一种不锈钢冷轧酸洗废水处理方法

摘要

一种不锈钢冷轧酸洗废水处理方法，包括如下步骤：酸洗废水中含铁屑过滤液微电解和六价铬初步还原作用后，进入六价铬二级还原池；还原后的废水经中和曝气后，进入前段沉淀池，重金属污泥浓缩脱水，与铁屑过滤液的混合调整用于不锈钢冶炼原料；一级上清液与沉淀剂作用后，进行中段沉淀，回收脱干化后的酸化物污泥用于冶金辅料；二级上清液继续与絮凝剂作用，进行末端沉淀，得到可用作建材原料的钙盐污泥；酸性废水经三段沉淀后，最终的三级上清液经水质调节、砂滤后达标排放。本发明具有投资少、废水处理成本低、维护方便等优点，不仅可有效利用不锈钢企业的废弃铁屑，还可大大降低后续的废水处理成本和运行负荷。
1. 一种不锈钢冷轧酸洗废水处理方法，其包括如下步骤：

 1) 废水经过铁屑滤池，进行微电解作用和一级还原反应

 所述的铁屑滤池采取底部进水，顶部出水的动态上流过滤方式，铁屑盛放在层叠的浅盘构筑物中；

 所述铁屑滤池，滤池内铁屑与待处理废水量之比 1:50～1:1000，废水停留时间为 15～50min，经铁屑滤池处理后，出水 pH 值为 3.0～5.0，氧化还原电位 ORP 为 300～360mv；

 2) 铁屑滤池出水进入还原池，与还原剂进行二级化学还原

 所述的还原剂为亚硫酸盐，连二亚硫酸钠，或硫代硫酸钠，还原剂的浓度为 2～10wt%；经还原后，出水的 pH 值 2.0～3.5，氧化还原电位为 200～350mv；

 3) 还原池出水与中和剂进行曝气反应后，进入前段沉淀池，池底重金属污泥经浓缩、脱水干化后回收

 所述的中和剂为 NaOH、KOH 中的一种，浓度为 5.0～20wt%；曝气池曝气强度为：

 0.5～5m³ 空气/ m³ 废水 • h；曝气池，出水 pH 值 7.0～9.0；

 4) 前段沉淀池的上清液与沉淀剂继续作用后，进入中段沉淀池，池底氟化物污泥经浓缩、脱水干化后回收

 所述的沉淀剂为石灰石粉和铝盐、磷酸盐中一种或两种的组合，三者的重量之比为

 1:0～0.1:0～0.1；石灰石乳液的浓度为 1～15wt%；铝盐和磷酸盐的浓度均为

 0.001～0.1wt%；沉淀反应后，出水 pH 值 8.0～9.5；

 5) 中段沉淀池的上清液与絮凝剂继续作用后，进入末段沉淀池，池底钙盐污泥经浓缩、脱水干化后回收

 所述的絮凝剂为 Ca(OH)₂ 和 PAM 的组合，其中，Ca(OH)₂ 浓度为 1～10wt%；PAM 的浓度为 0.001～3.0wt%；所述的絮凝剂中，Ca(OH)₂ 和 PAM 的重量比为 1:0.001～0.2；

 沉淀反应后，出水 pH 值 10.0～11.5；

 6) 末段沉淀池的上清液，经水质酸碱调节，砂滤后，达标外排。

2. 如权利要求 1 所述的不锈钢冷轧酸洗废水处理方法，其特征是，铁屑滤池采取一用一备，或一用多备。

3. 如权利要求 1 所述的不锈钢冷轧酸洗废水处理方法，其特征是，所述的铁屑盛放在层叠的浅盘构筑物中，浅盘共有 2～20 层，盘底铺设有含碳粒料，盘内铁屑厚度为 10～200mm，空隙率为 30～70%，浅盘动态加入或移出。

4. 如权利要求 1 所述的不锈钢冷轧酸洗废水处理方法，其特征是，所述的铁屑为来自不锈钢冷轧工艺产生的酸再生铁粉，或浊循环水污泥，或抛丸铁粉，或氧化铁鳞中的一种以上，其全铁含量大于 40wt%。

5. 如权利要求 1 所述的不锈钢冷轧酸洗废水处理方法，其特征是，铁屑滤池滤料由铁屑、活性炭颗粒和多孔陶瓷填料构成，三者的比例为：1:0～0.2:0.3～0.7。

6. 如权利要求 1 所述的不锈钢冷轧酸洗废水处理方法，其特征是，所述铁屑滤池底部设有曝气装置，曝气均匀，曝气强度为：1～10m³ 空气/ m³ 废水 • h。

7. 如权利要求 1 所述的不锈钢冷轧酸洗废水处理方法，其特征是，铁屑在装入滤池之前，根据铁屑的来源、数量和化学成分，需要进行活化处理，其一般工序包括：碱液浸泡
10～30min除油，碱液浓度为5～20％，冲洗至pH值呈中性后，用酸液浸泡10～30min除锈，酸液浓度为1～5％；为缩短活化时间，对铁屑小火加热并保温在60～80℃；滤料长时间运行效能降低后，取出后重复其活化处理工序，或作为冶金工序的二次资源回收利用。

8. 如权利要求3所述的不锈钢冷轧酸洗废水处理方法，其特征是，所述的含碳粒料为活性炭颗粒、或炭渣、或烟道灰、或焦炭、或无烟煤。

9. 如权利要求1所述的不锈钢冷轧酸洗废水处理方法，其特征是，所述的亚硫酸盐为亚硫酸氢钠、亚硫酸钠、焦亚硫酸钠中的一种。

10. 如权利要求1所述的不锈钢冷轧酸洗废水处理方法，其特征是，所述的沉淀剂中铝盐优选聚合氯化铝PAC，磷酸盐优选Na₃PO₄。

11. 如权利要求1所述的不锈钢冷轧酸洗废水处理方法，其特征是，所述的石灰石粉的细度为250目～325目。
说明书

一种不锈钢冷轧酸洗废水处理方法

技术领域：
本发明涉及一种重金属废水化学还原处理工艺，特别是指一种不锈钢冷轧酸洗废水处理方法。

背景技术
不锈钢因其优良的耐腐蚀性及良好的外观而广泛应用。在退火、正火、淬火、焊接等加工过程中，不锈钢表面常会产生黑色的氧化皮，其成分主要为NiO2, Cr2O3, Fe3O4, FeO • Cr2O3, FeO • Cr2O3, Fe2O3等致密型氧化物。这种氧化皮需要采用抛丸、高温碱洗、熔盐电解、混酸酸洗、多级漂洗等组合工序才能除去。在这些表面处理过程中，不仅产生酸再生铁粉、蚀除细水污泥、抛丸铁粉、氧化铁鳞等含铁物质，还会排放大量废酸液和多种酸洗废水，其中酸洗废水中因含有{}

