(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2017/100456 Al

(43) International Publication Date 15 June 2017 (15.06.2017)

(51) International Patent Classification: *G02C 3/00* (2006.01) *G02C 5/14* (2006.01) *G02C 5/12* (2006.01)

(21) International Application Number:

PCT/US2016/06563 1

(22) International Filing Date:

8 December 2016 (08.12.2016)

(25) Filing Language:

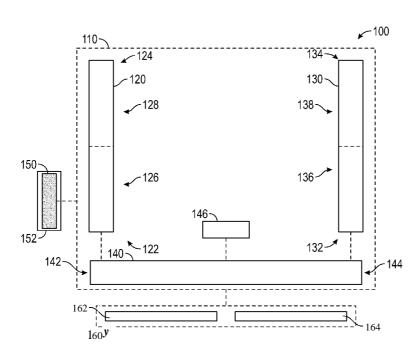
English

(26) Publication Language:

English

(30) Priority Data:

62/264,424 8 December 2015 (08. 12.2015)


US

- (71) Applicant: OAKLEY, INC. [US/US]; One Icon, Foothill Ranch, CA 92610 (US).
- (72) Inventors: MCCABE, Brock, Scott; One Icon, Foothill Ranch, CA 92610 (US). MEUNIER, Benjamin, John; One Icon, Foothill Ranch, CA 92610 (US). SAYLOR, Ryan; One Icon, Foothill Ranch, CA 92610 (US).
- (74) Agent: ALTMAN, Daniel, E.; Knobbe, Martens, Olson & Bear, LLP, 2040 Main Street, 14th Floor, Irvine, CA 92614 (US).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on nextpage]

(54) Title: EYEWEAR TRACTION DEVICES AND METHODS

(57) Abstract: Eyewear can be provided that include at least a support and a traction surface that allows the eyewear to be retained on a user's face. The support can include at least an earstem and a face. The traction surface can be coupled to a portion of the support. The traction surface can provide a greater amount of traction force before slipping when subject to forces in certain directions and can provide a lesser amount of traction force before slipping when subject to forces in other directions.

FIG. 1

Declarations under Rule 4.17:

Published:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(H))
- with international search report (Art. 21(3))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(Hi))

EYEWEAR TRACTION DEVICES AND METHODS

RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application No. 62/264,424, filed on December 8, 2015. The entire contents of the application identified above is incorporated by reference herein and made a part of this specification.

BACKGROUND

Field

[0002] The embodiments described herein relate generally to traction devices and methods for eyewear. In particular, some embodiments described herein relate to eyewear having traction devices which can assist in maintaining an eyewear on a head of a wearer in a particular position or orientation.

Background

[0003] There are numerous situations in which it is convenient and preferable to include a traction device on an eyewear to allow a user to more securely retain the eyewear on the user's head. In some situations, such as those involving active sports, it can be particularly advantageous to maintain an eyewear in place on the wearer's head in a particular position or orientation during periods of forceful movement.

SUMMARY

[0004] Accordingly, there is a need for traction devices and methods for eyewear. In some embodiments, the eyewear can include a support which can be carried on a head of a user and can support a lens in the field of view of a user. The support can include an earstem having an exterior surface which can be positioned proximate a lateral side of a user's head and a user's ear. The support can include a nosepiece having an exterior surface which can be positioned proximate a user's nose. The eyewear can include a traction surface on at least one of the earstem and the nosepiece. The traction surface can include a plurality of protrusions.

The plurality of protrusions can extend obliquely from the exterior surface on which the traction surface is located.

[0005] In some embodiments, the plurality of protrusions extending obliquely from the exterior surface can be more parallel with the exterior surface than perpendicular. In some embodiments, the plurality of protrusions extending obliquely from the exterior surface can be more perpendicular to the exterior surface than parallel. In some embodiments, the plurality of protrusions extending obliquely from the exterior surface can be generally equally perpendicular to the exterior surface as parallel.

[0006] In some embodiments, the traction surface can exert a traction force on a contact surface at a plurality of contact points within the contact surface, the traction force being configured to inhibit slipping of the eyewear on a user's head when worn. In some embodiments, at a contact point within the contact surface, the traction surface, when subject to a force in a first direction within a plane tangent to the contact surface at the contact point, can exert up to a first amount of traction force before slipping. In some embodiments, at a contact point within the contact surface, the traction surface, when subject to a force in a second direction within a plane tangent to the contact surface at the contact point, can exert up to a second amount of traction force before slipping. In some embodiments, the first amount of traction force can be greater than the second amount of traction force. In some embodiments, the plurality of protrusions extending obliquely from the exterior surface can extend in a direction with a component generally opposite the first direction.

[0007] In some embodiments, the traction surface can be on at least the nosepiece and the contact surface is at least a portion of the user's nose. In some embodiments, at one or more contact points within the contact surface, the first direction can extend generally downwardly and anteriorly relative to the user's nose and can form an acute angle with a first axis, the first axis being within a plane tangent to the contact surface at the one or more contact points and parallel to a horizontal axis. In some embodiments, the one or more contact points can include a majority of contact points within the contact surface.

[0008] In some embodiments, the traction surface can be on at least the earstem and the contact surface is at least a portion of the user's ear. In some embodiments, at one or more contact points within the contact surface, the first direction can extend generally

anteriorly relative to a user's ear. In some embodiments, the one or more contact points can include a majority of contact points within the contact surface.

In some embodiments, the traction surface can include a first portion and a [0009] second portion. In some embodiments, at a contact point within a first portion of a contact surface, the first portion of the traction surface, when subject to a force in a first direction within a plane tangent to the first portion of the contact surface at the contact point, can exert up to a first amount of traction force before slipping and, when subject to a force in a second direction within a plane tangent to the first portion of the contact surface at the contact point, can exert up to a second amount of traction force before slipping, wherein the first amount of traction force is greater than the second amount of traction force. In some embodiments, at a contact point within a second portion of the contact surface, the second portion of the traction surface, when subject to a force in a third direction within a plane tangent to the second portion of the contact surface at the contact point, can exert up to a third amount of traction force before slipping and, when subject to a force in a fourth direction within a plane tangent to the second portion of the contact surface at the contact point, can exert up to a fourth amount of traction force before slipping, wherein the third amount of traction force is greater than the fourth amount of traction force. In some embodiments, the first direction can be different from the third direction.

[0010] In some embodiments, the traction surface can be integrally formed on the support. In some embodiments, the traction surface can be formed from the same material as the material of the portions of the support adjacent the traction surface. In some embodiments, the traction surface can be formed on a traction member, wherein the traction member can be attached to the support. In some embodiments, the traction member can be removably attached to the support. In some embodiments, the traction member can not be removably attached to the support.

[0011] In some embodiments, the eyewear can include a support which can be carried on a head of a user and can support a lens in the field of view of a user. The support can include an earstem having an exterior surface which can be positioned proximate a lateral side of a user's head and a user's ear. The support can include a nosepiece having an exterior surface configured to be positioned proximate a user's nose. The support can include a

traction surface on at least one of the earstem and the nosepiece. The traction surface can exert a traction force on a contact surface at a plurality of contact points within the contact surface, the traction force being configured to inhibit slipping of the eyewear on a user's head when worn. The traction surface, when subject to a force in a first direction within a plane tangent to the contact surface at the contact point, can exert up to a first amount of traction force before slipping. The traction surface, when subject to a force in a second direction within a plane tangent to the contact surface at the contact point, can exert up to a second amount of traction force before slipping. The first amount of traction force is greater than the second amount of traction force.

[0012] In some embodiments, the traction surface can be on at least the nosepiece and the contact surface is at least a portion of the user's nose. In some embodiments, at one or more contact points within the contact surface, the first direction extends generally downwardly and anteriorly relative to the user's nose and forms an acute angle with a first axis, the first axis being within a plane tangent to the contact surface at the one or more contact points and parallel to a horizontal axis.

[0013] In some embodiments, the traction surface can be on at least the earstem and the contact surface is at least a portion of the user's ear. In some embodiments, at one or more contact points within the contact surface, the first direction extends generally anteriorly relative to a user's ear.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several examples of embodiments in accordance with the disclosure, and are not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through the use of the accompanying drawings.

[0015] FIGURE 1 illustrates a schematic of an embodiment of an eyewear having a traction surface on a traction member.

[0016] FIGURE 2A illustrates a schematic of an embodiment of an eyewear having a traction surface on a support.

- [0017] FIGURE 2B illustrates a schematic of another embodiment of an eyewear having a traction surface on a support.
- [0018] FIGURE 3 illustrates a schematic of another embodiment of an eyewear having a traction surface on a support.
- [0019] FIGURE 4 illustrates a perspective view of an embodiment of an eyewear worn on a user's head.
 - [0020] FIGURE 5 illustrates a front view of the eyewear of FIGURE 4.
- [0021] FIGURE 6 illustrates a schematic vertical, cross-sectional view of the eyewear of FIGURE 5 orthogonal to the y-axis.
- [0022] FIGURE 7 illustrates a zoomed, schematic view of the eyewear of FIGURE 4 along the box labeled A-A in FIGURE 5.
- [0023] FIGURE 8 illustrates a schematic view of another embodiment of a contact surface.
- [0024] FIGURE 9 illustrates a schematic view of another embodiment of a contact surface.
- [0025] FIGURE 10 illustrates a schematic view of the eyewear of FIGURE 4 positioned along a user's ear.
- [0026] FIGURE 11 illustrates a schematic view of an embodiment of a traction assembly.
- [0027] FIGURE 12 illustrates a perspective view of the traction assembly of FIGURE 11.
- [0028] FIGURE 13 illustrates a schematic view of another embodiment of a traction assembly.
- [0029] FIGURE 14 illustrates a perspective view of the traction assembly of FIGURE 13.
- [0030] FIGURE 15 illustrates a schematic view of another embodiment of a traction assembly.

[0031] FIGURE 16 illustrates a perspective view of the traction assembly of FIGURE 15.

DETAILED DESCRIPTION

[0032] The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the proceeding technical field, background, brief summary, or the following detailed description.

[0033] The present specification and drawings provide aspects and features of eyewear retention devices and methods, in the context of several embodiments of devices and methods. As used in the present specification and drawings, "eyewear" and "eyeglasses" are general terms intended to be used in accordance with their ordinary meanings. For example, these terms embrace any optical devices, such as those containing corrective lenses for defects in vision or lenses for such special purposes as filters for absorbing or blocking portions of the electromagnetic spectrum, providing physical shields for the eyes or making available other physical or optical functions for protective or visual assisting purposes. These embodiments are described and illustrated in connection with specific types of eyewear such as eyewear having dual lenses. However, it is to be understood that the features and concepts discussed herein, such as the traction surfaces, can be applied to other types of wearable devices including, but not limited to, eyewear having a single lens or no lens, goggles with or without lenses, helmets, outerwear such as apparel, jewelry such as earrings, bracelets and necklaces, watches, personal electronic devices such as a communication device, and the like. Moreover, it is also to be understood that although particular embodiments may be disclosed or shown in the context of frames having full orbitals, such embodiments can be used with frames having full or partial orbitals or rimless or faceless frames. In addition, particular features of the devices, systems, and methods should not be taken as limiting, and features of any one embodiment discussed herein can be combined with features of other embodiments as desired and when appropriate. Any feature, step, material, or structure described and/or illustrated in

any embodiment can be used with or instead of any other feature, step, material, or structure described and/or illustrated in any other embodiment. Anything in this specification can be omitted in some embodiments; no features described or illustrated in this specification are essential or indispensable.

