77084263 A2 I 10 00 00O O O A

=
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 July 2007 (26.07.2007)

(10) International Publication Number

WO 2007/084263 A2

(51) International Patent Classification:
GOGF 9/44 (2006.01)

(21) International Application Number:
PCT/US2006/062633

(22) International Filing Date:
27 December 2006 (27.12.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/319,919 27 December 2005 (27.12.2005) US
(71) Applicant (for all designated States except US): SPECI-
ATION LIMITED [/US]; 6327 South Jamaica Court,

Englewood, Colorado 80111 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): BIRD, Peter L.
[US/US]; 417 West Jefferson St., Anne Arbor, Michigan
48103 (US).

(74) Agents: RIETH, Damon A. et al.; 2200 Wells Fargo
Center, 90 South Seventh Street, Minneapolis, Minnesota
55402 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: CREATING A RELATIVELY UNIQUE ENVIRONMENT FOR COMPUTING PLATFORMS

700

Manitar for New Progarm Instaliation and Program £xecution

110

720

ow Program
Installac?
Yeos

Register the Program and
transform executable code o
locakly unigue form

230

=

“Transform libraries associated
with the program being registerod
into the locally uique form

The pratacted pre-sxacution
cauzes an Inverse
Transform to ba applied to the
Executable Program 70|

Send Program to Processor
for Exeqution

180

To Processor

(57) Abstract: Systems and methods for disrupting the operational capabilities and the distribution capabilities of computer viruses
are provided. In one embodiment, an execution environment is created that makes a computer system appear unique to incoming
= viruses. Responsive to installation of a valid program, the program is registered for execution by transforming it from an executable
& form into a locally unique form based on a diversity mechanism. Responsive to detecting an attempted execution of a program and
@ prior to execution of the program, it is transformed by causing a protected pre-execution process of the computer system, which
implements the diversity mechanism in the form of an inverse transform, to be applied. If the program was previously validly
registered, then the transformation based on the diversity mechanism results in an executable program that will execute properly on
the computer system; otherwise the executable program will fail to correctly execute.

WO 2007/084263 PCT/US2006/062633

CREATING A RELATIVELY UNIQUE ENVIRONMENT FOR
COMPUTING PLATFORMS

COPYRIGHT NOTICE
[0001] Contained herein is material that is subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction of the patent disclosure by any person as
it appears in the Patent and Trademark Office patent files or records, but otherwise reserves

all rights to the copyright whatsoever. Copyright © Hercules Software, Inc. 2004-2005.

FIELD
|0002] Embodiments of the present invention generally relate to systems and methods for
eliminating the destructive and distribution capabilities of computer viruses across modern
computer networks and more specifically to creating semi-unique computing platforms which

are generally resistant to malicious computer programs (collectively referred to as malware).

BACKGROUND
[0003] One benefit of standardization within any manufacturing domain is the regularity
and commonality that makes product development more cost efficient. For example, the
"learning curve" for design techniques can be amortized across a number of products and
product releases, thus reducing the overall development cost. Manufacturing efficiencies
may also be achieved. For example, common parts and/or components may be used for
construction. This commonality allows the manufacturing to be organized in such a fashion
as to exploit a common infrastructure as well as purchases of the common elements in
volume which may also reduce the overall system cost. Furthermore, when a standard is
adopted, the end-users of a standardized product line may become productive more quickly.
One reason is the "learning curve" for product usage is reduced since the end-users may

already be familiar with a given model or a previous version which is substantially similar.

[0004] In addition to benefits in development and usage, another benefit to standardization
exists in maintenance across product lines. One reason is that the maintenance of
standardized product lines becomes easier since there is a common, standard model for the
range of products. Although the discussion above is most obviously relevant to physical

manufacturing, it is absolutely true that all of these points are also applicable to the

1

WO 2007/084263 PCT/US2006/062633

development of computing systems, both hardware and software.

[0005] Unfortunately, there are several problems that may occur with standardization in both
physical manufacturing and computing applications. One problem with standardization has to
do with defects. If the standard model used for manufacturing has a defect, then all of the
reproduced instances of the model will share the common defect. This is especially
problematic in ubiquitous software environments. When a security defect becomes public
knowledge, then hackers may exploit the vulnerability across system instances which have

not had the defect repaired.

[0006] The use of a standard operating environment across the millions of machines in use
today has created a computational mono-culture. By definition, a program which works on
one instance of a standard computer environment will work on any instance of that
environment. Although a computational mono-culture is generally hightly beneficial, it creates

opportunities for the development and distribution of malicious programs.

[0007] Computer viruses exploit the computational mono-culture in two ways: (1) publicly
revealed security breaches are likely to be uncorrected in a large percentage of machines
which are operated by security illiterate individuals; and (2) any malicious program (payload)
built to exploit the breach will probably run unchanged on a large number (millions) of
machines with the same installed software. Once a computer virus gets past the security
perimeter of the victim machine, the payload (a program) may divert the victim machine to
the virus writer's intentions. For example, the victim machine may be used for the malicious
destruction of information (vandalism), identity theft, espionage (e.g., theft of intellectual
property), use of the victim computer as a zombie, for use in distributing spam, or to
participate in a coordinated distributed denial of service (DDOS) attack.

[6008] The effort to develop and distribute a computer virus is facilitated by the
computational mono-culture that currently exists. Although the effort to build a single virus
instance (which can bypass existing security capabilities) may be high, the effort is rewarded
because the virus can propagate across the mono-culture. This is one of the inherent

problems of standardization of computer platforms.

{0009] In addition to the problem of standardization of computer platforms, a social
engineering aspect of computer security exists which cannot be solved simply through
technical means. For example, individuals can be deceived by an attacker to reveal
information which might permit a hacker to breach a security perimeter for a collection of
machines. When such a breach is achieved upon the given machine, the payload may

propagate across other machines which share a common network with the breached machine.

[0010] Current anti-virus software has provided one possible solution to protecting

computers from attacks. However, one problem with the current anti-virus software is the

WO 2007/084263 PCT/US2006/062633

problem of trying to detect malicious patterns in programs from the range of possible patterns
found within all programs. Most anti-virus programs are inherently reactive, since a pattern
is only known about after an infection has been established, recorded and analyzed. In
addition, the failure of anti-virus systems may be expensive. Hence, the current limitations of
existing anti-virus software with their system of updates of virus pattern sets, the
computational overhead of continually scanning the computer to search for malicious
patterns, and the expense of failure are significant limitations in the protection of computer

systems.

[0011] Since no anti-virus system is perfect, especially given the "social engineering"
gateway to infection, a need exists for a mechanism to substantially reduce the risks inherent

in the current computational mono-culture, without sacrificing the benefits of standardization.

SUMMARY
[0012] Systems and methods are described for significantly disrupting both the execution
and distribution capabilities of computer viruses across computer networks and devices.
According to one embodiment, an execution environment is created that makes a computer
system appear unique to an incoming virus. A protected pre-execution process having a
diversity mechanism incorporated therein is provided within the computer system.

