PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 98/33106
GOGF 1/00, 9/445 Al i -

(43) International Publication Date: 30 July 1998 (30.07.98)

(21) International Application Number: PCT/US98/01845 | (81) Designated States: AL, AM, AT, AU, BA, BB, BG, BR, BY,

CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH,

(22) International Filing Date: 29 January 1998 (29.01.98) GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC,

LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
(30) Priority Data: T™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
08/792,719 29 January 1997 (29.01.97) UsS (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
(71) Applicant: TECHWAVE, INC. [US/US]; Suite 920, 720 Olive MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
Way, Seattle, WA 98101 (US). GA, GN, ML, MR, NE, SN, TD, TG).

(72) Inventors: KRISHNAN, Ganapathy; Apartment D104, 14579
N.E. 35th Street, Bellevue, WA 98007 (US). OYLER, Scott; | Published

Apartment B1410, 801 Spring Street, Seattle, WA 98104 With international search report.
(US). Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
(74) Agents: BIERMAN, Ellen, M. et al,; Seed and Berry LLP, amendments.

6300 Columbia Center, 701 Fifth Avenue, Seattle, WA
98104-7092 (US).

(54) Title: METHOD AND SYSTEM FOR INJECTING NEW CODE INTO EXISTING APPLICATION CODE

604
601
~ EXECUTABLE FILE +
EXECUTABLE FILE INJECTED DLL
603 605
XXX {Code Entrypoint) ~ }f XXX (Code Entrypoinf)
602 C“ PRI e
Instruction [Instructiony T [Tnsfruciiony | insfmcfioql
plication Instructions [" « o Instructions .o
é:ecuiuble . e 606 e s ,-/503
Cnde Instructiony [+« - instruchion, | Inected DL
= . DLLMaln()§
C b
Injected DLL Loader Stub()f
607 Code e
L ... lead DL (3] b
609 e

(57) Abstract

A method and system for modifying the behavior of existing executable code by injecting new code into an executable file is provided.
The injection mechanism injects a reference to new code contained in a DLL into an existing executable file such that, when the code of
the executable file is executed, the DLL is automatically loaded and the new code is automatically executed. A reference to the DLL is
injected into the executable file by either modifying an import table of the file, which causes automatic loading of the DLLs referred to
therein, or by adding DLL loader code to the file. The DLL loader code uses an underlying operating system call to load the DLL. Further,
the injection mechanism provides enhanced security by injecting security code and data into the executable file. The injected security code
mechanism uses an incremental encryption and decryption process to encrypt and decrypt portions of the executable file in a more secure

manner,

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
ClL
CcM
CN
CuU
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho SI Slovenia
Armenia FI Finland LT Lithuania SK Slovakia
Austria FR France LU Luxembourg SN Senegal
Australia GA Gabon LV Latvia Sz Swaziland
Azerbaijan GB United Kingdom MC Monaco TD Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar TJ Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
Benin IE Ireland MN Mongolia UA Ukraine
Brazil IL Israel MR Mauritania uG Uganda
Belarus IS Iceland MW Malawi Us United States of America
Canada IT Ttaly MX Mexico Uz Uzbekistan
Central African Republic JP Japan NE Niger VN Viet Nam
Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway w Zimbabwe
Cote d’Ivoire KP Democratic People’s NZ New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea PT Portugal

Cuba Kz Kazakstan RO Romania

Czech Republic LC Saint Lucia RU Russian Federation

Germany LI Liechtenstein SD Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore

10

15

20

25

WO 98/33106 PCT/US98/01845

METHOD AND SYSTEM FOR INJECTING NEW
CODE INTO EXISTING APPLICATION CODE

TECHNICAL FIELD

The present invention relates to modifying existing application
code and, in particular, to injecting a dynamic link library into an existing

executable file.

BACKGROUND OF THE INVENTION

In current computer systems, there often exists a need- for
modifying the behavior of executable code stored in a pre-existing executable
file. For the purposes of this application, an “executable file” is any type of code
image and is not limited to a particular type of executable file or a file with a
particular file name extension. In particular, the need exists to change the
behavior of an application without recompiling the application. This need is
especially apparent in situations where it is impossible or too much work to
recompile the application. For example, an application may be developed by a
source company at one site and distributed to a third party vendor at another site.
The third party vendor may wish to incorporate vendor-specific code into the
application before redistributing it to an end customer. However, the third party -
vendor may not have access to the source cocie that the source company used to
generate the executable file. Thus, the third party vendor cannot change and
recompile the source code to generate a new executable file with the vendor-
specific code.

As another example, especially relevant in today’s extensive
networking environments, a company may desire to put an existing application
on the Internet and somehow incorporate licensing code to limit any use of illegal

copies of the application. Current systems have tried various solutions to

10

15

20

25

WO 98/33106 PCT/US98/01845

incorporate licensing code into an existing application. According to one
technique, which will be referred to herein as “wrapping,” a second application
program (a wrapper program) is distributed on the network, which includes an
encrypted version of the original application program. The wrapper program,
when installed, decrypts the encrypted original application program and then
proceeds to execute the original application program. To successfully decrypt
the program, a legitimate end user must provide the proper licensing information
to enable the decryption to operate. A security hole exists, however, in that,
while the wrapping program is in the process of decrypting the original
application executable file, temporary files are created to hold the decrypted
program code. Once the entire original application program has been decrypted
and stored in the temporary file, a “software pirate” can then make multiple
copies of the original unencrypted application program in the temporary file and
can distribute them illegally.

Further, use of the wrapping technique to incorporate licensing
provides only limited additional security to a vendor who implements what is
known as a “try and buy” licensing program. A try and buy licensing program
typically distributes an application program with either limited functionality or
for a limited time of use to enable a potential customer to explore the application.
Functionality is typically limited, for example, by turning off a set of features.
Once the potential customer is satisfied, the customer can pay for and license the
application program properly. If an application program is distributed using the
wrapping technique to potential customers for the purpose of a try and buy
program, then, when the vprogram is decrypted and stored in a temporary file, a
software pirate can determine how to turn on the disabled features or how to
remove the license expiration data. These security problems can result in the
distribution of illegal copies, which are hard to detect and monitor in a global

network environment.

10

20

25

WO 98/33106 PCT/US98/01845

A second technique for modifying the behavior of an existing
application program directly inserts the new executable code into the executable
file. Using the direct insertion method, an application developer determines
where in the executable file the new code should be placed and inserts the code
into the executable. After inserting the new code into the existing executable
file, the application developer adjusts addresses that reference any relocatable
code or data that follows the inserted code to account for the newly added code.
However, it is very difficult for an application developer to determine where to
insert code and to then test the entire application to ensure it works correctly. An
application developer would typically need to disassemble the executable file and
study the disassembled code to determine where to insert the code. Such
disassembling and studying is a very time-consuming process. Furthermore, the
process must be repeated for each application program, and for each version of
each application program in which the code is to be inserted.

Thus, the need exists to modify the behavior of executable code
stored in an existing executable file in a manner that is secure and that requires
minimal testing outside the scope of standalone testing of the code that provides

the modified behavior.

SUMMARY OF THE INVENTION

The present invention provides ;1 method and system for injecting
new code into already existing executable code within an executable file. The
injection mechanism provided by the present invention can be used to inject a
dynamic link library (DLL) that contains the new code or to inject arbitrary code
into an existing executable file. The injection of new code enables the existing
executable code to perform new behaviors. For example, licensing procedures
can be added to an existing application by injecting a licensing DLL into the

application using the injection mechanism.

10

15

20

25

WO 98/33106 PCT/US98/01845

In one embodiment, the injection mechanism injects into the
existing executable file new DLL code and optionally injects additional security
code, which is provided by the injection mechanism. Preferably, the injected
security code performs checksum comparisons on some portions of the
executable file, decrypts and executes a previously encrypted portion of the
executable code, and decrypts and transfers execution control to a previously
encrypted location in the original executable code. The injection of security code
helps to prevent modification of the executable file to omit the injected code and
thereby restore the executable file to its original, unmodified state. In the case of
newly added licensing code, the injected security code aids in preventing illegal
altering, copying, and distribution of the original executable code.

The injection mechanism provides two methods for injecting a
DLL into existing executable code. The first method modifies an import table of
the executable file to include a reference to the new DLL code. A second method
modifies the executable file to include DLL loader code, which is provided by
the injection mechanism. The DLL loader code uses system provided calls to
load the desired new DLL. The injection of security code can be utilized with
both methods of injecting a DLL.

The present invention also provides incremental encryption and
decryption techniques, which can be used to further secure any of the injected
code. The incremental encryption and decryption techniques operate by
encrypting (and subsequently decrypting) blocks of code of varying sizes, using a
different key for each block. The decryption code decrypts each block and
executes the decrypted code, one block at a time, and overwrites each decrypted
block when decrypting a next block. This process ensures that the entire

unencrypted code is never visible at any one time.