[0034] Certain terminology may be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as "upper", "lower", "inner", "outer", "above", and "below" refer to directions in the drawings to which reference is made. Terms such as "anterior", "posterior", "right", "left", "right side", "left side" describe the orientation and/or location of portions of the component within a consistent but arbitrary support of reference which is made clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import. Similarly, the terms "first", "second", "third", and other such numerical terms referring to structures do not imply a sequence or order, or a requirement that all preceding structures be included, unless clearly indicated by the context.

Overview of Eyewear

[0035] Figures 1-3 are schematic illustrations of various embodiments of eyewear 100, 200, 300. As shown in the illustrated embodiments, the eyewear 100, 200, 300 can include one or more supports 110, 210, 310. In some embodiments, the supports 110, 210, 310 can be configured to be supported on a head of a user or wearer.

[0036] As shown in the illustrated embodiments, the eyewear 100, 200, 300 can also include one or more traction surfaces 150, 250a-c, 350a-c coupled to or formed on or integrated into the one or more supports 110, 210, 310. In some embodiments, the one or more traction surfaces 150, 250a-c, 350a-c can be configured to retain the eyewear 100, 200, 300 on the user's face and resist or reduce the likelihood of slippage and/or removability in undesired directions while not resisting or allowing a greater degree of slippage and/or removability in desired directions. This can be beneficial in that the eyewear 100, 200, 300 will be less likely to slip while still allowing a user's to relatively easily remove the eyewear from the user's face.

[0037] For example, the one or more traction surfaces 150, 250a-c, 350a-c can be configured to retain the eyewear 100, 200, 300 on the user's nose and resist or reduce the likelihood of slippage and/or removability in one or more directions generally anteriorly and/or downwardly relative to the user's nose while not resisting or increasing the likelihood of slippage or removability in one or more generally or substantially opposite directions. In this manner, the eyewear 100, 200, 300 is less likely to slip off the user's nose when being worn. Moreover, when a user wishes to remove the eyewear from the user's face in a direction generally posteriorly and/or upwardly relative to the user's nose, the user can comfortably do so with little to no resistance.

[0038] As another example, the one or more traction surfaces 150, 250a-c, 350a-c can be configured to retain the eyewear 100, 200, 300 on the user's ears and/or a lateral side of the user's head and reduce the likelihood of slippage in a direction generally anteriorly relative to the user's ears and/or the lateral side of the user's head or any other direction as desired. In this manner, the eyewear 100, 200, 300 is less likely to slip forward relative to the user's head when being worn. Moreover, when a user wishes to remove the eyewear from the user's head in a direction generally upwardly relative to the user's head, the user can comfortably do so with little to no resistance.

[0039] As shown in the illustrated embodiments, the eyewear 100, 200, 300, can also include one or more lenses 160, 260, 360.

Embodiment of Traction Surface on Traction Member

[0040] With reference first to Figure 1, an embodiment of an eyewear 100 is illustrated having a support 110. The support 110 can include a right earstem 120, a left earstem 130, a face 140, and a nosepiece 146. The right earstem 120 can include an anterior end 122, a posterior end 124, an anterior portion 126, and a posterior portion 128. The left earstem 130 can similarly include an anterior end 132, a posterior end 134, an anterior portion 136, and a posterior portion 138. The face 140 can include a right side 142 and a left side 144 and be configured to support a lens 160, such as a right lens 162 and left lens 164. In some embodiments, the face 140 can be configured to surround at least a portion or an entirety of

the periphery of the lens 160 such as lenses 162, 164. For example, the face 140 can include partial or full orbitals.

In some embodiments, the earstems, such as right and/or left earstems 120, [0041] 130, the face 140 and/or the nosepiece 146 can be fabricated using one or more metals, polymers, or other relatively stiff and/or resilient materials that can have desirable lens securing and stabilizing properties while nevertheless enabling the eyewear to provide desirable flexural properties in the earstems, such as right and/or left earstems 120, 130 thereof. For example, in some embodiments, steel such as stainless, titanium and its alloys, carbon fiber, plastic, aluminum, polymers such as acetate, polyurethane, polyurea, polycarbonate, PC-ABS, ABS, PVC, nylon 6, nylon 6-6, and nylonl2, and other such materials can be used in the earstems, such as right and/or left earstems 120, 130, the face 140, and/or the nosepiece 146 to provide superior mechanical properties while reducing the weight of the support 110. Any suitable metals, plastics or other rigid and/or resilient materials can be used to form the support 110 to provide exceptional rigidity, durability, and wear resistance. Nevertheless, various features and aspects disclosed herein can be used in eyewear fabricated from any material, e.g., plastic, acetate, composite, metal, etc., or any combination thereof. The lens 160, such as a right and/or left lens 162, 164, may take any of a number of configurations and can be formed of sheet plastic, molded plastic, glass, etc., as determined by the application of the lens.

As shown in the illustrated embodiment, the right earstem 120, the left earstem 130, and/or the nosepiece 146 can be coupled to the face 140. For example, the right earstem 120 can be coupled to the right side 142 of the face 140 at or proximate an anterior end 122 of the right earstem 120, the left earstem 130 can be coupled to the left side 144 of the face 140 at or proximate an anterior end 132 of the left earstem 130, and the nosepiece 146 can be coupled to a portion of the face 140 between the right and left sides 142, 144. In some embodiments, the right earstem 120, the left earstem 130, and/or the nosepiece 146 can be permanently affixed to the face 140. A permanent attachment of the earstems, such as right and/or left earstems 120, 130, and/or the nosepiece 146, to the face 140 may be accomplished, for example, through molding or thermoplastic bonding. In some embodiments, the right earstem 120, the left earstem 130, and/or the nosepiece 146 can be

rotatably coupled to the face **140** via a rotatable coupling such as, but not limited to, a snap fit coupling or fasteners including screws or pins or any other rotatable coupling as desired.

[0043] In some embodiments where the right and/or left earstems 120, 130 are rotatably coupled to the face 140, the right and/or left earstems 120, 130 can rotate from an open position, in which the eyewear 100 can be worn by a user, to a closed position, in which the eyewear 100 takes on a more compact form factor for storage, and vice versa.

[0044] With continued reference to the embodiment of eyewear 100 illustrated in Figure 1, the eyewear 100 can include a traction surface 150. As noted above, the traction surface 150 can be configured to retain the eyewear 100, on the user's face and resist or reduce the likelihood of removal or slippage in undesired directions. In some embodiments, the traction surface 150 can be positioned on a traction member 152 and form at least a portion of an exterior surface of the traction member 152. The traction surface 150 can extend entirely around the periphery of the traction member 152 or can extend partially around the periphery of the traction member 152 such as along a bottom portion of the traction member 152, an inwardly facing portion of the traction member 152, and/or an outwardly facing portion of the traction member 152. As shown in the illustrated embodiment, the traction member 152 can be a component separate from the support 110. The retention member 152 can be coupled to a portion of the support 110. For example, the retention system 150 can be coupled to the right earstem 120, the left earstem 130, the face 140, and/or a combination of these components of the support 110.

[0045] In some embodiments, the coupling between the traction member 152 and the support 110 can be such that the traction member 152 can be removable from the support 110. For example, the traction member 152 can be coupled to the support 110 using removable fasteners such as threaded screws, threaded bolts, and the like. As another example, the traction member 152 can be coupled to the support 110 using removable fasteners such as a clip. In some embodiments, the traction member 152 can be formed from a material which exerts some degree of tackiness or grip on a surface. For example, the traction member 152 can be formed from materials such as, but not limited to polymers, such as acetate, polyurethane, polyurea, polycarbonate, PC-ABS, ABS, PVC, Nylon 6, Nylon 6-6, Nylon 12, silicone, latex, and rubber, metals such as steel, titanium, titanium alloys, and

aluminum, composites, plastics, a combination of the above materials, and/or any other material or combination of materials as desired. In some embodiments, the materials can be 3D printed or injection molded. The traction member 152 can be retained on the support 110 via contact between the traction member 152 and the support 110. In some embodiments, the traction member 152 can be coupled to the portion of the support 110 using one or more permanent affixation methods such as, but not limited to, overmolding, one or more adhesives, and the like. In some embodiments, the traction member 152 can be unitarily formed with the portion of the support 110.

In some embodiments, the traction member 152 can have a length relative to another component of the eyewear 100 such as the support 110 or lens 160. For example, in some embodiments, the traction member 152 can have a length of between approximately 5% to approximately 60% of a length of an earstem, such as left and/or right earstems 120, 130, a length of between approximately 10% to approximately 50% of a length of an earstem, a length of between approximately 15% to approximately 40% of a length of an earstem, a length of between approximately 20% to approximately 30% of a length of an earstem, any sub-range within these ranges, or any percentage of the length of an earstem as desired, the length being a longitudinal length from an anterior end, such as anterior ends 122, 132, to a posterior end, such as posterior ends 124, 134. In some embodiments, the traction member 152 can have a length approximately equal to that of the posterior portion, such as posterior portions 128, 138. In some embodiments, the traction member 152 can have a length approximately equal to that of the nosepiece 146.

In some embodiments, the traction surface 150 can be configured to resist or to reduce or inhibit slippage between the support 110 and another surface in contact with the traction surface 150 such as, but not limited to, a user's skin in certain directions while resisting less or allowing a greater degree of slippage in other directions. In some embodiments where the traction surface 150 is positioned on the user's nose, the traction surface 150 can be configured such that the traction surface resists or reduces or inhibits slippage between the support 110 and the user's nose in a direction generally anteriorly and/or downwardly relative to the user's nose, while resisting less or allowing a greater degree of slippage in other directions, such as posteriorly and/or upwardly. As another example, in

some embodiments where the traction surface **150** is positioned on or adjacent the user's ears and/or a lateral side of the user's head, the traction surface **150** can be configured such that the traction surface resists or reduces or inhibits slippage between the support **110** and the user's ear and/or a lateral side of the user's head in a direction generally anteriorly relative to the user's head while resisting less or allowing a greater degree of slippage in other directions, such as posteriorly, upwardly, and/or downwardly.

Embodiment of Traction Surface on Support

[0048] With reference next to Figures 2A and 2B, an embodiment of an eyewear 200 is illustrated having a support 210. The eyewear 200 can include or share any or all of the components, features and/or characteristics described above in connection with eyewear 100.