Responsive to installation of a useful computer program, that computer program is registered

for execution on the computer system by transforming it from its standard executable form
into a locally unique form based on the diversity mechanism. All computer (operating)
systems have processes which integrate an executable form of a computer program into the
specific resources (computer memory, I/O routines, etc.) of the specific computer.
Responsive to detecting an attempted execution of the computer program and prior to the
execution of the computer program, the computer program is transformed using the diversity
mechanism by causing the protected pre-execution process to be run on the computer
program, If the computer program was previously correctly registered, and has a valid
representation within the unique environment of the specific computer, then the
transformation based on the diversity mechanism results in an executable program that will
execute properly on the computer system; otherwise the transformation results in an

executable program that will fail to execute as desired by the computer program's author.

[0013] According to one embodiment, intrusion detection software may be used to handle
the failed execution of the computer program. In some cases, a user log containing
information associated with the failed execution may be recorded. The user log may be
accessed by an end user, by the system administer, or by automatic reporting software.
According to one embodiment, the information associated with the failed execution may

include, but need not be limited to, one or more of a time stamp, path name, current user,

WO 2007/084263 PCT/US2006/062633

and/or the like. In one embodiment, an installation log may be available which will allow for
the intrusion detection software, or an end user, to establish the time the virus was introduced
into the system. In some embodiments, a notification mechanism may be incorporated to
notify the computer system user or an administrator. For example, the notification
mechanism may include, but need not be limited to, one or more of an e-mail notification, a
dialog box, text message sent to a mobile phone, an audible alert, and the like. According to
some embodiments, the notification may occur directly after the failure is detected. In other
cases, the notification may occur after a specified time period, e.g., weekly, daily, hourly, and
the like.

[0014] According to one embodiment of the present invention, a "relatively" unique element
for each individual computing environment may be embedded within registered executable
programs, appended to the programs, or otherwise associated with the programs, such as
through a database. The element and the program characteristic are checked by a system
linker/loader, or other protected pre-execution process, for example, before the program, or
instructions of the program are allowed to execute. According to one embodiment, the

diversity mechanism may be a software product, a hardware device, or a combination thereof.

[0015] According to one embodiment, an executable program is registered and transformed
into a locally unique form. For example, the executable program may be transformed via a
machine-centric map in accordance with a shuffle (or encryption) key into a locally unique
form. The key may be generated randomly, selected from a predetermined list or generated
based upon a machine-centric template, with an initial sequence offset based upon some
characteristic of the "raw" program (modulo a random quality of the machine), for example.
The locally unique form of the executable program may be comprised of reordered
instructions of the executable program and associated libraries. Before being permitted to
execute, computer programs are passed to the system linker/loader which contains a program
that transforms the code back into a "standard" form (e.g., properly ordered, valid

instructions).

[0016] A more complete understanding of the present invention may be derived by referring
to the detailed description of preferred embodiments and claims when considered in

connection with the figures.

BRIEF DESCRIPTION OF THE DRAWINGS
[0017] In the Figures, similar components and/or features may have the same reference
label. Further, various components of the same type may be distinguished by following the
reference label with a second label that distinguishes among the similar components. If only
the first reference label is used in the specification, the description is applicable to any one of

the similar components having the same first reference label irrespective of the second

4

WO 2007/084263 PCT/US2006/062633

reference label.

[0018] FIG. 1 illustrates an example of a computer system with which embodiments of the

present invention may be utilized;

[0019] FIG. 2 is a flow chart of an exemplary valid program registration in accordance with

one embodiment of the present invention;

[0020] FIG. 3 represents an exemplary high level logical diagram of the placement of the
system linker/loader in relation to various components of a computer system with which

embodiments of the present invention may be utilized;

[0021] FIG. 4 is a flow chart representing a program validation process in accordance with

one embodiment of the present invention;

[0022] FIG. 5 is a flow chart representing a method for generating a new or updated system

ticket in accordance with one embodiment of the present invention;

[0023] FIG. 6 is a high level flow chart illustrating a method of transforming executable code
and libraries into a locally unique form in accordance with one embodiment of the present

invention; and

[0024] FIG. 7 represents a detailed flow chart representing a monitoring process in

accordance with one embodiment of the present invention.

DETAILED DESCRIPTION
[0025] Embodiments of the present invention generally relate to systems and methods for
eliminating the distribution capabilities of computer viruses across computer networks and
devices. According to one embodiment of the present invention, a "relatively" unique
clement for each individual computing environment is associated with a characteristic of a
specific program into each executable program within that computing environment. For
example, a relatively unique element may be embedded within a registered executable
program, appended to the program, or otherwise associated with registered executable
program, such as through a database or the like. Subsequently, the relatively unique element
and the program characteristic are validated by a system linker/loader, or other protected pre-
execution process, for example, before a program is allowed to execute. In one embodiment,
the program is allowed to execute unfettered only if the pre-execution process indicates the

validity of the program attempting to execute.

[0026] According to one or more embodiments, a microprocessor and/or an instruction
decode unit may be a protected hardware device. In one embodiment, the instruction decode
unit may be adapted to change the opcodes of the computer's instruction set, or the register
assignment, or both. Accordingly, the tables and decoding logic used to specify the opcode

mappings may become a part of the physical hardware of the machine. In some
5

WO 2007/084263 PCT/US2006/062633

embodiments, the transformation function could take into account the position of the
instruction within an aligned block of code. Although this may appear, at first glace, an
expensive operation, it is far less complicated than the instruction transformations in current

machines.

[0027] Traditional loaders typically allocate program memory for a new program (stack,
code and heap space), and may protect these memory regions in certain ways (i.e., a code
block of storage may have its access mode changed to READ-ONLY to prevent its
modification by executing programs). In addition, traditional linkers typically connect the
executing program with system library routines (I/O, storage allocation). In one embodiment,
the linker/loader may be a protected process. In some embodiments, the linker/loader is part
of the operating system kernel and must be run to process/transform the program to be

executed.

[0028] Although encryption is one form of defining a unique element in a computing
environment, there are many simpler algorithms, with faster execution times, which
accomplish the task outlined herein. In a general sense, any reversible transformation may be
considered an encryption. Therefore, even swapping instructions in a sequence could be
defined as an encryption algorithm. According to one embodiment, a unique environment
may be created by using encryption keys. For example by using distinct encryption keys for
each computing system. In another embodiment, different transformation algorithms may be
applied to different portions of a program. For example, one transformation may be applied
to the data segment of a program and another transformation may be applied to the code
segment. Further, different transformations may be applied to registers and other program
constants. In either case, the encryption or transformation may be created using hardware

components, software components, or a combination of the two.

[0029] In one embodiment, the diversity mechanism may be integrated into the virtual
memory structure of a computer system. On most computers, there is a mapping from the
virtual to the physical memory space which allows the computer's operating system to move a
program's data so as to not be constrained to have said memory be contiguous in the physical
address space of the computer. The diversity mechanism for the computer could permit the
operating system to specify an additional mapping function during the fetch of the physical
memory system. The implementation of this model of diversity mechanism could be in a
tabular form, or it could be a logic function applied to a memory address in advance of the
physical program access. One form of this mapping could be to "shuffle" the memory
reference according to some total function; for example, a program's request for memory
location N would actually be retrieved from location 3 * N + M (modulo the size of the block
to which this transform is applied). The remapping could be applied to the code memory for a

program, the data memory of the program or both. Different remappings could be applied

to the code memory than to the program memory; doing this would have the beneficial effect
6

WO 2007/084263 PCT/US2006/062633

of disrupting the operation of malware introduced using BUFFER OVERFLOW intrusion
techniques. The memory diversity mechanism could be applied at the page level of a
computer, or any sub-level with a computers memory address space. For example, if the
physical page size of the computer is 512 bytes, the memory diversity might apply to blocks of
any power of two smaller than the page size (i.e., 4, 8, 16, 32, 64, 128, 256 bytes).