TFe, 3 00 ~ 600mg/L ; Cr6+, 200 ~ 900 mg/L ; TCr, 300 ~ 1200 mg/L ; Ni2+, 200 ~ 400 mg/L ; Zn2+, 1 ~ 10mg/L ; Pb2+, 1 ~ 10mg/L ; Fe++, 400 ~ 5000 mg/L ; SO42-, 1000 ~ 100000mg/L ; pH值，1.5 ~ 2.5 ; SS, 1000 ~ 5000mg/L 等等。

由于不锈钢酸洗废水成分复杂（污染物成分以Cr6+, T. Cr, Ni2+, Fe2+, Fe3+, F-和SO42-等为主，并含有其它重金属离子），部分有害物质的含量远远高于国家排放标准，鉴于Cr6+, T. Cr, Ni2+的积累致病作用、F+对生物体的破坏和废水酸度对水体的影响，这些废水必须经过达标后才能排放。

目前，不锈钢生产企业酸洗废水的治理工艺主要有：化学还原法、铁氧体法、二氧化硫法、钠盐沉淀法、离子交换法、电解法、蒸发浓缩法、生化法、膜分离法。

技术成熟、运行维护方便等要求，国内外不锈钢生产企业大都将含铬镍等重金属废水、含氟废水、混酸废液、漂洗水等多路酸洗废水混合一处采取化学还原（还原剂多采用Na2SO3, Na2S2O3, FeSO4）- 沉淀（中和剂一般为石灰乳）法进行处理，为确保出水达标，往往需要投加过量的药剂（通常理论投加量的1.5倍以上），还原剂中Na2SO3, SO32-, SO42-等离子也与中和剂Ca(OH)2作用形成了大量CaSO4沉淀混入污泥中，这样以来，废水处理成本高、混合污泥量大、成分复杂，难以综合利用，被国家认定为危险废物（中国国家危险废物目录中编号为HW17）。如酸洗废水量为100m3/h的一家不锈钢厂，酸洗药剂、能耗、人力等昂贵成本，单单混合污泥的产量即超过1.5万t/a，这些污泥无法厂内利用，每年外委处理的费用高达数百万元。

中国专利CN101096276公开了一种不锈钢酸洗废水中铬、镍盐的提取方法，通过酸液浸取或能提取铬、镍盐产物，但整个湿法过程药剂费用高、排放大量的滤渣难以有效利用，且重金属浓缩液还存在二次污染的问题；中国专利CN101269889A公开了一种不锈钢酸洗废水的处理方法，使用多级还原与中和，工艺流程复杂，酸碱药剂存在反复添加的浪费，操作控制难，成本高，且污泥分类不完全，也难以达到综合利用的目的。中国专利CN1418831A公开了两段法处理有机金属酸性废水的方法，其实质是将中和段与絮凝段分开进行，克服了中和的不足，该技术的污泥仍然是混合污泥，不仅重金属污泥和钙盐污泥难以分开，氯化钙和硫酸钙两种污泥仍旧混合在一起，其结果是两类污泥均难以返回冶金工序。
综合利用。
[0007] 另一方面，除成分复杂、产量波动的酸洗废水外，不锈钢生产企业每日还产生大量的废弃铁屑，如能根据铁－碳微电解的原理，利用铁屑滤池作为酸洗废水预处理的单元，再将传统的化学还原－沉淀工序作重要改进，对废水进行分段处理，则新的工艺不仅可充分利用企业的废弃铁屑作为预处理剂，以废治废，充分发挥Fe、Fe³⁺和Fe⁵⁺的化学还原、吸附和絮凝作用，还能节省后续的还原剂、絮凝剂的投加量，并使得后续污泥更容易分类富集回收。从而达到了污染物源头减量和过程污泥分类回收和末端易于利用的目的。

发明内容
[0008] 针对常规不锈钢酸洗废水化学处理工艺中，药剂过量投加、处理成本高、混合污泥产量大且作为危险废物高价外委处理的困境，本发明的目的在于提出一种不锈钢冷轧酸洗废水处理方法，可以实现污染物源头减量和污泥分类回收的废水分段处理技术，具有投资少，废水处理成本低、维护方便等优点，不仅可有效利用不锈钢企业的废弃铁屑，大大降低了后续的废水处理成本和运行负荷，还将传统的混合污泥分成三类回收，从而真正为不锈钢冷轧污泥提供了妥善的利用途径。
[0009] 为达到上述目的，本发明的技术方案是。
[0010] 酸洗废水经铁屑滤池微电解和六价铬初始还原作用后，进入六价铬二级还原池；还原后的废水经中和曝气后，进入前段沉淀池，重金属污泥浓缩脱水，与铁屑滤池的用后铁屑回收用于不锈钢冷炼原料；一级上清液与沉淀剂作用后，进行中段沉淀，回收脱水干化后的氯化物污泥用于冶金辅料；二级上清液继续与絮凝剂作用后，进行末段沉淀，得到可用作建材原料的钙盐污泥，酸性废水经三段沉淀后，最终的二级上清液经水质调节、砂滤后达标排放。
[0011] 具体地，本发明的一种不锈钢冷轧酸洗废水处理方法，其包括如下步骤：
[0012] 1）废水经过铁屑滤池，进行微电解作用和一级还原反应
[0013] 所述的铁屑滤池采取底部进水、顶部出水的动态上流过滤方式，铁屑盛放在层层堆叠的浅盘构筑物中；
[0014] 所述铁屑滤池，滤池内铁屑与待处理废水量之比 1：50～1：1000，废水停留时间为 15～50min，经铁屑滤池处理后，出水 pH 值为 3.0～5.0；氧化还原电位 ORP 为 300～360mv；
[0015] 2）铁屑滤池出水进入还原池，与还原剂进行二级化学还原所述的还原剂为亚硫酸盐，还原剂的浓度为 2～10wt%；经还原后，出水的 pH 值 2.0～3.5，氧化还原电位为 200～350mv；
[0016] 3）还原池出水与中和剂进行曝气反应后，进入前段沉淀池，池底重金属污泥经浓缩、脱水干化后回收
[0017] 所述的中和剂为 NaOH、KOH 中的一种，浓度为 5.0～20wt%；所述的曝气池，曝气强度为 0.5～5m³（空气）/m²（废水）•h；所述的曝气池，出水 pH 值 7.0～9.0；
[0018] 4）前段沉淀池的上清液与沉淀剂继续作用后，进入中段沉淀池，池底氯化物污泥经浓缩、脱水干化后回收
[0019] 所述的沉淀剂为石灰石粉和铝盐、磷酸盐中一种或两种的组合，三者的重量之比
为 1:0～0.1:0～0.1;石灰石乳液的浓度为 1～15wt%,铝盐和磷酸盐的浓度均为 0.001～0.1wt%;沉淀反应后,出水 pH 值 8.0～9.5;