[0049] The support 210 can include a right earstem 220, a left earstem 230, a face 240 and a nosepiece, such as nosepieces 246a, 246b. The right earstem 220 can include an anterior end 222, a posterior end 224, an anterior portion 226, and a posterior portion 228. The left earstem 230 can similarly include an anterior end 232, a posterior end 234, an anterior portion 236, and a posterior portion 238. The face 240 can include a right side 242 and a left side 244 and be configured to support a lens 260, such as a right lens 262 and left lens 264. In some embodiments, the face 240 can be configured to surround at least a portion or an entirety of the periphery of the lens 260 such as lenses 262, 264. For example, the face 240 can include partial or full orbitals.

[0050] In some embodiments, the earstems, such as right and/or left earstems 220, 230, the face 240 and/or the nosepieces 246a, 246b can be fabricated using one or more metals, polymers, or other relatively stiff and/or resilient materials that can have desirable lens securing and stabilizing properties while nevertheless enabling the eyewear to provide desirable flexural properties in the earstems, such as right and/or left earstems 220, 230 thereof. For example, in some embodiments, titanium, carbon fiber, plastic, aluminum, and other such materials can be used in the earstems, such as right and/or left earstems 220, 230, the face 240, and/or the nosepieces 246a, 246b to provide superior mechanical properties while reducing the weight of the support 210. Any suitable metals, plastics or other rigid and/or resilient materials can be used to form the support 210 to provide exceptional rigidity,

durability, and wear resistance. Nevertheless, various features and aspects disclosed herein can be used in eyewear fabricated from any material, e.g., plastic, acetate, composite, metal, etc., or any combination thereof. The lens **260**, such as a right and/or left lens **262**, **264**, may take any of a number of configurations and can be formed of sheet plastic, molded plastic, glass, etc., as determined by the application of the lens.

As shown in the illustrated embodiment, the right earstem 220, the left [0051] earstem 230, and/or the nosepieces 246a, 246b can be coupled to the face 240 and/or the lens 260. For example, the right earstem 220 can be coupled to the right side 242 of the face 240 at or proximate an anterior end 222 of the right earstem 220, the left earstem 230 can be coupled to the left side 244 of the face 240 at or proximate an anterior end 232 of the left earstem 230, and the nosepieces 246a, 246b can be coupled to a portion of the face 240 between the right and left sides 242, 244 and/or the lens 260 between lateral sides of the lens 260 or between two separate lenses, such as right and left lenses 262, 264. In some embodiments, the right earstem 220, the left earstem 230, and/or the nosepieces 246a, 246b can be permanently affixed to the face 240 and/or the lens 260. A permanent attachment of the earstems, such as right and/or left earstems 220, 230 and/or the nosepieces 246a, 246b, to the face 240 and/or the lens 260 may be accomplished, for example, through molding or thermoplastic bonding. For example, as shown in Figure 2A, the nosepiece 246a can be a portion of the face 240 itself. In some embodiments, such as that shown in Figure 2B, the nosepiece 246b can be coupled to the lens 260 without coupling to the face 240. In some embodiments, the right earstem 220, the left earstem 230, and/or the nosepiece 246a can be rotatably coupled to the face 240 via a rotatable coupling such as, but not limited to, a snap fit coupling or fasteners including screws or pins or any other rotatable coupling as desired.

[0052] In some embodiments where the right and/or left earstems 220, 230 are rotatably coupled to the face 240 and/or the lens 260, the right and/or left earstems 220, 230 can rotate from an open position, in which the eyewear 200 can be worn by a user, to a closed position, in which the eyewear 200 takes on a more compact form factor for storage, and vice versa.

[0053] With continued reference to the embodiment of eyewear 200 illustrated in Figures 2A and 2B, the eyewear 200 can include one or more traction surfaces 250a, 250b,

250c. As noted above, the traction surfaces 250a, 250b, 250c can be configured to retain the eyewear 200, on the user's face and resist or reduce the likelihood of removal or slippage in undesired directions. In some embodiments, the traction surfaces 250a, 250b, 250c can be coupled to the right earstem 220, the left earstem 230, and/or the nosepieces 246a, 246b respectively.

[0054] As shown in the illustrated embodiment, the traction surfaces 250a, 250b, 250c can be formed on portions of the support 210. For example, the traction surface 250a can be molded together with the right earstem 220, the traction surface 250b can be molded together with the left earstem 230, and/or the traction surface 250c can be molded together with the nosepieces 246a, 246b respectively. As such, one or more of traction surface 250a, 250b, 250c can be integrally formed with one or more components of the support 210 such that the one or more traction surfaces 250a, 250b, 250c can form a unitary structure with one or more components of the support 210. In some instances in which the traction surfaces 250a, 250b, 250c are molded together with one or more components of the support 210, the traction surfaces 250a, 250b, 250c can be monolithically formed from the same material as the components of the support 210 on which the traction surfaces 250a, 250b, 250c are formed. In some instances in which the traction surfaces 250a, 250b, 250c are molded together with one or more components of the support 210, the traction surfaces 250a, 250b, 250c can be formed from material different from the material of the components of the support 210 on which the traction surfaces 250a, 250b, 250c are formed. In some embodiments, one or more of the traction surfaces, such as traction surfaces 250a, 250b, can be separate from components of the support 210, such as earstems 220, 230. Such traction surfaces, for example, may be slipped over portions of the support 210, such as earstems 220, 230.

[0055] The traction surfaces 250a-c can extend entirely around the periphery of the components on which the traction surfaces 250a-c are formed or can extend partially around the periphery of the components on which the traction surfaces 250a-c are formed. For example, traction surface 250a can extend entirely around the periphery of the right earstem 220 or can extend partially around the periphery such as along a bottom portion of the right earstem 220, and/or an

outwardly facing portion of the right earstem **220.** The traction surface **250b** can include similar characteristics with respect to the left earstem **230.**

[0056] In some embodiments, the traction surfaces 250a, 250b, 250c can have lengths relative to one or more components of the eyewear 200 such as the support 210 or lens 260. For example, in some embodiments, the traction surface 250a can have a length of between approximately 5% to approximately 60% of a length of the right earstem 220, a length of between approximately 10% to approximately 50% of a length of the right earstem 220, a length of between approximately 15% to approximately 40% of a length of the right earstem 220, a length of between approximately 20% to approximately 30% of a length of the right earstem 220, any sub-range within these ranges, or any percentage of the length of the right earstem 220 as desired, the length being a longitudinal length from the anterior end 222 to the posterior end 224. In some embodiments, the traction surface 250a can extend at or proximate a posterior end 224 of the right earstem 220 and extend approximately to the midpoint of the right earstem 220. The traction surface 250b can have similar lengths relative to the left earstem 230. The traction surface 250c can have a length sufficient to extend along the entirety of the nosepieces 246a, 246b or a portion thereof.

[0057] In some embodiments, the traction surfaces 250a, 250b, 250c can be configured to resist or to reduce or inhibit slippage between the support 210 and another surface in contact with the traction surfaces 250a, 250b, 250c such as, but not limited to, a user's skin in certain directions while resisting less or allowing a greater degree of slippage in other directions. In some embodiments where the traction surface, such as traction surface 250c, is positioned on the user's nose, the traction surface can be configured such that the traction surface resists or reduces or inhibits slippage between the support 210 and the user's nose in a direction generally anteriorly and/or downwardly relative to the user's nose, while resisting less or allowing a greater degree of slippage in other directions, such as posteriorly and/or upwardly. As another example, in some embodiments where the traction surface, such as traction surfaces 250a, 250b, 250c, is positioned on or adjacent the user's ears and/or a lateral side of the user's head, the traction surface can be configured such that the traction surface resists or reduces or inhibits slippage between the support 210 and the user's ear and/or a lateral side of the user's head in a direction generally anteriorly relative to the user's

head while resisting less or allowing a greater degree of slippage in other directions, such as posteriorly, upwardly, and/or downwardly.

Embodiment of Traction Surfaces on Faceless Support

[0058] With reference next to Figure 3, an embodiment of an eyewear 300 is illustrated having a support 310. The eyewear 300 can include or share any or all of the components, features and/or characteristics described above in connection with eyewear 100, 200.

[0059] The support 310 can include a right earstem 320, a left earstem 330, and a nosepiece 346. The right earstem 320 can include an anterior end 322, a posterior end 324, an anterior portion 326, and a posterior portion 328. The left earstem 330 can similarly include an anterior end 332, a posterior end 334, an anterior portion 336, and a posterior portion 338.

[0060] In some embodiments, the earstems, such as right and/or left earstems 320, 330, and/or the nosepiece 346 can be fabricated using one or more metals, polymers, or other relatively stiff and/or resilient materials that can have desirable lens securing and stabilizing properties while nevertheless enabling the eyewear to provide desirable flexural properties in the earstems, such as right and/or left earstems 320, 330 thereof. For example, in some embodiments, titanium, carbon fiber, plastic, aluminum, and other such materials can be used in the earstems, such as right and/or left earstems 320, 330, and/or the nosepiece 346 to provide superior mechanical properties while reducing the weight of the support 310. Any suitable metals, plastics or other rigid and/or resilient materials can be used to form the support 310 to provide exceptional rigidity, durability, and wear resistance. Nevertheless, various features and aspects disclosed herein can be used in eyewear fabricated from any material, e.g., plastic, acetate, composite, metal, etc., or any combination thereof. The lens 360, such as a right and/or left lens 362, 364, may take any of a number of configurations and can be formed of sheet plastic, molded plastic, glass, etc., as determined by the application of the lens.

[0061] As shown in the illustrated embodiment, the right earstem 320, the left earstem 330, and/or the nosepiece 346 can be coupled to the 360. For example, the right

earstem 320 can be coupled to a right side of the lens 360 or to the right lens 362 at or proximate an anterior end 322 of the right earstem 320, the left earstem 330 can be coupled to the left side of the lens 360 or to the left lens 364 at or proximate an anterior end 332 of the left earstem 330, and the nosepiece 346 can be coupled to a portion of the lens 360 between lateral sides of the lens 360 or between two separate lenses, such as right and left lenses 362, 364. In some embodiments, the right earstem 320, the left earstem 330, and/or the nosepiece 346 can be permanently affixed to the lens 360. A permanent attachment of the earstems, such as right and/or left earstems 320, 230, and/or the nosepiece 346, to lens 360 may be accomplished, for example, through molding or thermoplastic bonding. In some embodiments, the right earstem 320, the left earstem 330, and/or the nosepiece 346 can be rotatably coupled to the lens 360 via a rotatable coupling such as, but not limited to, a snap fit coupling or fasteners including screws or pins or any other rotatable coupling as desired.

[0062] In some embodiments where the right and/or left earstems 320, 330 are rotatably coupled to the lens 360, the right and/or left earstems 320, 330 can rotate from an open position, in which the eyewear 300 can be worn by a user, to a closed position, in which the eyewear 300 takes on a more compact form factor for storage, and vice versa.