[0030] According to some embodiments, when a program performs a data fetch, an
encryption method, such as a shuffling algorithm, may be applied. This may be done in

hardware, software, or in a combination of the two.

[0031] Before a program can execute, it is integrated into the current operational
environment of the computer upon which it will run. This generally includes rewriting
constant displacements for memory addresses, such as, but not limited to branch/subroutine
references to operating system (shared) library routines, local "relocation” addresses (for

locally defined functions), globally accessible data and/or any combination thereof.

[0032] The location of these elements (data and functions) are likely to be different on
different machine instances, and even at different times on the same computer due to the
stochastic positioning of programs and data during computer operations. In accordance with
various embodiments, some locations on a computer might be permanently fixed, such as

fixed OS library locations for input/output (1/0).

[0033] In any event, the linker/loader is generally responsible for finding all locations in
the (about-to-be-executed) program which reference relocatable program elements (data or

instruction) and filling those locations with the specific element address.

[0034] According to another embodiment, a unique execution environment may be created
by using a registration program to transform executable programs into a locally unique form.
The reverse transformation program may be integrated into the system linker/loader and may
be subsequently used prior to execution to transform the locally unique form of the registered

program into one which will correctly execute on the given (standard) architecture.

[0035] In the following description, for the purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of embodiments of the
present invention. It will be apparent, however, to one skilled in the art that embodiments of

the present invention may be practiced without some of these specific details.

{0036] Embodiments of the present invention may be provided as a computer program
product which may include a machine-readable medium having stored thereon instructions
which may be used to program a computer (or other electronic devices) to perform a process.
The machine-readable medium may include, but is not limited to, floppy diskettes, optical
disks, compact disc read-only memories (CD-ROMs), and magneto-optical disks, ROMs,

random access memories (RAMs), erasable programmable read-only memories (EPROMs),

7

WO 2007/084263 PCT/US2006/062633

electrically erasable programmable read-only memories (EEPROMSs), magnetic or optical
cards, flash memory, or other type of media / machine-readable medium suitable for storing
electronic instructions. Moreover, embodiments of the present invention may also be
downloaded as a computer program product, wherein the program may be transferred from a
remote computer to a requesting computer by way of data signals embodied in a carrier wave
or other propagation medium via a communication link (e.g., a modem or network

connection).

[0037] While, for convenience, embodiments of the present invention are described with
reference to a system linker/loader checking a program before allowing it to execute,
embodiments of the present invention are equally applicable to various other pre-execution
processes, specifically, these capabilities can be applied to interpreted systems prior to the
interpretation of the program (or script). Similarly, while embodiments of the present
invention are described in the context of virus elimination, the approach described herein is
applicable to reducing piracy of software, enforcing program licenses, preventing
inappropriate programs from being loaded and executed in a corporate environment, defining

restricted security domains, and the like.

[0038] For the sake of illustration, various embodiments of the present invention have herein
been described in the context of computer programs, physical components, and logical
interactions within modern computer networks. Importantly, while these embodiments
describe various aspects of the invention in relation to modern computer networks and
programs, the method and apparatus described herein are equally applicable to other systems,
devices, and networks as one skilled in the art will appreciate. As such, the illustrated
applications of the embodiments of the present invention are not meant to be limiting, but
instcad exemplary. Other systems, devices, and networks to which embodiments of the
present invention are applicable include, but are not limited to, other types communication
and computer devices and systems. More specifically, embodiments are applicable to

communication systems, services, and devices such as cell phone networks, networks for

mobile code (wherein programs may migrate across the network before, during and after
execution) and compatible devices. In addition, embodiments are applicable to all levels of

computing from portable or personal computers to large network mainframes and servers.

Terminology

[0039] Brief definitions of terms, abbreviations, and phrases used throughout this

application are given below.

[0040] The term "code" is interchangeable with the term "instruction", and both refer to the

organization and the opcode and register numbering for machine instructions which execute

8

WO 2007/084263 PCT/US2006/062633

on the given, standardized computing platform.

[0041] The terms "connected"” or "coupled" and related terms are used in an operational

sense and are not necessarily limited to a direct physical connection or coupling.

[0042] The phrase "diversity mechanism" generally refers to a mechanism which provides a
means to differentiate individual computing devices, with the goal of complicating the
development and distribution of computer malware. According to one embodiment, the
diversity mechanism has an effect upon the operational behavior of a program by affecting
loading or execution, for example. If a program to be run upon a computer does not conform
to the structure of the given computer, due to the diversity mechanism, then that program will
not aperate in correspondence to its intended behavior. Instead the program will almost
certainly produce an immediate error in execution. In accordance with most embodiments, a
diversity mechanism is enforced by a trusted and restricted (i.e., protected) component
(hardware or software) of the computer. In some embodiments, a diversity mechanism is
integrated into the operational framework of the computer so that any program to be executed
must first pass through the diversity mechanism before being permitted to execute. For
example, a diversity mechanism may be incorporated into the interface with the loader,
within the instruction decoder, within the virtual memory structure of a computer system
and/or the like. Also, according to various embodiments, a diversity mechanism might be
applied at the beginning of program execution, or it could be applied continually during the
course of program execution. In some cases, the diversity mechanism may be applied using
hardware, software, or a combination thereof. For example, one embodiment of a diversity

mechanism is a mechanism capable of encrypting a computer file, code, or set of instructions.

Examples of diversity mechanisms include, but are not limited to, tickets and
transformations, such as encryption. Furthermore, a diversity mechanism may refer to
multiple encryption schemes and appropriate implementations employed at different stages
and/or levels. In some embodiments, different encryption levels or schemes may be applied
depending on the character of the information being encrypted, e.g., data, instruction set, trust

level, and/or the like.

[0043] The term "encryption" generally refers the process of applying a reversible
transformation to a set of information or data thus masking the information or data. In some
embodiments, the encryption is cryptographically strong. In some embodiments, the

encryption is not cryptographically strong, e.g., a shuffle algorithm.

[0044] The phrases "in one embodiment," "according to one embodiment," and the like
generally mean the particular feature, structure, or characteristic following the phrase is
included in at least one embodiment of the present invention, and may be included in
more than one embodiment of the present invention. Importantly, such phases do not

necessarily refer to the same embodiment.

WO 2007/084263 PCT/US2006/062633

[0045] The phrase "integrity indicator” generally refers to information associated with a
program or library that may be used to confirm whether the original content at the time
the integrity indicator is generated remains unchanged. According to one embodiment, a
registration process generates and appends an integrity indicator to a program or library at
the time of program installation. Subsequently, a pre-execution process, such as a system
linker/loader verifies the appended integrity indicator prior to allowing the program to
execute. In one embodiment, the integrity indicator may be a message digest, a

checksum, hash, or a digital signature.