[0020] 5) 中段沉淀池的上清液与絮凝剂继续作用后,进入末段沉淀池,池底钙盐污泥经浓缩、脱水干化后回收

[0021] 所述的絮凝剂为 Ca(OH)₂和 PAM 的组合,其中,Ca(OH)₂浓度为:1～10wt%,PAM 的浓度为 0.001～3.0wt%;所述的絮凝剂中,Ca(OH)₂和 PAM 的重量比为 1:0.001～2

[0022] 沉淀反应后,出水 pH 值 10.0～11.5

[0023] 6) 末段沉淀池的上清液,经水质酸碱调节、砂滤后,达标外排。进一步,铁屑滤池采取一用一备,或一用多备。

[0024] 所述的铁屑盛放在层层堆叠的浅盘构筑物中,浅盘共有 2～20 层,盘底铺设有含碳粒料,盘内铁屑厚度为 10～200mm,空隙率为 30～70%,浅盘可动态加入或移出;

[0025] 所述的铁屑为来自不锈钢冷轧工艺产生的酸再生铁粉、或渣循环水污泥、或抛丸铁粉,或氧化铁鳞中的一种或一种以上,其铁含量大于 40wt%。

[0026] 铁屑滤池滤料由铁屑、活性炭颗粒和多孔陶瓷填料构成,三者的比例为,1:0～0.2:0.3～0.7

[0027] 所述铁屑滤池底部设有曝气装置,曝气均匀,曝气强度为:1～10m³(空气)/m³(废水)・h。

[0028] 铁屑在装入滤池之前,根据替铁屑的来源、数量和化学成分,往往需要进行活化处理,其一般工程序包括:碱液或废碱液浸泡 10～30min 除油,碱液浓度为 5～20%,冲洗至 pH 值呈中性后,用酸液或废酸液浸泡 10～30min 除锈,酸液浓度为 1～5%;为缩短活化时间,可对铁屑小火加热并保温在 60～80°C;滤料长时间运行效能降低后,可取出后重复过滤床活化处理程序,也成作为冶金工序的二次资源回收利用。

[0029] 所述的含碳粒料为活性炭颗粒、或煤渣、或煅白灰、或焦炭、或无烟煤。

[0030] 所述的亚硫酸盐为亚硫酸氢钠、亚硫酸钠、焦亚硫酸钠、连二亚硫酸钠,或硫代硫酸钠中的一种,优选为亚硫酸氢钠。

[0031] 所述的沉淀剂中铝盐优选聚合氯化铝 PAC,磷酸盐优选 Na₃PO₄。

[0032] 所述的石灰石膏粉的细度为 250 目~325 目。

[0033] 所述的水质调节剂为 NaOH 或 HCl 溶液。

[0034] 在本发明中,

[0035] 1) 废水经过铁屑滤池,进行微电解作用和一级还原反应

[0036] 1) 所述的铁屑滤池,采取一用一备,或一用多备;各滤池采取底部进水,顶部出水的动态上流过滤方式,铁屑盛放在层层堆叠的浅盘构筑物中,浅盘共有 2～20 层,盘底铺设有活性炭,盘内铁屑厚度为 10～200mm,空隙率为 30～70%,盘底可动态加入或移出。

[0037] 2) 所述的铁屑,为来自不锈钢冷轧工艺产生的酸再生铁粉、或渣循环水污泥、或抛丸铁粉、或氧化铁鳞等全铁含量高于 40%的废弃含铁尘泥。

[0038] 3) 所述的铁屑滤池滤料由铁屑、活性炭颗粒和多孔陶瓷填料构成,三者的比例为,1:0～0.2:0.3～0.7。

[0039] 4) 所述铁屑滤池,底部设有曝气装置,曝气均匀,曝气强度为:1～10m³(空气)/m³(废水)・h。
【0040】所述铁屑滤池，滤池内铁屑与待处理废水量之比1：50～1：1000，废水停留时间为15～50min，经铁屑滤池处理后，出水PH值为3.0～5.0。

【0041】铁屑在装入滤池之前，根据铁屑的来源、数量和化学成分，往往需要进行活化处理，其一般工序包括：碱液或酸液浸泡（浓度为5～20%）10～30min除油，冲洗至PH值呈中性后，用酸液或废酸液（浓度为1～5%）浸泡10～30min除锈；为缩短活化时间，可对铁屑小火加热并保温在60～80℃，滤料长时间运行性能降低后，取出后重复其活化处理工序，也可作为冶金工序的二次资源回收利用。

【0042】滤池中的活性炭颗粒也可以用煤渣、烟道灰、焦炭、无烟煤等含碳料代替，但优选活性炭颗粒。

【0043】在铁屑滤池内，对酸洗废水进行曝气，增加废水中的溶解氧，既可加速铁屑溶解、强化微电池作用，又能促进铁屑表面物质的排除，为提高铁屑法处理效率提供了新的途径。但是溶解氧增加易使Fe^{2+}被氧化为Fe^{3+}或形成Fe(OH)₃沉淀，附着在滤料表面，而形成钝化板结的诱因。因此，调节池内氧的供给即曝气强度必须适量。这可以通过控制废水ORP取值300～360mv、PH取值3.0～5.0来实现，此时废水Fe的形态以Fe、Fe^{2+}为主。在微电解反应过程中阳极产物Fe^{2+}化学活性很高，可迅速将废水中的Cr^{6+}还原成Cr^{3+}，同时还可以与废水中溶解氧反应生成Fe(OH)₃，但在酸性条件下，Fe(OH)₃将很快溶解。

