFPIFAILLFW
 WGQFGI^KTLKYRSGGMDEKT^IALLVAGL^VITVIVVGAILFVPGEYSLKNAT
 GLGLIVTSTGILILLHYYVFSTAIGLTSFVIAILVIQVIA^YILA^VVGLSLCIAACI
 PMHG^PLLISGLSILALAQLLGLVY^MKFVASNQ^RT^IQPPRNR(SEQ ID NO: 18)

Humanized CD47 amino acid isoform 3

MWPLAAALLGSCCCGSAQLLFNKT^SEFTFCNDTVVIPC^FVTNMEAQNT
 TEVYVWKFKGRDIYTFD^GALNKSTVPTDFSSAKIEVSQLLKGDASLKMDK
 SDAVSHTGNYTCEVTEL^TREGETIIELKYRVVWFSPNENILIVIFPIFAILLFW
 WGQFGI^KTLKYRSGGMDEKT^IALLVAGL^VITVIVVGAILFVPGEYSLKNAT
 GLGLIVTSTGILILLHYYVFSTAIGLTSFVIAILVIQVIA^YILA^VVGLSLCIAACI
 PMHG^PLLISGLSILALAQLLGLVY^MKFVASNQ^RT^IQPPRKA^VE^EPLNE (SEQ ID
 NO: 19)

Humanized CD47 amino acid isoform 4

MWPLAAALLGSCCCGSAQLLFNKT^SEFTFCNDTVVIPC^FVTNMEAQNT
 TEVYVWKFKGRDIYTFD^GALNKSTVPTDFSSAKIEVSQLLKGDASLKMDK
 SDAVSHTGNYTCEVTEL^TREGETIIELKYRVVWFSPNENILIVIFPIFAILLFW
 WGQFGI^KTLKYRSGGMDEKT^IALLVAGL^VITVIVVGAILFVPGEYSLKNAT
 GLGLIVTSTGILILLHYYVFSTAIGLTSFVIAILVIQVIA^YILA^VVGLSLCIAACI
 PMHG^PLLISGLSILALAQLLGLVY^MKFVASNQ^RT^IQPPRKA^VE^EPLNAFKESKG
 MMNDE (SEQ ID NO: 20)

Humanized CD47 Non-Human Animals

[0105] Non-human animals are provided that express humanized CD47 proteins on the surface of cells of the non-human animals resulting from a genetic modification of an endogenous locus of the non-human animal that encodes a CD47 protein. Suitable examples described herein include rodents, in particular, mice.

[0106] A humanized CD47 gene, in some embodiments, comprises genetic material from a heterologous species (e.g., humans), wherein the humanized CD47 gene encodes a CD47 protein that comprises the encoded portion of the genetic material from the heterologous species. In some embodiments, a humanized CD47 gene of the present invention comprises genomic DNA of a heterologous species that encodes the extracellular portion of a CD47 protein that is expressed on the plasma membrane of a cell. In some embodiments, a humanized CD47 gene of the present invention comprises genomic DNA of a heterologous species that encodes the extracellular portion and the transmembrane portion of a CD47 protein that is expressed on the plasma membrane of a cell. Non-human animals, embryos, cells and targeting constructs for making non-human animals, non-human embryos, and cells containing said humanized CD47 gene are also provided.

[0107] In some embodiments, an endogenous CD47 gene is deleted. In some embodiments, an endogenous CD47 gene is altered, wherein a portion of the endogenous CD47 gene is replaced with a heterologous sequence (e.g., a human CD47 sequence, in whole or in part). In some embodiments, all or substantially all of an endogenous CD47 gene is replaced with a heterologous gene (e.g., a human CD47 gene). In some embodiments, a portion of a heterologous CD47 gene is inserted into an endogenous non-human CD47 gene at an endogenous CD47 locus. In some embodiments, the heterologous gene is a human gene. In some embodiments, the modification or humanization is made to one of the two copies of the endogenous CD47 gene, giving rise to a non-human animal that is heterozygous with respect to the humanized CD47 gene. In other embodiments, a non-human animal is provided that is homozygous for a humanized CD47 gene.

[0108] A non-human animal of the present invention contains a human CD47 gene, in whole or in part, at an endogenous non-human CD47 locus. Thus, such non-human animals can be described as having a heterologous CD47 gene. The replaced, inserted,

modified or altered CD47 gene at the endogenous CD47 locus can be detected using a variety of methods including, for example, PCR, Western blot, Southern blot, restriction fragment length polymorphism (RFLP), or a gain or loss of allele assay. In some embodiments, the non-human animal is heterozygous with respect to the humanized CD47 gene. In some embodiments, the non-human animal is homozygous for the humanized CD47 gene.

[0109] In various embodiments, a humanized CD47 gene according to the present invention includes a CD47 gene that has a second, third, fourth, fifth, sixth and seventh exon each having a sequence at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a second, third, fourth, fifth, sixth and seventh exon that appear in a human CD47 gene of Table 3.

[0110] In various embodiments, a humanized CD47 gene according to the present invention includes a CD47 gene that has a first exon and exon(s) downstream of exon 7 (e.g., eighth and ninth exons of isoform 2) each having a sequence at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a respective exon that appears in a mouse CD47 gene of Table 3.

[0111] In various embodiments, a humanized CD47 gene according to the present invention includes a CD47 gene that has a 5' untranslated region and a 3' untranslated region each having a sequence at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a 5' untranslated region and a 3' untranslated region that appear in a mouse CD47 gene of Table 3.

[0112] In various embodiments, a humanized CD47 gene according to the present invention includes a CD47 gene that has a nucleotide coding sequence (e.g., a cDNA sequence) at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to a nucleotide coding sequence that appears in a human CD47 nucleotide coding sequence of Table 3.

[0113] In various embodiments, a humanized CD47 protein produced by a non-human animal of the present invention has an extracellular portion having an amino acid sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to an extracellular portion of a human CD47 protein that appears in Table 3.

[0114] In various embodiments, a humanized CD47 protein produced by a non-human animal of the present invention has an extracellular portion having an amino acid sequence that is identical to amino acid residues 19-141 that appear in a human CD47 protein of Table 3.

[0115] In various embodiments, a humanized CD47 protein produced by a non-human animal of the present invention has an N-terminal immunoglobulin V domain having an amino acid sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to an N-terminal immunoglobulin V domain of a human CD47 protein that appears in Table 3.

[0116] In various embodiments, a humanized CD47 protein produced by a non-human animal of the present invention has an N-terminal immunoglobulin V domain having an amino acid sequence that is identical to amino acid residues 19-127 that appear in a human CD47 protein of Table 3.

[0117] In various embodiments, a humanized CD47 protein produced by a non-human animal of the present invention has an N-terminal immunoglobulin V domain and five transmembrane domains each having a sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to an N-terminal immunoglobulin V domain and five transmembrane domains of a human CD47 protein that appears in Table 3.

[0118] In various embodiments, a humanized CD47 protein produced by a non-human animal of the present invention has an intracytoplasmic tail having a sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to an intracytoplasmic tail of a mouse CD47 protein that appears in Table 3.

[0119] In various embodiments, a humanized CD47 protein produced by a non-human animal of the present invention has an amino acid sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to amino acid residues 16-292 that appear in a human CD47 protein of Table 3.

[0120] In various embodiments, a humanized CD47 protein produced by a non-human animal of the present invention has an amino acid sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to amino acid residues 19-292 that appear in a human CD47 protein of Table 3.

[0121] In various embodiments, a humanized CD47 protein produced by a non-human animal of the present invention has an amino acid sequence that is identical to amino acid residues 19-292 (or 16-292) that appear in a human CD47 protein of Table 3.

[0122] In various embodiments, a humanized CD47 protein produced by a non-human animal of the present invention has an amino acid sequence that is at least 50% (e.g., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more) identical to an amino acid sequence of a humanized CD47 protein that appears in Table 3.

[0123] In various embodiments, a humanized CD47 protein produced by a non-human animal of the present invention has an amino acid sequence that is identical to an amino acid sequence of a humanized CD47 protein that appears in Table 3.

[0124] Compositions and methods for making non-human animals that express a humanized CD47 protein, including specific polymorphic forms, allelic variants (e.g., single amino acid differences) or alternatively spliced isoforms, are provided, including compositions and methods for making non-human animals that express such proteins from a human promoter and a human regulatory sequence. In some embodiments, compositions and methods for making non-human animals that express such proteins from an endogenous promoter and an endogenous regulatory sequence are also provided. The methods include inserting the genetic material encoding a human CD47 protein in whole or in part at a precise location in the genome of a non-human animal that corresponds to an

endogenous CD47 gene thereby creating a humanized CD47 gene that expresses a CD47 protein that is human in whole or in part. In some embodiments, the methods include inserting genomic DNA corresponding to exons 2-7 of a human CD47 gene into an endogenous CD47 gene of the non-human animal thereby creating a humanized gene that encodes a CD47 protein that contains a human portion containing amino acids encoded by the inserted exons.

[0125] Where appropriate, the coding region of the genetic material or polynucleotide sequence(s) encoding a human CD47 protein in whole or in part may be modified to include codons that are optimized for expression in the non-human animal (e.g., see U.S. Patent No.'s 5,670,356 and 5,874,304). Codon optimized sequences are synthetic sequences, and preferably encode the identical polypeptide (or a biologically active fragment of a full length polypeptide which has substantially the same activity as the full length polypeptide) encoded by the non-codon optimized parent polynucleotide. In some embodiments, the coding region of the genetic material encoding a human CD47 protein, in whole or in part, may include an altered sequence to optimize codon usage for a particular cell type (e.g., a rodent cell). For example, the codons of the genomic DNA corresponding to exons 2-7 of a human CD47 gene to be inserted into an endogenous CD47 gene of a non-human animal (e.g., a rodent) may be optimized for expression in a cell of the non-human animal. Such a sequence may be described as a codon-optimized sequence.

[0126] A humanized CD47 gene approach employs a relatively minimal modification of the endogenous gene and results in natural CD47-mediated signal transduction in the non-human animal, in various embodiments, because the genomic sequence of the CD47 sequences are modified in a single fragment and therefore retain normal functionality by including necessary regulatory sequences. Thus, in such embodiments, the CD47 gene modification does not affect other surrounding genes or other endogenous CD47-interacting genes (e.g., thrombospondin, SIRPs, integrins, etc.). Further, in various embodiments, the modification does not affect the assembly of a functional CD47 transmembrane protein on the plasma membrane and maintains normal effector functions

via binding and subsequent signal transduction through the cytoplasmic portion of the protein which is unaffected by the modification.

[0127] A schematic illustration (not to scale) of the genomic organization of an endogenous murine CD47 gene and a human CD47 gene is provided in Figure 1. An exemplary method for humanizing an endogenous murine CD47 gene using a genomic fragment containing exons 2-7 of a human CD47 gene is provided in Figure 2. As illustrated, genomic DNA containing exons 2-7 of a human CD47 gene is inserted into an endogenous murine CD47 gene locus by a targeting construct. This genomic DNA includes the portion of the gene that encodes an extracellular portion and transmembrane domains (e.g., amino acid resides 16-292) of a human CD47 protein responsible for ligand binding.

[0128] A non-human animal (e.g., a mouse) having a humanized CD47 gene at the endogenous CD47 locus can be made by any method known in the art. For example, a targeting vector can be made that introduces a human CD47 gene in whole or in part with a selectable marker gene. Figure 2 illustrates an endogenous CD47 locus of a mouse genome comprising an insertion of exons 2-7 of a human CD47 gene. As illustrated, the targeting construct contains a 5' homology arm containing sequence upstream of exon 2 of an endogenous murine CD47 gene (~39 Kb), followed by a genomic DNA fragment containing exons 2-7 of a human CD47 gene (~23.9 Kb), a drug selection cassette (e.g., a neomycin resistance gene flanked on both sides by *loxP* sequences; ~5 Kb), and a 3' homology arm containing sequence downstream of exon 7 of an endogenous murine CD47 gene (~99 Kb). The targeting construct contains a self-deleting drug selection cassette (e.g., a neomycin resistance gene flanked by *loxP* sequences; see U.S. Patent No.'s 8,697,851, 8,518,392 and 8,354,389, all of which are incorporated herein by reference). Upon homologous recombination, exons 2-7 of an endogenous murine CD47 gene are replaced by the sequence contained in the targeting vector (i.e., exons 2-7 of a human CD47 gene). A humanized CD47 gene is created resulting in a cell or non-human animal that expresses a humanized CD47 protein that contains amino acids encoded by exons 2-7 of a human CD47 gene. The drug selection cassette is removed in a development-dependent manner, i.e., progeny derived from mice whose germ line cells containing the

humanized CD47 gene described above will shed the selectable marker from differentiated cells during development.

[0129] The non-human animals of the present invention may be prepared as described above, or using methods known in the art, to comprise additional human or humanized genes, oftentimes depending on the intended use of the non-human animal. Genetic material of such additional human or humanized genes may be introduced through the further alteration of the genome of cells (e.g., embryonic stem cells) having the genetic modifications as described above or through breeding techniques known in the art with other genetically modified strains as desired. In some embodiments, non-human animals of the present invention are prepared to further comprise one or more human or humanized genes selected from SIRP α (CD172a), IL-3, M-CSF, GM-CSF and TPO. In some embodiments, non-human animals of the present invention may be prepared by introducing a targeting vector, as described herein, into a cell from a modified strain. To give but one example, a targeting vector, as described above, may be introduced into a mouse that is Rag2-deficient and IL-2R γ -deficient and include four human cytokines (Rag2^{-/-}IL2R γ c^{-/-}; M-CSF^{Hu}; IL-3/GM-CSF^{Hu}; hSIRP α ^{tg}; TPO^{Hu}). In some embodiments, non-human animals of the present invention are prepared to further comprise a human or humanized signal-regulatory protein alpha (SIRP α) gene. In some embodiments, non-human animals of the present invention comprise a humanized CD47 gene, as described herein, and genetic material from a heterologous species (e.g., humans), wherein the genetic material encodes, in whole or in part, one or more heterologous proteins selected from SIRP α (CD172a), IL-3, M-CSF, GM-CSF and TPO. In some certain embodiments, non-human animals of the present invention comprise a humanized CD47 gene as described herein and genetic material from a heterologous species (e.g., humans), wherein the genetic material encodes, in whole or in part, a heterologous (e.g., human) SIRP α (CD172a) protein. In some certain embodiments, non-human animals of the present invention further comprise a SIRP α gene that comprises an endogenous portion and a human portion (e.g., exons 2-4 of a human SIRP α gene), wherein the human portion encodes the extracellular domain of a SIRP α protein (e.g., amino acids corresponding to residues 28-362 of a human SIRP α protein) and the endogenous portion encodes the intracellular domain of an endogenous

SIRP α protein; in some embodiments, the human portion and the endogenous portion are operably linked to an endogenous SIRP α promoter.