[0063] With continued reference to the embodiment of eyewear 300 illustrated in Figure 3, the eyewear 300 can include one or more traction surfaces 350a, 350b, 350c. As noted above, the traction surfaces 350a, 350b, 350c can be configured to retain the eyewear 300, on the user's face and resist or reduce the likelihood of removal or slippage in undesired directions. In some embodiments, the traction surfaces 350a, 350b, 350c can be coupled to the right earstem 320, the left earstem 330, and/or the nosepiece 346 respectively.

[0064] As shown in the illustrated embodiment, the traction surfaces 350a, 350b, 350c can be formed on portions of the support 310. For example, the traction surface 350a can be molded together with the right earstem 320, the traction surface 350b can be molded together with the left earstem 330, and/or the traction surface 350c can be molded together with the nosepiece 346 respectively. As such, one or more of traction surface 350a, 350b, 350c can be integrally formed with one or more components of the support 310 such that the one or more traction surfaces 350a, 350b, 350c can form a unitary structure with one or more components of the support 310. In some instances in which the traction surfaces 350a, 350b,

350c are molded together with one or more components of the support 310, the traction surfaces 350a, 350b, 350c can be monolithically formed from the same material as the components of the support 310 on which the traction surfaces 350a, 350b, 350c are formed. In some instances in which the traction surfaces 350a, 350b, 350c are molded together with one or more components of the support 310, the traction surfaces 350a, 350b, 350c can be formed from material different from the material of the components of the support 310 on which the traction surfaces 350a, 350b, 350c are formed. In some embodiments, one or more of the traction surfaces, such as traction surfaces 350a, 350b, can be separate from components of the support 310, such as earstems 320, 330. Such traction surfaces, for example, may be slipped over portions of the support 310, such as earstems 320, 330.

[0065] The traction surfaces 350a-c can extend entirely around the periphery of the components on which the traction surfaces 350a-c are formed or can extend partially around the periphery of the components on which the traction surfaces 350a-c are formed. For example, traction surface 350a can extend entirely around the periphery of the right earstem 320 or can extend partially around the periphery such as along a bottom portion of the right earstem 320, an inwardly facing portion of the right earstem 320, and/or an outwardly facing portion of the right earstem 320. The traction surface 350b can include similar characteristics with respect to the left earstem 330.

[0066] In some embodiments, the traction surfaces 350a, 350b, 350c can have lengths relative to one or more components of the eyewear 300 such as the support 310 or lens 360. For example, in some embodiments, the traction surface 350a can have a length of between approximately 5% to approximately 60% of a length of the right earstem 320, a length of between approximately 10% to approximately 50% of a length of the right earstem 320, a length of between approximately 15% to approximately 40% of a length of the right earstem 320, a length of between approximately 20% to approximately 30% of a length of the right earstem 320, any sub-range within these ranges, or any percentage of the length of the right earstem 320 as desired, the length being a longitudinal length from the anterior end 322 to the posterior end 324. In some embodiments, the traction surface 350a can extend at or proximate a posterior end 324 of the right earstem 320 and extend approximately to the midpoint of the right earstem 320. The traction surface 350b can have similar lengths relative

to the left earstem **330.** The traction surface **350c** can have a length sufficient to extend along the entirety of the nosepiece **346** or a portion thereof.

In some embodiments, the traction surfaces 350a, 350b, 350c can be [0067] configured to resist or to reduce or inhibit slippage between the support 310 and another surface in contact with the traction surfaces 350a, 350b, 350c such as, but not limited to, a user's skin in certain directions while resisting less or allowing a greater degree of slippage in other directions. In some embodiments where the traction surface, such as traction surface 350c, is positioned on the user's nose, the traction surface can be configured such that the traction surface resists or reduces or inhibits slippage between the support 310 and the user's nose in a direction generally anteriorly and/or downwardly relative to the user's nose, while resisting less or allowing a greater degree of slippage in other directions, such as posteriorly and/or upwardly. As another example, in some embodiments where the traction surface, such as traction surfaces 350a, 350b, 350c, is positioned on or adjacent the user's ears and/or a lateral side of the user's head, the traction surface can be configured such that the traction surface resists or reduces or inhibits slippage between the support 310 and the user's ear and/or a lateral side of the user's head in a direction generally anteriorly relative to the user's head while resisting less or allowing a greater degree of slippage in other directions, such as posteriorly, upwardly, and/or downwardly.

[0068] While the traction surfaces are described in connection with supports 110, 210, 310, it is to be understood that the traction surfaces can be applied to lenses 160, 260, 360 or any other structure or component of an eyewear. Moreover, while the traction surfaces are described in connection with eyewear 100, 200, 300, the traction surfaces as described herein can be applied to other types of wearable devices including, but not limited to, goggles, helmets, outerwear such as apparel, jewelry such as earrings, bracelets and necklaces, watches, personal electronic devices such as a communication device, and the like.

Embodiment of Eyewear Worn by User

[0069] Figures 4-7 illustrate an embodiment of eyewear 400 worn on a user's head 480. The eyewear 400 can include or share any or all of the components, features and/or characteristics described above in connection with eyewear 100, 200, 300.

[0070] With reference first to Figures 4 and 5, the eyewear 400 can include a support 410 having a right earstem 420, a left earstem 430, and a face 440. As shown the eyewear 400 is a dual-lens eyewear having a right lens 462 and a left lens 464 with the face 440 having an integral nosepiece 446.

[0071] With reference to Figure 5 which illustrates a front view of Figure 4, the nosepiece 446 of the face 440 can include a traction surface 450c which can form at least part of an exterior surface of the nosepiece 446. The traction surface 450c can be configured to contact the user's nose along a contact surface 484, the contact surface 484 including multiple points of contact between the user's nose and the traction surface 450c. As shown in the illustrated embodiment, at a contact point 486 with the contact surface 484, a threedimensional coordinate system is illustrated. With respect to this three-dimensional coordinate system, the y-axis is normal to the contact surface 484 at the contact point 486, the x-axis is orthogonal to the y-axis and parallel to a horizontal plane (e.g., an anatomically transverse plane) at the contact point 486, and the z-axis is orthogonal to both the x-axis and the y-axis at the contact point 486. Accordingly, the x-z plane is tangent to the contact surface 484 at the contact point 486. As shown in the illustrated embodiment, the y-axis extends in a direction away from the user's nose 482, the x-axis extends in a direction generally anteriorly relative to the user's nose 482, and the z-axis extending in a direction generally upwardly relative to the user's nose 482.

[0072] With reference next to Figure 6 which illustrates a schematic of the user's nose 482 and contact surface 484 along a plane orthogonal to the y-axis, in some embodiments, the traction surface (not shown) can be configured such that it exerts a force on the contact surface 484 to counteract an applied force upon the eyewear 400. For example, as shown in the illustrated embodiment, the traction surface can be configured to exert a traction force 488a to counteract an applied force 487a upon the eyewear 400. This can beneficially help to retain the eyewear 400 in place relative to the user's nose 482. The force 487a can be

caused, for example, due to the effect of gravity and/or due to movement of the user relative to the eyewear 400.

In some instances, the amount of traction force the traction surface can [0073] apply upon the contact surface 484 before the traction surface slips relative to the contact surface 484 can vary depending on the directionality of the applied force. For example, as shown in the illustrated embodiment, the traction surface can exert a greater amount of traction force 488a before slipping when the applied force 487a is in a direction typical for eyewear slippage, such as a direction which is generally anteriorly relative to the user's nose 482 and/or a direction generally downwardly relative to the user's nose 482. In some instances, when the eyewear is subject to the applied force 487a in such eyewear slippage direction, the traction surface can exert such traction force 488a before slipping which is greater than a traction force that would be exerted before slipping as a result of an applied force upon the eyewear in another direction within the plane. For example, with the applied force 487a in such slippage direction, the traction surface can exert such traction force 488a before slipping which is greater than the mean and/or median traction force exerted before slipping to counteract applied forces in one or more other directions within the plane, or in all other directions within the plane. The traction surface can exert a lesser amount of traction force 488b before slipping when the applied force 487b is in a direction typical for eyewear removal, such as a direction which is generally upwardly relative to the user's nose 482. In some instances, when subject to an applied force 487b in such eyewear removal direction, the traction surface can exert a traction force 488b before slipping which is less than the mean and/or median traction force exerted before slipping to counteract applied forces in one or more other directions within the plane, or in all other directions within the plane. As shown in the illustrated embodiment, the traction force 488b before slipping can be less than the traction force **487b** before slipping.

[0074] As such, the traction surface can be configured such that it has a higher resistance to shear of an interface between the traction surface and a contact surface in desired directions and can be configured such that it has a lower resistance to shear of the interface in other desired directions. This can be particularly beneficial as an eyewear 400 may most likely slip from a user's nose in a direction generally anteriorly relative to the user's nose 482 and/or

in a direction generally downwardly relative to the user's nose **482.** A greater amount of traction force before slipping can assist in retaining the eyewear **400** on the user's face. Moreover, a user may deliberately remove the eyewear **400** from the user's face in a direction generally upwardly relative to the user's nose **482.** A lesser amount of force would therefore be required to remove the eyewear **400** from the user's face in this direction or in any other contemplated direction for a deliberate removal force.

[0075] It is to be understood that the frame of reference (e.g., the axes) described herein are discussed in connection within standard contexts with a user's head in an upright vertical position. For example, the x-axis is described above as being parallel to a horizontal plane such as the anatomical transverse plane. This can be measured, for example, on a standard headform such as, but not limited to, an Alderson headform, an EN168 headform, a CSA Z262.2-14 headform, or any other standard headform.

[0076] However, it also is to be understood that the frame of reference described herein may be shifted in other contexts. For example, in some instances, the frame of reference may be shifted for different sporting activities in which a user's face is angled towards the ground (a "heads-down" activity) which could include, for example, sprinting, skiing, or bicycle racing. The frame of reference may in other instances be shifted for sporting activities in which a user's face is angled away from the ground. It is contemplated that the directions of lesser, substantially minimum, and/or minimum traction forces and greater, substantially maximum, and/or maximum forces can be configured for different activities. For example, a first traction member can be configured for use during standard activities (i.e., head in an upright vertical position) and a second traction member can be configured for use during heads-down activities. As another example, a traction member can be configured for use during activities in which a user may switch between an upright vertical head position to a heads-down position and vice-versa.

[0077] The traction surface can be configured such that it has a higher resistance to peel at an interface between the traction surface and a contact surface in one or more desired directions and can be configured such that it has a lower resistance to peel at the interface in one or more other desired directions. For example, the traction surface can be configured such that it provides a first resistance to peel force in a first direction and a second

resistance to peel force in a second direction, the first resistance being greater than the second resistance.

[0078] As shown in the illustrated embodiment, in some examples, the traction surface can exert a relatively greater amount of traction force before slipping when the applied force is in a direction generally anteriorly relative to the user's nose 482 (e.g., in a positive direction along the x-axis) and/or downwardly relative to the user's nose 482 (e.g., in a negative direction along the z-axis). In some instances, this direction can be generally parallel to a slope of the user's nose. This can correspond to a direction that an eyewear would generally slip on the user's nose due to the effect of gravity and/or due to movement of the user relative to the eyewear 400. This is illustrated in Figure 6 with an angle Orelative to the x-axis. For example, when subject to an applied force in such eyewear slippage direction, the traction surface can exert a traction force before slipping which is greater than the mean and/or median traction force exerted before slipping to counteract applied forces in one or more other directions within the plane, or in all other directions within the plane. In some instances, the traction surface can exert a maximum, or substantially maximum, amount of traction force before slipping when the applied force is in such slippage direction.