【0044】本阶段可将50～80%的六价铬还原成三价铬，同时废水中大量增加的Fe^{2+}将作为后续沉淀过程的絮凝剂，富集回收于前段沉淀污泥中。实践表明，前置铁屑滤池作为预处理单元，可使前段污泥中全铁的百分比含量增加15～30wt%。

【0045】经铁屑滤池的处理，废水中的主要污染物为Cr^{3+}、Cr^{6+}、Ni^{2+}、Fe^{2+}、F⁻、SO₄^{2-}等，还含有少量的Fe^{3+}、Pb^{2+}、Zn^{2+}、Mn^{2+}、Cu^{2+}、Mg^{2+}、Al^{3+}等重金属离子。

【0046】铁屑滤池内的主要化学反应如下：

Fe+2H⁺ → Fe^{2+}+H₂↑

Fe+2Fe^{3+} → 3Fe^{2+}

Fe(OH)₃+3H⁺ → Fe^{3+}+3H₂O

6Fe^{3+}+Cr₂O₇^{2-}+14H⁺ → 6Fe^{3+}+2Cr^{3+}+7H₂O

2Fe+Cr₂O₇^{2-}+14H⁺ → 2Fe^{2+}+2Cr^{3+}+7H₂O

【0047】（2）铁屑滤池出水进入还原池，与还原剂进行二级化学还原作用

【0048】1）所述的还原剂为亚硫酸盐，可以为亚硫酸氢钠、亚硫酸钠、焦亚硫酸钠、连二亚硫酸钠、硫代硫酸钠中的一种，优选为亚硫酸氢钠，还原剂的浓度为2～10wt%。

【0049】2）经还原后，出水的PH值2.0～3.5，氧化还原电位为200～350mv。

【0050】3）所述的还原池，通过添加酸液或废酸液调节池内PH值。

【0051】此步骤主要的化学反应为（以亚硫酸氢钠为例）：

Cr₂O₇^{2-}+3H₂SO₃+5H⁺ → 2Cr^{3+}+3SO₄^{2-}+4H₂O

【0052】（3）还原池出水与中和剂进行曝气反应后，进入前段沉淀池，由沉淀池沉淀后回收

【0053】1）所述的中和剂，为NaOH、KOH中的一种，浓度为5.0～20wt%；

【0054】2）所述的曝气池，曝气强度为0.5～5m³/（空气）/m³（废水）•h；

【0055】3）所述的曝气池，池内设有搅拌装置，出水PH值7.0～9.0。
4) 所述的重金属污泥，以含铁、镍、铬等重金属的氢氧化物为主，经浓缩、脱水干化后，与铁屑滤池的用后铁屑可合并一处，作为不锈钢冶金原料回收利用。

5) 在前段反应池内，大量的 Fe²⁺ 生成进入反应池，随着废水碱性增强，在曝气的作用下，大部分 Fe²⁺ 转化成 Fe³⁺，并发挥络合吸附和絮凝的作用，与添加的碱性中和剂协同作用，在 pH 值为 7.0 ～ 9.0，将主要重金属离子以氢氧化物沉淀形式从废水中去除。

6) 经曝气池和前段沉淀池的处理，废水中 90% 以上的重金属离子，如 Cr³⁺、Ni²⁺、Fe³⁺、Pb²⁺、Zn²⁺、Mn²⁺、Cu²⁺、Mg²⁺、Al³⁺ 等，因络合沉淀作用而除去，上清液中除含有极少量的重金属离子（小于 10 wt%）外，主要成分为 Ca²⁺、Na⁺、F⁻、SO₄²⁻ 等。

此步骤的主要化学反应如下：

- Cr³⁺+3OH⁻ → Cr(OH)₃↓
- Ni²⁺+2OH⁻ → Ni(OH)₂↓
- Fe³⁺+3H₂O → Fe(OH)₃↓
- Pb²⁺+2OH⁻ → Pb(OH)₂↓
- Zn²⁺+2OH⁻ → Zn(OH)₂↓
- Mn²⁺+2OH⁻ → Mn(OH)₂↓
- Cu²⁺+2OH⁻ → Cu(OH)₂↓
- Fe²⁺+2OH⁻ → Fe(OH)₂↓
- Mg²⁺+2OH⁻ → Mg(OH)₂↓
- Al³⁺+3OH⁻ → Al(OH)₃↓

(4) 前段沉淀池的上清液与沉淀剂继续作用后，进入中段沉淀池，池底沉积物污泥经浓缩、脱水干化后回收

1) 所述的沉淀剂为石灰石粉和铝盐、磷酸盐中一种或两种的组合，三者的重量之比为 1：0.1～0.3：0.1 ；石灰石乳液的浓度为 1～15 wt% ，铝盐和磷酸盐的浓度为 1000～1 wt %

2) 所述的沉淀剂中，石灰石粉的细度为 250 目～325 目；

3) 所述的沉淀剂中，铝盐优选聚合氯化铝 (PAC) ，磷酸盐优选 Na₃PO₄；

4) 沉淀反应后，出水 pH 值 8.0～9.5；

5) 所述的氟化物污泥，以 CaF₂ 成分为主，含有少量 CaSO₄，经浓缩、脱水干化后可作为保护渣、保温剂等冶金辅料。

6) 在中段沉淀池的碱性条件下，石灰石乳液、铝盐和磷酸盐都有相当的络合吸附、絮凝共沉能力，可去除废水中的多种污染物和分散杂质，尤其是联合使用钙盐与铝盐或磷酸盐后，显著提高除氟效果，使出水的氟含量更低，主要原因是形成了新的更难溶的化合物。如钙盐与磷酸盐合用时，生成 Ca₅(PO₄)₃F 和 Ca₅(PO₄)₃F·nCaF₂ 沉淀；钙盐与铝盐合用时，形成一种由 Ca₅Al₃ 与 F₃ 组成的络合物沉淀。这些由多种元素组成的氟化物，比单一元素组成的氟化物具有更小的溶解度。

7) 经中段沉淀池的处理，废水中 80% 以上的 F⁻ 和 10～20% 的 SO₄²⁻ 被沉淀除去，上清液中除含有极少量 F⁻ 之外，主要成分为 Ca²⁺、Na⁺、SO₄²⁻ 等，这是因为相对于氟化钙，硫酸钙溶解度较高，微溶于水，沉淀过程的推动力较弱，使用常规的沉淀手段难以将其沉淀下来。