[0046] The phrase "linker/loader" generally refers to a mechanism implemented in
software, firmware, hardware or a combination thereof for performing one or more of the
following processes/functions: (i) resolving cross-references between separately compiled
or assembled object modules; (ii) assigning final addresses to a single object module or
set of object modules to create a single relocatable load module; (iii) copying executable
programs from a storage device to main memory, where such executable programs can be
executed; and (iv) replacing the placeholder address slots (e.g., virtual addresses) for
operating system elements (functions and/or data) requested by an executable program
being loaded into main memory with the physical addresses. According to one

embodiment, the linker/loader is an operating system utility that performs traditional
linker/loader functionality as well as performing authentication and integrity verification

processing prior to allowing an executable program to run.

[0047] The phrases "locally unique form" and "local representation” generally refer to
the form in which a program and/or libraries are encoded and stored for a particular local
computing environment. In one embodiment, the locally unique form is based upon a
"relatively” unique element associated with the particular computing environment. In one
embodiment, the relatively unique element comprises a "diversity" mechanism incorporated
into the system linker/loader which provides a security feature by preventing proper
execution of executable programs that have not been properly transformed to accommodate
the system linker/loader. In one embodiment, the locally unique form is created during a
registration process which may be activated during program installation. The registration
process may encode the program to place it in a form that is consistent with a local
decoding process implemented within the system linker/loader prior to execution. In one
embodiment, the locally unique form is created by resequencing the executable
instructions, transforming the opcodes of the executable instructions or by adding a ticket

to the program.

[0048] The term "malware" generally refers to programs which are installed onto a user's
computer system without the user's knowledge or understanding, and which, when
operational, perform operations which are destructive of information on the computer, and/or

may utilize resources of the computer for purposes other than the intent of the computer
10

WO 2007/084263 PCT/US2006/062633

owner. Examples of malware include, but are not limited to, viruses, spyware, trojans, adware

and other malicious computer programs.

"o

[0049] If the specification states a component or feature "may", "can", "could", or
"might" be included or have a characteristic, that particular component or feature is not

required to be included or have the characteristic.

[0050] The term "program” is interchangeable with the terms "subroutine", "function",
"routine" or "module”. In some contexts in this document, the term "code" may be a
shorthand for a sequence of machine instructions which represent a "function", "subroutine"
or "program". In various embodiments described in this document, a "program" may
represent a collection of functions, subroutines or modules. Generally, however, these terms

refer to any file that contains information that may be interpreted by a computer system as

an executable program. Examples may include executable objects, file system objects,
script files and/or the like. Furthermore, code objects, such as visual basic scripts, Java

scripts, Windows®-based scripts, Java applets, and/or the like, are intended to be

"on "o

encompassed by the phrases "program,” "subroutine," "function," "routine,"” and
"module." Common file extensions of executable objects include, but are not limited to,
.exe, .com, .sys, .dll, .scr, .cpl, .api, .drv, .bpl and/or the like. File system objects include
objects like device drivers, network interfaces, and/or the like. Other examples of
"programs,” "subroutines," "functions,” "routines," and "modules."” may include files
using the IEEE-695 standard, S-records, PEF/CFM Mach-O (NeXT, Mac OS X), a.out
(Unix/Linux), COFF (Unix/Linux), ECOFF (Mips), XCOFF (AIX), ELF (Unix/Linux),
Mach-O (NeXT, Mac OS X), Portable Executable, IBM 360 object format, NLM, OMF,

SOM (HP), XBE (Xbox executable), and/or the like.
[0051] The term "responsive" includes completely or partially responsive.

[0052] The term "ticket" gencrally refers to a set of electronic credentials that verify the
identity of an executable program, library, file, data segments, code and/or the like. For
example, in some cases a method of generating and verifying a ticket comprises two
complimentary algorithms. One for generating the authenticating mark, or credentials,
and one for verifying the authenticating mark or credentials. In one embodiment, a
cryptographically strong scheme such as a digital signature may be employed as the
ticket. A digital signature or cryptographic digital signature denotes the result of
computing a cryptographic hash value, such as SHA-1, SHA-256, MD-5, and the like,
over a specific program or file, then encrypting the hash value using a private key. Given
the same program or file, re-computing the hash value, and decrypting the digital
signature using the corresponding public key, will produce the identical value if the
encoded data remains the same. It is important to appreciate that the scheme need not be

cryptographically strong to be effective in crippling the capabilities of malware. For

11

WO 2007/084263 PCT/US2006/062633

example, any hash function or redundancy checker may be used. Examples of hash
functions include, but need not be limited to, parity bits, check digits, longitudinal
redundancy check, and any other check sum. Other types of redundancy checkers include
cyclic redundancy check, horizontal redundancy check, vertical redundancy check, and
the like. In one embodiment of the present invention, the presence of a ticket within an
executable program operates as an access key allowing the executable program to be loaded

and run by the computer system. Furthermore, during a registration process which is initiated

responsive to installation of a program, an encrypted ticket may be embedded within the
program, appended to the program, or otherwise associated with registered executable
programs such as through a database, thereby allowing a linker/loader of a computer
system to authenticate or otherwise verify the identity and legitimacy of the registered
executable program when such registered executable program attempts to run within the
computer system. According to one embodiment, tickets may be temporary and may

expire or change on a periodic basis.

Computer System Overview

[0053] Embodiments of the present invention include various steps, which will be
described in more detail below. A variety of these steps may be performed by hardware
components or may be embodied in machine-executable instructions, which may be used
to cause a general-purpose or special-purpose processor programmed with the
instructions to perform the steps. Alternatively, the steps may be performed by a
combination of hardware, software, and/or firmware. As such, Fig. 1 is an example of a
computer system 100 with which embodiments of the present invention may be utilized.
According to the present example, the computer system includes at least one processor
102, at least one communication port 103, a main memory 104, a read only memory

106, a mass storage 107, a bus 101, and a removable storage media 105.

[0054] Most modern processors implement a main memory addressing scheme called
Virtual Memory that separates the logical and physical locations of data and programs in a
memory system. For purposes of explanation and presentation, the exact characteristics
of such an implementation are transparent to the operation of embodiments of the present

invention.

[0055] Therefore, as is consistent with the operation of computing systems, all programs
are (logically) moved from mass storage 107, the read-only memory 106, or some other
location into a memory unit for the computer (either the main memory 104, or a read-
only memory 106) immediately prior to execution by the processor 102. Elements of a
program under execution might be held in a local cache memory 108 contained within the

processor.
12

WO 2007/084263 PCT/US2006/062633

[0056] Processor(s) 102 can be any known processor, such as, but not limited to, an
Intel® Pentium, Intel® Itanium® or Itanium 2® processor(s), or AMD® Opteron® or
Athlon MP® processor(s), IBM ® or Motorola ® lines of processors. Communication
port(s) 103 can be any of an RS-232 port for use with a modem based dialup connection,
a 10/100 Ethernet port, or a Gigabit port using copper or fiber. Communication port(s)
103 may be chosen depending on a network such a Local Area Network (LAN), Wide
Area Network (WAN), or any network to which the computer system 100 connects.

[0057] Main memory 104 can be Random Access Memory (RAM), or any other dynamic
storage device(s) commonly known in the art. Read only memory 106 can be any static
storage device(s) such as Programmable Read Only Memory (PROM) chips for storing

static information such as instructions for processor 102.

[0058] Mass storage 107 can be used to store information and instructions. For example,
hard disks such as the Adaptec® family of SCSI drives, an optical disc, an array of disks
such as RAID, such as the Adaptec family of RAID drives, or any other mass storage

devices may be used.