10

15

20

25

WO 98/33106 PCT/US98/01845

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of a general purpose computer system
for practicing embodiments of the injection mechanism.

Figure 2 is a block diagram of a logical format of an executable file
that can be used with the present invention.

Figure 3 is an overview block diagram of the procedure for
injecting a reference to a new DLL into an import table of an existing executable
file.

Figure 4 is a flow diagram of example code that can be placed into
an injectable DLL in order to incorporate licensing into an existing application.

Figure 5 is a detailed flow diagram of the steps used by the
injection méchanism to inject a new DLL using the import table technique.

Figure 6 is an overview block diagram of the modifications made
to an executable file by the injection mechanism to inject a reference to a new
DLL using the DLL loader code technique.

Figure 7 is a flow diagram of the steps used by the injection
mechanism to inject a new DLL using the DLL loader code technique.

Figure 8A is a block diagram of the logical layout of an executable
file after security code has been injected into the executable file using the import
table technique.

Figure 8B is a block diagram of the logical layout of an executable
file after security code has been injected into the executable file using the DLL
loader code technique.

Figure 9 is an overview flow diagram of the steps performed by the
injection mechanism for injecting security code and data into an executable file.

Figure 10 is a flow diagram of the steps executed by an incremental

encryption routine.

‘WO 98/33106 PCT/US98/01845

10

15

20

25

Figure 11 is a detailed flow diagram of the steps performed by the
injection mechanism to determine the number and size of the encryption blocks
of data to be encrypted using the incremental encryption technique.

Figure 12 is an example block diagram of the results of
determining the size of encryption blocks according to the technique of
Figure 11.

Figure 13 is a detailed flow diagram of the verify checksum code
added by the injection mechanism to an executable file.

Figure 14 is a detailed flow diagram of the steps performed by

incremental decryption.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a method and system for modifying
the behavior of existing executable code by injecting new code into an executable
file. The injection mechanism of the present invention provides techniques for
injecting a reference to a new dynamic link library ("DLL”) which contains new
code into an existing executable file such that, when the code of the executable
file is executed, the DLL is automatically loaded and the new code is
automatically executed. The injection mechanism provides the automatic loading
of the DLL by either modifying a table used by the underlying system to
automatically load DLLs or by inserting code that knows how to load the DLL.
Thus, a developer desiring to add new behavior to the existing executable code
stored in the executable file can do so by providing the new behavior as DLL
code. The desired new behavior is preferably provided in an initialization routine
of the DLL (e.g., “DLLMain” in the WINDOWS/NT operating system). The
injection mechanism ensures that the DLL initialization routine is automatically
executed when the DLL is mapped into the executable code image process space

and loaded into memory. Thus, using the injection mechanism, any new code

10

15

20

25

WO 98/33106 PCT/US98/01845

can be added to an existing executable file as long as the new code resides in a
DLL. Also, because the DLL is separately testable and modifiable, the injection
mechanism of the present invention reduces the time needed to develop and test
the new code.

According to the injection mechanism, the reference to the new
DLL is injected into the existing executable code in one of two ways. According
to the first method, a DLL is injected into existing code by modifying the import
table of the existing executable file. An import table is a data structure supported
by the underlying operating system that indicates the names of DLLs to be
mapped into the executable code when it is run (and loaded if not already loaded
into memory when the executable file is loaded). The import table also includes
references to the functions within each listed DLL that are called by code in the
executable file. (The executable code invokes the functions of a DLL as external
references.) The second method for injecting a reference into the executable
code modifies the executable code to include DLL loader code, which is
provided by the injection mechanism. The DLL loader code relies on the
underlying system to provide a mechanism for loading DLLs at run time. This
method is useful when no load-time DLL loading mechanism, such as the import
table mechanism, is provided by the operating system.

The injection rnechanisr-n also provides a technique for injecting
security code into the existing executable file to ensure that neither the injected
reference to the DLL nor the DLL has been modified. The security code
injection technique performs and stores checksums on portions of the executable
file and DLL, encrypts a portion of the executable code in the executable file, and
inserts security code into the executable file. The security code that is inserted
computes checksums on the various portions of the executable file and the DLL
and verifies that the checksums are the same as those originally stored. The

security code also decrypts and executes the previously encrypted portion of the

10

20

25

WO 98/33106 PCT/US98/01845

executable code using an incremental decryption process. The incremental
decryption process ensures that a complete version of the unmodified executable
file is never visible at any one time. Thus, the injection of security code makes it
impossible for somebody to recreate an unmodified version of the existing
executable file in a reasonable amount of time.

The injection mechanism is useful in many scenarios. For
example, in a globally networked system such as the Internet, licensing code can
be incorporated into an existing application and distributed on the system by
injecting the licensing code into the application using the injection mechanism.
The licensing developer creates a new DLL with the new licensing code
accessible through the initialization function of the DLL. The developer then
uses the injection mechanism of the present invention to create a modified
version of the application that includes a reference to the new DLL. This
modified version is then distributed. Further, the newly injected licensing code
can be made more secure by using the injection mechanism to inject security
code into the modified application. The injected security code makes it
impossible to recreate in a reasonable amount of time an unmodified version of
the application that does not include the injected licensing DLL.

The injection mechanism is also useful in other scenarios that
require the addition of code to an existing executable file in order to provide
modified behavior to existing executable code. As an example, the injection
mechanism can be used to modify a network browser, such as an Internet
browser, to start and stop applications upon command. In this case, code that
starts and stops a designated application is created as a new DLL. The DLL that
contains the “start and stop” code is then injected into the browser using the
injection mechanism. The application to be started and stopped upon invocation
of a command may be designated, for example, by prompting a user for input.

Also, the starting and stopping behavior upon command invocation could be

WO 98/33106 PCT/US98/01845

10

15

20

25

provided in the start and stop code using well-known techniques such as a
graphical button, menu, or keyboard command.

The injection mechanism also can be used to incorporate additional
user interface behavior into an existing application. For example, the injection
mechanism could be used to insert a third-party vendor-specific set of menus into
an existing application. It is assumed, in this case, that the underlying operating
system supports calls to add a menu with menu items into an existing application
menu, as well as the ability to handle events caused by the selection of items
from the new menu. For example, the MICROSOFT WINDOWS 3.1 operating
system provides the “Append Menu,” “Insert Menu,” and “Set Menu” functions
to create and add menus to an application. To add a set of menus, the third-party
developer creates new code which creates the menus using the underlying system
calls, places the menu appropriately on the screen, and handles any events
triggered by the menu items. The newly created menu code is then injected into
the application using the injection mechanism.

In a preferred embodiment, the methods and systems of the
injection mechanism are implemented on a computer system comprising a central
processing unit, a display, a memory, and other input/output devices. Preferred
embodiments are designed to operate in an environment that supports shared
independent code modules, such as the dynamic link libraries provided by
various versions of the WINDOWS operating system. Dynamic link libraries
and their use are discussed further in the Charles Petzold, Programming
Windows, 2d ed., Microsoft Press, Redmond, 1990, pp. 877-9135, which is herein
incorporated by reference. One skilled in the art will recognize that
embodiments of the injection mechanism can be practiced in other environments
that support other types of shared, linkable library modules.

Figure 1 is a block diagram of a general purpose computer system

for practicing embodiments of the injection mechanism. The computer system

10

15

20

WO 98/33106 PCT/US98/01845

10

101 contains a central processing unit (CPU) 102, a display 103, a computer
memory (memory) 104, and other input/output devices 105. The injection
mechanism 109 preferably resides in the memory 104 and executes on the CPU
102. The executable code of an application 106 is shown residing in memory
104 after the injection mechanism 109 has injected a reference to a new DLL 107
and after the injection mechanism 109 has injected security code into the
executable file. Other programs 108 also reside in the memory 104. One skilled
in the art will recognize that the preferred injection mechanism can be
implemented in a distributed environment where more than one computer system
is used to communicate with other computer systems. For example, the
application executable code 106 may reside on a different computer system from
the DLL 107 or from the injection mechanism 109. In either case, the injection
mechanism 109 preferably relies on the operating system to support the loading
of DLLs across different computer systems.

Because the injection mechanism injects a reference to a new DLL
and optionally injects security code by adding code into an existing executable
file, the injection mechanism needs to have knowledge of the different executable
file formats it wishes to manipulate. Although the mechanism itself operates
independently of the executable file format, the injection mechanism needs to be
aware of the file format in order to determine the proper locations at which
references or code should be added. Figure-Z is a block diagram of a logical
format of an executable file that can be used with the present invention.
Executable file 201 comprises a header section 205, an application executable
code section 202, an application import table section 203, and an application
relocatable address table section 204. The term application is included here for
ease of description, although it will be recognized that the executable file may be
for some code segment other than an application, for example, a module that

comprises part of a program, or a DLL. The header section 205 includes pointers

10

20

25

WO 98/33106 PCT/US98/01845

11

to the application executable code section 202, the import data section 203, and
the relocatable data section 204.