8) 此步骤主要的化学反应为：
Ca²⁺+2F⁻ → CaF₂ ↓ (K_{sp} = 3.45 \times 10^{-11})
F⁻+5Ca²⁺+3PO₄³⁻ → Ca₅(PO₄)₃F ↓
(2n+1)F⁻+(5+n)Ca²⁺+3PO₄³⁻ → Ca₅(PO₄)₃F·nCaF₂ ↓
xCa²⁺+yAl³⁺+zF⁻ → [CaₓAlᵧFz] ↓

（5）中段沉淀池的上清液与絮凝剂继续作用后，进入末段沉淀池，池底钙盐污泥经浓缩、脱水干化后回收。

1）所述的絮凝剂为Ca(OH)₂和PAM的组合，其中，Ca(OH)₂浓度为：1 ~ 10wt.%，PAM的浓度为：0.001 ~ 3.0wt.%；
2）所述的絮凝剂中，Ca(OH)₂和PAM的比为：1：0.001 ~ 0.2；
3）沉淀反应后，出水PH值：10.0 ~ 11.5；
4）所述的钙盐污泥，以CaSO₄化石为多，含有少量CaF₂，经浓缩、脱水干化后可作为水泥缓凝剂、路基填料、石膏板添加剂等建材原料。

在末段沉淀池中，由CaSO₄的溶解量较大，更难以沉淀下来；因此，根据出水水质控制要求，可随时调整絮凝剂Ca(OH)₂和PAM的用量，将硫酸钙基本沉淀下来。

另外，经过中段沉淀池、末段沉淀池，废水中残留的极少量重金属离子也会随氟化物污泥和钙盐污泥沉淀下来，但由于重金属离子含量极低，并不影响后续污泥的综合利用。

此步骤主要的化学反应为：
Ca²⁺+SO₄²⁻ → CaSO₄ ↓ (K_{sp} = 4.93 \times 10^{-5})

（6）末段沉淀池的上清液，经水质酸碱调节、砂滤后，达标外排。

所述的水质调节剂为NaOH或HCl溶液。

本发明的优点效果：
不锈钢冷轧酸洗废水的常规处理工艺为：废水经两级化学还原后，过量投加石灰乳进行沉淀作用，废水达标排放，污泥经浓缩压滤后外委处理。其缺点是：①为适应废水成分的变化，确保出水达标，石灰乳的投加量往往是理论需要量的1.5倍以上，由此抬高了处理成本（药剂用量大、设备能耗高、装置占地大等），并大大增加了混合污泥发生量；②还原剂采用Na₂SO₃、Na₂S、FeSO₄等亚铁盐或亚硫酸盐，在将六价铬还原为三价铬的同时，还原剂中HSO₃⁻、S₂O₃²⁻、SO₂⁻⁻等离子与中和剂Ca(OH)₂作用形成了大量CaSO₄沉淀混入污泥中，增加了后续污泥的产量；③混合污泥中同时含有重金属氢氧化物污泥、钙盐污泥和氟化物污泥，综合利用难度大，且有二次污染的风险；④混合污泥需请有资质的厂家专门处理或处置，为此将花费高昂的外委处理费，同时造成了有价资源的流失。

针对传统模式的缺点，本发明采用的废水分段处理工艺，可以有效实现污染物源头减量和污泥分类回收利用，其特点如下：

①前置铁屑滤池作为预处理单元，具有减少后续常规还原剂用量、促进重金属氢氧化物沉淀过程、提高重金属污泥铁品位和减少后续硫酸盐污泥发生量等四种作用；在铁屑滤池内，控制废水ORP取值300 ~ 3600mv、PH值取值3.0 ~ 5.0，使得铁屑中Fe以Fe²⁺形态为主；通过微电解作用，在铁屑滤池预处理阶段可将50 ~ 80%的六价铬还原成三价铬，同时废水中大量增加的Fe²⁺还将作为后续沉淀过程的絮凝剂，促进重金属氢氧化物污泥的沉淀过程。实验表明，前置铁屑滤池作为预处理单元，可使前段污泥中全铁的百分比含量增加15 ~ 30wt.%，更易于后续的综合利用；而由于前一工序采取了铁屑滤池的初步还原作
用，在二级还原池中，不仅所需亚硫酸盐用量仅为传统工艺的 20 ～ 50 wt %，后续硫酸盐污泥的含量也可减少 15 ～ 40 wt %，从而大大降低了污泥处理和处置费用。

【0104】②与传统工艺中只产生一种无法利用的混合污泥不同，本发明针对废水中化学成分的特点，通过控制工艺参数，实施三段处理，可获得三种污泥，这些污泥更易于综合利用：前段污泥以铁、铬、镍等重金属的氯氧化物沉淀为主，经浓缩干化后，干基中重金属元素的合计含量超过 35 wt %，可作为冶金原料进行利用；中段污泥的化学成分以氯化钙为主，干基含量超过 50 wt %，可用水解保护渣、水垢剂、保湿剂等冶金辅料；后段污泥的化学成分以硫酸盐为主，干基含量超过 50 wt %，可作为水泥缓凝剂、路基填料、石膏板添加剂等建材原料。

【0105】③本发明可充分利用不锈钢企业的来源广泛、价格低廉的废弃铁屑所构建的微电解铁屑滤池，代替传统的一级还原池，具有以废治废的特点，铁屑滤池对废水的缓冲作用强，可还原一半以上的六价铬，同时增加了废水中 Fe^{2+} 的含量，代替了传统的一级化学还原池，降低了后续工艺的处理成本和运行负荷。

【0106】④在本发明中，酸洗废水经三段处理后，污泥产量比传统工艺可减少 15 ～ 40 wt %；在废水处理过程中，因为废水 PH 值是平稳上升的，节约了传统工艺中因反复调整 PH 值所需的药剂费用。

【0107】⑤本发明融合了微电解还原、化学还原、络合吸附、中和沉淀等工艺，能同时去除多种重金属离子和氟离子、硫酸根离子，具有工艺简单、基建投资少、处理效果好、成本低廉及操作方便等优点，也适用于有氧化冶金工业、电镀工业、线路板工业等重金属废水的处理过程。