[0059] Bus 101 communicatively couples processor(s) 102 with the other memory,
storage and communication blocks. Bus 101 can be a PCI /PCI-X or SCSI based system

bus depending on the storage devices used.

[0060] Removable storage media 105 can be any kind of external hard-drives, floppy
drives, IOMEGA® Zip Drives, Compact Disc - Read Only Memory (CD-ROM),
Compact Disc - Re-Writable (CD-RW), Digital Video Disk - Read Only Memory (DVD-
ROM).

[0061] The components described above are meant to exemplify some types of possibilities.
In no way should the aforementioned examples limit the scope of the invention, as they are

only exemplary embodiments.

A simplified introduction to computer instruction formats

[0062] Computers use a binary representation of numbers for both data and instructions.
Furthermore, computer memory is organized as an ordered collection of numbers.
Instructions of a computer are organized as fields which are usually partitioned into
operations and their parameters. Generally, the field used to specify the numeric value for the
operation is an opcode. Parameters may specify a limited range of high speed storage
locations (called registers), or may be constant values (which may used for memory

reference operations, or as elements of arithmetic operations).

13

WO 2007/084263 PCT/US2006/062633

[0063] Example:

Load R;,300(R2)
Add R?n RZ: R5
Branch Cond, 20(Ry)

[0064] In the above example, the first instruction will take the number held in register
12, add 300 to it, find that storage location in the computer's memory, retrieve the number
found therein, and save that number in register 1. The second instruction will take the
number in register 5, add it to the number in register 2, and save the result in register 3.
The third instruction will determine if the status of the preceding arithmetic (or
relational) operation matches the condition COND. If not, program flow will proceed to
execute the next instruction in sequence. Otherwise, program flow branches and
continues with the location specified by the value in register 8 plus 20 by fetching

instructions at that location.

[0065] Assume that the opcode value for a Load is 1, that of an Add is 2 and a Branch is

3. Then the above three instructions would have a numeric form of:

Opcode Field1 Field2 Field3

1 1 300 12
2 3 2 5
3 XXX 20 8

We have ignored the numeric value of the COND field in the third instruction and
characterize it in the above table with the symbols "XXX".

The Role of the linker/loader in program execution

[0066] Before a program can execute, it must be integrated into the current operational
environment of the computer upon which it will run. This generally includes rewriting
constant displacements for memory addresses, branch/subroutine references to library
routines, local "relocation” addresses and globally accessible data. Collectively, these set
of locations, which must be rewritten with valid memory addresses before program

execution, are called address constants or "Adcons".

[0067] The locations of these data and functions are likely to be different on different
machine instances, and even at different times on the same computer due to the stochastic
positioning of programs and data during computer operations. Some locations on a

computer might be permanently fixed, such as fixed library locations for input/output

14

WO 2007/084263 PCT/US2006/062633

(I/0) functions.

[0068] The linker/loader is responsible for finding all locations in the (about-to-be-
executed) program which reference relocatable program elements (data or instruction) and

filling those locations with the specific element address.

[0069] Example:

Module A Module B
{

external x; global x;

local y; local w;

y=x+4 x =45
} }
load r2,=loc(x) load rl,=45
add r2,=4 store rl,=loc(x)
store r2,8(base)

[0070] In the above program schema, the variable "X" is assigned to an "arbitrary"
memory location during the loading phase of Module B. Any programmatic reference to
X (characterized by an associated Adcon) must be written during module A and B's
loading process, before the correct execution of the above program is possible.
Therefore, the first instruction of Module A, and the last instmction of Module B contain
Adcon references to the variable "X" which must be "filled-in" or resolved prior to the

correct execution of this program.

Execution Environment Qverview

[0071] In one embodiment, an execution environment is created which makes each distinct
computer appear unique to any incoming virus. Although absolute security of a
computing environment is desirable, it is generally an unattainable goal. However, if a
networked computing environment connects a large number of "relatively” unique machines,
viruses (and other malware) will have significant difficulty infecting and propagating across
even a small subset of attached machines. The absolute uniqueness of the element for a
computer is not essential. Absolute security of a computer system is not technically feasible,
and is certainly not justified given its cost. Recall that a principle goal is to reduce the
computational mono-culture of computers. Even if the number of distinct forms of
computers is small (ten thousand, one thousand, even one hundred), then the penetration
capability and automatic distribution capability of a computer malware is significantly
degraded. This will have impact upon the cost/benefit value of the construction of said

malware by a virus author. To this end a "substantially" unique environment is created by

15

WO 2007/084263 PCT/US2006/062633

providing a "gate" which intercepts programs before execution and checks that they are valid

for operation within the unique environment of the given machine.

[0072] While according to various embodiments, a registration process transforms
executable programs and/or libraries into a locally unique form during installation and a
computer system's linker/loader subsequently validates programs prior to executing them
permitting only valid programs to execute, the creation of computational diversity while
preserving standardization may be achieved in various other ways. For example, executable
programs may be delivered in their own unique forms prior to installation, delivered with an
application-specific loader and/or a different pre-execution process may perform the program

validation.

[0073] According to some embodiments, the installation process may require some type of
validation or verification process. In some embodiments, an administrator or end user
responsible for the machine may be responsible for the validity of a program before it is
permitted to be registered. Various techniques known to those skilled in the art may be used
to verify the program, e.g., sandboxing. In a corporate environment, a sysAdmin, such as a
network manager or IT specialist, may be responsible for the machines. For home computers,

the administrator might be the owner.

[0074] In other embodiments, a subscription service may be used to verify the software
program. Other techniques such as white-listing, black-listing, and/or the like may be used to
validate the program. Still yet, according to one embodiment, there may be multiple

protection domains specified by differing tickets in a given system. For example, a ticket

may provide a variety of trust levels, e.g., completely trusted, highly trusted, medium trust,
low trust, and not trusted. As such, access to system resources and ability of the program may
be appropriately limited. Furthermore, a variety of reverse transformations may be used by
the loader/linker may be used for different program domains. For example, a program
distributed from a subscription service might be use a different decryption key than a
program which was permitted to be installed by an end user.

Use of Integrity Indicators and Tickets

[0075] One embodiment uses an integrity indicator, such as a checksum, and a ticket. The
ticket may be changed periodically or responsive to predetermined internal or external events.
In accordance with one embodiment, each "valid" program is registered with the system

during installation of the program.

[0076] A program registration process in accordance with one embodiment of the present

16

WO 2007/084263 PCT/US2006/062633

invention is illustrated in Fig. 2. According to the present example, the registration process
causes at least two actions to occur. At block 220, when a valid program registration is
initiated with the system at block 210, a system-unique ticket is embedded into each program
along with a characteristic of or metadata associated with the specific program (such as a
checksum or a hash of the program). Then, the program is registered with a system-wide

publish/subscribe information distribution system at block 230.