[0130] For example, as described herein, non-human animals comprising a humanized CD47 gene may further comprise (e.g., via cross-breeding or multiple gene targeting strategies) one or more modifications as described in PCT/US2010/051339, filed October 4, 2010; PCT/US2013/058448, filed September 6, 2013; PCT/US2013/045788, filed June 14, 2013; PCT/US2014/056910, filed September 23, 2014; PCT/US2014/060568, filed October 15, 2014; the PCT/US2012/025040, filed February 14, 2014; PCT/US2012/062379, filed October 29, 2012; PCT/US2014/064806, filed November 10, 2014; and PCT/US2014/064810, filed November 10, 2014; these applications are incorporated herein by reference in their entirety. In certain embodiments, a rodent comprising a humanized CD47 gene (i.e., exons 2-7 of a human CD47 gene operably linked to exon 1 and exon 8 (and hence any downstream exons) of an endogenous rodent CD47 gene so that the humanized CD47 gene encodes a CD47 polypeptide having an extracellular portion from a human CD47 protein and an intracellular portion from a rodent CD47 protein) is crossed to a rodent comprising a humanized SIRP α gene (e.g., exons 2-4 of a human SIRP α gene operably linked to exons 1 and 5-8 of an endogenous rodent SIRP α gene so that the humanized SIRP α gene encodes a SIRP α polypeptide having an extracellular portion from a human SIRP α protein (e.g., amino acids corresponding to residues 28-362) and an intracellular portion from a rodent SIRP α protein; see, e.g., PCT/US2014/056910, filed September 23, 2014, incorporated herein by reference).

[0131] Although embodiments employing a humanized CD47 gene in a mouse (i.e., a mouse with a CD47 gene that encodes a CD47 protein that includes a human portion and a mouse portion) are extensively discussed herein, other non-human animals that comprise a humanized CD47 gene are also provided. In some embodiments, such non-human animals comprise a humanized CD47 gene operably linked to an endogenous CD47 promoter. In some embodiments, such non-human animals express a humanized CD47 protein from an endogenous locus, wherein the humanized CD47 protein comprises amino acid residues 16-292 (or 19-141 or 19-127) of a human CD47 protein. Such non-human animals include any of those which can be genetically modified to express a CD47 protein as disclosed

herein, including, e.g., mammals, e.g., mouse, rat, rabbit, pig, bovine (e.g., cow, bull, buffalo), deer, sheep, goat, chicken, cat, dog, ferret, primate (e.g., marmoset, rhesus monkey), etc. For example, for those non-human animals for which suitable genetically modifiable ES cells are not readily available, other methods are employed to make a non-human animal comprising the genetic modification. Such methods include, e.g., modifying a non-ES cell genome (e.g., a fibroblast or an induced pluripotent cell) and employing somatic cell nuclear transfer (SCNT) to transfer the genetically modified genome to a suitable cell, e.g., an enucleated oocyte, and gestating the modified cell (e.g., the modified oocyte) in a non-human animal under suitable conditions to form an embryo.

[0132] Methods for modifying a non-human animal genome (e.g., a pig, cow, rodent, chicken, etc. genome) include, e.g., employing a zinc finger nuclease (ZFN) or a transcription activator-like effector nuclease (TALEN) to modify a genome to include a humanized CD47 gene.

[0133] In some embodiments, a non-human animal of the present invention is a mammal. In some embodiments, a non-human animal of the present invention is a small mammal, e.g., of the superfamily Dipodoidea or Muroidea. In some embodiments, a genetically modified animal of the present invention is a rodent. In some embodiments, a rodent of the present invention is selected from a mouse, a rat, and a hamster. In some embodiments, a rodent of the present invention is selected from the superfamily Muroidea. In some embodiments, a genetically modified animal of the present invention is from a family selected from Calomyscidae (e.g., mouse-like hamsters), Cricetidae (e.g., hamster, New World rats and mice, voles), Muridae (true mice and rats, gerbils, spiny mice, crested rats), Nesomyidae (climbing mice, rock mice, with-tailed rats, Malagasy rats and mice), Platacanthomyidae (e.g., spiny dormice), and Spalacidae (e.g., mole rates, bamboo rats, and zokors). In some certain embodiments, a genetically modified rodent of the present invention is selected from a true mouse or rat (family Muridae), a gerbil, a spiny mouse, and a crested rat. In some certain embodiments, a genetically modified mouse of the present invention is from a member of the family Muridae. In some embodiment, a non-human animal of the present invention is a rodent. In some certain embodiments, a rodent

of the present invention is selected from a mouse and a rat. In some embodiments, a non-human animal of the present invention is a mouse.

[0134] In some embodiments, a non-human animal of the present invention is a rodent that is a mouse of a C57BL strain selected from C57BL/A, C57BL/An, C57BL/GrFa, C57BL/KaLwN, C57BL/6, C57BL/6J, C57BL/6ByJ, C57BL/6NJ, C57BL/10, C57BL/10ScSn, C57BL/10Cr, and C57BL/Ola. In some certain embodiments, a mouse of the present invention is a 129 strain selected from the group consisting of a strain that is 129P1, 129P2, 129P3, 129X1, 129S1 (e.g., 129S1/SV, 129S1/SvIm), 129S2, 129S4, 129S5, 129S9/SvEvH, 129/SvJae, 129S6 (129/SvEvTac), 129S7, 129S8, 129T1, 129T2 (see, e.g., Festing *et al.*, 1999, *Mammalian Genome* 10:836; Auerbach, W. *et al.*, 2000, *Biotechniques* 29(5):1024-1028, 1030, 1032). In some certain embodiments, a genetically modified mouse of the present invention is a mix of an aforementioned 129 strain and an aforementioned C57BL/6 strain. In some certain embodiments, a mouse of the present invention is a mix of aforementioned 129 strains, or a mix of aforementioned BL/6 strains. In some certain embodiments, a 129 strain of the mix as described herein is a 129S6 (129/SvEvTac) strain. In some embodiments, a mouse of the present invention is a BALB strain, e.g., BALB/c strain. In some embodiments, a mouse of the present invention is a mix of a BALB strain and another aforementioned strain.

[0135] In some embodiments, a non-human animal of the present invention is a rat. In some certain embodiments, a rat of the present invention is selected from a Wistar rat, an LEA strain, a Sprague Dawley strain, a Fischer strain, F344, F6, and Dark Agouti. In some certain embodiments, a rat strain as described herein is a mix of two or more strains selected from the group consisting of Wistar, LEA, Sprague Dawley, Fischer, F344, F6, and Dark Agouti.

Methods Employing Non-Human Animals Having Humanized CD47 Genes

[0136] CD47 mutant and transgenic non-human animals (e.g., miniature swine) and cells have been reported (Koshimizu H. *et al.* (2014) *PLoS One*, 9(2):e89584; Lavender, K.J. *et al.* (2014) *J. Immunol. Methods*, 407:127-134; Tena, A. *et al.* (2014) *Am. J. Transplant.* doi: 10.1111/ajt.12918; Lavender K.J. *et al.* (2013) *Blood*, 122(25):4013-4020; Tena, A. *et al.* (2012) *Transplantation* 94(10S):776; Wang, C. *et al.* (2011) *Cell Transplant.* 20(11-12):1915-1920; Johansen, M.L. and Brown, E.J. (2007) *J. Biol. Chem.* 282:24219-24230; Wang, H. *et al.* (2007) *Proc. Nat. Acad. Sci. U.S.A.* 104:13744-13749; Tulasne D. *et al.* (2001) *Blood*, 98(12):3346-52; Oldenborg, P. *et al.* (2000) *Science* 288:2051-2054; Verdrengh, M. *et al.* (1999) *Microbes Infect.* 1(10):745-751; Chang, H.P. *et al.* (1999) *Learn Mem.* 6(5):448-457; Wang, X.Q. *et al.* (1999) *J. Cell Biol.* 147(2):389-400; Lindberg, F.P. *et al.* (1996) *Science* 274(5288):795-798). Such animals have been employed in a variety of assays to determine, for example, the molecular aspects of CD47 expression, function and regulation. Considerable species differences have been discovered. Indeed, nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice express a SIRP α protein that is capable of interacting with human CD47 and, therefore, have been used extensively for the development of mouse models with components of the human immune system (e.g., see Takenaka, K. *et al.* (2007) *Nat. Immunol.* 8(12):1313-1323). The SIRP α allele present in these mice is not representative of the SIRP α allele present in other mouse strains and, generally, there is little cross-reaction between CD47 and SIRP α between species. Also, CD47 on mouse cells has been reported to have a near-complete mobility, while CD47 on human cells demonstrate only about 30-40% (Bruce, L. *et al.* (2003) *Blood* 101:4180-4188; Mouro-Chanteloup, L. *et al.* (2000) *VoxSanguinis* 78:P030; Mouro-Chanteloup, L. *et al.* (2003) *Blood* 101:338-344). Thus, NOD/SCID mice are not without limitation. For example, although multi-lineage human hematopoietic development can be supported in some genetic backgrounds (e.g., BALB/c $Rag2^{-/-}IL-2R\gamma c^{-/-}$), homeostasis of other cell types remains inefficient (e.g., T and NK cells; see e.g., Gimeno, R. *et al.* (2004) *Blood* 104:3886-3893; Traggiai, E. *et al.* (2004) *Science* 304:104-107; Legrand, N. *et al.* (2006) *Blood* 108:238-245). Further, CD47 is also known to interact with other cell surface proteins and provide bidirectional

signaling. Thus, existing mice represent an inefficient *in vivo* system for elucidation of CD47-dependent functions in various biological processes such as, for example, engraftment and phagocytosis. Further, existing mice represent a suboptimal *in vivo* system for development of CD47 targeted therapies.

[0137] Non-human animals of the present invention provide an improved *in vivo* system and source of biological materials (e.g., cells) expressing human CD47 that are useful for a variety of assays. In various embodiments, non-human animals of the present invention are used to develop therapeutics that target CD47 and/or modulate CD47-SIRP α signaling. In various embodiments, non-human animals of the present invention are used to screen and develop candidate therapeutics (e.g., antibodies) that bind human CD47. In various embodiments, non-human animals of the present invention are used to screen and develop candidate therapeutics (e.g., antibodies) that block interaction of human CD47 with human SIRP α . In various embodiments, non-human animals of the present invention are used to determine the binding profile of antagonists and/or agonists of a humanized CD47 on the surface of a cell of a non-human animal as described herein. In some embodiments, non-human animals of the present invention are used to determine the epitope or epitopes of one or more candidate therapeutic antibodies that bind human CD47.

[0138] In various embodiments, non-human animals of the present invention are used to determine the pharmacokinetic profiles of anti-CD47 antibodies. In various embodiments, one or more non-human animals of the present invention and one or more control or reference non-human animals are each exposed to one or more candidate therapeutic anti-CD47 antibody at various doses (e.g., 0.1 mg/kg, 0.2 mg/kg, 0.3 mg/kg, 0.4 mg/kg, 0.5 mg/kg, 1 mg/kg, 2 mg/kg, 3 mg/kg, 4 mg/kg, 5 mg/kg, 7.5 mg/kg, 10 mg/kg, 15 mg/kg, 20 mg/kg, 25 mg/kg, 30 mg/kg, 40 mg/kg, or 50 mg/kg or more). Candidate therapeutic antibodies may be dosed via any desired route of administration (e.g., subcutaneously, intravenously, intramuscular, intraperitoneal, etc.). Blood is isolated from non-human animals (humanized and control) at various time points (e.g., 0 hr, 6 hr, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, or up to 30 or more days). Various assays may be performed to determine the pharmacokinetic profiles of administered candidate therapeutic antibodies using samples obtained from non-human

animals as described herein including, but not limited to, total IgG, anti-therapeutic antibody response, agglutination, etc.

[0139] In various embodiments, non-human animals of the present invention are used to measure the therapeutic effect of blocking or modulating CD47 signaling and the effect on gene expression as a result of cellular changes. In various embodiments, a non-human animal of the present invention or cells isolated therefrom are exposed to a candidate therapeutic that binds to a humanized CD47 protein (or a human portion of a CD47 protein) on the surface of a cell of the non-human animal and, after a subsequent period of time, analyzed for effects on CD47-dependent processes, for example, adhesion, angiogenesis, apoptosis, inflammation, migration, phagocytosis, proliferation and clearance of tumors (or tumor cells).

[0140] Non-human animals of the present invention express humanized CD47 protein, thus cells, cell lines, and cell cultures can be generated to serve as a source of humanized CD47 for use in binding and functional assays, e.g., to assay for binding or function of a CD47 antagonist or agonist, particularly where the antagonist or agonist is specific for a human SIRP α sequence or epitope. In various embodiments, CD47 epitopes bound by candidate therapeutic antibodies can be determined using cells isolated from non-human animals of the present invention.

[0141] Cells from non-human animals of the present invention can be isolated and used on an ad hoc basis, or can be maintained in culture for many generations. In various embodiments, cells from a non-human animal of the present invention are immortalized and maintained in culture indefinitely (e.g., in serial cultures).

[0142] In various embodiments, cells and/or non-human animals of the present invention are used in a survival and/or proliferation assay (e.g., employing B or T cells) to screen and develop candidate therapeutics that modulate human CD47 signaling. Activation or loss of CD47 can play an important role in the regulation of cell proliferation, and induction of apoptosis by CD47 may result from the activation of specific epitopes of the extracellular domain of CD47, therefore, candidate CD47 modulators (e.g., antagonists or agonists) may be identified, characterized and developed using cells of non-human animals of the present invention and/or a non-human animal as described herein. In some embodiments, cells

and/or non-human animals of the present invention are used in survival or death assay(s) to determine the effect on proliferation or apoptosis of a specific cell(s) (e.g., cancer cells) in the presence and absence of CD47.

[0143] In various embodiments, cells and/or non-human animals of the present invention are used in xenotransplantation of heterologous (e.g., human) cells to determine the CD47-mediated functions in the physiological (e.g., immune) response to the transplanted human cells. In some embodiments, candidate therapeutics that bind, or block one or more functions of, human CD47 are characterized in a non-human animal of the present invention. Suitable measurements include various cellular assays, proliferation assays, serum immunoglobulin analysis (e.g., antibody titer), cytotoxicity assays, and characterization of ligand-receptor interactions (immunoprecipitation assays). In some embodiments, non-human animals of the present invention are used to characterize the CD47-mediated functions regulating an immune response to an antigen. In some embodiments, the antigen is associated with a neoplasm. In some embodiments, the antigen is associated with an autoimmune disease or condition. In some embodiments, the antigen is a target associated with a disease or condition suffered by one or more human patients in need of treatment.