附图说明
【0108】图 1 为本发明不锈钢冷轧酸洗废水分段处理的工艺流程示意图。

具体实施方式
【0109】下面结合附图对本发明的实施过程作具体说明：
【0110】参见图 1，本发明的一种不锈钢冷轧酸洗废水处理方法，其包括如下步骤：
【0111】1）酸洗废水经过铁屑滤池 1，进行微电解作用和一级还原反应
【0112】所述的铁屑滤池采取底部进水、顶部出水的动态上流过滤方式，铁屑盛放在层层堆叠的浅盘构筑物中；
【0113】所述铁屑滤池，滤池内铁屑与待处理废水量之比 1 : 50 ～ 1 : 1000，废水停留时间为 15 ～ 50 min，经铁屑滤池处理后，出水 PH 值为 3.0 ～ 5.0；氧化还原电位 ORP 为 300 ～ 360 mv；
【0114】2）铁屑滤池出水进入还原池 2，与还原剂进行二级化学还原
【0115】所述的还原剂为亚硫酸盐，还原剂的浓度为 2 ～ 10 wt %；经还原后，出水的 PH 值 2.0 ～ 3.5，氧化还原电位为 200 ～ 350 mv；
【0116】3）还原池出水与中和剂进行曝气反应后，进入前段沉淀池 4，池底重金属污泥经浓缩、脱水干化后回收 9
【0117】所述的中和剂为 NaOH、KOH 中的一种，浓度为 5.0 ～ 20 wt %；所述的曝气池 3，曝气强度为 0.5 ～ 5 m^{3}/(空气) • m^{3}(废水) • h；所述的曝气池 3，出水 PH 值 7.0 ～ 9.0；
[0118] 4) 前段沉淀池4的上清液与沉淀剂继续作用后, 进入中段沉淀池5, 池底氯化物污泥经浓缩、脱水干化后回收 10

[0119] 所述的沉淀剂为石灰石粉和铝盐、磷酸盐中一种或两种的组合, 三者的重量之比为 1:0.1:0.1; 石灰石乳液的浓度为 1~15wt%, 铝盐和磷酸盐的浓度均为 0.001~0.1wt%; 沉淀反应后, 出水 PH 值 8.0~9.5;

[0120] 5) 中段沉淀池5的上清液与絮凝剂继续作用后, 进入末段沉淀池6, 池底钙盐污泥经浓缩、脱水干化后回收 11

[0121] 所述的絮凝剂为 Ca(OH)₂和 PAM 的组合, 其中, Ca(OH)₂浓度为 1~10wt%, PAM 的浓度为 0.001~3.0wt%, 所述的絮凝剂中, Ca(OH)₂和 PAM 的重量比为 1:0.001~0.2;

[0122] 沉淀反应后, 出水 PH 值 10.0~11.5;

[0123] 6) 末段沉淀池6的上清液, 进入上清液中和池7, 经水质酸碱调节、砂滤池8砂滤后, 达标外排。

[0124] 实施例 1

[0125] 选用来自不锈钢冷轧工序的抛丸铁粉, 经 10%浓度的 NaOH 碱液浸泡 30min 除油后, 冲洗至 PH 值呈中性后, 用 3%的 HCl 酸液浸泡 30min 除锈, 经活化处理后, 与活性碳颗粒、多孔陶瓷填料按照 1:0.2:0.3 的比例混合, 构成铁屑滤池的滤料; 铁屑滤池采取一用一备, 各滤池采取底部进水, 顶部出水的动态上流过滤方式; 铁粉放置在层层堆叠的浅盘构筑物中, 浅盘共有 6 层, 盘底滤料铺设厚度为 200mm, 浅盘可动态加入或移出。将 0.01m³/h 的酸洗废水引入铁屑滤池, 采取试验用曝气头曝气, 曝气强度为 10m³/(空气)/m²(废水)•h, 滤池内铁屑与待处理废水量之比 1:50, 废水停留时间为 15min, 经铁屑滤池处理后, 出水 PH 值为 3.5。氧化还原电位 (ORP) 为 320~350mv。

[0126] 废水经过铁屑滤池的微电解作用后, 出水进入还原池, 选择亚硫酸氢钠为还原剂, 浓度为 10%, 经二级还原后, 出水的 PH 值为 2.5, 氧化还原电位为 220mv。

[0127] 还原池出水与 5.0%浓度的 NaOH 碱液进行中和曝气, 曝气强度为 5m³/(空气)/m²(废水)•h, 出水 PH 值为 8.0, 进入前段沉淀池, 池底重金属污泥经浓缩、脱水干化后回收;

[0128] 前段沉淀池的上清液与沉淀剂 (由石灰石粉和 PAC 组成, 石灰石粉细度为 300 目, 乳液浓度为 10%; PAC 浓度为 0.1%, 石灰石粉和 PAC 的重量之比为 1:0.1) 继续作用后, 进入中段沉淀池, 控制池内 PH 值为 9.0, 一级上清液进入中段沉淀池, 池底氯化物污泥经浓缩、脱水干化后回收;

[0129] 中段沉淀池的上清液与絮凝剂 (絮凝剂由 Ca(OH)₂和 PAM 组成, 两者浓度分别为 10%和 1%, 质量之比为 1:0.2) 继续作用后, 控制池内废水 PH 值为 11.5, 二级上清液进入末段沉淀池, 池底钙盐污泥经浓缩、脱水干化后回收;

[0130] 末段沉淀池的三级上清液, 经水质酸碱调节, 砂滤后, 达标外排。

[0131] 经如上所述的工艺后, 不锈钢酸洗废水的分段处理效果如表 1、表 2 所示, 由表 1、表 2 可见, 经铁屑滤池、还原池、中和曝气池和三级沉淀池之后, 出水水质达到国家排放标准, 原先混合污泥中的有用元素均在三段分类污泥中得到了有效回收。重金属污泥中 Fe, Cr, Ni 三种重金属元素的合计含量为 36.8%, 且杂质元素含量低, 经烘干焙烧后可直接作为不锈钢原料利用; 氯化物污泥中 CaF₂的折算含量为 58.3%; 钙盐污泥中 CaSO₄的折
算含量为 52.7%。

[0132] 此外，参照传统工艺，一周内得到混合泥浆 2.4kg；采用本发明，重金属污泥
(0.52kg)、氯化物污泥 (0.84kg) 和钙盐污泥 (0.44kg) 总共得到 1.8kg，比传统污泥少了
25%。