[0079] In some embodiments, the traction surface can exert a relatively greater or maximum amount of traction force before slipping when the applied force forms an acute angle with the x-axis (e.g., in an anterior direction relative to the user's nose) and/or when the applied force forms an obtuse angle with the z-axis (e.g., in a downward direction relative to the user's nose). In some embodiments, when the applied force forms an acute angle with the x-axis, the traction surface can exert a relatively greater or maximum amount of traction force before slipping when the applied force is more parallel with the x-axis than perpendicular to the x-axis and/or when the applied force forms an obtuse angle with the z-axis. In some embodiments, when the applied force forms an acute angle with the x-axis, the traction surface can exert a relatively greater or maximum amount of traction force before slipping when the applied force forms an obtuse angle with the z-axis. For example, the traction surface can exert a relatively greater or maximum amount of traction force before slipping when the applied force forms an obtuse angle with the z-axis. For example, the traction surface can exert a relatively greater or maximum amount of traction force before slipping when the applied force forms an angle of between approximately 50 degrees to approximately

70 degrees with the x-axis and when the applied force forms an obtuse angle with the z-axis. This angle could, for example, be generally parallel to the slope of the user's nose. In some embodiments, when the applied force forms an acute angle with the x-axis, the traction surface can exert a relatively greater or maximum amount of traction force before slipping when the applied force forms an approximately 45 degree angle with the x-axis and/or when the applied force forms an obtuse angle with the z-axis.

[0080] As shown in the illustrated embodiment, the traction surface can exert a relatively lower amount of traction force before slipping when the applied force is in a direction generally upwardly relative to the user's nose 482 (e.g., in a positive direction along the z-axis) and/or when the applied force is in a direction generally posteriorly or anteriorly relative to the user's nose 482 (e.g., along the x-axis). This can correspond to a direction that a user may deliberately remove the eyewear 400 from the user's face. For example, when subject to an applied force in such eyewear removal direction, the traction surface can exert a traction force before slipping which is less than the mean and/or median traction force exerted before slipping to counteract applied forces in one or more other directions within the plane, or in all other directions within the plane. In some instances, the traction surface can exert a minimum, or substantially minimum, amount of traction force before slipping when the applied force is in such removal direction. In some instances, this traction force can be less than the traction force exerted before slipping described above in connection with, for example, paragraphs [0078] and [0079].

[0081] In some embodiments, the traction surface can exert a relatively lower or minimum amount of traction force before slipping when the applied force forms an acute angle with the x-axis (e.g., in an anterior direction relative to the user's nose) and/or when the applied force forms an acute angle with the z-axis (e.g., in an upward direction relative to the user's nose). For example, the traction surface can exert a relatively lower or minimum amount of traction force before slipping when the applied force forms an angle of between approximately 20 degrees to approximately 40 degrees with the x-axis and when the applied force forms an acute angle with the z-axis. This angle could, for example, be generally orthogonal to the slope of the user's nose. In some embodiments, the traction surface can exert a relatively lower or minimum amount of traction force before slipping when the applied

force forms an obtuse angle with the x-axis (e.g., in a posterior direction relative to the user's nose) and/or when the applied force forms an acute angle with the z-axis. In some embodiments, the traction surface can exert a relatively lower or minimum amount of traction force before slipping when the applied force forms an obtuse angle with the x-axis and/or when the applied force forms an obtuse angle with the z-axis.

[0082] It is to be understood that the traction surface can be configured to exert a relatively greater amount of traction force before slipping in one or more directions as compared to the amount of traction force exerted before slipping in one or more other directions. As noted above, in some embodiments, the traction surface can exert a greater amount of traction force before slipping when the applied force forms an acute angle with the x-axis (e.g., in an anterior direction relative to the user's nose) and when the applied force forms an obtuse angle with the z-axis (e.g., in a downward direction relative to the user's nose) as compared to the amount of traction force the traction surface can exert before slipping when the applied force forms an acute angle with the z-axis (e.g., in an upward direction relative to the user's nose) and when the applied force forms an acute angle with the x-axis (e.g., in an anterior direction relative to the user's nose). However, it is to be understood this is an example comparison of directions for varying traction forces. The traction surface can exert a relatively greater amount of traction force in other directions. This can be beneficial, for example, when the traction surfaces are utilized in connection with different types of activities in which the direction of applied forces may differ. As noted above, the traction member can be configured for use during activities when the user's head is generally in an upright position and/or during activities in which the user's head is generally in a "heads-down" position. It is to be understood that the eyewear slippage direction and/or eyewear removal direction could differ as a result of the position of the user's head. Moreover, it is to be understood that other forces can also play a role in the desired traction member characteristics. For example, the effects of atmospheric forces (e.g., wind) and other forces (e.g., projectiles) may be taken into account. [0083] With reference next to Figure 7, which illustrates a schematic of the traction surface 450c contacting a contact surface 484 of a user's nose (not shown), the traction surface 450c can include one or more protrusions 454 extending from a surface 455 of the traction surface 450c, the ends of the one or more

protrusions 454 configured to contact the contact surface 484. As shown in the illustrated embodiment, the protrusions are angled relative to the surface 455 of the traction surface 450c with a component (along the x'-axis in this case) opposite the direction of an applied force 487a in which the traction surface 450c can exert a relatively greater or maximum amount of traction force 488a before slipping. In some embodiments, the protrusions 454 can be at an angle which is more perpendicular to the surface 455 than parallel. In some embodiments, the protrusions 454 can be at an angle which is more parallel to the surface 455 than perpendicular. In some embodiments, the protrusions 454 can be at an angle which is generally equivalently parallel to the surface 455 as it is perpendicular to the surface 455. Although the traction surface 450c is shown separately from the nosepiece 446, the traction surface 450c can be integrally formed with the nosepiece 446 and/or can be formed from the same material.

[0084] The protrusions 454 can be in the form of pillars, such as rectangular or cylindrical pillars. The protrusions 454 can have lengths, along a longitudinal axis of the protrusions 454, in the nano or micro scale. This can beneficially reduce or eliminate visibility of individual protrusions 454 with the naked eye. In some instances, this can beneficially provide a more aesthetically pleasing look. This can enhance the traction surface's ability to resist peeling from the contact surface. In some instances, this can beneficially reduce the likelihood that the traction surface detaches from the contact surface. This can enhance the traction surface's ability to follow the contours of the skin. This can beneficially increase the traction force the traction surface can apply for a given amount of applied force. In some embodiments, the protrusions 454 can have lengths of approximately 500 µm to approximately 1 mm.

[0085] In some embodiments, the protrusions 454 can be formed from multiple materials and/or materials having different properties. For example, an interior portion of the protrusions 454 can be formed from a material having a greater stiffness than a material forming an exterior portion of the protrusions 454.

Embodiment of Multi-Portion Traction Surface

[0086] In some embodiments, the traction member can include multiple portions with different directional property. For example, with reference to Figure 8 which illustrates a schematic of the user's nose 482 and contact surface having an upper portion 484a and a lower portion 484b, the traction surface (not shown) can be configured to have different directional properties. For example, as shown in the illustrated embodiment, the traction surface contacting the upper portion 484a of the contact surface can be configured can exert a relatively greater or maximum amount of traction force 488c before slipping when the applied force is in a direction generally downwardly relative to the user's nose 482. The traction surface contacting the lower portion 484b of the contact surface can be configured can exert a relatively greater or maximum amount of traction force 488d before slipping when the applied force is in a direction generally anteriorly relative to the user's nose 482. In some embodiments, the traction surface can be formed such that the protrusions forming the traction surface along portions which contact the upper portion 484a of the contact surface are angled generally downwardly relative to the user's nose 482 and that the protrusions forming the traction surface along portions which contact the lower portion 484a of the contact surface are angled generally anteriorly relative to the user's nose 482.

[0087] In some instances, the combined effect of the traction surface on upper portion 484a and lower portion 484b can be such that the traction surface can have one or more properties similar to or the same as one or more of those described with respect to the embodiment of the traction surface of **Figure 6**. It is also contemplated that the traction surface can comprise more than two subsections as shown in **Figure 9**.

Embodiments of Surfaces Contacting User's Ear and Head

[0088] Figure 10 illustrates an embodiment of the right earstem 420 of eyewear 400 positioned between a lateral side of the user's head (not shown) and the user's ear 490. The right earstem 420 can include a traction surface (not shown) forming at least part of an exterior surface of the right earstem 420. The traction surface can be configured to contact the lateral side of the user's head and/or the user's ear 490. For example, the traction surface can contact a user's ear 490 along a contact surface 492, the contact surface 492 including multiple points of contact between the user's nose and the traction surface. As shown in the

illustrated embodiment, at a contact point **494** with the contact surface **492**, a three-dimensional coordinate system is illustrated. With respect to this three-dimensional coordinate system, the y-axis is normal to the contact surface **492** at the contact point **494**, the x-axis is orthogonal to the y-axis and parallel to a horizontal plane at the contact point **494**, and the z-axis is orthogonal to both the x-axis and the y-axis at the contact point **494**. As shown in the illustrated embodiment, the y-axis extends in a direction away from the user's ear **490**, the x-axis extends in a direction generally anteriorly relative to the user's ear **490**, and the z-axis extending in a direction generally upwardly relative to the user's ear **490**.

[0089] In some embodiments, the traction surface can be configured such that it exerts a force on the contact surface 492 to counteract an applied force upon the eyewear **400.** For example, as shown in the illustrated embodiment, the traction surface can be configured to exert a traction force 496a to counteract an applied force 495a upon the eyewear 400. This can beneficially retain the eyewear 400 in place relative to the user's ear 490. The force 495a can be caused, for example, due to movement of the user relative to the eyewear 400. In some instances, the amount of traction force the traction surface can apply upon the contact surface 492 before the traction surface slips relative to the contact surface 492 can vary depending on the directionality of the applied force. For example, as shown in the illustrated embodiment, the traction surface can exert a greater amount of traction force 496a before slipping when the applied force 495a is in a direction generally anteriorly relative to the user's ear 490 whereas the traction surface can exert a lesser amount of traction force **496b** before slipping when the applied force **495b** is in a direction generally upwardly relative to the user's ear 490 and/or posteriorly relative to the user's ear 490. This can be particularly beneficial as an eyewear 400 may most likely slip from a user's ear in a direction generally anteriorly relative to the user's ear 490. A greater amount of traction force before slipping can enhance retention of the eyewear 400 on the user's head. Moreover, a user may remove the eyewear 400 from the user's head in a direction generally upwardly relative to the user's ear 490 and/or wear the eyewear 400 by sliding the eyewear posteriorly relative to the user's head. A lesser amount of force would therefore be required to wear and remove the eyewear **400** from the user's head.