[0077] Fig. 3 conceptually illustrates the placement of the linker/loader 320 in an operating
system 300. The operating system is also a program, albeit a special one which manages all
of the resources for a computer system 100. A program may be stored in main memory 104,
Read Only Memory 106, or other storage devices. In the present example, the linker/loader
320 is a component of the operating system which also includes system libraries 330, which
provide an interface to the operating system kernel 310, which alone may directly reference
physical elements of the computer system 100 (such as the system bus 101, I/O ports 103,
mass storage 107, etc.). When a program is activated for execution, it must first pass through
the linker/loader which binds the program to the specific resources available through the
operating system 300, most often through the system libraries 330. Once bound to the given

computer, the program can be executed on the computer system's processor 102,

[0078] Fig. 4 is a flow diagram illustrating a program validation process in accordance with
one embodiment of the present invention. In the present example, when a program attempts
to execute (block 410) it is passed to the linker/loader at block 420. The linker/loader
determines if the program has the right to execute. To make this determination, the
linker/loader checks at block 430 to see if a valid ticket is present. For example, in some
embodiments, a ticket may be embedded, pre-pended, or located in a secure database. If a
valid ticket is not present, the program is denied the right to execute at block 440. Otherwise,
the linker/loader performs its standard pre-execution operations on the program (such as
allocating necessary storage, rewriting address constants, etc) at block 450. In addition, at
block 450 the linker/loader computes the current platform unique integrity indicator for the
program by using an appropriate cipher algorithm such as checksum, hash function, etc. At
block 450, the linker/loader may verify if the computed integrity indicator matches the
indicator pre-pended to, embedded within, or otherwise associated with the program to be
executed. The two values are compared in block 460, and if they do not match, then the
program is denied the right to execute in block 440. Otherwise, the program is granted the
right to execute in block 470, and is added to the collection of valid programs maintained by

the operating system.

[0079] According to one embodiment, in order to reduce the probability of a misuse of the
ticket, the system ticket or unique element of the diversity mechanism may be changed on a
regular basis. A high level flow diagram illustrating a method of generating a new or updated

system ticket in accordance with one embodiment of the present invention is presented in Fig.
17

WO 2007/084263 PCT/US2006/062633

5. In accordance with one embodiment, the ticket comprises a value defined, or generated, by
the program registration system at block 510. According to one embodiment, registration
system 510 may combine a characteristic of the given program and a system-unique
characteristic to form a ticket. Then, at block 520, the program and its ticket may be
committed to the computer systems’ mass storage 107. According to some embodiments,
additional protection may be provided by regenerating the program's ticket. In one
embodiment, the regeneration may be performed as a result of an exogenous input or request
from a system administrator 530. In another embodiment, the ticket may be changed or
updated at a predetermined time or date, or on a periodic basis, as illustrated in block 540.
For example, the ticket may be changed on a periodic basis such as, but not limited to, per
day, per hour, per minute, and/or any combination thereof. The ticket may also be changed

based on entries in a predefined table or at random. In any event, a new ticket may be created

and posted to the set of registered programs. In this way, the "execution gateway™ may be

constantly transformed or mutated.

[0080] Even if the algorithm which implements the integrity indicator is known, and even if
a system-wide ticket is found by a virus writer, there is only a very small "window of
opportunity" during which a virus payload might be loaded onto the computer with a chance
of successfully getting past the checking algorithm (figure 4) within the system linker/loader.

Shuffling the Execution Body of the Program

[0081] Fig. 6 is a high level flow diagram illustrating a method of transforming executable
code and libraries into a locally unique form in accordance with one embodiment of the
present invention. In the present example, a valid program registration with the system is

initiated at block 610.

[0082] At block 620, a unique execution environment is created responsive to the program
registration. For example, a registration program may transform the executable program into
a locally unique form. Various transformations may be used. For example, the executable
instructions of the program may be reordered and/or the opcodes of the instructions may be

transformed.

[0083] At block 630, when the program later attempts to execute, the system linker/loader or
some other pre-execution process is used to transform the program stored in the locally
unique form into a standard executable form that will correctly execute on the given
(standard) architecture.

[0084] Fig. 7 is a detailed flow diagram representing a monitoring process in accordance
with one embodiment of the present invention. According to the present example, the system

continuously monitors for the installation of new programs or attempted program execution at

18

WO 2007/084263 PCT/US2006/062633

block 710.

[0085] If the system determines a new program is being installed at block 720, the program is
registered at block 730. In accordance with one embodiment, the instructions of the program
are reordered in a sequence which is unique to the given machine. Then, all "valid"
applications and libraries associated with the program being installed are registered and

resequenced in the "shuffled" mode which is specified for the machine at block 740. In one

embodiment, all "safe/valid” programs are shuffled during the registration process using a
shuffle mode that might employ a machine centric template, with an initial sequence offset
based upon some characteristic of the "raw" program (modulo a unique element of the given
machine). When the system determines a program is attempting to execute at block 750, then
the program and its libraries are transferred to the linker/loader at block 760. Then, at
Load/Link time, the incoming program and its libraries (stored in a locally unique form) are
transformed into a standard, executable form utilizing the inverse machine centric sequence
map at block 770. At block 780, the resultant "standard-form" program is sent to the
processor for execution. In the present example, a modified linker/loader is involved in the
start-of-execution process. According to other embodiments, this protection mechanism may
involve an alternative program validation process (either before or during program

execution).

[0086] One advantage of this type of underlying organization of a dispatch scheme for a
given machine is that viruses which find their way onto the machine will not be properly
registered, and therefore will likely fail to correctly start. Consequently, this should result in
the denial of execution for failing to pass the pre-execution validation or a program execution
exception, for example. As such, one advantages of this scheme is that it should cripple the
exponential growth of the virus distribution network. Furthermore, by using various
embodiments of this scheme, a "paper trail" for infection pathways is more likely to be

created, facilitating the task of computer forensic analysis.

[0087] Although the shuffle key is best protected, even its loss to the outside world, or to an
attacker, is not catastrophic to the network as a whole. Only the machine whose key is lost is
immediately vulnerable, and then only for the window of opportunity before the key is
changed. The effort of a virus writer to deliver his payload to a large number of "unique"
machines becomes astronomical, since the virus writer must have access to the collective set
of keys for machines he wishes to infect, and he must target his machine specific virus

instance to the correct machine to cnable its correct startup after the loading/linking process.

{0088] In addition to requiring the ability to steal the local shuffle template, the virus author
would additionally need to bypass the existing network security framework to insert the
payload onto the single machine with that given shuffle template. The required bi-directional

activity for virus insertion will likely leave an incriminating "paper trail" for subsequent

19

WO 2007/084263 PCT/US2006/062633

forensic investigations.

Example of a Locally Unique form.

|0089] A simple exemplary transformation is now shown with a set of abstracted
instructions. For this example, a simple generator function which iterates through the list

using an odd number (modulo list size) is illustrated.

[0090] Consider the instruction sequence A, B, C, D ... N. The shuffled sequence using a

step constant of 3 would be:

Shuffled |Execution |Instruction
Position |Position

1 5 E
2 10 J
3 1 A
4 6 F
5 11 K
6 2 B
7 7 G
8 12 L
9 3 C
10 8 H
11 13 M
12 4 D
13 9 I
14 14 N

[0091] During loading, the Loader would fetch the first instruction from location 3
(instruction "A"), the next from location 6, etc. The algorithm for reconstructing the

semantically correct operating sequence would be:
inst(i) = shuffled((i * Generator) modulo BlockSize)

[0092] In the above example, the generator value is "3", and the blockSize is "14". Thus,
the instruction in the execution sequence position "10" can be found in the table at

location
(3 * 10) mod 14 =30 mod 14 =2,

[0093] Additional parameters can be added to the shuffle/resequence algorithm. For

example, a starting offset into the block could be used:

inst(i) = shuffled(((i + offset) * G) modulo B)

[0094] In the above table, the offset is "0". However, the loader could use any offset up
to the blockSize of the list. Using an offset like this is equivalent to "rotating" the shuffled

20

WO 2007/084263 PCT/US2006/062633

table by a constant factor.

