
(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2009/0268246A1 

US 20090268246A1 

Walmsley (43) Pub. Date: Oct. 29, 2009 

(54) METHOD OF ENABLING OR DISABLING Publication Classification 
VERIFICATION PROCESS (51) Int. Cl. 

(75) Inventor: Simon Robert Walmsley, Balmain G06F 5/00 (2006.01) 
(AU) 

Correspondence Address: (52) U.S. Cl. ....................................................... 358/1.15 
SILVER BROOK RESEARCH PTY LTD 
393 DARLING STREET 
BALMAIN 2041 (AU) (57) ABSTRACT 

(73) Assignee: Silverbrook Research Pty Ltd A method is provided of enabling or disabling a verification 
process of a first entity in response to a predetermined event. 

21) Appl. No.: 12/SO1457 The first entity has at least one associated bit-pattern and at (21) App 9 ty p 
least one variant key. Each variant key has been generated by 

(22) Filed: Jul. 12, 2009 applying a one way function to: a base key; and one or more 
O O of the at least one bit-patterns, respectively; or one or more 

Related U.S. Application Data alternative bit patterns. Each alternative bit-pattern is based 
(63) Continuation of application No. 12/436,133, filed on on one of the at least one bit-patterns. In the method, it is 

May 6, 2009, which is a continuation of application 
No. 10/854,519, filed on May 27, 2004, now Pat. No. 
7,557,941. 

fixed printer cradle 

Printer 

22& 

QA chip 

determined that the predetermined eventhas happened, and at 
least one of the first variant keys is enabled or disabled in 
response to the predetermined event. 

replaceable 
cartridge 

() high speed 
1H) low speed 

2 

A4 
printhead 

2 2 

8% 
3 
8 

%2% 

s 
  

  



US 2009/0268246 A1 Oct. 29, 2009 Sheet 1 of 26 Patent Application Publication 

& 

| #8EST) 

d?O VO 

| º?º K-? -) isohuo. 
á OECHOS?SOH ULIOJ? EIST 

  

  



US 2009/0268246 A1 Oct. 29, 2009 Sheet 2 of 26 Patent Application Publication 

peeds u 6??(-) 

OECHOS| #8EST) 
?SOH ULIOJ EST) 

  

  

  



US 2009/0268246 A1 Oct. 29, 2009 Sheet 3 of 26 Patent Application Publication 

peeds u 6??(-) 

  

  

  



– – – + 

US 2009/0268246 A1 

Š S % 

Patent Application Publication 

  

  

  



US 2009/0268246 A1 Oct. 29, 2009 Sheet 5 of 26 Patent Application Publication 

22 

peeds u 6??(-) 

?SOH UuOJ EST) 

  

    

  

  

  



US 2009/0268246 A1 Oct. 29, 2009 Sheet 6 of 26 Patent Application Publication 

pæ3ds Mol 4—> peeds u 6??(-) 

S 

| #8EST) 
  

  



US 2009/0268246 A1 Oct. 29, 2009 Sheet 7 of 26 Patent Application Publication 

£ST) S. 

2. 
  

  

  

  



Patent Application Publication 

page layouts 
and objects 

receive 
document 

memory 
buffer 

rasterize 

- 
page descriptions 

Oct. 29, 2009 

S 

Sheet 8 of 26 

expand 
page image 

-- 
dither 

contone layer 

- 
composite 

R 
S 

S 

S 

compressed multi-layer 

US 2009/0268246 A1 

page images 

render Netpage S. CODeSS S 

Age black layer Over infrared tags 
dithered contones to IR layer 

S. SS S RSS S 

Host PC - - - - - print Š 
page 

SOPEC 9 
SS S 

USB Or indirect Device N - 
Connection S 

Linking 
Printhead 

- 
SSSSSSSS 

SSSSSSSSS 

SS SSSSSSSSSS 

SSS 

S 

SS 

SS 

FIG 3 

SS 

  

  

  

  

  

  

  



Patent Application Publication Oct. 29, 2009 Sheet 9 of 26 US 2009/0268246 A1 

blank page single band page 2 band page multiband page 

page header page header page header page header 

band O band 0 band 0 

FIG. 9 

band hcadcr 

bi-level plane 

contone plane 

tag data plane 

FIG 10 

  

  

  

  



US 2009/0268246 A1 Oct. 29, 2009 Sheet 10 of 26 Patent Application Publication 

oluoooq O] possº poud 

Jopeoq pueq/05ed 

oised possouduoo 

  

  

  

  

  



Patent Application Publication Oct. 29, 2009 Sheet 11 of 26 US 2009/0268246 A1 

target top margin 

target page S 

printable page area 
(physical page) 

S 

s 

c) 

r 

O 
is 

r 
CD 
p 

As 
r 

target bottom margin 

FIG. 12 

  



Patent Application Publication Oct. 29, 2009 Sheet 12 of 26 US 2009/0268246 A1 

: DRAM sub-system 
CPU sub-system 

ERAM Print Engine ... f. f...I.P.'s Flin's E-system 
- . . . 

CDU 

CFU 

Boot RoMV 
LBD 

PSS lave : SFU 

TE 
UHU 

Slave TFU 

Slave HCU 
CPUSubsystem : 

Slave Bus: 

MMk Slavs 
DWU 

Control, LLU 
LSS, 
LED, etc. : 

Slave. PCU PH 
Master 

: Linking 
: PEP Configuration Bus Printhead 

  

  

  

  

    

  



Patent Application Publication Oct. 29, 2009 Sheet 13 of 26 

ACCesses in this 
area are not 
allowed and 
result in a bus 
error exception. 

Accesses in this 
area are via the 
DIU buS and are 
controlled by 
ermissions Set in 
he MMU 

ACCesses in this 
area are not 
allowed and 
result in a bus 
error exception. 

Accesses in this 
area are via the 
CPU bus and are 
controlled by 
permissions set in 
each peripheral. 

PCU Mapped Registers 
Peripheral Registers 

ROM 

Unused 

FIG. 14 

US 2009/0268246 A1 

0xFFFF FFFF 

0x4028 0000 

DRAM 
Regions 

0x4000 0000 

0x0004 C000 
0x0004 0000 
0x0003 0000 

0x0000 0000 

  



Patent Application Publication Oct. 29, 2009 Sheet 14 of 26 US 2009/0268246 A1 

Case 3: Two Printer USB Busses, up to 3 devices on each bus 

FIG 16 

  



Patent Application Publication Oct. 29, 2009 Sheet 15 of 26 US 2009/0268246 A1 

cpu adr21:2 
cpu dataout 31:0 
dram cpu data 255:0 
cpu diu rreq 

AHB Controller R.E.Eid 
cpu diu wolatavalid 

MMU diu cpu write rody 
cpu du Wadr21: 
coudiu waata(127.O 
cpudiu wrmask 15:0 
cpulacodel:0 
cpu rWn 
cpucpr Sel 
cprepu rody 
cpr cpu da (31:0 
cougpio sel 
gpio purly 
gpiocpudata3l:0 
pu icu sel 
icu purly 
1Cu Staf3 1:0 Coll SSS Ss purely 
SEE|3 1:0 

1 E. Si r 
pcupu data 3 l:0 
£punim sel 
mim cpurdy 
immiciudata 31:0 
coutin sel 

ISEE, Lim cpu data3l:0 
cpull rom S 

FSHSSa[31:0 cpupss sel 
p'ss purdy 
lossopulata3l:0 
epudiu sel 
diucpurdy 
ESRail 1:0 cpu unuse 

Address pSS uhu roy 
Decoder ulhu cpu data 31:0 

cpuudu sel 
udulepurdy 
udu cpu data 3 1:0 
uhu cpu berr 
udu epu berr 
diu epuberr 
pSS cpu berr 
rom cpuberr 
tim cpiu. berr 
mmi cpuberr 
E. u cpuberr 
SS cpu berr 
icu epuberr 
gpies epu berr 
cpr cpu berr 

AHB Interface 

LEON CPU 
and Caches 

uhu Cpu debug Valid 
udu cou debut valid 
diu cpu debug valid 
tim cpu debug valid 
mmi Cpu debug valid Real time Cucpu debug valid 

Debug lss. Cpu debug valid 
Unit icu cou debug valid 1. gpio cpu debug valid 

Cor Cou debug valid 
debug data out31:O 
debug (lata valid 
debug cntr32:O 
prst in 
pck 
icu Cpu ilevel3:O 

D. Cpuiack 
Cpu icu ilevel3.0 

FIG 16 

  



Patent Application Publication Oct. 29, 2009 Sheet 16 of 26 US 2009/0268246 A1 

cpu adr21:2 LSS address PEP address Supervisor Stack 

cpu rWn 

cpu acode 1:0 Supwr Data User Data SupVr Data 

cpuliss Sel 

lsS cpurdy 

lsS cpu berr 

cpu dataout 31:0) LSS data 

cpupcu. Sel 

pcu cpu berr — — 

pcu cpu rdy 

FIG. 17 



US 2009/0268246 A1 Oct. 29, 2009 Sheet 17 of 26 Patent Application Publication 

9.I (INV 

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  



Patent Application Publication Oct. 29, 2009 Sheet 18 of 26 

ACCeSSes in this 
area are not 
allowed and 
result in a buS 
error exception. 

Unused 

ACCesses in this 
area are via the 
DU bus and are 
controlled by 
permissions set in 
the MMU 

ACCesses in this 
area are not 
allowed and 
result in a bus 1. 
error exception. 

ACCesses in this 
area are via the 
CPU bus and are 
controlled by 
permissions set in 
each peripheral. 

Peripheral Registers 

FIG. 19 

PCU Mapped Registers 

US 2009/0268246 A1 

0xFFFF. FFFF 

Ox4028 0000 

DRAM 
Regions 

0x4000 0000 

Ox0004 COOO 

0x0004 0000 
0x0003 0000 

0x0000 0000 

  

    

    

  



Patent Application Publication 

haddr31: () - I-> 
hwdata 31:0 --> 
hrdata 3 1:0 -H hsel ) 

hwrite -H 
htransl:0 --> 
hsize2:0 - > 
hburst 2:0 
hprot3:0-> 

hmastcris:0 
hmasterlock --> 

hready 4. 
hresp1:0 (-- 

hsplit 15:0 --- 

LEON 
AHB Bridge 

Oct. 29, 2009 Sheet 19 of 26 

k-- dram cpu data 255:0 
H> cpu diu Walata 127:0 D cpu diurrcq 
--> cpu diu wreq 

D cpudiu walatavalid 
K-- diu epu rack 
K-- diu cpu rvalid 
K-T-diu cpu write rdy 
--> cpu diu Wadr21:4) 

cpu diu Wmaskls:0 
K-- icu epu ilevel3:0 

D cpu iack 
cpu icuilevel 3:0 

Ho CPU TWT 
cpu dataout 31:0 

MMU 
Control 

cpu adr21:2 
He cpu acode 1:0 

| > cpu cpr Sel 
H> cpu diu sel 

US 2009/0268246 A1 

Block cpu gipio sel 
SE H) E-R's ubsystem cpuliss sel 
BuS cpupcu. Sel 
Interface H> cpu mmi sel 

debug data out 
debug data valid RDU 

debug entrl (H 

H> cputim sel 
cibu rom sel 

H> cpu diu sel 
H-> cpu ul SS D cpulidu Se 

cpr cpu dataI31:0 
H- diu cpu data 31:0 

-gpio cpu data 31:0 
icu cpu data3l:0 

H SE'S 9 
(H- mmi cpu data31:0 

tim cpu data 31:0 
rom cpu data 31:0 
pss cpu data 3 1:0 
NYSE: at: :8 

e ga 
2 
s 

FIG. 20 

D > Saga are 
a 225 () ) =''='' ife roo 

. . . . . ...) - S. S. ''' 555,558, 2. wi 2555 2.g. 22.5 O 2.9 - E s. 

5. 
5. 

  

  

  

  





US 2009/0268246 A1 Oct. 29, 2009 Sheet 21 of 26 Patent Application Publication 

| | | | | | | | | | | | | | | | 

() 

||||||||||||||| 0S I 

LÕI 
  





US 2009/0268246 A1 Oct. 29, 2009 Sheet 23 of 26 Patent Application Publication 

uue. Tenep Toupe D r— — — — — —) 

oop 

  

  

  



US 2009/0268246 A1 Oct. 29, 2009 Sheet 24 of 26 Patent Application Publication 

(G) 
0 = que?ueA''}OISAay! 

  

  



Patent Application Publication Oct. 29, 2009 Sheet 25 of 26 US 2009/0268246 A1 

Read-Only Storage Read-Write Storage 
O manufacture date field Volume of magenta ink 

descriptor field value 
1 manufacture date field value 

2 volume of magenta ink field printer feature field 
descriptor value 

3 volume of magenta ink field number of licences field 
Compatibility word value 

4 printer feature field descriptor 

printer feature field 
Compatibility word 
number of licences field 
descriptor 

number of licences field 

Compatibility word 

number of licences field 
upgrade Word 
printer licence field descriptor 

printer licence field 
Compatibility word 
printer licence field value 

12 

FIG 27 

  

  

    



Patent Application Publication Oct. 29, 2009 Sheet 26 of 26 US 2009/0268246 A1 

TRANSFER 

1. Authenticated Read 

2. Transfer 
Transfer Transfer 
Source Destination 
QA QA 
Device 3. Authenticated Write Device 

ROLLBACK 

4. Authenticated Read 
5. Start Rollback 

Transfer Transfer 
Source Destination 
QA QA 
Device 6. Authenticated Write Device 

7. Authenticated Read 

8. Rollback 

FIG. 23 

  



US 2009/0268246 A1 

METHOD OF ENABLING OR DISABILING 
VERIFICATION PROCESS 

CROSS REFERENCE TO RELATED 
APPLICATION 

0001. This application is a continuation of U.S. applica 
tion Ser. No. 12/436,133 filed on May 6, 2009, which is a 
continuation of U.S. application Ser. No. 10/854.519 filed 
May 27, 2004, now issued U.S. Pat. No. 7,557,941, all of 
which are herein incorporated by reference. 

FIELD OF THE INVENTION 

0002 The present invention relates to the field of secure 
communication. 
0003. The invention has been developed primarily to 
enable communication between various integrated circuits in 
a printer, including cartridges for use with the printer, and will 
be described with reference to this application. However, it 
will be appreciated that the invention has broad application in 
the general field, including use in Software, hardware and 
combinations of the two. 

CO-PENDING APPLICATIONS 

0004 Various methods, systems and apparatus relating to 
the present invention are disclosed in the following co-pend 
ing applications filed by the applicant or assignee of the 
present invention simultaneously with the present applica 
tion: 

7,374,266 7,427,117 7,448,707 7,281,330 10/854,503 
7,328,956 10/854,509 7,188,928 7,093.989 7,377,609 
10/854.495 10/854.498 10/854,511 7,390,071 10/854,525 
10/854,526 7,549,715 7,252,353 10/854,515 7,267,417 
10/854,505 7,517,036 7,275,805 7,314,261 10/854,490 
7,281,777 7,290,852 7484,831 10/854,523 10/854,527 
7,549,718 10/854,520 10/854,514 10/854.499 10/854,501 
7,266,661 7,243,193 10/854,518 

0005. The disclosures of these co-pending applications are 
incorporated herein by cross-reference. 

CROSS-REFERENCES 

0006 Various methods, systems and apparatus relating to 
the present invention are disclosed in the following co-pend 
ing applications filed by the applicant or assignee of the 
present invention. The disclosures of all of these co-pending 
applications are incorporated herein by cross-reference. 

7,249,108 6,566,858 6,331,946 6,246,970 6,442,525 
7,346,586 09/505,951 6,374,354 7,246,098 6,816,968 
6,757,832 6,334,190 6,745,331 7,249,109 7,509,292 
10/636,283 7,416,280 7,252,366 7.488,051 7,360,865 
10,727,181 10,727,162 7,377,608 7,399,043 7,121,639 
7,165,824 7,152,942 10,727,157 7,181,572 7,096,137 
7,302,592 7,278,034 7,188,282 10,727,159 10,727,180 
10/727,179 10,727,192 10,727,274 10,727,164 7,523,111 
10,727,198 10,727,158 10/754,536 10/754,938 10,727,160 
6,795,215 6,859,289 6,977,751 6,398,332 6,394,573 
6,622,923 6,747,760 6,921,144 7.454,617 7,194,629 

Oct. 29, 2009 

-continued 

10/791,792 7,182,267 7,025,279 6,857,571 6,817,539 
6,830,198 6,992,791 7,038,809 6,980,323 7,148,992 
7,139,091 6,947,173 

BACKGROUND 

0007. It is often desirable to enable at least one-way, and 
preferably two-way, secure communication between three or 
more entities. One way of doing this is by using a digital 
signature. 
0008 To create a digital signature, the data to be signed (d) 

is passed together with a secret key (k) through a key depen 
dent one-way hash function (SIG). i.e. signature=SIG(d). 
The key dependent one-way hash function used throughout 
the QA Chip Logical Interface is HMAC-SHA1, although 
any key dependent one-way hash function could be used. 
0009 Signatures are only of use if they can be validated. 
For example, QA Device A produces a signature for data and 
QA Device B can check if the signature is valid for that 
particular data. This implies that A and B must share some 
secret information so that they can generate equivalent sig 
natures. 

0010 Common key signature generation is when QA 
Device A and QA Device B share the exact same key i.e. key 
K-key K. Thus the signature for a message produced by A 
using K can be equivalently produced by Busing K. In 
other words SIG (d)=SIG(d) because key K. key K. 
0011. However, commonkey authentication has some dis 
advantages. For example, if a first entity wants to communi 
cate with a series of other entities, it can share a single com 
monkey with all of them. However, this means that each of 
the entities will be able to authenticate (and emulate) mes 
sages from each other. One way around this is to give each of 
the other entities its own key, and store a copy of each of the 
keys in the first entity. However, where large numbers of 
entities are involved, an unacceptable number of keys may 
need to be stored in the first entity. 
0012. The problem is exacerbated when it is desirable to 
enable a second entity to communicate with a third entity, 
where the third entity has a key to enable communication, but 
the second entity does not. 
0013. It would be desirable to provide a method of authen 
ticated communication that addressed at least Some of the 
problems of the prior art. 

SUMMARY OF THE INVENTION 

0014. In a first aspect the present invention provides a 
method of enabling or disabling a verification process of a 
first entity in response to a predetermined event, the first 
entity having at least one associated bit-pattern and at least 
one variant key, each of the variant keys having been gener 
ated by applying a one way function to: a base key; and one or 
more of the at least one bit-patterns, respectively; or one or 
more alternative bit patterns, each of the alternative bit-pat 
terns being based on one of the at least one bit-patterns, the 
method comprising: 
(a) determining that the predetermined event has happened; 
and 
(b) enabling or disabling at least one of the first variant keys 
in response to the predetermined event. 



US 2009/0268246 A1 

00.15 Optionally, step (a) includes disabling at least one of 
the variant keys, such that the disabled at least one variant key 
can no longer be used to digitally sign information in that 
entity. 
0016 Optionally, step (a) includes disabling at least one of 
the variant keys, such that the disabled at least one variant key 
can no longer be used to Verify information signed by one or 
more respective base keys related to the disabled at least one 
variant key in that entity. 
0017 Optionally, the step of disabling the at least one 
variant key includes modifying a status of a flag associated 
with that at least one variant key. 
0018 Optionally, the step of disabling the at least one 
variant key includes deleting that at least one variant key. 
0019. Optionally, the step of disabling the at least one 
variant key includes modifying that at least one variant key 
0020 Optionally, the event is a predetermined point in 
time being reached or passed. 
0021 Optionally, the first entity includes a plurality of the 
variant keys, the plurality of variant keys being based on the 
result of a one way function applied to: a respective one of a 
corresponding plurality of base keys; and one of the at least 
one bit-patterns or one of the at least one alternative bit 
patterns, the method comprising: 
0022 determining that a predetermined event related to 
one of the variant keys has happened; and 
0023 enabling or disabling at least one of the plurality of 
variant keys with which the predetermined event is associ 
ated. 
0024 Optionally, each base key has a corresponding 
sequence of predetermined events associated with them, the 
method including the steps of 
(a) determining that one of the predetermined event has hap 
pened; and 
(b) enabling or disabling the variant key in the sequence 
corresponding to predetermined event that is determined to 
have happened. 
0025 Optionally, the variant keys are disabled in the order 
of the sequence of predetermined events. 
0026. Optionally, the sequence of events is chronological. 
0027 Optionally, each of the events includes a time being 
reached. 
0028 Optionally, the step of determining that one of the 
events has happened includes receiving a time from a trusted 
SOUC. 