The executable file format illustrated in Figure 2 is a logical
representation of the PE file format supported by the MICROSOFT/NT operating
system and other operating systems. The particulars of the PE file format are
discussed further in Microsoft Portable Executable and Common Object File
Format, Specification 4.1, Microsoft Corporation, August 1994, which is herein
incorporated by reference. One skilled in the art will recognize that this file
format is merely illustrative and that other file formats will work. The executable
file may be comprised of multiple memory segments, which are not necessarily
contiguous. . Other figures of the executable file referred to herein are oriented as
if they were one logical contiguous sequence of memory addresses. However, it
will be appreciated that the layout of these other figures as contiguous is for ease
of description purposes. Also, note that although executable file refers to “file”
in singular, one skilled in the art would appreciate that the injection mechanism
of the present invention would be operable in an environment where multiple
files comprise the executable file that is stored in secondary storage.

As discussed above, the injection mechanism injects a reference to
a new DLL according to two different methods. The first method modifies the
import table of the executable file, whereas the second method modifies the
executable file to include DLL loader code that is provided by the injection
mechanism. The first method for injecting a reference to a DLL is discussed in
detail with reference to Figures 3 and 5. The second method for injecting a
reference to a DLL is discussed in detail with reference to Figures 6 and 7.

Figure 3 is an overview block diagram of the procedure for
injecting a reference to a new DLL into an import table of an existing executable
file. In Figure 3, executable file 301 contains import table 302. As previously

mentioned, the import table 302 enables the underlying operating system to

10

15

20

25

WO 98/33106 PCT/US98/01845

12

determine which DLLs to map into the process space and to load into memory
when the executable file is loaded into memory for execution. Import table 302
contains one import entry per DLL. Each import entry, for example entry 303,
contains the name of the DLL to be loaded and a list of the external functions
defined in the DLL which are referenced by executable file 301.

To inject new DLL 306, the injection mechanism finds an
appropriate place to add a new entry into import table 302 and adds a new entry,
which includes a reference to the injected DLL 306. Specifically, a new import
entry 307 is inserted into the import table and includes the name of the DLL 304
to be injected and a “dummy” function, herein named the stub function 305. The
stub function 305 is not actually referenced by the executable code contained in
executable ‘ﬁle 301, but the format of the import table may require the name of at
least one function to be included in the entry. As can be seen injected in
Figure 3, DLL 306 preferably contains a DLI Main function (the initialization
function), which is automatically invoked by the underlying operating system as
a result of including the new import entry 307 into import table 302.

Figure 4 is a flow diagram of example code that can be placed into
an injectable DLL in order to incorporate licensing into an existing application.
This licensing code provides: an example of code that is added to the DLLMain
routine of the injected DLL 306 of Figure 3 to provide licensing over a network
such as the Internet. In step 401, the licensing code loads any licensing specific
data, such as what features of the application are subject to a license, from the
application executable file. In step 402, the code calls some function within a
licensing library to determine whether the product is licensed. For example, the
licensing library may provide the ability to encrypt a key as a license, and the
function referred to in step 402 would then decrypt a stored value and make an
assessment as to whether the key is still valid. In step 403, if it is determined that

the product is licensed, then the code continues in step 404, else continues in step

10

15

20

25

WO 98/33106 PCT/US98/01845

13

405. In step 404, the code determines whether the license has expired and, if so,
continues in step 405, else returns. In step 405, the code determines whether the
user wishes to properly purchase the product, and if not, terminates the
application, else continues in step 406. In step 406, the code obtains purchasing
information, sends it to the distributor, and then waits to receive a response from
the distributor. In step 407, the code determines whether an error response was
received from the distributor and, if so, terminates the application, else continues
in step 408. In step 408, the code determines whether the user wishes to retry the
licensing procedure with the received licensing data from the distributor and, if
so, continues back to step 402 to process the data, else terminates the application.

Figure 5 is a detailed flow diagram of the steps used by the
injection mechanism to inject a new DLL using the import table technique.
These steps are implemented by the injection mechanism code 109 shown in
Figure 1. In step 501, the injection mechanism determines the type of the
executable file. Then, in step 502, if it is a known executable file type, the
injection mechanism continues in step 503, else returns an error. In step 503, the
routine locates where in the executable file the import table for the application is
located. For example, according to the executable file format shown in Figure 2.
the import data (“IData”) entry of the header section 205 can be used to locate
application import table 203. Once located, in step 504, the routine creates a new
import entry that refers to the new DLL and adds the new entry to the import
table. In step 503, a reference to the stub function of the new DLL is added to
the import entry. Then, in step 506, the routine adjusts any of the references to
relocatable addresses in the executable file that numerically follow the added
entry to the import table. This adjustment of relocatable addresses is needed
because, by adding a new import table entry, the size of the import table has
changed. Thus, everything that was logically below the import table is moved

further down. The adjustment of relocatable addresses is similar to the steps

10

15

20

25

WO 98/33106 PCT/US98/01845

14

performed by a linker/loader mechanism. One such system for adjusting
addresses using the PE file format is described in Matt Pietrek, “Peering Inside
the PE: A Tour of the Win32 Portable Executable File Format,” Microsoft
Systems Journal, March, 1994, which is herein incorporated by reference. The
injection mechanism of the present invention preferably does not publicize where
within the application import table the new entry, which refers to the new DLL,
is added. It is not important where the entry is added so long as the step of
adjusting relocatable addresses of step 506 is performed appropriately. By not
publicizing the location, the amount of time needed to break the security is
increased. In step 507, the routine follows the procedure for injecting security
code into the executable file, and then returns. Step 507 is optional, as discussed
earlier, andyis used to increase the probability that the modified executable file
will not be able to be unmodified and subsequently executed without the
modifications. The injection of security code is discussed in detail with reference
to Figure 9.

Figure 6 is an overview block diagram of the modifications made
to an executable file by the injection mechanism to inject a reference to a new
DLL using the DLL loader code technique. Executable file 601 represents the
logical state of the executable file before any modifications have been made.
Executable file 601 contains an indicator 603 of the entry point of the executable
code, which is shown located for the purposes of example at address “xxx.” Note
that the Figure 6 shows a logical layout of an executable file, in which all the
addresses appear to be sequential and continuous. This logical layout is used for
the purposes of illustration only as discussed earlier with reference to Figure 2.
The entry point indicator 603 typically points to the first instruction in the
application executable code segment 602. The instructions comprising
executable code segment 602 may vary in size depending upon the instruction set

of the underlying computer system.

10

15

20

25

WO 98/33106 PCT/US98/01845

15

In Figure 6, executable file 604 represents the logical state of the
executable file after the injection mechanism has inserted DLL loader code into.
the executable file 604. Specifically, the injection mechanism determines a
location within the code in which to copy the DLL loader code, copies the DLL
lqader code, modifies the code entry point indicator 605 (located at address
“xxx”) to point to the newly added DLL loader code, and stores the value of the
previous entry point indicator so that it can be accessed when the DLL loader
code is executed. In this manner, when the executable file is executed, it will
begin executing at the DLL loader code instead of the code entry point referred to
by indicator 605. The DLL loader code will load the new DLL before executing
the original application executable code 606. The injected DLL loader code 607
contains an instruction at the end of the DLL loader code to transfer control back
to the original application executable code 606. The injected DLL loader code
607 preferably contains a call provided by the underlying operating system to
load the new DLL. This call contains a reference to the new DLL 608, which
becomes the injected DLL. As discussed with reference to the import table
technique shown in Figure 3, the injected DLL 608 contains a DLLMain routine,
which is automatically called by the operating system LoadDLL system call and
therefore should contain the modifying behavior that the application programmer
wishes to add to the executable file. For exa_mple, the application programmer
could add the licensing procedures discussed earlier or the user interface
additions to the DLLMain routine. Injected DLL 608 is presumed to be the same
as the DLL injected into the executable file 306 using the import table technique
shown in Figure 3. Alternatively, the injected DLL loading code could directly
invoke a predefined function of the injected DLL.