[0133] 表 1 不锈钢酸洗废水中主要污染物的去除效果

<table>
<thead>
<tr>
<th>指标 (mg/L)</th>
<th>TFe</th>
<th>Cr⁺⁺⁺</th>
<th>TCr</th>
<th>Ni⁺⁺⁺</th>
<th>Zn⁺⁺⁺</th>
<th>Pb⁺⁺⁺</th>
<th>SO₄²⁻</th>
<th>F</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>废水处理前</td>
<td>350</td>
<td>800</td>
<td>1050</td>
<td>300</td>
<td>8.5</td>
<td>4.5</td>
<td>5000</td>
<td>1200</td>
<td>2320</td>
</tr>
<tr>
<td>废水处理后</td>
<td>2.32</td>
<td>0.23</td>
<td>0.55</td>
<td>0.15</td>
<td>0.1</td>
<td>0.1</td>
<td>120</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>

[0135] 表 2 不锈钢酸洗废水分段处理后的三类污泥的元素分析（归一化法）

<table>
<thead>
<tr>
<th>指标 (%)</th>
<th>Fe</th>
<th>Cr</th>
<th>Ni</th>
<th>Zn</th>
<th>Pb</th>
<th>Ca</th>
<th>Al</th>
<th>S</th>
<th>F</th>
<th>其它</th>
</tr>
</thead>
<tbody>
<tr>
<td>重金属污泥</td>
<td>28.2</td>
<td>1.2</td>
<td>7.4</td>
<td>0.5</td>
<td>0.2</td>
<td>12.2</td>
<td>1.5</td>
<td>1.5</td>
<td>8.5</td>
<td>38.8</td>
</tr>
<tr>
<td>氯化物污泥</td>
<td>8.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
<td>24.1</td>
<td>3.5</td>
<td>3.0</td>
<td>28.4</td>
<td>32.0</td>
</tr>
<tr>
<td>钙盐污泥</td>
<td>2.5</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>35.0</td>
<td>1.5</td>
<td>12.4</td>
<td>2.8</td>
<td>45.7</td>
</tr>
</tbody>
</table>

[0137] 实施例 2

[0138] 选用来自不锈钢冷轧工序的酸再生铁粉，经 10%浓度的 NaOH 碱液浸泡 30min 除油
后，冲洗至 PH 值呈中性后，用 3%的 HCl 酸液浸泡 30min 除锈，经活化处理后，与活性炭颗粒
多孔陶瓷填料按照 1：0.1：0.5 的比例混合，构成铁屑滤池的滤料；铁屑滤池采取一
用两备，各滤池采取底部进水、顶部出水的动态上流过滤方式；铁粉盛放在层层堆叠的浅盘
构筑物中，浅盘各有 10 层，底基滤料铺设厚度为 10mm，浅盘可动态加入或移出。将 10m³/h 的
酸洗废水引入铁屑滤池，采取试验用曝气头曝气，曝气强度为 10m³/(空气)/m³(废水)·h，
滤池内铁屑与待处理废水量之比 1：500，废水停留时间为 30min，经铁屑滤池处理后，出水
PH 值为 3.0。氧化还原电位 (ORP) 为 330 ~ 360mv。

[0139] 废水经过铁屑滤池的微电解作用后，出水进入还原池，选择硫酸亚硫酸钠为还原剂，
浓度为 5%；经二级还原后，出水的 PH 值为 3.0，氧化还原电位为 280mv。

[0140] 还原池出水与 5.0%浓度的 NaOH 碱液进行中和曝气，曝气强度为 0.5m³/(空气)/
m³(废水)·h，出水 PH 值为 7.0，进入前段沉淀池，池底重金属污泥经浓缩、脱水干化后回
收；

[0141] 前段沉淀池的上清液与沉淀剂（由石灰石粉和 PAC、磷酸钠组成，石灰石粉细度为
300 目，乳液浓度为 10%；PAC 和磷酸钠的浓度均为 0.1%，石灰石粉和 PAC、磷酸钠的重量
之比为 1：0.1：0.05）继续作用后，进入中段沉淀池，控制池内 PH 值为 9.5，一级上清液
进入中段沉淀池，池底氯化物污泥经浓缩、脱水干化后回收；
说明书

[0142] 中段沉淀池的上清液与絮凝剂（絮凝剂由 Ca(OH)₂ 和 PAM 组成，两者浓度分别为 5% 和 0.5%，质量之比为 1：0.1）继续作用后，控制池内废水 PH 值为 11.0，二级上清液进入末段沉淀池，池底钙盐污泥经浓缩、脱水干燥后回收；

[0143] 末段沉淀池的三级上清液，经水质酸碱调节，砂滤后，达标外排。

[0144] 经如上所述的工艺后，不锈钢酸洗废水的分段处理效果如表 3、表 4 所示，由表 3、表 4 可见，经铁屑滤池、还原池、中和曝气池和三级沉淀池之后，出水水质达到国家排放标准，原先混合污泥中的有害元素均在三段分类污泥中得到了有效回收。重金属污泥中 Fe、Cr、Ni 三种重金属元素的合计含量为 35.8%，且杂质元素含量低，经烘干烧后可直接作为不锈钢冶金原料利用；氟化物污泥中 CaF₂ 的折算含量为 54.4%；钙盐污泥中 CaSO₄ 的折算含量为 57.0%。

[0145] 此外，参照传统工艺，一周内得到混合污泥 2.8t；采用本发明，重金属污泥（0.78t）、氟化物污泥（1.04t）和钙盐污泥（0.65t）总共得到 2.27t，比传统污泥少了 18.9%。

[0146] 表 3 不锈钢酸洗废水中主要污染物的去除效果

<table>
<thead>
<tr>
<th>指标 (mg/L)</th>
<th>Fe</th>
<th>Cr⁶⁺</th>
<th>TCr</th>
<th>Ni²⁺</th>
<th>Zn²⁺</th>
<th>Pb²⁺</th>
<th>SO₄²⁻</th>
<th>F⁻</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>废水处理前</td>
<td>550</td>
<td>900</td>
<td>1110</td>
<td>550</td>
<td>6</td>
<td>10.5</td>
<td>6500</td>
<td>850</td>
<td>4050</td>
</tr>
<tr>
<td>废水处理后</td>
<td>0.57</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>35</td>
<td>45</td>
</tr>
</tbody>
</table>

[0148] 表 4 不锈钢酸洗废水分段处理后的三类污泥的元素分析（归一化法）

<table>
<thead>
<tr>
<th>指标 (%)</th>
<th>Fe</th>
<th>Cr</th>
<th>Ni</th>
<th>Zn</th>
<th>Pb</th>
<th>Ca</th>
<th>Al</th>
<th>S</th>
<th>F</th>
<th>其他</th>
</tr>
</thead>
<tbody>
<tr>
<td>重金属污泥</td>
<td>25.8</td>
<td>1.6</td>
<td>8.4</td>
<td>0.4</td>
<td>0.1</td>
<td>10.2</td>
<td>0.5</td>
<td>1.5</td>
<td>6.5</td>
<td>45</td>
</tr>
<tr>
<td>氟化物污泥</td>
<td>5.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.1</td>
<td>0</td>
<td>23.1</td>
<td>3.5</td>
<td>4.0</td>
<td>26.5</td>
<td>37</td>
</tr>
<tr>
<td>钙盐污泥</td>
<td>2.5</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>35.0</td>
<td>1.5</td>
<td>13.4</td>
<td>3.8</td>
<td>43.7</td>
</tr>
</tbody>
</table>

[0150] 实施例 3

[0151] 选用来自不锈钢冷轧工序的酸再生铁粉和抛丸铁粉（各占一半），经 10% 浓度的 NaOH 碱液浸泡 30min 除油后，冲洗至 PH 值呈中性后，用 3% 的 HCl 酸液浸泡 30min 除锈，经活化处理后，与活性碳颗粒、多孔陶瓷填料按照 1：0.1：0.5 的比例混合，构成铁屑滤池的滤料，铁屑滤池采用一用一备，各滤池采取底部进水，顶部出水的动态上流过滤方式；铁粉盛放在层层堆叠的浅盘构筑物中，浅盘共有 12 层，盘底滤料铺设厚度为 50mm，浅盘可动态加入或移出。将 10m³/h 的酸洗废水引入铁屑滤池，采取试验用曝头曝气，曝气强度为 5m³(空气)/m³(废水)·h，滤池内铁屑与待处理废水量之比 1：1000，废水停留时间为 50min，经铁屑滤池处理后，出水 PH 值为 4.0。氧化还原电位 (ORP) 为 300～330mv。
废水经过铁屑滤消的微电解作用后，出水进入还原池，选择亚硫酸氢钠为还原剂，浓度为 5%，经二级还原后，出水的 pH 值为 3.5，氧化还原电位为 350mv。

还原池出水与 5.0% 浓度的 NaOH 碱液进行中和曝气，曝气强度为 3.5m³(空气)/m³(废水)•h，出水 PH 值为 9.0，进入前段沉淀池，池底重金属污泥经浓缩、脱水干化后回收；

前段沉淀池的上清液与沉淀剂（由石灰石粉和 PAC、磷酸钠组成，石灰石粉细度为 325 目，乳液浓度为 8%；PAC 和磷酸钠的浓度均为 0.05%，石灰石粉和 PAC、磷酸钠的重量之比为 1 : 0.05 : 0.02）继续作用后，进入中段沉淀池，控制池内 PH 值为 9.0，一级上清液进入中段沉淀池，池底氯化物污泥经浓缩、脱水干化后回收；

中段沉淀池的上清液与絮凝剂（絮凝剂由 Ca(OH)₂ 和 PAM 组成，两者浓度分别为 10% 和 0.05%，质量之比为 1 : 0.5）继续作用后，控制池内废水 PH 值为 10.0，二级上清液进入末段沉淀池，池底钙盐污泥经浓缩、脱水干化后回收；

末段沉淀池的三级上清液，经水质酸碱调节，砂滤后，达标外排。

经如上所述的工艺后，不锈钢酸洗废水的分段处理效果如表 5、表 6 所示，由表 5、表 6 可见，经铁屑滤消、还原池、中和曝气池和三级沉淀池之后，出水水质达到国家排放标准，原先混合污泥中的有价元素均在三段分类污泥中得到了有效回收。重金属污泥中 Fe, Cr, Ni 三种重金属元素的合计含量为 42.7%，且杂质元素含量低，经烘干焙烧后可直接作为不锈钢冷料原料利用；氟化物污泥中 CaF₂ 的折算含量为 52.3%；钙盐污泥中 CaSO₄ 的折算含量为 61.2%。

此外，参照传统工艺，一周内得到混合污泥 3.2t；采用本发明，重金属污泥 (0.90t)、氟化物污泥 (1.04t) 和钙盐污泥 (0.70t) 总共得到 2.64t，比传统污泥少了 17.5%。

表 5 不锈钢酸洗废水中主要污染物的去除效果

<table>
<thead>
<tr>
<th>指标 (mg/L)</th>
<th>TFe</th>
<th>Cr³⁺</th>
<th>TCr</th>
<th>Ni²⁺</th>
<th>Zn²⁺</th>
<th>Pb²⁺</th>
<th>SO₄²⁻</th>
<th>F</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>废水处理前</td>
<td>420</td>
<td>750</td>
<td>900</td>
<td>515</td>
<td>4.5</td>
<td>7.8</td>
<td>3240</td>
<td>720</td>
<td>3200</td>
</tr>
<tr>
<td>废水处理后</td>
<td>0.4</td>
<td>0.3</td>
<td>1.0</td>
<td>0.2</td>
<td>0</td>
<td>0.1</td>
<td>140</td>
<td>45</td>
<td>120</td>
</tr>
</tbody>
</table>

表 6 不锈钢酸洗废水分段处理后的三类污泥的元素分析（归一化法）

<table>
<thead>
<tr>
<th>指标 (%)</th>
<th>Fe</th>
<th>Cr</th>
<th>Ni</th>
<th>Zn</th>
<th>Pb</th>
<th>Ca</th>
<th>Al</th>
<th>S</th>
<th>F</th>
<th>其它</th>
</tr>
</thead>
<tbody>
<tr>
<td>重金属污泥</td>
<td>32.1</td>
<td>1.2</td>
<td>9.4</td>
<td>0.1</td>
<td>0</td>
<td>9.2</td>
<td>0.3</td>
<td>1.2</td>
<td>5.5</td>
<td>41</td>
</tr>
<tr>
<td>氟化物污泥</td>
<td>3.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0</td>
<td>24.5</td>
<td>2.5</td>
<td>5.5</td>
<td>25.5</td>
<td>38.3</td>
</tr>
<tr>
<td>钙盐污泥</td>
<td>1.5</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>33.5</td>
<td>1.5</td>
<td>14.4</td>
<td>4.5</td>
<td>44.5</td>
</tr>
</tbody>
</table>