[0090] As shown in the illustrated embodiment, the traction surface can exert a relatively greater or maximum amount of traction force before slipping when the applied force is in a direction generally anteriorly relative to the user's ear 490. In some embodiments, the traction surface can exert a relatively greater or maximum amount of traction force before slipping when the applied force forms an acute angle with the z-axis and/or forms an acute angle with the x-axis. In some embodiments, the traction surface can exert a relatively greater or maximum amount of traction force before slipping when the applied force forms an obtuse angle with the z-axis and/or forms an acute angle with the x-axis.

[0091] As shown in the illustrated embodiment, the traction surface can exert a relatively lower or minimum amount of traction force before slipping when the applied force is in a direction generally upwardly relative to the user's ear 490 and/or posteriorly relative to the user's ear 490. In some embodiments, the traction surface can exert a relatively lower or minimum amount of traction force before slipping when the applied force forms an obtuse angle with the x-axis and/or forms an acute angle with the z-axis. In some embodiments, the traction surface can exert a relatively lower or minimum amount of traction force before slipping when the applied force forms an obtuse angle with the x-axis and/or forms an obtuse angle with the z-axis.

[0092] Figures 11-16 illustrate views of embodiments of traction assemblies 550, 650, 750 which can be formed along inner portions of the earstems, such as right earstems 520, 620, 720. The traction assemblies can include extensions, such as horizontal extensions 552 which extend horizontally along a length of the right earstem 520, vertical extensions 652 which extend vertically along the right earstem 620, and rod extensions 752 which have a rod-like shape, which extend from a surface of the earstem. These extensions can include tips 554, 654, 754 which can include traction surfaces such as those described herein. In some embodiments, the use of extensions can be beneficial in reducing the likelihood that the traction surfaces contact a user's hair. For example, the extensions, such as extensions 552, 652, 752, can be sized and shaped such that they extend past a user's hair and allow tips, such as tips 554, 654, 754, to contact a user's scalp. For example, in some embodiments, the extensions can include a curvature such as that illustrated in connection with extensions 652 wherein a middle portion 656 of the extensions 652 extend further in a posterior direction than

the ends **658a**, **658b** of the extensions. Such curvature is also illustrated in connection with extensions **752** in which the extensions are offset **752** such that extensions **752** along a middle portion, such as extension **756**, are positioned further posteriorly than extensions **752** along the ends. As another example, in some embodiments, the extensions can project outwardly at an angle such as that illustrated in connection with extensions **652,752**.

[0093] In some embodiments, to reduce the likelihood that the traction surfaces contact a user's hair, the portions of the eyewear positioned adjacent or proximate a user's hair, such as an earstem, can have traction surfaces along portions of the earstem which are less likely to contact a user's hair but would still contact a user's ear. For example, the traction surfaces can be positioned along a bottom and/or outwardly facing portion of the earstem.

Other Embodiments

[0094] While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel devices, system and methods described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the systems and methods described herein may be made. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope of the disclosure. Accordingly, the scope of the present disclosure is defined only by reference to the claims presented herein or as presented in the future.

[0095] Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described in this section or elsewhere in this specification unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any

accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.

[0096] Furthermore, certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as a subcombination or variation of a subcombination.

[0097] Conditional language used herein, such as, among others, "can," "could," "might," "may," "e.g.," and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that such features, elements and/or steps are in any way required for one or more embodiments.

[0098] Moreover, the following terminology may have been used herein. The singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to an item includes reference to one or more of such items. The term "ones" refers to one, two, or more, and generally applies to the selection of some or all of a quantity. Conjunctive language such as the phrase "at least one of X, Y, and Z," unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.

[0099] The term "about," "approximately," or "generally," means that quantities, dimensions, sizes, formulations, parameters, shapes and other characteristics need not be exact, but may be approximated and/or larger or smaller, as desired, reflecting acceptable tolerances, conversion factors, rounding off, measurement error and the like and other factors known to those of skill in the art. For example, in some embodiments, the terms "about",

"approximately", or "generally", may be within 20% of the stated value. The term "substantially" means that the recited characteristic, parameter, or value need not be achieved exactly, but that deviations or variations, including for example, tolerances, measurement error, measurement accuracy limitations and other factors known to those of skill in the art, may occur in amounts that do not preclude the effect the characteristic was intended to provide. For example, in some embodiments, the terms "substantially" may be within 5% of the stated value.

[0100] A plurality of items may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary. Furthermore, where the terms "and" and "or" are used in conjunction with a list of items, they are to be interpreted broadly, in that any one or more of the listed items may be used alone or in combination with other listed items.

THE FOLLOWING IS CLAIMED:

1. An eyewear comprising:

a support configured to be carried on a head of a user and configured to support a lens in the field of view of a user, the support comprising:

an earstem comprising an exterior surface configured to be positioned proximate a lateral side of a user's head and a user's ear during use; and

a nosepiece comprising an exterior surface configured to be positioned proximate a user's nose during use; and

a traction surface on at least one of the earstem and the nosepiece, the traction surface being configured to exert a traction force on a contact surface at a plurality of contact points within the contact surface, the traction force being configured to inhibit slipping of the eyewear on a user's head when worn, wherein at a contact point within the contact surface, the traction surface is configured such that:

when subject to a force in a first direction within a plane tangent to the contact surface at the contact point, the traction surface can exert up to a first amount of traction force before slipping;

when subject to a force in a second direction within the plane tangent to the contact surface at the contact point, the traction surface can exert up to a second amount of traction force before slipping;

wherein the first amount of traction force is greater than the second amount of traction force.

2. The eyewear of Claim 1, wherein:

the traction surface is on at least the nosepiece and the contact surface is at least a portion of the user's nose; and

at one or more contact points within the contact surface, the first direction extends generally downwardly and anteriorly relative to the user's nose and forms an acute angle with a first axis, the first axis being within a plane tangent to the contact surface at the one or more contact points and parallel to a horizontal axis.

3. The eyewear of Claim 1, wherein:

the traction surface is on at least the earstem and the contact surface is at least a portion of the user's ear;

at one or more contact points within the contact surface, the first direction extends generally anteriorly relative to a user's ear.

- 4. The eyewear of Claim 1, wherein the traction surface on both the earstem and the nosepiece.
- 5. The eyewear of Claim 1, wherein the traction surface comprises a plurality of protrusions extending obliquely from the exterior surface on which the traction surface is located.
- 6. The eyewear of Claim 5, wherein the plurality of protrusions extending obliquely from the exterior surface extend in a direction with a component generally opposite the first direction.
- 7. The eyewear of Claim 5, wherein the plurality of protrusions extending obliquely from the exterior surface is more parallel with the exterior surface than perpendicular.
- 8. The eyewear of Claim 5, wherein the plurality of protrusions extending obliquely from the exterior surface is more perpendicular to the exterior surface than parallel.
- 9. The eyewear of Claim 5, wherein the plurality of protrusions extending obliquely from the exterior surface is generally equally perpendicular to the exterior surface as parallel.
 - 10. The eyewear of Claim 5, wherein the protrusions are nano-scale protrusions.
 - 11. The eyewear of Claim 5, wherein the protrusions are micro-scale protrusions.
- 12. The eyewear of Claim 1, wherein the traction surface is integrally formed on the support.
- 13. The eyewear of Claim 12, wherein the traction surface is formed from the same material as the material of the portions of the support adjacent the traction surface.
- 14. The eyewear of Claim 1, wherein the traction surface is formed on a traction member, wherein the traction member is attached to the support.

15. The eyewear of Claim 14, wherein the traction member is removably attached to the support.

- 16. The eyewear of Claim 14, wherein the traction member is not removably attached to the support.
 - 17. An eyewear comprising:
 - a support configured to be carried on a head of a user and configured to support a lens in the field of view of a user, the support comprising:
 - an earstem comprising an exterior surface configured to be positioned proximate a lateral side of a user's head and a user's ear; and
 - a nosepiece comprising an exterior surface configured to be positioned proximate a user's nose; and
 - a traction surface on at least one of the earstem and the nosepiece, the traction surface comprising a plurality of protrusions extending obliquely from the exterior surface on which the traction surface is located.
- 18. The eyewear of Claim 17, wherein the plurality of protrusions extending obliquely from the exterior surface is more parallel with the exterior surface than perpendicular.
- 19. The eyewear of Claim 17, wherein the plurality of protrusions extending obliquely from the exterior surface is more perpendicular to the exterior surface than parallel.
- 20. The eyewear of Claim 17, wherein the plurality of protrusions extending obliquely from the exterior surface is generally equally perpendicular to the exterior surface as parallel.
- 21. The eyewear of Claim 17, wherein the traction surface is configured to exert a traction force on a contact surface at a plurality of contact points within the contact surface, the traction force being configured to inhibit slipping of the eyewear on a user's head when worn, wherein at a contact point within the contact surface, the traction surface is configured such that:

when subject to a force in a first direction within a plane tangent to the contact surface at the contact point, the traction surface can exert up to a first amount of traction force before slipping;

when subject to a force in a second direction within the plane tangent to the contact surface at the contact point, the traction surface can exert up to a second amount of traction force before slipping;

wherein the first amount of traction force is greater than the second amount of traction force.

22. The eyewear of Claim 21, wherein:

the traction surface is on at least the nosepiece and the contact surface is at least a portion of the user's nose; and

at one or more contact points within the contact surface, the first direction extends generally downwardly and anteriorly relative to the user's nose and forms an acute angle with a first axis, the first axis being within a plane tangent to the contact surface at the one or more contact points and parallel to a horizontal axis.

- 23. The eyewear of Claim 22, wherein the one or more contact points comprise a majority of contact points within the contact surface.
 - 24. The eyewear of Claim 21, wherein:

the traction surface is on at least the earstem and the contact surface is at least a portion of the user's ear;

at one or more contact points within the contact surface, the first direction extends generally anteriorly relative to a user's ear.