Figure 7 is a flow diagram of the steps used by the injection
mechanism to inject a new DLL using the DLL loader code technique. In

particular, in step 701, the injection code determines the type of the executable

10

I5

20

WO 98/33106 PCT/US98/01845

16

file. In step 702, if the executable file type is known to the injection code, the
routine continues in step 703, else returns an error because the injection
mechanism does not know how to inject code into an unknown executable file
type. In step 703, the routine determines the location of the executable code in
the executable file. In step 704, the routine saves the original application code
entry point (e.g., the contents of code entry point indicator 603 in Figure 6). In
step 705, the routine adds the DLL loader code to a predetermined location
within the located executable code. Similar to the import table technique
discussed with reference to Figure 3, it is specifically intended that the location
where the DLL loader code is placed is not publicized for security reasons. The
exact location is preferably immaterial to the operability of the invention. In step
706, the routine resets the code entry point of the application to the address of the
newly added DLL loader code and in step 707 adjusts any relocatable addresses
that need adjusting due to the increase in code size at the location where the DLL
loader code was added. In step 708, the injection mechanism code optionally
injects security code, and then returns. The injection of security code is
discussed in detail with reference to Figure 9.

Once the behavioral modifications desired have been added to the
executable file by means of injecting a DLL according to either the import table
method or the DLL loader method, the executable file when executed will
perform any behaviors added to the DLL. However, the modifications made by
injecting a DLL are not without security risks. Specifically, without further
security measures, a skilled programmer could substitute for the injected DLL
another DLL which did not perform the associated behaviors. Or, the
programmer could take out the entry in the import table if the import table
technique is used. Further, a skilled programmer could modify the injected DLL
loader code to load a dummy DLL instead of the injected DLL. For these

reasons, the injection mechanism of the present invention provides the added

10

13

20

25

WO 98/33106 PCT/US98/01845

17

feature of injecting security code into the executable file. Although the
techniques used to inject the security code are discussed herein in detail, the
particular locations where certain pieces of encrypted code are stored and the
particular keys used should preferably not be publicized. These locations and
keys are not needed to use or understand the operations of the present invention
and are preferably kept secure by the injection mechanism.

Figure 8A is a block diagram of the logical layout of an executable
file after security code has been injected into the executable file using the import
table technique. Executable file 8A01 is shown with import table 8A04 modified
to refer to injected DLL 8AO02, as discussed with reference to Figure 3.
Executable file 8A01 contains a code entry point indicator located at address
“xxx,” encrypted application code 8A07, unencrypted application code 8A08, an
import table 8A04, which refers to injected DLL 8A02, and injected security
code and data 8A05. The injection mechanism inserts security code and data by
adding the appropriate code and data 8A05 to the executable file 8A01 at a
predetermined location. The injection mechanism then modifies the application
code entry point indicator 8A03 to point to the newly added security code. In
addition to injecting security code and data 8A0S5, the injection mechanism
encrypts some portion of the original application executable code to further
prevent tampering with the modified executable file. In addition, checksums are
computed on certain portions of the executable file, to be discussed further
below, which are then encrypted and stored as the injected security data shown as
part of section 8A05 in Figure 8A. Preferably, the injected security code is
stored in a predetermined location and the injected encrypted daté is stored at
another predetermined location, which is preferably not publicized but is kept
track of by the injection mechanism. The injection mechanism also inserts a
transfer of control instruction back to the application executable code in the

security code and data section 8A05. The location transferred to is preferably the

10

15

20

25

WO 98/33106 PCT/US98/01845

18

original application executable code entry point combined with the size of the
code encrypted starting with the entry point 8A06. That is, the transfer of control
should occur to the first unencrypted location after the original code entry point.
Figure 8B is a block diagram of the logical layout of an executable
file after security code has been injected into the executable file using the DLL
loader code technique. Executable file 8B10 contains a code entry point
indicator located at address “xxx,” encrypted application code 8B16, unencrypted
application code 8B17, injected DLL loader code 8B13, which refers to an
injected DLL 8B11, and injected security code and data 8B14. The executable
file 8B10 is shown after being modified to include the DLL loader code 8B13 as
discussed with reference to Figure 6. Thus, the application entry point indicator
8B12 has aiready been modified to point to the injected DLL loader code 8B13.
Thus, when the executable file is executed, the DLL loader code 8B13 will be
executed first. However, in Figure 6, the DLL loader code contained a transfer
instruction to transfer control back to the original application executable code
entry point. In the case shown in Figure 8B, where security code will also be
injected, this transfer instruction is not added at that point. Instead, after the
security code and data 8B14 are injected into the executable file 8B10, a transfer
instruction is added to transfer control back to the original application entry point
plus encrypted data 8B15, which points to the first instruction in the executable
code image that appears after the encryption code portion 8B16. According to
this technique, then, the injected security code preferably directly follows the
loader code so that it is immediately executed after the injected DLL is loaded by
the operating system. However, one skilled in the art will recognize that other
techniques are possible instead of depending upon order, including transferring
control from the loader code to a predetermined location where the injected

security code is stored. In Figure 8B as in Figure 8A, checksums are computed

WO 98/33106 PCT/US98/01845

10

20

25

19

on various pieces of the executable file and stored at a predetermined location
within the executable file 8B10.

Figure 9 is an overview flow diagram of the steps performed by the
injection mechanism for injecting security code and data into an executable file.
The injection mechanism performs and stores checksums and inserts security
code into an executable file. Specifically, in step 901, the injection mechanism
performs checksums on various components and saves them in addition to saving
the original application code entry point. Preferably. a checksum is computed on
the import table and a checksum is computed on a small range of the injected
DLL image. So, for example, in the case where a licensing DLL is the injected
DLL. some portion of the licensing code is likely part of the range of the
checksum. The small range ensures that the speed of the calculation of
checksums is fast, but that the mechanism still accomplishes its security goals.
The range of the injected DLL to be checksummed is preferably not publicized
and is determined by (and can be changed by) the programmer using the injection
mechanism. The checksum operation can be provided by any standard
checksumming routine that reads a portion of the data. logically combines the
data portion with a mask. and adds the combined data to a compounded
checksum result. For example, Table 1 below provides a sample checksum
algorithm:

Table 1

for each portion of data of a total amount to be checksummed
x = read (portion of data);
result = AND (x, mask);
checksum = checksum + result;

endfor;

In step 902, the routine encrypts the computed checksums and the saved
application code entry point and stores the encrypted information in a

predetermined location, which also is preferably not disclosed. Note that either

10

15

20

25

WO 98/33106 PCT/US98/01845

20

the various checksums and the application entry point can be encrypted all at
once and decrypted all at once or they can be encrypted and subsequently
decrypted using a separate key for each item. In addition, the data can be
encrypted and decrypted according to an incremental encryption and decryption
technique, which is discussed further below with reference to Figures 10, 11, 12,
and 14.

In step 903, the inject security code routine calls an incremental
encryption routine to encrypt portions of the executable code stored in the
executable file. The amount of the executable code to be encrypted is preferably
not publicized, is small, and can be modified by the programmer using the
injection mechanism. A small portion ensures that the speed of the encryption
and decryption is fast, but that the mechanism still accomplishes its security
goals. In step 904, the routine determines where the executable code is located
within the executable file. In step 905, the routine adds checksum verification
code to a predetermined location within the located executable code. This
checksum verification code is stored as part of the injected security code and data
8A035 and 8B14 shown in Figures 8A and 8B, respectively. In step 906, the
routine adds incremental decryption code to a predetermined location within the
located executable code. This incremental decryption code is also part of the
injected security code shown as 8A05 and 8B14 in Figures 8A and 8B,
respectively. In step 907, the injection mechanism adds code to retrieve the
encrypted data (which was encrypted in step 902 and stored in the injected
security code 8A05 and 8B14 shown in Figures 8A and 8B), and adds code to
transfer control to the saved application entry point taking into account the size
of the encrypted portion of the executable code. In step 908, the routine adjusts
any relocatable addresses as necessary due to the addition of the code and data
shown as injected security code and data 8A035 and 8B14 in Figures 8A and 8B,

and returns.

10

15

20

25

WO 98/33106 PCT/US98/01845

21

Note that, in step 909, other security checks can be added to the
located executable code at some points within this injection procedure.
Preferably, security checks, such as making sure the program is running in a
particular mode, are added to the inject security code routine in an unpublicized
ordering of steps. Thus, the ellipses . ..” in Figure 9 represent that step 907 is
added somewhere in this process. In a preferred embodiment, the injection
mechanism performs a check to make sure the process is not in debug mode and,
if so, aborts execution of the executable file. This prevents any undesired
viewing of the executable code and security code, which can be used to create an
unsecured, or unmodified version of the executable code.

- Figure 10 is a flow diagram of the steps executed by an incremental
encryption routine. The incremental encryption routine is invoked, for example
in step 903, as part of the injection of the security code to encrypt portions of the
executable code stored within the executable file. In step 1001, the routine calls
a subroutine to determine the size (and location) of the blocks of data that will be
encrypted. According to preferred techniques, the encrypted blocks are variable
size and the determination routine will compute and store the size for each block.
The determination routine is discussed in more detail with reference to
Figures 11 and 12. In step 1002, the routine begins a loop to encrypt the
determined number of blocks starting with the first block. In step 1003, the
routine sets the encryption key to a predetermined set of flags (registers) which
represent the CPU state as it will exist when the injected incremental decryption
code (added in step 906 in Figure 9) is executed by the system, ie., when the
executable file is executed.