0029 Optionally, the time is a date. 
0030 Optionally, the date is determined with a resolution 
of a month. 
0031 Optionally, the predetermined event includes detec 
tion of compromise of one or more of the variant keys, the 
method comprising disabling the one or more variant keys 
detected as compromised. 
0032. Optionally, the predetermined event includes sus 
pect compromise of one or more of the variant keys, the 
method comprising disabling the one or more variant keys 
Suspected of being compromised. 
0033. In a second aspect the present invention provides a 
method of manufacturing second entities for use in the veri 
fication process with a first entity, each of the first entities 
including at least first and second variant key, the first variant 
key having been generated by applying a one way function to 
a first base key and a first bit-pattern, and the second variant 

Oct. 29, 2009 

key having been generated by applying a one way function to 
a second base key and a second bit-pattern, the method com 
prising the steps of: 
0034 manufacturing a plurality of second entities for use 
with the first entities, each of the second entities including at 
least the first base key; and 
0035 upon the first variant key being disabled in response 
to one of the predetermined event, manufacturing a plurality 
of third entities for use with the first entities, each of the third 
entities including at least the second base key. 
0036) Optionally, the first variant key is automatically dis 
abled in response to a predetermined event. 
0037 Optionally, the method further includes the step of 
causing the first variant key to be disabled. 
0038 Optionally, the first variant key is disabled in 
response to a time being reached. 
0039. Optionally, at least some of the first entities have one 
or more further variant keys, each of the respective further 
variant keys having been generated by applying a one way 
function to respective further base keys and bit-patterns, each 
of the variant keys being enabled or disabled in response to 
respective predetermined events, the method comprising the 
step of manufacturing a sequence of sets of second entities, 
each set of the second entities being manufactured Such that 
the variant key corresponding to its base key is enabled for the 
verification process during the life of that set. 
0040. Optionally, the predetermined events are selected 
Such that the variant keys corresponding with the base keys of 
more than one of the sets are enabled at once. 
0041. Optionally, the method includes using a first entity 
configured to authenticate a digital signature Supplied by a 
second entity, wherein one of the entities includes a base key 
and the other of the entities includes a variant key and a 
bit-pattern, the variant key being based on the result of apply 
ing a one way function to the base key and the bit-pattern, the 
digital signature having been generated by the second entity 
using its key to digitally signing at least part of data to be 
authenticated, the first entity being configured to: 
(a) receive the digital signature from the second entity; 
(b) receive the data; and 
(c) authenticate the digital signature based on the received 
data and the first entity's key. 
0042 Optionally, the method includes using a first entity 
including: 
0043 a first bit-pattern: 
0044 a non-volatile memory storing resource data; 
0045 a first base key for use with at least a first variant key: 
0046 a second variant key for use with a second base key, 
the second variant key being the result of a one way function 
applied to: the second base key; and the first bit-pattern or a 
modified bit-pattern based on the first bit-pattern. 
0047 Optionally, the method includes using a system for 
enabling authenticated communication between a first entity 
and at least one other entity, the system including a second 
entity, wherein: 
0048 the first entity and the second entity share transport 
keys; and 
0049 the secondentity includes at least one authentication 
key configured to be transported from the second entity to the 
first entity using the transport keys, the authentication key 
being usable to enable the authenticated communication by 
the first entity. 



US 2009/0268246 A1 

0050. Optionally, the method includes storing a first bit 
pattern in non-volatile memory of a device, the method com 
prising: 
(a) applying a one way function to a second bit-pattern asso 
ciated with the device, thereby to generate a first result; 
(b) applying a second function to the first result and the first 
bit-pattern, thereby to generate a second result; and 
(c) storing the second result in the memory, thereby indirectly 
storing the first bit-pattern. 
0051 Optionally, the method includes storing a bit-pattern 
in each of a plurality of devices, each of the devices having a 
memory, the method comprising, for each device: 
(a) determining a first memory location; and 
(b) storing the bit-pattern at the first memory location; 
0052 wherein the first memory locations are differentinat 
least a plurality of the respective devices. 
0053) Optionally, the method includes storing at least one 
functionally identical code segment in each of a plurality of 
devices, each of the devices having a memory, the method 
comprising, for each device: 
(a) determining a first memory location; and 
(b) storing a first of the at least one code segments in the 
memory at the first memory location; 
0054 wherein the first memory location is different in at 
least a plurality of the respective devices. 
0055 Optionally, the method includes providing a 
sequence of nonces (R0, R1, R2, . . . ) commencing with a 
current seed of a sequence of seeds (X1, X2, X3, . . . ), the 
method comprising: 
(a) applying a one-way function to the current seed, thereby to 
generate a current nonce; 
(b) outputting the current nonce; 
(c) using the current seed to generate a next seed in a sequence 
of seeds, the seed so generated becoming the current seed; 
and 
(c) repeating steps (a) to (c) as required to generate further 
nonces in the sequence of nonces. 
0056. Optionally, the method includes storing multiple 

first bit-patterns in non-volatile memory of a device, the 
method comprising, for each of the first bit-patterns to be 
stored: 
(a) applying a one way function to a third bit-pattern based on 
a second bit-pattern associated with the device, thereby to 
generate a first result: 
(b) applying a second function to the first result and the first 
bit-pattern, thereby to generate a second result; and 
(c) storing the second result in the memory, thereby indirectly 
storing the first bit-pattern; 
0057 wherein the third bit-patterns used for the respective 

first bit-patterns are relatively unique compared to each other. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0058 FIG.1. Single SoPEC A4 Simplex system 
0059 FIG. 2. Dual SoPEC A4 Simplex system 
0060 FIG. 3. Dual SoPECA4 Duplex system 
0061 FIG. 4. Dual SoPECA3 simplex system 
0062 FIG. 5. Quad SoPECA3 duplex system 
0063 FIG. 6. SoPEC A4 Simplex system with extra 
SoPEC used as DRAM storage 
0064 FIG. 7. SoPEC A4 Simplex system with network 
connection to Host PC 
0065 FIG.8. Document data flow 
0066 FIG.9. Pages containing different numbers of bands 
0067 FIG. 10. Contents of a page band 

Oct. 29, 2009 

0068 FIG. 11. Page data path from host to SoPEC 
0069 FIG. 12. Page structure 
(0070 FIG. 13. SoPEC System Top Level partition 
(0071 FIG. 14. Proposed SoPEC CPU memory map (not to 
scale) 
0072 FIG. 15. Possible USB Topologies for Multi-SoPEC 
systems 
(0073 FIG. 16. CPU block diagram 
0074 FIG. 17. CPU bus transactions 
(0075 FIG. 18. State machine for a CPU subsystem slave 
(0076 FIG. 19. Proposed SoPEC CPU memory map (not to 
scale) 
(0077 FIG. 20. MMU Sub-block partition, external signal 
V1eW 

(0078 FIG. 21. MMU Sub-block partition, internal signal 
view 
007.9 FIG. 22. DRAM Write buffer 
0080 FIG. 23. DIU waveforms for multiple transactions 
0081 FIG. 24. SoPEC LEON CPU core 
I0082 FIG. 25. Linking Printhead Concept 
I0083 FIG. 26. Equivalent signature generation 
I0084 FIG. 27. An allocation of words in memory vectors 
I0085 FIG. 28. Transfer and rollback process 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENT 

I0086 Also throughout this description, “printhead mod 
ule' and “printhead' are used somewhat interchangeably. 
Technically, a “printhead comprises one or more printhead 
modules, but occasionally the former is used to refer to the 
latter. It should be clear from the context which meaning 
should be allocated to any use of the word “printhead'. 
I0087 A SoPEC ASIC (Small office home office Print 
Engine Controller) suitable for use in price sensitive SoHo 
printerproducts is described. The SoPECASIC is intended to 
be a relatively low cost solution for linking printhead control, 
replacing the multichip Solutions in larger more professional 
systems with a single chip. The increased cost competitive 
ness is achieved by integrating several systems such as a 
modified PEC1 printing pipeline, CPU control system, 
peripherals and memory sub-system onto one SoC ASIC, 
reducing component count and simplifying board design. 
SoPEC contains features making it suitable for multifunction 
or “all-in-one” devices as well as dedicated printing systems. 
I0088 Basic features of the preferred embodiment of 
SoPEC include: 

0089 Continuous 30 ppm operation for 1600dpi output 
at A4/Letter. 

0090 Linearly scalable (multiple 
increased print speed and/or page width. 

0091) 192 MHz internal system clock derived from low 
speed crystal input 

0092 PEP processing pipeline, supports up to 6 color 
channels at 1 dot per channel per clock cycle 

0.093 Hardware color plane decompression, tag render 
ing, halftoning and compositing 

0094) Data formatting for Linking Printhead 
0.095 Flexible compensation for dead nozzles, print 
head misalignment etc. 

(0.096 Integrated 20 Mbit (2.5 MByte) DRAM for print 
data and CPU program store 

0097 LEON SPARC v832-bit RISC CPU 
0.098 Supervisor and user modes to support multi 
threaded software and security 

SoPECs) for 



US 2009/0268246 A1 

0099] 1 kB each of I-cache and D-cache, both direct 
mapped, with optimized 256-bit fast cache update. 

0100 1xUSB2.0 device port and 3xUSB2.0 host ports 
(including integrated PHYs) 

0101 Support high speed (480 Mbit/sec) and full speed 
(12 Mbit/sec) modes of USB2.0 

01.02 Provide interface to host PC, other SoPECs, and 
external devices e.g. digital camera 

0103 Enable alternative host PC interfaces e.g. via 
external USB/ethernet bridge 

0.104) Glueless high-speed serial LVDS interface to 
multiple Linking Printhead chips 

0105. 64 remappable GPIOs, selectable between com 
binations of integrated system control components: 

0106] 2xLSS interfaces for QA chip or serial EEPROM 
0107 LED drivers, sensor inputs, switch control out 
puts 

0.108 Motor controllers for stepper and brushless DC 
motorS 

0109 Microprogrammed multi-protocol media inter 
face for scanner, external RAM/Flash, etc. 

0110 1 12-bit unique ID plus 112-bit random number 
on each device, combined for security protocol support 

0111 IBM Cu-1 1 0.13 micron CMOS process, 1.5V 
core supply, 3.3VIO. 

(O112 208 pin Plastic Quad Flat Pack 
0113. The SoPEC device can be used in several printer 
configurations and architectures. 
0114. In the general sense, every preferred embodiment 
SoPEC-based printerarchitecture will contain: 

0115 One or more SoPEC devices. 
0116. One or more linking printheads. 
0117 Two or more LSS busses. 
0118. Two or more QA chips. 
0119 Connection to host, directly via USB2.0 or indi 
rectly. 

I0120 Connections between SoPECs (when multiple 
SoPECs are used). 

0121 The Host PC rasterizes and compresses the incom 
ing document on a page by page basis. The page is restruc 
tured into bands with one or more bands used to construct a 
page. The compressed data is then transferred to the SoPEC 
device directly via a USB link, or via an external bridge e.g. 
from ethernet to USB. A complete band is stored in SoPEC 
embedded memory. Once the band transfer is complete the 
SoPEC device reads the compressed data, expands the band, 
normalizes contone, bi-level and tag data to 1600 dpi and 
transfers the resultant calculated dots to the linking printhead. 
0122) The SoPEC device can print a full resolution page 
with 6 color planes. Each of the color planes can be generated 
from compressed data through any channel (either JPEG 
compressed, bi-level SMG4 fax compressed, tag data gener 
ated, or fixative channel created) with a maximum number of 
6 data channels from page RIP to linking printhead color 
planes. 
0123. The mapping of data channels to color planes is 
programmable. This allows for multiple color planes in the 
printhead to map to the same data channel to provide for 
redundancy in the printhead to assist dead nozzle compensa 
tion. 

0.124. Also a data channel could be used to gate data from 
another data channel. For example in stencil mode, data from 
the bilevel data channel at 1600dpi can be used to filter the 

Oct. 29, 2009 

contone data channel at 320 dpi, giving the effect of 1600 dpi 
edged contone images, such as 1600 dpi color text. 
0.125. The SoPEC device typically stores a complete page 
of document data on chip. The amount of storage available for 
compressed pages is limited to 2 Mbytes, imposing a fixed 
maximum on compressed page size. SoPEC would not be 
capable of printing worst case pages unless they are split into 
bands and printing commences before all the bands for the 
page have been downloaded. The page sizes in the table are 
shown for comparison purposes and would be considered 
reasonable for a professional level printing system. The 
SoPEC device is aimed at the consumer level and would not 
be required to print pages of that complexity. If a document 
with more complex pages is required, the page RIP software 
in the host PC can determine that there is insufficient memory 
storage in the SoPEC for that document. In such cases the RIP 
Software can take two courses of action: 

0.126. It can increase the compression ratio until the 
compressed page size will fit in the SoPEC device, at the 
expense of print quality, or 

0127. It can divide the page into bands and allow 
SoPEC to begin printing a page band before all bands for 
that page are downloaded. 

I0128. Once SoPEC starts printing a page it cannot stop; if 
SoPEC consumes compressed data faster than the bands can 
be downloaded a buffer underrun error could occur causing 
the print to fail. A buffer underrun occurs if a line synchroni 
sation pulse is received before a line of data has been trans 
ferred to the printhead. 
I0129. Other options which can be considered if the page 
does not fit completely into the compressed page store are to 
slow the printing or to use multiple SoPECs to print parts of 
the page. Alternatively, a number of methods are available to 
provide additional local page data storage with guaranteed 
bandwidth to SoPEC, for example a Storage SoPEC. 
0.130. The SoPEC is a page rendering engine ASIC that 
takes compressed page images as input, and produces decom 
pressed page images at up to 6 channels of bi-level dot data as 
output. The bi-level dot data is generated for the Memjet 
linking printhead. The dot generation process takes account 
of printhead construction, dead nozzles, and allows for fixa 
tive generation. 
I0131) A single SoPEC can control up to 12 linking print 
heads and up to 6 color channels at >10,000 lines/sec. equat 
ing to 30 pages per minute. A single SoPEC can perform 
full-bleed printing of A4 and Letter pages. The 6 channels of 
colored ink are the expected maximum in a consumer SOHO, 
or office Memjet printing environment: 

0.132 CMY, for regular color printing. 
0.133 K, for black text, line graphics and gray-scale 
printing. 

0.134) IR (infrared), for Netpage-enabled applications. 
0.135 F (fixative), to enable printing at high speed. 
Because the Memjet printeris capable of printing so fast, 
a fixative may be required on specific media types (such 
as calendared paper) to enable the ink to dry before the 
page touches a previously printed page. Otherwise the 
pages may bleed on each other. In low speed printing 
environments, and for plain and photo paper, the fixative 
is not be required. 

0.136 SoPEC is color space agnostic. Although it can 
accept contone data as CMYX or RGBX, where X is an 
optional 4th channel (Such as black), it also can accept con 
tone data in any print color space. Additionally, SoPEC pro 



US 2009/0268246 A1 

vides a mechanism for arbitrary mapping of input channels to 
output channels, including combining dots for ink optimiza 
tion, generation of channels based on any number of other 
channels etc. However, inputs are typically CMYK for con 
tone input, K for the bi-level input, and the optional Netpage 
tag dots are typically rendered to an infra-red layer. A fixative 
channel is typically only generated for fast printing applica 
tions. 
0.137 SoPEC is resolution agnostic. It merely provides a 
mapping between input resolutions and output resolutions by 
means of scale factors. The expected output resolution is 1600 
dpi, but SoPEC actually has no knowledge of the physical 
resolution of the linking printhead. 
0138 SoPEC is page-length agnostic. Successive pages 
are typically split into bands and downloaded into the page 
store as each band of information is consumed and becomes 
free. 
0139 SoPEC provides mechanisms for synchronization 
with other SoPECs. This allows simple multi-SoPEC solu 
tions for simultaneous A3/A4/Letter duplex printing. How 
ever, SoPEC is also capable of printing only a portion of a 
page image. Combining synchronization functionality with 
partial page rendering allows multiple SoPECs to be readily 
combined for alternative printing requirements including 
simultaneous duplex printing and wide format printing. 
0140. The required printing rate for a single SoPEC is 30 
sheets per minute with an inter-sheet spacing of 4 cm. To 
achieve a 30 sheets per minute print rate, this requires: 

0141 300 mmx63 (dot/mm)/2 sec=105.8 seconds per 
line, with no inter-sheet gap. 

0.142 340 mmx63 (dot/mm)/2 sec=93.3 seconds per 
line, with a 4 cm inter-sheet gap. 

0143 Aprintline for an A4 page consists of 13824 nozzles 
across the page. At a system clock rate of 192 MHZ, 13824 
dots of data can be generated in 69.2 seconds. Therefore data 
can be generated fast enough to meet the printing speed 
requirement. 
0144. Once generated, the data must be transferred to the 
printhead. Data is transferred to the printhead ICs using a 288 
MHz clock (3/2 times the system clock rate). SoPEC has 6 
printhead interface ports running at this clock rate. Data is 
8b/10b encoded, so the throughput per port is 0.8x288-230.4 
Mb/sec. For 6 color planes, the total number of dots per 
printhead IC is 1280x6–7680, which takes 33.3 seconds to 
transfer. With 6 ports and 11 printhead ICs, 5 of the ports 
address 2 ICs sequentially, while one port addresses one IC 
and is idle otherwise. This means all data is transferred on 
66.7 seconds (plus a slight overhead). Therefore one SoPEC 
can transfer data to the printhead fast enough for 30 ppm 
printing. 
(0145. From the highest point of view the SoPEC device 
consists of 3 distinct Subsystems 

0146 CPU Subsystem 
0147 DRAM Subsystem 
0148 Print Engine Pipeline (PEP) Subsystem 

0149 See FIG. 13 for a block level diagram of SoPEC. 
0150. The CPU subsystem controls and configures all 
aspects of the other Subsystems. It provides general Support 
for interfacing and synchronising the external printer with the 
internal print engine. It also controls the low speed commu 
nication to the QA chips. The CPU subsystem contains vari 
ous peripherals to aid the CPU, such as GPIO (includes motor 
control), interrupt controller, LSS Master, MMI and general 
timers. The CPR block provides a mechanism for the CPU to 

Oct. 29, 2009 

powerdown and reset individual sections of SoPEC. The 
UDU and UHU provide high-speed USB2.0 interfaces to the 
host, other SoPEC devices, and other external devices. For 
security, the CPU Supports user and Supervisor mode opera 
tion, while the CPU subsystem contains some dedicated secu 
rity components. 
0151. The DRAM subsystem accepts requests from the 
CPU, UHU, UDU, MMI and blocks within the PEP sub 
system. The DRAM subsystem (in particular the DIU) arbi 
trates the various requests and determines which request 
should win access to the DRAM. The DIU arbitrates based on 
configured parameters, to allow sufficient access to DRAM 
for all requesters. The DIU also hides the implementation 
specifics of the DRAM such as page size, number of banks, 
refresh rates etc. 
0152 The Print Engine Pipeline (PEP) subsystem accepts 
compressed pages from DRAM and renders them to bi-level 
dots for a given print line destined for a printhead interface 
that communicates directly with up to 12 linking printhead 
ICS. 
0153. The first stage of the page expansion pipeline is the 
CDU, LBD and TE. The CDU expands the JPEG-compressed 
contone (typically CMYK) layer, the LBD expands the com 
pressed bi-level layer (typically K), and the TE encodes 
Netpage tags for later rendering (typically in IR. Y or Kink). 
The output from the first stage is a set of buffers: the CFU, 
SFU, and TFU. The CFU and SFU buffers are implemented in 
DRAM. 

0154) The second stage is the HCU, which dithers the 
contone layer, and composites position tags and the bi-level 
spot0 layer over the resulting bi-level dithered layer. A num 
ber of options exist for the way in which compositing occurs. 
Up to 6 channels of bi-level data are produced from this stage. 
Note that not all 6 channels may be present on the printhead. 
For example, the printhead may be CMY only, with Kpushed 
into the CMY channels and IR ignored. Alternatively, the 
position tags may be printed in KorY if IR ink is not available 
(or for testing purposes). 
0155 The third stage (DNC) compensates for dead 
nozzles in the printhead by color redundancy and error dif 
fusing dead nozzle data into Surrounding dots. 
0156 The resultant bi-level 6 channel dot-data (typically 
CMYK-IRF) is buffered andwritten out to a set of line buffers 
Stored in DRAM via the DWU. 