- 25. The eyewear of Claim 24, wherein the one or more contact points comprise a majority of contact points within the contact surface.
- 26. The eyewear of Claim 22, wherein the plurality of protrusions extending obliquely from the exterior surface extend in a direction with a component generally opposite the first direction.
- 27. The eyewear of Claim 17, wherein the traction surface comprises a first portion and a second portion, wherein:

at a contact point within a first portion of a contact surface, the first portion of the traction surface is configured such that:

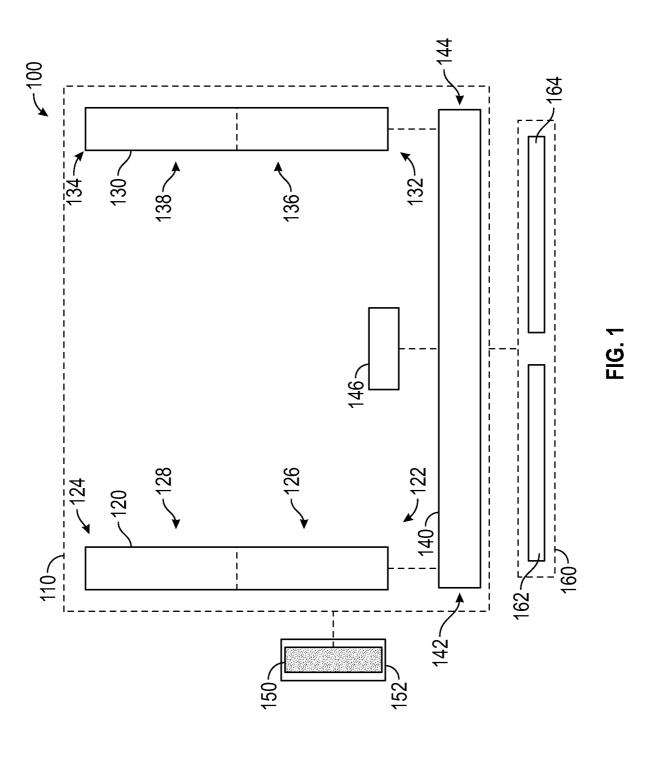
when subject to a force in a first direction within a plane tangent to the first portion of the contact surface at the contact point, the traction surface can exert up to a first amount of traction force before slipping; and

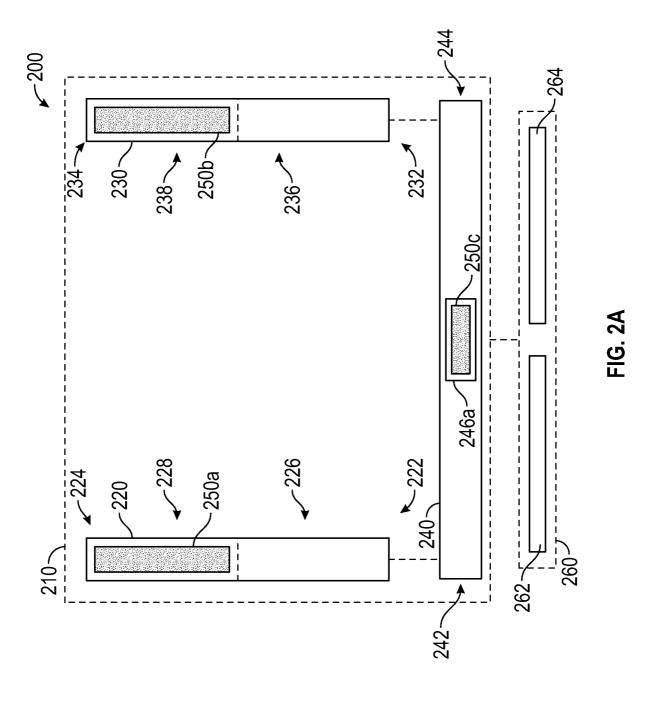
when subject to a force in a second direction within a plane tangent to the first portion of the contact surface at the contact point, the traction surface can exert up to a second amount of traction force before slipping; and

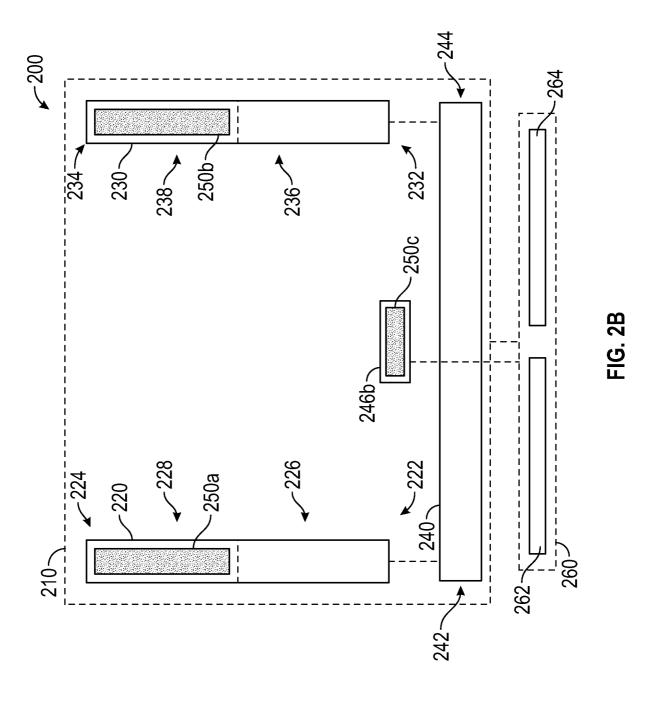
wherein the first amount of traction force is greater than the second amount of traction force; and

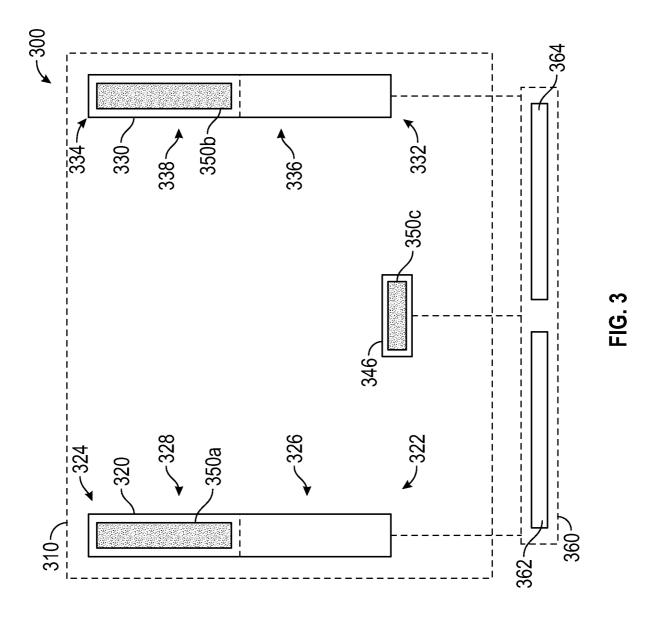
at a contact point within a second portion of the contact surface, the second portion of the traction surface is configured such that:

when subject to a force in a third direction within a plane tangent to the second portion of the contact surface at the contact point, the traction surface can exert up to a third amount of traction force before slipping; and


when subject to a force in a fourth direction within a plane tangent to the second portion of the contact surface at the contact point, the traction surface can exert up to a fourth amount of traction force before slipping; and


wherein the third amount of traction force is greater than the fourth amount of traction force; and


wherein the first direction is different from the third direction.


- 28. The eyewear of Claim 17, wherein the traction surface is integrally formed on the support.
- 29. The eyewear of Claim 28, wherein the traction surface is formed from the same material as the material of the portions of the support adjacent the traction surface.
- 30. The eyewear of Claim 17, wherein the traction surface is formed on a traction member, wherein the traction member is attached to the support.
- 31. The eyewear of Claim 30, wherein the traction member is removably attached to the support.
- 32. The eyewear of Claim 30, wherein the traction member is not removably attached to the support.
 - 33. The eyewear of Claim 17, wherein the protrusions are nano-scale protrusions.

34. The eyewear of Claim 17, wherein the protrusions are micro-scale protrusions.

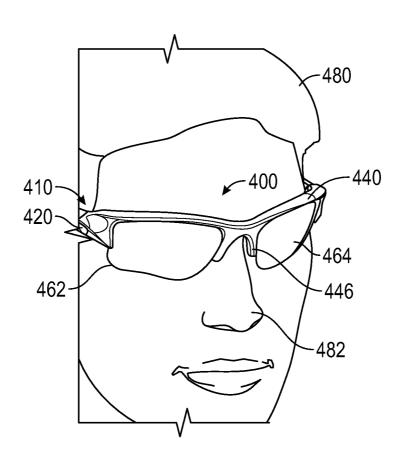
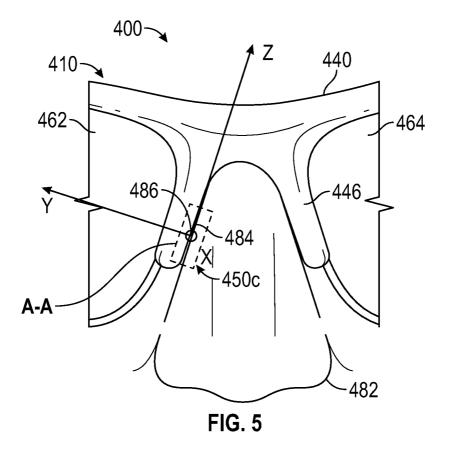
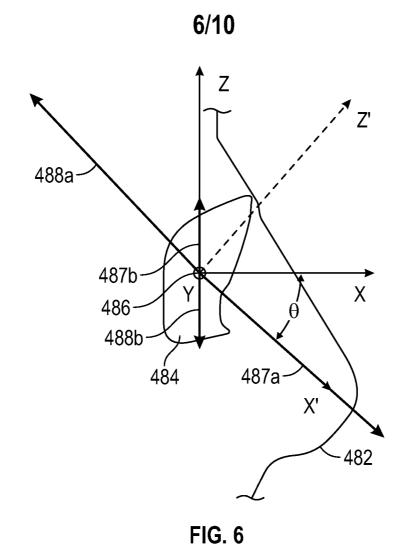
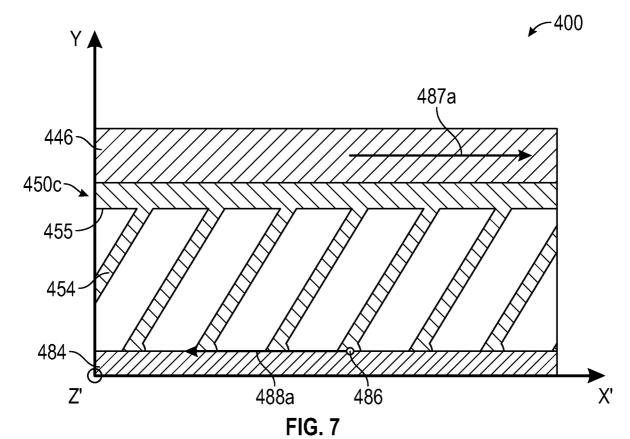
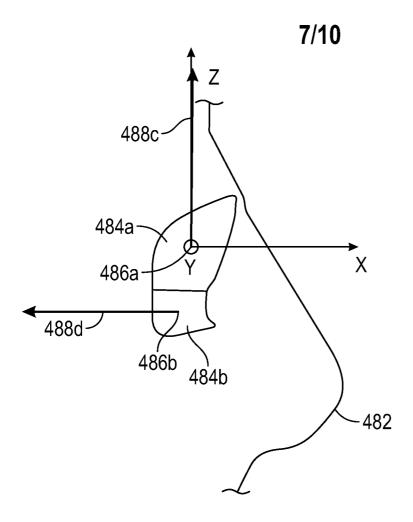