In particular, the injection mechanism preferably does not publicize
the particular flags used as a key. Any flags can serve this purpose as long as

they meet the following criteria:

10

15

20

25

WO 98/33106 PCT/US98/01845

22

1. The flags do not vary from system to system,
or from run of the executable file to run.
2. The flags can be fairly easily predicted.
3. Flags can be chosen based upon a “mode” in
which the application will execute.
An example of a flag that does not meet the first criteria is a flag that counts the
total number of executions since power-up, because the total number of
executions since power-up can vary dramatically from system to system. An
example of a flag that does not meet the second criteria is the CPU instruction
counter, because where the executable code is physically located in memory
when it is loaded will vary. An example of a flag based upon a mode is whether
the process is executing in “user mode™ or “protected mode” on an Intel
processor. Preferably, the injection mechanism does not publicize the exact flags
used and how they are combined so that it is more difficult to break into and
unmodify the executable file with injected code. Any key that meets these
criteria preferably will be operable within the injection mechanism.

In step 1004, the incremental encryption routine encrypts the
current block of data using the determined key for the block size that was
specifically determined for that block in step 1001. Note that any known
encryption routine can preferably be used with the injection mechanism of the
present invention. In one preferred embodiment, a basic permutation encryption
algorithm is utilized. Permutation encryption algorithms, as well as many other
types of algorithms, are described in detail in Bruce Schneier, A4pplied
Cryptography, 2d ed, John Wiley & Sons, 1996, which is hereby incorporated by
reference. In essence, a permutation encryption routine reorders the bits within
the data block being encrypted using a mathematical algorithm that can be
duplicated in reverse. Also, for the purposes of the present invention, it is

assumed that the encrypted data produced by the chosen algorithm is the exact

10

15

20

25

WO 98/33106 PCT/US98/01845

23

same size as the original data. However, one skilled in the art, will recognize that
any encryption technique can be utilized including those that change the size of
the encrypted data from the original data. In that case, the differences in size
must be tracked and accounted for by the injection mechanism, especially in the
encryption and decryption routines and in the adjustment of relocatable addresses
step performed by many of the routines. In step 1003, if the encryption algorithm
does not add a terminating character to the block encrypted, then the injection
mechanism preferably does so. In an alternative embodiment, the encryption and
decryption routines keep track of the size of each block and incorporate this size
into the decryption procedure. In step 1006, the incremental encryption routine
writes the ¢ncrypted block of data into the executable file at the same location
where the unencrypted block was. In this way, the injection mechanism replaces
the original executable code image with encrypted versions of the image. In step
1007, the routine checks to see if there are any more blocks that need to be
encrypted and, if so, returns to the beginning of the loop at step 1002 to process
the next block, else returns.

Figure 11 is a detailed flow diagram of the steps performed by the
injection mechanism to determine the number and size of the encryption blocks
of data to be encrypted using the incremental encryption technique. The
Determine Encryption Blocks routine takes as input a projected number of blocks
and a default size desired for each block. (The default size may also be
hardcoded or calculated.) The incremental encryption and decryption process
operates on the principle that only a portion of the data to be encrypted should be
encrypted or decrypted at any one time so that it is more difficult to break
through the encryption. Because the data is preferably never fully decrypted at
any one time, it is more difficult for a process to cache a copy of the decrypted
code in order to produce an unmodified version of the executable file. Thus, the

role of the Determine Encryption Blocks routine is to determine what part of the

10

15

20

25

WO 98/33106 PCT/US98/01845

24

data to be encrypted will be placed in each encrypted block and to store this
information so that the encryption and decryption routines can determine how
much data to encrypt/decrypt at any one time.

Also, the Determine Encryption Blocks routine is responsible for
setting up each encrypted block to ensure that each block can be decrypted and
executed independently from every other block. Thus, the routine constrains the
blocks such that there is preferably exactly one entry point into the block from
outside the block (a “fall through”) and exactly one exit point out of the block to
another encrypted code block. Any algorithm capable of maintaining this
constraint could be utilized. For example, in the Determine Encryption Blocks
routine of Figure 11, the routine first scans the non-encrypted execution code and
adjusts the portion of the code to be encrypted to ensure that there are no
transfers back into encrypted code from outside. Then, the routine divides the
data to be encrypted into target blocks and tries to place the maximum amount of
data into each target block, up to the default block size, with two exceptions. The
exceptions occur when a transfer instruction is encountered. Specifically, when
the current source data block contains transfer instructions to target locations
within encrypted code that is located outside of the current block, the size of the
target block is enlarged to encompass the transfer instruction. Similarly. when
the current data block contains a location that is a target of a transfer instruction
originating in encrypted code that is outside (;f the current block, the size of the
target block is enlarged to encompass the transfer instruction. These adjustments
ensure that, in the decryption process, all instructions that are needed to decrypt a
particular portion of code are available.

Specifically, in step 1101, the routine scans the portion of the
source data that is not to be encrypted looking for transfer instructions whose
target locations occur within the data to be encrypted. When it encounters such a

transfer instruction, the routine adjusts the size of the area of data to be encrypted

10

20

25

WO 98/33106 PCT/US98/01845

25

to stop short of the target location of the transfer instruction. This adjustment
ensures that there are no transfers into the encrypted data portion from the
unencrypted data portion. The routine also scans the portion of data to be
encrypted for transfer instructions with target locations having addresses that
occur before the addresses of the corresponding transfer instructions (backward
references to encrypted data). When such an instruction is encountered, the
routine keeps track of both the target location and the location of the transfer
instruction in order to make target block adjustments later (see steps 1106-1108).
In step 1102, the routine begins a loop to fill target blocks, beginning with the
first target block. In one embodiment, the data to be encrypted is copied into a
correct size target block in temporary storage. However, one skilled in the art
will recognize that other techniques are possible, including those that simply
keep track of the original data and the division into different blocks. In step
1103, the Determine Encryption Block routine sets the size of the current target
block equal to the default size. In step 1104, the routine determines and keeps
track of where in the source data the new block begins, as an offset. Assuming
the source data begins at the code entry point of the executable file, this offset is
the calculation of the start address (the entry point) of the executable code in the
executable file plus the sum of the computed sizes of the prior target blocks.
Steps 1105-1110 comprise an inner loop which copies machine
instructions to the temporary target block by determining'how many can be
transferred and whether there are transfer instructions that will affect the size of
the current source block. In particular, in step 11035, the routine reads the next
machine instruction in the source block starting with the first instruction. Since
instruction sizes can vary, the routine preferably makes sure that it reads the
maximum size instruction possible. In step 1106, the routine determines whether
the current instruction is a transfer instruction or the target location of a transfer

instruction located outside the current source block and, if so, continues in step

10

15

20

25

WO 98/33106 PCT/US98/01845

26

1107, else continues in step 1109. In step 1107, if the current instruction is a
transfer instruction, the routine further determines whether the transfer
instruction is to a target location in an encrypted block that is outside of the
current target block and, if so, continues in step 1108, else continues in step
1109. (Transfers to locations within the encrypted block do not cause size
adjustments as they do not constitute additional entries to or exits from the
current block.) In step 1108, the routine computes a new size for the current
target block to extend to and include the target location of the transfer instruction
if the current instruction is a transfer or to extend to and include the
corresponding (saved) transfer instruction if the current instruction is the target
location of a transfer initiated outside of the current target block, and continues in
step 1109. As mentioned, the purpose of this step is to ensure, for use with the
incremental decryption process, that there are no transfer instructions to an
encrypted block outside of the current target block and that there are no transfer
instructions from an outside block into the current target block. In step 1109, the
routine copies the current instruction to the current target block in the temporary
storage. In step 1110, the routine determines whether the target block has been
filled and if so, continues in step 1111, else returns to the beginning of the inner
loop at step 1105. In step 1111, the routine determines whether there are
additional source blocks to encrypt and, if so, continues back to the beginning of
the outer loop to determine more target blocks in step 1102, else returns.