(O157 Finally, the dot-data is loaded back from DRAM, 
and passed to the printhead interface via a dot FIFO. The dot 
FIFO accepts data from the LLU up to 2 dots per system clock 
cycle, while the PHI removes data from the FIFO and sends it 
to the printhead at a maximum rate of 1.5 dots per system 
clock cycle. 
0158 Manufacturers of systems that require consumables 
(such as laser printers that require toner cartridges) have 
addressed the problem of authenticating consumables with 
varying levels of Success. Most have resorted to specialized 
packaging that involves a patent. However this does not stop 
home refill operations or clone manufacture in countries with 
weak industrial property protection. The prevention of copy 
ing is important to prevent poorly manufactured Substitute 
consumables from damaging the base system. For example, 
poorly filtered ink may clog print nozzles in an inkjet printer, 
causing the consumer to blame the system manufacturer and 
not admit the use of non-authorized consumables. 
0159. In addition, some systems have operating param 
eters that may be governed by a license. For example, while a 



US 2009/0268246 A1 

specific printer hardware setup might be capable of printing 
continuously, the license for use may only authorise a par 
ticular print rate. The printing system would ideally be able to 
access and update the operating parameters in a secure, 
authenticated way, knowing that the user could not subvert 
the license agreement. 
0160. Furthermore, legislation in certain countries 
requires consumables to be reusable. This slightly compli 
cates matters in that refilling must be possible, but not via 
unauthorized home refill or clone refill means. 
0161 To address these authentication problems, this 
document defines the QA Chip Logical Interface, which pro 
vides authenticated manipulation of a system's operating and 
consumable parameters. The interface is described interms of 
data structures and the functions that manipulate them, 
together with examples of use. While the descriptions and 
examples are targeted towards the printer application, they 
are equally applicable in other domains. The QA Chip Logi 
cal Interface is now described. 
0162 The QA Chip Logical Interface is a logical interface, 
and is therefore implementation independent. Although this 
document does not cover implementation details on particu 
lar platforms, expected implementations include: 

(0163 Software only 
0164 Off-the-shelf cryptographic hardware 
(0165 ASICs, such as SBR43202 and SOPEC 5) for 

physical insertion into printers and ink cartridges 
(016.6 Smart cards 

0167. An instance of a QA Chip Logical Interface (on any 
platform) is a QA Device. 
0168 QA Devices cannot talk directly to each other. A 
System is a logical entity which has one or more QA Devices 
connected logically (or physically) to it, and calls the func 
tions on those QA Devices. 
0169. From the point of view of a QA Device receiving 
commands, System cannot inherently be trusted i.e. a given 
QA Device cannot tell if the System is trustworthy or not. 
System can, however, be constructed within a trustworthy 
environment (such as a SoPEC or within another physically 
secure computer system), and in these cases System can trust 
itself. 
0170 Digital signatures are used throughout the authenti 
cation protocols of the QA Chip Logical Interface. A signa 
ture is produced by passing data plus a secret key through a 
keyed hash function. The signature proves that the data was 
signed by someone who knew the secret key. 
0171 The signature function used throughout the QA 
Chip Logical Interface is HMAC-SHA1. 
0172. When a System is constructed within a physically/ 
logically secure environment, then System itself is trusted, 
and any Software/hardware running within that secure envi 
ronment is trusted. A Trusted QA Device is simply a QA 
Device that resides within the same secure environment that 
System also resides in, and can therefore be trusted by Sys 
tem. This means that it is not possible for an attacker to 
subvert the communication between the System and the 
Trusted QA Device, or to replace the functionality of a QA 
Device by some other functionality. A Trusted QA Device 
enables a System to extend trust to external QA Devices. An 
example of a Trusted QA Device is a body of software inside 
a digitally signed program. 
0173 An External untrusted QA Device is a QA Device 
that resides external to the trusted environment of the system 
and is therefore untrusted. The purpose of the QA Chip Logi 

Oct. 29, 2009 

cal Interface is to allow the external untrusted QA Devices to 
become effectively trusted. This is accomplished when a 
Trusted QA Device shares a secret key with the external 
untrusted QA Device, or with a Translation QA Device (see 
below). 
0.174. In a printing application, external untrusted QA 
Devices would typically be instances of SBR4320 implemen 
tations located in a consumable or the printer. 
0.175. A Translation QA Device is used to translate signa 
tures between QA Devices and extend effective trust when 
secret keys are not directly shared between QA Devices. 
0176). As an example, ifa message is sent from QADevice 
A to QA Device C, but A and C don't share a secret key, then 
under normal circumstances C cannot trust the message 
because a signature generated by A cannot be verified by C. 
However if A and B share secret 1, and B and C share secret 
2, and B is allowed to translate signatures for certain mes 
sages sent between secret 1 and secret 2, then B can be used 
as a TranslationQA Device to allow those messages to be sent 
between A and C. 

0177. A Consumable QA Device is an external untrusted 
QA Device located in a consumable. It typically contains 
details about the consumable, including how much of the 
consumable remains. 
0178. In a printing application the consumable QA Device 

is typically found in an ink cartridge and is referred to as an 
Ink QA Device, or simply Ink QA since ink is the most 
common consumable for printing applications. However, 
other consumables in printing applications include media and 
impression counts, so consumable QA Device is more 
generic. 
0179 An Operating Parameter QA Device is an external 
untrusted device located within the infrastructure of a prod 
uct, and contains at least Some of the operating parameters of 
the application. Unlike the Trusted QA Device, an Operating 
Parameter QA Device is in a physically/logically untrusted 
section of the overall hardware/software. 
0180. An example of an Operating Parameter QA Device 
in a SoPEC-based printer system is the PrinterQA Device (or 
simply PrinterQA), that contains the operating parameters of 
the printer. The PrinterQA contains OEM and printer model 
information that indirectly specifies the non-upgradeable 
operating parameters of the printer, and also contains the 
upgradeable operating parameters themselves. 
0181. A Value Upgrader QA Device contains the neces 
sary functions to allow a system to write an initial value (e.g. 
an ink amount) into another QA Device, typically a consum 
able QA Device. It also allows a system to refill/replenish a 
value in a consumable QA Device after use. 
0182. Whenever a value upgrader QA Device increases 
the amount of value in another QA Device, the value in the 
value upgrader QA Device is correspondingly decreased. 
This means the value upgrader QA Device cannot create 
value it can only pass on whatever value it itself has been 
issued with. Thus a value upgrader QA Device can itself be 
replenished or topped up by another value upgrader QA 
Device. 

0183 An example of a value upgrader is an Ink Refill QA 
Device, which is used to fill/refill ink amount in an Ink QA 
Device. 

0184. A Parameter Upgrader QA Device contains the nec 
essary functions to allow a system to write an initial param 
eter value (e.g. a print speed) into another QA Device, e.g. an 



US 2009/0268246 A1 

Operating Parameter QA Device. It also allows a system to 
change that parameter value at Some later date. 
0185. A parameter upgrader QA Device is able to perform 
a fixed number of upgrades, and this number is effectively a 
consumable value. Thus the number of available upgrades 
decreases by 1 with each upgrade, and can be replenished by 
a value upgrader QA Device. 
0186 Secret transport keys are inserted into QA Devices 
during instantiation (e.g. manufacture). These keys must be 
replaced by the final secret keys when the purpose of the QA 
Device is known. The Key Replacement QA Device imple 
ments all necessary functions for replacing keys in other QA 
Devices. 

0187. An Authenticated Read is a read of data from a 
non-trusted QA Device that also includes a check of the 
signature. When the System determines that the signature is 
correct for the returned data (e.g. by asking a Trusted QA 
Device to test the signature) then the System is able to deter 
mine that the data has not been tampered en route from the 
read, and was actually stored on the non-trusted QA Device. 
0188 An authenticated write is a write to the data storage 
area in a QA Device where the write request includes both the 
new data and a signature. The signature is based on a key that 
has write access permission to the region of data in the QA 
Device, and proves to the receiving QA Device that the writer 
has the authority to perform the write. For example, a Value 
Upgrader Refilling Device is able to authorize a system to 
performan authenticated write to upgrade a Consumable QA 
Device (e.g. to increase the amount of ink in an Ink QA 
Device). 
(0189 The QA Device that receives the write request 
checks that the signature matches the data (so that it hasn't 
been tampered with en route) and also that the signature is 
based on the correct authorization key. 
0190. An authenticated write can be followed by an 
authenticated read to ensure (from the system's point of view) 
that the write was successful. 

0191) A non-authenticated write is a write to the data 
storage area in a QA Device where the write request includes 
only the new data (and no signature). This kind of write is 
used when the system wants to update areas of the QA Device 
that have no access-protection. 
(0192. The QA Device verifies that the destination of the 
write request has access permissions that permit anyone to 
write to it. If access is permitted, the QA Device simply 
performs the write as requested. 
0193 A non-authenticated write can be followed by an 
authenticated read to ensure (from the system's point of view) 
that the write was successful. 
0194 Authorized modification of data refers to modifica 
tion of data via authenticated writes. 
0.195 The primary purpose of a QA Device is to securely 
hold application-specific data. For example if the QA Device 
is a Consumable QA Device for a printing application it may 
store ink characteristics and the amount of ink remaining. 
0196. For secure manipulation of data: 

0.197 Data must be clearly identified (includes typing 
of data). 

0198 Data must have clearly defined access criteria and 
permissions. 

(0199 Data must be able to be transferred securely from 
one QA Device to another, through a potentially inse 
cure environment. 

Oct. 29, 2009 

0200. In addition, each QA Device must be capable of 
storing multiple data elements, where each data element is 
capable of being manipulated in a different way to represent 
the intended use of that data element. For convenience, a data 
element is referred to as a field. 
0201 Each QA Device requires an identifier that allows 
unique identification of that QA Device by external systems, 
ensures that messages are received by the correct QA Device, 
and ensures that the same device can be used across multiple 
transactions. 
0202 Strictly speaking, the identifier only needs to be 
unique within the context of a key, since QA Devices only 
accept messages that are appropriately signed. However it is 
more convenient to have the instance identifier completely 
unique, as is the case with this design. 
0203. In certain circumstances it is useful for a Trusted QA 
Device to assume the instance identifier of an external 
untrusted QA Device in order to build a local trusted form of 
the external QA Device. It is the responsibility of the System 
to ensure that the correct device is used for particular mes 
sages. As an example, a Trusted QA Device in a SoPEC-based 
printing system has the same instance identifier as the exter 
nal (untrusted) Printer QA so that the System can access 
functionality in the Trusted QA instead of the external 
untrusted Printer QA. The identifier functionality is provided 
by ChipId. 
0204 Chipid is the unique 64-bit QA Device identifier. 
The ChipId is set when the QA Device is instantiated, and 
cannot be changed during the lifetime of the QA Device. 
0205. A 64-bit Chipid gives a maximum of 1844674 tril 
lion unique QA Devices. 
0206 Each QA Device contains a number of secret keys 
that are used for signature generation and Verification. These 
keys serve three basic functions: 

0207 For reading, where they are used to verify that the 
read data came from the particular 

0208 QA Device and was not altered en route. 
0209 For writing, where they are used to authorise 
modification of data. 

0210 For transporting keys, where they are used in the 
process of encrypting and transporting new keys into the 
QA Device. 

0211 All of these functions are achieved by signature 
generation; a key is used to generate a signature for Subse 
quent transmission from the device, and to generate a signa 
ture to compare against a received signature. The transporta 
tion function is additionally achieved by encryption. 
0212. The number of secret keys in a QA Device is given 
by NumKeys, and has a maximum value of 256, i.e. the 
number of keys for a particular implementation may be less 
than this. For convenience, we refer to a QA Device as having 
NumKeys key slots, where each key slot contains a single key. 
Thus the nth keyslot contains the nth key (where n has the 
range 0 to Numkeys-1). The keyslot concept is useful 
because a key slot contains not only the bit-pattern of the 
secret key, but also additional information related to the secret 
key and its use within the QA Device. The term Keyslotn. 
XXX is used to describe the element named XXX within Keyslot 
l. 

0213 Each key is referred to as K, and the subscripted 
form Krefers to the key in the nth keyslot. Thus K-Keyslot 
n.K. 
0214. The length of each key is 160 bits. 160 bits was 
chosen because the output signature length from the signature 



US 2009/0268246 A1 

generation function (HMAC-SHA1) is 160 bits, and a key 
longer than 160-bits does not add to the security of the func 
tion. 

0215. The security of the digital signatures relies upon 
keys being kept secret. To safeguard the security of each key, 
keys should be generated in a way that is not deterministic. 
Ideally the bit pattern representing a particular key should be 
a physically generated random number, gathered from a 
physically random phenomenon. Each key is initially pro 
grammed during QA Device instantiation. 
0216 For the convenience of the System, each key has a 
corresponding 18-bit KeyId which can be read to determine 
the identity or label of the key without revealing the value of 
the key itself. Since the relationship between keys and KeyIds 
is 1:1 (they are both stored in the same keyslot), a system can 
read all the KeyIds from a QA Device and know what key is 
stored in each of the keyslots. A KeyId of INVALID KEYID 
(=O) is the only predefined id, and indicates that the key is 
invalid and should not be used, although the QA Device itself 
will not specifically prevent its use. From a system perspec 
tive, the bit pattern of a key is undefined when 
KeyId=INVALID KEYID, and so cannot be guaranteed to 
match another key whose KeyId is also INVALID KEYID. 
The bit pattern for such a key should be set to a random bit 
pattern for the physical security of any other keys present in 
the QA Device. 
0217. To create a digital signature, the data to be signed (d) 

is passed together with a secret key (k) through a key depen 
dent one-way hash function (SIG). i.e. signature=SIG(d). 
The key dependent one-way hash function used throughout 
the QA Chip Logical Interface is HMAC-SHA1, although 
from a theoretical sense any key dependent one-way hash 
function could be used. 

0218. Signatures are only of use if they can be validated 
i.e. QA Device A produces a signature for data and QA 
Device B can check if the signature is valid for that particular 
data. This implies that A and B must share some secret infor 
mation so that they can generate equivalent signatures. 
0219 Common key signature generation is when QA 
Device A and QA Device B share the exact same key i.e. key 
K-key K. Thus the signature for a message produced by A 
using K can be equivalently produced by Busing K. In 
other words SIG (d)=SIG(d) because key K-key K. 
0220 Variant key signature generation is when QADevice 
Bholds a base key, and QA Device A holds a variant of that 
key Such that KFOwf(KU) where owfis a one-way func 
tion based upon the base key (K) and a unique number in A 
(U). A one-way function is required to create K from K or 
it would be possible to derive K if K were exposed. Thus A 
can produce SIG (message), but for B to produce an equiva 
lent signature B must produce K by being told U, from Aand 
using B's base key K. K. is referred to as a variant key and 
K is referred to as the base key. Therefore, B can produce 
equivalent signatures from many QA Devices, each of which 
has its own unique variant of K. Since ChipId is unique to a 
given QA Device, we conveniently use that as U. 
0221 Common key signature generation is used when A 
and Bare effectively equally available' to an attacker. Variant 
key signature generation is used when B is not readily avail 
able to an attacker, and A is readily available to an attacker. If 
an attacker is able to determine K, they do not know K for 

Oct. 29, 2009 

any other QA Device of class A, and they are not able to 
determine K. 
The term “equally available” is relative. It typically means that the ease of 

availability of both are the effectively the same, regardless of price (e.g. both A 
and B are commercially available and effectively equally easy to come by). 
0222. When two or more devices share U (in our imple 
mentation, U is Chipid), then their variant keys can be effec 
tively treated as commonkeys for signatures passed between 
them, but as variant keys when passed to other devices. 
0223) The QA Device producing or testing a signature 
needs to know if it must use the common or variant means of 
signature generation. Likewise, when a key is stored in a QA 
Device, the status of the key (whether it is a base or variant 
key) must be stored in the keyslot along with the key for future 
reference. 
0224. Therefore each keyslot contains a 1-bit Variant flag 
to hold the status of the key in that keyslot: 

0225. Variant=0 means the key in the keyslot is a base/ 
common key 

0226 Variant=1 means the key in the keyslot is a variant 
key 

0227. The QA Device itself doesn't directly use the Vari 
ant setting. Instead, the System reads the value of variant from 
the desired keyslots in the two QA Devices (one QA Device 
will produce the signature, the other will check the signature) 
and informs the signature generation function and signature 
checking functions whether or not to use base or variant 
signature generation for a particular operation. 
0228. It is assumed in equivalent signature generation 
between 4 QA Devices A, B, C that each device has a single 
keyslot. KeySlot.KeyId of all four keys are the same i.e. Key 
SlotA). KeyId=KeySlot B.KeyId=KeySlotC). 
KeyId=KeySlot D. KeyId. 
0229. If KeySlotA).Variant=0 and KeySlot B.Vari 
ant–0, then a signature produced by A. can be equivalently 
produced by B because K.K. 
0230. If KeySlot B.Variant=0 and KeySlotC).Vari 
ant=1, then a signature produced by C. can be equivalently 
produced by B because Kif (K, Chipid). Note that B must 
be told ChipId, for this to be possible. 
0231. If KeySlotC).Variant=1 and KeySlot D.Vari 
ant=1, then a signature produced by C. cannot be equivalently 
produced by Dunless both QA Devices have the same U (i.e. 
they must share the same Chip Identifier) While C and D will 
typically not share a ChipId, in certain circumstances the 
System can read a QA Device's Chip Identifier and install it 
into another QA Device. Then, using key transport mecha 
nisms, the two QA Devices can come to share a common 
variant key, and can thence generate and check signatures 
with each other. 
0232) If KeySlot D.Variant-1 and KeySlotA).Vari 
ant–0, then a signature produced by D. can be equivalently 
produced by Abecause K f(K, ChipId). 
0233 While it is theoretically possible that a system could 
permit each key to be used to perform all of these tasks, in 
most cases it is a security risk to allow this. 
0234. If any key can be used to transport any other key out 
of a QA Device, then a compromise of a single key means a 
compromise of all keys. The reason is that the compromised 
key can be used by an attacker to transport all other keys out 
of a QA Device. Some QA Devices (such as Key Replace 
ment QA Devices) are specifically required to transport keys, 
while others (such as those devices used in consumables) 
should not ever transport their keys out. 
0235. During manufacture it is not always possible to 
know the final intended application for a given QA Device. 
For example, one may end up at OEM1 while another is 



US 2009/0268246 A1 

destined for OEM2. To decouple manufacture from installa 
tion of QA Devices, it is useful to place temporary batch keys 
into the QA Devices. Each of these keys should be replace 
able by a different batch key or a final application key, but 
during their temporary existence these keys must not be 
capable of authenticating signatures writes of data. Thus they 
act as a transport key. 
0236. Likewise, in the Key Replacement QA Device, there 

is a need to differentiate between final use for a key in a QA 
Device, and storage of a key in one QA Device for Subsequent 
injection into another. For example, a key may be a transport 
key when stored in QA Device A, and although we want to 
store that same key in a Key Replacement QA Device B for 
future injection into A, we do not want that key to be used to 
transport keys from B. Thus, ifa key is not in its final intended 
keyslot, then it should have no abilities in that QA Device 
other than being transported out, and the intended use of the 
key (for example whether or not it will be a transport key 
when installed in its final destination) needs to be associated 
with that key. 
0237 From a security point of view there should be a time 
when a key in a given key slot can be guaranteed to be in its 
final intended form i.e. it cannot be replaced later. If a key 
could be replaced at any time, attackers could potentially 
launch a denial of Service attack by replacing keys with gar 
bage, or could replace a key with one of their own choice. As 
an example, Suppose keys k1 and k2 are both used to read 
value from a QA Device, write value to the QA Device, and to 
transport new keys into the QA Device. If either k1 or k2 is 
compromised, then the compromised key could be used to 
transport keys of choice to replace both keys and create value 
in the QA Device. 
0238. Therefore each keyslot contains 31-bit flags as fol 
lows: 

0239 KeyType: whether the key is a TransportKey (0) 
to be used for key transport and signing reads of key 
meta-information, or if it is a DataKey (1) to be used for 
signing data as well as key meta-information 

0240 TransportOut: whether or not the key can be 
transported out from this QA Device 

0241 UseLocally: whether or not the key is for use 
locally within this QA Device or not. For transport keys 
this means whether or not the transport key can be used 
to transport another key out from this QA Device. 