[0144] In various embodiments, non-human animals of the present invention are used in transplantation or adoptive transfer experiments to determine the therapeutic potential of compounds or biological agents to modulate CD47-dependent regulation of new lymphocytes and their immune function. In various embodiments, non-human animals of the present invention are transplanted with human B cells.

[0145] In various embodiments, cells of non-human animals of the present invention are used in a cell migration or spreading assay to screen and develop candidate therapeutics that modulate human CD47. Such processes are necessary for many cellular processes including wound healing, differentiation, proliferation and survival.

[0146] In various embodiments, cells of non-human animals of the present invention are used in phagocytosis assays to determine the therapeutic potential of compounds or biological agents to modulate CD47-dependent regulation of phagocytosis.

[0147] In various embodiments, cells of non-human animals of the present invention are used in tumor cell growth (or proliferation) assays to determine the therapeutic potential of compounds or biological agents to modulate CD47-dependent regulation and/or apoptosis of tumor cells.

[0148] In various embodiments, an inflammatory disease or condition is induced in one or more non-human animals of the present invention to provide an *in vivo* system for determining the therapeutic potential of compounds or biological agents to modulate CD47-dependent regulation of one or more functions of the inflammatory disease or condition. In some embodiments, the inflammatory disease or condition is associated with a neoplasm.

[0149] In various embodiments, an anti-angiogenic condition is induced in one or more non-human animals of the present invention to provide an *in vivo* system for determining the therapeutic potential of compounds or biological agents to modulate CD47-dependent regulation of one or more functions of the anti-angiogenic condition. Exemplary functions that can be evaluated to determine therapeutic efficacy include chemokine expression, nitric oxide (NO)-stimulated responses and blood flow recovery.

[0150] Non-human animals of the present invention provide an *in vivo* system for the analysis and testing of a drug or vaccine. In various embodiments, a candidate drug or vaccine may be delivered to one or more non-human animals of the present invention, followed by monitoring of the non-human animals to determine one or more of the immune response to the drug or vaccine, the safety profile of the drug or vaccine, or the effect on a disease or condition. Exemplary methods used to determine the safety profile include measurements of toxicity, optimal dose concentration, efficacy of the drug or vaccine, and possible risk factors. Such drugs or vaccines may be improved and/or developed in such non-human animals.

[0151] Non-human animals of the present invention provide an *in vivo* system for assessing the pharmacokinetic properties of a drug targeting CD47. In various embodiments, a drug targeting CD47 may be delivered or administered to one or more non-human animals of the present invention, followed by monitoring of, or performing one or more assays on, the non-human animals (or cells isolated therefrom) to determine the

effect of the drug on the non-human animal. Pharmacokinetic properties include, but are not limited to, how an animal processes the drug into various metabolites (or detection of the presence or absence of one or more drug metabolites, including, toxic metabolites), drug half-life, circulating levels of drug after administration (e.g., serum concentration of drug), anti-drug response (e.g., anti-drug antibodies), drug absorption and distribution, route of administration, routes of excretion and/or clearance of the drug. In some embodiments, pharmacokinetic and pharmacodynamic properties of drugs (e.g., CD47 modulators) are monitored in or through the use of non-human animals of the present invention.

[0152] Non-human animals of the present invention provide an *in vivo* system for assessing the on-target toxicity of a drug targeting CD47. In various embodiments, a drug targeting CD47 may be delivered or administered to one or more non-human animals of the present invention, followed by monitoring of or performing one or more assays on the non-human animals (or cells isolated therefrom) to determine the on-target toxic effect of the drug on the non-human animal. Typically, drugs are intended to modulate one or more functions of their targets. To give but one example, a CD47 modulator is intended to modulate CD47-mediated functions (e.g., CD47 induced apoptosis) through interacting in some way with the CD47 molecule on the surface of one or more cells. In some embodiments, such a modulator may have an adverse effect that is an exaggeration of the desired pharmacologic action(s) of the modulator. Such effects are termed on-target effects. Exemplary on-target effects include too high of a dose, chronic activation/inactivation, and correct action in an incorrect tissue. In some embodiments, on-target effects of a drug targeting CD47 identified in or through the use of non-human animals of the present invention are used to determine a previously unknown function(s) of CD47.

[0153] Non-human animals of the present invention provide an *in vivo* system for assessing the off-target toxicity of a drug targeting CD47. In various embodiments, a drug targeting CD47 may be delivered or administered to one or more non-human animals of the present invention, followed by monitoring of or performing one or more assays on the non-human animals (or cells isolated therefrom) to determine the off-target toxic effect of

the drug on the non-human animal. Off-target effects can occur when a drug interacts with an unintended target (e.g., cross-reactivity to a common epitope). Such interactions can occur in an intended or unintended tissue. To give but one example, mirror image isomers (enantiomers) of a drug can lead to off-target toxic effects. Further, a drug can inappropriately interact with and unintentionally activate different receptor subtypes. Exemplary off-target effects include incorrect activation/inhibition of an incorrect target regardless of the tissue in which the incorrect target is found. In some embodiments, off-target effects of a drug targeting CD47 are determined by comparing the effects of administering the drug to non-human animals of the present invention to one or more reference non-human animals.

[0154] In some embodiments, performing an assay includes determining the effect on the phenotype (e.g., change in body weight) and/or genotype of the non-human animal to which the drug is administered. In some embodiments, performing an assay includes determining lot-to-lot variability for a CD47 modulator (e.g., an antagonist or an agonist). In some embodiments, performing an assay includes determining the differences between the effects of a drug targeting CD47 administered to a non-human animal of the present invention and a reference non-human animal. In various embodiments, reference non-human animals may have a modification as described herein, a modification that is different as described herein (e.g., one that has a disruption, deletion or otherwise non-functional CD47 gene) or no modification (i.e., a wild-type non-human animal).

[0155] Exemplary parameters that may be measured in non-human animals (or in and/or using cells isolated therefrom) for assessing the pharmacokinetic properties, on-target toxicity, and/or off-target toxicity of a drug targeting CD47 include, but are not limited to, agglutination, autophagy, cell division, cell death, complement-mediated hemolysis, DNA integrity, drug-specific antibody titer, drug metabolism, gene expression arrays, hematocrit levels, hematuria, metabolic activity, mitochondrial activity, oxidative stress, phagocytosis, protein biosynthesis, protein degradation, protein secretion, stress response, target tissue drug concentration, non-target tissue drug concentration, transcriptional activity and the like. In various embodiments, non-human animals of the present invention are used to determine a pharmaceutically effective dose of a CD47 modulator.

[0156] Non-human animals of the present invention provide an improved *in vivo* system for the development and characterization of candidate therapeutics for use in cancer. In various embodiments, non-human animals of the present invention may be implanted with a tumor, followed by administration of one or more candidate therapeutics. In some embodiments, candidate therapeutics may include a multi-specific antibody (e.g., a bi-specific antibody) or an antibody cocktail; in some embodiments, candidate therapeutics include combination therapy such as, for example, administration of mono-specific antibodies dosed sequentially or simultaneously. The tumor may be allowed sufficient time to be established in one or more locations within the non-human animal. Tumor cell proliferation, growth, etc. may be measured both before and after administration with the candidate therapeutic(s). Cytotoxicity of candidate therapeutics may also be measured in the non-human animal as desired.

[0157] Non-human animals of the present invention provide improved *in vivo* system elucidating mechanisms of human cell-to-cell interaction through adoptive transfer. In various embodiments, non-human animals of the present invention may be implanted with a tumor xenograft, followed by a second implantation of tumor infiltrating lymphocytes could be implanted in the non-human animals by adoptive transfer to determine the effectiveness in eradication of solid tumors or other malignancies. Such experiments may be done with human cells due to the exclusive presence of human CD47 without competition with endogenous CD47 of the non-human animal. Alternatively, such experiments may include the use of mouse cells from a NOD/SCID or BRG (BALB/c Rag2^{-/-}IL-2R γ c^{-/-}) background. Further, therapies and pharmaceuticals for use in xenotransplantation can be improved and/or developed in such non-human animals.

[0158] Non-human animals of the present invention provide an improved *in vivo* system for maintenance and development of human hematopoietic stem cells through engraftment. In various embodiments, non-human animals of the present invention provide improved development and maintenance of human stem cells within the non-human animal. In various embodiments, increased populations of differentiated human B and T cells are observed in the blood, bone marrow, spleen and thymus of the non-human animal. In various embodiments, optimal T and NK cell homeostasis is observed in cells in the blood,

bone marrow, spleen and thymus of the non-human animal. In various embodiments, non-human animals of the present invention demonstrate an increase in the level or amount of red blood cells (RBCs) as compared to one or more reference non-human animals.

[0159] Non-human animals of the present invention can be employed to assess the efficacy of a therapeutic drug targeting human cells. In various embodiments, a non-human animal of the present invention is transplanted with human cells, and a drug candidate targeting such human cells is administered to such non-human animal. The therapeutic efficacy of the drug is then determined by monitoring the human cells in the non-human animal after the administration of the drug. Drugs that can be tested in the non-human animals include both small molecule compounds, i.e., compounds of molecular weights of less than 1500 kD, 1200 kD, 1000 kD, or 800 daltons, and large molecular compounds (such as proteins, e.g., antibodies), which have intended therapeutic effects for the treatment of human diseases and conditions by targeting (e.g., binding to and/or acting on) human cells.

[0160] In some embodiments, the drug is an anti-cancer drug, and the human cells are cancer cells, which can be cells of a primary cancer or cells of cell lines established from a primary cancer. In these embodiments, a non-human animal of the present invention is transplanted with human cancer cells, and an anti-cancer drug is given to the non-human animal. The efficacy of the drug can be determined by assessing whether growth or metastasis of the human cancer cells in the non-human animal is inhibited as a result of the administration of the drug.

[0161] In specific embodiments, the anti-cancer drug is an antibody molecule, which binds to an antigen on human cancer cells. In particular embodiments, the anti-cancer drug is a bi-specific antibody that binds to an antigen on human cancer cells, and to an antigen on other human cells, for example, cells of the human immune system (or "human immune cells") such as B cells and T cells.

[0162] In some embodiments, a non-human animal of the present invention is engrafted with human immune cells or cells that differentiate into human immune cells. Such non-human animal with engrafted human immune cells is transplanted with human cancer cells, and is administered an anti-cancer drug, such as a bi-specific antibody that binds to an antigen on human cancer cells and to an antigen on human immune cells (e.g., T cells).

The therapeutic efficacy of the bi-specific antibody can be evaluated based on its ability to inhibit growth or metastasis of the human cancer cells in the non-human animal. In a specific embodiment, the non-human animal of the present invention is engrafted with human CD34⁺ hematopoietic progenitor cells which give rise to human immune cells (including T cells, B cells, NK cells, among others). Human B cell lymphoma cells (e.g., Raji cells) are transplanted into such non-human animal with engrafted human immune cells, which is then administered with a bi-specific antibody that binds to tumor antigen (e.g., an antigen on normal B cells and certain B cell malignancies such as CD20) and to the CD3 subunit of the T cell receptor, to test the ability of the bi-specific antibody to inhibit tumor growth in the non-human animal.

EXAMPLES

[0163] The following examples are provided so as to describe to those of ordinary skill in the art how to make and use methods and compositions of the invention, and are not intended to limit the scope of what the inventors regard as their invention. Unless indicated otherwise, temperature is indicated in Celsius, and pressure is at or near atmospheric.

Example 1. Humanization of an endogenous Cluster of Differentiation 47 (CD47) gene.

[0164] This example illustrates exemplary methods of humanizing an endogenous gene encoding cluster of differentiation 47 (CD47) in a non-human mammal such as a rodent (e.g., a mouse). The methods described in this example can be employed to humanize an endogenous CD47 gene of a non-human animal using any human sequence, or combination of human sequences (or sequence fragments) as desired. In this example, a human CD47 gene that appears in bacterial artificial chromosome (BAC) clone RP11-69A17 is employed for humanizing an endogenous CD47 gene of a mouse.

[0165] A targeting vector for humanization of the genetic material encoding an extracellular N-terminal IgV domain and five transmembrane domains of an endogenous CD47 gene was constructed using VELOCIGENE® technology (see, e.g., U.S. Patent No. 6,586,251 and Valenzuela *et al.* (2003) High-throughput engineering of the mouse genome

coupled with high-resolution expression analysis, *Nature Biotech.* 21(6):652-659; incorporated herein by reference).

[0166] Briefly, mouse bacterial artification chromosome (BAC) clone RP23-230L20 (Invitrogen) was modified to delete the sequence containing exons 2-7 of an endogenous CD47 gene and insert exons 2-7 of a human CD47 gene using human BAC clone RP11-69A17 (Invitrogen), which encodes amino acids 16-292 of a human CD47 polypeptide. Endogenous DNA containing genomic DNA corresponding to exons 1, 8 and 9 of isoform 2 as well as the 5' and 3' untranslated regions (UTRs) were retained. Sequence analysis of the human CD47 sequence contained in BAC clone RP11-69A17 confirmed all CD47 exons and splicing signals. Sequence analysis revealed that the sequence matched the reference genome and CD47 transcripts NM_001777.3 and NM_198793.2. The genomic DNA corresponding to exons 2-7 of an endogenous CD47 gene (~30.8 kb) was replaced in BAC clone RP23-230L20 by homologous recombination in bacterial cells to insert a DNA fragment containing ~23.9 kb of genomic human DNA corresponding to exons 2-7 of a human CD47 gene from BAC clone RP11-69A17 and ~4995 bp corresponding to a self-deleting neomycin cassette flanked by recombinase recognition sites (*loxP*-hUb1-em7-Neo-pA-mPrm1-Crei-*loxP*; see U.S. Patent No.'s 8,697,851, 8,518,392 and 8,354,389, which are incorporated herein by reference). The self-deleting neomycin cassette was added to the end of the ~23.9 kb human DNA fragment containing exons 2-7 of the human CD47 gene (Figure 2). The targeting vector contained, from 5' to 3', a 5' homology arm containing ~39 kb of mouse genomic DNA from BAC clone RP23-230L20, ~29.3 kb of human genomic DNA from BAC clone RP11-69A17 (containing exons 2-7 of a human CD47 gene), a self-deleting neomycin cassette flanked by *loxP* sites, and ~98.8 kb of mouse genomic DNA from BAC clone RP23-230L20. After homologous recombination in bacterial cells with the targeting vector described above, a modified RP23-230L20 BAC clone was created that resulted in a humanized CD47 gene which contained a mouse 5' UTR, a mouse exon 1, human exons 2-7, mouse exons 8-9 and a mouse 3'UTR. Protein sequences of four projected alternatively spliced isoforms of humanized CD47 are provided in Table 3 which indicate the resulting mouse and human amino acids encoded by the mouse and human DNA, respectively.