Figure 12 is an example block diagram of the results of
determining the size of encryption blocks according to the technique of
Figure 11. The original code 1201 is shown on the left hand side and the
transferred code 1203 is shown on the right hand side. The transferred code is
referred to as “encrypted code,” even though it is not encrypted at this point.
Referring to Figure 10, once the code is divided into blocks and the block sizes

are determined, the incremental encryption routine actually encrypts the blocks in

10

15

20

25

WO 98/33106 PCT/US98/01845

27

step 1004. Original code 1201 contains a series of instructions shown as
beginning at logical address “x.” Three target blocks of the encrypted code 1203
are shown as Block 1 (1204), Block 2 (1205), and Block 3 (1206). Using the
steps shown in Figure 11, the instructions located at logical addresses “x”
through logical address “x+60” (instructions 1 - ») are copied directly to Block 1,
because they do not contain transfer instructions and because they exactly fill the
default size of a block, which here is assumed to be 64. The next set of
instructions from original code 1201 are continued to be copied into target
Block 2 in the encrypted code 1203. The example shows instruction, at logical
address “y” being transferred to the beginning of encrypted Block 3. When the
routine reaches the instruction at logical address “y+4,” in original code 1201,
the routine determines that the instruction is a transfer instruction, shown here as
“imp y+128.” Since the calculation of “y+128" is greater than the default size
for the block (64), it can be seen that this transfer instruction has a target location
that is outside of the current target block. It can be further noted that the original
code 1201 at logical address “y+128” is a target location that is also encrypted,
and therefore Block 3 needs to be extended in size to include the instruction at
logical address y+128. Next, at logical address “y+8,” the instruction 1s also a
transfer instruction, this time to the instruction of target location logical address
“y+136.” Again, the original code 1201 at logical address “y+136” is within the
code area to be encrypted, and therefore Block 3 must once again be extended in
size to include the instruction of the target location “y+136.” The routine
continues with copying the instructions from original code 1201 into the target
block 1203 until it reaches another transfer instruction or until the current size of
now enlarged Block 3 is reached. For example, the instructions located through
logical address “y+128” are copied over. At logical address “y+132,” there is
another transfer instruction listed as “jmp y+148.” This time, the transfer

instruction to logical address y+148 transfers to an area of the original code 1201

10

20

25

WO 98/33106 - PCT/US98/01845

that is not intended to be encrypted, as shown by the dotted line 1207. Thus, in
this case, Block 3 is not extended in size. Further, since the target block was
previously enlarged to include the instruction at location y+136, this instruction
is copied over to Block 3, which terminates the filling of Block 3.

Figure 13 is a detailed flow diagram of the verify checksum code
added by the injection mechanism to an executable file. Specifically, the inject
security code portion of the injection mechanism adds the checksum verification
code in step 905 in Figure 9. The verify checksum code, when executed by the
application, is responsible for retrieving the encrypted security data, setting up
the data values appropriately, and verifying that the checksums are correct and
that no tampering with the executable file has taken place. In particular, in step
1301, the Vérify checksum routine retrieves the encrypted security data block
from the predetermined location. As mentioned with reference to Figure 9, it is
preferable that this location not be publicized, but one skilled in the art will
recognize that, once chosen, the routine that generates the original checksum and
the routine that verifies the checksum preferably use the same location. In step
1302, the verify checksum routine decrypts the retrieved security data block.
This step assumes, as did Figure 9, that all of the security data was encrypted as a
single data block. As mentioned, one could have encrypted the security data in
individual pieces and the verify checksum routine would need to be changed
accordingly. In step 1303, the routine stores the decrypted checksums and the
previously saved application code entry point. In step 1304, the routine
computes the same checksums computed in step 901 of Figure9. These
checksums preferably include at least the import table and some range of the
injected DLL. In step 1305, the routine compares the newly generated
checksums to the decrypted checksums. Then, in step 1306, the routine
determines whether the checksums are the same, and if so returns (or continues

with processing). Otherwise, if the checksums are not the same, the implication

10

15

20

25

WO 98/33106 PCT/US98/01845

29

is that the executable file has been tampered with, and thus the verify checksum
routine returns an error or aborts processing.

Figure 14 is a detailed flow diagram of the steps performed by
incremental decryption. The incremental decryption routine decrypts each block
of data previously encrypted and executes each block, one at a time, so that the
entire code is never decrypted and executed at once. This procedure helps
prevent any kind of illegitimate caching of the executable code to generate an
executable file that has not been modified with the injected DLL or security code.
Recall that the executable code was encrypted into blocks of varying size, and
that each block is guaranteed at this point to contain no transfer instructions to
encrypted code outside of the block.

Specifically, in step 1401, the incremental decryption routines
begins a loop over all of the encrypted blocks beginning with the first block. In
step 1402, the routine generates a key using the current designated CPU flags.
These flags are the same as discussed relative to the incremental encryption
routine of Figure 10, and because they do not vary, the key can be determined.
In step 1403, the routine calls a decryption algorithm to decrypt the current block
using the determined key. The routine also adds a transfer instruction to transfer
to step 1409 (indicated by “LABEL:”) so that once the decrypted block is
executed, the decrypted code will return bapk to the incremental decryption
routine. This procedure is discussed further below with reference to steps
1407-1408. The decryption routine preferably uses the mirror image of the
algorithm used in the incremental encryption routine of Figure 10, and any
encryption/decryption algorithm that satisfies this criterion should work. In step
1404, the incremental decryption routine saves the state of the CPU flags in order
to later on generate the key for the next block. In step 1405, the routine restores
the saved executable code (application) execution state in order to execute the

next block of the application code. This value is initialized to the initial

10

15

20

WO 98/33106 PCT/US98/01845

30

executable state of the code, for example null. In step 1406, the routine transfers
control to the location of the block that was decrypted in step 1403. The
decrypted code block logic is shown in steps 1407-1408. In step 1407 the
decrypted code executes, and in step 1408 the transfer instruction to “LABEL:”
is executed. This transfers control to step 1409 in the incremental decryption
routine. In step 1409, the routine saves the current application execution state so
that it knows what state to restore in step 1405 for execution of the next block of
the application code. In step 1410, the routine restores the CPU flag state that
was saved in step 1404 to generate the next key for the next block. In step 1411,
the incremental decryption routine determines whether there are any more blocks
to decrypt and, if so, continues back to the beginning of the loop in step 1401,
else continues in step 1412. In step 1412, the routine restores the saved
application execution state (it is finished executing all of the encrypted
application code) and then continues processing preferably in the application
execution code that follows the injected incremental decryption code.

Although the present invention has been described in terms of
preferred embodiments, it is not intended that the invention be limited to these
embodiments. Equivalent methods, structures, processes, Steps, and other
modifications within the spirit of the invention fall within the scope of the

invention. The scope of the present invention is defined by the claims which

follow.

10

11

12

13

14

16

(8]

o

WO 98/33106 PCT/US98/01845
31

CLAIMS

1. A method in a computer system for modifying an existing
executable file so that when the executable file is loaded into memory for execution,
control is transferred to an injected dynamic link library prior to transferring control to
a main entry point of the executable file, the executable file having an import table
indicating each dynamic link library to be mapped and loaded into memory when the
executable file is loaded for execution, wherein when a dynamic link library is mapped
into memory a main library function of the dynamic link library is executed, the
method comprising:

creating the injected dynamic link library with a main library function,
the main library function for performing a certain behavior that is not part of the
unmodified executable file; and

adding to the import table of the executable file an indication of the
injected link library so that when the executable file is loaded into memory control is
transferred to the main library function of the dynamic link library to execute the
certain behavior prior to transferring control to the main entry point of the executable

file.

2. The method of claim 1 wherein the certain behavior is to

determine whether the executable file is authorized to execute on the computer system.

3. The method of claim 2 wherein, when the certain behavior
determines that the executable file is not authorized to execute on the computer

system, the certain behavior terminates execution of the executable file.

4. The method of claim 2 wherein when the certain behavior

determines that the executable file is authorized to execute on the computer system,

(V3)

10

11

12

14

15

16

17

18

19

WO 98/33106 PCT/US98/01845

32

the certain behavior returns from the main library function of the injected dynamic
link library so that control can be transferred to the main entry point of the executable

file.

5. The method of claim 2, further comprising adjusting addresses
within the executable file to account for the size of the added indication of the injected

dynamic link library.

6. A method in a computer system for modifying an executable file
so that when the executable file is loaded into memory for execution, control is
transferred to an injected dynamic link library prior to transferring control to a main
entry point of the executable file, the executable file having an import table indicating
each dynamic link library to be mapped and loaded into memory when the executable
file is loaded for execution, wherein when a dynamic link library is mapped into
memory a main library function of the dynamic link library is executed, the executable
file containing a main entry point reference that refers to the main entry point of the
executable file, the method comprising: ‘

adding to the import table of the executable file an indication of the
injected dynamic link library so that, when the executable file is loaded into memory,
control is transferred to the main library function of the injected dynamic link library
to execute a certain behavior prior to transferring control to the main entry point of the
executable file;

replacing a portion of the executable file with an encrypted version of
that portion;

adding to the executable file an encrypted copy of the main entry point
reference of the executable file;

adding security code to the executable file; and

20

21

22

24

25

26

27

28

29

38

{95)

L

WO 98/33106 PCT/US98/01845
33

setting the main entry point reference of the executable file to refer to
the added security code, whereby when the modified executable file is executed,
control is transferred to the main library function of the injected dynamic link library
and control is then transferred to the added security code referred to by the main entry
point reference, wherein the added security code:
determines whether tampering has occurred that affects the
execution of the executable file;
when tampering has occurred, terminates execution of the
executable file; and
when tampering has not occurred,
replaces the encrypted portion with a decrypted portion;
and

transfers control to the main entry point of the executable

file.

7. The method of claim 6, further comprising adding a checksum for
the injected dynamic link library to the executable file, wherein the added security
code calculates a checksum for the dynamic link library and compares the calculated

checksum to the added checksum to ensure that the dynamic link library has not been

modified.

8. The method of claim 6, further comprising adding a checksum for
the import table to the executable file, wherein the added security code calculates a
checksum for the import table and compares the calculated checksum to the added

checksum to ensure that the import table has not been modified.

(98]

2

10

WO 98/33106 PCT/US98/01845

34

9. The method of claim 6 wherein the replacement of the encrypted
portion with a decrypted portion uses incremental decryption to decrypt the encrypted

portion into subportions and executes each subportion separately.

10. The method of claim 9 wherein the incremental decryption into
subportions overwrites a previous subportion with a next subportion before executing

the next subportion.

11. A method in a computer system for incrementally decrypting and
executing an encrypted portion of an executable file to ensure that the entire decrypted
portion is not in memory at the same time, the method comprising:

for each of a plurality of subportions of the encrypted portion,

storing a decrypted version of the subportion to overwrite any
previously decrypted version of another subportion; and

executing the stored decrypted version of the subportion.

12. The method of claim 11 wherein the computer system has a
context state and including:
before executing the stored decrypted version of the sub-portion,
saving the context state; and |
setting the context state to a previously saved context state for the
encrypted portion; and
after executing the stored decrypted version of the sub-portion,
saving the context state for the encrypted portion; and
setting the context state to the context state saved before

executing the stored decrypted version.

10

WO 98/33106 PCT/US98/01845

35

13. A method in a computer system for encrypting executable code
into subportions that can be decrypted one at a time, the method comprising:
determining a plurality of source blocks of variable sizes, the size of
each source block ensuring that code to be contained in an encrypted version of the
source block will execute when decrypted without transferring to a location outside the
source block that is encrypted; and
for each determined source block,
determining a key;
encrypting the source block using the determined key; and

copying the encrypted source block into the executable file.

14. The method of claim 13, further comprising:
for each encrypted source block copied into the executable file,
determining a key based upon a context state;
decrypting the source block using the determined key;
storing the decrypted source block to overwrite any previously
decrypted source block; and

executing the stored decrypted source block.

15. A method in a computer system for modifying an executable file
to ensure that a tampered with version of the executable file is not executed, the
executable file containing a main entry point reference that refers to the main entry
point of the executable file, the method comprising:

replacing a portion of the executable file with an encrypted version of
that portion; |

adding to the executable file a copy of the main entry point reference of
the executable file;

adding security code to the executable file; and

15

16

17

18

20

21

‘WO 98/33106 PCT/US98/01845

36

setting the main entry point reference of the executable file to refer to
the added security code, whereby when the modified executable file is executed,
control is transferred to the added security code referred to by the main entry point
reference, wherein the added security code:
determines whether tampering has occurred that affects the
execution of the executable file;
when tampering has occurred, terminates execution of the
executable file; and
when tampering has not occurred,
replaces the encrypted portion with a decrypted portion;
and
transfers control to the main entry point of the executable

file.

16. The method of claim 15 wherein the added security code replaces

and transfers control to subportions of the encrypted portion.

17. The method of claim 13, further comprising adding a checksum
of a portion of the executable file to the executable file and wherein the added security
code determines whether tampering occurred by recalculating the checksum of the

portion of the executable file and comparing the recalculated checksum to the added

checksum.

18. The method of claim 9 wherein the added copy of the main entry

point reference is encrypted.

19. A method in a computer system for modifying an existing

executable file so that when the executable file is loaded into memory for execution,

10

11

12

13

14

15

16

(3]

(US)

WO 98/33106 PCT/US98/01845

37

control is transferred to an injected dynamic link library prior to transferring control to
a main entry point of the executable file, the executable file containing a main entry
point reference that refers to the main entry point, the executable file having
executable code, wherein when a dynamic link library is loaded into memory for the
executable file, a main library function of the dynamic link library is executed, the
method comprising:

locating the executable code in the executable file;

adding loader code to the located executable code, the loader code
having instructions for loading the injected dynamic link library into memory;

saving the main entry point referred to by the main entry point reference;

adding transfer of control code into a location that follows the added
loader code such that control is transferred to the saved main entry point after the
added loader code is executed; and

setting the main entry point reference to refer to the added loader code.

20. The method of claim 19, further comprising adjusting addresses
within the executable file to account for the sizes of the added loader code and the

added transfer of control code.

21. The method of claim 19 wherein a certain behavior is added to
the injected dynamic link library to determine whether the executable file is authorized

to execute on the computer system.

22. The method of claim 21 wherein, when the certain behavior
determines that the executable file is not authorized to execute on the computer

system, the certain behavior terminates execution of the executable file.

10

11

12

14

15

16

17

(V)

WO 98/33106 PCT/US98/01845

38

23. The method of claim 21 wherein, when the certain behavior
determines that the executable file is authorized to execute on the computer system,
the certain behavior returns from a function of the dynamic link library so that control

can be transferred to the main entry point of the executable file.

24. A method in a computer system for modifying an existing
executable file to include a reference to new code that contains a certain behavior so
that, when the executable file is loaded into memory for execution, control is
transferred to the new code with the certain behavior prior to transferring control to a
main entry point of the executable file, the executable file containing a main entry
point reference that refers to the main entry point, the executable file having
executable code, the method comprising:

locating the executable code in the executable file;

adding to the located executable code a reference to the new code with
the certain behavior, the reference causing the new code to be executed;

saving the main entry point referred to by the main entry point reference;

adding transfer of control code into a location that follows the added
reference to the new code such that control is transferred to the saved main entry point
after the new code is executed; and

setting the main entry point reference to refer to the added reference to
the new code, so that the new code is executed when the executable file is loaded for

execution.

25. The method of claim 24 wherein the adding of the reference to
the new code comprises modifying a table within the executable file to include a
reference to the new code, the table comprising entries that indicate code to be loaded

when the executable file is loaded.

WO 98/33106 PCT/US98/01845

39

26. The method of claim 25 wherein the new code resides in a

dynamic link library.

27. The method of claim 24 wherein the adding of the reference to
the new code comprises adding loader code within the executable file that loads the

new code and transfers execution to a location within the new code.

28. The method of claim 27 wherein the new code resides in a

dynamic link library.

29. The method of claim 24 wherein the certain behavior of the new

code starts and stops another executable code module.

30. The method of claim 29 wherein the executable code is a browser

application.

31. The method of claim 24 wherein the certain behavior of the new

code adds in a user interface component.

32. The method of claim 31 wherein the user interface component is

a menu.

33. A method in a computer system for providing a new behavior to
executable code stored in an existing executable file, the executable file having an
import table indicating each external code library to be mapped and loaded into
memory when the executable file is loaded for execution, each external code library
having at least one function that can be invoked at runtime by the executable code,

wherein when an external code library is mapped and loaded, an initial function within

10

11

12

13

14

15

WO 98/33106 PCT/US98/01845

40

the external library is executed prior to execution of the executable code, the method
comprising:

providing a new external code library with an initial function that
implements the new behavior;

locating the import table in the executable file; and

adding to the located import table a reference to the provided new
external code library, such that, when the executable file is loaded, the initial function

of the new external code library is executed, thereby causing the new behavior to be

performed.

(9z 371nY) 133HS 31nilLsans

//,702
CPU

//,705
DISPLAY

////05
OTHER

INPUT/QUTPUT

DEVICES

COMPUTER SYSTEM

106

APPLIC.
EXEC.
CODE

INJECTED

REFERENCE |

INJECTED
SECURITY
CODE

MEMORY

107

DLL

109
/__/

INJECTION
MECHANISM

108

OTHER
PROGRAMS

104
/

Fig. 1

101

ava

901€£/86 OM

S$810/86S11/LOd

WO 98/33106

PCT/US98/01845

2/14

201

Executable File (Logical Format)

/205
_/ Application
icdocdtz - Execufable /
Code
| 203
Application
Import /
Table
DLL list of

name | functions

204

Application /

relocatable
address
table

Fig. 2

SUBSTITUTE SHEET (RULE 26)

202

WO 98/33106 PCT/US98/01845

3/14

EXECUTABLE FILE

301

302 /303
5 Dllname! | <function list> | 307
Dliname2 | <function list> 304 305
Import
Table L [Injected DLLname [sfub funcfion |

DLLnameN | <function list>

|
I
I
|
|
I

'

Injected DLL

306
DL i)} L/

-
Stub(){

i;”

Fig. 3

SUBSTITUTE SHEET (RULE 26)

WO 98/33106 PCT/US98/01845

Licensing
DLL code

Y

Load licensing specific ///-407
data from application

402
Call licensing library s (Return)
function

Is
product
licensed?

license
expired?