0242. The following examples assume 3 bits xyz are inter 
preted as: 

0243 x=KeyType 
0244 y=TransportOut 
0245 ZUseLocally 

0246 A freshly manufactured QA Device A will most 
likely have the 3 bits for each keyslot set to 000 so that all the 
keys are replaceable. 
0247 To replace one of A's keys (k1) by another batch key 
(k2), key replacement QA Device B is required where B 
typically contains k1 with 3 bits set to 001, and k2 with 3 bits 
set to 010. After k2 has been transferred into A, the 3 bits 
within A will be now set to 000. Thus k2 cannot be used or 
replaced within B, but can be replaced within A. 
0248. To replace one of A's keys (k1) by a final use data key 
(k2), key replacement QA Device B is required where B 
typically contains k1 with 3 bits set to 001, and k2 with 3 bits 
set to 110. After k2 has been transferred into A, the 3 bits 
within A will be now set to 101. Thus k2 can be used within 
A but not B, and cannot be transported out of A. 

Oct. 29, 2009 

0249. Although there are KeyNum keyslots in a QA 
Device, not all key slots may be required for a given applica 
tion. For example, a QA Device may supply 256 keyslots, but 
only 2 keys may be required for a particular application. The 
remaining key slots need to be invalidated so they cannot be 
used as a reference for signature checking or signature gen 
eration. 
(0250. When QA Device A has a keyslot with KeyType, 
TransportOut, and Use locally set to 000, then the key in that 
key slot can be replaced. 
0251 To invalidate the keyslot in A where k1 is currently 
residing so that no further keys can ever be stored in that 
keyslot, key replacement QA Device B is required where B 
typically contains: 
0252 k1 with 3 bits set to 001 
(0253) a base key k2 with 3 bits set to 110 and a KeyId of 0 
0254. After k2 has been transferred into A as a variant key, 
the 3 bits within A will be now set to 100. Thus k2 cannot be 
used within A, cannot be transported out of A, and cannot be 
replaced. Moreover, being a variant key in A, k2 will be 
different for each instance of A and will therefore be contrib 
ute to the entropy of A. Any system reading the KeyIds that 
are present in A will see that the key slot contains a key whose 
keyId is 0 (and is therefore invalid) and whose 2-bits specify 
that the key cannot be used. 
(0255. Over the lifetime of a product, it may be desirable to 
retire a given key from use, either because of compromise or 
simply because it has been used for a specific length of time 
(and therefore to reduce the risk of compromise). Therefore 
the key in a key slot needs to be invalidated by Some means so 
that it cannot be used any more as a reference for signature 
checking or signature generation. From an audit-trail point of 
view, although a key has been retired from use, it is conve 
nient to retain the key meta-information so that a System can 
know which keys have been retired. 
0256 In theory, a special command could be available in 
each QA Device to allow the caller to transform the KeyType, 
TransportOut, and UseLocally settings for a keyslot from 
some value to 100. The key in that slot would then be non 
transportable non-usable, and therefore invalid. However it 
would not be possible to know the previous setting for the 3 
bits once the key had become invalid. 
0257. It is therefore desirable to have a boolean in each 
key slot that can be set to make aparticular key invalid. If a key 
has been marked as invalid, then TransportOut and UseLo 
cally are ignored and treated as 0, and the key cannot be 
replaced. 
0258 However, a single bit representation of this boolean 
over-complicates 4320-based implementations of QA 
Devices in that it is not possible to set a single bit in shadowed 
mode on a 4320 device (to change a key from valid to invalid). 
Instead, the page containing the key would need to be erased 
and the key reconstructed, tasks which need to take place 
during initial key replacement during manufacture, but which 
should not need to take place after the keys are all finalised. 
0259. Therefore each keyslot contains a 4-bit boolean 
(which should be nybble-aligned within the keyslot data 
structure) referred to as Invalid, where 0000 represents a valid 
key in the keyslot, and non-Zero represents an invalid key. A 
specific command (Invalidate Key) exists in the QA Logical 
Interface to allow a caller to invalidate a previously valid key. 
0260. If Invalid is set to a non-zero value, then the key is 
not used regardless of the settings for KeyType, Trans 
portOut, and UseLocally. 



US 2009/0268246 A1 

0261. In general each QA Device contains a number of 
data elements (each element referred to as a field), each of 
which can be operated upon by one or more keys. In the 
general case of an arbitrary device containing keys and fields, 
it is useful to have a set of permissions for each key on each 
field. For example, key 1 may have read-only permissions on 
field 1, but read/write permissions on field 2 and read/decre 
ment-only permissions on field 3. 
0262 Although it can cater for all possibilities, a general 
scheme has size and complexity difficulties when imple 
mented on a device with low storage capacity. In addition, the 
complexity of such a scheme is increased, if the device has to 
operate correctly with power-failures e.g. an operation must 
not create a logical inconsistency if power is removed part 
way through the operation. 
0263. Since the actual number of keys that can be stored in 
a low storage capacity QA Device depends on the complexity 
of the program code and the size of the data structures, it is 
useful to minimise the functional complexity and minimise 
the size of the structures while not knowing the final number 
of keys. 
0264. In particular, the scheme must cope with multiple 
keys having the same permissions for a field to Support the 
following situations: 
each of the various users of the QA Device has access to a 
different key, such that different users can be individually 
included or excluded from access 

only a subset of keys are in use at any one time 
0265. The concept that supports this requirement is the 
keygroup. A keygroup contains a number of keys, and each 
field has a set of permissions with respect to the keygroups. 
Thus keygroup 1 (containing some number of keys) may have 
read-only permissions on field 1, but read/write permissions 
on field 2 and read/decrement-only permissions on field 3. 
0266. In the limit case of 1 key per keygroup, with an 
arbitrary number of keygroups, the storage requirements for 
the permissions on eachfield would be the same as the general 
case without keygroups, but by limiting the number of key 
groups, the storage requirements for the permissions on each 
field can be pre-known, constant, and is decoupled from the 
actual number of keys in the device. 
0267. The number of keygroups in a QA Device is 4. This 
allows for 2 different keygroups that can transfer value into 
the QA Device, and for 2 different keygroups that can transfer 
value out of a QA Device, where each of the 4 keygroups is 
independent of the others. Note that transport keys do not 
need to be allocated a keygroup since they cannot be used to 
authorise reads or writes of data. 

0268 Thus each keyslot contains a 2-bit KeyGroup iden 
tifier. The value of KeyGroup is relevant only when the 
KeyType=DataKey. 
0269. For security concerns it is important that a field not 
be created until all the keys for a keygroup have been created. 
Otherwise an attacker may be able to add a known new key to 
an existing keygroup and thereby Subvert the value associated 
with the field. 

0270. However it is not possible to simply not allow the 
creation offields until all of the keys have been created. It may 
be that two distinct phases of programming occur, with cre 
ation of keys and databased on each phase. For example a 
stamp franking system may contain value in the form of ink 
plus a dollar amount. The keys and fields relating to ink may 

Oct. 29, 2009 

be injected at one physical location, while the keys and fields 
relating to dollars may be injected at a separate location some 
time later. 
0271. It is therefore desirable to have a boolean indicator 
that indicates whether a particular keygroup is locked. Once a 
keygroup is locked, then no more keys can be added to that 
keygroup. The boolean indicator is accessible per keyslot 
rather than as a single indicator for each keygroup in order 
that someone reading the keyslot information can know: 
whether they can add any more keys to a keygroup 
whether they can create fields with write-permissions for the 
keygroup 
0272. When a key is replaced, the keygroup for that key 
can be locked at the same time. This will cause the QA Device 
to change the status of all keys with the same KeyGroup value 
from keygroup-unlocked to keygroup-locked, thereby pre 
venting the addition of any more keys in the keygroup. 
0273. However, a single bit representation of this boolean 
over-complicates 4320-based implementations of QA 
Devices in that it is not possible to set a single bit in shadowed 
mode on a 4320 device (to change a locked status from 
unlocked to locked). Instead, the page containing the key 
would need to be erased and the key reconstructed, and this 
would need to take place per key (where the KeyGroup 
matched). 
0274 Therefore each keyslot contains a 4-bit boolean 
(which should be nybble-aligned within the keyslot data 
structure) referred to as KeyGroup Locked, where 0000 rep 
resents that the keygroup to which the key in the keyslot 
belongs is unlocked (i.e. more keys can be added to the 
keygroup), and non-zero represents that the keygroup to 
which the key in the keyslot belongs is locked (i.e. more keys 
cannot be added to the keygroup). 
0275. It is finally worth noting that a Key Replacement QA 
Device does not need to check whether or not there are fields 
on the target device with write permissions related to a par 
ticular keygroup. The reason is that the target QA Device only 
allows field creation related to a keygroup if the keygroup is 
locked. Therefore if there was such a field in the target device 
one of the following is true: 
the target QA Device is a fake one created by an attacker. If so, 
and if the attacker does not know the original key, then the 
replaced key will be of no value. If the attacker does know the 
original key, then they can determine the replacement key 
(since the replacement key is encrypted using the original key 
for transport) without creating a fake QA, and can therefore 
generate fake value as desired. 
the target QA Device has come under physical attack (it's a 
real QA Device). If an attacker can do this, it’s easier to allow 
the key replacement first, and then create a fake field. This 
situation cannot ever be detected by the Key Replacement QA 
Device. 
0276. In an ideal world (for the owner of a secret key at 
least), a given secret key will remain secret forever. However 
it is prudent to minimise the loss that could occur should a key 
be compromised. 
0277. This is further complicated in a system where all of 
the components of a system are stored at the user site, poten 
tially without direct connection to a central server that could 
appropriately update all components after a particular time 
period or if a compromise is known to have occurred. 
0278. To create rolling keys, two QA Devices A and B are 
required such that A and B are intended to work together via 
a conceptual key k. While a single key could be used fork, it 



US 2009/0268246 A1 

is more secure to limit the lifetime of any particular key, and 
to have a plan in place to remove a key from use should it be 
compromised. 
0279 Rolling keys are where multiple keys are stored in at 
least one of A and B such that different keys can be used at 
different times during the life of A and B, different instances 
of A and Bat differing manufacture times can be programmed 
with different keys yet still work together, and keys can be 
retired from use in A and/or B. 
0280. In the simplest example of the problem, suppose A is 
embedded in a printer system that works with ink cartridges 
containing B. If A contains a single key k for working with B, 
then k is required for all BS as long as A is deployed. A 
compromise of k lasts for the lifetime of A. 
0281. A rolling key example system for this example is 
where A contains multiple keys k, k . . . kin, each with a 
different KeyId, where each of these keys has the same per 
missions on datafields within A (typically they will all belong 
to the same keygroup in A). At initial manufacture, B contains 
a single key k (that is also present in A). For a given time 
period k can be used between A and B. At some later time (or 
if k is compromised), BS are manufactured only containing 
k, and new AS are manufactured only containing k.k. ... k. 
k. At a later time, BS are manufactured only containing k 
and new AS are manufactured only containing ks, k . . . k. 
k, 1. k,42 etc. 
0282. Note that if the keys shared by A and B are all 
common keys, then a compromise of keys from A will com 
promise all future value in Bs. However if A contains the 
variant key form and B contains a base form of each key, then 
compromise of keys in A does not permitan attacker to know 
future keys in Band the attacker can therefore not create clone 
Bs until a real B is released and the base key is obtained from 
B. This means that the more variant keys that can be injected 
into A the more changes in B can be coped with out any loss 
of security. 
0283. In the example above, note that if k is compro 
mised, an attacker can still manufacture clone Bs that will 
work on older As. It is therefore desirable to somehow invali 
datek on older AS at some point to reduce the impact of clone 
Bs. However it is not usually the case that an immediate 
cut-off point can be introduced. For example, once Bs are 
being manufactured with k existing BS containing k may 
still be in use and are still valid. Just because k is used with 
A doesn't mean that k should be invalidated in A immedi 
ately. Otherwise a valid user could not then use an older valid 
B in A after using a newer B in A. Likewise, new As typically 
need to be able to work with valid old Bs. Our example 
assumes that newer AS won't work with older Bs. 
0284. Therefore if overlapping timing is required, then 
several valid keys in use at a time instead of having only a 
single valid key in use at a time. Once valid BS are known to 
be out of circulation (e.g. due to an expiry date associated 
with a B) then a key can be officially retired from being 
included in the manufacture of new AS, and can be invalidated 
in old AS. The more keys that can be used, the finer-grained 
the resolution of timing for invalidating a particular key, and 
hence the greater the reduction in exposure. 
0285 For example, B may be an ink cartridge that has a 
use-by date of 12 months while A is a printer that must last for 
5 years: 

0286. If A contains 5 keys, B is issued with a new key 
each year, and a new A is released each year, then k will 
be in B during year1, k will be in B during year2 etc. As 

Oct. 29, 2009 

produced in year 2 will need to contain k since old BS 
from the previous year are still valid. Only in year 3 can 
AS be manufactured without k, and old AS can have 
their k invalidated. Clone Bs can therefore be manufac 
tured by an attacker causing loss during year 1 and 2. 
After year 2, those clone Bs won't work on new As, but 
will continue to work on old As untilk has been invali 
dated on the old As. 

0287. If A contains 10 keys, B is issued with a new key 
every 6 months, and a new A is released every 6 months, 
then k will be in B during the first 6 months, k, will be 
in B during the second six months etc. As produced in 
the second and third 6-months will need to contain ki 
since old Bs from the previous year are still valid. Only 
in the fourth 6-month can AS be manufactured without 
k1, and old As can have their k invalidated. Clone Bs 
can therefore be manufactured by an attacker causing 
loss during year 1 and the first half of year 2. After this 
time, those clone Bs won't work on new As, but will 
continue to work on old As untilk has been invalidated 
on the old As. Thus the addition of keys in A and the 
changing of keys at a faster rate (every 6 months com 
pared to every year) has reduced the exposure of a com 
promised key without increasing any risk due to expo 
Sure of keys in A. 

0288 Of course if A is used with B and a B-like entity 
called C, then A can have 1 set of rolling keys with B, and can 
have a different set of rolling keys with C. This requires 1 key 
in B, 1 key in C, and two sets of multiple keys in A. 
0289. The rolling key structure can be extended to work 
with value hierarchy. Suppose A uses value from B, and value 
in B is replenished by C, then A and B can have one set of 
rolling keys, and B and C can have a different set of rolling 
keys and each set of rolling keys can roll at different times and 
rates. In this example: 

0290. A contains multiple variants for use with B 
0291 B contains 1 base key for use with A, and multiple 
variants for use with C 

0292 C contains 1 base key for use with B 
0293. A compromise of key(s) in a A does not allow an 
attacker to manufacture clone BS 

0294. A compromise of key(s) in B does not allow an 
attacker to manufacture clone Cs 

0295) A compromise of the keys in A allows free B 
resources on that particular A only—no other AS are 
affected 

0296. A compromise of the base key in B has a limited 
exposure of effect free B resources are available to 
attackers for a limited time, and with each new release of 
A and C, the amount of exposure is reduced. 

0297. A compromise of the base key in C has a limited 
exposure of effect free C resources are available to 
attackers for a limited time, and with each new release of 
B the amount of exposure is reduced. 

0298. In the general case, each of the keys in a set of rolling 
keys has exactly the same purpose as the others in the set, and 
is used in the same way in the same QA Devices, but at 
different times in a product’s life span. Each of the keys has a 
different KeyId. Typically when a set of rolling keys is held in 
a QA Device, they all belong to the same keygroup. 
0299. When the variant/base form of rolling keys is used, 
at any given time, only one base key is injected during manu 
facture. This is the current manufactured instance of the roll 
ing key. Several of the key instances can be used in manufac 



US 2009/0268246 A1 

ture, in their variant forms. One by one, the current 
manufactured instance of the rolling key is replaced by Sub 
sequent instances of the rolling key. 
0300. After a period, or after the discovery of a key com 
promise, a particular current manufactured instance of a key 
is replaced by the next instance in the rolling key set in all of 
the QA Devices where it is used. 
0301 A set of rolling keys has the following characteris 

tics: 
0302) The number of instances in the set of rolling keys, 
N. The rolling key instances are from 0 to N-1. 

0303. The current manufactured instance of the rolling 
key. This is the rolling key instance which is currently 
being inserted into manufactured products, in base form. 
The current manufactured instance is rolled to the next 
instance when a suitable length of time has elapsed, or 
there is the discovery of a key compromise. 

0304. The first and last valid instances of the rolling key 
set. There is likely to be a number of valid key instances 
either side of the current manufactured instance at any 
given time. 

0305 Rolling key instances which are before the first valid 
instance are considered to be invalid, and they should be 
invalidated in any manufactured product in the field whenever 
they are found. The question is how to enforce the eradication 
process, especially if the QA Devices are not in direct contact 
with a central authority of some kind. 
0306 The QA Logical Interface allows a particular key in 
a keyslot to be invalidated. An external entity needs to know 
which keys are invalid (for example by knowing the invalid 
keys’ KeyIds). Assuming that the entity can read the KeyIds 
present in a QA Device the entity can invalidate the appro 
priate keys in the QA Device. The entity could refuse to 
operate on a QA Device until the appropriate keys have been 
invalidated. 
0307 For example, suppose a printer system has an ink 
cartridge and a refill cartridge. The printer system uses rolling 
key set 1 to communicate with the ink cartridge, and the ink 
cartridge is refilled from the refill cartridge via rolling key set 
2. Whenever a refill cartridge is attached to the system, the 
refill cartridge contains a specific field containing an invalid 
key list. The system software in the printer knows that this 
field contains an invalid key list, and refuses to transfer the ink 
value from the refill cartridge to the ink cartridge until it has 
invalidated the appropriate keys on the ink cartridge. Alter 
natively, every time the system software for the printer is 
delivered/updated to the printer (e.g. downloaded off the 
internet), it can contain a list of known invalid keys and can 
apply these to anything it is connected to, including ink car 
tridges and refill cartridges. Likewise, if value is injected into 
a QA Device over the internet, the value server can invalidate 
the appropriate keys on the QA Device before injection of 
value. Done correctly, the invalid keys will be deleted from 
use in all valid systems, thereby reducing the effect of a clone 
product. 
0308 The methods just discussed do not apply if a user 
exclusively uses fake QA Devices, and never comes into 
contact with valid QA Devices that have lists of invalid keys. 
However it is possible that a system can invalidate a key by 
itself after a particular amount of time, but this requires the 
system to know the current time, and the time period between 
invalidating keys. While this provides the feature required, it 
should not be possible under normal circumstances for a user 
to lie about the time or to accidentally have the time set to an 

Oct. 29, 2009 

incorrect one. For example, Suppose a user accidentally sets a 
clock on their computer to the wrong year in the future, the 
printer attached to the computer should not suddenly invali 
date all of the keys for the next 12 months. Likewise, if the 
user changes the clock back to the previous year, previously 
invalid keys should not suddenly become valid. This implies 
the system needs to know a Most Recent Validated Date i.e. a 
date/time that is completely trustworthy. 
0309 If system is in a trusted environment and has an 
appropriate time keeping mechanism, then MostRecentVali 
datedDate can be obtained locally. Otherwise the MostRe 
centValidatedDate can only be obtained when the system 
comes into contact with another trusted component. The 
trusted component could be software that runs on system, 
with a particular build date (and this date is therefore trusted), 
or a date stored on a QA Device (providing the date is read 
from the QA Device via keys and can only be set by a trusted 
Source). 
0310. It is therefore convenient that at least one of the QA 
Devices in Systems that Support rolling keys should define at 
least two fields for the purposes of key invalidation: a field 
that contains the invalid key list (a list of invalid keyIds), and 
a field that contains a date that can contribute to a MostRe 
centValidatedDate. The Logical QA Interface currently sup 
ports a field type specifically for the former (see Appendix B), 
while the latter depends on the specifics of a particular appli 
cation. 
0311. When allocating KeyIds in a system, it may be con 
venient to be able to tell if two keys are in the same set of 
rolling keys simply from based on their KeyIds (therefore 
independent of instantiation in a keygroup). One way of 
doing this is to compose the KeyId as 2 parts: 

0312 the RollingKeySetId, which would be unique for 
a given purpose within a QA Device infrastructure 

0313 the RollingKey Instance, which specifies the keys 
within the rolling key set 

0314. So, for example, if the 18-bit KeyId could be com 
posed of a 10-bit RollingKeySetId, and an 8-bit RollingKey 
Instance. Thus each set of rolling keys would have 256 unique 
key values to be used in the sequence. 
0315 Suppose we have a configuration that consists of a 
system A that communicates with a QA Device B. For 
example, a printer system that communicates with an Oper 
ating Parameter QA Device (e.g. containing the print speed). 
The system reads the print speed before printing a page. 
0316 The only way that A and B can securely communi 
cate is if A and B share a key. 
0317. If B has physical security since it is a QA Device, 
and A does not have such high security, then it is desirable to 
store the variant form of the key in A and the base form of the 
key in B. If the key is extracted from A (having less security 
than B), then at least other systems cannot be subverted with 
clone Bs. 
0318. However there is the question of injecting the vari 
ant key into A. If A can be programmed with a variant key 
after B has been attached (e.g. A contains non-volatile 
memory), then this is desirable. If A cannot be programmed 
after B has been attached (such as is the case with the SoPEC 
ASIC) then A must be programmed with a random number 
and after attachment to A, the random number must be trans 
ported into B. 
0319. A can now create a Trusted QA Device and commu 
nicate with Busing A's variant key. 