[0095] Although the technique outlined above defines a local environment for the
specific machine, it makes the generation of automatic, self-perpetuating viruses almost
intractable across a network, since each virus instance must be constructed to match the
pattern for each specific machine. Even this simple algorithm may have a number of
different parameters to greatly complicate defeating it. For example, a different constant
factor could be used to offset the resequencing process, a different number (3, 5, 7, etc.)
could be used for the generator, and the block size for each computer can be drawn from
a number of possible block sizes, so long as the sequencing value is relatively prime with

respect to the block size.

[0096] For any given blockSize, there are approximately blockSize /2 + blockSize
distinct local representations of the given program block, since you have (blockSize/2)
possible odd numbers in the range (which can be used for the generators), and (blockSize)
distinct offsets for retrieving generated values. In accordance with one embodiment, in
order to increase the number of possible distinct local environments, programs may be
broken into a collection of blocks each characterized by the triple: (generator, offset,
blockSize).

[0097] 1f the local representation used multiple triples (T1, T2, ... Tn), a program would
be encoded using theses triples, then decoded using the above resequencing algorithm,
employing the triple appropriate for the given block until the program stream was

exhausted.

[0098] The above example is instructive for several reasons. The "diversity
mechanism" for a given machine needn't be extremely complicated for the techniques
described herein to have great value in inhibiting the effect and propagation of malware.
To crack the diversity mechanism automatically, a virus would need to begin executing
on the given platform. But, in order to begin executing, it would first need to pass through
the linker/loader, or otherwise attach itself as a payload to a valid program. While
exploiting a buffer overflow to begin exccution is possible, the analytic routine required
in that payload would need to be quite large to perform any significant analysis of the

diversity mechanism for the given platform.

Better Protection

[0099] Various embodiments allow for protection to be achieved on a computer, especially in
an environment where the generator/resequencing algorithm is vulnerable to attacks through
social engineering. In accordance with various embodiments, the computer can be

programmed to regularly regenerate its shuffle key. That is, it can regularly resequence

21

WO 2007/084263 PCT/US2006/062633

binary program executables in its environment. This is an instance of the computer morphing
its execution environment to inhibit viruses. In addition, the shuffling/decoding process can

modify the instruction opcodes using a different sequencing algorithm.

[0100] In other another embodiment, the shuffling/decode process can modify registers and
other program constants using a difference sequencing algorithm. The entire process can use
templatized schema for representing common instruction sequences (such as the subroutine
entry/exit sequence). The indices of these templatized schema can be substituted into the

shuffled instruction stream.

Exemplary Applications

[0101] If the linking/loading process is an integral part of the operation of an application,
then the application can only be viewed after loading/linking, and only in the memory of the
target computer. In addition to providing security against arbitrary virus infection,
embodiments of the strategy discussed above can be used in other ways to provide important
capabilities to a computing environment. Examples include, but are not limited to, the
following: 1) reduction of piracy of software by complicating the reverse engineering of an
application; 2) enforcement of program licenses by shipping a loader with each application;
3) prevention of inappropriate programs from being loaded and executed in a corporate

environment; 4) defining a restricted security domain.

[0102] In one embodiment designed for the enforcement of program licenses by shipping a
loader with each application, the application specific loader integrates the license check

algorithm into loading process on a per-application/platform basis.

[0103] In one embodiment designed to prevent inappropriate programs from being loaded
and executed in a corporate environment, using a "shuffle" program resident only upon a
corporate server prevents a user of a workstation in the corporate environment from
converting their program into the corporation's locally unique form. This would limit the
liability of a corporate enterprise by reducing the risk that an employee is running "pirate"

software within the corporate environment.

[0104] In another embodiment designed to define multiple security domains, programs
which are validated may be directly linked with any system service call they require, thus
permitting high performance operation. Programs which are not validated are only linked
with "safe" wrappers to vulnerable system service routines, and could be monitored
during their program execution. Examples of vulnerable routines might include, but are
not limited to, file I/O routines, network read/write routines, (Windows) system registry

write operations, and the like.

[0105] In embodiments which define a restricted execution capability, an unregistered
22

WO 2007/084263 PCT/US2006/062633

program might be allowed to execute, but it wouldn't be allowed to do anything which
might disrupt the correct operation of the machine. Moreover, according to some
embodiments, a rollback function may also be available. As such, if it was established
that an unregistered program made undesirable system modifications, a rollback function,
based upon the system's data backup facility, for example, could be invoked to return the
system to its "pre-infected" state. The ability to provide this security feature is a direct

effect of integrating a "diversity” mechanism into the system.

[0106] In another embodiment, a system log could be maintained which tracked the
loading of unregistered program. Then, if undesirable program behavior was detected
(either manually or automatically), such as excessive use of system resources,
presentation of undesired pop-up windows, and the like, the end-user would be able to

trace the behavior back to the program which initiated it.

- [0107] In conclusion, embodiments of the present invention seek to provide novel
systems, methods and arrangements for eliminating the operational and distribution
capabilities of computer viruses and malware across modern computer networks and
more specifically seek to provide semi-unique computing platforms. While detailed
descriptions of one or more embodiments of the invention have been given above, various
alternatives, modifications, and equivalents will be apparent to those skilled in the art
without varying from the spirit of the invention. Therefore, the above description should
not be taken as limiting the scope of the invention, which is defined by the appended

claims.

23

WO 2007/084263 PCT/US2006/062633

WHAT IS CLAIMED IS:

1. A method comprising:

registering a computer program for execution on a computer system by
generating an integrity indicator and associating with the computer program a system
ticket and the integrity indicator;

causing a protected pre-execution process to validate the system ticket and
verify the integrity indicator when the computer program attempts to execute;

permitting execution of the computer program if the system ticket is valid and
the integrity indicator confirms the computer program has not been changed since

registration.

2. The method of claim 1, wherein the integrity indicator comprises a checksum and
wherein said registering a computer program for execution on a computer system

comprises:

embedding the system ticket within the computer program,;
embedding the checksum into the computer program,;
registering the computer program with a system-wide publish/subscribe

information distribution system.
3. The method of claim 2, wherein the system ticket is changed on a regular basis.

4. The method of claim 1, further comprising allowing an unregistered computer

program to execute in a restricted fashion.

5. The method of claim 4, further comprising a restricted program execution
monitoring system, and maintaining a system log, wherein the system log tracks the

loading and operation of unregistered programs.

6. The method of claim 5, further comprising using the system log to trace
undesirable behavior back to the program causing the undesirable behavior.

7. The method of claim 1, wherein the protected pre-execution process comprises a

system linker/loader.

8. The method of claim 1, further comprising denying execution of the computer
program if the system ticket is invalid or the integrity indicator indicates the computer

program has been changed since registration.