[0167] The modified BAC clone described above was used to electroporate F1H4 (50% 129/S6/SvEv/Tac, 50% C57BL/6NTac; Auerbach, W. *et al.* (2000) *Biotechniques* 29(5):1024-8, 1030, 1032) mouse embryonic stem (ES) cells to create modified ES cells comprising an endogenous CD47 gene that is humanized from exons 2-7. Positively targeted ES cells containing a humanized CD47 gene were identified by an assay (Valenzuela *et al.*, *supra*) that detected the presence of the human CD47 sequences (e.g., exons 2-7) and confirmed the loss and/or retention of mouse CD47 sequences (e.g., exons 1, 8 and 9 and/or exons 2-7). Table 4 sets forth the primers and probes that were used to confirm humanization of an endogenous CD47 gene as described above (Figure 3). The nucleotide sequence across the upstream insertion point included the following, which indicates endogenous mouse sequence upstream of the insertion point (contained within the parentheses below with an *AsiSI* restriction site italicized) linked contiguously to a human CD47 sequence present at the insertion point: (GCAGACATGA TTACTTCAGA GCTTCAAAG CTAGATACTG TACCTTGCAT ATTCCAACAC) *GCGATCGC* ATTTAAGAT TTTCCATCCT AGTGGAAAGA TATGATTGA TTCATCCTAT TTACTTTGTA TATTAAAGTA CAGTAGAACCC TGCCACTTTT (SEQ ID NO: 33). The nucleotide sequence across the downstream insertion point at the 5' end of the self-deleting neomycin cassette included the following, which indicates human CD47 genomic sequence contiguous with cassette sequence downstream of the insertion point (contained within the parentheses below with *loxP* sequence italicized): GGATCCATT TAAGTAATAG AATAGGATT TTAATTGTT CAGTGTTC GTGATAGAGC TGTCTGCAC AGACCTGTTT (CTCGAGATAA *CTTCGTATAA TGTATGCTAT* ACGAAGTTAT ATGCATGGCC TCCGCGCCGG GTTTGGCGC CTCCCGCGGG) (SEQ ID NO: 34). The nucleotide sequence across the downstream insertion point at the 3' end of the neomycin cassette included the following, which indicates cassette sequence contiguous with mouse genomic sequence 3' of exon 7 of an endogenous CD47 gene (contained within the parentheses below with *loxP* sequence italicized): CATGTCTGGA ATAACCTCGT ATAATGTATG CTATACGAAG TTATGCTAGT AACTATAACG GTCCTAAGGT AGCGACTAGC (ATTAGTATGG AAGGTCCGTC CACTGTCCAG GTTCCTCTTG CGGAGCTCTT TGTCTCTTG GACTCTGTAT AACTGCTTG)

(SEQ ID NO: 35). The nucleotide sequence across the downstream insertion point after deletion of the neomycin cassette (76 bp remaining) included the following, which indicates human and mouse genomic sequence juxtaposed with remaining cassette sequence loxP sequence (contained within the parentheses below with loxP sequence italicized): GGATCCATT TAAGTAATAG AATAGGATT TTAATTGTT CAGTGTTC GTGATAGAGC TGCCTGCAC AGACCTGTTT (CTCGAGATAA *CTTCGTATAA TGTATGCTATACGAAGTTAT* GCTAGTAAC ATAACGGTCC TAAGGTAGCG ACTAGC)ATT AGTATGGAAG GTCCGTCCAC TGTCCAGGTT CCTCTGCGG AGCTCTTGT CTCTCTGGAC TCTGTATACA CTGCTTGCAT (SEQ ID NO: 36).

[0168] Positive ES cell clones were then used to implant female mice using the VELOCIMOUSE® method (see, e.g., U.S. Pat. No. 7,294,754 and Poueymirou *et al.*, F0 generation mice that are essentially fully derived from the donor gene-targeted ES cells allowing immediate phenotypic analyses, 2007, *Nature Biotech.* 25(1):91-99) to generate a litter of pups containing an insertion of exons 2-7 of a human CD47 gene into an endogenous CD47 gene of a mouse. Mice bearing the humanization of exons 2-7 of an endogenous CD47 gene were again confirmed and identified by genotyping of DNA isolated from tail snips using a modification of allele assay (Valenzuela *et al.*, *supra*) that detected the presence of the human CD47 gene sequences. Pups are genotyped and cohorts of animals heterozygous for the humanized CD47 gene construct are selected for characterization.

TABLE 4

Name	Primer	Sequence (5'-3')	
7190mTU	Forward	TGCAGAAGTCACTAGGAGGAAT	(SEQ ID NO:21)
	Probe	TCAGTCAACTCTTCTGGTTGTT	(SEQ ID NO:22)
		CC	
	Reverse	GTGCCAGACTCACTTCTATCCA	(SEQ ID NO:23)
7190mTD	Forward	TGCTGCCAATATACGGCTCTG	(SEQ ID NO:24)

	Probe	CAGCTCTCATGCCAACTATGGTG CC	(SEQ ID NO:25)
	Reverse	TCAAGCAGAGCCTGGTTATCTG	(SEQ ID NO:26)
	Forward	GTCGTCATTCCATGCTTGTTAC	(SEQ ID NO:27)
7190hTU	Probe	TGGAGGCACAAAACACTACTGAAG TATACG	(SEQ ID NO:28)
	Reverse	GGACAGTGGACTTGTAGAGC	(SEQ ID NO:29)
	Forward	GGCTTGGTGGCTGATTGTTCT	(SEQ ID NO:30)
7190hTD	Probe	AGCACCCAAACTGATATGCCTGTA TTTG	(SEQ ID NO:31)
	Reverse	TGGGAACTGGTGTTCAGTCTA	(SEQ ID NO:32)

Example 2. Expression of humanized CD47 polypeptide by mouse red blood cells.

[0169] This Example demonstrates that non-human animals (e.g., rodents) modified to contain a humanized CD47 gene according to Example 1 can be used to screen CD47 modulators (e.g., anti-CD47 antibodies) and determine various characteristics such as, for example, pharmacokinetics and safety profiles. In this Example, several anti-CD47 antibodies are screened on mouse red blood cells (RBCs) isolated from rodents made in accordance with Example 1, which rodents express a humanized CD47 polypeptide as described herein.

[0170] Briefly, 2 mL of whole blood from humanized CD47 mice (n=2) was transferred to a 15 mL tube and centrifuged at 200xg for 10 minutes at 4°C. The plasma and buffy coat were aspirated and then 15 mL of PBS was added and the cells were mixed gently. The mixture was centrifuged again at 200xg for five minutes at 4°C. The supernatant was aspirated and the cells were washed two additional times. Pelleted RBCs were resuspended to a final volume in 10 mL of PBS. The resuspended RBCs were centrifuged a final time at 200xg for 10 minutes at 4°C. The volume of packed RBCs was estimated 0.5 mL and diluted to a concentration of 0.5% with PBS (0.5 mL packed RBC/100 mL PBS). Actual RBC concentration was determined with a Cellometer Auto T4 (1.5x10⁷/mL; Nexcelom Bioscience).

[0171] Eighty (80) μ L of 0.5% mouse RBCs were added to each well of a 96-well V-bottom plate. Anti-CD47 antibodies were added into each well (20 μ L at 33 nM). The plate was gently tapped to mix and incubated on ice for 30 minutes. The plate was then washed twice with staining buffer (PBS with 2% FBS). Secondary antibody Fab-488 (Alexa Fluor 488-conjugated AffiniPure mouse anti-human IgG, F(ab')₂ fragment specific, Jackson Immuno Research) was added to each well at a concentration of 10 μ g/mL. The plate was incubated again on ice for 30 minutes, followed by washing once with staining buffer. The cells in each well were resuspended in 200 μ L of staining buffer and filtered through a 96-well filter plate. The cells in the plate were analyzed using the BD ACCURI™ C6 system (BD Biosciences). Exemplary results are shown in Figure 4. The mean fluorescence intensity (MFI) above isotype control for each tested antibody is shown in Table 5.

TABLE 5

Antibody	MFI	Fold above isotype control
Ab A, hIgG4s	28898	258
Ab B, hIgG4s	27545	246
Ab C, hIgG4s	24620	220
Ab D, hIgG1	29882	267
Ab E, hIgG4	33423	298
Control, hIgG4s	112	-
Control, hIgG4	112	-

hIgG4s: human IgG4 with modified Fc region that has reduced effector function

[0172] As shown in Figure 4, all anti-CD47 antibodies bound to RBCs from humanized CD47 mice. Taken together, this Example demonstrates that (1) non-human animals (e.g., rodents) engineered to contain a humanized CD47 gene as described herein express a humanized CD47 polypeptide on the surface of cells (e.g., RBCs) of the non-human

animal, and (2) such cells are useful for screening CD47 modulators (e.g., CD47 antibodies) and determining the pharmacokinetic profiles of such modulators.

Example 3. Hemagglutination of mouse red blood cells expressing humanized CD47 polypeptide.

[0173] This Example further demonstrates that non-human animals (e.g., rodents) modified to contain a humanized CD47 gene according to Example 1 can be used in various assays (e.g., hemagglutination assay) to screen CD47 modulators (e.g., anti-CD47 antibodies) and determine various characteristics such as, for example, pharmacokinetics and safety profiles. In this Example, several anti-CD47 antibodies are screened on mouse red blood cells (RBCs) that express a humanized CD47 polypeptide as described herein to determine antibody concentration that promotes hemagglutination.

[0174] Briefly, RBCs from wild-type and humanized CD47 mice (n = 2) were prepared as described in Example 2. Twenty (20) μ L of anti-CD47 antibody (at 5-fold serial dilution) was added into wells 1-12 across a 96-well V-bottom plate followed by the addition of 80 μ L of 0.5% mouse RBCs to all wells of the plate. The plates were tapped gently to mix and incubated at room temperature (24-27°C) for 30 minutes. Agglutination endpoint was observed visually (i.e., RBCs settle to the bottom in negative samples, while RBCs agglutinate in positive samples). Exemplary results are shown in Figure 5, with boxes to outline the wells that show heme-agglutination.

[0175] As shown in Figure 5, only lectin caused agglutination in wild-type mice. However, two anti-CD47 antibodies (Ab E and Ab C) in addition to lectin induced agglutination in RBCs from two humanized CD47 rodents made according to Example 1. The concentration at which these two antibodies induced agglutination started from 11 nM. Taken together, this Example demonstrates that non-human animals (e.g., rodents) engineered to contain a humanized CD47 gene as described herein can be used to assess one or more properties (e.g., hemagglutination) of CD47 modulators (e.g., CD47 antibodies).

Example 4. Pharmacokinetic clearance of CD47 modulators in humanized CD47 rodents.

[0176] This Example illustrates a method of assessing the pharmacokinetic clearance of CD47 modulators (e.g., anti-CD47 antibodies) in non-human animals (e.g., rodents) modified to contain a humanized CD47 gene according to Example 1. In this Example, wild-type and humanized CD47 rodents (e.g., mice) were administered anti-CD47 antibodies and serum levels of antibodies were determined using an ELISA assay.

[0177] Briefly, wild-type (n=5) or mice homozygous for humanized CD47 (n=5; as described above) were administered four anti-CD47 antibodies (Ab F, Ab G, Ab H and Ab I) and an IgG4s isotype control antibody (IgG4s). The genetic background of the mice were 75% CD57BL/6 and 25% 129Sv. Each antibody was tested in five humanized CD47 rodents. All antibodies were administered subcutaneously at a dose of 50 mg/kg. One pre-bleed was collected one day prior to administration of antibody (day 0). Post-injection bleeds were collected at 6 hours, 1 day, 2 days, 3 days, 4 days, 7 days, 10 days and 14 days. Serum fractions from bleeds were separated and subjected to total human antibody analysis using an ELISA immunoassay.

[0178] Briefly, a goat anti-human IgG polyclonal antibody (Jackson ImmunoResearch) was coated onto 96-well plates to capture the tested human antibodies in the sera, and then plate bound antibodies were detected using a goat anti-human IgG polyclonal antibody conjugated with horseradish peroxidase (Jackson ImmunoResearch) and TMB substrate (BD Pharmingen). The serum samples were in six-dose serial dilutions and reference standards of the respective antibodies in 12-dose serial dilutions. Drug antibody concentrations in the sera were calculated based on the reference standard curve generated using Graphpad Prism software. Exemplary results are shown in Figure 6 and Table 6.

[0179] The data demonstrated that the antibodies administered to wild-type and humanized mice as described herein were well tolerated. Taken together, this Example demonstrates that non-human animals of the present invention can be used to assess one or more pharmacokinetic properties of a drug targeting CD47 (e.g., an anti-CD47 antibody) such as, for example, circulating drug levels. Moreover, non-human animals described herein

can be used to assess the toxicity of a drug targeting CD47 by determining adverse effects after administration.

TABLE 6

Antibody	Serum antibody concentrations (μg/mL ± SEM)						
	6 hour	Day 1	Day 2	Day 3	Day 4	Day 7	Day 10
Ab F	116.7±14.0	196.4±10.6	96.0±13.3	24.7±7.0	3.7±0.42	<0.35	<0.35
Ab G	115.0±22.1	198.8±23.4	118.4±20.9	48.3±16.0	2.9±1.97	<0.35	<0.35
Ab H	64.5±3.85	108.0±5.13	32.0±6.08	1.0±0.2	0.4±0.03	0.06±0.03	0.05±0.02
Ab I	51.1±16.6	115.2±14.8	63.8±8.3	11.1±4.2	0.5±0.1	0.1±0.02	<0.35
IgG4s							
Isotype control	458.2±34.4	702.5±32.3	616.6±27.0	567.1±39.5	488.9±45.0	357.0±51.1	307.6±61.1

Example 5. Pharmacokinetic profiles of CD47 modulators in humanized CD47/SIRP α rodents.

[0180] This Example illustrates a method of assessing the pharmacokinetic clearance of CD47 modulators (e.g., anti-CD47 antibodies) in non-human animals (e.g., rodents) modified to contain humanized CD47 (according to Example 1) and SIRP α genes. In particular, humanized CD47 rodents described herein were modified to further contain a humanized SIRP α gene that contains an endogenous portion and a human portion, which human portion encodes the extracellular domain of a human SIRP α protein (e.g., amino acids 28-362 of a human SIRP α protein) and which endogenous portion encodes an intracellular domain of an endogenous SIRP α protein (e.g., amino acids encoding transmembrane and intracellular portions of a murine SIRP α protein) as described in PCT/US14/56910, filed September 23, 2014, which is incorporated herein by reference. Double humanized CD47/SIRP α mice were made by breeding humanized SIRP α mice to humanized CD47 mice. In this Example, double humanized CD47/SIRP α rodents (e.g., mice) were administered various anti-CD47 antibodies and their corresponding pharmacokinetic profiles were determined.