US 2009/0268246 A1 

0320 However if A requires to communicate with addi 
tional components such as C and D which are not connected 
to A or B during initial manufacture, there is a requirement to 
allow the communication but additionally minimise loss due 
to key compromise, especially since A is known to be less 
secure than QA Devices B, C and D. Examples of C and D 
include a Consumable QA Device Such as an ink cartridge, 
and a Parameter Upgrader QA Device such as a permanent 
speed-upgrade dongle. 
0321) If the base key that is used in B is also used in C and 
D, then A can communicate securely with C and D. The risk 
of loss from a key compromise is higher since C and D share 
the same key. 
0322. If A can hold many keys, i.e. can be programmed 
with many keys during manufacture, then A can be pro 
grammed with appropriate variant keys for C and Dusing the 
same scheme as described above for B. 
0323. However, if the cost of injecting multiple keys into A 

is high (for example SoPEC has very little non-volatile 
memory), then an alternative is required that only uses a 
single key stored in A. There are two approaches to secure 
communication in this case: communication via key trans 
port, and communication via signature translation. 
0324. The protocol for communicating with a QA Device 

is now described. Although the implementation of a QA 
Device varies, with one implementation having different 
capabilities from another, the same interface applies to all. 
0325 QA Devices are passive: commands are issued to 
them by the System, which is an entity mediating the com 
munications between the QA Devices. 
0326. There are up to three QA Devices that are relevant to 
each command: 

0327. The Commanded QA Device, i.e. the QA Device 
receiving the command. This QA Device checks any 
incoming signature (if present), performs the command, 
and generates the output parameters and any outgoing 
signature as required. 

0328. The Incoming Signature QA Device, that gener 
ated the incoming signature (if it is present). This is 
usually a QA Device that produces and signs the input 
for the command as its output, but it might be a Trans 
lation QA Device. 

0329. The Outgoing Signature QA Device, that checks 
the outgoing signature (if it is present). This is usually a 
QA Device that accepts as input the output of the com 
mand, but it might be a Translation QA Device. 

0330. The QA Device Protocol lists a set of commands 
that can be sent to a QA Device, and for each command, there 
is a set of valid responses. The protocol defines the features 
that are common to the commands. 
0331. A command consists of a number of 32-bit words 
where the first byte of the first word contains a commandbyte, 
and Subsequent words contain up to four of the following 
blocks of data: 

0332 An Unsigned InputParameterBlock. This is a set 
of input parameters with no accompanying signature. 

0333. An InputSignatureGheckingBlock. This is a 
block of data that tells the QA Device how to check if the 
Signed InputParameterBlock is correctly signed. It 
includes the signature, and information about how it was 
constructed. 

0334. A Signed InputParameterBlock. This is a set of 
input parameters. It is often a list of entities, or entity 
descriptors. The signature in the InputSignatureGheck 

Oct. 29, 2009 

ingBlock is over this block and the generators and 
checker's nonces. A SignedInputParameterBlock has a 
QA Device's Chipid as its first element. If the Signed 
InputParameterBlock is list of entities with the modify 
bit set, then the Chipid must be the identifier of the chip 
being addressed (this ensures that a signed block for one 
QA Device cannot be applied to another) 

0335 An OutputSignatureGenerationBlock. This is a 
block of data that tells the QA Device how to generate a 
signature on the outgoing data. 

0336. The response to a command consists of a number of 
32-bit words, where the first byte of the first word contains a 
response byte, and Subsequent words contain up to two of the 
following blocks of data: 

0337. An OutputParameterBlock. This is often a list of 
entities. It may or may not be signed. If it is signed, it has 
a QA Device's Chipid as its first element. If the Output 
ParameterBlock is list of entities with the modify bit 
clear, then the Chipid must be the identifier of the chip 
responding to the command. 

0338 An OutputSignatureGheckingBlock. This is 
present if the OutputParameterBlock is signed. The sig 
nature is generated according to the OutputSignature 
GenerationBlock. 

0339. The arrangement of data within each 32-bit word is 
arranged in big-endian format. The assumption is that the 
System and the QA Device are processing the commands and 
responses in big-endian format. 
0340 All of the blocks in both command and response are 
length-tagged: the first 32-bit word contains a two-byte 
length that indicates the block length in 32-bit words, fol 
lowed by the block data itself. The length is inclusive. Thus 
the length for a parameter block with no data content is 1. 
0341 The QA Device identifier Chipid is present in all 
Signed InputParameterBlock and signed OutputParameter 
Block entity lists. This ensures that a signature over the block 
of data uniquely identifies the QA Device that the list is for or 
came from. This prevents attacks where commands that are 
intended for one QA Device are redirected to another, or 
when responses from one QA Device are passed off as being 
from another. 
0342. If the list is an incoming modify-entity list or an 
outgoing read-entity list, then the list Chipid must be the 
Chipid of the Commanded QA Device. If it is not, then the 
command fails. 
0343 If the list is an incoming read-entity list or an out 
going modify-entity list, then the list ChipId is typically the 
Chipid of some other QA Device. 
0344. A signed outgoing list of entities being read from a 
QA Device has a signature over a block of data that includes 
that QA Device's Chipid. Thus ensures that the data cannot be 
mistaken for data from another QA Device. 
0345 Similarly, a signed incoming list of entities being 
written to a QA Device has a signature over a block of data 
that includes that QA Device's Chipid. This ensures that the 
data cannot be wrongly applied to any other QA Device. 
0346. In the operation of some commands, a Commanded 
QA Device accepts a signed Entity List as input, where the 
Entity List was generated by another QA Device A, and 
produces a signed Entity List as output where the output is 
Suitable to be subsequently applied to Aasan incoming Entity 
List. These commands include: Get Key, Transfer Delta, 
Transfer Assign, and Start Rollback. 



US 2009/0268246 A1 

0347 Commands in the QA Device command set are dis 
tinguished by CommandByte. 
0348 Table 1 describes the CommandByte values: 

Values and Interpretation for Command Byte 

Command Byte Value Description 

GET INFO 1 Get Summary of information from the QA 
Device 

GET 2 Get a nonce from the QA Device. 
CHALLENGE 
LOCKKEY 3 Lock a specified set of keygroups. This 
GROUPS prevents any keys in the keygroups from 

being Subsequently replaced. 
LOCK FIELD 4 Lock all field creation in the QA Device. 
CREATION Locking field creation prevents any fields 

rom Subsequently being created. 
READ 5 Read a group of key descriptors, field 

descriptors and/or field values from a QA 
Device. 

AUTHENTICATED 6 Read a group of key descriptors, field 
READ descriptors and/or field values from a QA 

Device. The results are accompanied by a 
signature to authenticate the results. 

AUTHENTICATED 7 Specify a group of key descriptors, field 
READ WITH descriptors and/or field values in a QA 
SIGNATURE Device, and read the signature over that 
ONLY data. 
WRITE 8 Write a group of field values to fields in 

he QA Device. 
AUTHENTICATED 9 Write a group of field values to fields in 
WRITE he QA Device. The write command is 

authenticated by a signature over the list 
of field values. 

CREATE FIELDS O Create a group of fields in a QA Device. 
REPLACE KEY 1 Replace a key in a QA Device. 
INVALIDATE 2 Make a key in a QA Device invalid. 
KEY 
GETKEY 3 Get an encrypted key from a QA Device. 
TEST 4 Request a QA Device to test the signature 

over an arbitrary block of data. 
SIGN 5 Request a QA Device to create a signature 

over an arbitrary block of data. 
TRANSFER 6 Request a QA Device to transfer some value 
DELTA rom it to another QA Device where the 

value is correspondingly reduced in the 
Commanded QA Device). 

TRANSFER 7 Request a QA Device to transfer an 
ASSIGN assignment of value to another QA Device. 
START 8 Request a QA Device to begin rollback 
ROLLBACK proceedings to ensure that a previously 

transferred value has not and can never 
be used. 

ROLLBACK 9 Request a QA Device to undo a previously 
requested transfer of value to another 
QA Device. 

0349 The ResultFlag is a byte that indicates the return 
status from a function. Callers can use the value of ResultFlag 
to determine whether a call to a function succeeded or failed, 
and if the call failed, the specific error condition. 
0350 Table 2 describes the ResultFlag values and the 
mnemonics used in the pseudocode 

ResultFlag value description 

Mnemonic Value Description 

Pass O Function completed Successfully. 
Function Successfully completed requested task. 

Mnemonic 

Fail 

QA 
NotPresent 
Invalid 
Command 
Bad Signature 

Invalid Key 

Invalid Key 
Type 

Key Number 
Out Of Range 
Key Not 
Locked 

Signature 
Generation 
Block Absent 
Signature 
Generation 

Too Many 
Entities 
Too Few 
Entities 

legal Field 
Number 
legal Entity 
Descriptor 
Modify Bit 

Wrong ChipId 

Illegal Entity 

No Shared 
Key 

Oct. 29, 2009 

-continued 

ResultFlag value description 

Value Description 

1 

2 

10 

21 

General failure. An error occurred during function 
processing. 
QA Device is not contactable 

The QA Device does not support the command 

Signature mismatch. The input signature didn't 
match the generated signature. 
Invalid keyslot number. The keyslot specified is 
greater than the number of keyslots Supported in 
the QA Device, or the key in the specified keyslot 
is invalid. 
The key in the requested keyslot is the wrong type 
for the particular operation. For example, a 
TransportKey was requested for a data-based 
signature, or a DataKey was requested for a key 
based signature. 
A key was specified for a signature which had a 
key slot number out of range 
A command was received, authenticated by an 
unlocked key. Unlocked keys may not be used to 
authenticate any operations, with the exception of 
the transport of keys, to authenticate and encrypt 
new key values. 
A OutputSignatureGenerationBlock was not 
received in a command which requires an 
outgoing signature 
A OutputSignatureGenerationBlock was received 
in a command which does not require an outgoing 
signature 

A InputSignatureCheckingBlock was not received 
in a command which requires an incoming 
signature 
A InputSignatureCheckingBlock was received in 
a command which does not require an incoming 
signature 

An Input Parameter Block wasn't received in a 
command which requires that block, or an Output 
Parameter Block was not generated by a 
command which requires one. 
An Input Parameter Block was received in a 
command which does not require that block, or an 
Output Parameter Block was generated in a 
command that does not require one. 
The Input Parameter Block of the command has a 
list of more entities than the QA Device supports 
An Entity List or an Entity Descriptor List was 
received in a command or sent in a response with 
no entities. 
Field Number incorrect. The field number 
specified in an entity descriptor does not exist. 
An entity descriptor in an input or output 
parameter block list was set wrongly: it was 
“modify when it needed to be “read, or “read 
when it needed to be “modify. 
The QA Device was given a command which had 
a SignedInputParameterBlock with modify 
entities, or generated a signed 
OutputParameterBlock with read-entities, and the 
ChipId in the signed block was incorrect, i.e. not 
the ChipId of the QA Device. 
An entity in an Input Parameter Block of a 
command was received that is not legal for that 
command. 
An operation was requested in a command to a 
QA Device which requires a key to be shared 
between it and another QA Device. If there is no 
shared key, this error is returned. 



US 2009/0268246 A1 

Mnemonic 

nvalid Write 
Permission 

Field Is Read 
Only 

Only 
Decrements 
Allowed 
Key Already 
Locked 
legal Key 
Entity 

legal Field 
Entity 

Key Not 
Onlocked 
Field Creation 
Not Allowed 

Field Storage 
Overflow 
Type 
Mismatch 

Transfer Dest 
Field Invalid 
Rollback 
Enable Field 
Invalid 
No Transfer 
Source Field 
Transfer 
Source Field 
Amount 
Insufficient 

-continued 

ResultFlag value description 

Value Description 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

Permission not adequate to perform operation. For 
example, trying to perform a Write or WriteAuth 
with incorrect permissions. 
A Write or an Authenticated Write command was 
applied to a read-only field that had already 
been written once. 
A Write or an Authenticated Write command was 
applied to a decrement-only field, which was 
not a decrement. 
Key already locked. A key cannot be replaced 
if it has already been locked. 
An Entity Descriptor in an Entity List wrongly 
specified a key value or descriptor that is not a 
legal entity for that command. 
An Entity Descriptor in an Entity List wrongly 
specified a field value or descriptor that is not 
a legal entity for that command. 
A Replace Key command was received that was 
attempting to change a locked key. 
Field creation was attempted in this QA Device, 
after it has been locked or there was an attempt 
o lock field creation after it had been already 
ocked. 
The QA Device is out of storage space for new 
fields. 
Type of the data from which the amount is being 
transferred in the Upgrading QA Device, doesn't 
match the Type of data to which the amount in 
being transferred in the Device being upgraded. 
A transfer was attempted on a field which is not 
capable of Supporting a transfer. 
The rollback enable field for the QA Device being 
transferred to is invalid. 

There is no transfer source field available to do 
he transfer from. 
The transfer source field doesn't have the amount 
required for the transfer. 

Oct. 29, 2009 

-continued 

ResultFlag value description 

Mnemonic Value Description 

Invalid 36 One of the command operands was invalid. 
Operand 
Field Over 37 AWrite or an Authenticated Write command was 
Maximum applied to a field which would have made the 
Allowed field value exceed the limit implied by its 

“maximum allowed bit field. 
Transfer Fields 38 The “who I am' and “who I accept fields in the 
Incompatible transfer source and transfer destination fields are 

not compatible. 
Transfer 39 A transfer was attempted which failed. The 
Rolled Back transfer was successfully rolled back, so the 

Source and transfer fields are unchanged. 
No Matching 40 A Rollback was attempted on a QA Device which 
Previous had no record of having done a corresponding 
Transfer transfer (loss of previous record may occur 

depending on the depth of the rollback cache 
Key Not For 41 An operation was requested using a data key for 
Local Use which local use is not permitted. 

0351. Users of QA Devices must call the GetInfo function 
on each QA Device before calling any other functions on that 
device. 
0352. The GetInfo function tells the caller what kind of 
QA Device this is, what functions are available and what 
properties this QA Device has. The caller can use this infor 
mation to correctly call functions with appropriately format 
ted parameters. 
0353. The first value returned, QA Device type, effectively 
identifies what kind of QA Device this is, and therefore what 
functions are available to callers. Source code control identi 
fier tells the caller which software version the QA Device has. 
There must be a unique mapping of the source code control 
identifier to a body of source code, under Source code control, 
in any released QA Device. 
0354 Additional information may be returned depending 
on the type of QA Device. The additional data fields of the 
output hold this additional information. 
0355 Table 3 describes each of the output parameters. 

Description of output parameters for GetInfo function 

Parameter #bytes Description 

ResultFlag Indicates whether the function completed 
Successfully or not. If it did not 
complete Successfully, the reason for 
the failure is returned here. 

QA Device type This defines the function set that is 
available on this QA Device. 

Source Code 4 This uniquely defines the source code 
Control for the QA Device, as controlled by a 
Identifier Source code control system. 
Key Bit mask of keygroups which are not 
Replacement locked. Key replacement is allowed to 
Allowed add keys to those keysgroups. 
Maximum The number of keyslots the QA Device 
number of keys can Support 
Number of keys The number of keyslots the QA Device is 
used currently using 
Number of key The number of keygroups that the QA 
groups Device is currently using 
Field creation Non-zero if field creation is allowed 
allowed 
Number of fields The number of fields which are present 

in the QA Device 



US 2009/0268246 A1 

-continued 

Description of output parameters for GetInfo function 

Oct. 29, 2009 

Parameter #bytes Description 

Number of read- 2 The number of write-once then read-only 
only words in (ROS) words that the QA Device supports 
device 
Number of read- 2 The number of write-once then read-only 
only words used (ROS) words that the QA Device is 

currently using 
Number of 2 The number of writeable (RWS) words 
writeable words hat the QA Device Supports 
in device 
Number of 2 The number of writeable (RWS) words 
writeable words hat the QA Device is currently using 
used 
ChipId 8 This QA Device's ChipId 
WarDataLen 1 Length of bytes to follow. 
WarData (VarDataLen This is additional application specific 

bytes) ata, and is of length VarDataLen 
(i.e. may be 0). 

0356. Table 4 shows the mapping of QA Device Type: 0358 Table 6 shows the VarData components for Value 

QA Device Types 

QADevice 
Type\ Description 

1 Base QA Device 
2 Value Upgrader QA Device 
3 Parameter Upgrader QA Device 
4 Key Replacement QA Device 
5 Trusted QA Device 

0357 Table 5 shows the mapping between the QA Device 
type and the available device functions on that QA Device. 

Mapping between QA Device Type and available device functions 

Supported on 
QA Device 

QA Device Function Types Device description 

Get Info all Base QA Device 
Get Challenge 
Lock Key Groups 
Lock Field Creation 
Authenticated Read 
Authenticated Write 
Non-authenticated Write 
Create Fields 
Replace Key 
Invalidate Key 
Transfer Delta 2 Value Upgrader QA Device 
Start Rollback (e.g. Ink Refill QA Device) 
Roll Back Amount 
Transfer Amount 3 Parameter Upgrader QA Device 
Start Rollback (e.g. Local Upgrader QA 
Rollback Field Device) 
GetKey 4 Key Replacement QA Device 
Sign 5 Trusted Device 
Test 

Upgrader and Parameter Upgrader QA Devices. 

VarData for Value and Parameter Upgrader QA Devices 

WarData Length 
Components in bytes Description 

DepthOfRollBack 1 The number of data sets that can be 
Cache accommodated in the Xfer Entry cache 

of the device. 

0359 An Authenticated Transfer is the process where a 
store of value is securely transferred from one QA Device to 
another. 
0360 A Rollback is where a previous attempted transfer is 
annulled, when the transferring QA Device is given evidence 
that the transfer never Succeeded, and can never Succeed in the 
future. 
0361. When a transfer is taking place from one QA Device 
to another, the QA Device from which the value is being 
transferred is called the Source QA Device, and the QA 
Device to which the value is being transferred is called the 
Destination QA Device. 
0362. The stores of values can be either consumables, or 
properties. 
0363. In a printing application, consumables are things 
like picolitres of ink, millimetres of paper, page impressions 
etc. They are things that are consumed as the printing process 
is taking place. 
0364. In a printing application, properties are things like 
printer features. Such as the right to print at a certain number 
of pages per second, or the right to interwork with a certain bit 
of equipment, such as a larger ink cartridge, (which may be 
cheaper to buy per litre of ink). 
0365. A property can also be a printer licence, which has 
an implied printer feature set. That is, ifa printer has a licence, 
it has a certain feature set, and other non-selectable printer 
features have certain default values. 
0366 Properties are things which are not consumed as the 
printing takes place, but which can be assigned to a printer 
and which remain as attributes of that printer. 



US 2009/0268246 A1 

0367 Fields in QA Devices have a transfer mode, which 
can be one of: 

0368 Quantity of Consumables: the field represents a 
Volume of consumables. It can be the destination of a 
transfer, and if it has TxDE enabled, then it can be the 
Source of a transfer of consumables, 

0369 Single Property: this field represents a single 
property of a printer, such as a printer feature or a 
licence. This field can be assigned to, as the destination 
of a transfer, but cannot be the source of a transfer. Once 
a property has been assigned, it becomes operative, and 
it cannot be transferred any more. 

0370 Quantity of Properties: this field represents a 
quantity of properties, which are in transit to their final 
destination. It can be the destination of a transfer, and 
also the source of a transfer. A quantity of properties 
does not confer any property to the QA Device which 
has them: they are in transit to the place where they can 
be used as properties. 