9. A method of creating an execution environment which makes a computer system

appear unique to an incoming virus, the method comprising:

24

WO 2007/084263 PCT/US2006/062633

providing a protected process having a diversity mechanism incorporated
therein;

responsive to installation of a valid computer program, registering the valid
computer program for execution on the computer system by transforming the valid
computer program from an executable form into a locally unique form based on the
diversity mechanism; and

responsive to an attempted execution of a computer program, transforming the
computer program using the diversity mechanism by causing the protected process to be
run on the computer program, wherein if the computer program was previously validly
registered, then said transforming results in an executable program that will execute
properly on the computer system, but if the computer program was not previously validly
registered, then said transforming results in an program form that will fail to correctly

execute on the computer system.

10. The method of claim 9, wherein the protected process is a pre-execution process

implemented in software.

11. The method of claim 10, wherein the protected process comprises a system
linker/loader of the computer system.

12. The method of claim 9, wherein the protected process is implemented in hardware
and activates during execution of the computer program,

13. The method of claim 12, wherein the protected process comprises an opcode

transform implemented within an instruction decoder of the computer system.

14. The method of claim 12, wherein the protected process comprises a memory

transform implemented within a virtual memory structure of the computer system.

15. The method of claim 9, wherein the diversity mechanism comprises a reversible

transformation.

16. The method of claim 15, wherein the reversible transformation comprises an

encryption algorithm.

17 The method of claim 15, wherein the reversible transformation comprises a shuffle
algorithm.

18. The method of claim 17, further comprising altering the shuffle algorithm or
regenerating a shuffle key associated with the shuffle algorithm based on a predetermined
event.

19. The method of claim 18, wherein the predetermined event comprises a periodic time

25

WO 2007/084263 PCT/US2006/062633

interval.

20. The method of claim 18, wherein the predetermined event comprises a time
intervaldefined by a look-up table.

21. The method of claim 18, wherein said transforming the valid computer program from
an executable form into a locally unique form based on the diversity mechanism comprises
applying an inverse of the shuffle algorithm, wherein the inverse of the shuffle algorithm

reorders instructions associated with the valid computer program.

22. The method of claim 18, wherein said transforming the valid computer program from
an executable form into a locally unique form based on the diversity mechanism comprises
applying an inverse of the shuffle algorithm, wherein the inverse of the shuftle algorithm

reorders opcodes of instructions associated with the valid computer program.

23. The method of claim 11, further comprising using one or more different sequencing
algorithms to modify one or more of program constants stored in registers, opcodes,

register numbers, and virtual memory addresses.

24. The method of claim 9, wherein the protected process is resident upon a server

communicatively coupled with the computer system.

25. A computer system comprising:
a storage device having stored therein a registration program and an inverse

transform routine associated with a linker/loader of the computer system, the inverse

transform routine configured to provide a semi-unique execution environment as a result of
being constructed based on one or more characteristics of the computer system;

one or more processors coupled to the storage device to execute the
registration program responsive to installation requests relating to valid executable
programs and to execute the inverse transform routine on programs attempting to execute
within the computer system prior to executing the programs, where

the registration program transforms the valid executable programs into a
locally unique form having a semantically incorrect operating sequence; and

as part of a pre-execution process, the inverse transform routine is applied to
programs attempting to execute on the computer system and when applied to valid
executable programs that have previously been registered by the registration program, the
inverse transform routine transforms the valid executable programs from the locally unique

formback into a semantically correct operating sequence.

26. A system comprising:
26

WO 2007/084263 PCT/US2006/062633

one or more systemn processing resources configured to execute programs;

a registration process configured to transform an executable program in a
semantically correct execution format for the system processing resources into a locally
unique form having a semantically incorrect execution format for the system processing
resources; and

a system linker/loader configured to act as a security intermediary between
programs attempting to execute and the one or more system processing resources by,
before allowing the programs attempting to execute access to the one or more system
processing resources, applying an inverse transform to the programs attempting to execute,
the inverse transform providing the system with a semi-unique execution environment a

result of being constructed based on one or more characteristics of the system.

27. A system comprising:
one or more executable computer programs in a standard format;
one or more system processing resources configured to execute computer
programs in a standard format;
a registration system configured to generate and record one or more valid
tickets for a valid executable program and a hash consistent with the valid executable
program; and
a system loader configured to act as a proxy between the one or more executable
programs and the system processing resources, wherein the system loader is configured
to grant or deny each of the one or more executable programs access to the one or more
system processing resources by determining access rights based on if each of the one
or more executable programs has a valid ticket embedded and if the hash is consistent

with the program attempting to execute.

28. A computer system comprising:

a memory sub-system configured to transform memory addresses from a form
in which they are saved within system memory into a different form based upon one or
more locally unique transformation functions;

a mass storage device having stored thereon one or more programs, each of the
one or more programs having an associated layout, a data segment, and an instruction
segment, the associated layout reflecting corresponding inverse functions to the one or

more locally unique transformation functions implemented by the memory sub-system.

29, The computer system of claim 28, wherein the data segment of the program and
the instruction segment of the program have associated therewith different locally

unique transformation functions.

27

PCT/US2006/062633

WO 2007/084263

117

100

—— . o . . e e o S e e o e et e T S S e AP i s e e e e T e St W0 W

0
AURN J08s300.d co_ﬁou._b%nr_csoo o
80\ | oyoe)
L0}
sng
901
i
L0k~ ®dmeg fiowsiy Koo uey | "
abeiolg ssep Auo pesy |

eipaiy
abelo}g
ajqeAoLay

Vs S0l

Fig. 1

WO 2007/084263 PCT/US2006/062633

2/7

200

Valid Program Registration
with the System is Initiated
210

\ 4

System-Wide Ticket is
Embedded into the Program

220

:

Program is Registered with
System-Wide Publishing/
Subscription Service

Fig. 2

WO 2007/084263 PCT/US2006/062633

3/7

300

Processor o=

-
w
Memory
Linker gzgl Libraries 330| pe ot
300 — -
Kernel
310 =
1=
104

WO 2007/084263

4/7

Program Attempts to Execute

410

y

Program is Passed to the
Linker/Loader

420

y

Linker/Loader Determines if a
Valid Ticket is Present

430

440

PCT/US2006/062633

400

4
Linker/Loader Determines if the
Integrity Indicator (e.g.,
checksum) associated with the
Program Attempting to Execute is
valid 460

Program
content
nchanged 2

y

Program Denied the
Right to Execute

Execute the Program
480

WO 2007/084263
PCT/US2006/062633

517
500
(System Ticket Generation)
Generate a New/Updated
System Ticket
510
A

Post New/Updated Ticketto a

Set of Registered Programs Manual Update Event
520 530 540

Fig. 5

WO 2007/084263

6/7

Valid Program Registration with
the System is Initiated

610

A 4

Transform Executable
Programs into a Local Unique
Form (e.g., a local
representation) 620

A 4

Linker/Loader Transforms the
Program stored in a locally
unique form into a semantically

correct form for executionm

PCT/US2006/062633

WO 2007/084263

717

PCT/US2006/062633

700

Monitor for New Progarm Installation and Program Execution

110

720

ew Program
installed?

Register the Program and
transfonm executable code to
locally unique form

Transform libraries associated
with the program being registered
into the locally unique form

750
Program I

Attempting to
Execute?

Yes

Transfer Program to
a protected pre-execution
process, such as the system
linker/loader 760

The protected pre-execution
process causes an Inverse
Transform to be applied to the
Executable Program 770

Send Program to Processor
for Execution

180

To Processor

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings

