wo 2010/096688 A1 |1 0T KOO OO OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(19) Worl Inelectuat Property Organization /28553 1N N O 0
ernational Bureau S,/ ‘ 0 |
. L MEY (10) International Publication Number
(43) International Publication Date \,!:,: #
26 August 2010 (26.08.2010) WO 2010/096688 A1
(51) International Patent Classification: (72) Inventors; and
GO6F 3/06 (2006.01) GO6F 11/20 (2006.01) (75) Inventors/Applicants (for US only): BEAMAN, Peter,
GO6F 11/16 (2006.01) D. [US/US]; 11a Washington Street, Newton, MA 02458
. o . (US). TRAN, T , M. [US/US]; 71 Mayfair Drive,
(21) International Application N“mber'P CT/US2010/024787 Westwood, MA 0209 (US). NEWSON, RoSertrS. [rév];

GBJ; 36 Oak Lane, Windsor, Berkshire SL4 SEU (GB).

(74) Agents: THAYER, Linda, J. et al.; Finnegan Henderson
Farabow Garrett & Dunner LLP, 901 New York Avenue,

(22) International Filing Date:
19 February 2010 (19.02.2010)

(25) Filing Language: English Washington, DC 20001 (US).
(26) Publication Language: English (81) Designated States (unless otherwise indicated, for every
L. kind of national protection available). AE, AG, AL, AM,
(30) Priority Data: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
12/391,099 23 February 2009 (23.02.2009) Us CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
61/154,743 23 February 2009 (23.02.2009) Us DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
12/402,469 11 March 2009 (11.03.2009) Us HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(71) Applicant (for all designated States except US): IRON KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
MOUNTAIN INCORPORATED [US/US]; 745 At- ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
lantic Avenue, Boston, MA 02111 (US). NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,

SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: MANAGING WORKFLOW COMMUNICATION IN A DISTRIBUTED STORAGE SYSTEM

(57) Abstract: In a data storage system having a plurality of storage nodes stor-

Deta Storage FIG. 1 ing replic.as of stri.pes., one storage node serves as a primary stripe node for a
System 100 stripe. Client applications using the data storage system request operations af-
M fecting metadata stored in the stripe, and the data storage system creates work-
Node 101 flow objects to implement the requested operation. Once the operation is com-
Ma"a%::;m"xﬁzﬁ;—f% pleted, the worktlow is acknowledged. A method for establishing a new primary

stripe node comprises performing, by a selected storage node, a feasibility deter-
mination to determine the feasibility of the selected storage node becoming the
new primary stripe node. It is feasible to become a new primary stripe node
when doing so does not cause worktlows that have been acknowledged, or that
will be acknowledged, to result in strays.

B - T —
Applications
200 ] Network 300 >
i ~—— S

Node 201

Management Madules 202
Feasibility Module 202a

P

Disk
Drive
220




WO 2010/096688 A1 I 0000 )00 U0V A OO T

(84) Designated States (unless otherwise indicated, for every TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
kind of regional protection available): ARTPO (BW, GH, ML, MR, NE, SN, TD, TG).
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Published:
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, )
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, —  with international search report (Art. 21(3))
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,




WO 2010/096688 PCT/US2010/024787

MANAGING WORKFLOW COMMUNICATION IN A DISTRIBUTED STORAGE
SYSTEM
RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Application No.
12/402,469, filed on March 11, 2009, U.S. Application Ser. No. 12/391,099,
entitled “Methods and Systems for Single Instance Storage of Asset Parts,” filed
February 23, 2009, and U.S. Provisional Application No. 61/154,743, filed
February 23, 2009, all of which are hereby incorporated by reference in their

entirety.
BACKGROUND
[0002] In distributed data storage systems, it is desirable to distribute

the workload for managing and storing data across a large number of nodes, and
to provide linear or near-linear scalability. In such systems, a SEDA (Staged
Event-Driven Architecture) may be employed and work may be accomplished in
such systems by utilizing a workflow object. In distributed data storage systems in
which redundancy is implemented to ensure a desired level of reliability, the
system should guarantee that work (such as the addition, deletion, or change of
data) has been durably committed to disk. One way to guarantee this is to
perform the work and then subsequently perform a verification that changes have
been durably committed to disk, and, after the verification, send an
acknowledgment to the client application that made the work request. Some
systems may implement a two-phase commit protocol to accomplish this goal, but
those systems may not offer the desired level of scalability.

[0003] Further, in distributed and redundant data storage systems, it
may be desirable to maintain a history of work transactions that occurred in the
data storage system to assist in recovery from non-catastrophic failures.

SUMMARY OF EXEMPLARY EMBODIMENTS
[0004] Additional objects and advantages will be set forth in part in the

description which follows, and in part will be obvious from the description, or may
be learned by practice of the embodiments. The objects and advantages will be
realized and attained by means of the elements and combinations particularly

pointed out in the appended claims.



WO 2010/096688 PCT/US2010/024787

[0005] Methods and systems are disclosed that relate to determining
feasibility of a selected stripe node becoming a new primary stripe node for a
stripe in a data storage system, the data storage system comprising a plurality of
nodes storing replicas of the stripe. In one embodiment, a method comprises
computing a test generation for a journal associated with the selected stripe node
and corresponding to the stripe, wherein the journal comprises entries that are
assigned generations greater than previous entries. The method next compares,
by a feasibility module, a greatest generation corresponding to the stripe for each
of the plurality of nodes storing replicas of the stripe with the test generation, and
when the greatest generation for each of the plurality of nodes storing replicas of
the stripe is less than the test generation, the method determines that it is feasible
for the selected stripe node to become the new primary stripe node. The test
generation may comprise, for example, a generation that would be assigned to an
entry that would be next recorded in the journal or alternatively, the greatest
generation assigned to entries in the journal associated with the selected stripe
node. Once feasibility is affirmed, in some embodiments, becoming the new
primary stripe node comprises writing a first entry in the journal associated with
the selected stripe node, the first entry being assigned the test generation.

[0006] In another embodiment, when the greatest generation for any of
the plurality of nodes storing replicas of the stripe is greater than or equal to the
test generation, the method determines that it is not feasible for the selected stripe
node to become the new primary stripe node. In some embodiments, the greatest
generation corresponding to the stripe for each of the plurality of nodes storing
replicas of the stripe is stored in an endorsement repository at the selected stripe
node.

[0007] In yet another embodiment, a durability policy may be
implemented. For example, the plurality of nodes storing replicas of the stripe
comprises a subset of the plurality of nodes storing replicas of the stripe, the
subset having equivalent greatest generations corresponding to the replicas of the
stripe, wherein the subset has a minimum number of replicas of the stripe, and
wherein the minimum number is chosen to achieve a desired level of durability.
The method may determine that it is feasible for the selected stripe node to

become the new primary stripe node when the greatest generation for the nodes

2



WO 2010/096688 PCT/US2010/024787

in the subset is less than the test generation, and when the greatest generation
for any of the plurality of nodes storing replicas of the stripe is greater than or
equal to the test generation, the method may determine that it is not feasible for
the selected stripe node to become the new primary stripe node.

[0008] In yet another embodiment, prior to determining that it is feasible
to become the new primary stripe node, each of the plurality of nodes storing
replicas of the stripe communicates, to the selected stripe node, a commitment
not to endorse generations greater than the test generation for the journal
associated with the selected stripe node. Further, in some embodiments, the
commitment not to endorse generations greater than the test generation for the
journal associated with the selected stripe node comprises a message containing
an epoch of a new stripe map.

[0009] In still other embodiments, each of the plurality of nodes storing
replicas of the stripe stores a stripe map, the stripe map comprising an indication
of which of the plurality of nodes storing replicas of the stripe is a primary stripe
node, and the method of determining feasibility is triggered by receiving a new
stripe map at the selected stripe node, wherein the new stripe map indicates that
the selected stripe node is intended to become the new primary stripe node.

[0010] In some embodiments, prior to determining that it is feasible to
become the new primary stripe node, each of the plurality of nodes storing
replicas of the stripe communicates, to the selected stripe node, a commitment
not to endorse generations greater than the test generation for the journal
associated with the selected stripe node and corresponding to the stripe, wherein
the new stripe map is associated with an epoch that is greater than any epoch for
previous stripe maps, and wherein the commitment not to endorse generations
greater than the test generation for the journal associated with the selected stripe
node and corresponding to the stripe comprises a message containing the epoch
of the new stripe map.

[0011]  One of ordinary skill in the art will appreciate that the methods
described herein may be embodied in various components of a computer system
with at least one associated data storage subsystem. Additional embodiments
consistent with principles of the invention are set forth in the detailed description

which follows or may be learned by practice of methods or use of systems or

3



WO 2010/096688 PCT/US2010/024787

articles of manufacture disclosed herein. It is understood that both the foregoing
general description and the following detailed description are exemplary and
explanatory only, and are not restrictive of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The accompanying drawings, which are incorporated in and

constitute a part of this disclosure, illustrate several embodiments of the invention
and together with the description, serve to explain the principles of the invention.
In the drawings:

[0013] FIG. 1 illustrates an exemplary data storage system consistent
with features and principles of the present invention;

[0014] FIG. 2 illustrates exemplary nodes in the data storage system of
FIG. 1 configured for redundant storage of data and metadata, consistent with
features and principles of the present invention;

[0015] FIG. 3 illustrates an exemplary stripe and stripe journal in the
exemplary data storage system of FIG. 1, consistent with features and principles
of the present invention.

[0016] FIG. 4 illustrates an exemplary method for changing the stripe
configuration of the exemplary data storage system in FIG. 1, consistent with
features and principles of the present invention;

[0017] FIG. 5 illustrates an exemplary method for determining whether it
is feasible for a selected stripe node to become a new primary stripe node,
consistent with features and principles of the present invention; and

[0018] FIG. 6 illustrates an exemplary implementation of a minimum
durability policy in the data storage system of FIG. 1, consistent with features and
principles of the present invention.

DETAILED DESCRIPTION

[0019] Reference will now be made in detail to the exemplary

embodiments, examples of which are illustrated in the accompanying drawings.
Wherever possible, the same reference numbers will be used throughout the
drawings to refer to the same or like parts. While several exemplary embodiments
are described herein, modifications, adaptations, and other implementations are
possible without departing from the spirit and scope of the invention. For

example, substitutions, additions, or modifications may be made to the

4



WO 2010/096688 PCT/US2010/024787

components illustrated in the drawings, and the exemplary methods described
herein may be modified by substituting, reordering, or adding steps to the
disclosed methods. Accordingly, the following detailed description does not limit
the invention. Instead the proper scope of the invention is defined by the
appended claims.

[0020] Within the concept of this specification, a “data storage system”
broadly refers to any data storage devices or memories such as hard disk drives,
databases, or enterprise storage systems. A data storage system further includes
any processors, programs, and applications accessing and/or managing the data
storage devices or memories as well as communication links between the data
storage devices or memories, and communication links between the processors,
programs, and applications and the data storage devices or memories.

[0021] FIG. 1 shows a data storage system 100 having a node 101 and
a node 201. As used herein, a “node” refers to a subset of a data storage system
having at least one associated disk drive. An example of a node is a server
having one or more hard disk drives for storing data. The nodes in a data storage
system may be in different geographical locations.

[0022] As used herein, a “disk drive” refers to any persistent memory
accessible by a node, such as an internal or external hard drive. A disk drive may
be a RAID drive made up of one or more physical storage devices. For simplicity,
only three disk drives are shown in nodes 101 and 201 of data storage system
100. Disk drives 110, 120, and 130 are associated with node 101 and disk drives
210, 220, and 230 are associated with node 201. Aithough only a few nodes and
disk drives are shown throughout the figures for simplicity, embodiments of the
present invention can have any number of nodes and any number of disk drives.

[0023] Network 300 provides communications between various entities
in data storage system 100, such as node 101, node 201, and applications 200.
Network 300 may be a shared, public, or private network, may encompass a wide
area or local area, and may be implemented through any suitable combination of
wired and/or wireless communication networks. Furthermore, network 300 may
comprise an intranet or the Internet. Applications 200 are any programs

communicating with nodes 101 and 201, such as those retrieving data from the



WO 2010/096688 PCT/US2010/024787

disk drives at the nodes. An exemplary application is a search engine, whereby a
user can search for particular data stored in the data storage system 100.

[0024] Each node hés management modules which include one or more
processors, memory, and hardware, software, or firmware used to store and
execute instructions to manage the data stored on the disk drives of that node.
For example, management modules 102 implement algorithms for managing the
data stored in disk drives 110, 120 and 130. The methods disclosed herein may
be implemented by one or more of the management modules 102, 202, and
additional management modules not depicted for simplicity. Management
modules 102 and 202 may have sub-modules, such as feasibility modules 102a
and 202a shown in FIG. 1. Alternatively, feasibility modules 102a and 202a may
not be distinct from other management modules comprising management
modules 102 and 202. Further, feasibility modules 102a and 202a may also
comprise sub-modules. In alternative embodiments, the methods disclosed
herein may be implemented by management modules external to the nodes, or by
a combination of management modules internal to the nodes, such as
management modules 102 and 202, and management modules external to the
nodes communicating with the nodes via network 300. Further, in alternative
embodiments, memory used by the management modules and instructions
implemented by the management modules may be stored in a location on the data
storage system external to the management modules themselves.

[0025] An “asset,” as used herein, refers to one or more units of data. A
single asset may correspond to data comprising what an end user application
would consider to be a single file, such as a MICROSOFT Office Word ™
document, or an email. Assets contain application metadata and one or more
asset parts. The application metadata may contain the elements that an
application applies in the process of managing the asset, such as annotations or
retention data.

[0026] Asset parts are portions of assets. In an illustrative embodiment,
an asset part contains only immutable data, such as an archival copy of a
document, but in other embodiments, asset parts may contain changeable data.
Typically, the end user application performs the decomposition of an asset into its

asset parts. In some embodiments, additional decomposition may be performed

6



WO 2010/096688 PCT/US2010/024787

by the data storage system, or the decomposition into asset parts by an
application may be replaced by the decomposition performed by the data storage
system. In other embodiments, decomposition may be performed solely by the
data storage system.

[0027] FIG. 2 shows exemplary content 11 and content 12, which
represent the content of various assets and asset parts that were ingested into
data storage system 100. Content 11 and 12 are replicated across two nodes,
node 101 and node 201, so that there are two instances of each asset and asset
part contained within content 11 and content 12. As noted above, the number of
replicas should be chosen to achieve the desired level of redundancy, and in one
illustrative embodiment, four replicas of content 11 and content 12 may be stored
in data storage system 100. Generally, it is desirable to ensure that the replicas of
content 11 and content 12 are distributed across multiple nodes, such that two
replicas do not reside on the same node. Furthermore, content corresponding to
asset parts that make up a particular asset may be stored on different nodes in
the data storage system. For example, the content for a particular asset part may
be stored on disk drive 120, the content for that same asset part may be stored on
disk drive 210.

[0028] In addition to storing asset and asset part content, data storage
system 100 stores metadata associated with the assets and asset parts. This
metadata is stored in stripes (or shards), which comprise metadata for a group of
assets and/or asset parts. A stripe (or shard) is a grouping of data and/or
metadata, formed from one or more logical partitions of data storage. The stripe
that stores a particular object (data or metadata) should be computed in a
deterministic manner, for example, by using an algorithm that chooses a stripe
based on a unique identifier associated with the object. In this way, knowing the
unique identifier of the object, data storage system 100 can determine which
stripe contains the particular object.

[0029] FIG. 2 shows exemplary stripes 13, 14, and 15. The data
storage system 100 stores replicas of stripes 13, 14, and 15, which are replicated
across the plurality of nodes. FIG. 2 shows three replicas of exemplary stripes 13
14, and 15 distributed across nodes 101, 201 and 301. The number of stripe

replicas should also be chosen to achieve a desired level of redundancy, and in

7



WO 2010/096688 PCT/US2010/024787

one embodiment, four replicas may be stored. In one illustrative embodiment,
algorithms ensure that the content for an asset or asset part is stored on a
separate disk drive than the metadata associated with the asset or asset part. For
example, in such a system, if content 12 has the content of a particular asset part,
and stripe 13 contains storage metadata associated with that particular asset part,
then content 12 and stripe 13 would not be stored on the same disk drive. For
example, FIG. 2 shows content 12 stored on disk drive 120 and disk drive 210,
while stripe 13 is stored on disk drives 110, 220, and 310. Further, algorithms
may ensure that content 12 and stripe 13 are always stored on separate nodes
(not shown in FIG. 2). In alternative embodiments, content for an asset or asset
part may reside on the same disk drive as the stripe containing storage metadata
about that asset or asset part.

[0030] Each disk drive may contain a combination of stripes and
content. For example, disk drive 120 contains content 11, content 12, and stripe
15. In alternative embodiments, each disk drive may be permitted to contain only
content or only stripes. For example, in FIG. 2, node 201 has two disk drives 210
and 220, and disk drive 210 contains only content (content 11 and content 12)
while disk drive 220 contains only stripes (stripes 13, 14, and 15). In other
embodiments, all disk drives on a node may contain only content or only stripes.
In one illustrative embodiment, data storage system 100 contains 256 stripes.

[0031] Stripes contain both asset part metadata and a journal for
maintaining information regarding work to be performed on the assets and/or
asset parts associated with the stripe. In one illustrative embodiment, all actions
to be performed on assets and asset parts associated with the stripe 15
correspond to an entry in the journal 500. The journal entries represent an
intention by the data storage system 100 to perform some action (such entries
comprise instructions to update metadata associated with an asset or asset part,
and herein, journal entries are also described as updates), or a record of having
performed some action. FIG. 3 illustrates an exemplary journal 500 in detail. The
syntax used in the exemplary journal 500 is for explanatory purposes only, and
the syntax used in a journal consistent with the principles of the present invention
could comprise any syntax that the management modules of the data storage

system could understand and implement.

8



WO 2010/096688 PCT/US2010/024787

[0032] Each entry in the journal is associated with a generation to
uniquely identify the entry. The generation is implemented such that the
sequence of the entries is preserved. For example, if entry 462 occurs after entry
461, the generation associated with entry 462, generation 402, is greater (or
larger or higher) than the generation associated with entry 461, generation 401.
For example, the generation may comprise either an incrementing number or a
byte-offset from the beginning memory address of the journal entries. In one
embodiment, the generation is a unique 64-bit address that increases
monotonically for the next entry to be added to the journal. Alternatively, the
journal entries may be associated with a timestamp in lieu of, or in addition to, the
generation.

[0033] For each stripe, one node serves as the primary stripe node, and
the other nodes containing replicated copies of the stripe are replica stripe nodes.
The primary stripe node for a particular stripe is the only node permitted to add
new entries to the journal for that stripe. Other nodes serving as replica stripe
nodes receive, store, and apply copies of the newly added entries, but a new
journal entry is permitted to originate only on the primary stripe node. The data
storage system replicates journal entries to the replica stripe nodes, and each
replica stripe node applies the updates indicated by the replicated journal entries
into its redundant copy of the stripe. The replication of journal entries may be
done asynchronously and is explained in more detail below.

[0034] In stable operation all nodes have identical copies of a stripe
map that indicates which node serves as the primary stripe node for each stripe (a
“stripe map”). The stripe map also contains the identity of the replica stripe nodes
responsible for keeping copies of the stripe. FIG. 2 shows nodes 101, 201 and
301 having stripe maps 20, 21, and 22 respectively. Stripe map 20, for example,
contains a primary stripe node identifier 25 and replica stripe node identifiers 26
for every stripe in the data storage system 100. If node 101 is the primary stripe
node for stripe 13, then a primary stripe node identifier 25 that identifies node 101
is included in stripe map 20. Further, replica stripe node identifiers 26 identify
nodes 201 and 301, which have replicas of stripe 13. As explained below, the
stripe map allows any node to direct workflow objects to the correct node for each

work item in a workflow object.



WO 2010/096688 PCT/US2010/024787

[0035] During operation of data storage system 100, a node may fail,
may be purposefully taken offline, or may otherwise be unable to communicate
with portions of data storage system 100. In this case, stripe maps 20, 21, and 22
may not be identical because a new stripe map may have been deployed, but not
received, by one of the nodes. The systems and methods disclosed herein are
designed to accommodate such events and are designed to ensure that workflow
objects are properly handled in data storage system 100.

Workflow Objects

[0036] Data storage system 100 is designed to distribute workload and

storage across a large number of nodes while providing linear or near-linear
scalability. To accomplish this in-part, data storage system 100 works under the
SEDA (Staged Event-Driven Architecture) paradigm. Each unit of work, such as
the ingestion of a new asset, is conveyed by means of a workflow object that
passes from node to node to perform the work items (i.e. the individual steps
required to perform the unit of work), where the work items are also known as
operations. Other examples of operations include retrieval of an asset or
destruction of an asset. The workflow object may contain an identification of the
operation type as well as information to correlate the request for an operation with
the workflow object. For example, the workflow object may contain an identifier of
the application that initiated an action requiring the operations associated with the
workflow object.

[0037] In addition, the workflow object may contain payload objects that
are needed to carry out the operation. For example, if the operation associated
with the workflow object is to retrieve an asset, the workflow object may contain a
unique identifier of the asset. For ingestion of an asset having asset parts, the
related workflow object does not necessarily contain the content bytes of the asset
or its asset parts. Instead the asset and asset parts may be represented in the
workflow object as DataSource objects, which reference the actual content stored
on the data storage system or elsewhere such as on an external network. In one
embodiment, the actual content may remain in the client application. When a
node participating in the execution of a workflow object needs to write the content
of an asset part to disk it may use the DataSource object to read the content bytes

from its location. This structure allows the client application to deliver the bytes

10



WO 2010/096688 PCT/US2010/024787

directly to the node that is making the first copy of those bytes to a disk drive in
data storage system 100.

[0038] A workflow object may also contain information relating to the
partial results of the operation. This information would be updated during the
processing of the workflow object. For example, if the operation associated with
the workflow object is to ingest an asset, the workflow object may contain, for
each asset part making up the asset, an indicator of the progress of ingesting the
particular asset part.

[0039] A selected workflow object is present on only one node at a time.
That node performs whatever work can be done locally to make progress in
performing a work item for the operation (by making copies of some asset parts,
for example), and then passes the workflow object on to another node that has
additional responsibility for completing another work item in the workflow object.
Data storage system 100 may require that work items necessitating changes to a
stripe are first completed on the primary stripe node. A work item may be
completed, for example, by writing entries in the appropriate primary stripe node’s
stripe journal. Other work items may be completed, for example, by writing
content bytes to disk.

[0040] To determine which node is the primary stripe node, a node
consults its stripe map, which indicates, for each stripe in the data storage system,
which node is the primary stripe node. After all work items are completed, the
workflow object may be passed to other management modules of data storage
system 100 for further processing or to make a record of having performed the
operation. For one example, the workflow object may be passed to a search
indexing subsystem of the data storage system.

[0041] Once a node’s work items are complete, it passes the workflow
object on to another node and removes all local knowledge of workflow object.
The existence of a workflow object or the lack of completion of the operation
associated with the workflow object does not require a node to maintain an
internal state pending fulfillment of another work item or operation by any other
machine. Assuming relatively even distribution of workflow objects across all the
nodes, this means that each node can simply process work at its own maximum

capacity without waiting for other nodes. This property results in linear scalability.

11



WO 2010/096688 PCT/US2010/024787

As a side effect, data storage system 100 may lose in-progress workflow objects
when hardware fails. Such failures may be detected and handled by the
application software utilizing data storage system 100. For example, such failures
may be handled by standard error handling code associated with the application.

[0042] Data storage system 100 does not use distributed transactions in
workflow object processing. To do so would violate the concept that a workflow
object leaves no state behind when it leaves a node, and would result in loss of
scalability. Therefore every operation in data storage system 100 is designed to
execute correctly in the event a workflow object is lost due to failure and to
provide sufficient data consistency during concurrent processing of multiple
workflow objects. Further, each work item of every workflow object is designed to
impact only one node. The methods and systems presented herein are designed
to accomplish this goal.

[0043] Data storage system 100 sends workflow acknowledgments back
to the client application after it has successfully completed the requested action
(i.e. once the workflow object has visited all of the nodes necessary to perform the
operations and each work item making up the requested action has been
executed to the desired level of reliability). For example, data storage system 100
sends an acknowledgment that an asset and its asset parts have been
successfully archived after it has made a sufficient number of redundant copies to
ensure that there is a sufficiently low probability of data loss in the event that disk
drives or entire nodes fail.

[0044] Data storage system 100 creates the workflow object when an
application requests data storage system 100 to perform some operation.
Management modules within the data storage system 100 may also request an
operation, causing a workflow object to be created. For example, data storage
system 100 may require the redistribution of assets and/or asset parts due to the
addition or removal of a disk drive and may initiate requests for related operations
to accomplish the redistribution. The requested operation may be made up of
multiple individual operations, and may result in the creation of multiple workflow
objects (one for each individual operation). An individual operation may comprise,

for example, ingestion of an asset and its asset parts, relocation of an asset or

12



WO 2010/096688 PCT/US2010/024787

asset parts, destruction of an asset or asset part, modification of an asset or asset
parts, or retrieval of an asset or asset part.

[0045] The request for an action may be received at any node on data
storage system 100. For example, the request may be received by node 101.
When a request is received, a workflow object or objects may be created to
accomplish the operations required by the request. If node 101 is able to perform
a work item in the workflow object, it performs the work. For example, if node 101
is the primary stripe node for a stripe associated with a work item in the workflow
object, it performs the work items in the workflow object relating to that stripe. If
node 101 is not implicated by any work item in the workflow object, node 101
forwards the workflow object to another node implicated by a work item in the
workflow object. In one illustrative example, if the operation is to ingest an asset
A having asset parts P1, P2, and P3, and node 101 is not the primary stripe node
for P1, P2, or P3, then node 101 forwards the workflow object to one of the
primary stripe nodes for P1, P2, or P3.

[0046] The selection of a node to forward the workflow object may, in
some embodiments, be based on geographical proximity. For example, data
storage system 100 may be configured to select a node at the same geographic
location before sending the workflow object to a node at a different geographic
location. Further, data storage system 100 may be configured to select a node on
the same local area network before selecting a node that requires the workflow
object to be sent across a wide area network. Such a mechanism attempts to
minimize the number of high-latency hops for the workflow object, as well as the
number of bytes transmitted over longer distances or over more complex
protocols.

[0047] At a primary stripe node, all work items associated with that
stripe and associated with the operation invoked by the workflow object are written
as entries in the primary stripe node’s stripe journal for that stripe. If necessary,
the primary stripe node also makes modifications to the metadata records,
hashtable file, and modifies, creates or destroys copies of content. In some
embodiments, the workflow object may be sent to all replica stripe nodes (those
nodes containing replicas of the content or stripe implicated by a work item.) At

the replica stripe nodes, the same work item would be performed as was

13



WO 2010/096688 PCT/US2010/024787

performed at the primary stripe node. In other embodiments, every work item is
associated with an entry on the primary stripe’s journal. The entries from the
primary stripe node’s stripe journal, written as a result of the workflow object
having visited the primary stripe node, are replicated to the stripe journals at the
replica stripe nodes. The replica stripe nodes then execute the entries in their
respective journals.

[0048] Each work item may require several steps. For example, if a
new asset part must be added to data storage system 100 due to the ingestion of
a new asset, and the asset part's metadata is to be associated with stripe 15, the
steps might include: creating an asset part record in the metadata records 600
associated with stripe 15, marking a status associated with the new asset as
“PENDING”, making replicas of the new asset content and new asset part content
with the appropriate level of redundancy, then marking the status associated with
the new asset as “VALID.” These steps may require that the workflow object be
passed from node to node. At each node, whatever next step is required for a
particular work item is attempted. That node, for example, might have disk drives
on which primary stripes for some work items and content volumes for other work
items are located. To the extent possible, the data storage system 100 completes
one or more steps in each work item before the workflow is passed to the next
node. In some embodiments, the writing of an asset or asset part's content bytes
does not involve any modifications to journal files. Further, in some embodiments,
an asset part’'s content and the stripe containing its metadata may be located at
different nodes. Therefore, the process of writing the content bytes of an asset
part to a disk drive may be performed at a node other than the primary stripe node
that includes the asset part’'s metadata.

[0049] Journal entries in the primary stripe node’s stripe journal may be
replicated in a batch process to the replica stripe node’s stripe journals. In one
embodiment, the node containing a replica stripe node’s stripe journal may
request a copy of entries with generations greater than the last entry in the replica
stripe node’s stripe journal. In some embodiments, this may be performed
periodically. In other embodiments, a primary stripe node may consult its
endorsement repository, explained in further detail below, to determine which

nodes may require updates to their stripe journals. The nodes may be configured

14



WO 2010/096688 PCT/US2010/024787

to limit the size of the transmissions to the replica stripe nodes so that if there is a
large number of journal entries that should be sent from the primary stripe node to
the replica stripe node, multiple transmissions are possible.

[0050] The process of forwarding the workflow object to other nodes
implicated by work items in the workflow object is repeated until all of the work
items for the operations making up the requested action have been completed.
For each work item, when an entry corresponding to a work item is written to a
primary stripe node’s stripe journal, the generation of the entry into the primary
stripe node’s stripe journal is recorded in the workflow object so that the workflow
object contains a record of the greatest generation for each of the work items.

[0051] When the workflow object reaches the final primary stripe node
to record the last set of work items into their associated stripe node journals (or to
otherwise complete the work items), the final node compares the greatest
generation for a work item (work item generation) in the workflow object with a
generation of endorsements (endorsement generation) that are recorded in an
endorsement repository at the final node. The endorsement process, with which
endorsements are sent from and by nodes having replicas of the stripe journal, is
explained more fully below. For each work item from the workflow object that is
being recorded into the primary stripe node’s stripe journal, the final node
compares the work item generation with the endorsement generation for the
nodes containing the primary stripe and its replica stripes. When the set of nodes
with an endorsement generation equal to or greater than the work item generation
satisfies a minimum durability policy, described in greater detail below, that work
item is “endorsed.” When every work item in the workflow object is “endorsed,”
the workflow object is “released,” and the data storage system sends an
acknowledgement to the application that made the request indicating that the
requested action has completed.

[0052] The acknowledgement need not be sent immediately to the
application, and some delay or other processes in the data storage system 100
may be required to occur before the acknowledgement is sent. For example, data
storage system 100 may include modules that create and maintain a search index
of all assets and/or asset parts stored on data storage system 100. An

acknowledgement may be delayed until data storage system 100 updates the

15



WO 2010/096688 PCT/US2010/024787

search index as necessary. If the workflow object was related to a request to add

an asset to data storage system 100, for example, data storage system 100 may

further delay the acknowledgement of this request until the search index is

updated to reflect the addition of the asset and its associated asset parts.
Minimum Durability Policy

[0053] Data storage system 100 implements a policy referred to herein
as the “minimum durability policy” (or MDP) that establishes how many copies,
and in a geographically distributed network where those copies must be located,
to assure adequate redundancy. For example, a minimum durability policy might
be specified to require storing at least three copies of the asset and each of its
asset parts, and to require that at least one of the copies is geographically distant
from the others. Data storage system 100 may be configured to allow easy
implementation of different minimum durability policies in different segments of
data storage system 100 so that different customers and classes of assets can be
handled differently depending on their requirements. The minimum durability
policy may be implemented on the stripe level, such that different stripes have a
different minimum durability policy.

Endorsement Process

[0054] Endorsements are broadcast messages sent periodically by each
node to all other nodes in data storage system 100. Each node implements a
periodic commitment cycle to commit all updates to disk, causing any modified
journal entries contained in the main memory cache to be written to the physical
hard drive. The node may then update a committed generation, such as
committed generation number 501 in FIG. 3 to reflect the generation
corresponding to the last journal entry committed to disk during the previous cycle.
In the exemplary embodiment of FIG. 3, during a commitment cycle, the last
committed generation was generation 408, and committed generation number 501
would contain information identifying generation 408.

[0055] Upon completing a commitment cycle, a node broadcasts an
endorsement message containing the highest committed generation for each
stripe journal on the node. For example, FIG. 3 shows endorsement message
502 containing stripe information 514, stripe information 515, . . . stripe

information n, for each of the stripes on the node. If endorsement message 502 is

16



WO 2010/096688 PCT/US2010/024787

sent from node 101 in FIG. 2, for example, endorsement message 502 would
contain the stripe information for stripes 13, 14, and 15. The stripe information for
each stripe contains the committed generation for that stripe.

[0056] The endorsement messages are received by each node in data
storage system 100 and added to an endorsement repository maintained on each
node. FIG. 2 depicts endorsement repositories 33, 34, and 35 on nodes 101, 201
and 301 respectively. Endorsement repository 33 contains all endorsements
broadcast from nodes 201 and 301 and received by node 101. The algorithm
does not depend on the reliability of broadcast messages and will function
correctly even if some messages fail to be delivered due to packet loss. All that is
required for normal operation is for every node to receive some recent
endorsement message from the other nodes within a reasonable length of time.

Primary Stripe Node Preemption

[0057] When a node serving as the primary stripe node for some stripe
fails, data storage system 100 is configured to choose another node to take over
the role of primary stripe node. As a consequence of the failure of the node, some
workflow objects in progress at the failed node, and therefore known only to the
failed node, may be lost. In addition, as a consequence of the selection of the
new primary stripe node, some journal entries that were recently added to the
former primary stripe node’s stripe journal, but that had not yet been replicated to
a replica stripe node’s stripe journal, are also lost. Identifying and addressing
such losses of information contained in pending workflow objects that have not yet
been acknowledged are a normal characteristic of data storage system 100 and
are handled by the application layer. For example, a timeout may be implemented
in the application such that if an acknowledgement is not received in a certain time
period, the request for an operation may be sent again and a new workflow object
would be created as a result. However, once data storage system 100 sends an
acknowledgment back to the application indicating successful completion of an
operation (also thus indicating completion of all work items in the workflow object
corresponding to the operation), data storage system 100 must ensure that the
acknowledged operation is durable, meaning that the appropriate number of data
copies exist and that it is unlikely (within acceptable limits) that a non-catastrophic

failure will cause data loss.

17



WO 2010/096688 PCT/US2010/024787

[0058] When a node fails, part of the process for selecting and
implementing a new primary stripe node is that the stripe map is reconfigured to
select, for any stripe for which the failing node served as the primary stripe node,
another node that will take over as the new primary stripe node. The selected
node may be a new node added to the system, or it may be a node previously
serving as a replica stripe node and already containing a replica of the stripe. The
reconfigured stripe map is then distributed and deployed on each of the remaining
nodes. This process is complicated by the possibility that the purportedly failing
node may not have failed at all, but may simply be unable to communicate with a
subset of the other nodes. The following is an outline of the algorithm by which
data storage system 100 maintains a consistency across such failures in such a
way to prevent loss of a workflow object that has been acknowledged.

[0059] FIG. 4 shows an exemplary method for maintaining consistency.
In stage 601, for example, a configuration planner determines that a change to the
stripe map is necessary. Such a determination may occur when there has been a
change to the structure of the data storage system (i.e. when a disk drive or node
has failed, been moved, or been removed from the data storage system). The
configuration planner may use a variant of the known Paxos Algorithm to establish
durable consensus on the content of a new stripe map. The Paxos Algorithm is a
known algorithm used in distributed computer systems having multiple nodes to
achieve consensus for a particular action. By using the Paxos algorithm, each of
the nodes in data storage system 100 becomes aware of the new stripe map, its
contents, and its epoch.

[0060] Each new stripe map is assigned a monotonically increasing
integer value called its epoch. FIG. 2 shows, for example, epoch 24, epoch 27
and epoch 30 associated with stripe maps 20, 21, and 22 respectively. In an
alternative embodiment, the configuration planner may send a broadcast message
having the new stripe map information to all of the nodes.

[0061] The new stripe map may specify, as a potential new primary
stripe node, a selected primary stripe node that is not currently the primary stripe
node. In one embodiment, one of the replica stripe nodes may be specified as the
new primary stripe node. Alternatively, a new node to which the stripe must be

replicated may be selected as the primary stripe node.

18



WO 2010/096688 PCT/US2010/024787

[0062] Data storage system 100 may send the new stripe map to all of
the nodes at the same time, or asynchronously. In one illustrative embodiment,
upon recognition that it has been elected the new primary stripe node, the
selected stripe node performs a feasibility test to determine if it should become the
new primary stripe node. For example, in the illustrative embodiment of FIG. 4, in
stage 602, a node (N) receives a new stripe map, and in stage 603 determines
whether it is selected to become a new primary stripe node. If it has been
selected, N determines the feasibility of becoming the new primary stripe node in
stage 604, which is shown in greater detail in FIG. 5. If it has not been selected,
N implements the new stripe map.

[0063] If the promotion of the selected stripe node to primary stripe node
is feasible, the replica stripe node may “preempt the stripe journal” by writing an
“epoch change record” to its journal for that stripe. For example, FIG. 3 shows an
epoch change record 414 in journal 500 for stripe 15. Entry 464 is the first journal
entry in epoch 481 in FIG. 3.

[0064] If becoming the new primary stripe node is not feasible, the
configuration planner may repeat the process, attempting to select another node
as the new primary stripe node. The configuration planner determines that a
configuration (or stripe map) it had proposed is not feasible when no
endorsements containing the proposed new epoch are received at any of the
nodes. Alternatively, the selected node may communicate the lack of feasibility to
the configuration planner.

[0065] The epoch value of the new stripe map is encoded into the
journal, either separately, or encoded into the generation of the journal entry such
that if epoch e2 is greater than epoch e1, then any Generation created in epoch
e2 is greater than the highest possible Generation created in epoch e1. In some
embodiments, a new journal file may be created for each new epoch. In such
embodiments, the epoch change record may be written as the first generation in
the new epoch. In other embodiments, such as in FIG. 3, both a generation and
an epoch are associated with each journal entry. For example, in FIG. 3, entry
461 is associated with epoch 480 and generation 401, while entry 465 is
associated with epoch 481 and generation 405.

19



WO 2010/096688 PCT/US2010/024787

[0066] In addition to the current committed generation of the stripe, each
endorsement message also conveys the generations in the previous epochs at
which the stripe journal was preempted. This information could comprise at least
one generation pair {x,y}, where “x” is the first generation in a given epoch, and “y”
is the last generation in that epoch. For example, FIG. 3 shows stripe information
515 for stripe 15 containing both committed generation number 501 and epoch
change record generation pairs 504. As explained below, one node may issue a
broadcast message to the other nodes in the data storage system not to add
further entries to a particular stripe journal in a certain epoch (to “pin” the stripe).
Thus, “y” may constitute the last generation in the stripe journal before receiving
such a broadcast message from another node. Effectively the endorsement
message contains a list of pairs of generation values, {(e1_start, e1_end),
(e2_start, e2_end), . . .}. This list denotes the surviving history of the stripe
journal.

[0067] Because all communications take time and happen
asynchronously, there may be a period of time when some former primary stripe
node is not aware of the new epoch (i.e. the former primary stripe node is not
aware of a new stripe map in which it is no longer the primary stripe node for a
given stripe) and therefore continues to behave as if it is still the primary stripe
node. For example, in the case of a network partition, the former primary stripe
node may not be able to communicate with nodes on data storage system 100
that have created consensus to deploy a new stripe map and to select a new
primary stripe node. Such a former primary stripe node may attempt to add new
journal entries having the previous epoch. Such attempts will result in “strays,”
comprising journal entries that are not associated with the new primary stripe
node’s stripe journal and therefore will not result in completion of the associated
work item. A stray can be detected because its generation falls outside the range
of endorsed journal entries on the new primary stripe node (i.e. the generation
and/or the epoch may be smaller than (i.e. less than or lower than) the endorsed
journal entries on the new primary stripe node). As a corollary, a stray may occur
on a node that has not participated in the feasibility determination with the new

primary, which is described below in detail.

20



WO 2010/096688 PCT/US2010/024787

[0068] In some embodiments, if a node in epoch e1 receives notification
of a new stripe map for an epoch e2, which is greater than e1, then the selected
stripe node identified in the stripe map having epoch e2 may “pin” its generations
before performing a feasibility determination, which is described below. When the
node “pins” itself, it does not accept any updates having generations greater than
its current generation.

Feasibility Determination

[0069] It is feasible for a selected stripe node “N” to become the new
primary stripe node for a particular stripe “S” and to endorse the history of epochs
{(e1_start, e1_last), (e2_start, e2_last), . . . (eN_start, eN_last)} if and only if doing
so causes no updates belonging to workflow objects that have been
acknowledged (or could ever be acknowledged) to become strays. The following
is an example of how a selected stripe node may determine feasibility of
becoming the primary stripe node for stripe S. Consider a selected stripe node
that intends to become the new primary stripe node for stripe S at epoch “E” by
“preempting the stripe journal corresponding to stripe S at generation “G.” G is
the “test generation” (or presumptive generation) that the selected stripe node
uses to make its feasibility determination.

[0070] FIG. 5 shows an exemplary method for whether it is feasible for a
selected stripe node to become the primary stripe node. In stage 606, the
selected storage node computes the test generation. The test generation may
comprise the next generation to be assigned (i.e. the generation that would be
assigned to the next journal entry to be written to the journal or the first generation
in the new epoch). In alternative embodiments, the test generation may comprise
the greatest generation existing in the journal at the time of the feasibility
determination. When the selected stripe node is not a node previously serving as
a replica stripe node for stripe S, the test generation G may be zero.

[0071] In stage 607, the exemplary method determines whether a
greatest generation corresponding to the stripe is greater than or equal to the test
generation. If there is no generation corresponding to the stripe greater than or
equal to the test generation, the method determines, in stage 609 that it is feasible
for the selected stripe node to become the new primary stripe node. If there is a

generation corresponding to the stripe greater than or equal to the test generation,

21



WO 2010/096688 PCT/US2010/024787

the method determines, in stage 608, that it is not feasible for the selected stripe
node to become the new primary stripe node. Exemplary embodiments of the
forgoing method are described in greater detail below.

[0072] To accomplish the feasibility determination, in one illustrative
embodiment, first, the selected stripe node determines the set of all storage nodes
on the data storage system that participate in the stripe. In FIG. 2, for example,
the subset for stripe 15 would comprise nodes 101, 201, and 301 because each of
those nodes has a copy (a primary or replica) of stripe 15. The selected stripe
node then determines the “power set” of the set, which comprises a subset for
every combination of nodes containing at least one instance of the stripe and the
empty set. For example, referring again to FIG. 2, the power set for stripe 15
comprises the following subsets of nodes: {101, 201, 301}, {101, 201}, {101, 301},
{201, 301}, {101}, {201}, {303}, and the empty set. For each subset in the power
set, the replica stripe node determines whether the subset minimally satisfies a
minimum durability policy. A subset that minimally satisfies the minimum
durability policy has no smaller subset that also satisfies it. For example, referring
again to FIG. 2 and stripe 15, if the journal corresponding to stripe 15 stored on
disk drive 120, 220, and 310 are all at the equivalent generation X, and if the
minimum durability policy is defined to require any two nodes to endorse an
update, then the following are the subsets that minimally satisfy the minimum
durability policy: {101, 201}, {101, 301}, and {201, 301}. The set {101, 201, 301}
also satisfies the minimum durability policy, but it does not “minimally” satisfy the
minimum durability policy because it contains proper subsets that also satisfy the
minimum durability policy of two nodes having generation X.

[0073] FIG. 6 depicts a more complex example, where six nodes in data
storage system 100 participate in stripe 13. Additional nodes (not shown) may
exist in data storage system 100 that do not participate in the stripe 13 (i.e., there
is no instance of stripe 13, either a replica or a primary, on the additional nodes).
The power set 150 for stripe 13 is shown in FIG. 6 in abbreviated form for
simplicity, but includes 2%6 = 64 subsets including the empty set, ranging from
{101, 201, 301, 401, 501, 601}, {101, 201, 301, 401, 501}, {101, 201, 301, 401,
601}...{101, 201} . . . empty set. In the exemplary embodiment of FIG. 6, a

minimum durability policy of “two” is implemented. For each subset that minimally

22



WO 2010/096688 PCT/US2010/024787

satisfies the minimum durability policy, the selected stripe node determines
whether the endorsements currently published by that subset would allow
endorsement of a generation greater than G.

[0074] In FIG. 6, for example, subsets 70-84 comprise the subsets that
minimally satisfy the minimum durability policy because in each subset, there are
two copies of the stripe. For each of these subsets 70-84, the selected stripe
node would determine whether the subset would allow endorsement of a
generation greater than G. To determine whether the endorsements currently
published by the subset would allow endorsement of a generation greater than G,
the selected stripe node may, in some embodiments, consult its endorsement
repository.

[0075] If the endorsements currently published by the subset minimally
satisfying the minimum durability policy would allow endorsement of a generation
greater than G, then it is infeasible for the node to become the new primary stripe
node at this time. For example, referring to FIG. 6, if the minimum durability policy
requires that there are two copies of a stripe on data storage system 100, and the
test generation is generation 2, then the selected stripe node would evaluate each
of the subsets 70-84 and find that subset 77 (also identified as subset 150a)
allows endorsement of a generation greater than generation 2, namely, subset 77
allows endorsement of generation 4. Although subset 150b, comprising subsets
72,74, and 83, has endorsed generation 2, at this time, it would be infeasible for
the selected stripe node to become the primary stripe node. For another example,
if the test generation is 4, the selected stripe node would recognize, during the
feasibility determination, that none of the subsets 70-84 would allow endorsement
of a generation greater than G. Therefore, in this example, it is feasible for the
selected stripe node to become the primary stripe node.

[0076] The selected stripe node may periodically repeat this process, for
example, once every commitment cycle, and potentially at some future time, the
selected stripe node becomes the primary stripe node. Thus, referring to FIG. 6,
with a test generation of 2 and a minimum durability policy of two copies of the
stripe, upon finding that it is infeasible to become the new primary stripe node, the
selected stripe node repeats the feasibility determination with a new test

generation if one is available. The selected stripe node may have more entries in

23



WO 2010/096688 PCT/US2010/024787

its stripe journal at a later point in time, and therefore generation G (the test
generation) may be greater such that it is feasible for the selected stripe node to
become the new primary stripe node. For example, if the test generation is 4 or
greater in FIG. 6, it is feasible to become the new primary stripe node. In
alternative embodiments, the configuration planner may issue a new stripe map
when a selected stripe node determines that it is infeasible to become the new
primary stripe node.

[0077] In one illustrative embodiment, the selected stripe node also
ensures that all the nodes in the subset are “pinned,” meaning that they have
agreed not to endorse updates at any generation value greater than G before a
final determination that it is feasible to become the new primary stripe node. This
may be necessary because other nodes could otherwise be adding stripe journal
entries during the feasibility determination. The selected stripe node may
accomplish the “pinning” by sending a broadcast message to the other nodes
having copies of the stripe, indicating that they should not endorse generations
greater than G. In another embodiment, the endorsement messages periodically
sent by other nodes, and recorded in the endorsement repository at the selected
stripe node, may indicate that those other nodes have received copies of the new
stripe map. The nodes may be configured to stop adding entries in their stripe
journals in previous epochs once they learn of a new epoch, and therefore “pin”
themselves. Therefore, by having received messages from the other nodes
indicating they have received copies of the new stripe map, the selected stripe
node need not send any message to pin the stripes as they have pinned
themselves.

[0078] As explained in detail above, if all minimally satisfying subsets of
the power set indicate feasibility, then it is feasible for the replica stripe node to
become the new primary stripe node. This is true because there exists no
collection of nodes that will endorse any update with a generation greater than G
or less than the first generation of epoch E.

[0079] The following exemplary code (expressed in SUN
MICROSYSTEMS’ Java ™) shows how a selected stripe node, N, may perform a
feasibility determination.

public boolean isFeasible(final int stripelndex,

24



WO 2010/096688

PCT/US2010/024787

final long currentGeneration, final long newGeneration) {

final int epoch1 = epoch(currentGeneration);
final int epoch2 = epoch(newGeneration);

boolean hasEndorsement = false;

for (int epoch = epoch2 - 1; epoch >= epoch1; epoch--) {

final List<Node> configuredNodes = configuredNodes(stripelndex,

epoch);

final Set<List<Node>> subsets = durableSubsets(configuredNodes);

/i

// This variable will hold the maximum pinned generation at which

/l an update could be or will ever be ACKed within this epoch.

1

long maximumPinnedGeneration = 0;

for (final List<Node> endorsingNodes : subsets) {

/l
// This variable will hold the pinned generation of the lowest
/I generation endorsement within the current subset. This
// subset could not and will not endorse update in the epoch
// with a higher generation than this minimum value.
1
long minimumPinnedGeneration = Long.MAX_VALUE;
/I
/[ Scan all the endorsements currently known for the nodes
//'in this subset to determine if any are pinned.
1l
for (final Node node : endorsingNodes) {

final Endorsement endorsement = currentEndorsement(node);
if (endorsement != null) {

if (endorsement.isPinned(stripelndex)) {

minimumPinnedGeneration = Math.min(
minimumPinnedGeneration, endorsement

.committedGeneration(stripelndex));

25



WO 2010/096688 PCT/US2010/024787

if (epoch(endorsement.committedGeneration(stripelndex))
== gpoch) {

hasEndorsement = true;

}
i

// This condition indicates that some set of nodes which
I/ satisfied the minimum durability policy may have issued
/I endorsements at a generation larger than the one
/I at which this node is trying to preempt, or that no
/I nodes in the subset have been pinned.
1
if (minimumPinnedGeneration >= currentGeneration) {
if (minimumPinnedGeneration == Long.MAX_VALUE) {
1
/I If there's a subset that satisfies the MDP
// but has no pinned members, then issue a pin
/l request and retry.
/]
issuePinRequest(stripelndex, currentGeneration);

}

return false,
}
!
I/ For any subset of the nodes which satisfy the minimum
// durability policy, if some endorsement from this subset
/l'is pinned, then we can trust that at least this subset
I/ will never endorse a higher generation within the epoch.
//'If all of the subsets meet this requirement, then no
I/ update with a generation higher than the maximum pinned
// generation will ever be acknowledged.
1

26



WO 2010/096688 PCT/US2010/024787

maximumPinnedGeneration =
Math.max(maximumPinnedGeneration,
minimumPinnedGeneration);
}
1
/I If this condition is true then we know that at least
// some subset that satisfied the Minimum Durability Policy
I/l endorsed an update from the current epoch. This could
/l only have happened if the plan that created this epoch
/I was feasible. Therefore, by induction, we do not need to
//'look at prior epochs to determine feasibility of the
// new epoch.
I
if (epoch(maximumPinnedGeneration) == epoch) {
return true;
}
1
/'If this condition is not true then the nodes for the
/l current epoch are pinned at some earlier generation.
/l This means they never realized the current epoch, so possibly
// nodes in the previous epoch are endorsing at a generation
// higher than this maximumPinnedGeneration value. Therefore
/I we also have to look at the nodes of the previous epoch in
// the next iteration of the outer loop.
1l
}

return hasEndorsement;
}

[0080] The following exemplary code (expressed in SUN
MICROSYSTEMS’ Java TM) shows an alternative embodiment demonstrating
how a selected stripe node, N, may perform a feasibility determination.

public boolean isFeasible(final int stripeindex,

final long currentGeneration, final long newGeneration) {

27



WO 2010/096688 PCT/US2010/024787

final int epoch2 = epoch(newGeneration);

final int epoch1 = epoch(currentGeneration);

for (int epoch = epoch2 - 1; epoch >= epoch1; epoch--) {
final List<Node> nodes =

configuredNodes(stripelndex, epoch);
final Set<List<Node>> subsets =
| durableSubsets(nodes);
/I
// This variable will hold the maximum pinned generation at which
// an update could be or will ever be ACKed within this epoch.
1
long maximumPinnedGeneration = 0;
for (final List<Node> endorsingNodes : subsets) {
1
/I This variable will hold the pinned generation of the lowest
/l generation endorsement within the current subset. This
// subset could not and will not endorse update in the epoch
/I with a greater generation than this minimum value.
I
long minimumPinnedGeneration = Long.MAX VALUE;
1
/l Scan all the endorsements currently known for the nodes
//'in this subset to determine if any are pinned.
I
for (final Node node : endorsingNodes) {
final Endorsement endorsement = currentEndorsement(
stripelndex, node);
if (endorsement = null) {
if (endorsement.isPinned(epoch?2)) {
final long committedGeneration
=endorsement.
getCommittedGeneration();
/l

28



WO 2010/096688 PCT/US2010/024787

/1 If the committed generation is less than
our

// currentGeneration, then our journal is
at least /l as good; this guarantees the

1
maximumPinnedGeneration will not be less
// than the currentGeneration, and we will
/I correctly return true once epoch1 is

// reached.

//

minimumPinnedGeneration = Math.min(

minimumPinnedGeneration,

Math.max(
committedGeneration,
currentGeneration));
}
}
}
//
/I This condition indicates that some set of nodes
// which satisfied the minimum durability policy
may have
// issued endorsements at a generation greater than
the one

/I at which this Node is trying to preempt, or that no
/I Nodes in the subset have been pinned.
I
if (minimumPinnedGeneration > currentGeneration) {
/l
/I If there's a subset that satisfies the MDP
// but has no pinned members, then wait for
// pinning to occur
!

29



WO 2010/096688

endorsement from this

subset

epoch.

update

maximum pinned

}
I

PCT/US2010/024787

return false;
}
1
I/ For any subset of the Node which satisfy the

/I minimum durability policy, if some

// subset is pinned, then we can trust that at least this

/I will never endorse a greater generation within the

/1 If all of the subsets meet this requirement, then no

/[ with a generation greater than the

// generation will ever be acknowledged.

/l

maximumPinnedGeneration =
Math.max(maximumPinnedGeneration,

minimumPinnedGeneration);

/1 If this condition is true then we know that at least

// some subset that satisfied the Minimum Durability Policy

// endorsed an update from the current epoch. This could

I/l only have happened if the plan that created this epoch

// was feasible. Therefore, by induction, we do not need to

I ook at prior epochs to determine feasibility of the

/I new epoch.

1l

if (epoch(maximumPinnedGeneration) == epoch) {

1
i

return true;

/1 If this condition is not true then the node for the

30



WO 2010/096688 PCT/US2010/024787

I/l current epoch are pinned at some earlier generation.

// This means they never realized the current epoch, so

possibly
/I nodes in the previous epoch are endorsing at a
// generation greater than this maximumPinnedGeneration
value.
/I Therefore, we also have to look at the nodes of the
// previous epoch in the next iteration of the outer loop.
Il
}
return false;
}

[0081] The methods disclosed herein are especially useful in computer
systems utilizing an enterprise storage system, however, one of ordinary skill in
the art will appreciate that the features and principles of the present invention may
be implemented in various computer systems. One of ordinary skill in the art will
also appreciate that features and principles of the present invention may be
implemented in different components of a computer system with at least one
associated data storage subsystem. Similarly, one of ordinary skill in the art will
also appreciate that computer readable program code to implement a method
consistent with features and principles of the present invention may be stored on
various media, including various persistent memory devices.

[0082] The embodiments and aspects of the invention set forth above
are only exemplary and explanatory. They are not restrictive of the invention as
claimed. Other embodiments consistent with features and principles are included
in the scope of the present invention. As the following sample claims reflect,
inventive aspects may lie in fewer than all features of a single foregoing disclosed
embodiment. Thus, the following claims are hereby incorporated into this
description, with each claim standing on its own as a separate embodiment of the

invention.

31



WO 2010/096688 PCT/US2010/024787

WHAT IS CLAIMED IS:

1. A computer-implemented method for determining feasibility of a

selected stripe node becoming a new primary stripe node for a stripe in a data
storage system, the data storage system comprising a plurality of nodes storing
replicas of the stripe, the method comprising:
computing a test generation for a journal associated with the
selected stripe node and corresponding to the stripe,
wherein the journal comprises entries that are assigned
generations greater than previous entries; and
comparing, by a feasibility module, a greatest generation
corresponding to the stripe for each of the plurality of nodes
storing replicas of the stripe with the test generation, and
when the greatest generation for each of the plurality of
nodes storing replicas of the stripe is less than the test
generation, determining that it is feasible for the
selected stripe node to become the new primary stripe

node.

2. The method of claim 1, wherein the test generation comprises the
generation that would be assigned to an entry that would be next recorded in the

journal.

3. The method of claim 1, wherein the test generation comprises the
greatest generation assigned to entries in the journal associated with the selected

stripe node.

4. The method of claim 1, further comprising:
when the greatest generation for any of the plurality of nodes storing
replicas of the stripe is greater than or equal to the test
generation, determining that it is not feasible for the selected

stripe node to become the new primary stripe node.

32



WO 2010/096688 PCT/US2010/024787

5.

The method of claim 1, wherein the greatest generation

corresponding to the stripe for each of the plurality of nodes storing replicas of the

stripe is stored in an endorsement repository at the selected stripe node.

8.

The method of claim 1,

wherein the plurality of nodes storing replicas of the stripe comprises
a subset of the plurality of nodes storing replicas of the stripe,
the subset having equivalent greatest generations
corresponding to the replicas of the stripe,

wherein the subset has a minimum number of replicas of the stripe,
and

wherein the minimum number is chosen to achieve a desired level of

durability.

The method of claim 6, wherein

when the greatest generation for the nodes in the subset is less than
the test generation, determining that it is feasible for the
selected stripe node to become the new primary stripe node;
and

when the greatest generation for any of the plurality of nodes storing
replicas of the stripe is greater than or equal to the test
generation, determining that it is not feasible for the selected

stripe node to become the new primary stripe node.

The method of claim 1, wherein, prior to determining that it is

feasible to become the new primary stripe node, each of the plurality of nodes

storing replicas of the stripe communicates, to the selected stripe node, a

commitment not to endorse generations greater than the test generation for the

journal associated with the selected stripe node.

33



WO 2010/096688 PCT/US2010/024787

9.

The method of claim 8, wherein the commitment not to endorse

generations greater than the test generation for the journal associated with the

selected stripe node comprises a message containing an epoch of a new stripe

map.

10.

The method of claim 1, wherein becoming the new primary stripe

node comprises writing a first entry in the journal associated with the selected

stripe node, the first entry being assigned the test generation.

11.

12.

The method of claim 1,

wherein each of the plurality of nodes storing replicas of the stripe
stores a stripe map, the stripe map comprising an indication
of which of the plurality of nodes storing replicas of the stripe
is a primary stripe node, and

wherein the computing is triggered by receiving a new stripe map at
the selected stripe node, wherein the new stripe map
indicates that the selected stripe node is intended to become

the new primary stripe node.

The method of claim 11,

wherein prior to determining that it is feasible to become the new
primary stripe node, each of the plurality of nodes storing
replicas of the stripe communicates, to the selected stripe
node, a commitment not to endorse generations greater than
the test generation for the journal associated with the
selected stripe node and corresponding to the stripe,

wherein the new stripe map is associated with an epoch that is
greater than any epoch for previous stripe maps, and

wherein the commitment not to endorse generations greater than the
test generation for the journal associated with the selected
stripe node and corresponding to the stripe comprises a

message containing the epoch of the new stripe map.

34



WO 2010/096688 PCT/US2010/024787

13. A data storage system comprising:

a plurality of nodes storing replicas of a stripe;

a selected stripe node having a journal corresponding to a stripe,
wherein the journal comprises entries that are assigned

generations greater than previous entries,

a feasibility module comprising computer readable instructions for
determining feasibility of the selected stripe node becoming a
new primary stripe node for the stripe, wherein the
determining feasibility comprises:
computing a test generation for the journal corresponding to

the stripe; and

comparing, by the feasibility module, a greatest generation

corresponding to the stripe for each of the plurality of

nodes storing replicas of the stripe with the test

generation, and

when the greatest generation for each of the plurality
of nodes storing replicas of the stripe is less
than the test generation, determining that it is
feasible for the selected stripe node to become

the new primary stripe node.

14.  The data storage system of claim 13, wherein the selected stripe

node is one of a plurality of nodes storing replicas of a stripe.

15.  The data storage system of claim 13, wherein the test generation
comprises the generation that would be assigned to an entry that would be next

recorded in the journal.
16.  The data storage system of claim 13, wherein the test generation

comprises the greatest generation assigned to entries in the journal associated

with the selected stripe node.

35



WO 2010/096688 PCT/US2010/024787

17.  The data storage system of claim 13, further comprising:
when the greatest generation for any of the plurality of nodes storing
replicas of the stripe is greater than or equal to the test
generation, determining that it is not feasible for the selected

stripe node to become the new primary stripe node.

18.  The data storage system of claim 13, wherein the greatest
generation corresponding to the stripe for each of the plurality of nodes storing
replicas of the stripe is stored in an endorsement repository at the selected stripe

node.

19.  The data storage system of claim 13,

wherein the plurality of nodes storing replicas of the stripe comprises
a subset of the plurality of nodes storing replicas of the stripe,
the subset having equivalent greatest generations
corresponding to the replicas of the stripe,

wherein the subset has a minimum number of replicas of the stripe,
and

wherein the minimum number is chosen to achieve a desired level of

durability.

20. The data storage system of claim 19, wherein

when the greatest generation for the nodes in the subset is less than
the test generation, determining that it is feasible for the
selected stripe node to become the new primary stripe node;
and

when the greatest generation for any of the plurality of nodes storing
replicas of the stripe is greater than or equal to the test
generation, determining that it is not feasible for the selected

stripe node to become the new primary stripe node.

36



WO 2010/096688 PCT/US2010/024787

21.  The data storage system of claim 13, wherein, prior to determining
that it is feasible to become the new primary stripe node, each of the plurality of
nodes storing replicas of the stripe communicates, to the selected stripe node, a
commitment not to endorse generations greater than the test generation for the

journal associated with the selected stripe node.

22. The data storage system of claim 21, wherein the commitment not to
endorse generations greater than the test generation for the journal associated
with the selected stripe hode comprises a message containing an epoch of a new
stripe map.

23.  The data storage system of claim 13, wherein becoming the new
primary stripe node comprises writing a first entry in the journal associated with

the selected stripe node, the first entry being assigned the test generation.

24.  The data storage system of claim 13,

wherein each of the plurality of nodes storing replicas of the stripe
stores a stripe map, the stripe map comprising an indication
of which of the plurality of nodes storing replicas of the stripe
is a primary stripe node, and

wherein the computing is triggered by receiving a new stripe map at
the selected stripe node, wherein the new stripe map
indicates that the selected stripe node is intended to become

the new primary stripe node.

25.  The data storage system of claim 24,
wherein prior to determining that it is feasible to become the new
primary stripe node, each of the plurality of nodes storing
replicas of the stripe communicates, to the selected stripe
node, a commitment not to endorse generations greater than
the test generation for the journal associated with the

selected stripe node and corresponding to the stripe,

37



WO 2010/096688 PCT/US2010/024787

wherein the new stripe map is associated with an epoch that is
greater than any epoch for previous stripe maps, and

wherein the commitment not to endorse generations greater than the
test generation for the journal associated with the selected
stripe node and corresponding to the stripe comprises a

message containing the epoch of the new stripe map.

26. A computer program product comprising a computer usable medium
having a computer readable program code embodied therein, the computer
readable program code configured to be executed to implement a method for
determining feasibility of a selected stripe node becoming a new primary stripe
node for a stripe in a data storage system, the data storage system comprising a
plurality of nodes storing replicas of the stripe, the method comprising:

computing a test generation for a journal associated with the
selected stripe node and corresponding to the stripe,
wherein the journal comprises entries that are assigned
generations greater than previous entries; and
comparing, by a feasibility module, a greatest generation
corresponding to the stripe for each of the plurality of nodes
storing replicas of the stripe with the test generation, and
when the greatest generation for each of the plurality of
nodes storing replicas of the stripe is less than the test
generation, determining that it is feasible for the
selected stripe node to become the new primary stripe

node.

27.  The computer program product of claim 26, wherein the test
generation comprises the generation that would be assigned to an entry that

would be next recorded in the journal.

28.  The computer program product of claim 26, wherein the test
generation comprises the greatest generation assigned to entries in the journal

associated with the selected stripe node.

38



WO 2010/096688 PCT/US2010/024787

29.  The computer program product of claim 26, further comprising:
when the greatest generation for any of the plurality of nodes storing
replicas of the stripe is greater than or equal to the test
generation, determining that it is not feasible for the selected

stripe node to become the new primary stripe node.

30.  The computer program product of claim 26, wherein the greatest
generation corresponding to the stripe for each of the plurality of nodes storing
replicas of the stripe is stored in an endorsement repository at the selected stripe

node.

31.  The computer program product of claim 26,

wherein the plurality of nodes storing replicas of the stripe comprises
a subset of the plurality of nodes storing replicas of the stripe,
the subset having equivalent greatest generations
corresponding to the replicas of the stripe,

wherein the subset has a minimum number of replicas of the stripe,
and

wherein the minimum number is chosen to achieve a desired level of

durability.

32.  The computer program product of claim 31, wherein

when the greatest generation for the nodes in the subset is
less than the test generation, determining that it is
feasible for the selected stripe node to become the
new primary stripe node; and

when the greatest generation for any of the plurality of nodes
storing replicas of the stripe is greater than or equal to
the test generation, determining that it is not feasible
for the selected stripe node to become the new primary

stripe node.

39



WO 2010/096688 PCT/US2010/024787

33.  The computer program product of claim 26, wherein, prior to
determining that it is feasible to become the new primary stripe node, each of the
plurality of nodes storing replicas of the stripe communicates, to the selected
stripe node, a commitment not to endorse generations greater than the test

generation for the journal associated with the selected stripe node.

34.  The computer program product of claim 33, wherein the commitment
not to endorse generations greater than the test generation for the journal
associated with the selected stripe node comprises a message containing an

epoch of a new stripe map.

35.  The computer program product of claim 26, wherein becoming the
new primary stripe node comprises writing a first entry in the journal associated

with the selected stripe node, the first entry being assigned the test generation.

36. The computer program product of claim 26,

wherein each of the plurality of nodes storing replicas of the stripe
stores a stripe map, the stripe map comprising an indication
of which of the plurality of nodes storing replicas of the stripe
is a primary stripe node, and

wherein the computing is triggered by receiving a new stripe map at
the selected stripe node, wherein the new stripe map
indicates that the selected stripe node is intended to become

the new primary stripe node.

37.  The computer program product of claim 36,
wherein prior to determining that it is feasible to become the new
primary stripe node, each of the plurality of nodes storing
replicas of the stripe communicates, to the selected stripe
node, a commitment not to endorse generations greater than
the test generation for the journal associated with the

selected stripe node and corresponding to the stripe,

40



WO 2010/096688 PCT/US2010/024787

wherein the new stripe map is associated with an epoch that is
greater than any epoch for previous stripe maps, and
wherein the commitment not to endorse generations greater
than the test generation for the journal associated with
the selected stripe node and corresponding to the
stripe comprises a message containing the epoch of

the new stripe map.

41



WO 2010/096688 PCT/US2010/024787
1/6

Data Storage FIG. 1

System 100

Node 1

a»)

1

Management Modules 102
Feasibility Module 102a

Disk Disk Disk
Drive Drive Drive
110 - 120 "t 130

Applications
200 Network 300

Node 201

Management Modules 202
Feasibility Module 202a

Disk Disk Disk
Drive Drive Drive

210 - 220 230




WO 2010/096688 PCT/US2010/024787
2/6

FIG. 2
Node 101
Stripe Map 20 /_\ /—\
Disk Drive Disk Drive
Epoch 24 \“:Q/ w
Primary Stripe Node Stripe 13 Content 11
Identifier 25 Stripe 14 Stripe 15
Replica Stripe Node Content 12
Identifiers 26 —
Endorsement
Repository 33
Node 201
Stripe Map 21 /Dis;_DD /Dim
210 220
Epoch 27
Primary Stripe Node Content 11 Stripe 13
Identifier 28 Content 12 Stripe 14
Replica Stripe Node Stripe 15
Identifiers 29 -
Endorsement
Repository 34
Node 301
Stripe Map 22 Disk Drive Disk Drive
310 320
Epoch 30
Primary Stripe Node Stripe 13 Stripe 14
Identifier 31 Stripe 15
Replica Stripe Node
Identifiers 32
Endorsement

Repository 35




PCT/US2010/024787

WO 2010/096688

3/6

¥0G slied uonjeiauas) piloosy abueyn yoody
170G JaqwinN uojjelauss) papiwwo)

G1G uonewJou] aduis

—— — »

U uojjewuoyu] aduys

GG uonewuoju| adis
716 uonewdoju} edins
Z20G obessap Juswasiopus

10G JaquinN
uonelauas) papiuwo))

611 Wel| JIOM ‘<60¥
8l Wa)| YIOM ‘<80V
Ly W) YIOM ‘<0
Ol Wa} oM <90V
Gl we)| YoM ‘<G0¥
y1¥ pJooay abueys yoody ‘<pof
€Ly wal Yop ‘<ot
Cly Wel IoM ‘<z0v
LIy we) o ‘<LOv

uojjesausn> <18 yood3s>
uojjessue9> <18y yood3i>
uonelsuens> <18y yoodys
uoneisuans> <8y yoodi>
uonessuans <9y yoodys
uofelsusn> <8y yoodgs
uonesauan> <08y yoodiys
uopelsuen> <08y yoodis
uonelssus9> <08y yood>

69 Anug
89 Ajug
19% Angug
99y Anug
6oy Aijug
9y Anug
g9y Aug

2oy Anug |/

Loy Aug

€ o

008G Jjeulnor

/| 009 spiooay

elepelsi\

0

}

adilg




WO 2010/096688 PCT/US2010/024787
4/6

601
A configuration planner determines that a new stripe
map is necessary, creates a new stripe map, and

assigns a new epoch to the new stripe map

602
A node (N) receives a new stripe
map

No Yes

Is “N” selected to become a new
primary stripe node?

805 604

Implement the new stripe map on Determine feasibility for N to become
node N the new primary stripe node

FIG. 4




WO 2010/096688
5/6

PCT/US2010/024787

(o)}
(e
LB

606

Compute a test generation for a journal
associated with the selected stripe node
and corresponding to the stripe

Yes

608

Determine that it is not feasible for

the selected stripe node to become
the new primary stripe node

607
Is a greatest generation corresponding to the
stripe greater than or equal to the test
generation?

No

609

Determine that it is feasible for the

selected stripe node to become the
new primary stripe node

FIG. 5




WO 2010/096688

6/6

Data Storage System 100

node 101: stripe 13
generation 2
' node 201: stripe 13 E
i generation 4 .
node 301: stripe 13
generation 3
node 401: stripe 13
generation 2
| node 501: stripe 13 i
| generation 4 .
node 601: stripe 13

generation 2

PCT/US2010/024787

Power Set 150

Subset 70 = {101, 201}

Subset 71 = {101, 301}

Subset 72 = {101, 401}

Subset 73 = {101, 501}

Subset 74 = {101, 601}

Subset 75 = {201, 301}

Subset 76 = {201, 401}

Subset 78 = {201, 601}
Subset 79 = {301, 401}
Subset 80 = {301, 501}
Subset 81 = {301, 601}

Subset 82 = {401, 501}

Subset 83 = {401, 601}

Subset 84 = {501, 601}

FIG. 6

Subset 150a

Subset 1

N

Ob




INTERNATIONAL SEARCH REPORT

Internationat application No

PCT/US2010/024787
A CLASSIFICATION OF SUBJECT MATTER
INV. GO6F3/06 G06F11/16 GO6F11/20
ADD. o

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classffication symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category” | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y US 7 424 637 Bl (SCHOENTHAL SCOTT [US] ET 1-37
AL) 9 September 2008 (2008-09-09)

column 3, line 65 - column 4, line 37
column 9, Tine 38 - column 11, line 56
column 14, 1line 9 - column 16, line 56
Y US 2006/106898 A1 (FRONDOZO RHEA R [US] ET 1-37
AL FRONDOZO RHEA REYES [US] ET AL)

18 May 2006 (2006-05-18)
abstract

figures 1-3

figure 7

[0021]1, [0022], [0028]

paragraphs [0014], [0016], [0020],

-/—

m Further documents are listed in the continuation of Box C.

E See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
fiting date

*L* document which may throw doubts on pricrity claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*0" document referring to an oral disclosure, use, exhibition or
other means

“P" document published prior to the international filing date but
later than the priority date claimed

"T* later document published after the international filing date
or priority date and not in conttict with the application but
cited to understand the principle or theory underying the
invention

*X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"¥Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
meﬂts, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the intemational search

7 May 2010

Date of mailing of the intemational search reporn

18/05/2010

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Weber, Vincent

Form PCT/ASA/210 (second sheet) (April 2005)




INTERNATIONAL SEARCH REPORT

International application No

PCT/US2010/024787

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

n

US 2006/248273 Al (JERNIGAN RICHARD P IV
[UST ET AL JERNIGAN IV RICHARD P [US] ET
AL) 2 November 2006 (2006-11-02)
abstract

paragraphs [0041], [0049], [0066],
[0090], [0101]; figures 4b,11

US 2006/206662 Al (LUDWIG THOMAS E [US] ET
AL LUDWIG THOMAS EARL [US] ET AL)

14 September 2006 (2006-09-14)

abstract

figure 9

paragraphs [0005], [0007], [0019],
[0028], [0077] - [0081]

1-37

1-37

Form PCT/ISA/210 (continuation of second sheet) (April 2005)




INTERNATIONAL SEARCH REPORT

International application No

PCT/US2010/024787
Patent document Publication Patent family Publication
cited in search report date member(s) date

Us 7424637 Bl 09-09-2008 US 7694173 B1 06-04-2010
Us 2006106898 A1l 18-05-2006 CN 1776675 A 24-05-2006
US 2008313416 Al 18-12-2008
US 2006248273 Al 02-11-2006 EP 1875354 Al 09-01-2008
JP 2008541207 T 20-11-2008
WO 2006119021 Al 09-11-2006
US 2006206662 Al 14-09-2006 CA 2644930 Al 21-09-2006
WO 2006098753 Al 21-09-2006

Form PCT/ISA/210 (patent family annex) (April 2005)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - wo-search-report
	Page 51 - wo-search-report
	Page 52 - wo-search-report