FIG. 4

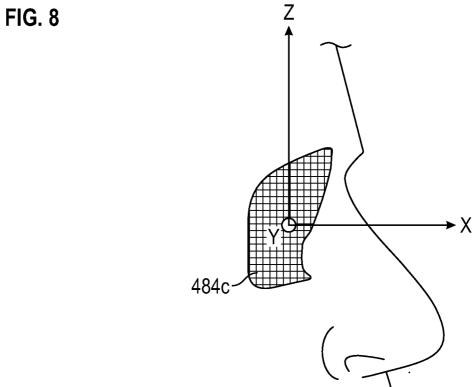
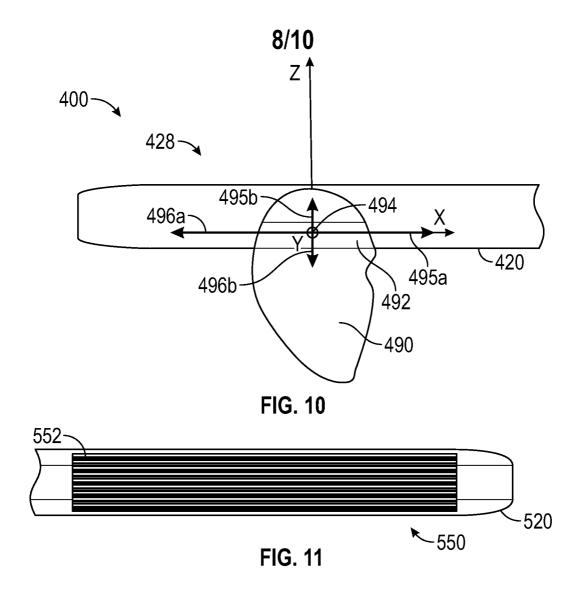



FIG. 9

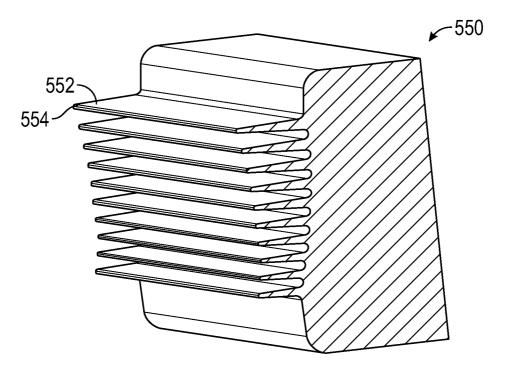


FIG. 12

9/10

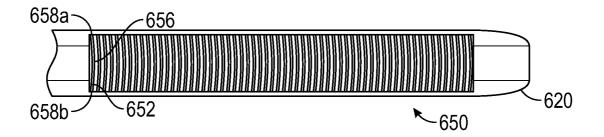


FIG. 13

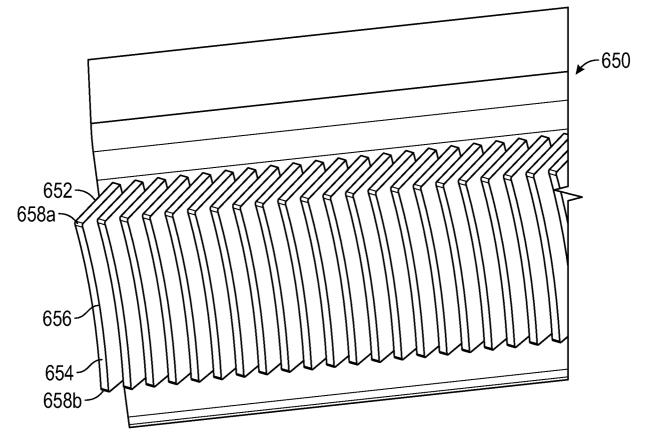
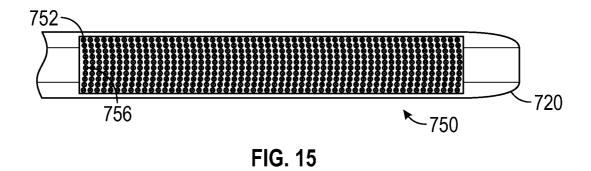



FIG. 14

10/10

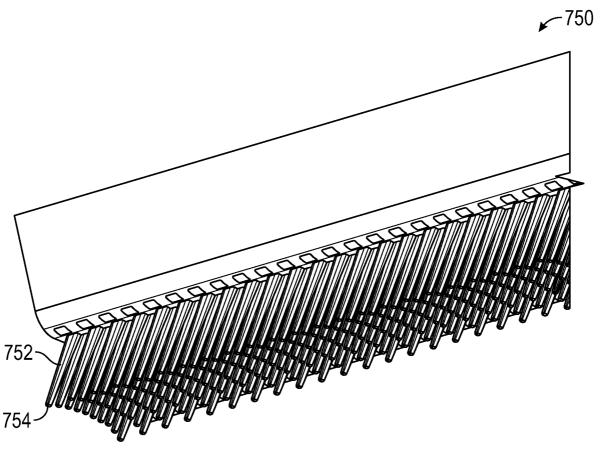


FIG. 16

International application No.

PCT/US2016/065631

A. CLASSIFICATION OF SUBJECT MATTER

G02C 3/00 (2006.01) G02C 5/12 (2006.01) G02C 5/14 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPODOC, WPIAP: IPC/CPC (G02C3/00, G02C3/003); Keywords (eyewear, glasses, earstem, nosepiece, traction, friction, slip, grip, resist, retention, protrusion, projection, ridge, oblique, inclined, slope, slant and like terms). Google Patents and Google Scholar: Keywords (eyewear, glasses, earstem, nosepiece, traction, friction, non-slip, grip, resist, retention, protrusion, projection, ridge oblique, inclined, slope, slant and like terms). Applicant/inventor (OAKLEY INC; MCCABE, Brock; MEUNIER, Benjamin; SAYLOR, Ryan). Espacenet: IPC/CPC (G02C3/00, G02C3/003, G02C5/12, G02C5/14) and keywords (eyewear, glasses, earstem, nosepiece, traction, friction, slip, grip, resist, retention, protrusion, projection, ridge oblique, inclined, slope, slant and like terms). AUSPAT and internal databases provided by IP Australia: Inventor/applicant search (OAKLEY INC; MCCABE. Brock; MEUNIER, Benjamin; SAYLOR, Ryan).

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Cates	gory*	Citation of document, with indication, whe	ere app	propriate, of the relevant passages	Relevant to claim No.			
		Documents are listed	ed in th	he continuation of Box C				
	X Fu	rther documents are listed in the continu	ation	of Box C X See patent family annex	X			
* "A"	document	ategories of cited documents: defining the general state of the art which is not d to be of particular relevance	C	ater document published after the international filing date or pri onflict with the application but cited to understand the principle nderlying the invention				
"E"		plication or patent but published on or after the ": nal filing date	X" d	ocument of particular relevance; the claimed invention cannot be considered novel cannot be considered to involve an inventive step when the document is taken one				
"L"	document which may throw doubts on priority claim(s) or "Y" doc which is cited to establish the publication date of another inv			ocument of particular relevance; the claimed invention cannot be considered to volve an inventive step when the document is combined with one or more other ach documents, such combination being obvious to a person skilled in the art				
"O"		referring to an oral disclosure, use, exhibition		ocument member of the same patent family				
"P"		published prior to the international filing date han the priority date claimed						
Date o	f the actua	al completion of the international search		Date of mailing of the international search report				
2 Febr	ruary 201	7		02 February 2017				
Name	and mail	ing address of the ISA/AU	the ISA/AU Authorised officer					
PO BO	OX 200,	PATENT OFFICE WODEN ACT 2606, AUSTRALIA oct@ipaustralia.gov.au		Ivanka Barisic AUSTRALIAN PATENT OFFICE (ISO 9001 Quality Certified Service) Telephone No. 0262223644				

International application No.

PCT/US2016/065631

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: the subject matter listed in Rule 39 on which, under Article 17(2)(a)(i), an international search is not required to be carried out, including
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)
Box No. Ill Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
See Supplemental Box for Details
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. X As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. In No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
No protest accompanied the payment of additional search fees.

	rnational application No.		
C (Continuat	ion). DOCUMENTS CONSIDERED TO BE RELEVANT	EVANT PCT/US2016/065631	
Category*	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
X	US 2005/0286013 A1 (AYLOR) 29 December 2005 Fig 1-9; para 50-55, 58, 64, 66		1-34
X	GB 468443 A (GRIER) 05 July 1937 Fig 9		1-34
X	US 4747681 A (BROWER) 31 May 1988 abstract; Fig 1-6; col 1, In 52-59; col 2, In 22-41;		1-16
X	GB 2055222 A (BAUMBACH) 25 February 198 1 Fig 1-5; In 19-40, 100-1 13		1-16

International application No.

PCT/US2016/065631

Supplemental Box

Continuation of: Box III

This International Application does not comply with the requirements of unity of invention because it does not relate to one invention or to a group of inventions so linked as to form a single general inventive concept.

This Authority has found that there are different inventions based on the following features that separate the claims into distinct groups:

- Claims 1-16 are directed to eyewear. The feature of a traction surface configured such that when subject to a force in a first direction, the traction surface can exert up to a first amount of traction force before slipping; when subject to a force in a second direction, the traction surface can exert up to a second amount of traction force before slipping; and wherein the first amount of traction force is greater than the second amount of traction force, is specific to this group of claims.
- Claims 17-34 are directed to eyewear. The feature of a traction surface comprising a plurality of protrusions extending obliquely from the exterior surface on which the traction surface is located, is specific to this group of claims.

PCT Rule 13.2, first sentence, states that unity of invention is only fulfilled when there is a technical relationship among the claimed inventions involving one or more of the same or corresponding special technical features. PCT Rule 13.2, second sentence, defines a special technical feature as a feature which makes a contribution over the prior art.

When there is no special technical feature common to all the claimed inventions there is no unity of invention.

In the above groups of claims, the identified features may have the potential to make a contribution over the prior art but are not common to all the claimed inventions and therefore cannot provide the required technical relationship. The only feature common to all of the claimed inventions and which provides a technical relationship among them is an earstem, a nosepiece and a traction surface on at least one of the earstem and the nosepiece.

However it is considered that this feature is generic in this particular art. Therefore in this light this common feature cannot be a special technical feature. Hence there is no special technical feature common to all the claimed inventions and the requirements for unity of invention are consequently not satisfied a *priori*.

Information on patent family members

International application No.

PCT/US2016/065631

This Annex lists known patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document/s	Cited in Search Report	Patent Family Member/s			
Publication Number	Publication Date	Publication Number	Publication Date		
US 2005/0286013 A1	29 December 2005	US 20052860 13 A1	29 Dec 2005		
		US 7040753 B2	09 May 2006		
		EP 1782120 A2	09 May 2007		
		WO 2006002304 A2	05 Jan 2006		
GB 468443 A	05 July 1937	GB 468443 A	05 Jul 1937		
US 474768 1 A	31 May 1988	US 4747681 A	31 May 1988		
GB 2055222 A	25 February 198 1	GB 2055222 A	25 Feb 1981		
		GB 2055222 B	22 Sep 1982		
		End of Annex			

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.