[0181] Briefly, groups of wild type (n=5) and mice homozygous for humanized CD47 and SIRP α genes (CD47^{hu/hu}SIRP α ^{hu/hu}; n=5 per group) were administered selected anti-CD47 antibodies and an IgG4 isotype control antibody (hIgG4s). The genetic background of the mice were 75% CD57BL/6 and 25% 129Sv. All antibodies were administered in a single subcutaneous dose of 50 mg/kg. One pre-bleed was collected one day prior to administration of antibody (day 0). Post-injection bleeds were collected at 6 hours, 1 day, 2 days, 3 days, 4 days, 7 days and 10 days. Serum fractions from bleeds were separated and subjected to total human antibody analysis using an ELISA immunoassay (described above). Additionally, hematocrit levels were measured at 6 hours, 1 day, 2 days, 3 days, 4 days, 7 days and 10 days and a urine test was performed as needed (at 6 hours and when urine color deviated from yellow color) to determine red blood cell counts. Exemplary results are shown in Figures 7-9.

[0182] As shown in Figures 7 and 8, all anti-CD47 antibodies demonstrated target-mediated clearance in CD47^{hu/hu}SIRP α ^{hu/hu} mice and, in particular, many demonstrated similar pharmacokinetic profiles. Further, a monovalent version of one anti-CD47 antibody (Ab F) demonstrated greater bioavailability than its bivalent equivalent (Figure 8). The inventors observed similar pharmacokinetic profiles for the antibodies among multiple experiments with humanized CD47 and double humanized animals (i.e., CD47^{hu/hu}SIRP α ^{hu/hu} mice).

[0183] Ab J had less of an effect on hematocrit levels than other anti-CD47 antibodies tested (Ab F, Ab G, Ab I, etc.) and comparable changes in hematocrit levels to control (hIgG4s) in CD47^{hu/hu}SIRP α ^{hu/hu} mice. Measurements of hematocrit on days 2-4 showed the largest drop from normal range (~38.5-45.1%), which included groups administered Abs F, G and I. In particular, a monovalent form of Ab F demonstrated a delayed lowering effect on hematocrit as compared to other antibodies tested. The inventors reasoned that differences in hematocrit levels among the various treatment groups could be attributed to a difference in epitope recognized by the various antibodies. Also, mice dosed with selected anti-CD47 antibodies demonstrated positive urine dipstick tests for heme at 6 hours. For example, Ab J and Ab F treatment groups each had one mouse positive for

heme on day 1, while all other timepoints were negative. No significant weight loss (>20%) was observed in any treatment group.

[0184] Taken together, this Example demonstrates that non-human animals of the present invention provide an *in vivo* system for assessing the pharmacokinetic properties and/or profiles of one or more drugs targeting CD47 (e.g., one or more anti-CD47 antibodies) such as, for example, circulating drug levels. Moreover, non-human animals as described herein engineered to further contain other humanized genes (e.g., humanized SIRP α) can be used to assess the target-mediated clearance of one or more drugs targeting CD47.

EQUIVALENTS

[0185] Having thus described several aspects of at least one embodiment of this invention, it is to be appreciated by those skilled in the art that various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description and drawing are by way of example only and the invention is described in detail by the claims that follow.

[0186] Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements.

[0187] The articles “a” and “an” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to include the plural referents. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The invention includes embodiments in which exactly one member of the group is present in, employed in, or

otherwise relevant to a given product or process. The invention also includes embodiments in which more than one, or the entire group members are present in, employed in, or otherwise relevant to a given product or process. Furthermore, it is to be understood that the invention encompasses all variations, combinations, and permutations in which one or more limitations, elements, clauses, descriptive terms, etc., from one or more of the listed claims is introduced into another claim dependent on the same base claim (or, as relevant, any other claim) unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise. Where elements are presented as lists, (e.g., in Markush group or similar format) it is to be understood that each subgroup of the elements is also disclosed, and any element(s) can be removed from the group. It should be understood that, in general, where the invention, or aspects of the invention, is/are referred to as comprising particular elements, features, etc., certain embodiments of the invention or aspects of the invention consist, or consist essentially of, such elements, features, etc. For purposes of simplicity those embodiments have not in every case been specifically set forth in so many words herein. It should also be understood that any embodiment or aspect of the invention can be explicitly excluded from the claims, regardless of whether the specific exclusion is recited in the specification.

[0188] Those skilled in the art will appreciate typical standards of deviation or error attributable to values obtained in assays or other processes described herein.

[0189] The publications, websites and other reference materials referenced herein to describe the background of the invention and to provide additional detail regarding its practice are hereby incorporated by reference.

The claims defining the invention are as follows:

1. A rodent, whose genome comprises a humanized CD47 gene encoding a humanized CD47 polypeptide,

wherein the humanized CD47 polypeptide comprises a portion of a human CD47 polypeptide, and an intracellular portion of a rodent CD47 polypeptide;

wherein the portion of the human CD47 polypeptide comprises the extracellular domain and the transmembrane domains of the human CD47 polypeptide, and is encoded by exons 2-7 of a human CD47 gene;

wherein the intracellular portion of the rodent CD47 polypeptide is encoded by the exons downstream of exon 7 of a rodent CD47 gene;

wherein the humanized CD47 gene is operably linked to an endogenous rodent CD47 promoter at an endogenous rodent CD47 locus; and

wherein the rodent is a mouse or a rat.

2. The rodent of claim 1, wherein the humanized CD47 gene is formed from a replacement of a genomic fragment comprising exons 2-7 of an endogenous rodent CD47 gene at the endogenous rodent CD47 locus, with a genomic fragment comprising exons 2-7 of the human CD47 gene.

3. The rodent of claim 1, wherein the humanized CD47 gene comprises exon 1 of an endogenous rodent CD47 gene, exons 2-7 of the human CD47 gene, and the exons downstream of exon 7 of the endogenous CD47 gene.

4. The rodent of any one of claims 1-3, wherein the rodent further comprises a SIRP α gene that encodes a SIRP α polypeptide comprising the extracellular domain of a human SIRP α polypeptide and the intracellular domain of an endogenous rodent SIRP α polypeptide, wherein the SIRP α polypeptide interacts with CD47.

5. The rodent of claim 4, wherein the SIRP α gene comprises exons 1, 5, 6, 7 and 8 of an endogenous rodent SIRP α gene and exons 2-4 of a human SIRP α gene.

6. An isolated rodent cell, whose genome comprises a humanized CD47 gene encoding a humanized CD47 polypeptide,
 - wherein the humanized CD47 polypeptide comprises a portion of a human CD47 polypeptide, and an intracellular portion of a rodent CD47 polypeptide;
 - wherein the portion of the human CD47 polypeptide comprises the extracellular domain and the transmembrane domains of the human CD47 polypeptide, and is encoded by exons 2-7 of a human CD47 gene;
 - wherein the intracellular portion of the rodent CD47 polypeptide is encoded by the exons downstream of exon 7 of a rodent CD47 gene;
 - wherein the humanized CD47 gene is operably linked to an endogenous rodent CD47 promoter at an endogenous rodent CD47 locus; and
 - wherein the rodent cell is a mouse cell or a rat cell.
7. The rodent cell of claim 6, wherein the humanized CD47 gene comprises exon 1 of an endogenous rodent CD47 gene, exons 2-7 of the human CD47 gene, and the exons downstream of exon 7 of the endogenous CD47 gene.
8. The rodent cell of claim 6 or 7, wherein the rodent cell is a rodent embryonic stem cell.
9. A rodent embryo, comprising the rodent embryonic stem cell of claim 8.
10. An isolated rodent tissue, whose genome comprises a humanized CD47 gene encoding a humanized CD47 polypeptide;
 - wherein the humanized CD47 polypeptide comprises a portion of a human CD47 polypeptide, and an intracellular portion of a rodent CD47 polypeptide;
 - wherein the portion of the human CD47 polypeptide comprises the extracellular domain and the transmembrane domains of the human CD47 polypeptide, and is encoded by exons 2-7 of a human CD47 gene;
 - wherein the intracellular portion of the rodent CD47 polypeptide is encoded by the exons downstream of exon 7 of a rodent CD47 gene;

wherein the humanized CD47 gene is operably linked to an endogenous rodent CD47 promoter at an endogenous rodent CD47 locus; and

wherein the rodent tissue is a mouse tissue or a rat tissue.

11. The rodent tissue of claim 10, wherein the humanized CD47 gene comprises exon 1 of an endogenous rodent CD47 gene, exons 2-7 of the human CD47 gene, and the exons downstream of exon 7 of the endogenous CD47 gene.

12. A method for providing a rodent, comprising modifying a rodent genome thereby obtaining a rodent comprising a modified rodent genome that comprises a humanized CD47 gene encoding a humanized CD47 polypeptide,

wherein the humanized CD47 polypeptide comprises a portion of a human CD47 polypeptide, and an intracellular portion of a rodent CD47 polypeptide;

wherein the portion of the human CD47 polypeptide comprises the extracellular domain and the transmembrane domains of the human CD47 polypeptide, and is encoded by exons 2-7 of a human CD47 gene;

wherein the intracellular portion of the rodent CD47 polypeptide is encoded by the exons downstream of exon 7 of a rodent CD47 gene;

wherein the humanized CD47 gene is operably linked to an endogenous rodent CD47 promoter at an endogenous rodent CD47 locus; and

wherein the rodent is a mouse or a rat.

13. The method of claim 12, wherein said modifying comprises:

(a) inserting a genomic fragment into an endogenous rodent CD47 locus in a rodent embryonic stem cell, said genomic fragment comprising exons 2-7 of a human CD47 gene, thereby forming the humanized CD47 gene at the endogenous rodent CD47 locus;

(b) obtaining a rodent embryonic stem cell whose genome comprises the humanized CD47 gene of (a); and

(c) creating a rodent using the rodent embryonic stem cell of (b).

14. The method of claim 12 or claim 13, wherein the humanized CD47 gene comprises exon 1 of an endogenous rodent CD47 gene, exons 2-7 of the human CD47 gene, and the exons downstream of exon 7 of the endogenous CD47 gene.
15. A method for assessing engraftment of human cells, wherein said method comprises transplanting human cells into a rodent according to any one of claims 1-5, and assessing engraftment of the transplanted human cells in the rodent.
16. The method of claim 15, wherein the human cells are hematopoietic stem cells.
17. A method for assessing the therapeutic efficacy of a drug targeting human cells, the method comprising:
 - administering a drug candidate to a rodent according to any one of claims 1-5 into which one or more human cells have been transplanted; and
 - monitoring the human cells in the rodent to determine the therapeutic efficacy of the drug candidate.
18. A method for assessing whether a candidate modulator of a human CD47 protein induces agglutination of red blood cells, said method comprising
 - incubating red blood cells isolated from a rodent according to any one of claims 1-5 in the presence of the candidate modulator; and
 - assessing whether the candidate modulator induces agglutination of the red blood cells.

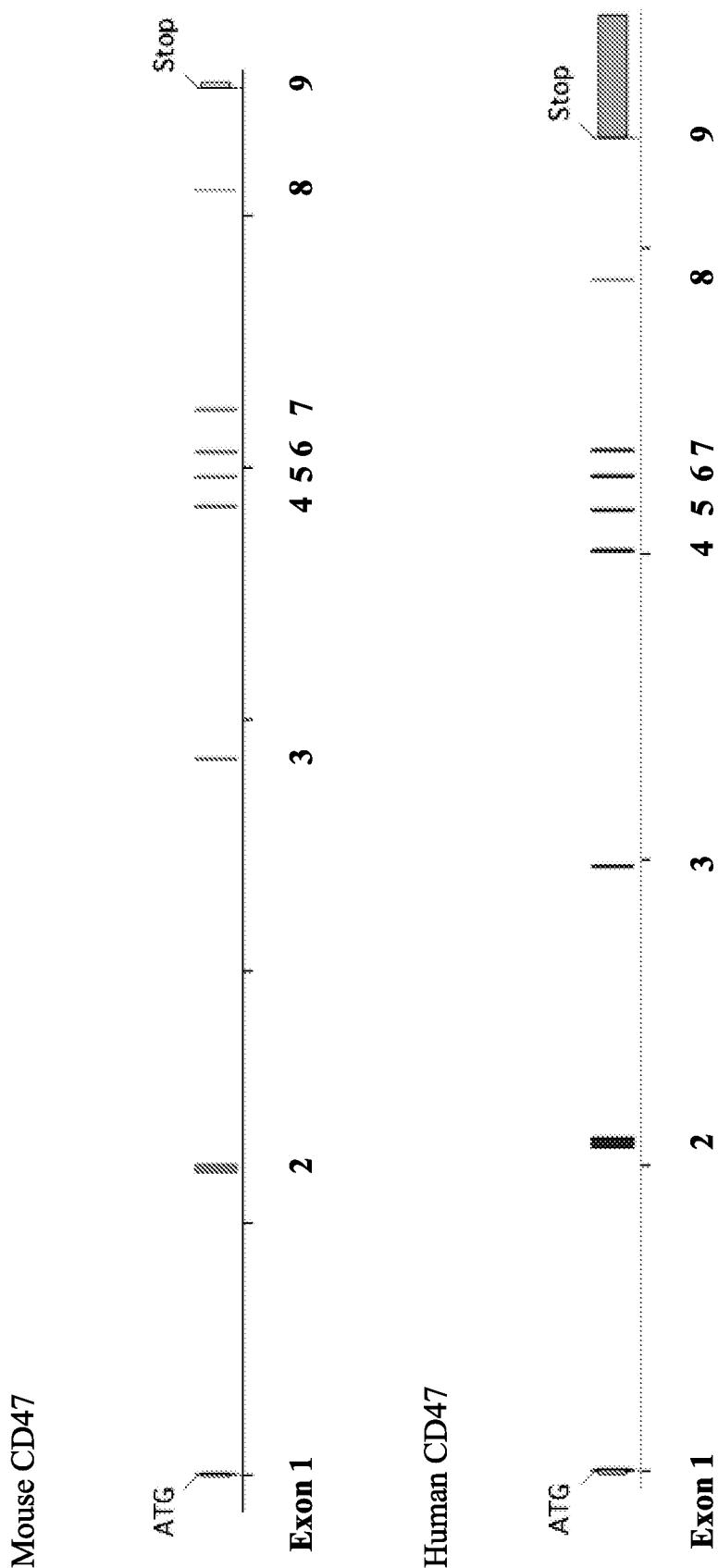
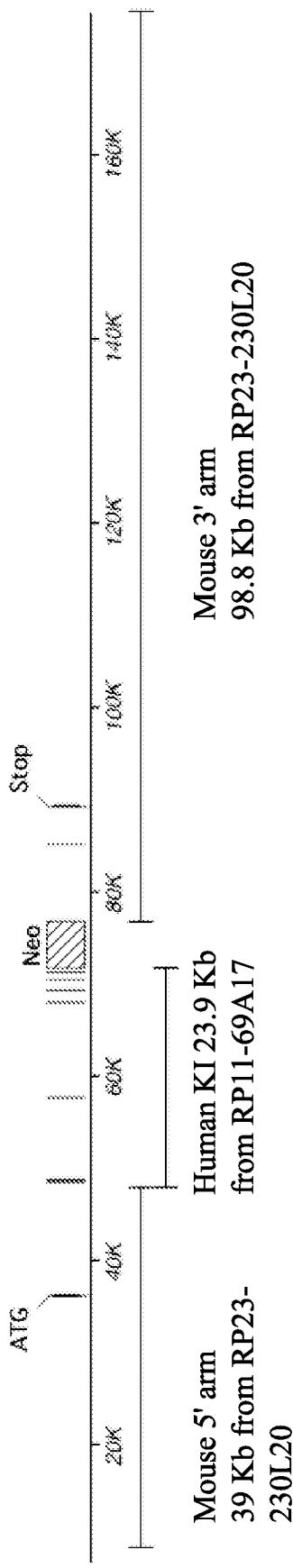