0371. Other: this field cannot have value transferred 
from or to it. 

0372. In general, the flow of virtual consumables is from 
QACO, via the OEM factories, to the consumable containers, 
such as ink cartridges in the home or office. The virtual 
consumables are created ex nihil in QACO, transferred with 
out being created or destroyed to the home or office, and then 
consumed. When virtual consumables are assigned to a con 
sumable container to be used in SOHO, it should be done in 
tandem with physically filling the container, so that the two 
are in agreement. 
0373) In general, the flow of properties is from QACO, via 
the OEM factories or OEM internet resellers, to printers and 
dongles, for use in the home and office. The properties are 
stored as quantities of properties until they get to their final 
destination, where they are assigned as single properties. 
0374. There are three general kinds of transfers, each with 
their corresponding rollbacks: 

0375. The transfer of a quantity of consumables. This is 
where a volume of consumables is transferred from 
source to destination. The transfer source field is 
decreased by the transfer delta amount, and the transfer 
destination field is increased by the same amount. This is 
a transfer delta. 

0376. The transfer of a quantity of properties. This is 
where a quantity of properties is transferred from Source 
to destination. The transfer source field is decreased by 
the transfer delta amount, and the transfer destination 
field is increased by the same amount. This is also a 
transfer delta. 

0377 The assignment of a single property. This is 
where a single property is transferred from source to 
destination. The transfer source field is decreased by 1, 
and the transfer destination field is assigned with the 
property value. This is also a transfer assignment. 

0378. The transfer process has two basic requirements: 
0379 The transfer can only be performed if the transfer 
request is valid. The validity of the transfer request must 
be completely checked by the Source QA Device before 
it produces the required output for the transfer. It must 
not be possible to apply the transfer output to the Desti 
nation QA Device if the Source QA Device has already 
been rolled back for that particular transfer. 

0380 A process of rollback is available if the transfer 
was not received by the Destination QA Device. A roll 

17 
Oct. 29, 2009 

back is performed only if the rollback request is valid. 
The validity of the rollback request must be completely 
checked by the Source QA Device, before it adjusts its 
value to a previous value before the transfer request was 
issued. It must not be possible to rollback an Source QA 
Device for a transfer which has already been applied to 
the Destination QA Device i.e the Source QA Device 
must only be rolled back for transfers that have actually 
failed. Similarly, it must not be possible to apply a trans 
fer to the Destination QA Device after the rollback has 
been applied. 

0381 
28. 

0382. The steps shown in FIG. 28 for a transfer and roll 
back process are: 

0383. The System performs an Authenticated Read of 
fields and keys in the destination QA Device. The output 
from the read includes field data, field descriptors, and 
the key descriptor of the key being used to authenticate 
the transfer, and a signature. It is essential that the fields 
are read together. This ensures that the fields are correct, 
and have not been modified, or substituted from another 
device. 

0384 The System requests a Transfer from the Source 
QA Device with the amount that must be transferred, the 
field in the Source QA Device the amount must be trans 
ferred from, and the field in Destination QA Device the 
amount must be transferred to. The Transfer also 
includes the output from (1). The Source QA Device 
validates the Transfer based on the Authenticated Read 
output, checks that it has enough value for a successful 
transfer, and then produces the necessary transfer out 
put. The transfer output typically consists of new field 
data for the field being refilled or upgraded, additional 
field data required to ensure the correctness of the trans 
fer/rollback, along with a signature. 

0385. The System then applies the transfer output to the 
Destination QA Device, by calling an Authenticated 
Write function on it, passing in the transfer output from 
(2). The Write is either successful or not. If the Write is 
not successful, then the System may repeat calling the 
Write function using the same transfer output, which 
may be successful or not. If unsuccessful, the System 
initiates a Rollback of the transfer. The Rollback must be 
performed on the Source QA Device, so that it can adjust 
its value to a previous value before the current Transfer 
was initiated. It is not necessary to perform a rollback 
immediately after a failed Transfer. The Destination QA 
Device can still be used. 

0386 The System starts a Rollback by reading the fields 
and keys of the Destination QA Device. 

0387. The System makes a Start RollBack request to the 
Source QA Device with same input parameters as the 
Transfer, and the output from Read in (4). The Source 
QA Device validates the Start RollBack Request based 
on the Read output, and then produces the necessary 
Start Rollback output. The Start Rollback output con 
sists only of additional field data along with a signature. 

0388. The System then applies the Start Rollback out 
put to the Destination QA Device, by calling an Authen 
ticated Write function on it, passing in the Start Rollback 
output. 

The transfer and rollback process is shown in FIG. 



US 2009/0268246 A1 

0389. The Write is either successful or not. If the Write 
is not successful, then either (6), or (5) and (6) must be 
repeated. 

0390 The System then does an Authenticated Read of 
the fields of the Destination QA Device. 

0391 The System makes a RollBack request to the 
Source QA Device with same input parameters as the 
Transfer request, and the output from Read (7). The 
Source QA Device validates the RollBack request based 
on the Authenticated Read output, and thenrolls back its 
field corresponding to the transfer. 

0392 There are two fields in every QA Device which can 
be the destination of a transfer, called the rollback enable 
fields. 
0393. The rollback enable fields are called RollbackEn 
able1 and RollbackEnable2 with field types=TYPE ROLL 
BACK ENABLE 1 and TYPE ROLLBACK ENABLE 2 
respectively (see Table 329). They each have a transfer mode 
of “other', which means that they are never the destination 
field of a transfer, that is, they never get value transferred to 
them. However, they take part in the authenticated writes 
which transfer value to other fields. 
0394 Both rollback enable fields are decrement-only 

fields, initialised to 0xFFFFFFFF when they are created, and 
they can only be decreased via authenticated writes. 
0395. When a transfer is requested, the authenticated read 
contains the field descriptors and field values for the rollback 
enable fields. The transfer source QA Device checks that they 
are present, and remembers their values. 
0396 The authenticated write for the transfer includes: 

0397. An assignment to the destination field being 
updated, 

0398. A decrement of -1 to RollbackEnable1, and 
0399. A decrement of -2 to RollbackEnable2. 

0400. If a rollback is requested, then the transfer source 
QA Device generates the arguments for an authenticated 
write to the transfer destination which include: 

04.01. A decrement of -2 to RollbackEnable1, and 
0402. A decrement of -1 to RollbackEnable2. 

0403. This authenticated write only works if the transfer 
write had never been applied, (because otherwise the rollback 
write would be incrementing RollbackEnable2, which is not 
allowed; it is a decrement-only field.) 
04.04 The pattern of “rollback enable value-1 and “roll 
back enable value -2 means that only one of the authenti 
cated writes can be applied, not both. If the Transfer write has 
succeeded, then the Rollback write can never be applied, and 
if the Rollback write has succeeded, then the Transfer write 
can never be applied. 
04.05 If the rollback write is successfully applied to the 
transfer destination, then another Authenticated Read is made 
to the rollback enable fields. This is presented as evidence to 
the transfer source QA Device, and if it can see that the 
rollback write has been successfully applied, it rolls back the 
transfer, and increments its source field. 
0406. The basic authorisation for a transfer comes from a 
key that has authenticated ReadWrite permission (stored in 
field information as KeyNum) to the destination fields in the 
Destination QA Device. This key is referred to as the transfer 
key. 
0407. After validating the input transfer request, the 
Source QA Device decrements the amount to be transferred 
from its source field, and produces the arguments for an 
authenticated write, and a signature using the transfer key. 

18 
Oct. 29, 2009 

0408. The signature produced by the Source QA Device is 
subsequently applied to the DestinationQA Device. The Des 
tination QA Device accepts the transfer amount only if the 
signature is valid. Note that the signature is only validifit was 
produced using the transfer key which has write permission to 
the destination field being written. 
04.09. The Source QADevice validates the transfer request 
by matching the Type of the data in the destination field of 
Destination QA Device to the Type of data in the source field 
of the Source QA Device. This ensures that equivalent data 
Types are transferred e.g. a quantity of type Network 
OEM1 infrared ink is not transferred into a field of type 
Network OEM1 cyan ink. 
0410. Each field which may be transferred from or to has 
a compatibility word in its field descriptor. The compatibility 
word consists of two 16-bit fields, called “who I am' and 
“who I accept. For the transfer to take place, each side must 
accept the other. That is expressed in this way: if (the source 
“who I am bitwise-ANDed with the destination “who I 
accept’ is non-zero) AND (the destination “who I am' bit 
wise-ANDed with the source “who I accept’ is non-zero) are 
both non-Zero, then the transfer can take place, otherwise it 
can’t. 
0411. In addition, when a quantity of properties is being 
transferred, the source field’s “upgrade to/from word is used 
as follows: 

0412. If the assignment is a “transfer delta', then the 
“upgrade to/from words in the source and destination 
fields must match, and 

0413. The transfer is a “transfer assignment’, then the 
previous value of the property must have been the 
“upgrade from value, and then the assignment is of the 
“upgrade to value. 

0414. This is the complete list of checks that must be made 
by the transfer source QA Device, before a transfer is autho 
rised. 

0415. The signature for the authenticated read matches 
0416) The keygroup for the incoming data is locked, 
and the key is valid, is of type DataKey, and has a 
UseLocally set to 1. 

0417 All of the incomingfields can be written or at least 
decremented by the incoming key. 

0418. The transfer source QA Device has the appropri 
ate key for the transfer 

0419. The rollback enable fields are present 
0420. The rollback enable field descriptors are decre 
ment-only, type rollback enable, transfer mode=other 

0421. The rollback enable values are >=2 
0422 Source and destination field types match 
0423 Source and destination compatibility fields are 
compatible 

0424. If the transfer operation is “transfer delta', then 
0425 Destination Volume+delta-maximum 
allowed at destination 

0426 Source volume >=delta 
0427. The source and destination fields either both 
have or both do not have an “upgrade option from/to 
value 

0428 If the source field has an “upgrade option from/ 
to” value, then it matches the destination field's value 

0429. The source and destination fields transfer 
modes must be the same, and they must be either 
“quantity of consumables' or "quantity of properties” 



US 2009/0268246 A1 

0430. If the transfer operation is “decrement and 
assign, then 
0431. The source field's transfer modes must be 
“quantity of properties, and the destination field's 
transfer mode must be “single property' 

0432. Destination value="option from value of the 
“upgrade option from/to value 

0433. If any of these tests fail, then the transfer cannot 
proceed. 

0434. The Authenticated Write arguments should have 
these values: 
0435 The RollbackEnable1 field should have an 
authenticated write of its previous value -1 

0436 The RollbackEnable2 field should have an 
authenticated write of its previous value-2 

0437. If the transfer operation is Transfer Delta, then: 
0438. Destination volume should be set to original 
Volume--delta. 

0439. If the transfer operation is “decrement and 
assign, then 

0440 Destination value="option to value of the 
“upgrade option from/to value 

0441 The implied delta value is 1. 
0442. The arguments of the Authenticated Write should 
have the “write/add bit in the entity descriptors set to “add'. 
for the rollback enables, and the field value in the Transfer 
Delta case. It should be set to “write” for the field value in the 
Transfer Assign case. The use of the “add’’ option in the 
Authenticated Write eliminates a class of race conditions. 
0443 The Transfer Delta function is to transfer value, the 
value being a quantity of consumables or a quantity of prop 
erties. This distinction (compared to a Transfer Assign) is 
above. 
0444. It produces as its output the data and signature for 
updating given fields in a destination QA Device with an 
Authenticated Write. The data and signature when applied to 
the appropriate device through the Authenticated Write func 
tion, updates the fields of the device. 
0445. The system calls the Transfer Delta function on the 
upgrade device with a certain Delta. This Delta is validated by 
the Transfer Delta function for various rules, the function then 
produces the data and signature for the passing into the 
Authenticated Write function for the device being upgraded. 
0446. The Transfer Delta output consists of the new data 
for the field being upgraded, field data of the two rollback 
enable fields, and a signature using the transfer key. 
0447 The following data is saved in the transfer Source 
QA Device's Rollback Buffer: 

0448. The field number in the transfer source, 
0449 The field number in the transfer destination, 
0450. The key slot number in the transfer source, 
0451. The key slot number in the transfer destination, 
0452. The destination ChipId, 
0453 The destination rollback enable counters, values 
and descriptors, 

0454. The destination key descriptor. 
0455 The delta. 

0456. Non-volatile memory is memory that retains its 
state after power is removed. For example, flash memory is a 
form of non-volatile memory. The terms flash memory and 
non-volatile memory are used interchangeably in the detailed 
description. 
0457. In a flash memory, a bit can either be in its erased 
state or in its programmed State. These states are referred to as 

19 
Oct. 29, 2009 

E and P. For a particular flash memory technology, E may be 
0 or 1, and P is the inverse of E. 
0458. Depending on the flash technology, a FIB (Focused 
Ion Beam) can be used to change chosen bits of flash memory 
from E to P. or from P to E. Thus a FIB may be used to set a 
bit from an unknown state to a known State, where the known 
state depends on the flash memory technology. 
0459. An integrated circuit (IC or chip) may be manufac 
tured with flash memory, and may contain an embedded pro 
cessor for running application program code. 
0460 XOR is the bitwise exclusive- or function. The sym 
bol is used for XOR in equations. 
0461) A Key, referred to as K, is an integer (typically large) 
that is used to digitally sign messages or encrypt secrets. Kis 
N bits long, and the bits of Kare referred to as Ko to Kx , or 
K, where i may run from 0 to N-1. 
0462. The Binary Inverse of a Key is referred to as -K. The 
bits of Kare referred to as -K, where imay run from 0 to N-1. 
0463 A Random Number used for the purposes of hiding 
the value of a key when stored in non-volatile memory is 
referred to as R. The bits of Rare referred to as R, where imay 
run from 0 to N-1. 
0464) If a function of a key K is stored in non-volatile 
memory, it is referred to as X. The bits of X are referred to as 
X, where i may run from 0 to N-1. 
0465. In embedded applications, it is often necessary to 
store a secret key in non-volatile memory Such as flash on an 
integrated circuit (IC), in products that are widely distributed. 
0466 In certain applications, the same key is stored in 
multiple ICs, all available to an attacker. For example, the IC 
may be manufactured into a consumable and the consumable 
is sold to the mass market. 
0467. The problem is to ensure that the secret key remains 
secret, against a variety of attacks. 
0468. This document is concerned with FIB (Focussed Ion 
Beam) attacks on flash-based memory products. Typically a 
FIB attack involves changing a number of bits of flash 
memory from an unknown state (either E or P) into a known 
state (E or P). Based on the effect of the change, the attacker 
can deduce information about the state of the bits of the key. 
0469. After an attack, if the chip no longer works, it is 
disposed of. It is assumed that this is no impediment to the 
attacker, because the chips are widely distributed, and the 
attackers can use as many of them as they like. 
0470 Note that the FIBattack is a write-only attack the 
attacker modifies flash memory and tests for changes of the 
chip behaviour. 
0471 Attacks that involve reading the contents of flash 
memory are much more difficult, given the current state of 
flash memory technology. However, if an attacker were able 
to read from the flash memory, then it would be straightfor 
ward to read the entire contents, then to disassemble the 
program and calculate what operations are being performed 
to obtain the key value. In short, all keys would be compro 
mised if an attacker is capable of arbitrary reads of flash 
memory 
0472. Note that this document is addressing direct attacks 
on the keys stored in flash memory. Indirect attacks are also 
possible. For example, an attacker may modify an instruction 
code in flash memory so that the contents of the accumulator 
are sent out an output port. Indirect attacks are not addressed 
in this document. 
0473. If a key K consisting of N bits is stored directly in 
non-volatile memory, and an attacker knows both N and the 



US 2009/0268246 A1 

location of where K is stored within the non-volatile memory, 
then the attacker can use a simple FIBattack to obtain K. 
0474 For each bit i in K: 

0475. The attacker uses the FIB to set K, to P. 
0476. If the chip still works the attacker can deduce that 
the bit was originally P. 

0477. If the chip no longer works, then the attacker can 
deduce that the bit was originally E. 

0478 A series of FIBattacks allows the attacker to obtain 
the entire key. At most, an attacker requires N chips to obtain 
all N bits, but on average only N/2 chips are required. 
0479. If the attacker cannot set a bit to P, but can set it to E. 
then an equivalent attack is possible. i.e. For each bit i in K: 

0480. The attacker uses the FIB to set K, to E. 
0481. If the chip still works the attacker can deduce that 
the bit was originally E. 

0482 If the chip no longer works, then the attacker can 
deduce that the bit was originally P. 

0483 Thus storing a key directly in non-volatile memory 
is not secure, because it is easy for an attacker to use a FIB to 
retrieve the key. 
0484 Instead of storing K directly in flash, it is possible to 
store R and X, where R is a random number essentially 
different on each chip, and X is calculated as X=KR. Thus K 
can be reconstructed by the inverse operation i.e. K=X R. 
0485. In this case, a simple FIB attack as described in 
Section 2.1 will not work, even if the attacker knows where X 
and Rare stored. This is because the bits of X are essentially 
random, and will differ from one chip to the next. If the 
attacker can deduce that a bit of Xin one chip is a certain state, 
then this will not have any relation to what the corresponding 
bit of X is in any other chip. 
0486 Even so, an attacker can still extract the key. For 
each bit i in the key: 

0487. The attacker uses the FIB to set both X, and R, to 
P. 

0488. If the chip still works, the attacker knows that X, 
and R, were originally either both P or both E. Both of 
these cases imply that the key bit K, is 0. 

0489. If the chip no longer works, the attacker knows 
that exactly one of X, and R, was originally P and one 
was E. This implies that the key bit K, is 1. 

0490. If the chip no longer works, replace it with a new 
chip. 

0491. If the attacker cannot set a bit to P, but can set it to E. 
then an equivalent attack is possible. 
0492. A series of FIBattacks allows an attacker to obtain 
the entire key. For each bit, there is a 50% chance that the chip 
cannot be reused because it is damaged by the attacks (this is 
the case where X, <>R). This means that on average it will 
take it will take an attacker 50%xN chips to obtain all N bits. 
0493. Therefore this method of storing a key is not con 
sidered secure, because it is easy for an attacker to use a FIB 
to retrieve the key. 
0494 Instead of storing K directly in flash, it is possible to 
store K and its binary inverse -K in flash such that for each 
chip, K is stored randomly in either of 2 locations and -K is 
stored in the other of the 2 locations (the program that 
accesses the key also needs to know the placement). As a 
result, given a randomly selected chip, an attacker does not 
know whether the bit stored at a particular location belongs to 
K or ~K. 
0495. If the program in flash memory checks that the value 
read from the first location is the binary inverse of the value 

20 
Oct. 29, 2009 

stored in the second location, before K is used, and the pro 
gram fails if it is not, then an attacker cannot use the behaviour 
of the chip to determine whether a single bit attack hit a bit of 
K or -K. 
0496. However the chip is subject to an attacker perform 
ing multiple-bit FIB attacks, assuming that the attacker 
knows the two locations where K and ~Kare stored, but does 
not know which location contains K; and that the program in 
the chip checks that the values stored at the two locations are 
inverses of each other, and fails if they are not. 
0497 For each bit i>0 in the key: 

0498. The attacker chooses a positive integer T. 
0499. The attacker repeats the following experiment up 
to T times, on a series of chips: 
0500. The attacker uses the FIB to set bits 0 and i of 
the value stored at one of the 2 locations (the attacker 
doesn't know if the value is K or -K) to P. 

0501 If the chip still works, then the attacker can 
deduce that Ko and K, have the same value: they are 
either both 1 or both 0. This is because the bits that 
were attacked must have both been originally P. and 
the FIB left them that way, and so the chip still 
worked. It is not clear whether the attacked bits were 
in K or ~K, and so the attacker can’t deduce whether 
the key bits were 0 or 1, but the attacker has discov 
ered that Ko and K, are the same. If this result occurs, 
stop repeating the experiment. 

0502. If the chip no longer works, then the attacker 
can only deduce that either the bits in the key are 
different, (with a probability 2/3), or the bits in the key 
are the same but the attack hit the bits in the key or the 
inverse that were both E. (with a probability of /3). 
That is, the attacker can get no certain information 
from this result, but can get a probable result. 
0503. 3. After T attempts, if there have been any 
results that indicate that Ko and K, have the same 
value, then the attacker knows that the bits are the 
same. Otherwise, the attacker knows that there is a 
(%)" probability that the bits are the same. The 
probability that Ko and K, are the same can be made 
arbitrarily close to 0 by increasing T until the 
attacker has an appropriate level of comfort that the 
bits are different. 