Want to
purchase?

" w{ Terminate Applicafi)
1 7K erminate Appicaiion

Get purchaser info, |/~ 406
send to distributor, and
receive response

Response
error?

Fig. 4

SUBSTITUTE SHEET (RULE 26)

WO 98/33106 PCT/US98/01845

5/14

Inject _DLL
(import table method)

Y
Determine executable /507
file type

Known
executable

type?

Return error)

Locate Vs 503
application
import fable

!

Add DLL /504
entry to
import table

!

Add stub f505
function entry
to DLL entry

| :

Adjust Va 506
relocatable
addresses

1

Inject
Security Code

(Return)

[

M=
|

Fig. 5

SUBSTITUTE SHEET (RULE 26)

(9z 31nY) 133HS 31NL11SENS

XXX

602

)

Application
Executable
Code

/P/,60/
EXECUTABLE FILE

(Code Entrypoint) ~

Instructiony | Instructions

Instructions | =« »
e & o
Instruction, | -« -
L] [] L]

603

XXX

604

EXECUTABLE FILE +
INJECTED DLL

(Code Entrypoin) .

Instructionq | Instructiony

606

Instructiong | < - -
[] e o
Instructionp | - - -

N

... load DLL (

Injected DLL Loader
Code

605

608

Injected DLL

DLLMain()

b '
Stub()}

.

1/9

901€€/86 OM

SH810/86S11/1LDd

‘WO 98/33106

7/14

Inject_DLL
(DLL loader code method)

)

!

Determine executable
file type

Known
executable

type?

PCT/US98/01845

Return error)

Locate
executable code in
file

!

Save application entry
point

\

Add DLL loader code to
located code

!

application entrypoint =
address of added DLL
loader code

!

Adjust relocatable
addresses

SUBSTITUTE SHEET (RULE 26)

~708
1 Inject ﬂ/_____{ Ret)
1L Security Code 1] elum

EXECUTABLE FILE /30’

EXECUTABLE FILE }’0

90T€€/86 OM

(gz 31NY) 133HS 3A1nlllsans

XXX N 807 802 XXX T 816 81
(encrypted code) /\9;\‘808 (encrypted code) /y877
(non-encrypted code) [Injected (non—encrypled code) e '(/ Injected
import Table with |/ 0% / o Injected DLL e DLL
Injected DLL i B g 812 Loader code i B
Injected Security //‘874
205 Code + Data —
803 Injected Security /f-
Code + Data
806 815

lig. o Fig. 8B

v1/8

SH810/86S/LOd

"WO 98/33106

9/14

(Inject Security Code)

|

Perform and save
checksums; save
application eniry point

/907

!

Encrypt checksums and
application entry point
and store in a
determined location

'

Incremental_Encrypt
portions of
application code

|

Locate executable code
in file

|

Add checksum
verification code to
located code

!

Add Incremental_Decrytp
code to located code

!

Add code fo decrypt
and jump to saved
application entry point

Va 907

!

Adjust relocatable
addresses

Ya 908

Fig. 9

PCT/US98/01845

!

Add other security
checks to located code

/906-

————{ Return)

SUBSTITUTE SHEET (RULE 26)

Va 909

‘WO 98/33106 PCT/US98/01845

10/14

C Incremental_Encrypt)

|

Determine Encryption Ve 1001
Blocks

Y
Get next block Va 1002
starting with the first

|

Set key to predicted
CPU state

Va 1003

]

Encrypt block using 1004
key for determined 4
size

|

Add ferminating | 7005
character if not done
by encryption method

!

Write encrypted block | ~ 1006
into executable at
determined offset

any more blocks?

Return)

Fig. 10

SUBSTITUTE SHEET (RULE 26)

WO 98/33106

are
there more

source blocks to

encrypt
?

1/14

Oeiermine Encryption 8Iocks)

!

Scan and Adjust portion
to be encrypted for
outside fransfers

//707

Y

for each block
starting with first
target block

V

Set current size of target
block = Default size

/7/03

|

Set offset of target block
= gpplication code start

+ sum of sizes of prior
blocks

//‘704

o

Y

Read next (max)
instruction in source
block starting with first

/7/05

current
instruction ==
transfer or farget
location of outside

transfer
?

transfer

target location

in encrypt

N e
!

Add instruction to
current target block

is
target block full
?

1110

PCT/US98/01845

ed
1108
farget block)y |

compute new size for
target block to include
target location

SUBSTITUTE SHEET (RULE 26)

Fig. 11

(92 31ny) 133HS 31N111SaNS

x+4

1202 48

x+60

yt+4
y+8

20
/_/l 1

Original Code

Instructiony

Instructions

Instructionp,

Instructiong

jmp y + 128

jmp y + 136

Instruction;

jmp y + 148

Instruction;

Instructiony

12

1203

Encrypted Code

Encrypted code
corresponding to

addresses x —= x + 60
(selected block size)

Encrypted Code
corresponding to

addresses y — y + 136

(enlarged block)

/7204
> Block1

AN

/7205
> Block2

J\

/4205
> Block3

71/7)

901€€/86 OM

S¥810/86S(1/LDd

WO 98/33106

13/14

C Verify Checksums)

|

Retrieve encrypted
security data block

Vs 1301

!

Decrypt security
data block

a 1302

!

Store ckecksums and
saved application code
entry point

a 1303

!

Compute new
checksums

Va 1304

Y

Compare new
checksums to stored

(decrypted) checksums

Va 1305

are
checksums
equal?

(Return Error)

Flg.

(Abort)

13

SUBSTITUTE SHEET (RULE 26)

PCT/US98/01845

Return)

WO 98/33106 PCT/US98/01845

14/14

CIncremen’roI_Decrypt)

Y
Get next data block 1401
starting with first 4

Confinue with
other code Y

A /7 412 Set key = current | 1402
CPU flags

Restore saved application
execution state '

1403
Decrypt current data L

block using key; Add
jump fo LABEL

any more
blocks?

Y
Save CPU flag state

//470 v

Restore saved CPU restore saved (Decrypted
flag state application execution —— — — —m| code block

tate (initially 0 1407
I state (initially 0) v

Execute Code

transfer control to

Y

transfer control to
location of decrypted
code block

!

LABEL: | Save current application
execution state

Fig. 14

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

intern. .aal Application No

PCT/US 98/01845

A. CLASSIFICATION UBJECT MATTER

OF S
IPC 6 GO6F1/00 GO6F9/445

According to International Patent Classification(IPC) or to both national classification and iPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimumdocumentation to the extent that such documents are included in the fieids searched

Electronic data base consuited during the internationat search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

see the whole document

X EP 0 667 572 A (IBM) 16 August 1995 1-4,33
A see page 4, line 53 - page 5, line 34; 5,6,19,
figures 2A,2B,3 21-26,29
A EP 0 367 700 A (IBM) 9 May 1990 6-9,
15-19,
21-24,27
see the whole document
A US 5 103 476 A (WAITE DAVID P ET AL) 7 6-9,
April 1992 15-24,27

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particuiar relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to estabiish the publicationdate of another
citation or other special reason (as spacified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
merr:ts, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of theinternational search

19 June 1998

Date of mailing of the international search report

25/06/1998

Name and maiting address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

Authorized officer

Fonderson, A

Form PCT/ISA/210 (second sheet) (July 1992)

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

iiormation on patent family members

Intern

1al Application No

PCT/US 98/01845

Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 0667572 A 16-08-1995 JP 7230380 A 29-08-1995
us 5673315 A 30-09-1997

EP 0367700 A 09-05-1990 us 4953209 A 28-08-1990
DE 68926606 D 11-07-1996
DE 68926606 T 28-11-1996
JP 1920804 C 07-04-1995
JP 2135938 A 24-05-1990
JP 6048809 B 22-06-1994
SG 44425 A 19-12-1997

US 5103476 A 07-04-1992 CA 2095723 A 08-05-1992
EP 0556305 A 25-08-1993
JP 7089345 B 27-09-1995
JP 6501120 T 27-01-1994
WO 9209160 A 29-05-1992
us 5222134 A 22-06-1993

Form PCT/ISA/210 (patent family annex) (July 1992)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