Figure 1

Endogenous CD47 gene with human CD47 exons 2-7 inserted, neomycin cassette intact (~4995 bp)

Endogenous CD47 gene with human CD47 exons 2-7 inserted, neomycin cassette deleted (76 bp remain)

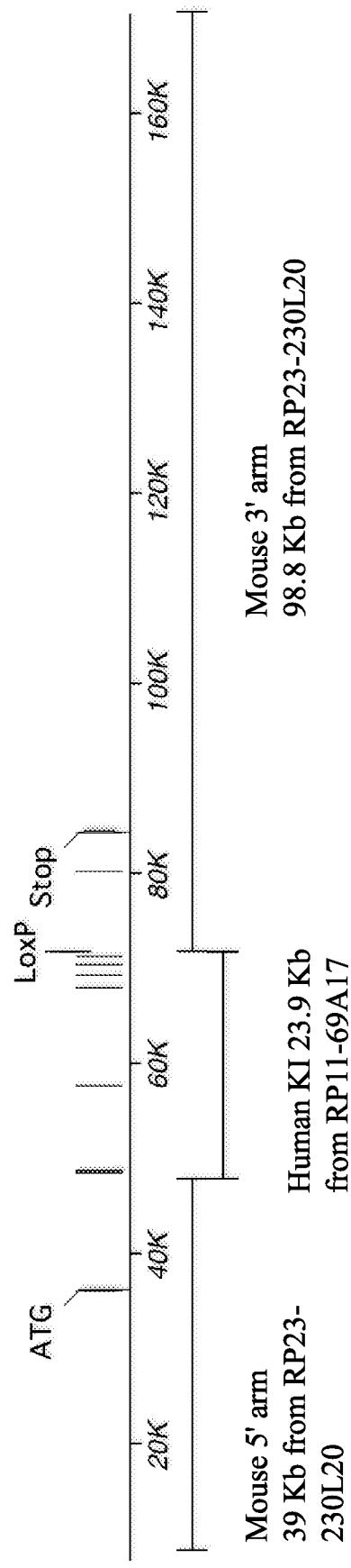


Figure 2

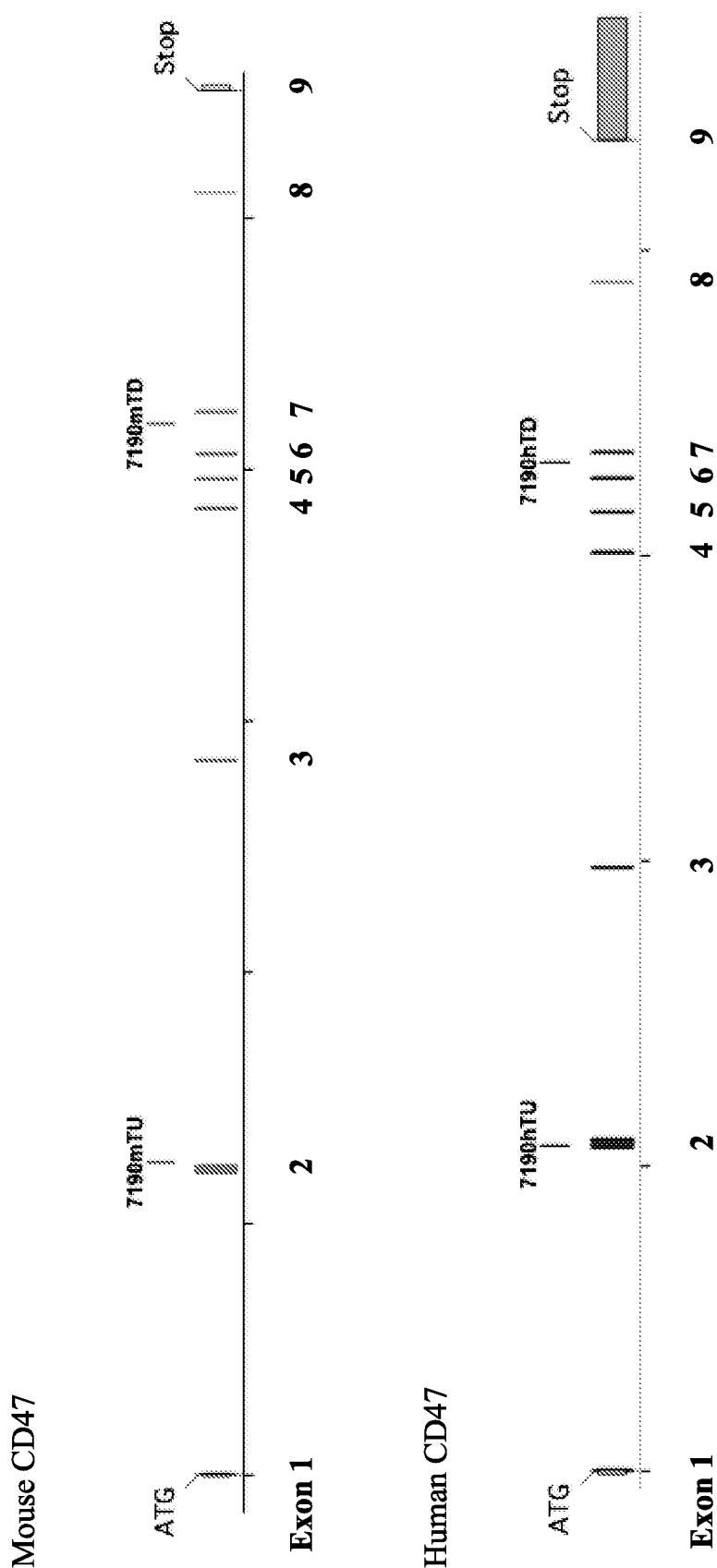


Figure 3

Figure 4

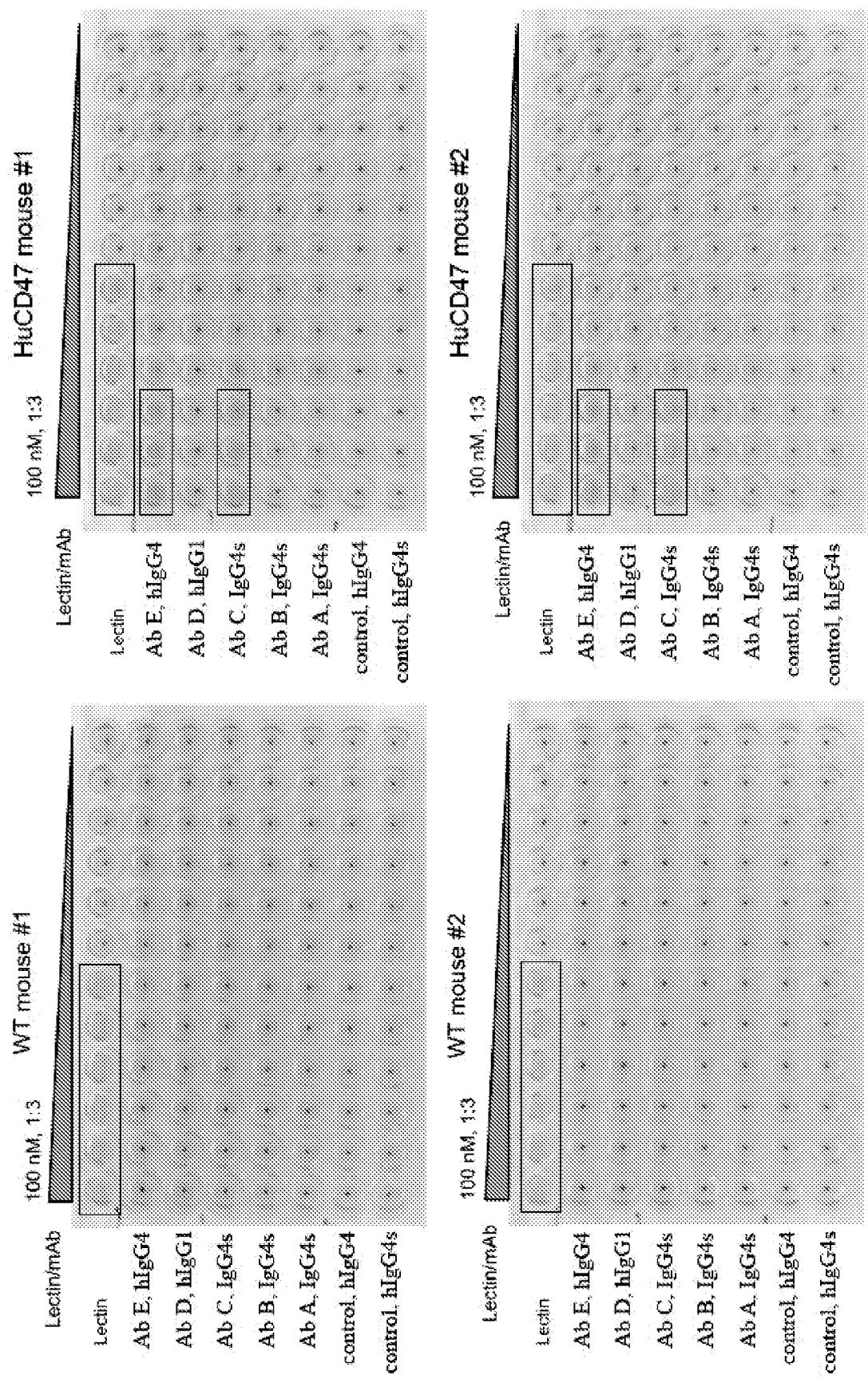


Figure 5

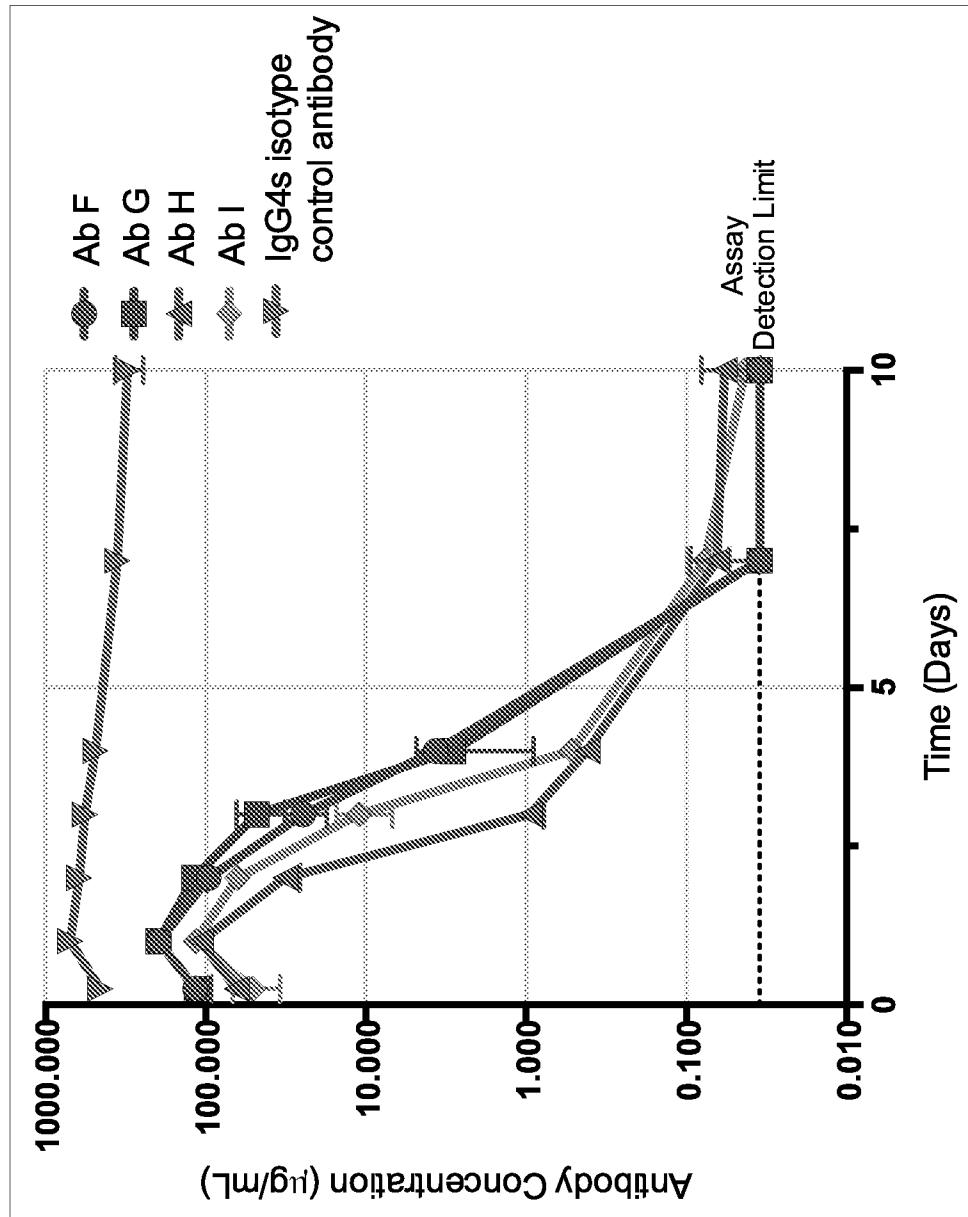


Figure 6

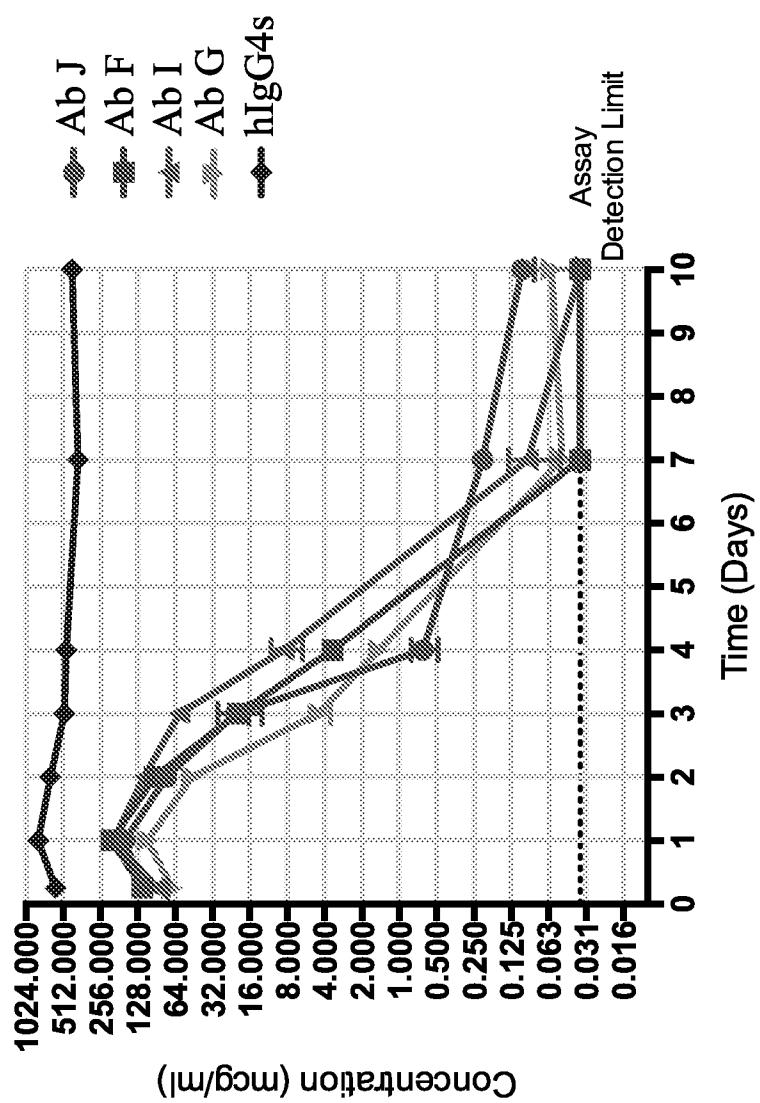


Figure 7

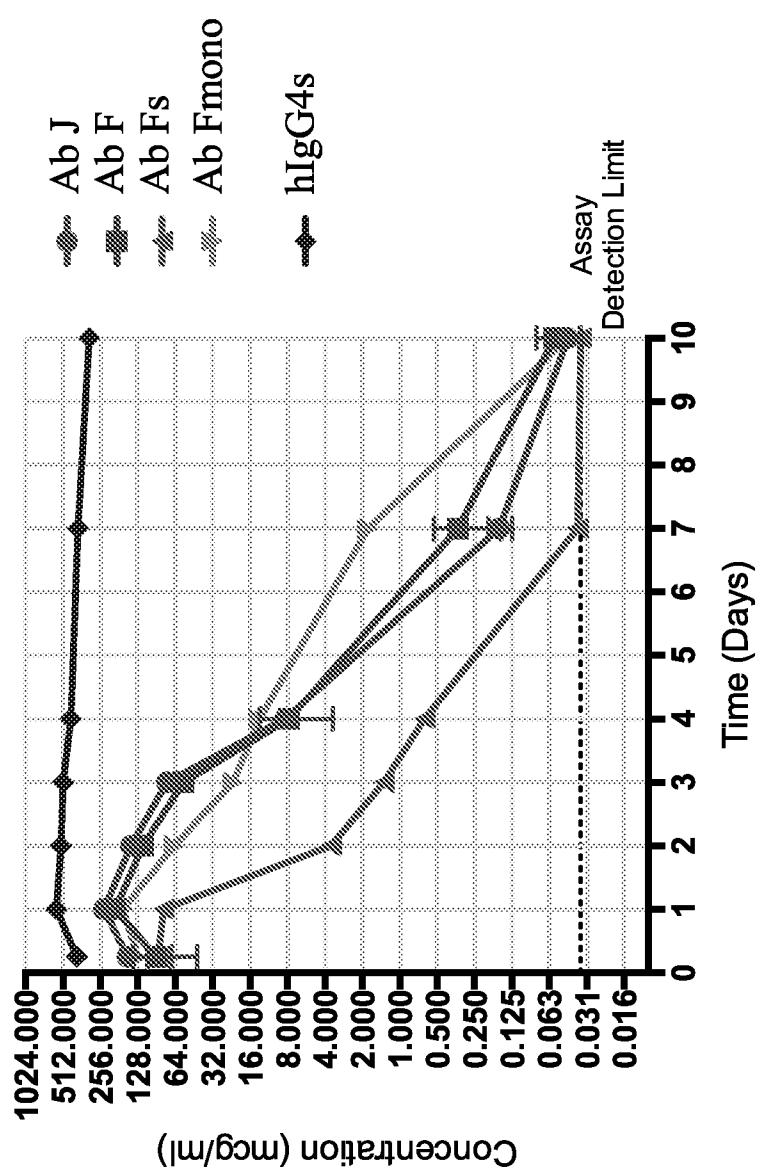


Figure 8

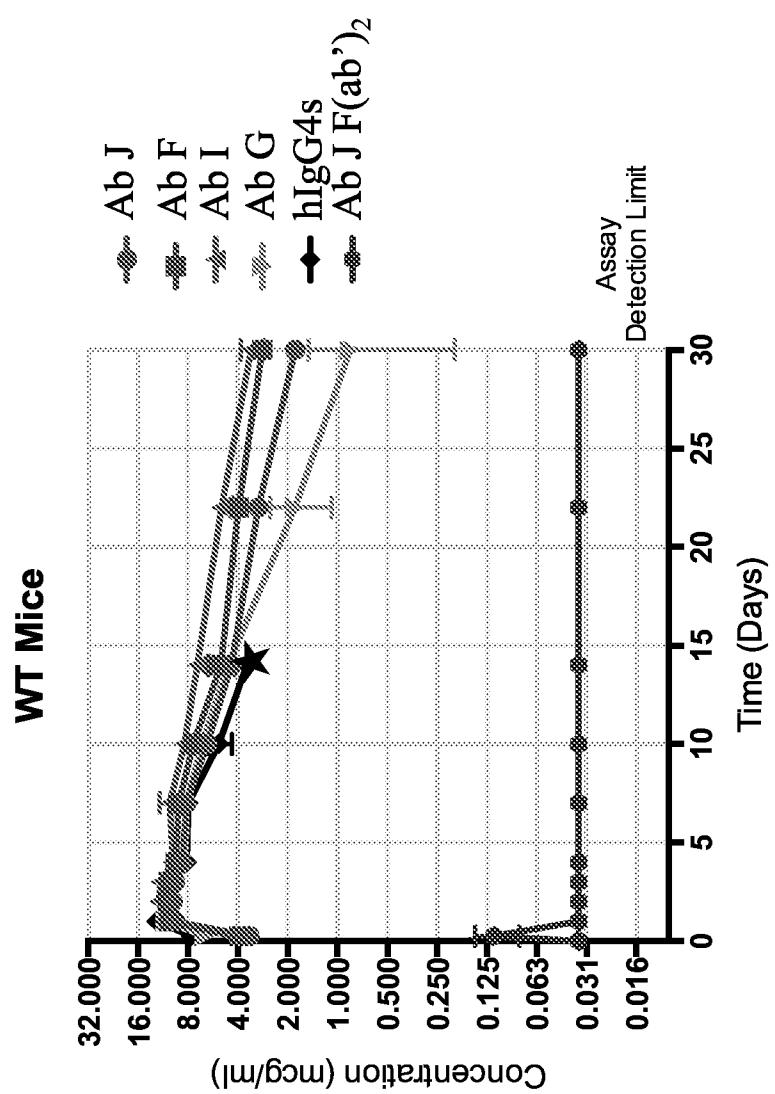


Figure 9

JRSI 062SeqList_ST25
SEQUENCE LISTING

<110> J. R. Simplot Company
Ye, Jingsong
Habig, Jeffrey W.
Layne, Janet
Hein, Jeffrey W.
Pence, Matthew G.
Hudon, Stephanie

<120> EVENT-SPECIFIC DETECTION METHODS

<130> JRSI -062/02US 317577-2415

<150> US 62/118, 320
<151> 2015-02-19

<150> US 62/062, 324
<151> 2014-10-10

<160> 90

<170> PatentIn version 3.5

<210> 1
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> pSIM1278 construct junction LB Synthetic-LB Potato

<400> 1
tggcaggata tataccgggtg taaacgaagt gtgtgtggtt 40

<210> 2
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> pSIM1278 construct junction RB Synthetic-RB Potato

<400> 2
gtttacagta ccatatatcc tgtcagaggt atagaggcat 40

<210> 3
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> pSIM1278 construct junction LB-AGP

<400> 3
ttgtggagga gtaagggtac caagtgtctg agacaa 36

<210> 4
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> pSIM1278 construct junction AGP-ASN

JRSI 062SeqLi st_ST25

<400> 4	aacaagcttg ttaacgaact ctttatccag	30
<210> 5		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> pSIM1278 construct junction ASN-PP0		
<400> 5	tggtagcccc tcgagataat tgtaactgat	30
<210> 6		
<211> 36		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> pSIM1278 construct junction PP0-Spacer1		
<400> 6	attcaataga gactatctag agtgtatggg tgatcc	36
<210> 7		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> pSIM1278 construct junction Spacer1-PP0		
<400> 7	ttatggagga atcagtagtc tctattgaat	30
<210> 8		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> pSIM1278 construct junction PP0-ASN		
<400> 8	atcagttaca attattctcg agggctcacc	30
<210> 9		
<211> 36		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> pSIM1278 construct junction ASN-GBSS		
<400> 9	ctggataaaag agttcgaatt cgtgatgtgt ggtcta	36
<210> 10		
<211> 46		
<212> DNA		
<213> Artificial Sequence		

<220>
 <223> pSIM1278 construct junction GBSS-AGP

<400> 10
 tgagatgcat ggttcactag tgattgtac caagtgtctg agacaa 46

<210> 11
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> pSIM1278 construct junction AGP-PHL

<400> 11
 aacaagcttg ttaacgtgct ctctatgcaa 30

<210> 12
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> pSIM1278 construct junction PHL-R1

<400> 12
 ttttgctaaa acatcgacaca cgtatatttt 30

<210> 13
 <211> 36
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> pSIM1278 construct junction R1-Spacer2

<400> 13
 atattttata tataactgca gcgttggaaa gatgaa 36

<210> 14
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> pSIM1278 construct junction Spacer2-R1

<400> 14
 ttttgatgaa aaagcttata taataaatat 30

<210> 15
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> pSIM1278 construct junction PHL-GBSS

<400> 15
 ttgcatacgag agcaccgtga tgtgtggct 30

JRSI 062SeqLi st_ST25

<210> 16
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> pSIM1278 construct junction GBSS-RB