0504 If the attacker cannot set a bit to P, but can set it to E. 
then an equivalent attack is possible. 
0505 At the end of the experiments, the relation of Ko to 
all of the other key bits K, (i=1 to N-1), is either known or 
almost certainly known. This means that the key value is 
almost certainly known to within two guesses: one where 
Ko-0, and the other where K-1. For each guess, the other 
key bits K, are implied by the known relations. The attacker 
can try both combinations, and at worst may need to try other 
combinations of keys based on the probabilities returned for 
each bit position during the experiment. 
0506 An attacker can use a series of FIBattacks to obtain 
the entire key. For each K, there is a 75% chance that the chip 
cannot be reused because it is damaged by the attacks: this is 
the case where the tested bits Ko and K, were not both P. On 
average, it will take 1.5 attempts to determine that Ko and K, 
are identical, and T attempts to find that Ko and K, are differ 
ent. This means that on average it will take it will take an 
attacker 75%x(T+1.5)/2x(N-1) chips to obtain the relations 
between Ko and the other N-1 bits. 



US 2009/0268246 A1 

0507. Therefore this method of storing a key is not con 
sidered secure, because it is easy for an attacker to use a FIB 
to retrieve the key. 
0508. It is possible to store X, -X and R in flash memory 
where R is a random number, K is the key, X=K R, and 
-X=-K R. 
0509 X, -X and Rare stored in memory randomly with 
respect to each other, and the program that accesses the key 
also needs to know the placement. Thus, for a randomly 
selected chip it is not clear to an attacker whether a bit at a 
particular location belongs to X, -X or R. 
0510. It is assumed that the attacker knows where X, -X 
and Rare stored, but does not know which one is stored in 
each of the 3 locations; and that the program in the chip 
checks that the stored value for X is indeed the binary inverse 
of the stored value for ~X, and fails if it is not. 
0511. An attacker cannot extract the key using the method 
described in Section 2.3 because that method will reveal 
whether X is the same as X, (where X is one of X, -X and R). 
for an individual chip, but this can give no information about 
the relationship of Ko and K, because they are XORed with 
the random R that differs from chip to chip. 
0512 So a “pairs of bits' FIBattack cannot get the attacker 
any information about K. 
0513. However, K still susceptible to attack, by an attacker 
performing FIBattacks on pairs of bit pairs. 
0514. It is assumed that the chip is programmed with X, 
-X and R, and they are in known locations, but it is not known 
by the attacker what order they are in; and that the program in 
the chip checks that stored value for X is indeed the binary 
inverse of the stored value for ~X, and fails if it is not. 
0515 For each bit i>0 in the key: 

0516 Choose a positive integer T. 
0517 Repeat this experiment up to T times, on a series 
of chips: 
0518. The attacker uses the FIB to set bits 0 and i of 
two of the entities (X, -X or R), to P. The attacker does 
not know which of the entities were hit. 

0519 If the attacker hits bits in X and R, and all 4 of 
them were P, or if the attacker hits bits in -X and R, 
and all 4 of them were P, then the program will always 
pass. In these events, the attacker can deduce that Ko 
and K, are the same. The probability of this outcome is 
/6. If this result occurs, stop repeating the experiment. 

0520. If the attacker hits bits in X and R, and not all 4 
of them were P, or if the attacker hits bits in -X and R, 
and not all 4 of them were P, then the program will 
always fail. In this case the attacker can only deduce 
that either the bits in the key are different, or the bits 
in the key are the same but the attack hit the bits in the 
key or the inverse that were both E. That is, the 
attacker can get no certain information from this 
result, but can get a probable result. The probability of 
this outcome is /2. The probability of this outcome 
when Ko-K, is /6. The probability of this outcome 
when Ko- >K, is /3. 

0521. If the attacker hits bits in X and -X, then the 
program will always fail, because the corresponding 
bits in Xand-X must be different (by definition). One 
bit from each bit pair must have been changed from P 
to E by the attack, and the program checks will fail. In 
this event, the attacker cannot find out any informa 
tion about the bits of the key K. The probability of this 

Oct. 29, 2009 

outcome is /3. The probability of this outcome when 
Ko-K, is /6. The probability of this outcome when 
Ko- >K is /6. 

0522. After T attempts, if there have been any results 
that indicate that Ko and K, have the same value, then the 
attacker knows that the bits are the same. Otherwise, the 
attacker knows that there is a (2/3) probability that the 
bits are the same. The probability that Ko and K, are the 
same can be made arbitrarily close to 0 by increasing T. 
That is, the attacker can be almost certain that the bits are 
different. 

0523. If the attacker cannot set a bit to P, but can set it to E. 
then an equivalent attack is possible. 
0524. At the end of the experiments, the relation of Ko to 

all of the other key bits K, (i-1 to N-1), is either known or 
almost certainly known. This means that the key value is 
almost certainly known to within two guesses: one where 
Ko-0, and the other where K-1. For each guess, the other 
key bits K, will be implied by the known relations. The 
attacker can try both combinations, and at worst may need to 
try other combinations of keys based on the probabilities 
returned for each key position during the experiment. 
0525 Thus an attacker can use a series of FIBattacks to 
obtain the entire key. 
0526. Therefore this method of storing a key is not con 
sidered secure because it is not difficult for an attacker to use 
a FIB to retrieve the key. 
0527 The above-described attacks rely on the attacker 
having knowledge of where the key K and related key infor 
mation are placed within flash memory. 
0528 If the program insertion re-links the program every 
time a chip is programmed, then the key and key-related 
information can be placed in an arbitrary random places in 
memory, on a per-chip basis. For any given chip, the attacker 
will not know where the key could be. 
0529. This will slow but not stop the attacker. It is still 
possible to launch statistical attacks to discover the key. 
0530. This section shows how any attack that can succeed 
against keys in known locations can be modified to Succeed 
against keys that are placed in non-overlapping random loca 
tions, different for every programmed chip. The following 
assumptions are made: 

0531. That the places where the key information may be 
stored do not overlap with each other. That is, if a FIB 
attack hits a bit of key information, the attacker knows 
which bit of the key was hit, and 

0532 That the attacker knows the possible locations of 
the key information, and their alignment, and 

0533. That if a FIB attack leaves a chip reporting that 
the key was wrong, then it is more likely that this was 
because the key was corrupted, than because Some part 
of the program code that manipulates the key was hit. 

0534. When an attacker attacks a bit in flash memory with 
a FIBattack to set its state to P there are a number of possi 
bilities: 

0535 Abit can be hit that is already in the state P, and is 
therefore not changed. There is no change of behaviour 
of the chip. In some circumstances this can provide the 
attacker with some information. 

0536. A bit that is part of some key-related information 
can be hit, and the bit changes from state E to P. This will 
cause the program to fail, reporting an incorrect key 
value. 



US 2009/0268246 A1 

0537 Abit that is not part of some key-related informa 
tion can be hit, and the bit changes from state E to P. This 
may or may not cause the chip to fail for some other 
CaSO. 

0538. There are an equivalent set of possibilities if the 
attacker uses a FIBattack to set the state of a bit to E. 
0539. It is important to distinguish between the two kinds 
of failures: (a) failures where the program either reports an 
incorrect key value, oritis clear that the key value is incorrect, 
because it is unable to encrypt, and (b) other kinds of failures. 
If the program becomes unable to do key-related functions 
(encrypt, decrypt, digitally sign or check digital signatures, 
etc), but is otherwise functioning well, then the attacker can 
deduce that the most recent attack probably hit some key 
related information. 
0540. If a program stops working, or comes up with some 
other unrelated error condition, then the most recent attack hit 
Some part of the flash memory that was not key information, 
but was necessary for something else. 
0541. In the situation where K is placed into a random 
location in flash memory for each chip, and that the possible 
locations for the key cannot overlap with each other, then an 
attacker can extract the key. 
0542. For each bit i in N-1: 
0543 Choose a positive integer T. 
0544 Repeat the following experiment T times, on a 
series of chips: 
0545. The attacker chooses the address A of a poten 
tial key. 

(0546) The attacker uses the FIB to set the A, to P. 
0547. If the chip gets an error that implies that it has 
an incorrect key value, then probably K was actually 
at address A. In this case, the attacker records a hit, 
and records that K. is probably E. 

0548. Otherwise the attacker records a miss. 
0549. The attacker would do well to discard the chip, 
whether or not the chip failed. This is because there 
might be some silent damage to the chip, that could 
interact in unexpected ways with subsequent FIB 
attacks. It is safer to start each new experiment with a 
new chip. 

0550. After T attempts, the attacker has a record of how 
many hits H, were recorded for bit i in the key. 
0551 Since there are N key bits in flash memory, out of a 

total of M total bits of flash memory, the attacker can expect 
that a key bit was hit N out of M times. Sometimes this hit 
would have changed a bit from E to P. and other times it would 
leave the bit unchanged at P. 
0552. The attacker is now able to observe that for each bit 

i, the H/T converge to two values: N/M and 0. If H/T=N/M, 
then K. is probably E, and if H/T=0, then K. is probably P. 
0553 To launch this attack, an attacker requires TxN 
chips. Note that for the experiments to be useful, T needs to be 
large enough to launch an attack on M. 
0554. If the attacker cannot set a bit to P, but can set it to E. 
then an equivalent attack is possible. 
0555. This method of storing a key is not considered 
secure, because it is difficult, though not impossible, for an 
attacker to use an FIB to retrieve the key. 
0556. In the situation where for each chip, K and -K are 
each placed into a random location in flash memory such that 
the possible locations for storage do not overlap with each 
other, and that the program in the chip checks that the stored 

22 
Oct. 29, 2009 

values at the two locations are inverses of one another and 
fails if it is not, then an attacker can extract the key. 
0557. For each bit i in N-1: 
0558 Choose a positive integer T. 
0559 Repeat this experiment T times, on a series of chips: 

0560. The attacker chooses an address A (hoping it will 
be the address of K or -K). 

0561. The attacker uses the FIB to set bits A and A, to 
P. 

0562) If the chip gets an error that implies that it has an 
incorrect key value, then probably either K or -K was 
actually at address A. In this case, the attacker records a 
hit. The attacker can also deduce that bits Ao and A, were 
not both P. This can mean one of 2 things: 
0563 A and A, were different, and they were part of 
K or ~K. This implies that Ko- >K. This happens 2/3 
of the time. 

0564) A and A, were both E, and they were part of K 
or ~K. This implies that Ko-K. This happens /3 of the 
time. 

0565. Otherwise the attacker records a miss. 
0566. The attacker would do well to discard the chip, 
whether or not the chip failed. This is because there 
might be some silent damage to the chip, that could 
interact in unexpected ways with subsequent FIB 
attacks. It is safer to start each new experiment with a 
new chip. 

0567. After Tattempts, there will be a record of how many 
hits H, were recorded for bit i in the key. 
0568. Since there are 2N bits in flash memory containing 
K and ~K, out of a total of M total bits of flash memory, the 
attacker can expect that key-related bits were hit 2N out of M 
times. 

0569. The attacker should observe that for each bit i, the 
H/T converge to two values: N/M and N/2M. If H/T=N/M, 
then K, is probably --Ko, and if H/T=N72M, then K. is prob 
ably Ko. 
0570. At the end of the experiments, the relation of Ko to 

all of the other key bits K, (i-1 to N-1), is probably known. 
This means that the key value is probably known to within 
two guesses: one where K-0, and the other where K-1. For 
each guess, the other key bits K, will be implied by the known 
relations. The attacker should try both combinations. 
0571 To launch this attack, an attacker requires TxN 
chips. Note that for the experiments to be useful, T needs to be 
large enough to launch an attack on M. 
0572. If the attacker cannot set a bit to P, but can set it to E. 
then an equivalent attack is possible. 
0573 Therefore this method of storing a key is not con 
sidered secure, because although it is difficult, it is not impos 
sible for an attacker to use a FIB to retrieve the key. 
0574 Storing a key in arbitrary non-overlapping places in 
flash memory will slow but not stop a determined attacker. 
0575. The same methods of attack that work for keys in 
known locations, work for keys in unknown locations. They 
are slower because they rely on statistics that are confounded 
with the failures that occur because of reasons other than 
corruption of keys. 
0576 A sufficient number of experiments allows the 
attacker to isolate the failures caused by differences in the 
value of the bits of keys from other failures. 
0577. The above-described attacks rely on the attacker 
having knowledge of where the key K and related key infor 



US 2009/0268246 A1 

mation are placed within flash memory, or knowledge that the 
locations where the key information may be placed do not 
overlap each other. 
0578. It is possible to place the key and key-related infor 
mation in random locations in memory on a per-chip (assum 
ing the program that references the information knows where 
the information is stored). For a randomly selected chip, the 
attacker will not know exactly where the key is stored. This 
will slow but not stop the attacker. It is still possible to launch 
statistical attacks that discover the key. 
0579. Any attack that can succeed against keys in known 
locations can be modified to Succeed against keys that are 
placed in random locations, different for every programmed 
chip. The following assumptions are made: 

0580. If a FIBattack leaves a chip reporting that the key 
was wrong, then it is more likely that this was because 
the key was corrupted, than because some part of the 
program code that manipulates the key was hit. 

0581. Some inside information is helpful for the attack. 
0582 For a given computer architecture and software 
design, the keys will be held in memory in units of a particular 
word size, and those words will be held in an array of words, 
aligned with the word size. So, for example, a particular key 
might be 512 bits long, and held in an array of 32-bit words, 
and the words are aligned in flash memory at 32-bit bound 
aries. Similarly, another system might have a key that is 160 
bits long, held in an array of bytes, aligned on byte bound 
a1S. 

0583. Additional useful information for the attacker is the 
minimum alignment in flash memory for the key, denoted by 
W. 
0584) Ifa key is N bits long, aligned with a word-size of W. 
and placed in flash memory starting at an arbitrary word 
address, then there will be N/W bits that are aliased together 
from the point of view of the attacker. This is called the aliased 
bit group. This is because an attack on bit x in flash could be 
a hit to K. K. K2, etc, depending on which word in 
memory the key started. 
0585 For example, if a particular key is 512 bits long, and 

is held in an array of 32-bit words, then there are 16 elements 
(512/32) in each aliased bit group. Similarly, if another sys 
tem's key is 160 bits long, held in an array of bytes, then there 
are 20 elements (160/8) in each aliased bit group. 
0586. When an attacker discovers something about a par 

ticular chip's key by attacking a bit of flash memory, the 
attacker can generally only deduce some bulk characteristics 
of the aliased bit group, rather than individual bits of the key. 
For Small enough aliased bit groups, however, this can dra 
matically reduce the search size necessary to compromise the 
key. 
0587. The boundary conditions of aliased bit groups 
allows an attacker to gather particular types of statistics: 

0588. If a flash memory stores key related information 
on arbitrary bit boundaries, then the word size is 1, and 
the aliased bit group size is the key size. In this situation, 
the attacker can only gather statistics about the key bits 
as a whole. 

0589 If a flash memory stores key related information 
in words with an alignment greater than or equal to the 
key size, then the aliased bit group size is 1. In this 
situation, each bit of flash memory can only be a unique 
bit of the key, and any key-related information the 
attacker finds about that bit of flash memory can be 
applied to exactly that key bit. 

Oct. 29, 2009 

0590. It is in the attacker's interest for the word size to be 
as large as possible, so that there is a minimum of aliasing of 
bits. 
0591. When an attacker attacks a bit in flash memory with 
a FIBattack, there are a number of possible outcomes: 

0592. A bit can be hit that is already in the state P, and is 
therefore not changed. There is no change of behaviour 
of the chip. In some circumstances this can provide the 
attacker with some information. 

0593. A bit that is part of some key-related information 
can be hit, and the bit changes from state E to P. This will 
cause the chip to become unable to use its key correctly, 
and the program will fail. 

0594 Abit that is not part of some key-related informa 
tion can be hit, and the bit changes from state E to P. This 
may or may not cause the chip to fail for some other 
CaSO. 

0595. There are an equivalent set of possible outcomes if 
the attacker uses a FIBattack to set the state of a bit to E. 
0596. It is important to distinguish between the two kinds 
of failures: (a) failures where the program becomes unable to 
use its key, and (b) other kinds of failures. If the program 
becomes unable to do key-related functions (encrypt, 
decrypt, digitally sign or check digital signatures, etc), but is 
otherwise functioning well, then the attacker can deduce that 
the most recent attack hit some key-related information. 
0597. If a program stops working, or comes up with some 
other unrelated error condition, then the most recent attack hit 
some part of the flash memory that was not key information, 
but was necessary for something else. 
0598. If the key K is placed into a random location in flash 
memory for each chip, then an attacker can extract the key. 
0599 For each bit i in 0-W-1, where W=the word size: 
0600 Choose a positive integer T. 
0601 The attacker repeat the following experiment T 
times, on a series of chips: 

0602. The attacker chooses the address A of a word in 
flash memory. 

0603) The attacker uses the FIB to set the A, to P. 
0604 If the chip becomes unable to use the key K, then 
clearly the word at address A was in K. That is, A, K, 
where (i+W)<N. In this case, the attacker records a hit. 

0605. Otherwise the attacker records a miss. 
0606. The attacker would do well to discard the chip, 
whether or not the chip failed. This is because there 
might be some silent damage to the chip, that could 
interact in unexpected ways with subsequent FIB 
attacks. It is safer to start each new experiment with a 
new chip. 

0607 After Tattempts, there will be a record of how many 
hits H, were recorded for bit i in the word size. 
0608. At the end of the experiment, the attacker has W 
fractions H/T, one for every bit in the flash memory's words. 
0609 Since there are N key bits in flash memory, out of a 
total of M total bits of flash memory, the attacker can expect 
that a key bit was hit N out of M times. Sometimes this hit 
would have changed a bit from E to P. and other times it would 
leave the bit unchanged at P. 
0610. If all of the bits in the key’s aliased bit group were E, 
then the attacker should expect that H/T=N/M. That is, all of 
the bits of a particular word bit i that hit a key bit changed it 
from E to P. 



US 2009/0268246 A1 

0611. If all of the bits in the key’s aliased bit group were P. 
then the attacker should expect that H/T=0. That is, all of the 
bits of a particular word biti that hit a key bit left it unchanged 
at P. 
0612) If there are k bits in the aliased bit group, then the 
attacker should be able to observe that Bi-k(H/T)/(N/M) 
takes on k+1 values, from 0 to k, for each bit i in the flash 
memory words. 
0613 B, is the number of bits in the aliased bit group that 
are E in the key. k-B, is the number of bits in the aliased bit 
group that are P in the key. So the attacker knows to within a 
permutation what the key bit values are. 
0614 To launch this attack, an attacker requires TxW 
chips. Note that for the experiments to be useful, T needs to be 
large enough to launch an attack on M. 
0615. If the attacker cannot set a bit to P, but can set it to E. 
then an equivalent attack is possible. 
0616) Therefore this method of storing a key is not con 
sidered secure, because it is difficult, though not impossible, 
for an attacker to use a FIB to retrieve the key. 
0617. If K and -K are each placed into one of two random 
locations in flash memory for each chip, and the program 
checks that the stored values in both locations are binary 
inverses of each other and fails if they are not, then an attacker 
can extract the key. 
0618. For each bit i in 1-W-1, where W=the word size: 
0619 Choose a positive integer T. 
0620. The attacker repeat the following experiment T 
times, on a series of chips: 

0621. The attacker chooses the address A of a word in 
flash memory. 

0622. The attacker uses the FIB to set bits A and A, to 
P. 

0623) If the chip becomes unable to use the key K, then 
clearly the word at address A was either in Kor-K. That 
is, A, K, or A, -K, where (i+jW)<N. In this 
case, the attacker records a hit. The attacker can also 
deduce that bits A and A, were not both P. This can mean 
one of 2 things: 

0624 Ao and A, were different, and they were part of K 
or ~K. This implies that K->Ku, for some j. This 
happens 2/3 of the time. 

0625 A and A, were both E, and they were part of Kor 
~K. This implies that Ku-Ki, for some j. This hap 
pens /3 of the time. 

0626. Otherwise the attacker records a miss. 
0627 The attacker would do well to discard the chip, 
whether or not the chip failed. This is because there 
might be some silent damage to the chip, that could 
interact in unexpected ways with subsequent FIB 
attacks. It is safer to start each new experiment with a 
new chip. 