<400> 16
aaatcataat atctggagct catcgttatg ctataaatt 39

<210> 17
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> E12 specific junction LJ-plant-insert

<400> 17
tattggtag aataataaac gaagtgtgt 30

<210> 18
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> E12 specific junction RJ insert-plant

<400> 18
acggtcagtc actttgtact agtaaagatc 30

<210> 19
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> F10 specific junction LJ-plant-insert

<400> 19
cagcagccat caactggtcc agcaggatat ataccg 36

<210> 20
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> F10 specific junction RJ insert-plant

<400> 20
gtgggcatca atttagtcca ccagccaaaa 30

<210> 21
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> J3 specific junction LJ-plant-insert

JRSI 062SeqLi st_ST25

<400> 21	aacaggacaa ccacaagcta ggaaactcac atgct	35
<210> 22		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> J3 specific junction RJ insert-plant		
<400> 22	aaaaagccct agaattaatt tttttggaa	30
<210> 23		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> J3 specific junction internal		
<400> 23	gaactgaaac cgatatacaa aatggtataa	30
<210> 24		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> J3 specific junction internal		
<400> 24	cctctatacc tctgacagag gtatagaggc	30
<210> 25		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> J55 specific junction LJ-plant-insert		
<400> 25	aaatcaacaa gcaattgaag aactacctat	30
<210> 26		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> J55 specific junction RJ insert-plant		
<400> 26	cataagttag actatgcgtg aaactttcag	30
<210> 27		
<211> 30		
<212> DNA		
<213> Artificial Sequence		

<220>
 <223> J55 specific junction internal
 <400> 27
 cctctatacc tctgataaat taaactgact 30

<210> 28
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> J55 specific junction internal
 <400> 28
 actaaaaatc tcagctaaaa caataaaaaat 30

<210> 29
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> V11 specific junction LJ plant-insert
 <400> 29
 tcatcttca ttccgggtgta aacgaagtgt 30

<210> 30
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> V11 specific junction RJ insert-plant
 <400> 30
 atgcctctat acctctgata ataaagaact 30

<210> 31
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> W8 specific junction LJ plant-pSIM1678 insert
 <400> 31
 caacaattaa aaaaagccta attttcatgg 30

<210> 32
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> W8 specific junction RJ pSIM1678 insert-plant
 <400> 32
 acggtcagtc actttcaagc cctaggagcc 30

JRSI 062SeqLi st_ST25

<210> 33
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> W8 specific junction LJ plant-pSIM1278 insert

<400> 33
agccctacaa aaggccaaaa ctctaagtca 30

<210> 34
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> W8 specific junction RJ plant-pSIM1278 insert

<400> 34
agtccctagaa ctacgaaaat tatattcggt 30

<210> 35
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> W8 specific junction internal

<400> 35
atgcctctat acctcagagg tatagaggca 30

<210> 36
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> W8 specific junction internal

<400> 36
tgcctctata cctctgacgc aacacaacac 30

<210> 37
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> X17 specific junction LJ plant-insert

<400> 37
gtattcgctg caggatatat accggtgtaa 30

<210> 38
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> X17 specific junction RJ insert-plant