0628. After Tattempts, there will be a record of how many 
hits Hi were recorded forbiti in the word size. 
0629. At the end of the experiment, the attacker has W-1 
fractions H/T, one for each bit 1-W-1 in the flash memory's 
words. 

I0630. If an attack hits bits Ku and Ku, for some j, and 
those key bits are different, this will always cause a failure. If 
those key bits are the same, this will cause a failure half the 
time, on average. 
0631 So the attacker should expect that 
0632. H/T=(N/M)xSum(j-0 to k-1 (if (K-K) then 
!/2 else 1)) 

24 
Oct. 29, 2009 

0633 where k is the number of elements in the aliased key 
group. 
0634. If we define B (HAT)/(N/M), for i=1 to W-1, then 
the attacker finds B, (k-1) for the case where key bit Ku 
>K, for j in 0 to k-1. The attacker finds B, (k-1)/2 for the 
case where key bit Ku-Ki, for j in 0 to k-1. 
0635. The attacker should try various combinations of K, 
that make these equalities true. This dramatically decreases 
the search space necessary to compromise the key. 
0636. If the attacker cannot set a bit to P, but can set it to E. 
then an equivalent attack is possible. 
0637 Storing a key in arbitrary places in flash memory 
will slow but not stop a determined attacker. 
0638. The same methods of attack that work for keys in 
known locations work for keys in unknown locations. They 
are slower, because they rely on statistics that are confounded 
with the failures that occur because of reasons other than 
corruption of keys. 
0639 A sufficient number of experiments will allow the 
attacker to isolate the failures caused by differences in the 
value of the bits of keys, from other failures. 
0640. When keys are stored in flash, the key bits can be 
guarded by an increasingly elaborate set of operations to 
confound attackers. Examples of Such operations include the 
XORing of key bits with random numbers, the storing of 
inverted keys, the random positioning of keys in flash 
memory, and so on. 
0641 Based on previous discussion, it seems likely that 
this increasingly elaborate series of guards can be attacked by 
an increasingly elaborate series of FIBattacks. Note however, 
that the number of chip samples required by an attacker to 
make a success likely may be prohibitively large, and thus a 
previously discussed storage method may be appropriately 
SCUC. 

0642. The basic problem of the storing and checking of 
keys is that the bits of the key-related entities (-K, R, etc) can 
be directly correlated to the bits of the key. 
0643 Assuming a single key, a method of Solving the 
problem is to guard the key bits using a value that has no 
correlation with the key bits as follows: 

0644 Rand Xare stored in the flash memory where R is 
a random number different for each chip, and X=Kowf 
(R), where owf() is a one-way function such as SHA1 
(see 1). 

0.645 R and X may be stored at known addresses 
0646 For the program to use the key, it must calculate 
K=X owf(R) 

0647. The one-way function should have the property that 
if there is any bit difference in the function input, there are on 
average differences in about half of the function output bits. 
SHA1 has this property. 
0648. If an attacker modifies even a single bit of R, it will 
affect multiple bits of the owf() output and thus multiple bits 
of the calculated K. 
0649. This property makes it impossible to make use of 
multiplebit attacks, because if bit 0 and bitiof Rare modified, 
this will affect on average N/2 bits of K, that may or may not 
include bits 0 and i. The attacker cannot deduce any informa 
tion about bits of K. 
0650 Similarly, if bit 0 and bit i of X are modified, the 
attacker is able to tell if X and X, were both P in this particu 
lar chip, but this will give the attacker no information about 
key bits K, because the attacker will not know the whole of R, 
and hence the attacker doesn't know any bits of owf(R). 



US 2009/0268246 A1 

0651. If the attacker is restricted to FIBattacks, it doesn’t 
matter if Rand Xare stored in fixed known locations, because 
these FIBattacks cannot extract any information about K. 
0652. A chip may need to hold multiple keys in flash 
memory. For this discussion it is assumed that a chip holds 
NumKeys keys, named KIO-KNumKeys-1. 
0653. These keys can be held in a number of ways. 
0654 They can be stored as NumKey instances of any of 
the insecure key storage algorithms discussed above. These 
key storage methods are insecure for the storage of multiple 
keys for the same reasons that they are insecure for the storage 
of single keys. 
0655. If the keys are stored as processed keys using the 
method introduced in Section 5 then there is an issue of how 
many random numbers are required for same storage. The two 
basic cases are: 

0656 Processed keys are stored along with a single 
random number R as XO-XNumKeys-1, where Xi 
=Kiowf(R) 
0657 Processed keys are stored along with a set of 
random numbers RO-RNumKeys-1, in the form 
XO-XNumKeys-1, where Xi-Kiowf(Ri). 

0658. Both storage techniques are immune to FIBattacks, 
as long as no keys have been compromised. 
0659. If storage technique (1) is used, and an attacker 
knows one of the keys, then that knowledge can be used with 
a FIBattack to obtain the value of another keys and hence all 
keys. The attack assumes that the attacker knows: 

0660 the location of R and XO-XNumKeys-1. 
where Xi-Kiowf(R). 

0661 the value of Ka, and wishes to discover the value 
of Kb. 

0662 For each bit i in the key Kb: 
0663 The attacker uses the FIB to set R, and Xa, to P. 
0664) If the chip still works when it uses Ka. 

0665. The attacker knows that R, and Xa, in this 
particular chip were originally P. 

0666. The attacker uses the FIB to set Xb, to P. 
0667 If the chip still works when it uses KIb, then 
the attacker can deduce that Xb, was originally P. in 
which case KIb, is 0. 

0668 If the chip no longer works when it uses Kb. 
then the attacker can deduce that Xb, was originally 
E, in which case KIb, is 1. 

0669 If the chip no longer works, then 
0670 repeat this procedure for Kb, with a new chip. 

0671. If the attacker cannot set a bit to P, but can set it to E. 
then an equivalent attack is possible. 
0672. The attack relies on the fact that even if the attacker 
does not know the value of R, the same value owf(R) is used 
to guard all of the keys and there is known correlation 
between corresponding bits of each X. 
0673. Note that if the locations of R and XO-X 
NumKeyS-1, are randomised during program insertion, it 
will slow but not stop this kind of attack, for the reasons 
described in Section 4. 
0674. Therefore storage technique (2) is more secure, as it 
uses a set of different owf(Ri) values to guard the keys. 
However storage technique (2) requires additional storage 
over storage technique (1). 
0675. The problem with storage technique (1) is that there 

is a single value (owf(R)) used to guard the keys, and there is 
known correlation between corresponding bits of each stored 
form of key. i.e. XOR is a poor encryption function. 

Oct. 29, 2009 

0676 Storage technique (2) relies on storing a different R 
for each key so that the values used to protect each key are 
uncorrelated on a single chip, and are uncorrelated between 
chips. The problem with storage technique (2) is that addi 
tional storage is required—one R per key. 
0677. However, it is possible to use a single base-value 
such that the bit-pattern used to protect each K is different. 
i.e.: storage technique (3) is as follows: 

0678 Processed keys are stored with a single random 
number R in the form XO-XNumKeys-1, where Xi 
=Kiowf(Ri), where owf() is a one-way function such 
as SHA1. 

0679. For the program to use a key, it must calculate Ki 
=Xi owf(Ri). 
0680 The keys may be stored at known addresses. 
0681. In general, technique (3) stores Xi where Xi-En 
crypt(Ki) using key Q. The Encrypt function is XOR, and Q 
is obtained by owf(Ri) where R is an effectively random 
number per chip. Normally XOR is not a strong encryption 
technique (as can be seen by the attack in Section 2.2), but it 
is strong when applied to an uncorrelated data, as is the case 
with this method. The technique used to generate Q is such 
that uncorrelated Qs are obtained to protect the keys, each Q 
is uncorrelated from the stored R, and both Rs and Qs are 
uncorrelated between chips. It isn't quite a pure one-time 
pad, since the same stored R is used each time the key is 
decrypted, but it is a one-time-pad with respect to the fact that 
each Q is different on a single chip, and each R (and hence the 
Qs) is different between chips. 
0682. The following terminology is now used: 
0683. A nonce is a parameter that varies with time. A 
nonce can be a generated random number, a time stamp, and 
so on. Because a nonce changes with time, an entity can use 
it to manage its interactions with other entities. 
0684. A session is an interaction between two entities. A 
nonce can be used to identify components of the interaction 
with a particular session. A new nonce must be issued for each 
session. 
0685. A replay attack is an attack on a system which relies 
on replaying components of previous legitimate interactions. 
0686. In the generation of non-deterministic sequences, 
nonces are useful in challenge-response systems to protect 
against replay attacks. 
0687. A entity, referred to as a challenger, can issue a 
nonce for each new session, and then require that the nonce be 
incorporated into the encrypted response or be included with 
the message in the signature generated from the other party in 
the interaction. The incorporation of a challenger's nonce 
ensures that the other party in the interaction is not replaying 
components of a previous legitimate session, and authenti 
cates that the message is indeed part of the session they claim 
to be part of. 
0688. However, if an attacker can predict future nonces, 
then they can potentially launch attacks on the security of the 
system. For example, an attacker may be able to determine the 
distance in nonce-sequence-space from the current nonce to a 
nonce that has particular properties or can be used in a man 
in-the-middle attack. 
0689. Therefore security is enhanced by an attacker not 
being able to predict future nonces. 
0690. To prevent these kinds of attacks, it is useful for the 
sequence of nonces to be hard to predict. However, it is often 
difficult to generate a sequence of unpredictable random 
numbers. 



US 2009/0268246 A1 

0691 Generation of sequences is typically done in one of 
two ways: 

0692 An entity can use a source of genuinely random 
numbers, such as a physical process which is non-deter 
ministic; 

0693. An entity can use a means of generating pseudo 
random numbers which is computationally difficult to 
predict, such as the Blum Blum Shub pseudo-random 
sequence algorithm 1. 

0694 For certain entities, neither of these sources of ran 
dom numbers may be feasible. For example, the entity may 
not have access to a non-deterministic physical phenomenon. 
Alternatively, the entity may not have the computational 
power required for complex calculations. 
0695. What is needed for small entities is a method of 
generating a sequence of random numbers which has the 
property that the next number in the sequence is computa 
tionally difficult to predict. 
0696. At a starting time, for example when the entity is 
programmed or manufactured, a random number called X is 
injected into the entity. The random number acts as the initial 
seed for a sequence, and should be generated from a strong 
Source of random numbers (e.g. a non-deterministic physi 
cally generated Source). 
(0697. When the entity publishes a nonce R, the value it 
publishes is a strong one-way function (owf) of the current 
value for X: i.e. 

0698. The strong one-way function owf() can be a strong 
one-way hash function, Such as SHA-1, or a strong non 
compressing one-way function. 
0699 Characteristics of a good one-way function for this 
purpose are that it: 

0700 is easy to compute 
0701 produces a sufficiently large dynamic range as 
output for the application 

0702 is computationally infeasible to find an input 
which produces a pre-specified output (i.e. it is preimage 
resistant). This means an attacker can’t determine X, 
from R. 

0703 is computationally infeasible to find a second 
input which has the same output as any pre-specified 
input (i.e. it is 2nd-preimage resistant). 

0704 produces a large variance in the output for mini 
mally different inputs 

0705 is collision resistant over the output bit range i.e. 
is computationally infeasible to find any two distinct 
inputs X and X which produce the same output 

(0706 The number of bits n in x needs to be sufficiently 
large with respect to the chosen one-way function. For 
example, n should be at least 160 when owfis SHA-1. 
0707 To advance to the next nonce, the seed is advanced 
by a simple means. For example, it may be incremented as an 
n-bit integer, or passed through an n-bit linear feedback shift 
register. 
0708. The entity publishes a sequence of nonces R. R. 
R2, Rs. . . . based on a sequence of seeds Xo, X1, X2, Xs. . . . . 
0709 Because the nonce is generated by a one-way func 

tion, the exported sequence, Ro, R. R. R. . . . etc., is not 
predictable (or deterministic) from an attacker's point of 
view. It is computationally difficult to predict the next number 
in the sequence. 

26 
Oct. 29, 2009 

0710. The advantages of this approach are: 
0711. The calculation of the next seed, and the genera 
tion of a nonce from the seed are not computationally 
difficult. 

0712. A true non-deterministic number is only required 
once, during entity instantiation. This moves the cost 
and complexity of the difficult generation process out of 
the entity. 

0713. There is no need for a source of random numbers 
from a non-deterministic physical process in the running 
system. 

0714 Note that the security of this sequence generation 
system relies on keeping the current value for X Secret. If any 
of the X values is known, then all future values for X can be 
predicted and hence all future R values can be known. 
0715 Note that the random sequence produced from this 

is not a strong random sequence e.g. from the view of guar 
anteeing particular distribution probabilities. The behaviour 
is more akin to random permutations. Nonetheless, it is still 
useful for the purpose of generating a sequence for use as a 
nonce in Such applications as a SoC-based implementation of 
the QA Logical Interface. 
0716. In one embodiment, functionally identical code seg 
ments are stored in each of multiple devices. The device can 
be, for example, a series of printer cartridges, and more spe 
cifically the QA printer chip attached to Such cartridges. 
0717 The programs stored in the devices are functionally 
identical to each other, which is to say that they implement the 
same instructions in the same way, although the individual 
instances of the programs may operate on different data and 
using different keys. 
0718 Whilst the program instances are functionally iden 

tical, they are broken up into code segments that are each 
stored at different locations in the flash memory. For conve 
nience, each code segment can be a function or other rela 
tively self-contained Subset of instructions, although this is 
not required. 
0719. After the chip has been manufactured, the program 
code is injected Such that the position of particular code 
segments varies across the devices. The memory location at 
which each code segment starts can be selected in any con 
Venient manner. It is not strictly necessary that every segment 
be placed in a truly random or unique location in the memory 
from device to device. Rather, it is enough that a potential 
attacker cannot rely on the same code being in the same place 
in a series of different integrated circuits. 
0720. It is still, however, desirable that the location of 
particular code segments be selected at least pseudo-ran 
domly, and preferably randomly. 
0721. In the preferred embodiment, an initial instruction is 
located at an initial memory location that is the same across 
all of the devices. This means that a common boot program 
can be used at startup, since it always looks to the initial 
location to commence the program. Somewhere in the code 
segment following the initial location, the program jumps to 
one of the random or pseudo-random memory locations. 
From this point in the program, the instructions are effectively 
unknown to an attacker. Of course, it is possible that only a 
relatively small (but preferably important) code section is 
located at this random or pseudo-random location. The rest of 
the code can be at common locations across the devices. 
0722. The reference to the random or pseudo-random 
location in the program code can be explicit (as above) or 
implicit. For example, the program code can refer to a pointer 
or register that contains the location of interest. The location 



US 2009/0268246 A1 

is stored in the pointer or register during program instantia 
tion. The location of interest can also be stored in a jump table. 
0723 Multiple random or pseudo random locations can be 
used. The program can jump to multiple locations during its 
execution, each of the locations being different across several 
devices. The code segments themselves can be different to 
each other, such that even the segments themselves (in num 
ber or size) vary from device to device. 
0724 Terms: A number of terms are used in the specifica 
tion and claims. The following list includes some definitions 
that are to be used when these terms appear, unless a contrary 
meaning is clearly intended in context: 
0725 “Relatively unique' Depending upon the context, 

this phrase generally means that a value orbit-patternis rarely 
repeated across multiple devices. It is usually preferable that 
the value or bit-pattern is selected in a random or at least 
pseudo-random way. However, in some applications it is Suf 
ficient to ensure that the value or bit-pattern is merely not 
frequently repeated from device to device. Sometimes, a rela 
tively small number of potential values orbit-patterns will be 
Sufficient to make attacking a chip or other device Sufficiently 
hard that it will not be worth attempting 
0726 “Associated with a base key” A variant key is 
associated with a base key when it is the result of applying a 
one way function to the base key and a bit-pattern. 
0727 “Cryptographically strong Whilst this is a rela 

tive term, it has some use when comparing the ease with 
which functions can be broken when used in cryptography. 
For example, an XOR function, whilst useful in some circum 
stances in cryptography, is considerably easier to "crack' 
than, say, a hash function or sufficient length. Also, a hash 
function combined with a key into a MAC (i.e. “message 
authentication code’) such as HMAC-SHA1 used with a cer 
tain length of key will be cryptographically stronger if the key 
length is increased, up to a certain length of key. 
0728 “Bit-pattern’ A generic term that can refer to 
keys, nonces, random numbers, pseudo-random numbers, 
serial numbers, and any other strings of interest. 
0729. “Functionally identical Code segments that are 
functionally identical operate in the same way, using the same 
functions and subroutines as each other where each of the 
functions and Subroutines are also functionally identical. 
However they may use different keys, constants or variables, 
and/or operate on different stored data or data and program 
segment code stored at different locations in memory. For 
example, two functionally identical code segments may each 
load a particular constant into a register for use in evaluating 
an expression, and although the order of steps taken to load 
the constant may differ between segments, the value of the 
constant may differ between segments, and the address of the 
constant in memory may differ between segments, the func 
tional intent of the code segment is the same for both. 
(0730. It will be appreciated by those skilled in the art that 
the foregoing represents only a preferred embodiment of the 
present invention. Those skilled in the relevant field will 
immediately appreciate that the invention can be embodied in 
many other forms. 

1. A method of enabling or disabling a verification process 
of a first entity in response to a predetermined event, the first 
entity having at least one associated bit-pattern and at least 
one variant key, each of the variant keys having been gener 
ated by applying a one way function to: a base key; and one or 
more of the at least one bit-patterns, respectively; or one or 

27 
Oct. 29, 2009 

more alternative bit patterns, each of the alternative bit-pat 
terns being based on one of the at least one bit-patterns, the 
method comprising: 

(a) determining that the predetermined event has hap 
pened; and 

(b) enabling or disabling at least one of the first variant keys 
in response to the predetermined event. 

2. A method according to claim 1, wherein step (a) includes 
disabling at least one of the variant keys, Such that the dis 
abled at least one variant key can no longer be used to digitally 
sign information in that entity. 

3. A method according to claim 1, wherein step (a) includes 
disabling at least one of the variant keys, Such that the dis 
abled at least one variant key can no longer be used to Verify 
information signed by one or more respective base keys 
related to the disabled at least one variant key in that entity. 

4. A method according to claim 1, wherein the step of 
disabling the at least one variant key includes modifying a 
status of a flag associated with that at least one variant key. 

5. A method according to claim 1, wherein the step of 
disabling the at least one variant key includes deleting that at 
least one variant key. 

6. A method according to claim 1, wherein the step of 
disabling the at least one variant key includes modifying that 
at least one variant key 

7. A method according to claim 1, wherein the event is a 
predetermined point in time being reached or passed. 

8. A method according to claim 1, wherein the first entity 
includes a plurality of the variant keys, the plurality of variant 
keys being based on the result of a one way function applied 
to: a respective one of a corresponding plurality of base keys; 
and one of the at least one bit-patterns or one of the at least one 
alternative bit-patterns, the method comprising: 

determining that a predetermined event related to one of 
the variant keys has happened; and 

enabling or disabling at least one of the plurality of variant 
keys with which the predetermined event is associated. 

9. A method according to claim 1, wherein each base key 
has a corresponding sequence of predetermined events asso 
ciated with them, the method including the steps of: 

(a) determining that one of the predetermined event has 
happened; and 

(b) enabling or disabling the variant key in the sequence 
corresponding to predetermined event that is determined 
to have happened. 

10. A method according to claim 9, wherein the variant 
keys are disabled in the order of the sequence of predeter 
mined events. 

11. A method according to claim 10, wherein the sequence 
of events is chronological. 

12. A method according to claim 11, wherein each of the 
events includes a time being reached. 

13. A method according to claim 12, wherein the step of 
determining that one of the events has happened includes 
receiving a time from a trusted Source. 

14. A method according to claim 13, wherein the time is a 
date. 

15. A method according to claim 14, wherein the date is 
determined with a resolution of a month. 

16. A method according to claim 2, wherein the predeter 
mined event includes detection of compromise of one or more 



US 2009/0268246 A1 Oct. 29, 2009 
28 

of the variant keys, the method comprising disabling the one more of the variantkeys, the method comprising disabling the 
or more variant keys detected as compromised. one or more variant keys Suspected of being compromised. 

17. A method according to claim to claim 2, wherein the 
predetermined event includes Suspect compromise of one or ck 