JRSI 062SeqLi st_ST25

<400> 38	gcctctatac ctctgactgg aaaattgacg	30
<210> 39		
<211> 30		
<212> DNA		
<213> Artifical Sequence		
<220>		
<223> Y9 specific junction LJ plant-insert		
<400> 39	caaaatgtgc accaatgatg tctcacgacc	30
<210> 40		
<211> 30		
<212> DNA		
<213> Artifical Sequence		
<220>		
<223> Y9 specific junction RJ insert-plant		
<400> 40	ctcaacaacc agtcaccgga agtcccttaa	30
<210> 41		
<211> 30		
<212> DNA		
<213> Artifical Sequence		
<220>		
<223> Y9 specific junction internal		
<400> 41	atgcctctat acctctgaaa gtgactgacc	30
<210> 42		
<211> 36		
<212> DNA		
<213> Artifical Sequence		
<220>		
<223> pSIM1678 construct junction LB-pVnt1		
<400> 42	ttgtggagga gtaagggtac cagttataca ccctac	36
<210> 43		
<211> 30		
<212> DNA		
<213> Artifical Sequence		
<220>		
<223> pSIM1678 construct junction pVNT1-Vnt1		
<400> 43	accagctaac aaaagatgaa ttattgtgtt	30
<210> 44		
<211> 30		
<212> DNA		
<213> Artifical Sequence		

JRSI 062SeqLi st_ST25

<220>		
<223>	pSIM1678 construct junction Vnt1-tVnt1	
<400>	44	
	tcacaggtac tataaataat tattacgtt	30
<210>	45	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	pSIM1678 construct junction tVnt1-pAGP	
<400>	45	
	agcctctttt caaaggggcc ccaagtgtct gagaca	36
<210>	46	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	pSIM1678 construct junction pAGP-Inv	
<400>	46	
	aacaagcttg ttaacggatc cacattcctc ccggat	36
<210>	47	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	pSIM1678 construct junction Inv-Inv	
<400>	47	
	tcaaggactt tagaggaatt cagcggaccc agtcca	36
<210>	48	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	pSIM1678 construct junction Inv-pGbss	
<400>	48	
	gaggaatgtg taatgactag tcgtgtatgtg tggct	36
<210>	49	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Adenine Phosphoribosyl Transferase APRT forward primer	
<400>	49	
	gaaccggagc aggtgaagaa	20

JRSI 062SeqLi st_ST25

<210> 50
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Adenine Phosphoribosyl Transferase APRT reverse primer

<400> 50
gaagcaatcc cagcgatacg

20

<210> 51
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Adenine Phosphoribosyl Transferase APRT probe

<220>
<221> MI SC FEATURE
<222> (1)..(1)
<223> May be labeled with a 6-FAM 6-carboxyfluorescein moiety

<220>
<221> MI SC FEATURE
<222> (4)..(4)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (7)..(7)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (10)..(10)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (13)..(13)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (17)..(17)
<223> May be labeled with a a BHQ1 Black Hole Quenchers 1 moiety

<400> 51
cgccatcatga tccgatt

17

<210> 52
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> E12 forward primer

<400> 52
gggagtaggc tttatacc

18

<210> 53

<211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> E12 reverse primer

<400> 53
 ccttgaatga tttgatataa gaag

24

<210> 54
 <211> 18
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> E12 probe

<220>
 <221> MI SC FEATURE
 <222> (1)..(1)
 <223> May be labeled with a 6-FAM 6-carboxyfluorescein moiety

<220>
 <221> MI SC FEATURE
 <222> (5)..(5)
 <223> May be a locked nucleotide

<220>
 <221> MI SC FEATURE
 <222> (8)..(8)
 <223> May be a locked nucleotide

<220>
 <221> MI SC FEATURE
 <222> (11)..(11)
 <223> May be a locked nucleotide

<220>
 <221> MI SC FEATURE
 <222> (14)..(14)
 <223> May be a locked nucleotide

<220>
 <221> MI SC FEATURE
 <222> (18)..(18)
 <223> May be labeled with a a BH01 Black Hole Quenchers 1 moiety

<400> 54
 tcagtcactt tgtactag

18

<210> 55
 <211> 19
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> F10 forward primer

<400> 55
 aaggcaatct ttcataagc

19

<210> 56
 <211> 18

<212> DNA
 <213> Artificial Sequence

<220>
 <223> F10 reverse primer

<400> 56
 cacacacttc gtttacac

18

<210> 57
 <211> 17
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> F10 probe

<220>
 <221> MI SC FEATURE
 <222> (1)..(1)
 <223> May be labeled with a 6-FAM 6-carboxyfluorescein moiety

<220>
 <221> MI SC FEATURE
 <222> (4)..(4)
 <223> May be a locked nucleotide

<220>
 <221> MI SC FEATURE
 <222> (7)..(7)
 <223> May be a locked nucleotide

<220>
 <221> MI SC FEATURE
 <222> (10)..(10)
 <223> May be a locked nucleotide

<220>
 <221> MI SC FEATURE
 <222> (13)..(13)
 <223> May be a locked nucleotide

<220>
 <221> MI SC FEATURE
 <222> (17)..(17)
 <223> May be labeled with a a BHQ1 Black Hole Quenchers 1 moiety

<400> 57
 tatatcctgc tggacca

17

<210> 58
 <211> 19
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> J3 forward primer

<400> 58
 ccgttactca aatttgcaa

19

<210> 59
 <211> 23
 <212> DNA

<213> Artificial Sequence

<220>

<223> J3 reverse primer

<400> 59

ggtgttctta atatcgagtg ttc

23

<210> 60

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> J3 probe

<220>

<221> MI SC FEATURE

<222> (1)..(1)

<223> May be labeled with a 6-FAM 6-carboxyfluorescein moiety

<220>

<221> MI SC FEATURE

<222> (4)..(4)

<223> May be a locked nucleotide

<220>

<221> MI SC FEATURE

<222> (7)..(7)

<223> May be a locked nucleotide

<220>

<221> MI SC FEATURE

<222> (10)..(10)

<223> May be a locked nucleotide

<220>

<221> MI SC FEATURE

<222> (13)..(13)

<223> May be a locked nucleotide

<220>

<221> MI SC FEATURE

<222> (19)..(19)

<223> May be labeled with a a BHQ1 Black Hole Quenchers 1 moiety

<400> 60

ccacaagcta ggaaactca

19

<210> 61

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> J55 forward primer

<400> 61

catggaattt ttttagaaaca aaa

23

<210> 62

<211> 20

<212> DNA

<213> Artificial Sequence

<220>		
<223>	J55 reverse primer	
<400>	62	
	gacgatcaag aatctaata	20
<210>	63	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	J55 probe	
<220>		
<221>	MI SC FEATURE	
<222>	(1)..(1)	
<223>	May be labeled with a 6-FAM 6-carboxyfluorescein moiety	
<220>		
<221>	MI SC FEATURE	
<222>	(4)..(4)	
<223>	May be a locked nucleotide	
<220>		
<221>	MI SC FEATURE	
<222>	(7)..(7)	
<223>	May be a locked nucleotide	
<220>		
<221>	MI SC FEATURE	
<222>	(10)..(10)	
<223>	May be a locked nucleotide	
<220>		
<221>	MI SC FEATURE	
<222>	(13)..(13)	
<223>	May be a locked nucleotide	
<220>		
<221>	MI SC FEATURE	
<222>	(19)..(19)	
<223>	May be labeled with a a BHQ1 Black Hole Quenchers 1 moiety	
<400>	63	
	tcatagtcaa acagtcagc	19
<210>	64	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	V11 forward primer	
<400>	64	
	gtgggcatca atttagtg	18
<210>	65	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	

<220>
<223> V11 reverse primer

<400> 65
ggagagtaat agccttagta

20

<210> 66
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> V11 probe

<220>
<221> MI SC FEATURE
<222> (1)..(1)
<223> May be labeled with a 6-FAM 6-carboxyfluorescein moiety

<220>
<221> MI SC FEATURE
<222> (7)..(7)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (10)..(10)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (13)..(13)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (16)..(16)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (19)..(19)
<223> May be labeled with a a BH01 Black Hole Quenchers 1 moiety

<400> 66
cctctatacc tctgataat

19

<210> 67
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> V11 forward primer

<400> 67
tagccaagca tgacttac

18

<210> 68
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<223> V11 reverse primer

<400> 68

cacacacttc gtttacac

18

<210> 69

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> V11 probe

<220>

<221> MI SC FEATURE

<222> (1)..(1)

<223> May be labeled with a 6-FAM 6-carboxyfluorescein moiety

<220>

<221> MI SC FEATURE

<222> (4)..(4)

<223> May be a locked nucleotide

<220>

<221> MI SC FEATURE

<222> (7)..(7)

<223> May be a locked nucleotide

<220>

<221> MI SC FEATURE

<222> (10)..(10)

<223> May be a locked nucleotide

<220>

<221> MI SC FEATURE

<222> (13)..(13)

<223> May be a locked nucleotide

<220>

<221> MI SC FEATURE

<222> (18)..(18)

<223> May be labeled with a a BHQ1 Black Hole Quenchers 1 moiety

<400> 69

atgtatgaat ggcagaag

18

<210> 70

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> W8 forward primer

<400> 70

aggctttata ccgagttg

18

<210> 71

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> W8 reverse primer

<400> 71
tcagcttaat cgaataagaa ac 22

<210> 72
<211> 17
<212> DNA
<213> Arti fici al Sequence

<220>
<223> W8 probe

<220>
<221> MI SC FEATURE
<222> (1)..(1)
<223> May be labeled with a 6-FAM 6-carboxyfluorescein moiety

<220>
<221> MI SC FEATURE
<222> (4)..(4)
<223> May be a Locked nucleotide

<220>
<221> MI SC FEATURE
<222> (7)..(7)
<223> May be a Locked nucleotide

<220>
<221> MI SC FEATURE
<222> (10)..(10)
<223> May be a Locked nucleotide

<220>
<221> MI SC FEATURE
<222> (13)..(13)
<223> May be a Locked nucleotide

<220>
<221> MI SC FEATURE
<222> (17)..(17)
<223> May be labeled with a a BHQ1 Black Hole Quenchers 1 moiety

<400> 72
actacggta gtcactt 17

<210> 73
<211> 18
<212> DNA
<213> Arti fici al Sequence

<220>
<223> X17 forward primer

<400> 73
gtccgaaggt tgagaaaa 18

<210> 74
<211> 20
<212> DNA
<213> Arti fici al Sequence

<220>
<223> X17 reverse primer

<400> 74
cgtgagacat catcataatg

20

<210> 75
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> X17 probe

<220>
<221> MI SC FEATURE
<222> (1)..(1)
<223> May be labeled with a 6-FAM 6-carboxyfluorescein moiety

<220>
<221> MI SC FEATURE
<222> (4)..(4)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (7)..(7)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (10)..(10)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (13)..(13)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (17)..(17)
<223> May be labeled with a a BHQ1 Black Hole Quenchers 1 moiety

<400> 75
cgcttcagtt acggctt

17

<210> 76
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Y9 forward primer

<400> 76
gacagctatc aataacttt agtaa

25

<210> 77
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Y9 reverse primer

<400> 77

ttgcccatact catacagag

<210> 78
 <211> 19
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Y9 probe

<220>
 <221> MI SC FEATURE
 <222> (1)..(1)
 <223> May be labeled with a 6-FAM 6-carboxyfluorescein moiety

<220>
 <221> MI SC FEATURE
 <222> (4)..(4)
 <223> May be a locked nucleotide

<220>
 <221> MI SC FEATURE
 <222> (7)..(7)
 <223> May be a locked nucleotide

<220>
 <221> MI SC FEATURE
 <222> (10)..(10)
 <223> May be a locked nucleotide

<220>
 <221> MI SC FEATURE
 <222> (13)..(13)
 <223> May be a locked nucleotide

<220>
 <221> MI SC FEATURE
 <222> (19)..(19)
 <223> May be labeled with a a BHQ1 Black Hole Quenchers 1 moiety

<400> 78
 aatgatgtct cacgaccaa

<210> 79
 <211> 19
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> pSIM1278 forward primer

<400> 79
 tcaccaggat gactgttta

<210> 80
 <211> 18
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> pSIM1278 reverse primer

<400> 80
 ctaccacacaca ctctcttag

<210> 81	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> pSIM1278 probe	
<220>	
<221> MI SC FEATURE	
<222> (1)..(1)	
<223> May be labeled with a 6-FAM 6-carboxyfluorescein moiety	
<220>	
<221> MI SC FEATURE	
<222> (4)..(4)	
<223> May be a locked nucleotide	
<220>	
<221> MI SC FEATURE	
<222> (7)..(7)	
<223> May be a locked nucleotide	
<220>	
<221> MI SC FEATURE	
<222> (10)..(10)	
<223> May be a locked nucleotide	
<220>	
<221> MI SC FEATURE	
<222> (13)..(13)	
<223> May be a locked nucleotide	
<220>	
<221> MI SC FEATURE	
<222> (19)..(19)	
<223> May be labeled with a a BHQ1 Black Hole Quenchers 1 moiety	
<400> 81	
aagcttgtta acgaactct	19
<210> 82	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> pSIM1278 forward primer	
<400> 82	
gcatcatcca tcaaagtg	18
<210> 83	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> pSIM1278 reverse primer	
<400> 83	
gtcggatataa taagagaagg a	21

JRSI 062SeqLi st_ST25

<210> 84
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> pSIM1278 probe

<220>
<221> MI SC FEATURE
<222> (1)..(1)
<223> May be labeled with a 6-FAM 6-carboxyfluorescein moiety

<220>
<221> MI SC FEATURE
<222> (4)..(4)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (7)..(7)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (10)..(10)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (13)..(13)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (19)..(19)
<223> May be labeled with a a BHQ1 Black Hole Quenchers 1 moiety

<400> 84
tagagactat ctagagtgt 19

<210> 85
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> pSIM1678 forward primer

<400> 85
gaacggaggg agtatgaa 18

<210> 86
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> pSIM1678 reverse primer

<400> 86
ccactttcag ttttggttg 19

JRSI 062SeqLi st_ST25

<210> 87
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> pSIM1678 probe

<220>
<221> MI SC FEATURE
<222> (1)..(1)
<223> May be labeled with a 6-FAM 6-carboxyfluorescein moiety

<220>
<221> MI SC FEATURE
<222> (5)..(5)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (8)..(8)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (11)..(11)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (14)..(14)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (17)..(17)
<223> May be labeled with a a BHQ1 Black Hole Quenchers 1 moiety

<400> 87
tctttcaaa ggggcc

17

<210> 88
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> pSIM1678 forward primer

<400> 88
gaagcctctt ttcaaagg

18

<210> 89
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> pSIM1678 reverse primer

<400> 89
acgggttaat cgataacc

18

<210> 90

<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> pS1 M1678 probe

<220>
<221> MI SC FEATURE
<222> (1)..(1)
<223> May be labeled with a 6-FAM 6-carboxyfluorescein moiety

<220>
<221> MI SC FEATURE
<222> (4)..(4)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (7)..(7)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (10)..(10)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (13)..(13)
<223> May be a locked nucleotide

<220>
<221> MI SC FEATURE
<222> (16)..(16)
<223> May be labeled with a a BHQ1 Black Hole Quenchers 1 moiety

<400> 90
cccccaagtgt ctgaga